Science.gov

Sample records for putative receptors specific

  1. Characterization of putative receptors specific for quercetin on bovine aortic smooth-muscle cells

    SciTech Connect

    Yu, S.C.; Becker, C.G.

    1986-03-01

    The authors have reported that tobacco glycoprotein (TGP), rutin-bovine serum albumin conjugates (R-BSA), quercetin, and chlorogenic acid are mitogenic for bovine aortic smooth-muscle cells (SMC). To investigate whether there are binding sites or receptors for these polyphenol-containing molecules on SMC, the authors have synthesized /sup 125/I-labeled rutin-bovine serum albumin ((/sup 125/I)R-BSA) of high specific activity (20 Ci/mmol). SMC were isolated from a bovine thoracic aorta and maintained in Eagle's minimum essential medium with 10% calf serum in culture. These SMC at early subpassages were suspended (3-5 x 10/sup 7/ cells/ml) in phosphate-buffered saline and incubated with (/sup 125/I)R-BSA (10 pmol) in the presence or absence of 200-fold unlabeled R-BSA, TGP, BSA, rutin, quercetin or related polyphenols, and catecholamines. Binding of (/sup 125/I)R-BSA to SMC was found to be reproducible and the radioligand was displaced by R-BSA, and also by TGP, rutin, quercetin, and chlorogenic acid, but not by BSA, ellagic acid, naringin, hesperetin, dopamine, epinephrine, or isoproterenol. The binding was saturable, reversible, and pH-dependent. These results demonstrate the presence of specific binding sites for quercetinon arterial SMC.

  2. Systematic Analyses of the Cytotoxic Effects of Compound 11a, a Putative Synthetic Agonist of Photoreceptor-Specific Nuclear Receptor (PNR), in Cancer Cell Lines

    PubMed Central

    Zhao, Zibo; Wang, Lu; Wen, Zhi; Ayaz-guner, Serife; Wang, Yidan; Ahlquist, Paul; Xu, Wei

    2013-01-01

    Photoreceptor cell-specific receptor (PNR/NR2E3) is an orphan nuclear receptor that plays a critical role in retinal development and photoreceptor maintenance. The disease-causing mutations in PNR have a pleiotropic effect resulting in varying retinal diseases. Recently, PNR has been implicated in control of cellular functions in cancer cells. PNR was reported to be a novel regulator of ERα expression in breast cancer cells, and high PNR expression correlates with favorable response to tamoxifen treatment. Moreover, PNR was shown to increase p53 stability in HeLa cells, implying that PNR may be a therapeutic target in this and other cancers that retain a wild type p53 gene. To facilitate further understanding of PNR functions in cancer, we characterized compound 11a, a synthetic, putative PNR agonist in several cell-based assays. Interestingly, we showed that 11a failed to activate PNR and its cytotoxicity was independent of PNR expression, excluding PNR as a mediator for 11a cytotoxicity. Systematic analyses of the cytotoxic effects of 11a in NCI-60 cell lines revealed a strong positive correlation of cytotoxicity with p53 status, i.e., p53 wild type cell lines were significantly more sensitive to 11a than p53 mutated or null cell lines. Furthermore, using HCT116 p53+/+ and p53-/- isogenic cell lines we revealed that the mechanism of 11a-induced cytotoxicity occurred through G1/S phase cell cycle arrest rather than apoptosis. In conclusion, we observed a correlation of 11a sensitivity with p53 status but not with PNR expression, suggesting that tumors expressing wild type p53 might be responsive to this compound. PMID:24066170

  3. Putative melatonin receptors in a human biological clock.

    PubMed

    Reppert, S M; Weaver, D R; Rivkees, S A; Stopa, E G

    1988-10-07

    In vitro autoradiography with 125I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific 125I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific 125I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific 125I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  4. Putative melatonin receptors in a human biological clock

    SciTech Connect

    Reppert, S.M.; Weaver, D.R.; Rivkees, S.A.; Stopa, E.G.

    1988-10-07

    In vitro autoradiography with /sup 125/I-labeled melatonin was used to examine melatonin binding sites in human hypothalamus. Specific /sup 125/I-labeled melatonin binding was localized to the suprachiasmatic nuclei, the site of a putative biological clock, and was not apparent in other hypothalamic regions. Specific /sup 125/I-labeled melatonin binding was consistently found in the suprachiasmatic nuclei of hypothalami from adults and fetuses. Densitometric analysis of competition experiments with varying concentrations of melatonin showed monophasic competition curves, with comparable half-maximal inhibition values for the suprachiasmatic nuclei of adults (150 picomolar) and fetuses (110 picomolar). Micromolar concentrations of the melatonin agonist 6-chloromelatonin completely inhibited specific /sup 125/I-labeled melatonin binding, whereas the same concentrations of serotonin and norepinephrine caused only a partial reduction in specific binding. The results suggest that putative melatonin receptors are located in a human biological clock.

  5. Species-specific pharmacology of maximakinin, an amphibian homologue of bradykinin: putative prodrug activity at the human B2 receptor and peptidase resistance in rats

    PubMed Central

    Jean, Melissa

    2017-01-01

    Maximakinin (MK), an amphibian peptide possessing the C-terminal sequence of bradykinin (BK), is a BK B2 receptor (B2R) agonist eliciting prolonged signaling. We reinvestigated this 19-mer for species-specific pharmacologic profile, in vivo confirmation of resistance to inactivation by angiotensin converting enzyme (ACE), value as a module for the design of fusion proteins that bind to the B2R in mammalian species and potential activity as a histamine releaser. Competition of the binding of [3H]BK to recombinant human myc-B2Rs in cells that express these receptors revealed that MK possessed a tenuous fraction (<0.1%) of the affinity of BK, despite being only ∼20-fold less potent than BK in a contractility assay based on the human isolated umbilical vein. These findings are reconciled by the generation of C-terminal fragments, like Lys-Gly-Pro-BK and Gly-Pro-BK, when the latent MK is incubated with human venous tissue (LC-MS), supporting activation via hydrolysis upstream of the BK sequence. At the rat recombinant myc-B2R, MK had a lesser affinity than that of BK, but with a narrower margin (6.2-fold, radioligand binding competition). Accordingly, MK (10 nM) stimulated calcium transients in cells that expressed the rat receptors, but not the human B2R. Recombinant MRGPRX2, a receptor that mediates cationic peptide-induced mast cell secretion, minimally responded by increased [Ca+2]i to MK at 10 µM. Enhanced green fluorescent protein fused to MK (EGFP-MK) labeled cells that expressed rat, but not human B2Rs. Intravenous MK induced dose-dependent hypotensive, vasodilator and tachycardic responses in anesthetized rats and the effects were antagonized by pretreatment with icatibant but not modified by pyrilamine or enalaprilat. Strong species-specific responses to the toxin-derived peptide MK and its prodrug status in the isolated human vein were evidenced. Accordingly, MK in the EGFP-MK fusion protein is a pharmacophore module that confers affinity for the rat B2R

  6. A comprehensive analysis of sequence variants and putative disease-causing mutations in photoreceptor-specific nuclear receptor NR2E3

    PubMed Central

    Swaroop, Anand

    2009-01-01

    Purpose The photoreceptor-specific orphan nuclear receptor NR2E3 is a key regulator of transcriptional events during photoreceptor differentiation in mammalian retina. Mutations in NR2E3 are associated with enhanced S-cone syndrome and related retinal phenotypes that reveal characteristic excess of S-cone function. This study was undertaken to determine biochemical as well as functional consequences of reported sequence variants and disease-causing mutations in NR2E3. Methods Twenty-five different mutations in the wild-type NR2E3 expression construct were generated by site-directed mutagenesis and performed nuclear localization, gel-shift, rhodopsin promoter activity assays, and co-immunoprecipitation in cultured mammalian cells. Results Of the 25 mutant proteins, 15 mislocalize at least partially to the cytoplasm. Eight of the nine changes in the DNA-binding domain (DBD) and 12 of the 14 mutations in the ligand-binding domain (LBD) of NR2E3 exhibited reduced DNA-binding and transcriptional activation of the rhodopsin promoter. Moreover, these mutations dramatically altered the interaction of NR2E3 with NRL as well as with CRX. Two NR2E3 variants between DBD and LBD showed no effect on any biochemical or functional parameter tested. Conclusions These data provide a better understanding of sequence variants, validate disease-causing mutations, and demonstrate the significance of DBD and LBD in mediating NR2E3 function. These studies contribute to molecular mechanisms underlying retinal phenotypes caused by NR2E3 mutations. PMID:19898638

  7. Differential expression of the Wnt putative receptors Frizzled during mouse somitogenesis.

    PubMed

    Borello, U; Buffa, V; Sonnino, C; Melchionna, R; Vivarelli, E; Cossu, G

    1999-12-01

    The expression of eight murine Frizzled (1,3-9) genes was studied during mouse somitogenesis, in order to correlate the Wnt-dependent activation of myogenesis with the expression of specific Frizzled putative receptors. Frizzled 1, 3, 6, 7, 8, and 9 have specific expression in the forming and differentiating somites. The genes analyzed have a complex and partly overlapping pattern of expression in other regions of the embryo.

  8. Putative odour receptors localize in cilia of olfactory receptor cells in rat and mouse: a freeze-substitution ultrastructural study.

    PubMed

    Menco, B P; Cunningham, A M; Qasba, P; Levy, N; Reed, R R

    1997-05-01

    Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels. Immunopositive cells were rare; only up to about 0.4% of these receptor cells were labelled. Despite chemical, species, and topographic differences both antibodies behaved identically in their ultrastructural labelling patterns. For both antibodies, labelling was very specific for olfactory cilia; both bound amply to the thick proximal and the thinner and long distal parts of the cilia. Dendritic knobs showed little labelling if any. Dendritic receptor cell structures below the knobs, supporting cell structures, and respiratory cilia did not immunolabel. There were no obvious differences in morphology between labelled and unlabelled receptor cells and their cilia. Labelling could be followed up to a distance of about 15 microns from the knobs along the distal parts of the cilia. When labelled cells were observed, this signal was detectable in two, sometimes three, sections taken through these cells while being consistently absent in neighbouring cells. This pattern argues strongly for the specificity of the labelling. In conclusion, very few receptor cells labelled with the antibodies to putative odour receptors. Additionally the olfactory cilia, the cellular regions that first encounter odour molecules and that are thought to transduce the odorous signal, displayed the most intense labelling with both antibodies. Consequently, the results showed these cilia as having many copies of the putative receptors. Finally, similar patterns of subcellular labelling were displayed in two different species, despite the use of different antibodies. Thus, this study provides compelling evidence that the heptahelical

  9. Putative odour receptors localize in cilia of olfactory receptor cells in rat and mouse: a freeze-substitution ultrastructural study.

    PubMed

    Menco, B P; Cunningham, A M; Qasba, P; Levy, N; Reed, R R

    1997-10-01

    Two different polyclonal antibodies were raised to synthetic peptides corresponding to distinct putative odour receptors of rat and mouse. Both antibodies selectively labelled olfactory cilia as seen with cryofixation and immunogold ultrastructural procedures. Regions of the olfactory organ where label was detected were consistent with those found at LM levels. Immunopositive cells were rare; only up to about 0.4% of these receptor cells were labelled. Despite chemical, species, and topographic differences both antibodies behaved identically in their ultrastructural labelling patterns. For both antibodies, labelling was very specific for olfactory cilia; both bound amply to the thick proximal and the thinner and long distal parts of the cilia. Dendritic knobs showed little labelling if any. Dendritic receptor cell structures below the knobs, supporting cell structures, and respiratory cilia did not immunolabel. There were no obvious differences in morphology between labelled and unlabelled receptor cells and their cilia. Labelling could be followed up to a distance of about 15 microns from the knobs along the distal parts of the cilia. When labelled cells were observed, this signal was detectable in two, sometimes three, sections taken through these cells while being consistently absent in neighbouring cells. This pattern argues strongly for the specificity of the labelling. In conclusion, very few receptor cells labelled with the antibodies to putative odour receptors. Additionally the olfactory cilia, the cellular regions that first encounter odour molecules and that are thought to transduce the odorous signal, displayed the most intense labelling with both antibodies. Consequently, the results showed these cilia as having many copies of the putative receptors. Finally, similar patterns of subcellular labelling were displayed in two different species, despite the use of different antibodies. Thus, this study provides compelling evidence that the heptahelical

  10. Flamingo cadherin: a putative host receptor for Streptococcus pneumoniae.

    PubMed

    Blau, Karin; Portnoi, Maxim; Shagan, Marilou; Kaganovich, Antonina; Rom, Slava; Kafka, Daniel; Chalifa Caspi, Vered; Porgador, Angel; Givon-Lavi, Noga; Gershoni, Jonathan M; Dagan, Ron; Mizrachi Nebenzahl, Yaffa

    2007-06-15

    Streptococcus pneumoniae fructose bisphosphate aldolase (FBA) is a cell wall-localized lectin. We demonstrate that recombinant (r) FBA and anti-rFBA antibodies inhibit encapsulated and unencapsulated S. pneumoniae serotype 3 adherence to A549 type II lung carcinoma epithelial cells. A random combinatorial peptide library expressed by filamentous phage was screened with rFBA. Eleven of 30 rFBA-binding phages inhibited 90% of S. pneumoniae adhesion to A549 cells. The insert peptide sequence of 9 of these phages matched the Flamingo cadherin receptor (FCR) when aligned against the human genome. A peptide comprising a putative FBA-binding region of FCR (FCRP) inhibited 2 genetically and capsularly unrelated pairs of encapsulated and unencapsulated S. pneumoniae strains from binding to A549 cells. Moreover, FCRP inhibited S. pneumoniae nasopharyngeal and lung colonization and, possibly, pneumonia development in the mouse intranasal inoculation model system. These data indicate that FBA is an S. pneumoniae adhesin and that FCR is its host receptor.

  11. Identification of putative CLE peptide receptors involved in determinate nodulation on soybean.

    PubMed

    Mortier, Virginie; Fenta, Berhanu Amsalu; Kunert, Karl; Holsters, Marcelle; Goormachtig, Sofie

    2011-07-01

    CLAVATA3/EMBRYO SURROUNDING REGION (CLE) peptides tightly control the balance between stem cell proliferation and differentiation in several plant developmental processes. Transmission of the CLE peptide signal has been shown to be rather complex. Despite their recent identification, little is known about the receptors by which nodulation-specific CLE peptides, which were identified in soybean, are perceived. Genetic analysis has indicated that the leucine-rich repeat receptor-like kinase NARK of soybean (Glycine max) and its orthologs in other legumes are possible candidates. However, more receptors need to be identified because CLE peptides are often detected by heteromultimeric complexes. Here, we identified two additional putative CLE peptide receptor pairs in the soybean genome with a nodulation-related expression pattern, GmRLK1-GmRLK2 and GmRLK3-GmRLK4, and discuss their role in CLE peptide perception during nodulation.

  12. Zebrafish olfactory receptor ORA1 recognizes a putative reproductive pheromone

    PubMed Central

    Ahuja, Gaurav; Korsching, Sigrun

    2014-01-01

    Teleost v1r-related ora genes constitute a small and highly conserved olfactory receptor gene family, and their direct orthologs are present in lineages as distant as cartilaginous fishes. Recently, the first member of the ora gene family was deorphanized. ORA1 detects p-hydroxyphenylacetic acid with high sensitivity and specificity. This compound elicits olfactory-mediated oviposition behavior in adult zebrafish mating pairs, suggesting a potential function as a reproductive pheromone for pHPAA itself or a related substance. This association of an odor and its cognate receptor with an oviposition response may provide a molecular basis for studying neural circuits involved in fish reproduction. PMID:26842458

  13. Phytophthora infestans specific phosphorylation patterns and new putative control targets.

    PubMed

    Frades, Itziar; Andreasson, Erik

    2016-04-01

    In this study we applied biomathematical searches of gene regulatory mechanisms to learn more about oomycete biology and to identify new putative targets for pesticides or biological control against Phytophthora infestans. First, oomycete phylum-specific phosphorylation motifs were found by discriminative n-gram analysis. We found 11.600 P. infestans specific n-grams, mapping 642 phosphoproteins. The most abundant group among these related to phosphatidylinositol metabolism. Due to the large number of possible targets found and our hypothesis that multi-level control is a sign of usefulness as targets for intervention, we identified overlapping targets with a second screen. This was performed to identify proteins dually regulated by small RNA and phosphorylation. We found 164 proteins to be regulated by both sRNA and phosphorylation and the dominating functions where phosphatidylinositol signalling/metabolism, endocytosis, and autophagy. Furthermore we performed a similar regulatory study and discriminative n-gram analysis of proteins with no clear orthologs in other species and proteins that are known to be unique to P. infestans such as the RxLR effectors, Crinkler (CRN) proteins and elicitins. We identified CRN proteins with specific phospho-motifs present in all life stages. PITG_12626, PITG_14042 and PITG_23175 are CRN proteins that have species-specific phosphorylation motifs and are subject to dual regulation.

  14. Exploration of Bivalent Ligands Targeting Putative Mu Opioid Receptor and Chemokine Receptor CCR5 Dimerization

    PubMed Central

    Arnatt, Christopher K.; Falls, Bethany A.; Yuan, Yunyun; Raborg, Thomas J.; Masvekar, Ruturaj R.; El-Hage, Nazira; Selley, Dana E.; Nicola, Anthony V.; Knapp, Pamela E.; Hauser, Kurt F.; Zhang, Yan

    2016-01-01

    Modern antiretroviral therapies have provided HIV-1 infected patients longer lifespans and better quality of life. However, several neurological complications are now being seen in these patients due to HIV-1 associated injury of neurons by infected microglia and astrocytes. In addition, these effects can be further exacerbated with opiate use and abuse. One possible mechanism for such potentiation effects of opiates is the interaction of the mu opioid receptor (MOR) with the chemokine receptor CCR5 (CCR5), a known HIV-1 co-receptor, to form MOR-CCR5 heterodimer. In an attempt to understand this putative interaction and its relevance to neuroAIDS, we designed and synthesized a series of bivalent ligands targeting the putative CCR5-MOR heterodimer. To understand how these bivalent ligands may interact with the heterodimer, biological studies including calcium mobilization inhibition, binding affinity, HIV-1 invasion, and cell fusion assays were applied. In particular, HIV-1 infection assays using human peripheral blood mononuclear cells, macrophages, and astrocytes revealed a notable synergy in activity for one particular bivalent ligand. Further, a molecular model of the putative CCR5-MOR heterodimer was constructed, docked with the bivalent ligand, and molecular dynamics simulations of the complex was performed in a membrane-water system to help understand the biological observation. PMID:27720326

  15. Putative glycoprotein and glycolipid polymorphonuclear leukocyte receptors for the Actinomyces naeslundii WVU45 fimbrial lectin.

    PubMed Central

    Sandberg, A L; Ruhl, S; Joralmon, R A; Brennan, M J; Sutphin, M J; Cisar, J O

    1995-01-01

    Recognition of receptors on sialidase-treated polymorphonuclear leukocytes (PMNs) by the Gal/GalNAc lectin associated with the type 2 fimbriae of certain strains of actinomyces results in activation of the PMNs, phagocytosis, and destruction of the bacteria. In the present study, plant lectins were utilized as probes to identify putative PMN receptors for the actinomyces lectin. The Gal-reactive lectin from Ricinus communis (RCAI), the Gal/GalNAc-reactive lectins from R. communis (RCAII) and Bauhinia purpurea (BPA), as well as the Gal beta 1-3GalNAc-specific lectins from Arachis hypogaea (PNA) and Agaricus bisporus (ABA) inhibited killing of Actinomyces naeslundii WVU45 by sialidase-treated PMNs. These five lectins detected a 130-kDa surface-labeled glycoprotein on nitrocellulose transfers of PMN extracts separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. This glycoprotein was revealed only after treatment of the transfers with sialidase, a condition analogous to the sialidase dependence of the lectin-mediated biological responses of the PMNs to the actinomyces. The mannose-reactive lectin concanavalin A did not inhibit killing of the actinomyces and failed to detect the 130-kDa glycoprotein but did block PMN-dependent killing of Escherichia coli B, a bacterium that possesses mannose-sensitive fimbriae. Therefore, the PMN glycoprotein receptor for A. naeslundii is clearly distinct from those recognized by E. coli. Two major putative glycolipid receptors were also identified by actinomyces and RCAI overlays on sialidase-treated thin-layer chromatograms of PMN gangliosides. Thus, both a 130-kDa glycoprotein and certain gangliosides are implicated in the attachment of the actinomyces to PMNs. PMID:7790078

  16. Demonstration in Yeast of the Function of BP-80, a Putative Plant Vacuolar Sorting Receptor

    PubMed Central

    Humair, David; Felipe, Doramys Hernández; Neuhaus, Jean-Marc; Paris, Nadine

    2001-01-01

    BP-80, later renamed VSRPS-1, is a putative receptor involved in sorting proteins such as proaleurain to the lytic vacuole, with its N-terminal domain recognizing the vacuolar sorting determinant. Although all VSRPS-1 characteristics and in vitro binding properties described so far favored its receptor function, this function remained to be demonstrated. Here, we used green fluorescent protein (GFP) as a reporter in a yeast mutant strain defective for its own vacuolar receptor, Vps10p. By expressing VSRPS-1 together with GFP fused to the vacuolar sorting determinant of petunia proaleurain, we were able to efficiently redirect the reporter to the yeast vacuole. VSRPS-1 is ineffective on GFP either alone or when fused with another type of plant vacuolar sorting determinant from a chitinase. The plant VSRPS-1 therefore interacts specifically with the proaleurain vacuolar sorting determinant in vivo, and this interaction leads to the transport of the reporter protein through the yeast secretory pathway to the vacuole. This finding demonstrates VSRPS-1 receptor function but also emphasizes the differences in the spectrum of ligands between Vps10p and its plant equivalent. PMID:11283336

  17. Putative glycine receptors in Hydra: a biochemical and behavioural study.

    PubMed

    Pierobon, P; Minei, R; Porcu, P; Sogliano, C; Tino, A; Marino, G; Biggio, G; Concas, A

    2001-11-01

    Glycine acts as an inhibitory transmitter in the lower brain stem and spinal cord of vertebrate species, while very few data are yet available to support a similar role in invertebrate nervous systems. Here we report the identification and characterization of glycine receptors in the freshwater polyp Hydra vulgaris (Cnidaria, Hydrozoa) by biochemical and behavioural studies. Saturation experiments revealed the occurrence of one population of binding sites of nanomolar affinity (KD = 33 nm) and low capacity (Bmax = 79 fmol/mg protein) for [(3)H]strychnine. The addition of glycine or taurine (0.1 microm-1 mm) produced a dose-dependent inhibition of [(3)H]strychnine binding. Beta-alanine (0.1-1 mm) did not significantly affect [(3)H]strychnine binding. The pharmacological properties of these receptors compare with those of vertebrate glycine receptors. Stimulation of Hydra polyps by reduced glutathione resulted in a significant increase in the duration of mouth opening in the presence of glycine, taurine or beta-alanine. The enhancement of the response was related both to amino acid (10-100 microm) and to glutathione concentration (1-10 microm). The effects of glycine or its agonists were suppressed by strychnine (1-10 microm). D-serine, a glycine agonist at the vertebrate NMDA receptor, produced opposite effects to those of glycine. The effects of d-serine were suppressed by 5,7-dichlorokynurenic acid but not by strychnine. In vitro, [(3)H]strychnine binding was not displaced by d-serine. These results indicate a dual action of glycine in Hydra tissues. The hypothesis that NMDA receptors may also be present in this elementary nervous system is proposed.

  18. Expression of a 50 kDa putative receptor for bovine viral diarrhea virus in bovine fetal tissues.

    PubMed Central

    Zheng, L; Zhang, S; Xue, W; Kapil, S; Minocha, H C

    1998-01-01

    The expression of a 50 kDa bovine viral diarrhea virus putative receptor in different bovine fetal tissues from 3-month old fetuses was studied. The receptor expression was examined by immunocytochemical staining and by immunoblotting using antiidiotypic probe (anti-D89). Intense specific staining in enterocytes of the small and large intestines, cortical tubular epithelial cells of kidneys, respiratory epithelial cells of the trachea and esophageal mucosal epithelial cells was observed, demonstrating the strong expression of bovine viral diarrhea virus receptor in the tissues. Weak staining was found in cerebellum, thymus, spleen, liver, cerebrum, and lung tissues; however, heart tissues were negative. Immunoblotting results correlated with the immunoperoxidase staining assays. Thus, the expression levels of the receptor are variable in different tissues. This pattern of expression may provide clues to the pathogenic potential of bovine viral diarrhea virus in the bovine fetus. Images Figure 1. Figure 2. PMID:9553718

  19. Up-regulation of sigma(1) receptor mRNA in rat brain by a putative atypical antipsychotic and sigma receptor ligand.

    PubMed

    Zamanillo, D; Andreu, F; Ovalle, S; Pérez, M P; Romero, G; Farré, A J; Guitart, X

    2000-03-24

    Sigma(1) (sigma(1)) receptor mRNA expression was studied in the prefrontal cortex, striatum, hippocampus and cerebellum of rat brain by northern blot and in situ hybridization. The effects of a chronic treatment with antipsychotic drugs (haloperidol and clozapine), and with E-5842, a sigma(1) receptor ligand and putative atypical antipsychotic on sigma(1) receptor expression were examined. A significant increase in the levels of sigma(1) receptor mRNA in the prefrontal cortex and striatum after E-5842 administration was observed, while no apparent changes were seen with either haloperidol or clozapine. Our results suggest a long-term adaptation of the sigma(1) receptor at the level of mRNA expression in specific areas of the brain as a response to a sustained treatment with E-5842.

  20. A putative lysophosphatidylinositol receptor GPR55 modulates hippocampal synaptic plasticity.

    PubMed

    Hurst, Katrina; Badgley, Corinne; Ellsworth, Tanner; Bell, Spencer; Friend, Lindsey; Prince, Brad; Welch, Jacob; Cowan, Zack; Williamson, Ryan; Lyon, Chris; Anderson, Brandon; Poole, Brian; Christensen, Michael; McNeil, Michael; Call, Jarrod; Edwards, Jeffrey G

    2017-09-01

    GPR55, an orphan G-protein coupled receptor, is activated by lysophosphatidylinositol (LPI) and the endocannabinoid anandamide, as well as by other compounds including THC. LPI is a potent endogenous ligand of GPR55 and neither GPR55 nor LPIs' functions in the brain are well understood. While endocannabinoids are well known to modulate brain synaptic plasticity, the potential role LPI could have on brain plasticity has never been demonstrated. Therefore, we examined not only GPR55 expression, but also the role its endogenous ligand could play in long-term potentiation, a common form of synaptic plasticity. Using quantitative RT-PCR, electrophysiology, and behavioral assays, we examined hippocampal GPR55 expression and function. qRT-PCR results indicate that GPR55 is expressed in hippocampi of both rats and mice. Immunohistochemistry and single cell PCR demonstrates GPR55 protein in pyramidal cells of CA1 and CA3 layers in the hippocampus. Application of the GPR55 endogenous agonist LPI to hippocampal slices of GPR55(+/+) mice significantly enhanced CA1 LTP. This effect was absent in GPR55(-/-) mice, and blocked by the GPR55 antagonist CID 16020046. We also examined paired-pulse ratios of GPR55(-/-) and GPR55(+/+) mice with or without LPI and noted significant enhancement in paired-pulse ratios by LPI in GPR55(+/+) mice. Behaviorally, GPR55(-/-) and GPR55(+/+) mice did not differ in memory tasks including novel object recognition, radial arm maze, or Morris water maze. However, performance on radial arm maze and elevated plus maze task suggests GPR55(-/-) mice have a higher frequency of immobile behavior. This is the first demonstration of LPI involvement in hippocampal synaptic plasticity. © 2017 Wiley Periodicals, Inc.

  1. Diversification and adaptive evolution of putative sweet taste receptors in threespine stickleback.

    PubMed

    Hashiguchi, Yasuyuki; Furuta, Yoshimi; Kawahara, Ryouka; Nishida, Mutsumi

    2007-07-01

    The threespine stickleback Gasterosteus aculeatus is known to include several morphologically and ecologically divergent forms. Its phenotypic traits related to feeding vary among forms, and are considered to be a result of adaptations to various environments to find foods effectively. To examine whether the diversification of feeding modes in the stickleback involves genetic changes of the sense of taste, taste receptor family 1 (T1R) genes in stickleback were analyzed and compared with those in other model fishes. Ten T1R genes and 2 pseudogenes were identified from the stickleback genomic sequences. In particular, putative sweet taste receptors (T1R2s) highly increased in number in stickleback (8 genes and 2 pseudogenes) compared to other fishes (2-3 genes). Maximum likelihood estimations of nonsynonymous-synonymous nucleotide substitution rate have indicated that stickleback T1R2 are under positive selection. Expression analysis by RT-PCR revealed that most stickleback T1R genes were expressed in the taste organs; however, at least two T1R2 genes were not expressed in the taste organs, suggesting that the expression levels of these T1R2 genes may be fluctuated through the life history. In addition, sequencing analysis showed that several T1R2 genes in an anadromous form stickleback individual collected from the western Pacific (Japan) were substantially different from those in genomic data derived from a freshwater form individual collected in North America. This suggested that intra-specific variations of stickleback T1R2 genes were considerably large. Our results imply that, in stickleback, T1R2s have diversified through adaptation to various environments, probably to perceive substances important for its survival and reproduction.

  2. Interaction of apolipoprotein AII with the putative high-density lipoprotein receptor.

    PubMed

    Vadiveloo, P K; Allan, C M; Murray, B J; Fidge, N H

    1993-09-14

    There is strong evidence to indicate that binding of HDL by cells is due to recognition of apoproteins residing on the surface of the lipoprotein by the putative HDL receptor(s). Although both of the major HDL apoproteins, AI and AII, are recognized by the putative receptor, the nature of the binding interaction and the domains of the apoproteins involved are largely unknown. Previous data from this laboratory led to the proposal of a model to explain how HDL particles containing AII interacted with the HDL receptor in a different manner as compared to HDL particles which contain apoAI but not apoAII [Vadiveloo, P. K., & Fidge, N. H. (1992) Biochem. J. 284, 145-151]. The model predicted that each chain of the apoAII homodimer contained a binding domain capable of interacting with the HDL receptor. This model was tested in the current study by preparing apoAII monomers, complexing them with phospholipid, and determining the ability of these complexes to bind to putative HDL receptors in rat liver plasma membranes (RLPM) and bovine aortic endothelial cell membranes (BAECM) by ligand blotting. The data showed that these complexes were bound by HB1 and HB2 from RLPM, and to the 110-kDa HDL binding protein from BAECM, providing critical evidence to support the model. Further investigation into the binding interaction revealed that apoAII complexed with phospholipid (apoAII-PC) bound more than delipidated apoAII, which bound more than delipidated apoAII monomers. Thus, optimum binding required the presence of lipid.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Study of the nematode putative GABA type-A receptor subunits: evidence for modulation by ivermectin.

    PubMed

    Feng, Xiao-Peng; Hayashi, Jon; Beech, Robin N; Prichard, Roger K

    2002-11-01

    Two alleles of the HG1 gene, which encodes a putative GABA receptor alpha/gamma subunit, were isolated from Haemonchus contortus. These two alleles were shown previously to be associated with ivermectin susceptibility (HG1A) and resistance (HG1E), respectively. Sequence analysis indicates that they differ in four amino acids. To explore the functional properties of the two alleles, a full-length cDNA encoding the beta subunit, a key functional component of the GABA receptor, was isolated from Caenorhabditis elegans (gab-1, corresponding to the GenBank locus ZC482.1) and coexpressed in Xenopus oocytes with the HG1 alleles. When gab-1 was coexpressed with either the HG1A allele or the HG1E allele in Xenopus oocytes, gamma-aminobutyric acid (GABA)-responsive channels with different sensitivity to the agonist were formed. The effects of ivermectin on the hetero-oligomeric receptors were determined. Application of ivermectin alone had no effect on the receptors. However, when coapplied with 10 micro m GABA, ivermectin potentiated the GABA-evoked current of the GAB-1/HG1A receptor, but attenuated the GABA response of the GAB-1/HG1E receptor. We demonstrated that the coexpressed HG1 and GAB-1 receptors are GABA-responsive, and provide evidence for the possible involvement of GABA receptors in the mechanism of ivermectin resistance.

  4. Alternative splicing produces two transcripts encoding putative female-biased odorant receptors in the navel orangeworm, Amyelois transitella

    USDA-ARS?s Scientific Manuscript database

    Insect odorant receptors are key sensors of environmental odors, and members of the lepidopteran pheromone receptor subfamily are thought to play important roles in mate finding, and oviposition site location. Much research has been done to identify putative pheromone receptors in lepidopteran male...

  5. The mating-type locus B alpha 1 of Schizophyllum commune contains a pheromone receptor gene and putative pheromone genes.

    PubMed Central

    Wendland, J; Vaillancourt, L J; Hegner, J; Lengeler, K B; Laddison, K J; Specht, C A; Raper, C A; Kothe, E

    1995-01-01

    Analysis of the multispecific B alpha mating-type locus of Schizophyllum commune provided evidence that pheromones and pheromone receptors govern recognition of self versus non-self and sexual development in this homobasidiomycetous fungus. Four subclones of an 8.2 kb genomic fragment carrying B alpha 1 specificity induced B-regulated sexual morphogenesis when introduced into a strain with one of the eight compatible B alpha specificities that are known to exist in nature. One of these clones, which activated all other B alpha specificities, contains a gene termed bar1. The predicted protein product of bar1, as well as that of bar2, a homologous gene isolated from a B alpha 2 strain, has significant homology to known fungal pheromone receptor proteins in the rhodopsin-like superfamily of G protein-linked receptors. The other three active B alpha 1 clones were subcloned further to identify the minimal active element in each clone. Every active subclone contains a putative pheromone gene ending in a signal for possible isoprenylation. A message of approximately 600 bp was observed for one of these genes, bap1(1). This paper presents the first evidence for a system of multiple pheromones and pheromone receptors as a basis for multispecific mating types in a fungus. Images PMID:7489716

  6. Molecular cloning and properties of a full-length putative thyroid hormone receptor coactivator.

    PubMed

    Takeshita, A; Yen, P M; Misiti, S; Cardona, G R; Liu, Y; Chin, W W

    1996-08-01

    Thyroid hormone receptors (TRs) are ligand-dependent transcription factors that regulate target gene transcription. The conserved carboxy-terminal region of the ligand-binding domain (AF-2) has been thought to play a critical role in mediating ligand-dependent transactivation by the interaction with coactivator(s). Using bacterially-expressed TR as a probe, far-Western-based expression cDNA library screening identified cDNAs that encode, in part, the recently reported partial steroid receptor coactivator-1 (SRC-1) sequence. Additional work, including 5' RACE, has characterized a full-length cDNA that encodes a approximately 160 kD protein as a putative thyroid hormone receptor coactivator (F-SRC-1). In vitro binding studies show that F-SRC-1 binds to a variety of nuclear hormone receptors in a ligand-dependent manner, along with TBP and TFIIB, suggesting that F-SRC-1 may play a role as a bridging molecule between nuclear hormone receptors and general transcription factors. Interestingly, AF-2 mutants also retain ligand-dependent interaction with F-SRC-1. Although F-SRC-1 recognizes the ligand-induced conformational changes of nuclear hormone receptors, our observations suggest that F-SRC-1 may bind directly with subregion(s) in nuclear hormone receptors other than the AF-2 region.

  7. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea

    SciTech Connect

    Stein, J.C.; Howlett, B.; Boyes, D.C.; Nasrallah, M.E.; Nasrallah, J.B. )

    1991-10-01

    Self-recognition between pollen and stigma during pollination in Brassica oleracea is genetically controlled by the multiallelic self-incompatibility locus (S). The authors describe the S receptor kinase (SRK) gene, a previously uncharacterized gene that residues at the S locus. The nucleotide sequences of genomic DNA and of cDNAs corresponding to SRK predict a putative transmembrane receptor having serine/threonine-specific protein kinase activity. Its extracellular domain exhibits striking homology to the secreted product of the S-locus genotypes are highly polymorphic and have apparently evolved in unison with genetically linked alleles of SLG. SRK directs the synthesis of several alternative transcripts, which potentially encode different protein products, and these transcripts were detected exclusively in reproductive organs. The identification of SRK may provide new perspectives into the signal transduction mechanism underlying pollen recognition.

  8. Human specific loss of olfactory receptor genes

    PubMed Central

    Gilad, Yoav; Man, Orna; Pääbo, Svante; Lancet, Doron

    2003-01-01

    Olfactory receptor (OR) genes constitute the basis for the sense of smell and are encoded by the largest mammalian gene superfamily of >1,000 genes. In humans, >60% of these are pseudogenes. In contrast, the mouse OR repertoire, although of roughly equal size, contains only ≈20% pseudogenes. We asked whether the high fraction of nonfunctional OR genes is specific to humans or is a common feature of all primates. To this end, we have compared the sequences of 50 human OR coding regions, regardless of their functional annotations, to those of their putative orthologs in chimpanzees, gorillas, orangutans, and rhesus macaques. We found that humans have accumulated mutations that disrupt OR coding regions roughly 4-fold faster than any other species sampled. As a consequence, the fraction of OR pseudogenes in humans is almost twice as high as in the non-human primates, suggesting a human-specific process of OR gene disruption, likely due to a reduced chemosensory dependence relative to apes. PMID:12612342

  9. Isolation and characterization of a new chemokine receptor gene, the putative chicken CXCR1.

    PubMed

    Li, Q J; Lu, S; Ye, R D; Martins-Green, M

    2000-10-31

    This study delineates the isolation and characterization of a novel chemokine receptor gene, the putative chicken CXC receptor 1 (cCXCR1). Using a human CXCR1 probe, we isolated several positive clones from a chicken genomic library. One of the clones contained a fragment of approximately 5000bp that hybridized strongly with the hCXCR1 probe. This fragment was sequenced and subjected to a variety of computer analyses. The open reading frame for this gene predicts a seven transmembrane domain protein with all the characteristics of a chemokine receptor and with 67% sequence homology to hCXCR1, 65% to hCXCR2 and also with considerable sequence homology to other human chemokine receptors such as hCXCR4 (50%), hCCR2 (49%) and hCCR1 (49%). However, the homology to a previously isolated potential G-protein-coupled receptor for chickens (AvCRL1) is only 47%. Using 5' RACE, two transcription initiation sites were identified suggesting the potential for the expression of two protein isoforms (I and II) in vivo. The promoter for the putative cCXCR1 contains a variety of consensus transcription factor binding elements that can potentially be involved in the expression of this chicken receptor upon stimulation by stress-inducing agents. RT-PCR analysis was used to determine the pattern of expression of the larger isoform (I) of this receptor in a variety of tissues. This form of the receptor is expressed primarily in the organs of the gastrointestinal tract, tissues that are frequently exposed to stress-inducing agents, but not in the central nervous system, tissues that are protected from insult by the blood barrier. Using the same RT-PCR approach we show that stress-inducing agents, such as 'first-hand' and 'second-hand' cigarette smoke components, tumor promoters and thrombin, differentially stimulate the expression of the isoform I in primary fibroblasts. Thrombin is an enzyme that plays many important roles in thrombosis, angiogenesis and wound healing and exposure to

  10. Identification and characterization of a putative human platelet thromboxane A/sub 2//prostaglandin H/sub 2/ receptor

    SciTech Connect

    Saussy, D.L. Jr.

    1986-01-01

    The thromboxane A/sub 2/ (TXA/sub 2/) analog, 9,11-dimethylmethano-11,12-methano-16-(3-iodo-4-hydroxyphenyl)-13,14-dihydro-13-aza-15..cap alpha beta..-omega-tetranor TXA/sub 2/ (I-PTA-OH) was characterized as a competitive antagonist of TXA/sub 2/ mimetic-induced platelet aggregation, with a K/sub d/ of 190 nM in platelet rich plasma. This antagonism was specific for the putative thromboxane A/sub 2//prostaglandin H/sub 2/ (TXA/sub 2//PGH/sub 2/) receptor, since I-PTA-OH had no inhibitory effects on platelet aggregation stimulated by agonists which act independently of TXA/sub 2//PGH/sub 2/, and did not inhibit platelet TXA/sub 2/ synthesis. (/sup 125/I)-PTA-OH binding to a particulate fraction from human platelets was saturable, displaceable, and linear with protein concentration. Scatchard analysis of equilibrium binding revealed a single class of high affinity binding sites, with a K/sub d/ of 30 +/- 4 nM and a B/sub max/ of 1.8 +/- 0.3 pmol/mg protein. Kinetic analysis yielded a k/sub 1/ of 1.35 x 10/sup 6/ M/sup -1/ x min/sup -1/ and a k..sqrt../sub 1/ of 0.032 min/sup -1/, K/sub d/ = k..sqrt../sub 1//k/sub 1/ = 24 nM. The subcellular localization of the putative TXA/sub 2//PGH/sub 2/ receptor was determined using (/sup 125/I)-PTA-OH binding as a marker for the receptor. (/sup 125/I)-PTA-OH binding as a marker for the receptor. (/sup 125/I)-PTA-OH binding, was coenriched with markers for plasma membranes and dense tubular system; but not with markers for cytoplasmic constituents, mitochondria, or granules.

  11. The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats.

    PubMed Central

    Torii, K U; Mitsukawa, N; Oosumi, T; Matsuura, Y; Yokoyama, R; Whittier, R F; Komeda, Y

    1996-01-01

    Arabidopsis Landsberg erecta is one of the most popular ecotypes and is used widely for both molecular and genetic studies. It harbors the erecta (er) mutation, which confers a compact inflorescence, blunt fruits, and short petioles. We have identified five er mutant alleles from ecotypes Columbia and Wassilewskija. Phenotypic characterization of the mutant alleles suggests a role for the ER gene in regulating the shape of organs originating from the shoot apical meristem. We cloned the ER gene, and here, we report that it encodes a putative receptor protein kinases. The deduced ER protein contains a cytoplasmic protein kinase catalytic domain, a transmembrane region, and an extracellular domain consisting of leucine-rich repeats, which are thought to interact with other macromolecules. Our results suggest that cell-cell communication mediated by a receptor kinase has an important role in plant morphogenesis. PMID:8624444

  12. A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction.

    PubMed

    Li, J; Chory, J

    1997-09-05

    Brassinosteroids are a class of growth-promoting regulators that play a key role throughout plant development. Despite their importance, nothing is known of the mechanism of action of these steroid hormones. We describe the identification of 18 Arabidopsis dwarf mutants that are unable to respond to exogenously added brassinosteroid, a phenotype that might be expected for brassinosteroid signaling mutants. All 18 mutations define alleles of a single previously described gene, BRI1. We cloned BRI1 and examined its expression pattern. It encodes a ubiquitously expressed putative receptor kinase. The extracellular domain contains 25 tandem leucine-rich repeats that resemble repeats found in animal hormone receptors, plant disease resistance genes, and genes involved in unknown signaling pathways controlling plant development.

  13. Molecular characterization and analysis of a putative 5-HT receptor involved in reproduction process of the pearl oyster Pinctada fucata.

    PubMed

    Wang, Qi; He, Maoxian

    2014-08-01

    5-HT (5-hydroxytryptamine; serotonin) has been linked to a variety of biological roles including gonad maturation and sequential spawning in bivalve molluscs. To gain a better understanding of the effects of 5-HT on developmental regulation in the pearl oyster Pinctada fucata, the isolation, cloning, and expression of the 5-HT receptor was investigated in this study. A full-length cDNA (2541 bp) encoding a putative 5-HT receptor (5-HTpf) of 471 amino acids was isolated from the ovary of the pearl oyster. It shared 71% and 51% homology, respectively, with the Crassostrea gigas 5-HT receptor and the Aplysia californica 5-HT1ap. The 5-HTpf sequence possessed the typical characteristics of seven transmembrane domains and a long third inner loop. Phylogenetic analysis also indicated that 5-HTpf was classified into the 5-HT1 subtype together with other invertebrate 5-HT1 receptors. Quantitative RT-PCR showed that 5-HTpf is widely expressed in all tissues tested, is involved in the gametogenesis cycle, embryonic and larval development stages, and expression is induced by E2 in ovarian tissues. These results suggest that 5-HTpf is involved in the reproductive process, specifically in the induction of oocyte maturation and spawning of P. fucata. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Putative chemosensory receptors of the codling moth, Cydia pomonella, identified by antennal transcriptome analysis.

    PubMed

    Bengtsson, Jonas M; Trona, Federica; Montagné, Nicolas; Anfora, Gianfranco; Ignell, Rickard; Witzgall, Peter; Jacquin-Joly, Emmanuelle

    2012-01-01

    The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim was to identify chemosensory receptors in the codling moth as a means to uncover new targets for behavioral interference. Using next-generation sequencing techniques, we identified a total of 43 candidate ORs, one gustatory receptor and 15 IRs in the antennal transcriptome. Through Blast and sequence similarity analyses we annotated the insect obligatory co-receptor ORco, five genes clustering in a conserved clade containing sex pheromone receptors, one homolog of the Bombyx mori female-enriched receptor BmorOR30 (but no homologs of the other B. mori female-enriched receptors) and one gene clustering in the sugar receptor family. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a, and one homolog of an IR involved in phenylethyl amine detection in Drosophila. Our results open for functional characterization of the chemosensory receptors of C. pomonella, with potential for new or refined applications of semiochemicals for control of this pest insect.

  15. Putative Chemosensory Receptors of the Codling Moth, Cydia pomonella, Identified by Antennal Transcriptome Analysis

    PubMed Central

    Bengtsson, Jonas M.; Trona, Federica; Montagné, Nicolas; Anfora, Gianfranco; Ignell, Rickard; Witzgall, Peter; Jacquin-Joly, Emmanuelle

    2012-01-01

    The codling moth, Cydia pomonella, is an important fruit pest worldwide. As nocturnal animals, adults depend to a large extent on olfactory cues for detection of food and mates, and, for females, oviposition sites. In insects, odor detection is mediated by odorant receptors (ORs) and ionotropic receptors (IRs), which ensure the specificity of the olfactory sensory neuron responses. In this study, our aim was to identify chemosensory receptors in the codling moth as a means to uncover new targets for behavioral interference. Using next-generation sequencing techniques, we identified a total of 43 candidate ORs, one gustatory receptor and 15 IRs in the antennal transcriptome. Through Blast and sequence similarity analyses we annotated the insect obligatory co-receptor ORco, five genes clustering in a conserved clade containing sex pheromone receptors, one homolog of the Bombyx mori female-enriched receptor BmorOR30 (but no homologs of the other B. mori female-enriched receptors) and one gene clustering in the sugar receptor family. Among the candidate IRs, we identified homologs of the two highly conserved co-receptors IR8a and IR25a, and one homolog of an IR involved in phenylethyl amine detection in Drosophila. Our results open for functional characterization of the chemosensory receptors of C. pomonella, with potential for new or refined applications of semiochemicals for control of this pest insect. PMID:22363688

  16. Putative Monofunctional Type I Polyketide Synthase Units: A Dinoflagellate-Specific Feature?

    PubMed Central

    Eichholz, Karsten; Beszteri, Bánk; John, Uwe

    2012-01-01

    Marine dinoflagellates (alveolata) are microalgae of which some cause harmful algal blooms and produce a broad variety of most likely polyketide synthesis derived phycotoxins. Recently, novel polyketide synthesase (PKS) transcripts have been described from the Florida red tide dinoflagellate Karenia brevis (gymnodiniales) which are evolutionarily related to Type I PKS but were apparently expressed as monofunctional proteins, a feature typical of Type II PKS. Here, we investigated expression units of PKS I-like sequences in Alexandrium ostenfeldii (gonyaulacales) and Heterocapsa triquetra (peridiniales) at the transcript and protein level. The five full length transcripts we obtained were all characterized by polyadenylation, a 3′ UTR and the dinoflagellate specific spliced leader sequence at the 5′end. Each of the five transcripts encoded a single ketoacylsynthase (KS) domain showing high similarity to K. brevis KS sequences. The monofunctional structure was also confirmed using dinoflagellate specific KS antibodies in Western Blots. In a maximum likelihood phylogenetic analysis of KS domains from diverse PKSs, dinoflagellate KSs formed a clade placed well within the protist Type I PKS clade between apicomplexa, haptophytes and chlorophytes. These findings indicate that the atypical PKS I structure, i.e., expression as putative monofunctional units, might be a dinoflagellate specific feature. In addition, the sequenced transcripts harbored a previously unknown, apparently dinoflagellate specific conserved N-terminal domain. We discuss the implications of this novel region with regard to the putative monofunctional organization of Type I PKS in dinoflagellates. PMID:23139807

  17. Involvement of putative glutamate receptors in plant defence signaling and NO production.

    PubMed

    Vatsa, Parul; Chiltz, Annick; Bourque, Stéphane; Wendehenne, David; Garcia-Brugger, Angela; Pugin, Alain

    2011-12-01

    Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response to cryptogein, a well studied elicitor of defence response, and partly responsible for cryptogein-induced NO production. However, other cryptogein-induced calcium-dependent events including anion efflux, H(2)O(2) production, MAPK activation and hypersensitive response (HR) did not depend on iGluRs indicating that different calcium channels regulate different processes at the cell level. We have also demonstrated that cryptogein induces efflux of glutamate in the apoplast by exocytosis. Taken together, our results demonstrate for the first time, an involvement of a putative iGluR in plant defence signaling and NO production, by mechanisms that show homology with glutamate mode of action in mammals.

  18. Putative and unique gene sequence utilization for the design of species specific probes as modeled by Lactobacillus plantarum

    USDA-ARS?s Scientific Manuscript database

    The concept of utilizing putative and unique gene sequences for the design of species specific probes was tested. The abundance profile of assigned functions within the Lactobacillus plantarum genome was used for the identification of the putative and unique gene sequence, csh. The targeted gene (cs...

  19. Chemosensory Receptor Specificity and Regulation

    PubMed Central

    Dalton, Ryan P.; Lomvardas, Stavros

    2016-01-01

    The senses provide a means by which data on the physical and chemical properties of the environment may be collected and meaningfully interpreted. Sensation begins at the periphery, where a multitude of different sensory cell types are activated by environmental stimuli as different as photons and odorant molecules. Stimulus sensitivity is due to expression of different cell surface sensory receptors, and therefore the receptive field of each sense is defined by the aggregate of expressed receptors in each sensory tissue. Here, we review current understanding on patterns of expression and modes of regulation of sensory receptors. PMID:25938729

  20. Characterization of a Putative Receptor Binding Surface on Skint-1, a Critical Determinant of Dendritic Epidermal T Cell Selection*

    PubMed Central

    Salim, Mahboob; Knowles, Timothy J.; Hart, Rosie; Mohammed, Fiyaz; Woodward, Martin J.; Willcox, Carrie R.; Overduin, Michael; Hayday, Adrian C.; Willcox, Benjamin E.

    2016-01-01

    Dendritic epidermal T cells (DETC) form a skin-resident γδ T cell population that makes key contributions to cutaneous immune stress surveillance, including non-redundant contributions to protection from cutaneous carcinogens. How DETC become uniquely associated with the epidermis was in large part solved by the identification of Skint-1, the prototypic member of a novel B7-related multigene family. Expressed only by thymic epithelial cells and epidermal keratinocytes, Skint-1 drives specifically the development of DETC progenitors, making it the first clear candidate for a selecting ligand for non-MHC/CD1-restricted T cells. However, the molecular mechanisms underpinning Skint-1 activity are unresolved. Here, we provide evidence that DETC selection requires Skint-1 expression on the surface of thymic epithelial cells, and depends upon specific residues on the CDR3-like loop within the membrane-distal variable domain of Skint-1 (Skint-1 DV). Nuclear magnetic resonance of Skint-1 DV revealed a core tertiary structure conserved across the Skint family, but a highly distinct surface charge distribution, possibly explaining its unique function. Crucially, the CDR3-like loop formed an electrostatically distinct surface, featuring key charged and hydrophobic solvent-exposed residues, at the membrane-distal tip of DV. These results provide the first structural insights into the Skint family, identifying a putative receptor binding surface that directly implicates Skint-1 in receptor-ligand interactions crucial for DETC selection. PMID:26917727

  1. Structural and pharmacological analysis of O-2050, a putative neutral cannabinoid CB1 receptor antagonist

    PubMed Central

    Wiley, Jenny L.; Breivogel, Christopher S.; Mahadevan, Anu; Pertwee, Roger G.; Cascio, Maria Grazia; Bolognini, Daniele; Huffman, John W.; Walentiny, D. Matthew; Vann, Robert E.; Razdan, Raj K.; Martin, Billy R.

    2010-01-01

    Rimonabant, the prototypic antagonist of cannabinoid CB1 receptors, has been reported to have inverse agonist properties at higher concentrations, which may complicate its use as a tool for mechanistic evaluation of cannabinoid pharmacology. Consequently, recent synthesis efforts have concentrated on discovery of a neutral antagonist using a variety of structural templates. The purpose of this study was to evaluate the pharmacological properties of the putative neutral cannabinoid CB1 receptor antagonist O-2050, a sulfonamide side chain analog of Δ8-tetrahydrocannabinol. O-2050 and related sulfonamide cannabinoids exhibited good affinity for both cannabinoid CB1 and CB2 receptors. While the other sulfonamide analogs produced cannabinoid agonist effects in vivo (e.g., activity suppression, antinociception, and hypothermia), O-2050 stimulated activity and was inactive in the other two tests. O-2050 also decreased food intake in mice, an effect that was reminiscent of that produced by rimonabant. Unlike rimonabant, however, O-2050 did not block the effects of cannabinoid agonists in vivo, even when administered i.c.v. In contrast, O-2050 antagonized the in vitro effects of cannabinoid agonists in [35S]GTPγS and mouse vas deferens assays without having activity on its own in either assay. Further evaluation revealed that O-2050 fully and dose-dependently substituted for Δ9-tetrahydrocannabinol in a mouse drug discrimination procedure (a cannabinoid agonist effect) and that it inhibited forskolin-stimulated cyclic AMP signaling with a maximum efficacy of approximately half that of the full agonist CP55,940 [(−)-cis-3-[2-hydroxy-4(1,1-dimethyl-heptyl)phenyl]-trans-4-(3-hydroxy-propyl)cyclohexanol]. Together, these results suggest that O-2050 is not a viable candidate for classification as a neutral cannabinoid CB1 receptor antagonist. PMID:21114999

  2. Characterization of putative 5-HT7 receptors mediating tachycardia in the cat

    PubMed Central

    Villalón, Carlos M; Heiligers, Jan P C; Centurión, David; De Vries, Peter; Saxena, Pramod R

    1997-01-01

    , sumatriptan (30, 100 and 300 μg kg−1) and indorenate (300 and 1000 μg kg−1) or the 5-HT4 receptor (partial) agonist cisapride (300 and 1000 μg kg−1) were devoid of effects on feline heart rate per se and failed to modify significantly 5-HT-induced tachycardic responses. Based upon the above rank order of agonist potency, the failure of sumatriptan, indorenate or cisapride to produce cardioacceleration and the blockade by a series of drugs showing high affinity for the cloned 5-ht7 receptor, the present results indicate that the 5-HT receptor mediating tachycardia in the cat is operationally similar to other putative 5-HT7 receptors mediating vascular and non-vascular responses (e.g. relaxation of the rabbit femoral vein, canine external carotid and coronary arteries, rat systemic vasculature and guinea-pig ileum). Since these responses represent functional correlates of the 5-ht7 gene product, the 5-HT7 receptor appellation is reinforced. Therefore, the present experimental model, which is not complicated by the presence of other 5-HT receptors, can be utilized to characterize and develop new drugs with potential agonist and antagonist properties at functional 5-HT7 receptors. PMID:9249256

  3. A putative thiamine transport protein is a receptor for feline leukemia virus subgroup A.

    PubMed

    Mendoza, Ramon; Anderson, Maria M; Overbaugh, Julie

    2006-04-01

    Feline leukemia virus (FeLV) is a horizontally transmitted virus that causes a variety of proliferative and immunosuppressive diseases in cats. There are four subgroups of FeLV, A, B, C, and T, each of which has a distinct receptor requirement. The receptors for all but the FeLV-A subgroup have been defined previously. Here, we report the identification of the cellular receptor for FeLV-A, which is the most transmissible form of FeLV. The receptor cDNA was isolated using a gene transfer approach, which involved introducing sequences from a feline cell line permissive to FeLV-A into a murine cell line that was not permissive. The feline cDNA identified by this method was approximately 3.5 kb, and included an open reading frame predicted to encode a protein of 490 amino acids. This feline cDNA conferred susceptibility to FeLV-A when reintroduced into nonpermissive cells, but it did not render these cells permissive to any other FeLV subgroup. Moreover, these cells specifically bound FeLV-A-pseudotyped virus particles, indicating that the cDNA encodes a binding receptor for FeLV-A. The feline cDNA shares approximately 93% amino acid sequence identity with the human thiamine transport protein 1 (THTR1). The human THTR1 receptor was also functional as a receptor for FeLV-A, albeit with reduced efficiency compared to the feline orthologue. On the basis of these data, which strongly suggest the feline protein is the orthologue of human THTR1, we have named the feline receptor feTHTR1. Identification of this receptor will allow more detailed studies of the early events in FeLV transmission and may provide insights into FeLV pathogenesis.

  4. Identification of a putative tetrasporophyte-specific gene in Gracilaria lemaneiformis (Gracilariales, Rhodophyte)

    NASA Astrophysics Data System (ADS)

    Ren, Xueying; Zhang, Xuecheng

    2008-08-01

    A putative tetrasporophyte-specific gene, designated as SSH466 (GenBank accession No. DQ019223), was one of the genes identified in this work using suppression subtractive hybridization (SSH) method in Gracilaria lemaneiformis. The full length of the gene was obtained using SMART RACE strategy. Sequence analysis revealed that the gene had 1 019 nucleotides, including an open reading frame of 498 nucleotides encoding 166 amino acid residues, 158 nucleotides of 5' untranslated region and 363 nucleotides of 3' non-coding region. Protein motif and secondary structure prediction showed that there existed a transmembrane domain with a unique β-sheet. Thus, SSH466 protein might be a cross-membrane protein. Sequence homology search in the public GenBank databases did not reveal any significant match with SSH466. Virtual Northern blot analysis confirmed that it was a tetrasporophyte-specific gene.

  5. Neuronal specificity of subtype SQSC1 of squid putative sodium channel.

    PubMed

    Sato, C; Hirota, K; Matsumoto, G

    1995-01-26

    The distribution of SQSC1 mRNA in tissues of squid Loligo bleekeri was studied by the blot hybridization method. The complete cDNA for the coding region of SQSC1, the invertebrate putative sodium channel, was prepared from squid optic lobe (Sato and Matsumoto, Biochem. Biophys. Res. Comm. 186, 61-68, 1992). Transcriptional products of the SQSC1 gene were found to consist of two main different lengths (12 and 9 kb). The transcriptional products were detected in all the nervous tissues examined: optic lobes, cerebral ganglia and giant stellate ganglia. However, it was not detected in the muscle, suggesting the SQSC1 gene is specific for sodium channels of squid nerve cells. SQSC1 appears more widely distributed in the nervous system than GFLN1 which they reported as expressed specifically in stellate ganglion of the squid (Rosenthal and Gilly, Proc. Natl. Acad. Sci. USA 90, 10026-10030, 1993).

  6. Bioactivity of the putative apelin proprotein expands the repertoire of apelin receptor ligands.

    PubMed

    Shin, Kyungsoo; Chapman, Nigel A; Sarker, Muzaddid; Kenward, Calem; Huang, Shuya K; Weatherbee-Martin, Nathan; Pandey, Aditya; Dupré, Denis J; Rainey, Jan K

    2017-08-01

    Apelin is a peptide ligand for a class A G-protein coupled receptor called the apelin receptor (AR or APJ) that regulates angiogenesis, the adipoinsular axis, and cardiovascular functions. Apelin has been shown to be bioactive as 13, 17, and 36 amino acid isoforms, C-terminal fragments of the putatively inactive 55-residue proprotein (proapelin or apelin-55). Although intracellular proprotein processing has been proposed, isolation of apelin-55 from colostrum and milk demonstrates potential for secretion prior to processing and the possibility of proapelin-AR interaction. Apelin isoform activity and potency were compared by an In-Cell Western™ assay for ERK phosphorylation using a stably AR-transfected HEK293A cell line. Conformational comparison of apelin isoforms was carried out by circular dichroism and heteronuclear solution-state nuclear magnetic resonance spectroscopy. Apelin-55 is shown to activate the AR, with similar maximum ERK phophorylation response and potency to the shorter isoforms except for apelin-13, which exhibited a greater potency. Correlating to this shared activity, highly similar conformations are exhibited in all apelin isoforms for the shared C-terminal region responsible for receptor binding and activation. AR activation by all apelin isoforms likely hinges upon shared conformation and dynamics in the C-terminus, with apelin-55 providing an alternative bioactive isoform despite the addition of 19N-terminal residues relative to apelin-36. Beyond providing novel insight into the physiology of this system, re-annotation of proapelin to the bioactive apelin-55 isoform adds to the molecular toolkit for dissection of apelin-AR interactions and expands the repertoire of therapeutic targets for the apelinergic system. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Functional analysis of retinoid Z receptor beta, a brain-specific nuclear orphan receptor.

    PubMed Central

    Greiner, E F; Kirfel, J; Greschik, H; Dörflinger, U; Becker, P; Mercep, A; Schüle, R

    1996-01-01

    The retinoid Z receptor beta (RZR beta), an orphan receptor, is a member of the retinoic acid receptor (RAR)/thyroid hormone receptor (TR) subfamily of nuclear receptors. RZR beta exhibits a highly restricted brain-specific expression pattern. So far, no natural RZR beta target gene has been identified and the physiological role of the receptor in transcriptional regulation remains to be elucidated. Electrophoretic mobility shift assays reveal binding of RZR beta to monomeric response elements containing the sequence AnnTAGGTCA, but RZR beta-mediated transactivation of reporter genes is only achieved with two property spaced binding sites. We present evidence that RZR beta can function as a cell-type-specific transactivator. In neuronal cells, GaI-RZR beta fusion proteins function as potent transcriptional activators, whereas no transactivation can be observed in nonneuronal cells. Mutational analyses demonstrate that the activation domain (AF-2) of RZR beta and RAR alpha are functionally interchangeable. However, in contrast to RAR and TR, the RZR beta AF-2 cannot function autonomously as a transactivation domain. Furthermore, our data define a novel repressor function for the C-terminal part of the putative ligand binding domain. We propose that the transcriptional activity of RZR beta is regulated by an interplay of different receptor domains with coactivators and corepressors. Images Fig. 5 PMID:8816759

  8. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract.

    PubMed

    Kowalik, Magdalena K; Rekawiecki, Robert; Kotwica, Jan

    2013-12-01

    Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.

  9. Involvement of a putative intercellular signal-recognizing G protein-coupled receptor in the engulfment of Salmonella by the protozoan Tetrahymena

    PubMed Central

    Agbedanu, P.N.; Brewer, M.T.; Day, T.A.; Kimber, M.J.; Anderson, K.L.; Rasmussen, S.K.; Rasmussen, M.A.; Carlson, S.A.

    2013-01-01

    In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule. PMID:26623315

  10. Involvement of a putative intercellular signal-recognizing G protein-coupled receptor in the engulfment of Salmonella by the protozoan Tetrahymena.

    PubMed

    Agbedanu, P N; Brewer, M T; Day, T A; Kimber, M J; Anderson, K L; Rasmussen, S K; Rasmussen, M A; Carlson, S A

    2013-01-01

    In an effort to investigate the molecular basis of protozoa engulfment-mediated hypervirulence of Salmonella in cattle, we evaluated protozoan G protein-coupled receptors (GPCRs) as transducers of Salmonella engulfment by the model protozoan Tetrahymena. Our laboratory previously demonstrated that non-pathogenic protozoa (including Tetrahymena) engulf Salmonella and then exacerbate its virulence in cattle, but the mechanistic details of the phenomenon are not fully understood. GPCRs were investigated since these receptors facilitate phagocytosis of particulates by Tetrahymena, and a GPCR apparently modulates bacterial engulfment for the pathogenic protozoan Entamoeba histolytica. A database search identified three putative Tetrahymena GPCRs, based on sequence homologies and predicted transmembrane domains, that were the focus of this study. Salmonella engulfment by Tetrahymena was assessed in the presence of suramin, a non-specific GPCR inhibitor. Salmonella engulfment was also assessed in Tetrahymena in which expression of putative GPCRs was knocked-down using RNAi. A candidate GPCR was then expressed in a heterologous yeast expression system for further characterization. Our results revealed that Tetrahymena were less efficient at engulfing Salmonella in the presence of suramin. Engulfment was reduced concordantly with a reduction in the density of protozoa. RNAi-based studies revealed that knock-down of one the Tetrahymena GPCRs caused diminished engulfment of Salmonella. Tetrahymena lysates activated this receptor in the heterologous expression system. These data demonstrate that the Tetrahymena receptor is a putative GPCR that facilitates bacterial engulfment by Tetrahymena. Activation of the putative GPCR seemed to be related to protozoan cell density, suggesting that its cognate ligand is an intercellular signaling molecule.

  11. Gastrokines: stomach-specific proteins with putative homeostatic and tumor suppressor roles.

    PubMed

    Menheniott, Trevelyan R; Kurklu, Bayzar; Giraud, Andrew S

    2013-01-15

    During the past decade, a new family of stomach-specific proteins has been recognized. Known as "gastrokines" (GKNs), these secreted proteins are products of gastric mucus-producing cell lineages. GKNs are highly conserved in physical structure, and emerging data point to convergent functions in the modulation of gastric mucosal homeostasis and inflammation. While GKNs are highly prevalent in the normal stomach, frequent loss of GKN expression in gastric cancers, coupled with established antiproliferative activity, suggests putative tumor suppressor roles. Conversely, ectopic expression of GKNs in reparative lesions of Crohn's disease alludes to additional activity in epithelial wound healing and/or repair. Modes of action remain unsolved, but the recent demonstration of a GKN2-trefoil factor 1 heterodimer implicates functional interplay with trefoil factors. This review aims to provide a historical account of GKN biology and encapsulate the rapidly accumulating evidence supporting roles in gastric epithelial homeostasis and tumor suppression.

  12. Putative Mineral-Specific Proteins Synthesized by a Metal Reducing Bacterium

    SciTech Connect

    Lower, Brian H.; Hochella Jr., Michael F.; Lower, Steven K.

    2006-02-01

    Biological force microscopy (BFM) was combined with two-dimensional (2D) gel electrophoresis and mass spectrometry to identify outer membrane proteins (OM) from Shewanella oneidensis that are involved in anaerobic Fe(III) reduction. This is the first time that biophysical force measurements have been coupled with protein expression patterns to search for evidence of putative mineral-specific proteins synthesized by bacteria. BFM shows that S. oneidensis possess an affinity towards goethite (FeOOH) but not diaspore (AlOOH) under anaerobic conditions, despite the fact that diaspore is isostructural with goethite and has essentially the same surface charge. The worm-like chain model was used to identify force-signatures in BFM-derived force curves indicative of putative outer membrane (OM) polypeptides synthesized by S. oneidensis to form a bond with goethite. Protein expression patterns from OM extract of cells grown under anaerobic Fe(III) reducing versus aerobic conditions show that approximately 400 protein spots exhibit significant differences in abundance on 2D gels. Peptide mass fingerprinting and tandem mass spectrometry were used to identify several of the protein spots that were significantly more abundant in 2D gels from OM extract of cells grown under anaerobic Fe(III) reducing conditions. Among those identified were proteins involved in Fe(III) and Mn(IV) reduction, protein transport and secretion, polysaccharide biosynthesis and export, and hypothetical proteins with unknown functions. Together, the BFM and proteomic data suggest that OM proteins are synthesized by S. oneidensis under anaerobic conditions to function in iron oxide binding and/or Fe(III) reduction. If this is the case, then it is possible that the evolution of dissimilatory iron-reducing bacteria like Shewanella, could have been, at least in part, driven by the binding/reduction ability of certain proteins to specific mineral phases.

  13. Characterization of a putative acetylcholine receptor in chick ciliary ganglion neurons

    SciTech Connect

    Stollberg, J.

    1985-01-01

    Monoclonal antibodies to the main immunogenic region on the alpha subunit of acetylcholine receptors in muscle and electric organ recognize membrane components in chick brain and ciliary ganglia that are candidates for the neuronal receptor. The component in chick brain has been purified by immunoaffinity chromatography. It specifically binds nicotine but not alpha-bungarotoxin, and can be affinity labeled with (/sup 3/H)bromoacetylcholine. The cross-reacting component in ciliary ganglion neurons is concentrated in synaptic membrane, and can be modulated by exposure of the cells to cholinergic ligands in culture. The cross-reacting component in ciliary ganglion neurons is an integral membrane component that binds concanavalin A, and it is distinct from the alpha-bungarotoxin binding component. The acetylcholine receptor function in these neurons can be locked by affinity alkylation with bromoacetylcholine, indicating similarity in this respect to receptors from muscle and electric organ. Antisera raised against the partially purified component from chick brain also block receptor function on ciliary ganglion neurons. The subcellular distribution of the ganglion component in culture is assessed, and it is shown that approximately 2/3 of the cross-reacting components are intracellular; the majority of these seem not to be destined for insertion into the plasma membrane.

  14. Acetylcholine regulation of nicotinic receptor channels through a putative G protein in chick myotubes.

    PubMed Central

    Eusebi, F; Grassi, F; Molinaro, M; Zani, B M

    1987-01-01

    1. Single-channel currents induced by acetylcholine (ACh) were recorded from unstriated and non-innervated embryonic chick myotubes using the cell-attached patch-clamp technique. 2. ACh applied to the non-patched membrane decreased both channel opening probability and conductance. These ACh-induced effects occurred also when the non-patched membrane was exposed to nominally Ca2+-free extracellular medium, but were absent when it was treated with curare. 3. ACh-induced membrane current recorded under whole-cell patch-clamp conditions decreased in amplitude and time course when myotubes were intracellularly loaded with guanosine-5'-O-(3-thiotriphosphate) GTP gamma S), but not with guanosine-5'-O-(2-thiodiphosphate) (GDP beta S) or cyclic adenosine-5'-monophosphate (cyclic AMP). Internal perfusion of GTP gamma S affected the ACh-induced openings in a similar manner to the non-patch ACh application. 4. These results suggest that ACh, in addition to its direct effect, acts indirectly on the nicotinic receptor channels by delivering an intracellular messenger and through the activation of a putative G protein. PMID:2451747

  15. Kinetic Evidence for the Presence of Putative Germination Receptors in Clostridium difficile Spores▿

    PubMed Central

    Ramirez, Norma; Liggins, Marc; Abel-Santos, Ernesto

    2010-01-01

    Clostridium difficile is a spore-forming bacterium that causes Clostridium difficile-associated disease (CDAD). Intestinal microflora keeps C. difficile in the spore state and prevents colonization. Following antimicrobial treatment, the microflora is disrupted, and C. difficile spores germinate in the intestines. The resulting vegetative cells are believed to fill empty niches left by the depleted microbial community and establish infection. Thus, germination of C. difficile spores is the first required step in CDAD. Interestingly, C. difficile genes encode most known spore-specific protein necessary for germination, except for germination (Ger) receptors. Even though C. difficile Ger receptors have not been identified, taurocholate (a bile salt) and glycine (an amino acid) have been shown to be required for spore germination. Furthermore, chenodeoxycholate, another bile salt, can inhibit taurocholate-induced C. difficile spore germination. In the present study, we examined C. difficile spore germination kinetics to determine whether taurocholate acts as a specific germinant that activates unknown germination receptors or acts nonspecifically by disrupting spores' membranes. Kinetic analysis of C. difficile spore germination suggested the presence of distinct receptors for taurocholate and glycine. Furthermore, taurocholate, glycine, and chenodeoxycholate seem to bind to C. difficile spores through a complex mechanism, where both receptor homo- and heterocomplexes are formed. The kinetic data also point to an ordered sequential progression of binding where taurocholate must be recognized first before detection of glycine can take place. Finally, comparing calculated kinetic parameters with intestinal concentrations of the two germinants suggests a mechanism for the preferential germination of C. difficile spores in antibiotic-treated individuals. PMID:20562307

  16. Immunohistochemical demonstration of the putative canine distemper virus receptor CD150 in dogs with and without distemper.

    PubMed

    Wenzlow, N; Plattet, P; Wittek, R; Zurbriggen, A; Gröne, A

    2007-11-01

    Signaling lymphocyte activation molecule (SLAM) or CD150 can function as a receptor for the canine distemper virus (CDV) in vitro. The expression of SLAM was studied using immunohistochemistry in order to evaluate the presence and distribution of the receptor in dogs in vivo. Additionally, receptor expression was assessed after experimental infection of dogs with CDV. In 7 control dogs without distemper virus, the receptor was found in various tissues, mostly on cells morphologically identified as lymphocytes and macrophages. In 7 dogs with early distemper lesions characterized by presence of the virus, higher numbers of SLAM-expressing cells were found in multiple tissues recognized as targets of CDV compared with those in control dogs. These findings suggest that SLAM, a putative distemper receptor, is expressed in dogs in vivo. Additionally, virus infection is associated with up-regulation of SLAM, potentially causing an amplification of virus in the host.

  17. Evidence for the extramembranous location of the putative amphipathic helix of acetylcholine receptor

    SciTech Connect

    Dwyer, B.P.

    1988-07-26

    Evidence has been obtained demonstrating that the peptides GVKYIAE and AIKYIAE found in the potential amphipathic helices of the ..cap alpha.. and ..beta.. subunits, respectively, of acetylcholine receptor are not buried in the membrane. The peptide KYIAE was synthesized, and polyclonal antibodies were prepared against a conjugate of bovine serum albumin and synthetic peptide. An immunoadsorbent capable of binding and subsequently releasing peptides ending with the sequence-YIAE was produced by attaching these specific antibodies to agarose. Native acetylcholine receptor was labeled with pyridoxal phosphate and Na(/sup 3/H)BH/sub 4/. The labeled protein was stripped of phospholipid and digested with the protease from Staphylococcus aureus strain V8. The digest was submitted to immunoadsorption to isolate the labeled indigenous peptides. As a control, ..cap alpha.. and ..beta.. polypeptides prepared by gel filtration of a solution of acetylcholine receptor in detergent were stripped of detergent and labeled with pyridoxal phosphate and Na(/sup 3/H)BH/sub 4/ in the presence of 8 M urea. The labeled ..cap alpha.. and ..beta.. polypeptides were digested and submitted to immunoadsorption. The specific radioactivities of the indigenous peptides from the ..cap alpha.. and ..beta.. subunits labeled under native and denaturing conditions were nearly equal. In similar experiments using isethionyl (2',4'-dinitrophenyl)-3-aminopropionimidate as the labeling agent, the indigenous peptides from native and denatured receptor were also labeled to the same extent. Since these peptides are labeled to the same extent whether or not the protein is denatured, they cannot be buried in the membrane.

  18. Putative miRNAs for the diagnosis of dyslexia, dyspraxia, and specific language impairment.

    PubMed

    Rudov, Alexander; Rocchi, Marco Bruno Luigi; Accorsi, Augusto; Spada, Giorgio; Procopio, Antonio Domenico; Olivieri, Fabiola; Rippo, Maria Rita; Albertini, Maria Cristina

    2013-10-01

    Disorders of human communication abilities can be classified into speech and language disorders. Speech disorders (e.g., dyspraxia) affect the sound generation and sequencing, while language disorders (e.g., dyslexia and specific language impairment, or SLI) are deficits in the encoding and decoding of language according to its rules (reading, spelling, grammar). The diagnosis of such disorders is often complicated, especially when a patient presents more than one disorder at the same time. The present review focuses on these challenges. We have combined data available from the literature with an in silico approach in an attempt to identify putative miRNAs that may have a key role in dyspraxia, dyslexia and SLI. We suggest the use of new miRNAs, which could have an important impact on the three diseases. Further, we relate those miRNAs to the axon guidance pathway and discuss possible interactions and the role of likely deregulated proteins. In addition, we describe potential differences in expressional deregulation and its role in the improvement of diagnosis. We encourage experimental investigations to test the data obtained in silico.

  19. Specificity and putative mode of action of a mosquito larvicidal toxin from the bacterium Xenorhabdus innexi.

    PubMed

    Kim, Il-Hwan; Ensign, Jerald; Kim, Do-Young; Jung, Hoe-Yune; Kim, Na-Ri; Choi, Bo-Hwa; Park, Sun-Min; Lan, Que; Goodman, Walter G

    2017-10-01

    Reduction of mosquito-borne diseases relies, in part, on the use of synthetic pesticides to control pest mosquitoes. This reliance has led to genetic resistance, environmental contamination and the nondiscriminatory elimination of both pest and non-pest species. To expand our options for control, we screened entomopathogenic bacteria for potential larvicidal activity. A lipopeptide from the bacterium, Xenorhabdus innexi, was discovered that displayed potent larvicidal activity. The LC50s of the lipopeptide towards Aedes aegypti, Culex pipiens and Anopheles gambiae larvae were 1.81, 1.25 and 1.86 parts-per-million, respectively. No mortality was observed in other insect species tested. The putative mode of action of the lipopeptide suggested that after orally ingestion, it bound to the apical membrane of anterior midgut cells and created pores in the cellular membranes. The rapid neutralization of midgut pH suggested the pores disabled the H(+)-V-ATPase on the basal membrane and led to epithelial cell death. Specificity and toxicity towards mosquito larvae and the unique mode of action makes this lipopeptide a potentially attractive bacterial insecticide for control of mosquitoes. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. The gustatory receptor family in the silkworm moth Bombyx mori is characterized by a large expansion of a single lineage of putative bitter receptors.

    PubMed

    Wanner, K W; Robertson, H M

    2008-12-01

    The gustatory receptor (Gr) family of insect chemoreceptors includes receptors for sugars and bitter compounds, as well as cuticular hydrocarbons and odorants such as carbon dioxide. We have annotated a total of 65 Gr genes from the silkworm Bombyx mori genome. The Gr family in the silkworm moth includes putative carbon dioxide receptors and sugar receptors, as well as duplicated orthologues of the orphan DmGr43a receptor. Most prominent in this 65-gene family, however, is a single large expansion of 55 Grs that we propose are predominantly 'bitter' receptors involved in perception of the large variety of secondary plant chemicals that caterpillars and moths encounter. These Grs might therefore mediate food choice and avoidance as well as oviposition site preference.

  1. Putative model for heat shock protein 70 complexation with receptor of advanced glycation end products through fluorescence proximity assays and normal mode analyses.

    PubMed

    Grunwald, Marcelo Sartori; Ligabue-Braun, Rodrigo; Souza, Cristiane Santos; Heimfarth, Luana; Verli, Hugo; Gelain, Daniel Pens; Moreira, José Cláudio Fonseca

    2017-01-01

    Extracellular heat shock protein 70 (HSP70) is recognized by receptors on the plasma membrane, such as Toll-like receptor 4 (TLR4), TLR2, CD14, and CD40. This leads to activation of nuclear factor-kappa B (NF-κB), release of pro-inflammatory cytokines, enhancement of the phagocytic activity of innate immune cells, and stimulation of antigen-specific responses. However, the specific characteristics of HSP70 binding are still unknown, and all HSP70 receptors have not yet been described. Putative models for HSP70 complexation to the receptor for advanced glycation endproducts (RAGEs), considering both ADP- and ATP-bound states of HSP70, were obtained through molecular docking and interaction energy calculations. This interaction was detected and visualized by a proximity fluorescence-based assay in A549 cells and further analyzed by normal mode analyses of the docking complexes. The interacting energy of the complexes showed that the most favored docking situation occurs between HSP70 ATP-bound and RAGE in its monomeric state. The fluorescence proximity assay presented a higher number of detected spots in the HSP70 ATP treatment, corroborating with the computational result. Normal-mode analyses showed no conformational deformability in the interacting interface of the complexes. Results were compared with previous findings in which oxidized HSP70 was shown to be responsible for the differential modulation of macrophage activation, which could result from a signaling pathway triggered by RAGE binding. Our data provide important insights into the characteristics of HSP70 binding and receptor interactions, as well as putative models with conserved residues on the interface area, which could be useful for future site-directed mutagenesis studies.

  2. Putative Mineral-Specific Proteins Synthesized by the Metal Reducing Bacterium Shewanella oneidensis

    NASA Astrophysics Data System (ADS)

    Lower, B. H.; Hochella, M. F.; Lower, S. K.

    2003-12-01

    For over three billion years the Earth has been home to millions of different species of prokaryotic organisms. The life and propagation of many of these microbial cells has relied on intimate contact with mineral surfaces (e.g., the use of metal oxides as terminal electron acceptors). An interface is formed at the junction of a bacterium and a mineral surface that is, by its very nature, nanoscale in size. The process of natural selection has shaped bacteria such that they are masters of the art of synthesizing fully functional structures and utilizing properties that exist only at the nanometer scale. We have begun to explore the bacterium-mineral interface to determine precisely how fundamental, nanoscale forces guide and are themselves modulated by a cell's expression of outer membrane proteins localized at a mineral surface. Recent work in our laboratory suggests that a species of dissimilatory metal reducing bacteria expresses proteins that have a high affinity for specific mineral phases. Using biological force microscopy (BFM), we have discovered that one such organism, Shewanella oneidensis, appears to recognize the surface of iron hydroxides - versus isostructural aluminum hydroxide counterparts - such that it produces and/or localizes putative mineral-specific proteins at the interface with goethite (FeOOH). These particular high molecular weight proteins are expressed only under anaerobic conditions, when the Fe(III) in the mineral phase is expected to serve as the microorganism's terminal electron acceptor. Protein expression patterns provided by two-dimensional gel electrophoresis confirm that specific, high molecular weight proteins are targeted to the outer membrane of S. oneidensis when Fe(III) is provided as a terminal electron acceptor. The results suggest that these proteins are synthesized by S. oneidensis under anaerobic conditions to function in iron oxide binding and/or Fe(III) reduction. If this is the case, than it is possible that the

  3. Potential Role of Transient Receptor Potential Channel M5 in Sensing Putative Pheromones in Mouse Olfactory Sensory Neurons

    PubMed Central

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input. PMID:23613997

  4. Potential role of transient receptor potential channel M5 in sensing putative pheromones in mouse olfactory sensory neurons.

    PubMed

    Oshimoto, Arisa; Wakabayashi, Yoshihiro; Garske, Anna; Lopez, Roberto; Rolen, Shane; Flowers, Michael; Arevalo, Nicole; Restrepo, Diego

    2013-01-01

    Based on pharmacological studies of chemosensory transduction in transient receptor potential channel M5 (TRPM5) knockout mice it was hypothesized that this channel is involved in transduction for a subset of putative pheromones in mouse olfactory sensory neurons (OSNs). Yet, in the same study an electroolfactogram (EOG) in the mouse olfactory epithelium showed no significant difference in the responses to pheromones (and odors) between wild type and TRPM5 knockout mice. Here we show that the number of OSNs expressing TRPM5 is increased by unilateral naris occlusion. Importantly, EOG experiments show that mice lacking TRPM5 show a decreased response in the occluded epithelia to putative pheromones as opposed to wild type mice that show no change upon unilateral naris occlusion. This evidence indicates that under decreased olfactory sensory input TRPM5 plays a role in mediating putative pheromone transduction. Furthermore, we demonstrate that cyclic nucleotide gated channel A2 knockout (CNGA2-KO) mice that show substantially decreased or absent responses to odors and pheromones also have elevated levels of TRPM5 compared to wild type mice. Taken together, our evidence suggests that TRPM5 plays a role in mediating transduction for putative pheromones under conditions of reduced chemosensory input.

  5. Identification of putative human T cell receptor delta complementary DNA clones

    SciTech Connect

    Hata, S.; Brenner, M.B.; Krangel, M.S.

    1987-10-30

    A novel T cell receptor (TCR) subunit termed TCR delta, associated with TCY ..gamma.. and CD3 polypeptides, were recently found on a subpopulation of human T lymphocytes. T cell-specific complementary DNA clones present in a human TCR..gamma..delta T cell complementary DNA library were obtained and characterized in order to identify candidate clones encoding TCR delta. One cross-hybridizing group of clones detected transcripts that are expressed in lymphocytes bearing TCR ..gamma..delta but not in other T lymphocytes and are encoded by genes that are rearranged in TCR ..gamma..delta lymphocytes but deleted in other T lymphocytes. Their sequences indicate homology to the variable, joining, and constant elements of other TCR and immunoglobulin genes. These characteristics are strong evidence that the complementary DNA clones encode TCR delta.

  6. An LTR Retrotransposon-Derived Gene Displays Lineage-Specific Structural and Putative Species-Specific Functional Variations in Eutherians

    PubMed Central

    Irie, Masahito; Koga, Akihiko; Kaneko-Ishino, Tomoko; Ishino, Fumitoshi

    2016-01-01

    Amongst the 11 eutherian-specific genes acquired from a sushi-ichi retrotransposon is the CCHC type zinc-finger protein-encoding gene SIRH11/ZCCHC16. Its contribution to eutherian brain evolution is implied because of its involvement in cognitive function in mice, possibly via the noradrenergic system. Although, the possibility that Sirh11/Zcchc16 functions as a non-coding RNA still remains, dN/dS ratios in pairwise comparisons between its orthologs have provided supportive evidence that it acts as a protein. It became a pseudogene in armadillos (Cingulata) and sloths (Pilosa), the only two extant orders of xenarthra, which prompted us to examine the lineage-specific variations of SIRH11/ZCCHC16 in eutherians. We examined the predicted SIRH11/ZCCHC16 open reading frame (ORF) in 95 eutherian species based on the genomic DNA information in GenBank. A large variation in the SIRH11/ZCCHC16 ORF was detected in several lineages. These include a lack of a CCHC RNA-binding domain in its C-terminus, observed in gibbons (Hylobatidae: Primates) and megabats (Megachiroptera: Chiroptera). A lack of the N-terminal half, on the other hand, was observed in New World monkeys (Platyrrhini: Primates) and species belonging to New World and African Hystricognaths (Caviomorpha and Bathyergidae: Rodents) along with Cetacea and Ruminantia (Cetartiodactyla). Among the hominoids, interestingly, three out of four genera of gibbons have lost normal SIRH11/ZCCHC16 function by deletion or the lack of the CCHC RNA-binding domain. Our extensive dN/dS analysis suggests that such truncated SIRH11/ZCCHC16 ORFs are functionally diversified even within lineages. Combined, our results show that SIRH11/ZCCHC16 may contribute to the diversification of eutherians by lineage-specific structural changes after its domestication in the common eutherian ancestor, followed by putative species-specific functional changes that enhanced fitness and occurred as a consequence of complex natural selection events

  7. Repression of estrogen receptor {beta} function by putative tumor suppressor DBC1

    SciTech Connect

    Koyama, Satoshi; Wada-Hiraike, Osamu; Nakagawa, Shunsuke; Tanikawa, Michihiro; Hiraike, Haruko; Miyamoto, Yuichiro; Sone, Kenbun; Oda, Katsutoshi; Fukuhara, Hiroshi; Nakagawa, Keiichi; Kato, Shigeaki; Yano, Tetsu; Taketani, Yuji

    2010-02-12

    It has been well established that estrogen is involved in the pathophysiology of breast cancer. Estrogen receptor (ER) {alpha} appears to promote the proliferation of cancer tissues, while ER{beta} can protect against the mitogenic effect of estrogen in breast tissue. The expression status of ER{alpha} and ER{beta} may greatly influence on the development, treatment, and prognosis of breast cancer. Previous studies have indicated that the deleted in breast cancer 1 (DBC1/KIAA1967) gene product has roles in regulating functions of nuclear receptors. The gene encoding DBC1 is a candidate for tumor suppressor identified by genetic search for breast cancer. Caspase-dependent processing of DBC1 promotes apoptosis, and depletion of the endogenous DBC1 negatively regulates p53-dependent apoptosis through its specific inhibition of SIRT1. In addition, DBC1 modulates ER{alpha} expression and promotes breast cancer cell survival by binding to ER{alpha}. Here we report an ER{beta}-specific repressive function of DBC1. Immunoprecipitation and immunofluorescence studies show that ER{beta} and DBC1 interact in a ligand-independent manner similar to ER{alpha}. In vitro pull-down assays revealed a direct interaction between DBC1 amino-terminus and activation function-1/2 domain of ER{beta}. Although DBC1 shows no influence on the ligand-dependent transcriptional activation function of ER{alpha}, the expression of DBC1 negatively regulates the ligand-dependent transcriptional activation function of ER{beta}in vivo, and RNA interference-mediated depletion of DBC1 stimulates the transactivation function of ER{beta}. These results implicate the principal role of DBC1 in regulating ER{beta}-dependent gene expressions.

  8. ORA1, a Zebrafish Olfactory Receptor Ancestral to All Mammalian V1R Genes, Recognizes 4-Hydroxyphenylacetic Acid, a Putative Reproductive Pheromone

    PubMed Central

    Behrens, Maik; Frank, Oliver; Rawel, Harshadrai; Ahuja, Gaurav; Potting, Christoph; Hofmann, Thomas; Meyerhof, Wolfgang; Korsching, Sigrun

    2014-01-01

    The teleost v1r-related ora genes are a small, highly conserved olfactory receptor gene family of only six genes, whose direct orthologues can be identified in lineages as far as that of cartilaginous fish. However, no ligands for fish olfactory receptor class A related genes (ORA) had been uncovered so far. Here we have deorphanized the ORA1 receptor using heterologous expression and calcium imaging. We report that zebrafish ORA1 recognizes with high specificity and sensitivity 4-hydroxyphenylacetic acid. The carboxyl group of this compound is required in a particular distance from the aromatic ring, whereas the hydroxyl group in the para-position is not essential, but strongly enhances the binding efficacy. Low concentrations of 4-hydroxyphenylacetic acid elicit increases in oviposition frequency in zebrafish mating pairs. This effect is abolished by naris closure. We hypothesize that 4-hydroxyphenylacetic acid might function as a pheromone for reproductive behavior in zebrafish. ORA1 is ancestral to mammalian V1Rs, and its putative function as pheromone receptor is reminiscent of the role of several mammalian V1Rs as pheromone receptors. PMID:24831010

  9. Major putative pesticide receptors, detoxification enzymes, and transcriptional profile of the midgut of the tobacco budworm, Heliothis virescens (Lepidoptera: Noctuidae).

    PubMed

    Zhu, Yu Cheng; Guo, Zibiao; Chen, Ming-Shun; Zhu, Kun Yan; Liu, Xiaofen F; Scheffler, Brian

    2011-02-01

    Insecticide resistance mechanisms, including those for Cry proteins (Bt), in Heliothis virescens are not well understood. Sequencing of midgut transcriptomes may facilitate the discovery of the genes responsible for resistance development. In this study, a total of 5856 Sanger sequences were obtained and assembled to 1687 contigs (464) and singletons (1233) with average length of 507 bp. Blast similarity search showed that 1372 cDNAs from this study matched different genes or cDNAs in the GenBank and other sequence databases. Blast2go annotation identified 611 highly similar proteins with metabolic and cellular processes as major biological functions and catalytic activity and binding as major molecular functions. At least 143 contigs and singletons were associated with pesticide activation, detoxification, and resistance development. These cDNAs, with average length of 601 bp, matched nine groups of pesticide resistance related genes. At least 80 cDNAs coded for Bt resistance related enzymes and potential receptors, including 58 proteinases, 4 cadherins, 13 aminopeptidase, and 5 alkaline phosphatases. Other putative detoxification enzymes included 20 cytochrome P450 oxidases, 11 glutathione S-transferases, 9 esterases, 8 sodium channels, and 15 cytochrome oxidases. Of the 143 contigs and singletons, 111 cDNA sequences seemed to be new resistance candidate gene transcripts in GenBank because they either priorly matched resistance candidate cDNAs of other species, or had low sequence identity with those previously sequenced from H. virescens. This study provides a foundation for future research to develop a gut-specific DNA microarray for analysis of the global changes of gene expression in response to biological and chemical pesticides. Future development resistance management strategies could benefit from this study and help continue research to identify key genes targetable by classic and novel approaches.

  10. Comprehensive Immunolocalization Studies of a Putative Serotonin Receptor from the Alimentary Canal of Aedes aegypti Larvae Suggest Its Diverse Roles in Digestion and Homeostasis

    PubMed Central

    Petrova, Adelina; Moffett, David Franklin

    2016-01-01

    Serotonin regulates key processes including digestion and homeostasis in insects. Serotonin effects are mediated by serotonin receptors that transduce information through initiation of second messenger signaling pathways. Lack of information on serotonin receptors associated with the alimentary canal impedes the understanding of the serotonergic role in insect physiology. To address this void, the present study has cloned and identified a putative serotonin receptor (hereafter AaSeR-1) from the alimentary canal of Aedes aegypti (yellow fever mosquito) larvae. In addition to in-silico analyses of AaSeR-1 primary sequence, immunohistochemical investigations were carried out to elucidate receptor expression patterns. Specific AaSeR-1 immunofluorescence was detected in the caeca, the mid- and hindgut, including the Malpighian tubules. These findings point out not only receptor ubiquitous nature but also its involvement in regulation of different stages of nutrient processing and homeostasis. Furthermore, AaSeR-1 may mediate an array of effects through its differential expression at various cell compartments. While AaSeR-1 specific immunofluorescence was depicted in the nucleus and nucleolus of principal cells of the anterior midgut, in the posterior, analyses suggest receptor association with the plasma membrane of both principal and regenerative cells. In addition, AaSeR-1 immunofluorescence was also found in some enteroendocrine cells and in both circular and longitudinal muscles that innervate the alimentary canal. Overall, immunohistochemical analyses of AaSeR-1 expression indicate that this receptor exercises multiple roles in digestion- and homeostasis-related mechanisms. PMID:26808995

  11. Identification of putative TSWV resistance gene and development of gene-specific marker in peanut

    USDA-ARS?s Scientific Manuscript database

    Tomato spotted wilt virus (TSWV) is one of the most destructive viral diseases threatening peanut production in the Southeastern U.S. Among different strategies of controlling this disease, the use of resistant cultivars is more efficient. The objective of this study is to develop putative TSWV res...

  12. Identification of putative TSWV resistance genes and development of gene-specific marker in peanut

    USDA-ARS?s Scientific Manuscript database

    Tomato spotted wilt virus (TSWV) is one of the most destructive viral diseases threatening peanut production in the Southeastern U.S. Among different strategies of controlling this disease, the use of resistant cultivars is more efficient. The objective of this study is to develop putative TSWV res...

  13. Expression analysis of Arabidopsis vacuolar sorting receptor 3 reveals a putative function in guard cells.

    PubMed

    Avila, Emily L; Brown, Michelle; Pan, Songqin; Desikan, Radhika; Neill, Steven J; Girke, Thomas; Surpin, Marci; Raikhel, Natasha V

    2008-01-01

    Vacuolar sorting receptors (VSRs) are responsible for the proper targeting of soluble cargo proteins to their destination compartments. The Arabidopsis genome encodes seven VSRs. In this work, the spatio-temporal expression of one of the members of this gene family, AtVSR3, was determined by RT-PCR and promoter::reporter gene fusions. AtVSR3 was expressed specifically in guard cells. Consequently, a reverse genetics approach was taken to determine the function of AtVSR3 by using RNA interference (RNAi) technology. Plants expressing little or no AtVSR3 transcript had a compressed life cycle, bolting approximately 1 week earlier and senescing up to 2 weeks earlier than the wild-type parent line. While the development and distribution of stomata in AtVSR3 RNAi plants appeared normal, stomatal function was altered. The guard cells of mutant plants did not close in response to abscisic acid treatment, and the mean leaf temperatures of the RNAi plants were on average 0.8 degrees C lower than both wild type and another vacuolar sorting receptor mutant, atvsr1-1. Furthermore, the loss of AtVSR3 protein caused the accumulation of nitric oxide and hydrogen peroxide, signalling molecules implicated in the regulation of stomatal opening and closing. Finally, proteomics and western blot analyses of cellular proteins isolated from wild-type and AtVSR3 RNAi leaves showed that phospholipase Dgamma, which may play a role in abscisic acid signalling, accumulated to higher levels in AtVSR3 RNAi guard cells. Thus, AtVSR3 may play an important role in responses to plant stress.

  14. Effect of mutations in putative hormone binding sites on V2 vasopressin receptor function.

    PubMed

    Sebti, Y; Rabbani, M; Sadeghi, H Mir Mohammad; Sardari, S; Ghahremani, M H; Innamorati, G

    2015-01-01

    The vasopressin V2 receptor belongs to the large family of the G-protein coupled receptors and is responsible for the antidiuretic effect of the neurohypophyseal hormone arginine vasopressin (AVP). Based on bioinformatic studies it seems that Ala300 and Asp297 of the V2 vasopressin receptor (V2R) are involved in receptor binding. Ala300Glu mutation resulted in lower energy while Asp297Tyr mutation resulted in higher energy in AVP-V2R docked complex rather than the wild type. Therefore we hypothesized that the Ala300Glu mutation results in stronger and Asp297Tyr mutation leads to weaker ligand-receptor binding. Site directed mutagenesis of Asp297Tyr and Ala300Glu was performed using nested polymerase chain reaction. After restriction enzyme digestion, the inserts were ligated into the pcDNA3 vector and Escherichia coli XL1-Blue competent cells were transformed using commercial kit and electroporation methods. The obtained colonies were analyzed for the presence and orientation of the inserts using proper restriction enzymes. After transient transfection of COS-7 cells using ESCORT™ IV transfection reagent, the adenylyl cyclase activity assay was performed for functional studies. The cell surface expression of V2R was analyzed by indirect ELISA method. Based on the obtained results, the Ala300Glu mutation of V2R led to reduced levels of cAMP production without a marked effect on the receptor expression and the receptor binding. Effect of Asp297Tyr mutation on cell surface expression of V2R was the same as the wild type receptor. Pretreatment with 1 nM vasopressin showed an increased level of Asp297Tyr mutant receptor internalization as compared to the wild type receptor, while the effect of 100 nM vasopressin was similar in the mutant and wild type receptors. These data suggest that alterations in Asp297 but not Ala300 would affect the hormone receptor binding.

  15. Evolution of pharmacologic specificity in the pregnane X receptor

    PubMed Central

    2008-01-01

    Background The pregnane X receptor (PXR) shows the highest degree of cross-species sequence diversity of any of the vertebrate nuclear hormone receptors. In this study, we determined the pharmacophores for activation of human, mouse, rat, rabbit, chicken, and zebrafish PXRs, using a common set of sixteen ligands. In addition, we compared in detail the selectivity of human and zebrafish PXRs for steroidal compounds and xenobiotics. The ligand activation properties of the Western clawed frog (Xenopus tropicalis) PXR and that of a putative vitamin D receptor (VDR)/PXR cloned in this study from the chordate invertebrate sea squirt (Ciona intestinalis) were also investigated. Results Using a common set of ligands, human, mouse, and rat PXRs share structurally similar pharmacophores consisting of hydrophobic features and widely spaced excluded volumes indicative of large binding pockets. Zebrafish PXR has the most sterically constrained pharmacophore of the PXRs analyzed, suggesting a smaller ligand-binding pocket than the other PXRs. Chicken PXR possesses a symmetrical pharmacophore with four hydrophobes, a hydrogen bond acceptor, as well as excluded volumes. Comparison of human and zebrafish PXRs for a wide range of possible activators revealed that zebrafish PXR is activated by a subset of human PXR agonists. The Ciona VDR/PXR showed low sequence identity to vertebrate VDRs and PXRs in the ligand-binding domain and was preferentially activated by planar xenobiotics including 6-formylindolo-[3,2-b]carbazole. Lastly, the Western clawed frog (Xenopus tropicalis) PXR was insensitive to vitamins and steroidal compounds and was activated only by benzoates. Conclusion In contrast to other nuclear hormone receptors, PXRs show significant differences in ligand specificity across species. By pharmacophore analysis, certain PXRs share similar features such as human, mouse, and rat PXRs, suggesting overlap of function and perhaps common evolutionary forces. The Western clawed

  16. Identification of putative rhamnogalacturonan-II specific glycosyltransferases in Arabidopsis using a combination of bioinformatics approaches.

    PubMed

    Voxeur, Aline; André, Aurélie; Breton, Christelle; Lerouge, Patrice

    2012-01-01

    Rhamnogalacturonan-II (RG-II) is a complex plant cell wall polysaccharide that is composed of an α(1,4)-linked homogalacturonan backbone substituted with four side chains. It exists in the cell wall in the form of a dimer that is cross-linked by a borate di-ester. Despite its highly complex structure, RG-II is evolutionarily conserved in the plant kingdom suggesting that this polymer has fundamental functions in the primary wall organisation. In this study, we have set up a bioinformatics strategy aimed at identifying putative glycosyltransferases (GTs) involved in RG-II biosynthesis. This strategy is based on the selection of candidate genes encoding type II membrane proteins that are tightly coexpressed in both rice and Arabidopsis with previously characterised genes encoding enzymes involved in the synthesis of RG-II and exhibiting an up-regulation upon isoxaben treatment. This study results in the final selection of 26 putative Arabidopsis GTs, including 10 sequences already classified in the CAZy database. Among these CAZy sequences, the screening protocol allowed the selection of α-galacturonosyltransferases involved in the synthesis of α4-GalA oligogalacturonides present in both homogalacturonans and RG-II, and two sialyltransferase-like sequences previously proposed to be involved in the transfer of Kdo and/or Dha on the pectic backbone of RG-II. In addition, 16 non-CAZy GT sequences were retrieved in the present study. Four of them exhibited a GT-A fold. The remaining sequences harbored a GT-B like fold and a fucosyltransferase signature. Based on homologies with glycosyltransferases of known functions, putative roles in the RG-II biosynthesis are proposed for some GT candidates.

  17. Identification of Putative Rhamnogalacturonan-II Specific Glycosyltransferases in Arabidopsis Using a Combination of Bioinformatics Approaches

    PubMed Central

    Voxeur, Aline; André, Aurélie

    2012-01-01

    Rhamnogalacturonan-II (RG-II) is a complex plant cell wall polysaccharide that is composed of an α(1,4)-linked homogalacturonan backbone substituted with four side chains. It exists in the cell wall in the form of a dimer that is cross-linked by a borate di-ester. Despite its highly complex structure, RG-II is evolutionarily conserved in the plant kingdom suggesting that this polymer has fundamental functions in the primary wall organisation. In this study, we have set up a bioinformatics strategy aimed at identifying putative glycosyltransferases (GTs) involved in RG-II biosynthesis. This strategy is based on the selection of candidate genes encoding type II membrane proteins that are tightly coexpressed in both rice and Arabidopsis with previously characterised genes encoding enzymes involved in the synthesis of RG-II and exhibiting an up-regulation upon isoxaben treatment. This study results in the final selection of 26 putative Arabidopsis GTs, including 10 sequences already classified in the CAZy database. Among these CAZy sequences, the screening protocol allowed the selection of α-galacturonosyltransferases involved in the synthesis of α4-GalA oligogalacturonides present in both homogalacturonans and RG-II, and two sialyltransferase-like sequences previously proposed to be involved in the transfer of Kdo and/or Dha on the pectic backbone of RG-II. In addition, 16 non-CAZy GT sequences were retrieved in the present study. Four of them exhibited a GT-A fold. The remaining sequences harbored a GT-B like fold and a fucosyltransferase signature. Based on homologies with glycosyltransferases of known functions, putative roles in the RG-II biosynthesis are proposed for some GT candidates. PMID:23272088

  18. Pharmacological evidence for putative CCK1 receptor heterogeneity in human colon smooth muscle

    PubMed Central

    Morton, M F; Harper, E A; Tavares, I A; Shankley, N P

    2002-01-01

    The pharmacology of the cholecystokinin CCK1 receptors endogenously expressed in human gallbladder and human ascending colon smooth muscle tissue was compared using radioligand binding assays. Saturation analysis of the interaction between the radiolabelled, selective CCK1-receptor antagonist, [3H]-L-364,718, and enriched gastrointestinal tissue membranes suggested the presence of multiple binding sites in human colon but not human gallbladder. Competition studies, using a range of structurally diverse, CCK-receptor selective ligands provided further evidence for CCK1 receptor heterogeneity in human colon tissue (nH values significantly less than unity for SR27897=0.77±0.07, 2-NAP=0.73±0.03, YM220=0.70±0.09 and PD-134,308=0.83±0.01). Moreover, the competition data for SR27897, 2-NAP and YM220 were consistent with the interaction of these compounds at two binding sites. In contrast, in the human gallbladder assay, a single binding site model provided a good fit of the competition curve data obtained with all the CCK receptor selective compounds. The data obtained are consistent with the presence of a single CCK1 receptor binding site in the gallbladder but not in the colon. A two-site analysis of the colon data, indicated that one of the two sites was indistinguishable from that characterized in the gallbladder. The molecular basis of the apparent receptor heterogeneity in the colon remains to be established. PMID:12110612

  19. Soluble urokinase-type plasminogen activator receptor as a putative marker of male accessory gland inflammation.

    PubMed

    Autilio, C; Morelli, R; Milardi, D; Grande, G; Marana, R; Pontecorvi, A; Zuppi, C; Baroni, S

    2015-11-01

    The association between male accessory gland infection/inflammation (MAGI) and infertility is well-known in clinical practice. Standard semen analysis, leukocytospermia, and microbiological tests are often not enough accurate for a diagnosis. A large amount of biochemical parameters in seminal plasma have been suggested as inflammation markers, however, there is not yet a sensitive and specific biomarker that accurately identifies MAGI. We investigated the presence of soluble urokinase-type plasminogen activator receptor (suPAR), known marker of systemic inflammation, in the seminal plasma to evaluate its possible involvement in urogenital tract inflammation. On the basis of andrological evaluation, including spermiogram and ultrasound findings, we selected 76 patients with MAGI and 30 healthy men as control group. Patients were classified according to the results of the semen culture in group A (n = 28) presenting a bacterial MAGI and group B (n = 48) with abacterial MAGI. C-reactive protein (CRP), total protein (TP), procalcitonin (PCT), leukocytes peroxidase (LP), and suPAR concentrations were assayed on seminal plasma. Spermiogram parameters were significantly lower in the patients with MAGI than in controls. CRP, TP, PCT, and LP did not differ in MAGI vs. suPAR was detectable in all semen samples; it was significantly increased in A and B groups (86.6 ± 30.7 ng/mL vs. 39.7 ± 17.2 ng/mL) with an inverse correlation with sperm parameters. We selected by receiver operating characteristic curve a suPAR cut-off value of 55.3 ng/mL as a diagnostic threshold for the diagnosis of MAGI. We report in this study the first evidence of suPAR presence in seminal plasma, focusing on its interesting role as reliable and sensitive marker of inflammation for the differential diagnosis of MAGI. © 2015 American Society of Andrology and European Academy of Andrology.

  20. Apolipoprotein D (APOD) is a putative biomarker of androgen receptor function in androgen insensitivity syndrome.

    PubMed

    Appari, Mahesh; Werner, Ralf; Wünsch, Lutz; Cario, Gunnar; Demeter, Janos; Hiort, Olaf; Riepe, Felix; Brooks, James D; Holterhus, Paul-Martin

    2009-06-01

    Androgen insensitivity syndrome (AIS) is the most common cause of disorders of sex development usually caused by mutations in the androgen receptor (AR) gene. AIS is characterized by a poor genotype-phenotype correlation, and many patients with clinically presumed AIS do not seem to have mutations in the AR gene. We therefore aimed at identifying a biomarker enabling the assessment of the cellular function of the AR as a transcriptional activator. In the first step, we used complementary DNA (cDNA) microarrays for a genome-wide screen for androgen-regulated genes in two normal male primary scrotal skin fibroblast strains compared to two labia majora fibroblast strains from 46,XY females with complete AIS (CAIS). Apolipoprotein D (APOD) and two further transcripts were significantly upregulated by dihydrotestosterone (DHT) in scrotum fibroblasts, while CAIS labia majora cells were unresponsive. Microarray data were well correlated with quantitative real-time polymerase chain reaction (qRT-PCR; R = 0.93). Subsequently, we used qRT-PCR in independent new cell cultures and confirmed the significant DHT-dependent upregulation of APOD in five normal scrotum strains [13.5 +/- 8.2 (SD)-fold] compared with three CAIS strains (1.2 +/- 0.7-fold, p = 0.028; t test) and six partial androgen insensitivity syndrome strains (2 +/- 1.3-fold, p = 0.034; t test). Moreover, two different 17ss-hydroxysteroid dehydrogenase III deficiency labia majora strains showed APOD induction in the range of normal scrotum (9.96 +/- 1.4-fold), supporting AR specificity. Therefore, qRT-PCR of APOD messenger RNA transcription in primary cultures of labioscrotal skin fibroblasts is a promising tool for assessing AR function, potentially allowing a function-based diagnostic evaluation of AIS in the future.

  1. Pharmacological evidence for putative CCK(1) receptor heterogeneity in human colon smooth muscle.

    PubMed

    Morton, M F; Harper, E A; Tavares, I A; Shankley, N P

    2002-07-01

    1. The pharmacology of the cholecystokinin CCK(1) receptors endogenously expressed in human gallbladder and human ascending colon smooth muscle tissue was compared using radioligand binding assays. 2. Saturation analysis of the interaction between the radiolabelled, selective CCK(1)-receptor antagonist, [(3)H]-L-364,718, and enriched gastrointestinal tissue membranes suggested the presence of multiple binding sites in human colon but not human gallbladder. 3. Competition studies, using a range of structurally diverse, CCK-receptor selective ligands provided further evidence for CCK(1) receptor heterogeneity in human colon tissue (n(H) values significantly less than unity for SR27897=0.77+/-0.07, 2-NAP=0.73+/-0.03, YM220=0.70+/-0.09 and PD-134,308=0.83+/-0.01). Moreover, the competition data for SR27897, 2-NAP and YM220 were consistent with the interaction of these compounds at two binding sites. In contrast, in the human gallbladder assay, a single binding site model provided a good fit of the competition curve data obtained with all the CCK receptor selective compounds. 4. The data obtained are consistent with the presence of a single CCK(1) receptor binding site in the gallbladder but not in the colon. A two-site analysis of the colon data, indicated that one of the two sites was indistinguishable from that characterized in the gallbladder. The molecular basis of the apparent receptor heterogeneity in the colon remains to be established. British Journal of Pharmacology (2002) 136, 873-882

  2. Evidence for the putative cannabinoid receptor (GPR55)-mediated inhibitory effects on intestinal contractility in mice.

    PubMed

    Ross, Gracious R; Lichtman, Aron; Dewey, William L; Akbarali, Hamid I

    2012-01-01

    Cannabinoids inhibit intestinal motility via presynaptic cannabinoid receptor type I (CB1) in enteric neurons while cannabinoid receptor type II (CB2) receptors are located mainly in immune cells. The recently de-orphanized G-protein-coupled receptor, GPR55, has been proposed to be the 'third' cannabinoid receptor. Although gene expression of GPR55 is evident in the gut, functional evidence for GPR55 in the gut is unknown. In this study, we tested the hypothesis that GPR55 activation inhibits neurogenic contractions in the gut. We assessed the inhibitory effect of the atypical cannabinoid O-1602, a GPR55 agonist, in mouse colon. Isometric tension recordings in colonic tissue strips were used from either wild-type, GPR55(-/-) or CB1(-/-)/CB2(-/-) knockout mice. O-1602 inhibited the electrical field- induced contractions in the colon strips from wild-type and CB1(-/-)/CB2(-/-) in a concentration-dependent manner, suggesting a non-CB1/CB2 receptor-mediated prejunctional effect. The concentration-dependent response of O-1602 was significantly inhibited in GPR55(-/-) mice. O-1602 did not relax colonic strips precontracted with high K(+) (80 mmol/l), indicating no involvement of Ca(2+) channel blockade in O-1602-induced relaxation. However, 10 µmol/l O-1602 partially inhibited the exogenous acetylcholine (10 µmol/l)-induced contractions. Moreover, we also assessed the inhibitory effects of JWH015, a CB2/GPR55 agonist on neurogenic contractions of mouse ileum. Surprisingly, the effects of JWH015 were independent of the known cannabinoid receptors. Taken together, these findings suggest that activation of GPR55 leads to inhibition of neurogenic contractions in the gut and are predominantly prejunctional. Copyright © 2012 S. Karger AG, Basel.

  3. Two types of sugar-binding protein in the labellum of the fly. Putative taste receptor molecules for sweetness

    PubMed Central

    1993-01-01

    Flies have taste cells specifically sensitive to sweetness. It has been suggested that the cells possess two types of receptor sites covering the receptive field of sweetness. By affinity electrophoresis with the site-specific inhibitory polysaccharides, two types of sugar-binding protein were isolated from the labellar extract of the blowfly. These proteins showed consistent sugar-binding specificities and affinities with the two types of receptor sites for sweetness, respectively. The dissociation constant of the protein-sugar complex varies 100-400 mM and the molecular weight of one type of the protein is 27,000, while that of the other is 31,000 or 32,000. Both proteins were water insoluble and were also detected in the isolated chemosensilla. Thus they are probably located on the taste receptor membrane, and the proteins are likely to act as the taste receptor molecules for sweetness in the fly. PMID:8228908

  4. Putative M2 muscarinic receptors of rat heart have high affinity for organophosphorus anticholinesterases

    SciTech Connect

    Silveira, C.L.; Eldefrawi, A.T.; Eldefrawi, M.E. )

    1990-05-01

    The M2 subtype of muscarinic receptor is predominant in heart, and such receptors were reported to be located in muscles as well as in presynaptic cholinergic and adrenergic nerve terminals. Muscarinic receptors of rat heart were identified by the high affinity binding of the agonist (+)-(3H)cis-methyldioxolane ((3H)CD), which has been used to label a high affinity population of M2 receptors. A single population of sites was detected and (3H)CD binding was sensitive to the M2 antagonist himbacine but much less so to pirenzepine, the M1 antagonist. These cardiac receptors had different sensitivities to NiCl2 and N-ethylmaleimide from brain muscarinic receptors, that were also labeled with (3H)CD and considered to be of the M2 subtype. Up to 70% of the (3H)CD-labeled cardiac receptors had high affinities for several organophosphate (OP) anticholinesterases. (3H)CD binding was inhibited by the nerve agents soman, VX, sarin, and tabun, with K0.5 values of 0.8, 2, 20, and 50 nM, respectively. It was also inhibited by echothiophate and paraoxon with K0.5 values of 100 and 300 nM, respectively. The apparent competitive nature of inhibition of (3H)CD binding by both sarin and paraoxon suggests that the OPs bind to the acetylcholine binding site of the muscarinic receptor. Other OP insecticides had lower potencies, inhibiting less than 50% of 5 nM (3H)CD binding by 1 microM of EPN, coumaphos, dioxathion, dichlorvos, or chlorpyriphos. There was poor correlation between the potencies of the OPs in reversibly inhibiting (3H)CD binding, and their anticholinesterase activities and toxicities. Acetylcholinesterases are the primary targets for these OP compounds because of the irreversible nature of their inhibition, which results in building of acetylcholine concentrations that activate muscarinic and nicotinic receptors and desensitize them, thereby inhibiting respiration.

  5. Enhanced resistance to soybean cyst nematode Heterodera glycines in transgenic soybean by silencing putative CLE receptors

    USDA-ARS?s Scientific Manuscript database

    CLE peptides are small extracellular proteins important in regulating plant meristematic activity through the CLE-receptor kinase-WOX signaling module. Stem cell pools in the SAM (shoot apical meristem), RAM (root apical meristem), and vascular cambium are tightly controlled by CLE signaling pathway...

  6. Pharmacological Blockade of 5-HT7 Receptors as a Putative Fast Acting Antidepressant Strategy

    PubMed Central

    Mnie-Filali, Ouissame; Faure, Céline; Lambás-Señas, Laura; Mansari, Mostafa El; Belblidia, Hassina; Gondard, Elise; Etiévant, Adeline; Scarna, Hélène; Didier, Anne; Berod, Anne; Blier, Pierre; Haddjeri, Nasser

    2011-01-01

    Current antidepressants still display unsatisfactory efficacy and a delayed onset of therapeutic action. Here we show that the pharmacological blockade of serotonin 7 (5-HT7) receptors produced a faster antidepressant-like response than the commonly prescribed antidepressant fluoxetine. In the rat, the selective 5-HT7 receptor antagonist SB-269970 counteracted the anxiogenic-like effect of fluoxetine in the open field and exerted an antidepressant-like effect in the forced swim test. In vivo, 5-HT7 receptors negatively regulate the firing activity of dorsal raphe 5-HT neurons and become desensitized after long-term administration of fluoxetine. In contrast with fluoxetine, a 1-week treatment with SB-269970 did not alter 5-HT firing activity but desensitized cell body 5-HT autoreceptors, enhanced the hippocampal cell proliferation, and counteracted the depressive-like behavior in olfactory bulbectomized rats. Finally, unlike fluoxetine, early-life administration of SB-269970, did not induce anxious/depressive-like behaviors in adulthood. Together, these findings indicate that the 5-HT7 receptor antagonists may represent a new class of antidepressants with faster therapeutic action. PMID:21326194

  7. Expressed sequence tags from cephalic chemosensory organs of the northern walnut husk fly, Rhagoletis suavis, including a putative canonical odorant receptor.

    PubMed

    Ramsdell, Karlene M M; Lyons-Sobaski, Sheila A; Robertson, Hugh M; Walden, Kimberly K O; Feder, Jeffrey L; Wanner, Kevin; Berlocher, Stewart H

    2010-01-01

    Rhagoletis fruit flies are important both as major agricultural pests and as model organisms for the study of adaptation to new host plants and host race formation. Response to fruit odor plays a critical role in such adaptation. To better understand olfaction in Rhagoletis, an expressed sequence tag (EST) study was carried out on the antennae and maxillary palps of Rhagoletis suavis (Loew) (Diptera: Tephritidae), a common pest of walnuts in eastern United States. After cDNA cloning and sequencing, 544 ESTs were annotated. Of these, 66% had an open reading frame and could be matched to a previously sequenced gene. Based on BLAST sequence homology, 9% (49 of 544 sequences) were nuclear genes potentially involved in olfaction. The most significant finding is a putative odorant receptor (OR), RSOr1, that is homologous to Drosophila melanogaster Or49a and Or85f. This is the first tephritid OR discovered that might recognize a specific odorant. Other olfactory genes recovered included odorant binding proteins, chemosensory proteins, and putative odorant degrading enzymes.

  8. Intrinsic effects of AM4113, a putative neutral CB1 receptor selective antagonist, on open-field behaviors in rats

    PubMed Central

    Järbe, T.U.C.; LeMay, B.J.; Olzewska, T.; Vemuri, V.K.; Wood, J.T.; Makriyannis, A.

    2008-01-01

    We examined open-field effects in rats of the cannabinoid 1 receptor (CB1R) agonist WIN55,212-2 (WIN; 3 mg/kg) and its interaction with the CB1R putative neutral antagonist AM4113 (0.3 to 3 mg/kg). Separate studies examined AM4113 alone (0.3 to 5.6 mg/kg). Unlike the CB1R antagonist rimonabant, in vitro (e.g., Sink et al., 2007) AM4113 produced no change in cAMP accumulation (neutral antagonism vis-a-vie inverse agonism). Recorded behaviors were: ambulation, rearing, circling, latency, scratching, grooming, defecation, urination and vocalization/squeaking. WIN reduced ambulation and rearing; AM4113 completely (ambulation) or partially (rearing) antagonized these behaviors. WIN alone resulted in circling and an increased latency to leave the start-area; effects blocked by AM4113. AM4113 increased scratching and grooming, effects attenuated but not abolished by WIN. AM4113 alone tended to reduce ambulation and rearing and had no effect on latency or circling. AM4113 alone increased scratching and grooming. Effects on defecation, urination and vocalization were non-significant. The open-field effects of AM4113 are similar to those reported for rimonabant in rats. Yet, unlike the inverse agonists rimonabant and AM251, the putative neutral CB1R antagonist AM4113 did not produce signs of nausea in ferrets and rats (Chambers et al., 2007; Sink et al., 2007). PMID:18640150

  9. Noncontiguous domains of the alpha-factor receptor of yeasts confer ligand specificity.

    PubMed

    Sen, M; Marsh, L

    1994-01-14

    The Saccharomyces cerevisiae alpha-factor receptor has a 3400-fold higher affinity for the S. cerevisiae alpha-factor peptide (c-alpha-f) than for the Saccharomyces kluyveri alpha-factor peptide (k-alpha-f) as determined by competition for [3H] c-alpha-f binding. The S. kluyveri alpha-factor receptor has an approximately 2-fold higher affinity for k-alpha-f than for c-alpha-f. The S. kluyveri receptor gene (k-STE2) is incompletely regulated by S. cerevisiae mating type and poorly expressed on the surface of an S. cerevisiae mating type a strain. A chimeric receptor (c/k1) with amino acid residues 1-45 derived from S. cerevisiae and amino acid residues 46-427 from S. kluyveri exhibits the binding specificity of the S. kluyveri receptor. However, chimeric receptors containing residues 1-168 (c/k2) or 1-250 (c/k3) from S. cerevisiae and the remainder from the S. kluyveri receptor exhibit specificities similar to one another, but intermediate between the parent S. cerevisiae and S. kluyveri receptors. The relative ability of c-alpha-f and k-alpha-f to induce growth arrest in strains expressing chimeric receptors parallels relative affinity. Thus, two noncontiguous domains that include putative extracellular loops 1 and 3 and associated transmembrane segments, but exclude the extracellular NH2 terminus and loop 2, appear to contribute to alpha-factor receptor ligand specificity. COOH-terminal regions of the S. kluyveri receptor appear to confer a desensitization defect when expressed in S. cerevisiae. The S. cerevisiae receptor truncated at residue 296 retains ligand specificity for growth arrest.

  10. Evidence of a putative deep sea specific microbiome in marine sponges.

    PubMed

    Kennedy, Jonathan; Flemer, Burkhardt; Jackson, Stephen A; Morrissey, John P; O'Gara, Fergal; O'Gara, Ferghal; Dobson, Alan D W

    2014-01-01

    The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges.

  11. Evidence of a Putative Deep Sea Specific Microbiome in Marine Sponges

    PubMed Central

    Kennedy, Jonathan; Flemer, Burkhardt; Jackson, Stephen A.; Morrissey, John P.; O'Gara, Ferghal; Dobson, Alan D. W.

    2014-01-01

    The microbiota of four individual deep water sponges, Lissodendoryx diversichela, Poecillastra compressa, Inflatella pellicula, and Stelletta normani, together with surrounding seawater were analysed by pyrosequencing of a region of the 16S rRNA gene common to Bacteria and Archaea. Due to sampling constraints at depths below 700 m duplicate samples were not collected. The microbial communities of L. diversichela, P. compressa and I. pellicula were typical of low microbial abundance (LMA) sponges while S. normani had a community more typical of high microbial abundance (HMA) sponges. Analysis of the deep sea sponge microbiota revealed that the three LMA-like sponges shared a set of abundant OTUs that were distinct from those associated with sponges from shallow waters. Comparison of the pyrosequencing data with that from shallow water sponges revealed that the microbial communities of all sponges analysed have similar archaeal populations but that the bacterial populations of the deep sea sponges were distinct. Further analysis of the common and abundant OTUs from the three LMA-like sponges placed them within the groups of ammonia oxidising Archaea (Thaumarchaeota) and sulphur oxidising γ-Proteobacteria (Chromatiales). Reads from these two groups made up over 70% of all 16S rRNA genes detected from the three LMA-like sponge samples, providing evidence of a putative common microbial assemblage associated with deep sea LMA sponges. PMID:24670421

  12. Role of the liver X receptors in skin physiology: Putative pharmacological targets in human diseases.

    PubMed

    Ouedraogo, Zangbéwendé Guy; Fouache, Allan; Trousson, Amalia; Baron, Silvère; Lobaccaro, Jean-Marc A

    2017-03-01

    Liver X receptors (LXRs) are members of the nuclear receptor superfamily that have been shown to regulate various physiological functions such as lipid metabolism and cholesterol homeostasis. Concordant reports have elicited the possibility to target them to cure many human diseases including arteriosclerosis, cancer, arthritis, and diabetes. The high relevance of modulating LXR activities to treat numerous skin diseases, mainly those with exacerbated inflammation processes, contrasts with the lack of approved therapeutic use. This review makes an assessment to sum up the findings regarding the physiological roles of LXRs in skin and help progress towards the therapeutic and safe management of their activities. It focuses on the possible pharmacological targeting of LXRs to cure or prevent selected skin diseases.

  13. Characterization of the sea bass melanocortin 5 receptor: a putative role in hepatic lipid metabolism.

    PubMed

    Sánchez, E; Rubio, V C; Cerdá-Reverter, J M

    2009-12-01

    The melanocortin 5 receptor (MC5R) plays a key role in the regulation of exocrine secretion in mammalian species. This receptor has also been characterized in some fish species but its function is unknown. We report the molecular and pharmacological characterization, as well as the tissue expression pattern, of sea bass MC5R. Cloning of five active alleles showing different levels of sensitivity to endogenous melanocortin and one non-functional allele demonstrate the allelic complexity of the MC5R locus. The sea bass receptor was activated by all the melanocortins tested, with ACTH and desacetyl-MSH and beta-MSH showing the lowest efficiency. The acetylation of the MSH isoforms seems to be critical for the effectiveness of the agonist. Agouti-related protein had no effect on basal or agonist-stimulated activation of the receptor. SbMC5R was mainly expressed in the brain but lower expression levels were found in several peripheral tissues, including liver. Progressive fasting did not induce up- or downregulation of hypothalamic MC5R expression, suggesting that central MC5R is not involved in the regulation of food intake in the sea bass. MTII, a sbMC5R agonist, stimulated hepatic lipolysis in vitro, measured as free fatty acid release into the culture medium after melanocortin agonist exposure of liver fragments, suggesting that MC5R is involved in the regulation of hepatic lipid metabolism. Taken together, the data suggest that different allelic combinations may confer differential sensitivity to endogenous melanocortin in tissues where MC5R is expressed and, by extension, in hepatic lipid metabolism.

  14. The interleukin 1 (IL-1) receptor accessory protein Toll/IL-1 receptor domain: analysis of putative interaction sites in vitro mutagenesis and molecular modeling.

    PubMed

    Radons, Jurgen; Dove, Stefan; Neumann, Detlef; Altmann, Reinhold; Botzki, Alexander; Martin, Michael U; Falk, Werner

    2003-12-05

    The Toll/interleukin 1 (IL-1) receptor family plays an important role in both innate and adaptive immunity. These receptors are characterized by a C-terminal homology motif called the Toll/IL-1 receptor (TIR) domain. A principal function of the TIR domain is mediating homotypic protein-protein interactions in the signal transduction pathway. To suggest interaction sites of TIR domains in the IL-1 receptor complex, we modeled the putative three-dimensional structure of the TIR domain within the co-receptor chain, IL-1 receptor accessory protein. The model was based on homology with the crystal structures of human TLR1 and TLR2. The final structure of the IL-1 receptor accessory protein TIR domain suggests the conserved regions box 1 and 2, including Pro-446, as well as box 3 within the C-terminal alpha-helix as possible protein-protein interaction sites due to their exposure and their electrostatic potential. Pro-446, corresponding to the Pro/His mutation in dominant negative TLR4, is located in the third loop at the outmost edge of the TIR domain and does not play any structural role. Inhibition of IL-1 responsiveness seen after substitution of Pro-446 by charged amino acids is due to the loss of an interaction site for other TIR domains. Amino acids 527-534 as part of the loop close to the conserved box 3 are critical for recruitment of myeloid differentiation factor 88 and to a lesser extent for IL-1 responsiveness. Modeling suggests that native folding of the TIR domain may be approached by the responsive deletion mutants delta528-534 and delta527-533, whereas the C-terminal beta-strand and/or alpha-helix is displaced in the nonresponsive mutant delta527-534.

  15. Autoradiographic localization of putative nicotinic receptors in the rat brain using sup 125 I-neuronal bungarotoxin

    SciTech Connect

    Schulz, D.W.; Loring, R.H.; Aizenman, E.; Zigmond, R.E. )

    1991-01-01

    Neuronal bungarotoxin (NBT), a snake venom neurotoxin, selectively blocks nicotinic receptors in many peripheral and central neuronal preparations. alpha-Bungarotoxin (alpha BT), on the other hand, a second toxin isolated from the venom of the same snake, is an ineffective nicotinic antagonist in most vertebrate neuronal preparations studied thus far. To examine central nicotinic receptors recognized by NBT, we have characterized the binding of 125I-labeled NBT (125I-NBT) to rat brain membranes and have mapped the distribution of 125I-NBT binding in brain sections using quantitative light microscopic autoradiography. The binding of 125I-NBT was found to be saturable, of high affinity, and heterogeneously distributed in the brain. Pharmacological studies suggested that more than one population of sites is labeled by 125I-NBT. For example, one component of 125I-NBT binding was also recognized by alpha BT, while a second component, not recognized by alpha BT, was recognized by the nicotinic agonist nicotine. The highest densities of these alpha BT-insensitive, nicotine-sensitive sites were found in the fasciculus retroflexus, the lateral geniculate nucleus, the medial terminal nucleus of the accessory optic tract, and the olivary pretectal nucleus. alpha BT-sensitive NBT binding sites were found in highest density in the lateral geniculate nucleus, the subthalamic nucleus, the dorsal tegmental nucleus, and the medial mammillary nucleus (lateral part). The number of brain regions with a high density of 125I-NBT binding sites, blocked either by alpha BT or by nicotine, is low when compared with results obtained using other approaches to studying the central distribution of nicotinic receptors, such as labeling with 3H-nicotine or labeling with cDNA probes to mRNAs coding for putative receptor subunits.

  16. Disruption of a putative intersubunit electrostatic bond enhances agonist efficacy at the human α1 glycine receptor.

    PubMed

    Welsh, Brian T; Todorovic, Jelena; Kirson, Dean; Allen, Hunter M; Bayly, Michelle D; Mihic, S John

    2017-02-15

    Partial agonists have lower efficacies than compounds considered 'full agonists', eliciting submaximal responses even at saturating concentrations. Taurine is a partial agonist at the glycine receptor (GlyR), a member of the cys-loop ligand-gated ion channel superfamily. The molecular mechanisms responsible for agonism are not fully understood but evidence suggests that efficacy at these receptors is determined by conformational changes that occur early in the process of receptor activation. We previously identified a residue located near the human α1 glycine binding site (aspartate-97; D97) that, when mutated to arginine (D97R), results in GlyR channels opening spontaneously with a high open probability, mimicking the effects of saturating glycine concentrations on wildtype GlyR. This D97 residue is hypothesized to form an electrostatic interaction with arginine-119 on an adjacent subunit, stabilizing the channel in a shut state. Here we demonstrate that the disruption of this putative bond increases the efficacy of partial agonists including taurine, as well as two other β-amino acid partial agonists, β-aminobutyric acid (β-ABA) and β-aminoisobutyric acid (β-AIBA). Even the subtle charge-conserving mutation of D97 to glutamate (D97E) markedly affects partial agonist efficacy. Mutation to the neutral alanine residue in the D97A mutant mimics the effects seen with D97R, indicating that charge repulsion does not significantly affect these findings. Our findings suggest that the determination of efficacy following ligand binding to the glycine receptor may involve the disruption of an intersubunit electrostatic interaction occurring near the agonist binding site.

  17. Glucocorticoid acts on a putative G protein-coupled receptor to rapidly regulate the activity of NMDA receptors in hippocampal neurons.

    PubMed

    Zhang, Yanmin; Sheng, Hui; Qi, Jinshun; Ma, Bei; Sun, Jihu; Li, Shaofeng; Ni, Xin

    2012-04-01

    Glucocorticoids (GCs) have been demonstrated to act through both genomic and nongenomic mechanisms. The present study demonstrated that corticosterone rapidly suppressed the activity of N-methyl-D-aspartate (NMDA) receptors in cultured hippocampal neurons. The effect was maintained with corticosterone conjugated to bovine serum albumin and blocked by inhibition of G protein activity with intracellular GDP-β-S application. Corticosterone increased GTP-bound G(s) protein and cyclic AMP (cAMP) production, activated phospholipase Cβ(3) (PLC-β(3)), and induced inositol-1,4,5-triphosphate (IP(3)) production. Blocking PLC and the downstream cascades with PLC inhibitor, IP(3) receptor antagonist, Ca(2+) chelator, and protein kinase C (PKC) inhibitors prevented the actions of corticosterone. Blocking adenylate cyclase (AC) and protein kinase A (PKA) caused a decrease in NMDA-evoked currents. Application of corticosterone partly reversed the inhibition of NMDA currents caused by blockage of AC and PKA. Intracerebroventricular administration of corticosterone significantly suppressed long-term potentiation (LTP) in the CA1 region of the hippocampus within 30 min in vivo, implicating the possibly physiological significance of rapid effects of GC on NMDA receptors. Taken together, our results indicate that GCs act on a putative G protein-coupled receptor to activate multiple signaling pathways in hippocampal neurons, and the rapid suppression of NMDA activity by GCs is dependent on PLC and downstream signaling.

  18. Fibroblast Growth Factor Receptor 1 as a Putative Therapy Target in Colorectal Cancer

    PubMed Central

    Göke, Friederike; Göke, Antonia; von Mässenhausen, Anne; Franzen, Alina; Sharma, Rakesh; Kirsten, Robert; Böhm, Diana; Kristiansen, Glen; Stenzinger, Albrecht; Wynes, Murry; Hirsch, Fred R.; Weichert, Wilko; Heasley, Lynn; Buettner, Reinhard; Perner, Sven

    2014-01-01

    Background/Aims Resembling a potential therapeutic drug target, fibroblast growth factor receptor 1 (FGFR1) amplification and expression was assessed in 515 human colorectal cancer (CRC) tissue samples, lymph node metastases and CRC cell lines. Methods FGFR1 amplification status was determined using fluorescence in situ hybridization. Additionally, we assessed protein levels employing Western blots and immunohistochemistry. The FGFR1 mRNA localization was analyzed using mRNA in situ hybridization. Functional studies employed the FGFR inhibitor NVP-BGJ398. Results Of 454 primary CRCs, 24 displayed FGFR1 amplification. 92/94 lymph node metastases presented the same amplification status as the primary tumor. Of 99 investigated tumors, 18 revealed membranous activated pFGFR1 protein. FGFR1 mRNA levels were independent of the amplification status or pFGFR1 protein occurrence. In vitro, a strong antiproliferative effect of NVP-BGJ398 could be detected in cell lines exhibiting high FGFR1 protein. Conclusion FGFR1 is a potential therapeutic target in a subset of CRC. FGFR1 protein is likely to represent a central factor limiting the efficacy of FGFR inhibitors. The lack of correlation between its evaluation at genetic/mRNA level and its protein occurrence indicates that the assessment of the receptor at an immunohistochemical level most likely represents a suitable way to assess FGFR1 as a predictive biomarker for patient selection in future clinical trials. PMID:24135816

  19. The putative (pro)renin receptor blocker HRP fails to prevent (pro)renin signaling.

    PubMed

    Feldt, Sandra; Maschke, Ulrike; Dechend, Ralf; Luft, Friedrich C; Muller, Dominik N

    2008-04-01

    The prorenin/renin receptor is a recently discovered component of the renin-angiotensin system. The effects of aliskiren, a direct inhibitor of human renin, were compared with the handle region decoy peptide (HRP), which blocks the prorenin/renin receptor, in double-transgenic rats overexpressing the human renin and angiotensinogen genes. After 7 wk, all aliskiren-treated rats were alive, whereas mortality was 40% in vehicle-treated and 58% in HRP-treated rats. Aliskiren but not the HRP reduced BP and normalized albuminuria, cystatin C, and neutrophil gelatinase-associated lipocalin, a marker of renal tubular damage, to the levels of nontransgenic controls. In vitro, human renin and prorenin induced extracellular signal-regulated kinase 1/2 phosphorylation, independent of angiotensin II (AngII), in vascular smooth muscle cells. Preincubation with the HRP or aliskiren did not prevent renin- and prorenin-induced extracellular signal-regulated kinase 1/2 phosphorylation, whereas the MAP kinase kinase (MEK1/2) inhibitor PD98059 prevented both. In conclusion, renin inhibition but not treatment with the HRP protects against AngII-induced renal damage in double-transgenic rats. In addition, the in vitro data do not support the use of the HRP to block AngII-independent prorenin- or renin-mediated effects.

  20. Binding site and subclass specificity of the herpes simplex virus type 1-induced Fc receptor.

    PubMed Central

    Wiger, D; Michaelsen, T E

    1985-01-01

    Immunoglobulin Fc-binding activity was detected by indirect immunofluorescence employing fluorochrome conjugated F(ab')2 antibody fragments on acetone-fixed cell cultures infected with herpes simplex virus type 1 (HSV-1). Using this method the Fc receptor-like activity seemed to be restricted to the IgG class of human immunoglobulins. While IgG1, IgG2, and IgG4 myeloma proteins bind to this putative Fc gamma receptor at a concentration of 0.002 mg/ml, IgG3 myeloma proteins were without activity at 0.1 mg/ml. The binding activity was associated with the Fc fragments of IgG, while the pFc' fragments of IgG appeared to be unable to bind in this assay system. The reactivity and specificity of the HSV-1 Fc receptor was independent of both the type of tissue culture cells used and the strain of HSV-1 inducing the Fc receptor-like activity. The HSV-1-induced Fc receptor has a similar specificity for human immunoglobulin class and subclasses as staphylococcal Protein A. However, these two Fc receptors exhibit at least one striking difference. The IgG3 G3m(st) protein which binds to Protein A does not bind to HSV-1-induced Fc receptor. A possible reaction site for the HSV-1 Fc receptor on IgG could be at or near Asp 276. Images Figure 1 PMID:2982735

  1. Histopathological effects and determination of the putative receptor of Bacillus thuringiensis Cry1Da toxin in Spodoptera littoralis midgut.

    PubMed

    BenFarhat-Touzri, Dalel; Saadaoui, Marwa; Abdelkefi-Mesrati, Lobna; Saadaoui, Imen; Azzouz, Hichem; Tounsi, Slim

    2013-02-01

    Bacillus thuringiensis subsp. aizawai strain HD133, known by its effectiveness against Spodoptera species, produces many insecticidal proteins including Cry1Ab, Cry1Ca and Cry1Da. In the present study, the insecticidal activity of Cry1Da against Spodoptera littoralis was investigated. It showed toxicity with an LC(50) of 224.4 ng/cm(2) with 95% confidence limits of (178.61-270.19) and an LC(90) of 467.77 ng/cm(2) with 95% confidence limits of (392.89-542.65). The midgut histopathology of Cry1Da fed larvae showed vesicle formation in the apical region, vacuolization and destruction of epithelial cells. Biotinylated-activated Cry1Da toxin bound protein of about 65 kDa on blots of S. littoralis brush border membrane preparations. This putative receptor differs in molecular size from those recognized by Cry1C and Vip3A which are active against this polyphagous insect. This difference in midgut receptors strongly supports the use of Cry1Da as insecticidal agent, particularly in case of Cry and/or Vip-resistance management.

  2. Interaction of Escherichia coli heat-stable enterotoxin (STa) with its putative receptor on the intestinal tract of newborn kids.

    PubMed

    Al-Majali, Ahmad M; Ababneh, Mohammed M; Shorman, M; Saeed, A Mahdi

    2007-02-01

    The elaboration of heat stable enterotoxin (STa) is an important step in the pathogenesis of enterotoxigenic Escherichia coli (ETEC), which causes severe diarrhea in newborn animals. In this study, the distribution of the STa-specific receptors on enterocytes and brush border membrane vesicles (BBMVs) prepared from the anterior jejunum, posterior jejunum, ileum and colon of newborn kids was investigated. The density of STa-receptors on enterocytes and BBMVs was higher in the posterior jejunum than that in other segments of the kids' intestines. Additionally, the affinity of the posterior jejunum STa-receptors was higher than the affinity of receptors present on the epithelium of other intestinal segments. Our findings suggest that the posterior jejunum is a major target for STa within the intestinal tract of newborn kids.

  3. Characterization of Putative Iron Responsive Genes as Species-Specific Indicators of Iron Stress in Thalassiosiroid Diatoms

    PubMed Central

    Whitney, LeAnn P.; Lins, Jeremy J.; Hughes, Margaret P.; Wells, Mark L.; Chappell, P. Dreux; Jenkins, Bethany D.

    2011-01-01

    Iron (Fe) availability restricts diatom growth and primary production in large areas of the oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom populations, since species can differ in their physiological and molecular responses to Fe limitation. We assayed expression of selected genes in diatoms from the Thalassiosira genus to assess their potential utility as species-specific molecular markers to indicate Fe status in natural diatom assemblages. In this study, we compared the expression of the photosynthetic genes encoding ferredoxin (a Fe-requiring protein) and flavodoxin (a Fe-free protein) in culture experiments with Fe replete and Fe stressed Thalassiosira pseudonana (CCMP 1335) isolated from coastal waters and Thalassiosira weissflogii (CCMP 1010) isolated from the open ocean. In T. pseudonana, expression of flavodoxin and ferredoxin genes were not sensitive to Fe status but were found to display diel periodicities. In T. weissflogii, expression of flavodoxin was highly responsive to iron levels and was only detectable when cultures were Fe limited. Flavodoxin genes have been duplicated in most diatoms with available genome data and we show that T. pseudonana has lost its copy related to the Fe-responsive copy in T. weissflogii. We also examined the expression of genes for a putative high affinity, copper (Cu)-dependent Fe uptake system in T. pseudonana. Our results indicate that genes encoding putative Cu transporters, a multi-Cu oxidase, and a Fe reductase are not linked to Fe status. The expression of a second putative Fe reductase increased in Fe limited cultures, but this gene was also highly expressed in Fe replete cultures, indicating it may not be a useful marker in the field. Our findings highlight that Fe metabolism may differ among diatoms even within a genus and show a need to validate responses in different species as part of the development pipeline for genetic markers of Fe status in field populations. PMID

  4. Molecular characterisation of the STRUBBELIG-RECEPTOR FAMILY of genes encoding putative leucine-rich repeat receptor-like kinases in Arabidopsis thaliana

    PubMed Central

    Eyüboglu, Banu; Pfister, Karen; Haberer, Georg; Chevalier, David; Fuchs, Angelika; Mayer, Klaus FX; Schneitz, Kay

    2007-01-01

    Background Receptor-like kinases are a prominent class of surface receptors that regulate many aspects of the plant life cycle. Despite recent advances the function of most receptor-like kinases remains elusive. Therefore, it is paramount to investigate these receptors. The task is complicated by the fact that receptor-like kinases belong to a large monophyletic family with many sub-clades. In general, functional analysis of gene family members by reverse genetics is often obscured by several issues, such as redundancy, subtle or difficult to detect phenotypes in mutants, or by decision problems regarding suitable biological and biochemical assays. Therefore, in many cases additional strategies have to be employed to allow inference of hypotheses regarding gene function. Results We approached the function of genes encoding the nine-member STRUBBELIG-RECEPTOR FAMILY (SRF) class of putative leucine-rich repeat receptor-like kinases. Sequence comparisons show overall conservation but also divergence in predicted functional domains among SRF proteins. Interestingly, SRF1 undergoes differential splicing. As a result, SRF1 is predicted to exist in a standard receptor configuration and in a membrane-anchored receptor-like version that lacks most of the intracellular domain. Furthermore, SRF1 is characterised by a high degree of polymorphism between the Ler and Col accessions. Two independent T-DNA-based srf4 mutants showed smaller leaves while 35S::SRF4 plants displayed enlarged leaves. This is in addition to the strubbelig phenotype which has been described before. Additional single and several key double mutant combinations did not reveal obvious mutant phenotypes. Ectopic expression of several SRF genes, using the 35S promoter, resulted in male sterility. To gain possible insights into SRF gene function we employed a computational analysis of publicly available microarray data. We performed global expression profiling, coexpression analysis, and an analysis of the

  5. Identification of putative sequence specific PCR primers for detection of the toxigenic fungal species Stachybotrys chartarum.

    PubMed

    Haugland, R A; Heckman, J L

    1998-12-01

    The nucleotide sequence of a c 936 bp segment of the nuclear rRNA gene operon was determined for the toxigenic fungal species Stachybotrys chartarum and for other species of Stachybotrys and the related genus Memnoniella. This information was used to infer the phylogenetic relationships of these organisms and to search for sequence specific polymerase chain reaction (PCR) primers for S. chartarum in the internal transcribed spacer (ITS) regions. Searches for candidate primers were performed both by computer using the commercially available Oligo(R) v5.0 primer analysis software package and by manual inspection of the aligned sequences. Primers identified in both types of searches were evaluated for their specificities using a priming efficiency analysis algorithm available in the Oligo(R) 5.0 software. The automated computer searches were unsuccessful in finding S. chartarum-specific primers but did identify a group-specific reverse primer (designated as StacR4) for a phylogenetically related cluster of species that included S. chartarum. Manual searches led to the identification of a reverse primer (designated as StacR3) that was predicted to be specific for only S. chartarum and one other species of Stachybotrys. Experimental PCR analyses using these primers in conjunction with a universal forward primer indicated that the computer-generated amplification efficiency predictions were correct in most instances. A notable exception was the finding that StacR3 was specific only for S. chartarum. The relative merits of different PCR strategies for the detection of S. chartarum employing either one or both of the primers identified in this study are discussed.

  6. IDENTIFICATION OF PUTATIVE ESTROGEN RECEPTOR-MEDIATED ENDOCRINE DISRUPTING CHEMICALS USING QSAR- AND STRUCTURE-BASED VIRTUAL SCREENING APPROACHES

    PubMed Central

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-01-01

    Identification of Endocrine Disrupting Chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause Estrogen Receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous Quantitative Structure-Activity Relationships (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R2=0.71, STL R2=0.73). For ERβ binding affinity, MTL models were significantly more predictive (R2=0.53, p<0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. PMID:23707773

  7. Putative nicotinic acetylcholine receptor subunits express differentially through the life cycle of codling moth, Cydia pomonella (Lepidoptera: Tortricidae).

    PubMed

    Martin, Jessica A; Garczynski, Stephen F

    2016-04-01

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae). Orchardists in Washington State are concerned about the possibility of codling moth field populations developing resistance to these two insecticides. In an effort to help mitigate this issue, we initiated a project to identify and characterize codling moth nAChR subunits expressed in heads. This study had two main goals; (i) identify transcripts from a codling moth head transcriptome that encode for nAChR subunits, and (ii) determine nAChR subunit expression profiles in various life stages of codling moth. From a codling moth head transcriptome, 24 transcripts encoding for 12 putative nAChR subunit classes were identified and verified by PCR amplification, cloning, and sequence determination. Characterization of the deduced protein sequences encoded by putative nAChR transcripts revealed that they share the distinguishing features of the cys-loop ligand-gated ion channel superfamily with 9 α-type subunits and 3 β-type subunits identified. Phylogenetic analysis comparing these protein sequences to those of other insect nAChR subunits supports the identification of these proteins as nAChR subunits. Stage expression studies determined that there is clear differential expression of many of these subunits throughout the codling moth life cycle. The information from this study will be used in the future to monitor for potential target-site resistance mechanisms to neonicotinoids and spinosads in tolerant codling moth populations.

  8. The effect of the putative endogenous imidazoline receptor ligand, clonidine-displacing substance, on insulin secretion from rat and human islets of Langerhans

    PubMed Central

    Chan, Susan L F; Atlas, Daphne; James, Roger F L; Morgan, Noel G

    1997-01-01

    The effects of a rat brain extract containing clonidine-displacing substance (CDS), a putative endogenous imidazoline receptor ligand, on insulin release from rat and human isolated islets of Langerhans were investigated.CDS was able to potentiate the insulin secretory response of rat islets incubated at 6 mM glucose, in a dose-dependent manner. The magnitude of this effect was similar to that in response to the well-characterized imidazoline secretagogue, efaroxan.CDS, like other imidazoline secretagogues, was also able to reverse the inhibitory action of diazoxide on glucose-induced insulin release, in both rat and human islets.These effects of CDS on secretion were reversed by the imidazoline secretagogue antagonists, RX801080 and the newly defined KU14R, providing the first evidence that imidazoline-mediated actions of CDS can be blocked by specific imidazoline antagonists.The effects of CDS on insulin secretion were unaffected when the method of preparation involved centri-filtration through a 3,000 Da cut-off membrane or when the extract was treated with protease. These results confirm that the active principle is of low molecular weight and is not a peptide.Overall, the data suggest that CDS behaves as a potent endogenous insulin secretagogue acting at the islet imidazoline receptor. PMID:9138700

  9. Specificity of Putative Psychosocial Risk Factors for Psychiatric Disorders in Children and Adolescents

    ERIC Educational Resources Information Center

    Shanahan, Lilly; Copeland, William; Costello, E. Jane; Angold, Adrian

    2008-01-01

    Background: Most psychosocial risk factors appear to have general rather than specific patterns of association with common childhood and adolescence disorders. However, previous research has typically failed to 1) control for comorbidity among disorders, 2) include a wide range of risk factors, and 3) examine sex by developmental stage effects on…

  10. A putative octopamine/tyramine receptor mediating appetite in a hungry fly

    NASA Astrophysics Data System (ADS)

    Ishida, Yuko; Ozaki, Mamiko

    2011-07-01

    In the blowfly Phormia regina, experience of simultaneous feeding with d-limonene exposure inhibits proboscis extension reflex (PER) due to decreased tyramine (TA) titer in the brain. To elucidate the molecular mechanism of TA signaling pathway related to the associated feeding behavior, we cloned cDNA encoding the octopamine/TA receptor (PregOAR/TAR). The deduced protein is composed of 607 amino acid residues and has 7 predicted transmembrane domains. Based on homology and phylogenetic analyses, this protein belongs to the OAR/TAR family. The PregOAR/TAR was mainly expressed in head, with low levels of expression in other tissues at adult stages. Gene expression profile is in agreement with a plethora of functions ascribed to TA in various insect tissues. The immunolabeled cell bodies and processes were localized in the medial protocerebrum, outer layer of lobula, antennal lobe, and subesophageal ganglion. These results suggest that decrease of TA level in the brain likely affects neurons expressing PregOAR/TAR, causing mediation of the sensitivity in the sensillum and/or output of motor neurons for PER.

  11. Sex-specific differences in olfactory sensitivity for putative human pheromones in nonhuman primates.

    PubMed

    Laska, Matthias; Wieser, Alexandra; Salazar, Laura Teresa Hernandez

    2006-05-01

    In humans, the volatile C19-steroids androsta-4,16-dien-3-one (AND) and estra-1,3,5(10),16-tetraen-3-ol (EST) have been shown to modulate autonomic nervous system responses, and to cause hypothalamic activation in a gender-specific manner. Using two conditioning paradigms, the authors here show that pigtail macaques and squirrel monkeys of both sexes were able to detect AND and EST at concentrations in the micromolar and mM range, respectively. Male and female spider monkeys, in contrast, differed markedly in their sensitivity to these two odorous steroids, with males not showing any behavioral responses to the highest concentrations of AND tested and females not responding to the highest concentrations of EST. These data provide the first examples of sex-specific bimodal distributions of olfactory sensitivity in a nonhuman primate species. Copyright 2006 APA, all rights reserved.

  12. Amazonian Head Lice-Specific Genotypes Are Putatively Pre-Columbian

    PubMed Central

    Boutellis, Amina; Veracx, Aurélie; Abrahão, Jônatas; Raoult, Didier

    2013-01-01

    Head and body lice are strict obligate human ectoparasites with three mitochondrial phylotypes (A, B, and C). Using molecular methods for genotyping lice (Cytochrome b and multi-spacer typing), and comparing our results with all the sequences of human lice that were genotyped previously, we assessed the presence of a specific American genotype that most likely predates the Columbian era in head lice collected from Amazonia. PMID:23610158

  13. Cloning of a cDNA encoding a putative human very low density lipoprotein/Apolipoprotein E receptor and assignment of the gene to chromosome 9pter-p23[sup 6

    SciTech Connect

    Gafvels, M.E.; Strauss, J.F. III ); Caird, M.; Patterson, D. ); Britt, D.; Jackson, C.L. )

    1993-11-01

    The authors report the cloning of a 3656-bp cDNA encoding a putative human very low density lipoprotein (VLDL)/apolipoprotein E (ApoE) receptor. The gene encoding this protein was mapped to chromosome 9pter-p23. Northern analysis of human RNA identified cognate mRNAs of 6.0 and 3.8 kb with most abundant expression in heart and skeletal muscle, followed by kidney, placenta, pancreas, and brain. The pattern of expression generally paralleled that of lipoprotein lipase mRNA but differed from that of the low density lipoprotein (LDL) receptor and the low density lipoprotein receptor-related protein/[alpha][sub 2]-macroglobulin receptor (LRP), which are members of the same gene family. VLDL/ApoE receptor message was not detected in liver, whereas mRNAs for both LDL receptor and LRP were found in hepatic tissue. In mouse 3T3-L1 cells, VLDL/ApoE receptor mRNA was induced during the transformation of the cells into adipocytes. Expression was also detected in human choriocarcinoma cells, suggesting that at least part of the expression observed in placenta may be in trophoblasts, cells which would be exposed to maternal blood. Expression in brain may be related to high levels of ApoE expression in that organ, an observation of potential relevance to the recently hypothesized role for ApoE in late onset Alzheimer disease. The results suggest that the putative VLDL/ApoE receptor could play a role in the uptake of triglyceride-rich lipoprotein particles by specific organs including striated and cardiac muscle and adipose tissue and in the transport of maternal lipids across the placenta. The findings presented here, together with recent observations from other laboratories, bring up the possibility that a single gene, the VLDL/ApoE receptor, may play a role in the pathogenesis of certain forms of atherosclerosis, Alzheimer disease, and obesity.

  14. Investigations of the contribution of a putative glycine hinge to ryanodine receptor channel gating.

    PubMed

    Euden, Joanne; Mason, Sammy A; Viero, Cedric; Thomas, N Lowri; Williams, Alan J

    2013-06-07

    Ryanodine receptor channels (RyR) are key components of striated muscle excitation-contraction coupling, and alterations in their function underlie both inherited and acquired disease. A full understanding of the disease process will require a detailed knowledge of the mechanisms and structures involved in RyR function. Unfortunately, high-resolution structural data, such as exist for K(+)-selective channels, are not available for RyR. In the absence of these data, we have used modeling to identify similarities in the structural elements of K(+) channel pore-forming regions and postulated equivalent regions of RyR. This has identified a sequence of residues in the cytosolic cavity-lining transmembrane helix of RyR (G(4864)LIIDA(4869) in RyR2) analogous to the glycine hinge motif present in many K(+) channels. Gating in these K(+) channels can be disrupted by substitution of residues for the hinge glycine. We investigated the involvement of glycine 4864 in RyR2 gating by monitoring properties of recombinant human RyR2 channels in which this glycine is replaced by residues that alter gating in K(+) channels. Our data demonstrate that introducing alanine at position 4864 produces no significant change in RyR2 function. In contrast, function is altered when glycine 4864 is replaced by either valine or proline, the former preventing channel opening and the latter modifying both ion translocation and gating. Our studies reveal novel information on the structural basis of RyR gating, identifying both similarities with, and differences from, K(+) channels. Glycine 4864 is not absolutely required for channel gating, but some flexibility at this point in the cavity-lining transmembrane helix is necessary for normal RyR function.

  15. Tissue-specific Ctr1 Gene Expression and in silico Analysis of Its Putative Protein Product

    NASA Astrophysics Data System (ADS)

    Samsonov, Sergey A.; Nordlund, Eija; Platonova, Natalia A.; Skvortsov, Alexey N.; Tsymbalenko, Nadezhda V.; Puchkova, Ludmila V.

    2006-08-01

    Investigations of the links between Ctr1 gene activity and copper status in rat organs (liver, cerebellum, choroid plexus and mammary gland) with distinct types of copper metabolism as well as theoretical analysis of CTR1 domains structure were carried out in the research. The results suggest that (i) activity of mammalian Ctr1 gene is tissue-specific regulated at least by two different mechanisms: the gene activity is repressed by high intracellular Cu content and is activated/inactivated dependently on the cuproenzymes synthesis level required by physiological conditions. (ii) Multimerized conservative transmembrane domains 2 and 3 form the channel with copper binding amino acid side chains groups oriented inside this channel. These groups can transfer copper to the cytosolic domain, where Cu binds to CTR1 cytosolic HCH-motifs and can be further transferred to CXXC-motif of any known Cu(I)-chaperon.

  16. Molecular characterization of a putative K-Cl cotransporter in rat brain. A neuronal-specific isoform.

    PubMed

    Payne, J A; Stevenson, T J; Donaldson, L F

    1996-07-05

    Using a combination of data base searching, polymerase chain reaction, and library screening, we have identified a putative K-Cl cotransporter isoform (KCC2) in rat brain that is specifically localized in neurons. A cDNA of 5566 bases was obtained from overlapping clones and encoded a protein of 1116 amino acids with a deduced molecular mass of 123.6 kDa. Over its full length, the amino acid sequence of KCC2 is 67% identical to the widely distributed K-Cl cotransporter isoform (KCC1) identified in rat brain and rabbit kidney (Gillen, C., Brill, S., Payne, J.A., and Forbush, B., III(1996) J. Biol. Chem. 271, 16237-16244) but only approximately25% identical to other members of the cation-chloride cotransporter gene family, including "loop" diuretic-sensitive Na-K-Cl cotransport and thiazide-sensitive Na-Cl cotransport. Based on analysis of the primary structure as well as homology with other cation-chloride cotransporters, we predict 12 transmembrane segments bounded by N- and C-terminal cytoplasmic regions. Four sites for N-linked glycosylation are predicted on an extracellular intermembrane loop between putative transmembrane segments 5 and 6. Northern blot analysis using a KCC2-specific cDNA probe revealed a very highly expressed approximately5.6-kilobase transcript only in brain. Reverse transcriptase-polymerase chain reaction revealed that KCC1 was present in rat primary astrocytes and rat C6 glioma cells but that KCC2 was completely absent from these cells, suggesting KCC2 was not of glial cell origin. In situ hybridization studies demonstrated that the KCC2 transcript was expressed at high levels in neurons throughout the central nervous system, including CA1-CA4 pyramidal neurons of the hippocampus, granular cells and Purkinje neurons of the cerebellum, and many groups of neurons throughout the brainstem.

  17. Molecular characterization of an AtPYL1-like protein, BrPYL1, as a putative ABA receptor in Brassica rapa.

    PubMed

    Li, Yanlin; Wang, Dandan; Sun, Congcong; Hu, Xiaochen; Mu, Xiaoqian; Hu, Jingjiang; Yang, Yongqing; Zhang, Yanfeng; Xie, Chang Gen; Zhou, Xiaona

    2017-06-03

    Abscisic acid (ABA)-induced physiological changes are conserved in many land plants and underlie their responses to environmental stress and pathogens. The PYRABACTIN RESISTANCE1/PYR1-LIKE/REGULATORY COMPONENTS OF ABA RECEPTORS (PYLs)-type receptors perceive the ABA signal and initiate signal transduction. Here, we show that the genome of Brassica rapa encodes 24 putative AtPYL-like proteins. The AtPYL-like proteins in Brassica rapa (BrPYLs) can also be classified into 3 subclasses. We found that nearly all BrPYLs displayed high expression in at least one tissue. Overexpression of BrPYL1 conferred ABA hypersensitivity to Arabidopsis. Further, ABA activated the expression of an ABA-responsive reporter in Arabidopsis protoplasts expressing BrPYL1. Overall, these results suggest that BrPYL1 is a putative functional ABA receptor in Brassica rapa. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cell Type-Specific Expression Analysis to Identify Putative Cellular Mechanisms for Neurogenetic Disorders

    PubMed Central

    Xu, Xiaoxiao; Wells, Alan B.; O'Brien, David R.; Nehorai, Arye

    2014-01-01

    Recent advances have substantially increased the number of genes that are statistically associated with complex genetic disorders of the CNS such as autism and schizophrenia. It is now clear that there will likely be hundreds of distinct loci contributing to these disorders, underscoring a remarkable genetic heterogeneity. It is unclear whether this genetic heterogeneity indicates an equal heterogeneity of cellular mechanisms for these diseases. The commonality of symptoms across patients suggests there could be a functional convergence downstream of these loci upon a limited number of cell types or circuits that mediate the affected behaviors. One possible mechanism for this convergence would be the selective expression of at least a subset of these genes in the cell types that comprise these circuits. Using profiling data from mice and humans, we have developed and validated an approach, cell type-specific expression analysis, for identifying candidate cell populations likely to be disrupted across sets of patients with distinct genetic lesions. Using human genetics data and postmortem gene expression data, our approach can correctly identify the cell types for disorders of known cellular etiology, including narcolepsy and retinopathies. Applying this approach to autism, a disease where the cellular mechanism is unclear, indicates there may be multiple cellular routes to this disorder. Our approach may be useful for identifying common cellular mechanisms arising from distinct genetic lesions. PMID:24453331

  19. Species Specificity of the Putative Male Antennal Aphrodisiac Pheromone in Leptopilina heterotoma, Leptopilina boulardi, and Leptopilina victoriae.

    PubMed

    Weiss, Ingmar; Ruther, Joachim; Stökl, Johannes

    2015-01-01

    Male antennal aphrodisiac pheromones have been suggested to elicit female receptiveness in several parasitic Hymenoptera, including Leptopilina boulardi. None of the proposed pheromones, however, has been fully identified to date. It is also unknown whether these antennal pheromones are species specific, because the species specificity of mate recognition and courtship elicitation in Leptopilina prevented such experiments. In this study we present an experimental design that allows the investigation of the species specificity of the putative male aphrodisiac pheromone of L. heterotoma, L. boulardi, and L. victoriae. This is achieved by chemical manipulation of the odour profile of heterospecific females, so that males perceive them as conspecifics and show antennal courtship behaviour. Males courted the manipulated heterospecific females and antennal contact between the male and the female was observed. However, males elicited receptiveness only in conspecific females, never in the manipulated heterospecific females. Chemical analysis showed the presence of species specific unsaturated hydrocarbons on the antennae of males. Only trace amounts of these hydrocarbons are found on the antennae of females. Our results are an important step towards the understanding and identification of antennal pheromones of parasitic wasps.

  20. A putative G protein-coupled receptor involved in innate immune defense of Procambarus clarkii against bacterial infection.

    PubMed

    Dong, Chaohua; Zhang, Peng

    2012-02-01

    The immune functions of G protein-coupled receptor (GPCR) were widely investigated in mammals. However, limited researches on immune function of GPCRs were reported in invertebrates. In the present study, the immune functions of HP1R gene, a putative GPCR identified from red swamp crayfish Procambarus clarkii were reported. Expression of HP1R gene was significant up-regulated in response to heat-killed Aeromonas hydrophila challenge. HP1R gene silencing mediated by RNA interference significantly enhanced the susceptibility of red swamp crayfish to A. hydrophila and Vibrio alginolyticus, indicating that HP1R was required for red swamp crayfish to defend against bacterial challenge. In HP1R-silenced crayfish, increased bacterial burden and decreased THC in response to bacterial challenge were observed when compared with control crayfish. No significant difference of proPO gene expression was observed between HP1R-silenced and control crayfish after challenge with heat-killed A. hydrophila. However, PO activity in response to bacterial challenge was significantly reduced in HP1R-silenced crayfish. The results collectively indicated that HP1R was an important immune molecule which was required for red swamp crayfish to defend against bacterial infection.

  1. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa.

    PubMed

    Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-09-01

    Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.

  2. Polymorphisms of insulin receptor substrate 2 are putative biomarkers for pediatric medulloblastoma: considering the genetic susceptibility and pathological diagnoses

    PubMed Central

    Baocheng, Wang; Zhao, Yang; Meng, Wei; Han, Yipeng; Wang, Jiajia; Liu, Feili; Qin, Shengying; Ma, Jie

    2017-01-01

    ABSTRACT Molecular profiling subgrouped medulloblastoma (MB) into four subtypes featured by distinct footprints. However, germline studies on genetic susceptibility in Chinese population have not been reported. To investigate the correlation of polymorphisms involved in the AKT signaling pathway with clinicopathological parameters in pediatric MB, and their contribution to the clinical outcome, we performed a case-controlled cohort consisting of 48 patients with pediatric MB and 190 healthy controls from Han population. Significant association in rs7987237 of insulin receptor substrate 2 (IRS2) was identified as risk allele/genotype between MB patients and control group (P<0.05). The allele “C” of rs7987237 in IRS2 gene was associated with an increased risk of MB (P=0.025; OR=2.95, 95%CI 1.43–6.11) after Bonferroni correction. Among 48 patients, various genotypes of rs7987237 show significant association with pathological diagnosis and metastases risk (P<0.05). Furthermore, the survival curve of patients with genotype “CC” of rs7987237 was confirmed with better outcome (P<0.001). Combined with previous results, our study suggests that polymorphisms of IRS2 putatively participated in the development of pediatric MB development. Therefore, it may benefit the early diagnosis and indicate the prognosis of patients with MB in Han population. PMID:28303061

  3. Computational discovery of putative quorum sensing inhibitors against LasR and RhlR receptor proteins of Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Annapoorani, Angusamy; Umamageswaran, Venugopal; Parameswari, Radhakrishnan; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2012-09-01

    Drugs have been discovered in the past mainly either by identification of active components from traditional remedies or by unpredicted discovery. A key motivation for the study of structure based virtual screening is the exploitation of such information to design targeted drugs. In this study, structure based virtual screening was used in search for putative quorum sensing inhibitors (QSI) of Pseudomonas aeruginosa. The virtual screening programme Glide version 5.5 was applied to screen 1,920 natural compounds/drugs against LasR and RhlR receptor proteins of P. aeruginosa. Based on the results of in silico docking analysis, five top ranking compounds namely rosmarinic acid, naringin, chlorogenic acid, morin and mangiferin were subjected to in vitro bioassays against laboratory strain PAO1 and two more antibiotic resistant clinical isolates, P. aeruginosa AS1 (GU447237) and P. aeruginosa AS2 (GU447238). Among the five compounds studied, except mangiferin other four compounds showed significant inhibition in the production of protease, elastase and hemolysin. Further, all the five compounds potentially inhibited the biofilm related behaviours. This interaction study provided promising ligands to inhibit the quorum sensing (QS) mediated virulence factors production in P. aeruginosa.

  4. The putative cocaine receptor in striatum is a glycoprotein with thiol function

    SciTech Connect

    Cao, C.J.; Young, M.M.; Wang, J.B.; Mahran, L.; Eldefrawi, M.E. )

    1990-02-26

    Dopamine transporters of bovine and rat striata are identified by their specific ({sup 3}H) cocaine binding and cocaine-sensitive ({sup 3}H) dopamine (({sup 3}H)DA) uptake. Both binding and uptake functions of bovine striatal transporters were potentiated by lectins. Concanavalin A (Con A) increased the velocity but did not change the affinity of the transporter for DA. On the other hand, ConA increased its affinity for cocaine without changing the number of binding sites. The data suggest that the DA transporter is a glycoprotein. Inorganic and organic mercury reagents inhibited both ({sup 3}H) cocaine binding, though they were all more potent inhibitors of the former. N-ethylmaleimide inhibited ({sup 3}H)DA uptake totally but ({sup 3}H)cocaine binding only partially. Also, N-pyrenemaleimide had different effects on uptake and binding, inhibiting uptake and potentiating binding. ({sup 3}H)DA uptake was not affected by mercaptoethanol up to 100 mM whereas ({sup 3}H)cocaine binding was inhibited by concentration above 10 mM. On the other hand, both uptake and binding were fairly sensitive to dimercaprol (<1 mM). The effects of all these sulfhydryl reagents suggest that the DA transporter has one or more thiol group(s) that is (are) important for both binding and uptake activities. The Ellman reagent and dithiopyridine were effective inhibitors of uptake and binding only at fairly high concentration (>10 mM). Loss of activity after treatment with the dithio reagents may be a result of reduction of a disulfide bond, which may affect the transporter conformation.

  5. Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae.

    PubMed

    Delaveau, Thierry; Davoine, Dimitri; Jolly, Ariane; Vallot, Antoine; Rouvière, Jérôme O; Gerber, Athenaïs; Brochet, Sandra; Plessis, Marion; Roquigny, Roxane; Merhej, Jawad; Leger, Thibaut; Garcia, Camille; Lelandais, Gaëlle; Laine, Elodie; Palancade, Benoit; Devaux, Frédéric; Garcia, Mathilde

    2016-10-14

    The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins.

  6. Tma108, a putative M1 aminopeptidase, is a specific nascent chain-associated protein in Saccharomyces cerevisiae

    PubMed Central

    Delaveau, Thierry; Davoine, Dimitri; Jolly, Ariane; Vallot, Antoine; Rouvière, Jérôme O.; Gerber, Athenaïs; Brochet, Sandra; Plessis, Marion; Roquigny, Roxane; Merhej, Jawad; Leger, Thibaut; Garcia, Camille; Lelandais, Gaëlle; Laine, Elodie; Palancade, Benoit; Devaux, Frédéric; Garcia, Mathilde

    2016-01-01

    The discovery of novel specific ribosome-associated factors challenges the assumption that translation relies on standardized molecular machinery. In this work, we demonstrate that Tma108, an uncharacterized translation machinery-associated factor in yeast, defines a subpopulation of cellular ribosomes specifically involved in the translation of less than 200 mRNAs encoding proteins with ATP or Zinc binding domains. Using ribonucleoparticle dissociation experiments we established that Tma108 directly interacts with the nascent protein chain. Additionally, we have shown that translation of the first 35 amino acids of Asn1, one of the Tma108 targets, is necessary and sufficient to recruit Tma108, suggesting that it is loaded early during translation. Comparative genomic analyses, molecular modeling and directed mutagenesis point to Tma108 as an original M1 metallopeptidase, which uses its putative catalytic peptide-binding pocket to bind the N-terminus of its targets. The involvement of Tma108 in co-translational regulation is attested by a drastic change in the subcellular localization of ATP2 mRNA upon Tma108 inactivation. Tma108 is a unique example of a nascent chain-associated factor with high selectivity and its study illustrates the existence of other specific translation-associated factors besides RNA binding proteins. PMID:27580715

  7. A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae†

    PubMed Central

    Zhang, Rui; Hua, Gang; Andacht, Tracy M.; Adang, Michael J.

    2009-01-01

    Bacillus thuringiensis (Bt)1 insecticidal toxins bind to receptors on midgut epithelial cells of susceptible insects, and binding triggers biochemical events that lead to insect mortality. Recently, a 100-kDa aminopeptidase N (APN) was isolated from brush border membrane vesicles (BBMV) of Anopheles quadrimaculatus and shown to bind Cry11Ba toxin with surface plasmon resonance (SPR) detection [Abdullah et al. (2006) BMC Biochemistry 7, 16]. In our study, a 106-kDa APN, called AgAPN2, released by phosphatidylinositol-specific phospholipase C (PI-PLC) from Anopheles gambiae BBMV was extracted by Cry11Ba bound to beads. The AgAPN2 cDNA was cloned and analysis of the predicted AgAPN2 protein revealed a zinc-binding motif (HEIAH), three potential N-glycosylation sites and a predicted glycosylphosphatidylinositol (GPI) anchor site. Immunohistochemistry localized AgAPN2 to the microvilli of the posterior midgut. A 70-kDa fragment of the 106-kDa APN was expressed in Escherichia coli. When purified, it competitively displaced 125I-Cry11Ba binding to An. gambiae BBMV, and bound Cry11Ba on dot blot and microtiter plate binding assays with a calculated Kd of 6.4 nM. Notably, this truncated peptide inhibited Cry11Ba toxicity to An. gambiae larvae. These results are evidence that the 106-kDa GPI-anchored APN is a specific binding protein, and a putative midgut receptor, for Bt Cry11Ba toxin. PMID:18826260

  8. Mutational analysis of putative calcium binding motifs within the skeletal ryanodine receptor isoform, RyR1.

    PubMed

    Fessenden, James D; Feng, Wei; Pessah, Isaac N; Allen, P D

    2004-12-17

    The functional relevance of putative Ca(2+) binding motifs previously identified with Ca(2+) overlay binding analysis within the skeletal muscle ryanodine receptor isoform (RyR1) was examined using mutational analysis. EF hands between amino acid positions 4081 and 4092 (EF1) and 4116 and 4127 (EF2) were scrambled singly or in combination within the full-length rabbit RyR1 cDNA. These cDNAs were expressed in 1B5 RyR-deficient myotubes and channel function assessed using Ca(2+)-imaging techniques, [(3)H]ryanodine binding measurements, and single channel experiments. In intact myotubes, these mutations did not affect functional responses to either depolarization or RyR agonists (caffeine, 4-chloro-m-cresol) compared with wtRyR1. However, in [(3)H]ryanodine binding measurements, both Ca(2+) activation and inhibition of the EF1 mutant was significantly altered compared with wtRyR1. No high affinity [(3)H]ryanodine binding was observed in membranes expressing the EF2 mutation, although in single channel measurements, the EF2-disrupted channel could be activated by micromolar Ca(2+) concentrations. In addition, micromolar levels of ryanodine placed these channels into the classical half-conductance state, thus indicating that occupancy of high affinity ryanodine binding sites is not required for ryanodine-induced subconductance states in RyR1. Disruption of three additional putative RyR1 calcium binding motifs located between amino acid positions 4254 and 4265 (EF3), 4407 and 4418 (EF4), or 4490 and 4502 (EF5) either singly or in combination (EF3-5) did not affect functional responses in 1B5 myotubes except that the EC(50) for caffeine activation for the EF3 construct was significantly increased compared with wtRyR1. However, in [(3)H]ryanodine binding experiments, the Ca(2+)-dependent activation and inactivation of mutated RyRs containing EF3, EF4, or EF5 was unaffected when compared with wtRyR1.

  9. Identification of putative estrogen receptor-mediated endocrine disrupting chemicals using QSAR- and structure-based virtual screening approaches

    SciTech Connect

    Zhang, Liying; Sedykh, Alexander; Tripathi, Ashutosh; Zhu, Hao; Afantitis, Antreas; Mouchlis, Varnavas D.; Melagraki, Georgia; Rusyn, Ivan; Tropsha, Alexander

    2013-10-01

    Identification of endocrine disrupting chemicals is one of the important goals of environmental chemical hazard screening. We report on the development of validated in silico predictors of chemicals likely to cause estrogen receptor (ER)-mediated endocrine disruption to facilitate their prioritization for future screening. A database of relative binding affinity of a large number of ERα and/or ERβ ligands was assembled (546 for ERα and 137 for ERβ). Both single-task learning (STL) and multi-task learning (MTL) continuous quantitative structure–activity relationship (QSAR) models were developed for predicting ligand binding affinity to ERα or ERβ. High predictive accuracy was achieved for ERα binding affinity (MTL R{sup 2} = 0.71, STL R{sup 2} = 0.73). For ERβ binding affinity, MTL models were significantly more predictive (R{sup 2} = 0.53, p < 0.05) than STL models. In addition, docking studies were performed on a set of ER agonists/antagonists (67 agonists and 39 antagonists for ERα, 48 agonists and 32 antagonists for ERβ, supplemented by putative decoys/non-binders) using the following ER structures (in complexes with respective ligands) retrieved from the Protein Data Bank: ERα agonist (PDB ID: 1L2I), ERα antagonist (PDB ID: 3DT3), ERβ agonist (PDB ID: 2NV7), and ERβ antagonist (PDB ID: 1L2J). We found that all four ER conformations discriminated their corresponding ligands from presumed non-binders. Finally, both QSAR models and ER structures were employed in parallel to virtually screen several large libraries of environmental chemicals to derive a ligand- and structure-based prioritized list of putative estrogenic compounds to be used for in vitro and in vivo experimental validation. - Highlights: • This is the largest curated dataset inclusive of ERα and β (the latter is unique). • New methodology that for the first time affords acceptable ERβ models. • A combination of QSAR and docking enables prediction of affinity and function.

  10. The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells

    PubMed Central

    Mercado-Curiel, Ricardo F; Esquinca-Avilés, Héctor Armando; Tovar, Rosalinda; Díaz-Badillo, Álvaro; Camacho-Nuez, Minerva; Muñoz, María de Lourdes

    2006-01-01

    Background Dengue viruses (DENV) attach to the host cell surface and subsequently enter the cell by receptor-mediated endocytosis. Several primary and low affinity co-receptors for this flavivirus have been identified. However, the presence of these binding molecules on the cell surface does not necessarily render the cell susceptible to infection. Determination of which of them serve as bona fide receptors for this virus in the vector may be relevant to treating DENV infection and in designing control strategies. Results (1) Overlay protein binding assay showed two proteins with molecular masses of 80 and 67 kDa (R80 and R67). (2) Specific antibodies against these two proteins inhibited cell binding and infection. (3) Both proteins were bound by all four serotypes of dengue virus. (4) R80 and R67 were purified by affinity chromatography from Ae. aegypti mosquito midguts and from Ae albopictus C6/36 cells. (5) In addition, a protein with molecular mass of 57 kDa was purified by affinity chromatography from the midgut extracts. (6) R80 and R67 from radiolabeled surface membrane proteins of C6/36 cells were immunoprecipitated by antibodies against Ae. aegypti midgut. Conclusion Our results strongly suggest that R67 and R80 are receptors for the four serotypes of dengue virus in the midgut cells of Ae. aegypti and in C6/36 Ae. albopictus cells. PMID:17014723

  11. Identifying putative Mycobacterium tuberculosis Rv2004c protein sequences that bind specifically to U937 macrophages and A549 epithelial cells

    PubMed Central

    Forero, Martha; Puentes, Álvaro; Cortés, Jimena; Castillo, Fabio; Vera, Ricardo; Rodríguez, Luis E.; Valbuena, John; Ocampo, Marisol; Curtidor, Hernando; Rosas, Jaiver; García, Javier; Barrera, Gloria; Alfonso, Rosalba; Patarroyo, Manuel A.; Patarroyo, Manuel E.

    2005-01-01

    Virulence and immunity are still poorly understood in Mycobacterium tuberculosis. The H37Rv M. tuberculosis laboratory strain genome has been completely sequenced, and this along with proteomic technology represent powerful tools contributing toward studying the biology of target cell interaction with a facultative bacillus and designing new strategies for controlling tuberculosis. Rv2004c is a putative M. tuberculosis protein that could have specific mycobacterial functions. This study has revealed that the encoding gene is present in all mycobacterium species belonging to the M. tuberculosis complex. Rv2004c gene transcription was observed in all of this complex’s strains except Mycobacterium bovis and Mycobacterium microti. Rv2004c protein expression was confirmed by using antibodies able to recognize a 54-kDa molecule by immunoblotting, and its location was detected on the M. tuberculosis surface by transmission electron microscopy, suggesting that it is a mycobacterial surface protein. Binding assays led to recognizing high activity binding peptides (HABP); five HABPs specifically bound to U937 cells, and six specifically bound to A549 cells. HABP circular dichroism suggested that they had an α-helical structure. HABP–target cell interaction was determined to be specific and saturable; some of them also displayed greater affinity for A549 cells than U937 cells. The critical amino acids directly involved in their interaction with U937 cells were also determined. Two probable receptor molecules were found on U937 cells and five on A549 for the two HABPs analyzed. These observations have important biological significance for studying bacillus–target cell interactions and implications for developing strategies for controlling this disease. PMID:16199660

  12. Characterization of a putative pollen-specific arabinogalactan protein gene, BcMF8, from Brassica campestris ssp. chinensis.

    PubMed

    Huang, Li; Cao, Jia-Shu; Zhang, Ai-Hong; Ye, Yi-Qun

    2008-12-01

    The BcMF8 (Brassica campestris male fertility 8) gene, possessing the features of 'classical' arabinogalactan protein (AGP) was isolated from Brassica campestris L. ssp. chinensis, Makino syn. B. rapa L. ssp. chinensis. This gene was highly abundant in the fertile flower buds but silenced in the sterile ones of genic male sterile A/B line ('ZUBajh97-01A/B') in B. campestris. Expression patterns analysis suggested BcMF8 was a pollen-specific gene, whose transcript started to be expressed at the uninucleate stage and maintained throughout to the pollen at pollination stage. BcMF8 is highly homologous to the known pollen-specific AGP genes Sta 39-4 and Sta 39-3 from B. napus. Isolation and multiple alignment of the homologs of BcMF8 gene in the family Cruciferae indicated that BcMF8 was highly conserved in this family, which reflect the conservation in biological function and importance of this putative AGP gene in plant development. Similarity analysis also demonstrated Sta 39-4 and Sta 39-3 may originate from different genomes.

  13. Isolation and promoter analysis of anther-specific genes encoding putative arabinogalactan proteins in Malus x domestica.

    PubMed

    Choi, Yeon-Ok; Kim, Sung-Soo; Lee, Sanghyeob; Kim, Sunggil; Yoon, Gi-Bo; Kim, Hyojeong; Lee, Young-Pyo; Yu, Gyung-Hee; Hyung, Nam-In; Sung, Soon-Kee

    2010-01-01

    In this study, we searched for anther-specific genes involved in male gametophyte development in apple (Malus x domestica Borkh. cv. Fuji) by differential display-PCR. Three full-length cDNAs were isolated, and the corresponding genomic sequences were determined by genome walking. The identified genes showed intronless 228- to 264-bp open reading frames and shared 82-90% nucleotide sequence. Sequence analysis identified that they encoded a putative arabinogalactan protein (AGP) and were designated MdAGP1, MdAGP2, and MdAGP3, respectively. RT (reverse transcriptase)-PCR revealed that the MdAGP genes were selectively expressed in the stamen. Promoter analysis confirmed that the MdAGP3 promoter was capable of directing anther- or pollen-specific expression of the GUS reporter in tobacco and apple. Furthermore, expression of ribosome-inactivating protein under the control of the MdAGP3 promoter induced complete sporophytic male sterility as we had expected.

  14. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana

    PubMed Central

    Kang, Jiman; Turano, Frank J.

    2003-01-01

    The ability to coordinate carbon (C) and nitrogen (N) metabolism enables plants to regulate development and metabolic responses to different environmental conditions. The regulator(s) or sensor(s) that monitor crosstalk between biosynthetic pathways and ultimately control the flow of C or N through them have remained elusive. We used an antisense strategy to demonstrate that the putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of C and N metabolism in Arabidopsis. Seeds from AtGLR1.1-deficient Arabidopsis (antiAtGLR1.1) lines did not germinate in the presence of an animal ionotropic glutamate receptor (iGLR) antagonist, but germination was restored upon coincubation with an iGLR agonist or the putative ligand glutamate. In antiAtGLR1.1 lines, endogenous abscisic acid (ABA) concentrations increased with iGLR antagonist treatments and decreased with coincubation with an iGLR agonist, suggesting that germination was controlled by ABA. antiAtGLR1.1 seedlings also exhibited sensitivity to increased levels of Ca2+ compared with wild type, and they exhibited a conditional phenotype that was sensitive to the C:N ratio. In the presence of C, specifically sucrose, but not glucose, mannitol, or sorbitol, antiAtGLR1.1 seeds did not germinate, but germination was restored upon coincubation with \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NO}}_{3}^{-}\\end{equation*}\\end{document}, but not \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} \\begin{equation*}{\\mathrm{NH}}_{4}^{+}\\end{equation*}\\end{document}. Immunoblot, isoenzyme, and RT-PCR analyses indicate that AtGLR1.1 regulates the

  15. Identification of Putative Stage-Specific Grapevine Berry Biomarkers and Omics Data Integration into Networks1[C][W][OA

    PubMed Central

    Zamboni, Anita; Di Carli, Mariasole; Guzzo, Flavia; Stocchero, Matteo; Zenoni, Sara; Ferrarini, Alberto; Tononi, Paola; Toffali, Ketti; Desiderio, Angiola; Lilley, Kathryn S.; Pè, M. Enrico; Benvenuto, Eugenio; Delledonne, Massimo; Pezzotti, Mario

    2010-01-01

    The analysis of grapevine (Vitis vinifera) berries at the transcriptomic, proteomic, and metabolomic levels can provide great insight into the molecular events underlying berry development and postharvest drying (withering). However, the large and very different data sets produced by such investigations are difficult to integrate. Here, we report the identification of putative stage-specific biomarkers for berry development and withering and, to our knowledge, the first integrated systems-level study of these processes. Transcriptomic, proteomic, and metabolomic data were integrated using two different strategies, one hypothesis free and the other hypothesis driven. A multistep hypothesis-free approach was applied to data from four developmental stages and three withering intervals, with integration achieved using a hierarchical clustering strategy based on the multivariate bidirectional orthogonal projections to latent structures technique. This identified stage-specific functional networks of linked transcripts, proteins, and metabolites, providing important insights into the key molecular processes that determine the quality characteristics of wine. The hypothesis-driven approach was used to integrate data from three withering intervals, starting with subdata sets of transcripts, proteins, and metabolites. We identified transcripts and proteins that were modulated during withering as well as specific classes of metabolites that accumulated at the same time and used these to select subdata sets of variables. The multivariate bidirectional orthogonal projections to latent structures technique was then used to integrate the subdata sets, identifying variables representing selected molecular processes that take place specifically during berry withering. The impact of this holistic approach on our knowledge of grapevine berry development and withering is discussed. PMID:20826702

  16. Pharmacological significance of the interplay between angiotensin receptors: MAS receptors as putative final mediators of the effects elicited by angiotensin AT1 receptors antagonists.

    PubMed

    Pernomian, Larissa; Pernomian, Laena; Gomes, Mayara S; da Silva, Carlos H T P

    2015-12-15

    The interplay between angiotensin AT1 receptors and MAS receptors relies on several inward regulatory mechanisms from renin-angiotensin system (RAS) including the functional crosstalk between angiotensin II and angiotensin-(1-7), the competitive AT1 antagonism exhibited by angiotensin-(1-7), the antagonist feature assigned to AT1/MAS heterodimerization on AT1 signaling and the AT1-mediated downregulation of angiotensin-converting enzyme 2 (ACE2). Recently, such interplay has acquired an important significance to RAS Pharmacology since a few studies have supporting strong evidences that MAS receptors mediate the effects elicited by AT1 antagonists. The present Perspective provides an overview of the regulatory mechanisms involving AT1 and MAS receptors, their significance to RAS Pharmacology and the future directions on the interplay between angiotensin receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Agrotis segetum midgut putative receptor of Bacillus thuringiensis vegetative insecticidal protein Vip3Aa16 differs from that of Cry1Ac toxin.

    PubMed

    Ben Hamadou-Charfi, Dorra; Boukedi, Hanen; Abdelkefi-Mesrati, Lobna; Tounsi, Slim; Jaoua, Samir

    2013-10-01

    Considering the fact that Agrotis segetum is one of the most pathogenic insects to vegetables and cereals in the world, particularly in Africa, the mode of action of Vip3Aa16 of Bacillus thuringiensis BUPM95 and Cry1Ac of the recombinant strain BNS3Cry-(pHTcry1Ac) has been examined in this crop pest. A. segetum proteases activated the Vip3Aa16 protoxin (90kDa) yielding three bands of about 62, 45, 22kDa and the activated form of the toxin was active against this pest with an LC50 of about 86ng/cm(2). To be active against A. segetum, Cry1Ac protoxin was activated to three close bands of about 60-65kDa. Homologous and heterologous competition binding experiments demonstrated that Vip3Aa16 bound specifically to brush border membrane vesicles (BBMV) prepared from A. segetum midgut and that it does not inhibit the binding of Cry1Ac. Moreover, BBMV protein blotting experiments showed that the receptor of Vip3Aa16 toxin in A. segetum midgut differs from that of Cry1Ac. In fact, the latter binds to a 120kDa protein whereas the Vip3Aa16 binds to a 65kDa putative receptor. The midgut histopathology of Vip3Aa16 fed larvae showed vacuolization of the cytoplasm, brush border membrane lysis, vesicle formation in the goblet cells and disintegration of the apical membrane. The distinct binding properties and the unique protein sequence of Vip3Aa16 support its use as a novel insecticidal agent to control the crop pest A. segetum.

  18. Discrimination of putative M1 and M2 muscarinic receptor subtypes in rat brain by N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)

    SciTech Connect

    Norman, A.B.; Creese, I.

    1986-03-01

    The EC/sub 50/ of EEDQ for the inhibition of (/sup 3/H)(-)QNB binding in vitro was approximately 3 fold lower for homogenates of hippocampus than brainstem (containing predominantly putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes respectively). Furthermore, the time-dependent loss of (/sup 3/H)(-)QNB binding produced by 100 ..mu..M EEDQ was faster in homogenates of hippocampus than brainstem. Administration of EEDQ (20 mg/kg i.p.) irreversibly reduced the Bmax of (/sup 3/H)(-)QNB binding by 56% and 34% in hippocampus and brainstem respectively. Pirenzepine competition for the remaining (/sup 3/H)(-)QNB binding sites following in vitro and in vivo treatment with EEDQ revealed a significant increase in the proportion of (/sup 3/H)(-)QNB binding sites having low affinity for pirenzepine (M/sub 2/ receptors), indicating that the high affinity pirenzepine binding sites (M/sub 1/ receptors) were selectively and irreversibly lost. Thus, EEDQ discriminates the same putative M/sub 1/ and M/sub 2/ muscarinic receptor subtypes that are discriminated by pirenzepine. The reduction of (/sup 3/H)(-)QNB binding could be prevented both in vitro and in vivo by atropine or scopolamine. These data may indicate differences in the accessibility of these putative receptor subtypes to EEDQ or, alternatively, differences in the availability of carboxyl groups able to interact with EEDQ at the ligand recognition site of M/sub 1/ and M/sub 2/ muscarinic receptors.

  19. A novel, evolutionarily conserved gene family with putative sequence-specific single-stranded DNA-binding activity.

    PubMed

    Castro, Patricia; Liang, Hong; Liang, Jan C; Nagarajan, Lalitha

    2002-07-01

    Complete and partial deletions of chromosome 5q are recurrent cytogenetic anomalies associated with aggressive myeloid malignancies. Earlier, we identified an approximately 1.5-Mb region of loss at 5q13.3 between the loci D5S672 and D5S620 in primary leukemic blasts. A leukemic cell line, ML3, is diploid for all of chromosome 5, except for an inversion-coupled translocation within the D5S672-D5S620 interval. Here, we report the development of a bacterial artificial chromosome (BAC) contig to define the breakpoint and the identification of a novel gene SSBP2, the target of disruption in ML3 cells. A preliminary evaluation of SSBP2 as a tumor suppressor gene in primary leukemic blasts and cell lines suggests that the remaining allele does not undergo intragenic mutations. SSBP2 is one of three members of a closely related, evolutionarily conserved, and ubiquitously expressed gene family. SSBP3 is the human ortholog of a chicken gene, CSDP, that encodes a sequence-specific single-stranded DNA-binding protein. SSBP3 localizes to chromosome 1p31.3, and the third member, SSBP4, maps to chromosome 19p13.1. Chromosomal localization and the putative single-stranded DNA-binding activity suggest that all three members of this family are capable of potential tumor suppressor activity by gene dosage or other epigenetic mechanisms.

  20. Genetic basis of stage-specific melanism: a putative role for a cysteine sulfinic acid decarboxylase in insect pigmentation

    PubMed Central

    Saenko, S V; Jerónimo, M A; Beldade, P

    2012-01-01

    Melanism, the overall darkening of the body, is a widespread form of animal adaptation to particular environments, and includes bookcase examples of evolution by natural selection, such as industrial melanism in the peppered moth. The major components of the melanin biosynthesis pathway have been characterized in model insects, but little is known about the genetic basis of life-stage specific melanism such as cases described in some lepidopteran species. Here, we investigate two melanic mutations of Bicyclus anynana butterflies, called Chocolate and melanine, that exclusively affect pigmentation of the larval and adult stages, respectively. Our analysis of Mendelian segregation patterns reveals that the larval and adult melanic phenotypes are due to alleles at different, independently segregating loci. Our linkage mapping analysis excludes the pigmentation candidate gene black as the melanine locus, and implicates a gene encoding a putative pyridoxal phosphate-dependant cysteine sulfinic acid decarboxylase as the Chocolate locus. We show variation in coding sequence and in expression levels for this candidate larval melanism locus. This is the first study that suggests a biological function for this gene in insects. Our findings open up exciting opportunities to study the role of this locus in the evolution of adaptive variation in pigmentation, and the uncoupling of regulation of pigment biosynthesis across developmental stages with different ecologies and pressures on body coloration. PMID:22234245

  1. Crystal structure of human interferon-γ receptor 2 reveals the structural basis for receptor specificity

    PubMed Central

    Mikulecký, Pavel; Zahradník, Jirí; Kolenko, Petr; Černý, Jiří; Charnavets, Tatsiana; Kolářová, Lucie; Nečasová, Iva; Pham, Phuong Ngoc; Schneider, Bohdan

    2016-01-01

    Interferon-γ receptor 2 is a cell-surface receptor that is required for interferon-γ signalling and therefore plays a critical immunoregulatory role in innate and adaptive immunity against viral and also bacterial and protozoal infections. A crystal structure of the extracellular part of human interferon-γ receptor 2 (IFNγR2) was solved by molecular replacement at 1.8 Å resolution. Similar to other class 2 receptors, IFNγR2 has two fibronectin type III domains. The characteristic structural features of IFNγR2 are concentrated in its N-terminal domain: an extensive π–cation motif of stacked residues KWRWRH, a NAG–W–NAG sandwich (where NAG stands for N-acetyl-d-glucosamine) and finally a helix formed by residues 78–85, which is unique among class 2 receptors. Mass spectrometry and mutational analyses showed the importance of N-linked glycosylation to the stability of the protein and confirmed the presence of two disulfide bonds. Structure-based bioinformatic analysis revealed independent evolutionary behaviour of both receptor domains and, together with multiple sequence alignment, identified putative binding sites for interferon-γ and receptor 1, the ligands of IFNγR2. PMID:27599734

  2. Post-ischaemic long-term synaptic potentiation in the striatum: a putative mechanism for cell type-specific vulnerability.

    PubMed

    Calabresi, Paolo; Saulle, Emilia; Centonze, Diego; Pisani, Antonio; Marfia, Girolama A; Bernardi, Giorgio

    2002-04-01

    In the present in vitro study of rat brain, we report that transient oxygen and glucose deprivation (in vitro ischaemia) induced a post-ischaemic long-term synaptic potentiation (i-LTP) at corticostriatal synapses. We compared the physiological and pharmacological characteristics of this pathological form of synaptic plasticity with those of LTP induced by tetanic stimulation of corticostriatal fibres (t-LTP), which is thought to represent a cellular substrate of learning and memory. Activation of N-methyl-D-aspartate (NMDA) receptors was required for the induction of both forms of synaptic plasticity. The intraneuronal injection of the calcium chelator BAPTA [bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetate] and inhibitors of the mitogen-activated protein kinase pathway blocked both forms of synaptic plasticity. However, while t-LTP showed input specificity, i-LTP occurred also at synaptic pathways inactive during the ischaemic period. In addition, scopolamine, a muscarinic receptor antagonist, prevented the induction of t-LTP but not of i-LTP, indicating that endogenous acetylcholine is required for physiological but not for pathological synaptic potentiation. Finally, we found that striatal cholinergic interneurones, which are resistant to in vivo ischaemia, do not express i-LTP while they express t-LTP. We suggest that i-LTP represents a pathological form of synaptic plasticity that may account for the cell type-specific vulnerability observed in striatal spiny neurones following ischaemia and energy deprivation.

  3. Sorted gene genealogies and species-specific nonsynonymous substitutions point to putative postmating prezygotic isolation genes in Allonemobius crickets

    PubMed Central

    Marshall, Jeremy L.

    2016-01-01

    In the Allonemobius socius complex of crickets, reproductive isolation is primarily accomplished via postmating prezygotic barriers. We tested seven protein-coding genes expressed in the male ejaculate for patterns of evolution consistent with a putative role as postmating prezygotic isolation genes. Our recently diverged species generally lacked sequence variation. As a result, ω-based tests were only mildly successful. Some of our genes showed evidence of elevated ω values on the internal branches of gene trees. In a couple of genes, these internal branches coincided with both species branching events of the species tree, between A. fasciatus and the other two species, and between A. socius and A. sp. nov. Tex. In comparison, more successful approaches were those that took advantage of the varying degrees of lineage sorting and allele sharing among our young species. These approaches were particularly powerful within the contact zone. Among the genes we tested we found genes with genealogies that indicated relatively advanced degrees of lineage sorting across both allopatric and contact zone alleles. Within a contact zone between two members of the species complex, only a subset of genes maintained allelic segregation despite evidence of ongoing gene flow in other genes. The overlap in these analyses was arginine kinase (AK) and apolipoprotein A-1 binding protein (APBP). These genes represent two of the first examples of sperm maturation, capacitation, and motility proteins with fixed non-synonymous substitutions between species-specific alleles that may lead to postmating prezygotic isolation. Both genes express ejaculate proteins transferred to females during copulation and were previously identified through comparative proteomics. We discuss the potential function of these genes in the context of the specific postmating prezygotic isolation phenotype among our species, namely conspecific sperm precedence and the superior ability of conspecific males to

  4. Mediation of 5-HT-induced external carotid vasodilatation in GR 127935-pretreated vagosympathectomized dogs by the putative 5-HT7 receptor

    PubMed Central

    Villalón, Carlos M; Centurión, David; Luján-Estrada, Miguel; Terrón, José A; Sánchez-López, Araceli

    1997-01-01

    The vasodilator effects of 5-hydroxytryptamine (5-HT) in the external carotid bed of anaesthetized dogs with intact sympathetic tone are mediated by prejunctional sympatho-inhibitory 5-HT1B/1D receptors and postjunctional 5-HT receptors. The prejunctional vasodilator mechanism is abolished after vagosympathectomy which results in the reversal of the vasodilator effect to vasoconstriction. The blockade of this vasoconstrictor effect of 5-HT with the 5-HT1B/1D receptor antagonist, GR 127935, unmasks a dose-dependent vasodilator effect of 5-HT, but not of sumatriptan. Therefore, the present study set out to analyse the pharmacological profile of this postjunctional vasodilator 5-HT receptor in the external carotid bed of vagosympathectomized dogs pretreated with GR 127935 (20 μg kg−1, i.v.).One-minute intracarotid (i.c.) infusions of 5-HT (0.330 μg min−1), 5-carboxamidotryptamine (5-CT; 0.010.3 μg min−1), 5-methoxytryptamine (1100 μg min−1) and lisuride (31000 μg min−1) resulted in dose-dependent increases in external carotid blood flow (without changes in blood pressure or heart rate) with a rank order of agonist potency of 5-CT>>5-HT⩾5-methoxytryptamine>lisuride, whereas cisapride (1001000 μg min−1, i.c.) was practically inactive. Interestingly, lisuride (mean dose of 85±7 μg kg−1, i.c.), but not cisapride (mean dose of 67±7 μg kg−1, i.c.), specifically abolished the responses induced by 5-HT, 5-CT and 5-methoxytryptamine, suggesting that a common site of action may be involved. In contrast, 1 min i.c. infusions of 8-OH-DPAT (33000 μg min−1) produced dose-dependent decreases, not increases, in external carotid blood flow and failed to antagonize (mean dose of 200±33 μg kg−1, i.c.) the agonist-induced vasodilator responses.The external carotid vasodilator responses to 5-HT, 5-CT and 5-methoxytryptamine were not modified by intravenous (i.v.) pretreatment with either saline, (±)-pindolol (4

  5. Analysis of Chemokine Receptor Trafficking by Site-Specific Biotinylation

    PubMed Central

    Liebick, Marcel; Schläger, Christian; Oppermann, Martin

    2016-01-01

    Chemokine receptors undergo internalization and desensitization in response to ligand activation. Internalized receptors are either preferentially directed towards recycling pathways (e.g. CCR5) or sorted for proteasomal degradation (e.g. CXCR4). Here we describe a method for the analysis of receptor internalization and recycling based on specific Bir A-mediated biotinylation of an acceptor peptide coupled to the receptor, which allows a more detailed analysis of receptor trafficking compared to classical antibody-based detection methods. Studies on constitutive internalization of the chemokine receptors CXCR4 (12.1% ± 0.99% receptor internalization/h) and CCR5 (13.7% ± 0.68%/h) reveals modulation of these processes by inverse (TAK779; 10.9% ± 0.95%/h) or partial agonists (Met-CCL5; 15.6% ± 0.5%/h). These results suggest an actively driven internalization process. We also demonstrate the advantages of specific biotinylation compared to classical antibody detection during agonist-induced receptor internalization, which may be used for immunofluorescence analysis as well. Site-specific biotinylation may be applicable to studies on trafficking of transmembrane proteins, in general. PMID:27310579

  6. Cloning, Purification and Initial Characterization of E. coli McrA, a Putative 5-methylcytosine-specific Nuclease

    SciTech Connect

    Mulligan,E.; Dunn, J.

    2008-01-01

    Expression strains of Escherichia coli BL21(DE3) overproducing the E. coli m5C McrA restriction protein were produced by cloning the mcrA coding sequence behind a T7 promoter. The recombinant mcrA minus BL21(DE3) host produces active McrA as evidenced by its acquired ability to selectively restrict the growth of T7 phage containing DNA methylated in vitro by HpaII methylase. The mcrA coding region contains several non-optimal E. coli triplets. Addition of the pACYC-RIL tRNA encoding plasmid to the BL21(DE3) host increased the yield of recombinant McrA (rMcrA) upon induction about 5- to 10-fold. McrA protein expressed at 37 C is insoluble but a significant fraction is recovered as soluble protein after autoinduction at 20 C. rMcrA protein, which is predicted to contain a Cys4-Zn2+ finger and a catalytically important histidine triad in its putative nuclease domain, binds to several metal chelate resins without addition of a poly-histidine affinity tag. This feature was used to develop an efficient protocol for the rapid purification of nearly homogeneous rMcrA. The native protein is a dimer with a high a-helical content as measured by circular dichroism analysis. Under all conditions tested purified rMcrA does not have measurable nuclease activity on HpaII methylated (Cm5CGG) DNA, although the purified protein does specifically bind HpaII methylated DNA. These results have implications for understanding the in vivo activity of McrA in 'restricting' m5C-containing DNA and suggest that rMcrA may have utility as a reagent for affinity purification of DNA fragments containing m5C residues.

  7. Absence of Yersinia pestis-specific DNA in human teeth from five European excavations of putative plague victims.

    PubMed

    Gilbert, M Thomas P; Cuccui, Jon; White, William; Lynnerup, Niels; Titball, Richard W; Cooper, Alan; Prentice, Michael B

    2004-02-01

    This study reports the results of a collaborative study undertaken by two independent research groups to (a) confirm recent PCR-based detection of Yersinia pestis DNA in human teeth from medieval plague victims in France, and (b) to extend these observations over five different European burial sites believed to contain plague victims dating from the late 13th to 17th centuries. Several different sets of primers were used, including those previously documented to yield positive results on ancient DNA extracts. No Y. pestis DNA could be amplified from DNA extracted from 108 teeth belonging to 61 individuals, despite the amplification of numerous other bacterial DNA sequences. Several methods of extracting dentine prior to the DNA extraction were also compared. PCR for bacterial 16S rDNA indicated the presence of multiple bacterial species in 23 out of 27 teeth DNA extracts where dentine was extracted using previously described methods. In comparison, positive results were obtained from only five out of 44 teeth DNA extracts for which a novel contamination-minimizing embedding technique was used. Therefore, high levels of environmental bacterial DNA are present in DNA extracts where previously described methods of tooth manipulation are used. To conclude, the absence of Y. pestis-specific DNA in an exhaustive search using specimens from multiple putative European plague burial sites does not allow us to confirm the identification of Y. pestis as the aetiological agent of the Black Death and subsequent plagues. In addition, the utility of the published tooth-based ancient DNA technique used to diagnose fatal bacteraemias in historical epidemics still awaits independent corroboration.

  8. Genome-Wide Survey and Expression Analysis of the Putative Non-Specific Lipid Transfer Proteins in Brassica rapa L

    PubMed Central

    Li, Jun; Gao, Guizhen; Xu, Kun; Chen, Biyun; Yan, Guixin; Li, Feng; Qiao, Jiangwei; Zhang, Tianyao; Wu, Xiaoming

    2014-01-01

    Background Plant non-specific lipid transfer proteins (nsLtps) are small, basic proteins encoded by multigene families and have reported functions in many physiological processes such as mediating phospholipid transfer, defense reactions against phytopathogens, the adaptation of plants to various environmental conditions, and sexual reproduction. To date, no genome-wide overview of the Brassica rapa nsLtp (BrnsLtp) gene family has been performed. Therefore, as the first step and as a helpful strategy to elucidate the functions of BrnsLtps, a genome-wide study for this gene family is necessary. Methodology/Principal Finding In this study, a total of 63 putative BrnsLtp genes were identified through a comprehensive in silico analysis of the whole genome of B. rapa. Based on the sequence similarities, these BrnsLtps was grouped into nine types (I, II, III, IV, V, VI, VIII, IX, and XI). There is no type VII nsLtps in B. rapa, and a new type, XI nsLtps, was identified in B. rapa. Furthermore, nine type II AtLtps have no homologous genes in B. rapa. Gene duplication analysis demonstrated that the conserved collinear block of each BrnsLtp is highly identical to those in Arabidopsis and that both segmental duplications and tandem duplications seem to play equal roles in the diversification of this gene family. Expression analysis indicated that 29 out of the 63 BrnsLtps showed specific expression patterns. After careful comparison and analysis, we hypothesize that some of the type I BrnsLtps may function like Arabidopsis pathogenesis-related-14 (PR-14) proteins to protect the plant from phytopathogen attack. Eleven BrnsLtps with inflorescence-specific expression may play important roles in sexual reproduction. Additionally, BrnsLtpI.3 may have functions similar to Arabidopsis LTP1. Conclusions/Significance The genome-wide identification, bioinformatic analysis and expression analysis of BrnsLtp genes should facilitate research of this gene family and polyploidy evolution

  9. Intestinal lactoferrin receptor: presence and specificity during development

    SciTech Connect

    Davidson, L.A.; Lonnerdal, B.L.

    1986-03-01

    As the major iron-binding protein in breast milk, lactoferrin (Lf) has been suggested to play a role in Fe absorption from milk. The authors previous work has validated the use of the Rhesus monkey as a model for studying this role of Lf. They have identified a specific Lf receptor on the brush border (BB) of juvenile Rhesus small intestine (s.i.) which may facilitate Fe uptake into the mucosal cell. In this study the authors examined the presence and specificity of the Lf receptor during development. BB membrane vesicles were prepared from fetal (113 d gestation), infant (3 m), and adult (12 y) Rhesus s.i.; Binding assays were performed by incubating BB vesicles with 59-Fe-Lf and filtering through a 0.22 ..mu..m filter. The fetal and infant tissues were found to possess receptors with a high affinity for Lf. This early ontogeny indicates the importance of the receptor to the infant. Adult s.i. contained Lf receptors in all regions. Since the adult has no dietary intake of Lf, the receptor may play a role in Fe homeostasis via biliary Lf excretion or may simply continue to be expressed throughout life. The receptors were examined for their affinity for purified bovine Lf and human transferrin, both of which are similar in structure to Lf. No binding was found for either, demonstrating the specificity of the receptor for Lf. The presence of the Lf receptor in fetal tissue and its specificity for Lf implies it is essential for adequate Fe nutrition of the suckling infant.

  10. Mutations in Two Putative Phosphorylation Motifs in the Tomato Pollen Receptor Kinase LePRK2 Show Antagonistic Effects on Pollen Tube Length*

    PubMed Central

    Salem, Tamara; Mazzella, Agustina; Barberini, María Laura; Wengier, Diego; Motillo, Viviana; Parisi, Gustavo; Muschietti, Jorge

    2011-01-01

    The tip-growing pollen tube is a useful model for studying polarized cell growth in plants. We previously characterized LePRK2, a pollen-specific receptor-like kinase from tomato (1). Here, we showed that LePRK2 is present as multiple phosphorylated isoforms in mature pollen membranes. Using comparative sequence analysis and phosphorylation site prediction programs, we identified two putative phosphorylation motifs in the cytoplasmic juxtamembrane (JM) domain. Site-directed mutagenesis in these motifs, followed by transient overexpression in tobacco pollen, showed that both motifs have opposite effects in regulating pollen tube length. Relative to LePRK2-eGFP pollen tubes, alanine substitutions in residues of motif I, Ser277/Ser279/Ser282, resulted in longer pollen tubes, but alanine substitutions in motif II, Ser304/Ser307/Thr308, resulted in shorter tubes. In contrast, phosphomimicking aspartic substitutions at these residues gave reciprocal results, that is, shorter tubes with mutations in motif I and longer tubes with mutations in motif II. We conclude that the length of pollen tubes can be negatively and positively regulated by phosphorylation of residues in motif I and II respectively. We also showed that LePRK2-eGFP significantly decreased pollen tube length and increased pollen tube tip width, relative to eGFP tubes. The kinase activity of LePRK2 was relevant for this phenotype because tubes that expressed a mutation in a lysine essential for kinase activity showed the same length and width as the eGFP control. Taken together, these results suggest that LePRK2 may have a central role in pollen tube growth through regulation of its own phosphorylation status. PMID:21131355

  11. Identification of putative chemosensory receptor genes from yellow peach moth Conogethes punctiferalis (Guenée) antennae transcriptome

    PubMed Central

    Ge, Xing; Zhang, Tiantao; Wang, Zhenying; He, Kanglai; Bai, Shuxiong

    2016-01-01

    The yellow peach moth, Conogethes punctiferalis, is an extremely important polyphagous insect in Asia. The chemosensory systems of moth play an important role in detecting food, oviposition sites and mate attraction. Several antennal chemosensory receptors are involved in odor detection. Our study aims to identify chemosensory receptor genes for potential applications in behavioral responses of yellow peach moth. By transcriptomic analysis of male and female antennae, 83 candidate chemosensory receptors, including 62 odorant receptors, 11 ionotropic receptors and 10 gustatory receptors were identified. Through Blast and sequence alignment, the highly conserved co-receptor Orco was annotated, eight unigenes clustered into pheromone receptors, and two clustered as sugar receptor. Among the IRs, one unigenes was similar with co-receptors IR25a. Expression levels of 50 odorant receptors were further evaluated by quantitative real-time PCR in antennae. All the ORs tested were detected in antennae and some of which were associated with sex-biased expression. The chemosensory receptors identified in C. punctiferalis provide a foundational resource for further analysis on olfaction for behavior. The expression profiles of ORs in antennae indicated variant functions in olfactory recognition, and our results provided the possibility for the potential application of semiochemical to control this pest moth. PMID:27659493

  12. Differential distribution of erbB receptors in human glioblastoma multiforme: expression of erbB3 in CD133-positive putative cancer stem cells

    PubMed Central

    Duhem-Tonnelle, Véronique; Bièche, Ivan; Vacher, Sophie; Loyens, Anne; Maurage, Claude-Alain; Collier, Francis; Baroncini, Marc; Blond, Serge; Prevot, Vincent; Sharif, Ariane

    2010-01-01

    Glioblastomas are the most common CNS tumors in adults, and they remain resistant to current treatments. ErbB1 signaling is frequently altered in these tumors, which indicates that the erbB receptor family is a promising target for molecular therapy. However, data on erbB signaling in glioblastomas are still sparse. Therefore, we undertook a comprehensive analysis of erbB receptor and ligand expression profiles in a panel of nine glioblastomas that were compared to non-neoplastic cerebral tissue containing neocortex and corresponding portions of subcortical convolutional white matter and we determined the distribution patterns of erbB receptors among the main neural cell types that are present in these tumors, particularly the putative tumoral stem cell population. Using quantitative RT-PCR and western blot analysis, we showed that erbB1 signaling and erbB2 receptors exhibited highly variable deregulation profiles among tumors, ranging from under- to overexpression, while erbB3 and erbB4 were down-regulated. Immunohistochemistry revealed an important inter- and intra-tumoral heterogeneity in all four erbB expression profiles. However, each receptor exhibited a distinct repartition pattern among the GFAP-, Olig2-, NeuN- and CD133-positive populations. Interestingly, while erbB1 immunoreactivity was only detected in small subsets of CD133-positive putative tumoral stem cells, erbB3 immunoreactivity was prominent in this cell population thus suggesting that erbB3 may represent a new potential target for molecular therapy. PMID:20467331

  13. Receptor Specific Ligands for Spect Imaging

    SciTech Connect

    Kung, H. F.

    2003-02-25

    In the past funding period we have concentrated in developing new 99mTc labeled MIBG analogs. Basic chemistry of ligand synthesis, radiochemistry of Re and 99mTc complex formation, separation of stereoisomers and in vitro stability were investigated. We have prepared a number of new MIBG derivatives containing chelating moiety N2S2 and additional groups to increase lipophilicity. Unfortunately none of the new 99mTc labeled MIBG analogs showed promise as an imaging agent for myocardial neuronal function. Radioactive-iodine-labeled meta-iodobenzylguanidine (MIBG) is currently being used as an in vivo imaging agent to evaluate neuroendocrine tumors as well as the myocardial sympathetic nervous system in patients with myocardial infarct and cardiomyopathy. It is generally accepted that MIBG is an analog of norepinephrine and its uptake in the heart corresponds to the distribution of norepinephrine and the density of sympathetic neurons. A series of MIBG derivatives containing suitable chelating functional groups N2S2 for the formation of [Tcv0]+3N2S2 complex was successfully synthesized and the 99mTc-labeled complexes were prepared and tested in rats. One of the compounds, [99mTc]M2, tested showed significant, albeit lower, heart uptakes post iv injection in rats (0.18% dose/organ at 4 hours) as compared to [l25l]MIBG (1.4% dose/organ at 4 hours). The heart uptake of the 99mTc-labeled complex, [99mTc]M2, appears to be specific and can be reduced by coinjection with nonradioactive MIBG or by pretreatment with desipramine. a selective norepinephrine transporter inhibitor. Further evaluation of the in vitro uptake of [99mTc]M2 in cultured neuroblastoma cells displayed consistently lower, but measurable uptake (app. 10% of that for [125l]MlBG). These preliminary results suggested that the mechanisms of heart uptake of [99mTc]M2 may be related to those for [125l]MIBG uptake. To improve the heart uptake of the MIBG derivatives we have developed chemistry related to the

  14. A lophotrochozoan-specific nuclear hormone receptor is required for reproductive system development in the planarian

    PubMed Central

    Tharp, Marla E.; Collins, James J.; Newmark, Phillip A.

    2014-01-01

    Germ cells of sexually reproducing organisms receive an array of cues from somatic tissues that instruct developmental processes. Although the nature of these signals differs amongst organisms, the importance of germline-soma interactions is a common theme. Recently, peptide hormones from the nervous system have been shown to regulate germ cell development in the planarian Schmidtea mediterranea; thus, we sought to investigate a second class of hormones with a conserved role in reproduction, the lipophilic hormones. In order to study these signals, we identified a set of putative lipophilic hormone receptors, known as nuclear hormone receptors, and analyzed their functions in reproductive development. We found one gene, nhr-1, belonging to a small class of functionally uncharacterized lophotrochozoan-specific receptors, to be essential for the development of differentiated germ cells. Upon nhr-1 knockdown, germ cells in the testes and ovaries fail to mature, and remain as undifferentiated germline stem cells. Further analysis revealed that nhr-1 mRNA is expressed in the accessory reproductive organs and is required for their development, suggesting that this transcription factor functions cell non-autonomously in regulating germ cell development. Our studies identify a role for nuclear hormone receptors in planarian reproductive maturation and reinforce the significance of germline-soma interactions in sexual reproduction across metazoans. PMID:25278423

  15. Activation of delta-opioid receptors reduces excitatory input to putative gustatory cells within the nucleus of the solitary tract.

    PubMed

    Zhu, Mingyan; Cho, Young K; Li, Cheng-Shu

    2009-01-01

    The rostral nucleus of the solitary tract (NST) is the first central relay in the gustatory pathway and plays a key role in processing and modulation of gustatory information. Here, we investigated the effects of opioid receptor agonists and antagonists on synaptic responses of the gustatory parabrachial nuclei (PbN)-projecting neurons in the rostral NST to electrical stimulation of the solitary tract (ST) using whole cell recordings in the hamster brain stem slices. ST-evoked excitatory postsynaptic currents (EPSCs) were significantly reduced by met-enkephalin (MetE) in a concentration-dependent fashion and this effect was eliminated by naltrexone hydrochloride, a nonselective opioid receptor antagonist. Bath application of naltrindole hydrochloride, a selective delta-opioid receptor antagonist, eliminated MetE-induced reduction of EPSCs, whereas CTOP, a selective mu-opioid receptor antagonist had no effect, indicating that delta-opioid receptors are involved in the reduction of ST-evoked EPSCs induced by MetE. SNC80, a selective delta-opioid receptor agonist, mimicked the effect of MetE. The SNC80-induced reduction of ST-evoked EPSCs was eliminated by 7-benzylidenenaltrexone, a selective delta1-opioid receptor antagonist but not by naltriben mesylate, a selective delta2-opioid receptor antagonist, indicating that delta1-opioid receptors mediate the reduction of ST-evoked EPSCs induced by SNC80. Single-cell reverse transcriptase-polymerase chain reaction analysis revealed the presence of delta1-opioid receptor mRNA in cells that responded to SNC80 with a reduction in ST-evoked EPSCs. Moreover, Western blot analysis demonstrated the presence of 40-kDa delta-opioid receptor proteins in the rostral NST tissue. These results suggest that postsynaptic delta1-opioid receptors are involved in opioid-induced reduction of ST-evoked EPSCs of PbN-projecting rostral NST cells.

  16. Interaction of Clostridium perfringens epsilon-toxin with biological and model membranes: A putative protein receptor in cells.

    PubMed

    Manni, Marco M; Sot, Jesús; Goñi, Félix M

    2015-03-01

    Epsilon-toxin (ETX) is a powerful toxin produced by some strains of Clostridium perfringens (classified as types B and D) that is responsible for enterotoxemia in animals. ETX forms pores through the plasma membrane of eukaryotic cells, consisting of a β-barrel of 14 amphipathic β-strands. ETX shows a high specificity for certain cell lines, of which Madin-Darby canine kidney (MDCK) is the first sensitive cell line identified and the most studied one. The aim of this study was to establish the role of lipids in the toxicity caused by ETX and the correlation of its activity in model and biological membranes. In MDCK cells, using cell counting and confocal microscopy, we have observed that the toxin causes cell death mediated by toxin binding to plasma membrane. Moreover, ETX binds and permeabilizes the membranes of giant plasma membrane vesicles (GPMV). However, little effect is observed on protein-free vesicles. The data suggest the essential role of a protein receptor for the toxin in cell membranes.

  17. D-GPCR: a novel putative G protein-coupled receptor overexpressed in prostate cancer and prostate.

    PubMed

    Weigle, Bernd; Fuessel, Susanne; Ebner, Reinhard; Temme, Achim; Schmitz, Marc; Schwind, Sandra; Kiessling, Andrea; Rieger, Michael A; Meye, Axel; Bachmann, Michael; Wirth, Manfred P; Rieber, E Peter

    2004-09-10

    The use of molecular targets in novel strategies of tumor treatment largely depends on the identification of proteins with a tumor- or tissue-restricted expression. We identified the novel protein D-GPCR that is selectively overexpressed in human prostate cancer and prostate and belongs to the subfamily of odorant-like orphan G protein-coupled receptors. Quantification of D-GPCR transcripts in different human tissues by real-time PCR demonstrated 27-fold overexpression in prostate compared to skeletal muscle, the organ with second highest transcript numbers in males. Investigation of tumor/normal cDNA pairs obtained from 241 cancer patients including four prostate tumors confirmed the preferential expression in prostate. When comparing the mean transcript level of 15 prostate cancer tissues to their non-tumorous counterparts, D-GPCR was almost 6-fold upregulated. Coupled in vitro transcription and translation of D-GPCR cDNA produced a protein band of approximately 28 kDa. Recombinant, His-tagged protein was expressed in transfected HEK293 cells and gave rise to a 30 kDa band specifically detected by anti-His antibody. These data provide the basis for future studies evaluating the diagnostic potential of D-GPCR and its utility as a novel target in immunotherapy of prostate cancer.

  18. 0610009K11Rik, a testis-specific and germ cell nuclear receptor-interacting protein

    SciTech Connect

    Zhang Heng; Denhard, Leslie A.; Zhou Huaxin; Liu Lanhsin; Lan Zijian

    2008-02-22

    Using an in silico approach, a putative nuclear receptor-interacting protein 0610009K11Rik was identified in mouse testis. We named this gene testis-specific nuclear receptor-interacting protein-1 (Tnrip-1). Tnrip-1 was predominantly expressed in the testis of adult mouse tissues. Expression of Tnrip-1 in the testis was regulated during postnatal development, with robust expression in 14-day-old or older testes. In situ hybridization analyses showed that Tnrip-1 is highly expressed in pachytene spermatocytes and spermatids. Consistent with its mRNA expression, Tnrip-1 protein was detected in adult mouse testes. Immunohistochemical studies showed that Tnrip-1 is a nuclear protein and mainly expressed in pachytene spermatocytes and round spermatids. Moreover, co-immunoprecipitation analyses showed that endogenous Tnrip-1 protein can interact with germ cell nuclear receptor (GCNF) in adult mouse testes. Our results suggest that Tnrip-1 is a testis-specific and GCNF-interacting protein which may be involved in the modulation of GCNF-mediated gene transcription in spermatogenic cells within the testis.

  19. DISC1 Regulates Primary Cilia That Display Specific Dopamine Receptors

    PubMed Central

    Marley, Aaron; von Zastrow, Mark

    2010-01-01

    Background Mutations in the DISC1 gene are strongly associated with major psychiatric syndromes such as schizophrenia. DISC1 encodes a cytoplasmic protein with many potential interaction partners, but its cellular functions remain poorly understood. We identified a role of DISC1 in the cell biology of primary cilia that display disease-relevant dopamine receptors. Methodology/Principal Findings A GFP-tagged DISC1 construct expressed in NIH3T3 cells and rat striatal neurons localized near the base of primary cilia. RNAi-mediated knockdown of endogenous DISC1 resulted in a marked reduction in the number of cells expressing a primary cilium. FLAG-tagged versions of the cloned human D1, D2 and D5 dopamine receptors concentrated highly on the ciliary surface, and this reflects a specific targeting mechanism specific because D3 and D4 receptors localized to the plasma membrane but were not concentrated on cilia. Conclusions/Significance These results identify a role of DISC1 in regulating the formation and/or maintenance of primary cilia, and establish subtype-specific targeting of dopamine receptors to the ciliary surface. Our findings provide new insight to receptor cell biology and suggest a relationship between DISC1 and neural dopamine signaling. PMID:20531939

  20. A mutant cell line resistant to Vibrio parahaemolyticus thermostable direct hemolysin (TDH): its potential in identification of putative receptor for TDH.

    PubMed

    Tang, G; Iida, T; Inoue, H; Yutsudo, M; Yamamoto, K; Honda, T

    1997-05-24

    Thermostable direct hemolysin (TDH), a pore-forming toxin produced by Vibrio parahaemolyticus, is cytotoxic to Rat-1, a fibroblast cell line derived from rat embryo. Through mutagenesis of Rat-1 with nitrosoguanidine, we established a mutant cell line, MR-T1. MR-T1 was over 200 times more resistant to the cytotoxic activity of TDH than Rat-1. TDH increased membrane permeability of Rat-1 but not of MR-T1. Binding analysis showed that, while being able to bind to Rat-1. TDH failed to bind to MR-T1, indicating that MR-T1 is deficient in the putative receptor for TDH. Somatic hybrid cells between Rat-1 and MR-T1 were similarly sensitive to TDH as Rat-1. Moreover, TDH could bind to the hybrid cells as well as to Rat-1 cells. These results indicate that MR-T1 is promising for complementation cloning of a gene related to the putative receptor for TDH.

  1. Identification of Putative Nuclear Receptors and Steroidogenic Enzymes in Murray-Darling Rainbowfish (Melanotaenia fluviatilis) Using RNA-Seq and De Novo Transcriptome Assembly.

    PubMed

    Bain, Peter A; Papanicolaou, Alexie; Kumar, Anupama

    2015-01-01

    Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish.

  2. Identification of Putative Nuclear Receptors and Steroidogenic Enzymes in Murray-Darling Rainbowfish (Melanotaenia fluviatilis) Using RNA-Seq and De Novo Transcriptome Assembly

    PubMed Central

    Bain, Peter A.; Papanicolaou, Alexie; Kumar, Anupama

    2015-01-01

    Murray-Darling rainbowfish (Melanotaenia fluviatilis [Castelnau, 1878]; Atheriniformes: Melanotaeniidae) is a small-bodied teleost currently under development in Australasia as a test species for aquatic toxicological studies. To date, efforts towards the development of molecular biomarkers of contaminant exposure have been hindered by the lack of available sequence data. To address this, we sequenced messenger RNA from brain, liver and gonads of mature male and female fish and generated a high-quality draft transcriptome using a de novo assembly approach. 149,742 clusters of putative transcripts were obtained, encompassing 43,841 non-redundant protein-coding regions. Deduced amino acid sequences were annotated by functional inference based on similarity with sequences from manually curated protein sequence databases. The draft assembly contained protein-coding regions homologous to 95.7% of the complete cohort of predicted proteins from the taxonomically related species, Oryzias latipes (Japanese medaka). The mean length of rainbowfish protein-coding sequences relative to their medaka homologues was 92.1%, indicating that despite the limited number of tissues sampled a large proportion of the total expected number of protein-coding genes was captured in the study. Because of our interest in the effects of environmental contaminants on endocrine pathways, we manually curated subsets of coding regions for putative nuclear receptors and steroidogenic enzymes in the rainbowfish transcriptome, revealing 61 candidate nuclear receptors encompassing all known subfamilies, and 41 putative steroidogenic enzymes representing all major steroidogenic enzymes occurring in teleosts. The transcriptome presented here will be a valuable resource for researchers interested in biomarker development, protein structure and function, and contaminant-response genomics in Murray-Darling rainbowfish. PMID:26599404

  3. Differential ligand-dependent interactions between the AF-2 activating domain of nuclear receptors and the putative transcriptional intermediary factors mSUG1 and TIF1.

    PubMed Central

    vom Baur, E; Zechel, C; Heery, D; Heine, M J; Garnier, J M; Vivat, V; Le Douarin, B; Gronemeyer, H; Chambon, P; Losson, R

    1996-01-01

    Using a yeast two-hybrid system we report the isolation of a novel mouse protein, mSUG1, that interacts with retinoic acid receptor alpha (RAR alpha) both in yeast cells and in vitro in a ligand- and AF-2 activating domain (AF-2 AD)-dependent manner and show that it is a structural and functional homologue of the essential yeast protein SUG1. mSUG1 also efficiently interacts with other nuclear receptors, including oestrogen (ER), thyroid hormone (TR), Vitamin D3 (VDR) and retinoid X (RXR) receptors. By comparing the interaction properties of these receptors with mSUG1 and TIF1, we demonstrate that: (i) RXR alpha efficiently interacts with TIF1, but not with mSUG1, whereas TR alpha interacts much more efficiently with mSUG1 than with TIF1, and RAR alpha, VDR and ER efficiently interact with mSUG1 and TIF1; (ii) the amphipathic alpha-helix core of the AF-2 AD is differentially involved in interactions of RAR alpha with mSUG1 and TIF1; (iii) the AF-2 AD cores of RAR alpha and ER are similarly involved in their interaction with TIF1, but not with mSUG1. Thus, the interaction interfaces between the different receptors and either mSUG1 or TIF1 may vary depending on the nature of the receptor and the putative mediator of its AF-2 function. We discuss the possibility that mSUG1 and TIF1 may mediate the transcriptional activity of the AF-2 of nuclear receptors through different mechanisms. Images PMID:8598193

  4. Identification of Androgen Receptor-Specific Enhancer RNAs

    DTIC Science & Technology

    2016-06-01

    AND SUBTITLE Identification of Androgen Receptor-Specific Enhancer RNAs 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH-15-1-0120 5c. PROGRAM ELEMENT...enhancer RNAs in response to androgen treatment such that these enhancer RNAs may serve as novel biomarkers for prostate cancer diagnosis and prognosis

  5. Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors

    PubMed Central

    Eaton, Megan M.; Cao, Lily Q.; Chen, Ziwei; Franks, Nicholas P.; Evers, Alex S.

    2015-01-01

    Propofol is a sedative and anesthetic agent that can both activate GABAA receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABAA receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains of one subunit and the M2 domain of the neighboring subunit. The goal of the present study was to gain functional evidence for the involvement of this pocket in the actions of propofol. Human β3 and α1β3 receptors were expressed in Xenopus oocytes, and the effects of substitutions of selected residues were probed on channel activation by propofol and pentobarbital. The data demonstrate the vital role of the β3(Y143), β3(F221), β3(Q224), and β3(T266) residues in the actions of propofol but not pentobarbital in β3 receptors. The effects of β3(Y143W) and β3(Q224W) on activation by propofol are likely steric because propofol analogs with less bulky ortho substituents activated both wild-type and mutant receptors. The T266W mutation removed activation by propofol in β3 homomeric receptors; however, this mutation alone or in combination with a homologous mutation (I271W) in the α1 subunit had almost no effect on activation properties in α1β3 heteromeric receptors. We hypothesize that heteromeric α1β3 receptors can be activated by propofol interactions with β3–β3, α1–β3, and β3–α1 interfaces, but the exact locations of the binding site and/or nature of interactions vary in different classes of interfaces. PMID:26206487

  6. Mutational Analysis of the Putative High-Affinity Propofol Binding Site in Human β3 Homomeric GABAA Receptors.

    PubMed

    Eaton, Megan M; Cao, Lily Q; Chen, Ziwei; Franks, Nicholas P; Evers, Alex S; Akk, Gustav

    2015-10-01

    Propofol is a sedative and anesthetic agent that can both activate GABA(A) receptors and potentiate receptor activation elicited by submaximal concentrations of the transmitter. A recent modeling study of the β3 homomeric GABA(A) receptor postulated a high-affinity propofol binding site in a hydrophobic pocket in the middle of a triangular cleft lined by the M1 and M2 membrane-spanning domains of one subunit and the M2 domain of the neighboring subunit. The goal of the present study was to gain functional evidence for the involvement of this pocket in the actions of propofol. Human β3 and α1β3 receptors were expressed in Xenopus oocytes, and the effects of substitutions of selected residues were probed on channel activation by propofol and pentobarbital. The data demonstrate the vital role of the β3(Y143), β3(F221), β3(Q224), and β3(T266) residues in the actions of propofol but not pentobarbital in β3 receptors. The effects of β3(Y143W) and β3(Q224W) on activation by propofol are likely steric because propofol analogs with less bulky ortho substituents activated both wild-type and mutant receptors. The T266W mutation removed activation by propofol in β3 homomeric receptors; however, this mutation alone or in combination with a homologous mutation (I271W) in the α1 subunit had almost no effect on activation properties in α1β3 heteromeric receptors. We hypothesize that heteromeric α1β3 receptors can be activated by propofol interactions with β3-β3, α1-β3, and β3-α1 interfaces, but the exact locations of the binding site and/or nature of interactions vary in different classes of interfaces.

  7. Putative sex-specific human pheromones do not affect gender perception, attractiveness ratings or unfaithfulness judgements of opposite sex faces

    PubMed Central

    Hare, Robin M.; Schlatter, Sophie; Rhodes, Gillian

    2017-01-01

    Debate continues over the existence of human sex pheromones. Two substances, androstadienone (AND) and estratetraenol (EST), were recently reported to signal male and female gender, respectively, potentially qualifying them as human sex pheromones. If AND and EST truly signal gender, then they should affect reproductively relevant behaviours such as mate perception. To test this hypothesis, heterosexual, Caucasian human participants completed two computer-based tasks twice, on two consecutive days, exposed to a control scent on one day and a putative pheromone (AND or EST) on the other. In the first task, 46 participants (24 male, 22 female) indicated the gender (male or female) of five gender-neutral facial morphs. Exposure to AND or EST had no effect on gender perception. In the second task, 94 participants (43 male, 51 female) rated photographs of opposite-sex faces for attractiveness and probable sexual unfaithfulness. Exposure to the putative pheromones had no effect on either attractiveness or unfaithfulness ratings. These results are consistent with those of other experimental studies and reviews that suggest AND and EST are unlikely to be human pheromones. The double-blind nature of the current study lends increased support to this conclusion. If human sex pheromones affect our judgements of gender, attractiveness or unfaithfulness from faces, they are unlikely to be AND or EST. PMID:28405372

  8. Putative sex-specific human pheromones do not affect gender perception, attractiveness ratings or unfaithfulness judgements of opposite sex faces.

    PubMed

    Hare, Robin M; Schlatter, Sophie; Rhodes, Gillian; Simmons, Leigh W

    2017-03-01

    Debate continues over the existence of human sex pheromones. Two substances, androstadienone (AND) and estratetraenol (EST), were recently reported to signal male and female gender, respectively, potentially qualifying them as human sex pheromones. If AND and EST truly signal gender, then they should affect reproductively relevant behaviours such as mate perception. To test this hypothesis, heterosexual, Caucasian human participants completed two computer-based tasks twice, on two consecutive days, exposed to a control scent on one day and a putative pheromone (AND or EST) on the other. In the first task, 46 participants (24 male, 22 female) indicated the gender (male or female) of five gender-neutral facial morphs. Exposure to AND or EST had no effect on gender perception. In the second task, 94 participants (43 male, 51 female) rated photographs of opposite-sex faces for attractiveness and probable sexual unfaithfulness. Exposure to the putative pheromones had no effect on either attractiveness or unfaithfulness ratings. These results are consistent with those of other experimental studies and reviews that suggest AND and EST are unlikely to be human pheromones. The double-blind nature of the current study lends increased support to this conclusion. If human sex pheromones affect our judgements of gender, attractiveness or unfaithfulness from faces, they are unlikely to be AND or EST.

  9. Antennal transcriptomes of three tortricid moths reveal putative conserved chemosensory receptors for social and habitat olfactory cues

    PubMed Central

    Gonzalez, Francisco; Witzgall, Peter; Walker, William B.

    2017-01-01

    Insects use chemical signals to find mates, food and oviposition sites. The main chemoreceptor gene families comprise odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs). Understanding the evolution of these receptors as well as their function will assist in advancing our knowledge of how chemical stimuli are perceived and may consequently lead to the development of new insect management strategies. Tortricid moths are important pests in horticulture, forestry and agriculture around the globe. Here, we characterize chemoreceptors from the three main gene families of three economically important tortricids, based on male antennal transcriptomes using an RNA-Seq approach. We identified 49 ORs, 11 GRs and 23 IRs in the green budworm moth, Hedya nubiferana; 49 ORs, 12 GRs and 19 IRs in the beech moth, Cydia fagiglandana; and 48 ORs, 11 GRs and 19 IRs in the pea moth, Cydia nigricana. Transcript abundance estimation, phylogenetic relationships and molecular evolution rate comparisons with deorphanized receptors of Cydia pomonella allow us to hypothesize conserved functions and therefore candidate receptors for pheromones and kairomones. PMID:28150741

  10. Molecular Characterization and Functional Analysis of a Putative Octopamine/Tyramine Receptor during the Developmental Stages of the Pacific Oyster, Crassostrea gigas

    PubMed Central

    Ji, Peng; Xu, Fei; Huang, Baoyu; Li, Yingxiang; Li, Li; Zhang, Guofan

    2016-01-01

    Octopamine (OA) and its precursor, tyramine (TA), participate in invertebrate development such as growth, maturation, and reproduction by activating their corresponding G protein-coupled receptors (GPCRs). Although OA was first discovered in mollusks (octopus), subsequent studies on OA, TA and related receptors have primarily been conducted in Ecdysozoa, especially in insects. Accordingly, only limited reports on OA/TA receptors in mollusks are available and their physiological roles remain unclear. Here, a full-length cDNA encoding a putative 524 amino acid OA/TA receptor (CgGPR1) was isolated from the Pacific oyster Crassostrea gigas. CgGPR1 was most closely related to the Lymnaea stagnalis OA receptor OAR2 in sequence. Phylogenetic analysis showed that CgGPR1 belongs to a poorly studied subfamily of invertebrate OA/TA receptors. The spatio-temporal expression of CgGPR1 in C. gigas larvae was examined by quantitative real-time PCR and Western blot analysis. CgGPR1 was expressed during all developmental stages of C. gigas with higher levels at mid-developmental stages, indicating its potential role in embryogenesis and tissue differentiation. Immunoreactive fluorescence of CgGPR1 was mainly observed in the velum, foot, gill and mantle of C. gigas larvae. CgGPR1 transcripts were detected in all the tested organs of adult C. gigas, with highest level in the mantle. Pharmacological analysis showed that cAMP and Ca2+ concentrations remained unchanged in HEK293 cells expressing CgGPR1 upon addition of OA, TA or related amines, suggesting that CgGPR1 modulates other unknown molecules rather than cAMP and Ca2+. Our study sheds light on CgGPR1 function in oysters. PMID:27992549

  11. Classification of Na channel receptors specific for various scorpion toxins.

    PubMed

    Wheeler, K P; Watt, D D; Lazdunski, M

    1983-04-01

    1. The specific binding to rat brain synaptosomes of a radiolabelled derivative of toxin II from the scorpion Centruroides suffusus suffusus could be prevented by toxins III and IV, but not by toxin V or variants 1-3, from the venom of Centruroides sculpturatus. 2. The specific binding of a similar derivative of toxin II from Androctonus australis Hector was not affected by any of the toxins from Centruroides sculpturatus. 3. There is biochemical evidence for only two distinct classes of Na channel receptors specific for known scorpion toxins.

  12. Specific Roles of NMDA Receptor Subunits in Mental Disorders

    PubMed Central

    Yamamoto, H.; Hagino, Y.; Kasai, S.; Ikeda, K.

    2015-01-01

    N-methyl-D-aspartate (NMDA) receptor plays important roles in learning and memory. NMDA receptors are a tetramer that consists of two glycine-binding subunits GluN1, two glutamate-binding subunits (i.e., GluN2A, GluN2B, GluN2C, and GluN2D), a combination of a GluN2 subunit and glycine-binding GluN3 subunit (i.e., GluN3A or GluN3B), or two GluN3 subunits. Recent studies revealed that the specific expression and distribution of each subunit are deeply involved in neural excitability, plasticity, and synaptic deficits. The present article summarizes reports on the dysfunction of NMDA receptors and responsible subunits in various neurological and psychiatric disorders, including schizophrenia, autoimmune-induced glutamatergic receptor dysfunction, mood disorders, and autism. A key role for the GluN2D subunit in NMDA receptor antagonist-induced psychosis has been recently revealed. PMID:25817860

  13. Quantity and accessibility for specific targeting of receptors in tumours

    NASA Astrophysics Data System (ADS)

    Hussain, Sajid; Rodriguez-Fernandez, Maria; Braun, Gary B.; Doyle, Francis J.; Ruoslahti, Erkki

    2014-06-01

    Synaphic (ligand-directed) targeting of drugs is an important potential new approach to drug delivery, particularly in oncology. Considerable success with this approach has been achieved in the treatment of blood-borne cancers, but the advances with solid tumours have been modest. Here, we have studied the number and availability for ligand binding of the receptors for two targeting ligands. The results show that both paucity of total receptors and their poor availability are major bottlenecks in drug targeting. A tumour-penetrating peptide greatly increases the availability of receptors by promoting transport of the drug to the extravascular tumour tissue, but the number of available receptors still remains low, severely limiting the utility of the approach. Our results emphasize the importance of using drugs with high specific activity to avoid exceeding receptor capacity because any excess drug conjugate would lose the targeting advantage. The mathematical models we describe make it possible to focus on those aspects of the targeting mechanism that are most likely to have a substantial effect on the overall efficacy of the targeting.

  14. Macrophage P2X7 Receptor Function Is Reduced during Schistosomiasis: Putative Role of TGF-β1

    PubMed Central

    Oliveira, Suellen D'arc Santos; Nanini, Hayandra Ferreira; Savio, Luiz Eduardo Baggio; Waghabi, Mariana Caldas; Silva, Claudia Lucia Martins

    2014-01-01

    Schistosomiasis is a chronic inflammatory disease whose macrophages are involved in immunopathology modulation. Although P2X7 receptor signaling plays an important role in inflammatory responses mediated by macrophages, no reports have examined the role of P2X7 receptors in macrophage function during schistosomiasis. Thus, we evaluated P2X7 receptor function in peritoneal macrophages during schistosomiasis using an ATP-induced permeabilization assay and measurements of the intracellular Ca2+ concentration. ATP treatment induced significantly less permeabilization in macrophages from S. mansoni-infected mice than in control cells from uninfected animals. Furthermore, P2X7-mediated increases in intracellular Ca2+ levels were also reduced in macrophages from infected mice. TGF-β1 levels were increased in the peritoneal cavity of infected animals, and pretreatment of control macrophages with TGF-β1 reduced ATP-induced permeabilization, mimicking the effect of S. mansoni infection. Western blot and qRT-PCR data showed no difference in P2X7 protein and mRNA between uninfected, infected, and TGF-β1-treated groups. However, immunofluorescence analysis revealed reduced cell surface localization of P2X7 receptors in macrophages from infected and TGF-β1-treated mice compared to controls. Therefore, our data suggest that schistosomiasis reduces peritoneal macrophage P2X7 receptor signaling. This effect is likely due to the fact that infected mice have increased levels of TGF-β1, which reduces P2X7 receptor cell surface expression. PMID:25276050

  15. Identification of Putative Steroid Receptor Antagonists in Bottled Water: Combining Bioassays and High-Resolution Mass Spectrometry

    PubMed Central

    Wagner, Martin; Schlüsener, Michael P.; Ternes, Thomas A.; Oehlmann, Jörg

    2013-01-01

    Endocrine disrupting chemicals (EDCs) are man-made compounds interfering with hormone signaling and thereby adversely affecting human health. Recent reports provide evidence for the presence of EDCs in commercially available bottled water, including steroid receptor agonists and antagonists. However, since these findings are based on biological data the causative chemicals remain unidentified and, therefore, inaccessible for toxicological evaluation. Thus, the aim of this study is to assess the antiestrogenic and antiandrogenic activity of bottled water and to identify the causative steroid receptor antagonists. We evaluated the antiestrogenic and antiandrogenic activity of 18 bottled water products in reporter gene assays for human estrogen receptor alpha and androgen receptor. Using nontarget high-resolution mass spectrometry (LTQ-Orbitrap Velos), we acquired corresponding analytical data. We combined the biological and chemical information to determine the exact mass of the tentative steroid receptor antagonist. Further MSn experiments elucidated the molecule’s structure and enabled its identification. We detected significant antiestrogenicity in 13 of 18 products. 16 samples were antiandrogenic inhibiting the androgen receptor by up to 90%. Nontarget chemical analysis revealed that out of 24520 candidates present in bottled water one was consistently correlated with the antagonistic activity. By combining experimental and in silico MSn data we identified this compound as di(2-ethylhexyl) fumarate (DEHF). We confirmed the identity and biological activity of DEHF and additional isomers of dioctyl fumarate and maleate using authentic standards. Since DEHF is antiestrogenic but not antiandrogenic we conclude that additional, yet unidentified EDCs must contribute to the antagonistic effect of bottled water. Applying a novel approach to combine biological and chemical analysis this is the first study to identify so far unknown EDCs in bottled water. Notably

  16. Effect of specific amino acid substitutions in the putative fusion peptide of structural glycoprotein E2 on Classical Swine Fever Virus replication

    SciTech Connect

    Fernández-Sainz, I.J.; Largo, E.; Gladue, D.P.; Fletcher, P.; O’Donnell, V.; Holinka, L.G.; Carey, L.B.; Lu, X.; Nieva, J.L.; Borca, M.V.

    2014-05-15

    E2, along with E{sup rns} and E1, is an envelope glycoprotein of Classical Swine Fever Virus (CSFV). E2 is involved in several virus functions: cell attachment, host range susceptibility and virulence in natural hosts. Here we evaluate the role of a specific E2 region, {sup 818}CPIGWTGVIEC{sup 828}, containing a putative fusion peptide (FP) sequence. Reverse genetics utilizing a full-length infectious clone of the highly virulent CSFV strain Brescia (BICv) was used to evaluate how individual amino acid substitutions within this region of E2 may affect replication of BICv. A synthetic peptide representing the complete E2 FP amino acid sequence adopted a β-type extended conformation in membrane mimetics, penetrated into model membranes, and perturbed lipid bilayer integrity in vitro. Similar peptides harboring amino acid substitutions adopted comparable conformations but exhibited different membrane activities. Therefore, a preliminary characterization of the putative FP {sup 818}CPIGWTGVIEC{sup 828} indicates a membrane fusion activity and a critical role in virus replication. - Highlights: • A putative fusion peptide (FP) region in CSFV E2 protein was shown to be critical for virus growth. • Synthetic FPs were shown to efficiently penetrate into lipid membranes using an in vitro model. • Individual residues in the FP affecting virus replication were identified by reverse genetics. • The same FP residues are also responsible for mediating membrane fusion.

  17. Differential splicing of human androgen receptor pre-mRNA in X-linked reifenstein syndrome, because of a deletion involving a putative branch site

    SciTech Connect

    Ris-Stalpers, C.; Verleun-Mooijman, M.C.T.; Blaeij, T.J.P. de; Brinkmann, A.O.; Degenhart, H.J.; Trapman, J. )

    1994-04-01

    The analysis of the androgen receptor (AR) gene, mRNA, and protein in a subject with X-linked Reifenstein syndrome (partial androgen insensitivity) is reported. The presence of two mature AR transcripts in genital skin fibroblasts of the patient is established, and, by reverse transcriptase-PCR and RNase transcription analysis, the wild-type transcript and a transcript in which exon 3 sequences are absent without disruption of the translational reading frame are identified. Sequencing and hybridization analysis show a deletion of >6 kb in intron 2 of the human AR gene, starting 18 bp upstream of exon 3. The deletion includes the putative branch-point sequence (BPS) but not the acceptor splice site on the intron 2/exon 3 boundary. The deletion of the putative intron 2 BPS results in 90% inhibition of wild-type splicing. The mutant transcript encodes an AR protein lacking the second zinc finger of the DNA-binding domain. Western/immunoblotting analysis is used to show that the mutant AR protein is expressed in genital skin fibroblasts of the patient. The residual 10% wild-type transcript can be the result of the use of a cryptic BPS located 63 bp upstream of the intron 2/exon 3 boundary of the mutant AR gene. The mutated AR protein has no transcription-activating potential and does not influence the transactivating properties of the wild-type AR, as tested in cotransfection studies. It is concluded that the partial androgen-insensitivity syndrome of this patient is the consequence of the limited amount of wild-type AR protein expressed in androgen target cells, resulting from the deletion of the intron 2 putative BPS. 42 refs., 6 figs., 1 tab.

  18. Regulation of the expression of a putative ethylene receptor, PeERS2, during the development of passion fruit (Passiflora edulis).

    PubMed

    Mita, Satoru; Kawamura, Syoichiro; Asai, Tatsuo

    2002-02-01

    We isolated a full-length cDNA (PeERS2) that encoded the homologue in passion fruit of ERS1 of Arabidopsis and examined its expression during development of passion fruit. PeERS2 was 2357 bp long and included a single open reading frame that encoded a putative protein of 634 amino acids with a calculated molecular mass of 70.8 kDa. Expression of PeERS2 mRNA in arils of passion fruit was enhanced during ripening and after treatment with ethylene, but its level remained very low in seeds over the course of ripening. Accumulation of PeERS2 mRNA in arils was markedly reduced in fruits treated with 2,5-norbornadiene (NBD), but simultaneous application of ethylene abolished the inhibitory effects of NBD, suggesting that the continuous action of ethylene might promote ripening, with a concomitant increase in the abundance of PeERS2 mRNA. Levels of transcripts of the PeERS1 and PeERS2, which encode similar but not identical receptors for ethylene, increased during senescence of flowers and expression of PeERS2 mRNA was also enhanced during formation of the separation layer. The levels of transcripts of PeETR1 (the gene for yet another ethylene receptor) and PeERS1 were, respectively, higher than those of PeERS2 in sepals and ovaries. The transcripts of all three genes for ethylene receptors were barely detectable in anthers. These results suggest that the expression of the three genes for ethylene receptors is differentially regulated and that expression of the gene for PeERS2 is regulated not only by ethylene itself but also by developmental factors. Expression of each of the three individual genes for ethylene receptors might be controlled by different molecular mechanisms in the various tissues.

  19. A second gene for the African green monkey poliovirus receptor that has no putative N-glycosylation site in the functional N-terminal immunoglobulin-like domain.

    PubMed Central

    Koike, S; Ise, I; Sato, Y; Yonekawa, H; Gotoh, O; Nomoto, A

    1992-01-01

    Using cDNA of the human poliovirus receptor (PVR) as a probe, two types of cDNA clones of the monkey homologs were isolated from a cDNA library prepared from an African green monkey kidney cell line. Either type of cDNA clone rendered mouse L cells permissive for poliovirus infection. Homologies of the amino acid sequences deduced from these cDNA sequences with that of human PVR were 90.2 and 86.4%, respectively. These two monkey PVRs were found to be encoded in two different loci of the genome. Evolutionary analysis suggested that duplication of the PVR gene in the monkey genome had occurred after the species differentiation between humans and monkeys. The NH2-terminal immunoglobulin-like domain, domain 1, of the second monkey PVR, which lacks a putative N-glycosylation site, mediated poliovirus infection. In addition, a human PVR mutant without N-glycosylation sites in domain 1 also promoted viral infection. These results suggest that domain 1 of the monkey receptor also harbors the binding site for poliovirus and that sugar moieties possibly attached to this domain of human PVR are dispensable for the virus-receptor interaction. Images PMID:1331508

  20. An ABA-increased interaction of the PYL6 ABA receptor with MYC2 Transcription Factor: A putative link of ABA and JA signaling.

    PubMed

    Aleman, Fernando; Yazaki, Junshi; Lee, Melissa; Takahashi, Yohei; Kim, Alice Y; Li, Zixing; Kinoshita, Toshinori; Ecker, Joseph R; Schroeder, Julian I

    2016-06-30

    Abscisic acid (ABA) is a plant hormone that mediates abiotic stress tolerance and regulates growth and development. ABA binds to members of the PYL/RCAR ABA receptor family that initiate signal transduction inhibiting type 2C protein phosphatases. Although crosstalk between ABA and the hormone Jasmonic Acid (JA) has been shown, the molecular entities that mediate this interaction have yet to be fully elucidated. We report a link between ABA and JA signaling through a direct interaction of the ABA receptor PYL6 (RCAR9) with the basic helix-loop-helix transcription factor MYC2. PYL6 and MYC2 interact in yeast two hybrid assays and the interaction is enhanced in the presence of ABA. PYL6 and MYC2 interact in planta based on bimolecular fluorescence complementation and co-immunoprecipitation of the proteins. Furthermore, PYL6 was able to modify transcription driven by MYC2 using JAZ6 and JAZ8 DNA promoter elements in yeast one hybrid assays. Finally, pyl6 T-DNA mutant plants show an increased sensitivity to the addition of JA along with ABA in cotyledon expansion experiments. Overall, the present study identifies a direct mechanism for transcriptional modulation mediated by an ABA receptor different from the core ABA signaling pathway, and a putative mechanistic link connecting ABA and JA signaling pathways.

  1. Putative nicotinic acetylchloline receptor subunits express differentially through life cycle of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae)

    USDA-ARS?s Scientific Manuscript database

    Nicotinic acetylcholine receptors (nAChRs) are the targets of neonicotinoids and spinosads, two insecticides used in orchards to effectively control codling moth, Cydia pomonella (L.)(Lepidoptera: Tortricidae). The nAChRs mediate the fast actions of the neurotransmitter acetylcholine in synaptic tr...

  2. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry

    DTIC Science & Technology

    2015-09-02

    distribution is unlimited. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry The...Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry Report Title The mammalian odorant receptors...octanal. Aldehyde Recognition and Discrimination by Mammalian Odorant Receptors via Functional Group-Specific Hydration Chemistry Approved for public

  3. Identification of the putative binding pocket of valerenic acid on GABAA receptors using docking studies and site‐directed mutagenesis

    PubMed Central

    Luger, D; Poli, G; Wieder, M; Stadler, M; Ke, S; Ernst, M; Hohaus, A; Linder, T; Seidel, T; Langer, T; Hering, S

    2015-01-01

    Background and Purpose β2/3‐subunit‐selective modulation of GABAA receptors by valerenic acid (VA) is determined by the presence of transmembrane residue β2/3N265. Currently, it is not known whether β2/3N265 is part of VA's binding pocket or is involved in the transduction pathway of VA's action. The aim of this study was to clarify the localization of VA's binding pocket on GABAA receptors. Experimental Approach Docking and a structure‐based three‐dimensional pharmacophore were employed to identify candidate amino acid residues that are likely to interact with VA. Selected amino acid residues were mutated, and VA‐induced modulation of the resulting GABAA receptors expressed in Xenopus oocytes was analysed. Key Results A binding pocket for VA at the β+/α− interface encompassing amino acid β3N265 was predicted. Mutational analysis of suggested amino acid residues revealed a complete loss of VA's activity on β3M286W channels as well as significantly decreased efficacy and potency of VA on β3N265S and β3F289S receptors. In addition, reduced efficacy of VA‐induced I GABA enhancement was also observed for α1M235W, β3R269A and β3M286A constructs. Conclusions and Implications Our data suggest that amino acid residues β3N265, β3F289, β3M286, β3R269 in the β3 subunit, at or near the etomidate/propofol binding site(s), form part of a VA binding pocket. The identification of the binding pocket for VA is essential for elucidating its pharmacological effects and might also help to develop new selective GABAA receptor ligands. PMID:26375408

  4. Human homologs of the putative G protein-coupled membrane progestin receptors (mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not activated by progesterone.

    PubMed

    Krietsch, Tom; Fernandes, Maria Sofia; Kero, Jukka; Lösel, Ralf; Heyens, Maria; Lam, Eric W-F; Huhtaniemi, Ilpo; Brosens, Jan J; Gellersen, Birgit

    2006-12-01

    The steroid hormone progesterone exerts pleiotrophic functions in many cell types. Although progesterone controls transcriptional activation through binding to its nuclear receptors, it also initiates rapid nongenomic signaling events. Recently, three putative membrane progestin receptors (mPRalpha, beta, and gamma) with structural similarity to G protein-coupled receptors have been identified. These mPR isoforms are expressed in a tissue-specific manner and belong to the larger, highly conserved family of progestin and adiponectin receptors found in plants, eubacteria, and eukaryotes. The fish mPRalpha has been reported to mediate progesterone-dependent MAPK activation and inhibition of cAMP production through coupling to an inhibitory G protein. To functionally characterize the human homologs, we established human embryonic kidney 293 and MDA-MB-231 cell lines that stably express human mPRalpha, beta, or gamma. For comparison, we also established cell lines expressing the mPRalpha cloned from the spotted seatrout (Cynoscion nebulosus) and Japanese pufferfish (Takifugu rubripes). Surprisingly, we found no evidence that human or fish mPRs regulate cAMP production or MAPK (ERK1/2 or p38) activation upon progesterone stimulation. Furthermore, the mPRs did not couple to a highly promiscuous G protein subunit, Galpha(q5i), in transfection studies or provoke Ca(2+) mobilization in response to progesterone. Finally, we demonstrate that transfected mPRs, as well as endogenous human mPRalpha, localize to the endoplasmic reticulum, and that their expression does not lead to increased progestin binding either in membrane preparations or in intact cells. Our results therefore do not support the concept that mPRs are plasma membrane receptors involved in transducing nongenomic progesterone actions.

  5. The impact of the Bacillus subtilis SPB1 biosurfactant on the midgut histology of Spodoptera littoralis (Lepidoptera: Noctuidae) and determination of its putative receptor.

    PubMed

    Ghribi, Dhouha; Abdelkefi-Mesrati, Lobna; Boukedi, Hanen; Elleuch, Mouna; Ellouze-Chaabouni, Semia; Tounsi, Slim

    2012-02-01

    SPB1 is a Bacillus subtilis strain producing a lipopeptide biosurfactant. The insecticidal activity of this biosurfactant was evaluated against the Egyptian cotton leaf worm (Spodoptera littoralis). It displayed toxicity with an LC(50) of 251 ng/cm(2). The histopathological changes occurred in the larval midgut of S. littoralis treated with B. subtilis SPB1 biosurfactant were vesicle formation in the apical region, cellular vacuolization and destruction of epithelial cells and their boundaries. Ligand-blotting experiments with S. littoralis brush border membrane vesicles showed binding of SPB1 biosurfactant to a protein of 45 kDa corresponding to its putative receptor. The latter differs in molecular size from those recognized by Bacillus thuringiensis Vip3A and Cry1C toxins, commonly known by their activity against S. littoralis. This result wires the application of B. subtilis biosurfactant for effective control of S. littoralis larvae, particularly in the cases where S. littoralis will develop resistance against B. thuringiensis toxins.

  6. Teaghrelins, unique acylated flavonoid tetraglycosides in Chin-shin oolong tea, are putative oral agonists of the ghrelin receptor.

    PubMed

    Lo, Yuan-Hao; Chen, Ying-Jie; Chang, Chi-I; Lin, Yi-Wen; Chen, Chung-Yu; Lee, Maw-Rong; Lee, Viola S Y; Tzen, Jason T C

    2014-06-04

    Chin-shin oolong tea, a popular tea in Taiwan, was empirically perceived to induce hunger and accelerate gastric emptying in a manner similar to the physiological effects of ghrelin, an endogenous acylated peptide known as the hunger hormone. Two unique acylated flavonoid tetraglycosides previously identified in Chin-shin oolong tea were demonstrated to induce hunger of rats in a food intake assay and, thus, named teaghrelin-1 and teaghrelin-2. Similar to GHRP-6, a synthetic analogue of ghrelin, teaghrelin-1 stimulated growth hormone secretion of rat primary anterior pituitary cells in a dose-dependent manner, and the stimulation was inhibited by [D-Arg(1),D-Phe(5),D-Trp(7,9),Leu(11)]-substance P, an antagonist of the ghrelin receptor. While teaghrelin-2 remained unmodified, a meta-O-methylated metabolite of teaghrelin-1 was detected in bile of rats after intravenous injection. Presumably, teaghrelins are promising oral agonists of the ghrelin receptor.

  7. The expression and putative role of brain-derived neurotrophic factor and its receptor in bovine sperm.

    PubMed

    Li, C; Li, C; Zhu, X; Wang, C; Liu, Zhuo; Li, W; Lu, Chen; Zhou, Xu

    2012-02-01

    The neurotrophin family of proteins promote the survival and differentiation of nerve cells and are thought to play an important role in development of reproductive tissues. The objective of the present study was to detect the presence of Brain-derived neurotrophic factor (BDNF) and its receptor TrkB in bovine sperm, and explore the potential role of BDNF in sperm function. We demonstrated that both the neorotrophin BDNF and the tyrosine kinase receptor protein TrkB were expressed in ejaculated bovine sperm. Furthermore, BDNF per se was secreted by sperm. Insulin and leptin secretion by bovine sperm were increased (P < 0.01) when cells were exposed to exogenous BDNF, whereas insulin was decreased by K252a. Therefore, we inferred that BDNF could be a regulator of sperm secretion of insulin and leptin through the TrkB receptor. Sperm viability and mitochondrial activity were both decreased (P < 0.05) when the BDNF/TrkB signaling pathway was blocked with K252a. Furthermore, BDNF promoted apoptosis of bovine sperm through TrkB binding (P < 0.05). In conclusion, these observations provided evidence that BDNF secreted by bovine sperm was important in regulation of insulin and leptin secretion in ejaculated bovine sperm. Furthermore, BDNF may affect sperm mitochondrial activity and apoptosis, as well as their viability.

  8. Characterization of a putative S-locus encoded receptor protein kinase and its role in self-incompatibility. Progress report

    SciTech Connect

    Nasrallah, J.B.

    1994-05-01

    The major results of our research effort include the determination of the S-Receptor Kinase (SRK) gene structure, the demonstration of S-haplotype-associated SRK polymorphisms and possible co-evolution of SRK and SLG, the characterization of the temporal and spatial expression patterns of SRK, and the demonstration that SRK has intrinsic serine/threonine kinase activity. Our results have indicated that SLG originated from an SRK-like gene by a gene duplication event and suggested a possible molecular basis for leaky S haplotypes. The data have allowed us to develop a model of self-incompatibility based on the interaction of SRK and SLG and the activation of SRK in response to self-pollination. More generally, the information that we have obtained is potentially relevant to understanding mechanisms of signalling inplants. Thus, the interaction of membrane-based receptor protein kinases with secreted forms of their extracellular domains may represent a generalized mechanism by which receptors signal across the plant cell wall.

  9. Diverse FGF receptor signaling controls astrocyte specification and proliferation

    SciTech Connect

    Kang, Kyungjun; Song, Mi-Ryoung

    2010-05-07

    During CNS development, pluripotency neuronal progenitor cells give rise in succession to neurons and glia. Fibroblast growth factor-2 (FGF-2), a major signal that maintains neural progenitors in the undifferentiated state, is also thought to influence the transition from neurogenesis to gliogenesis. Here we present evidence that FGF receptors and underlying signaling pathways transmit the FGF-2 signals that regulate astrocyte specification aside from its mitogenic activity. Application of FGF-2 to cortical progenitors suppressed neurogenesis whereas treatment with an FGFR antagonist in vitro promoted neurogenesis. Introduction of chimeric FGFRs with mutated tyrosine residues into cortical progenitors and drug treatments to specifically block individual downstream signaling pathways revealed that the overall activity of FGFR rather than individual autophosphorylation sites is important for delivering signals for glial specification. In contrast, a signal for cell proliferation by FGFR was mainly delivered by MAPK pathway. Together our findings indicate that FGFR activity promotes astrocyte specification in the developing CNS.

  10. Prolonged signaling at the parathyroid hormone receptor by peptide ligands targeted to a specific receptor conformation

    PubMed Central

    Okazaki, Makoto; Ferrandon, Sebastien; Vilardaga, Jean-Pierre; Bouxsein, Mary L.; Potts, John T.; Gardella, Thomas J.

    2008-01-01

    The parathyroid hormone receptor (PTHR) is a class B G protein-coupled receptor that plays critical roles in bone and mineral ion metabolism. Ligand binding to the PTHR involves interactions to both the amino-terminal extracellular (N) domain, and transmembrane/extracellular loop, or juxtamembrane (J) regions of the receptor. Recently, we found that PTH(1–34), but not PTH-related protein, PTHrP(1–36), or M-PTH(1–14) (M = Ala/Aib1,Aib3,Gln10,Har11,Ala12,Trp14,Arg19), binds to the PTHR in a largely GTPγS-resistant fashion, suggesting selective binding to a novel, high-affinity conformation (R0), distinct from the GTPγS-sensitive conformation (RG). We examined the effects in vitro and in vivo of introducing the M substitutions, which enhance interaction to the J domain, into PTH analogs extended C-terminally to incorporate residues involved in the N domain interaction. As compared with PTH(1–34), M-PTH(1–28) and M-PTH(1–34) bound to R0 with higher affinity, produced more sustained cAMP responses in cells, formed more stable complexes with the PTHR in FRET and subcellular localization assays, and induced more prolonged calcemic and phosphate responses in mice. Moreover, after 2 weeks of daily injection in mice, M-PTH(1–34) induced larger increases in trabecular bone volume and greater increases in cortical bone turnover, than did PTH(1–34). Thus, the putative R0 PTHR conformation can form highly stable complexes with certain PTH ligand analogs and thereby mediate surprisingly prolonged signaling responses in bone and/or kidney PTH target cells. Controlling, via ligand analog design, the selectivity with which a PTH ligand binds to R0, versus RG, may be a strategy for optimizing signaling duration time, and hence therapeutic efficacy, of PTHR agonist ligands. PMID:18946036

  11. Changing T cell specificity by retroviral T cell receptor display

    PubMed Central

    Kessels, Helmut W. H. G.; van den Boom, Marly D.; Spits, Hergen; Hooijberg, Erik; Schumacher, Ton N. M.

    2000-01-01

    The diversity of the T cell receptor (TCR) repertoire is limited, because of the processes of positive and negative T cell selection. To obtain T cells with specificities beyond the immune system's capacity, we have developed a strategy for retroviral TCR display. In this approach, a library of T cell variants is generated in vitro and introduced into a TCR-negative murine T cell line by retroviral transfer. We document the value of TCR display by the creation of a library of an influenza A-specific TCR and the subsequent in vitro selection of TCRs that either recognize the parental influenza epitope or that have acquired a specificity for a different influenza A strain. The resulting in vitro selected TCRs induce efficient T cell activation after ligand recognition and are of equal or higher potency than the in vivo generated parent receptor. TCR display should prove a useful strategy for the generation of high-affinity tumor-specific TCRs for gene transfer purposes. PMID:11121060

  12. Theoretical analysis of flux amplification by soft magnetic material in a putative biological magnetic-field receptor.

    PubMed

    Shcherbakov, Valera P; Winklhofer, Michael

    2010-03-01

    Birds are endowed with a magnetic sense that allows them to detect Earth's magnetic field and to use it for orientation. Physiological and behavioral experiments have shown the upper beak to host a magnetoreceptor. Putative magnetoreceptive structures in the beak are nerve terminals that each contain a dozen or so of micrometer-sized clusters of superparamagnetic nanocrystals made of magnetite/maghemite and numerous electron-opaque platelets filled with a so far unidentified, amorphous ferric iron compound. The platelets typically form chainlike structures, which have been proposed to function as magnetic flux focusers for detecting the intensity of the geomagnetic field. Here, we test that proposition from first principles and develop an unconstrained model to determine the equilibrium distribution of magnetization along a linear chain of platelets which we assume to behave magnetically soft and to have no magnetic remanence. Our analysis, which is valid for arbitrary values of the intrinsic magnetic susceptibility chi , shows that chi needs to be much greater than unity to amplify the external field by two orders of magnitude in a chain of platelets. However, the high amplification is confined to the central region of the chain and subsides quadratically toward the ends of the chain. For large values of chi , the possibility opens up of realizing magnetoreceptor mechanisms on the basis of attraction forces between adjacent platelets in a linear chain. The force in the central region of the chain may amount to several pN, which would be sufficient to convert magnetic input energy into mechanical output energy. The striking feature of an ensemble of platelets is its ability to organize into tightly spaced chains under the action of an external field of given strength. We discuss how this property can be exploited for a magnetoreception mechanism.

  13. Fast receptor-induced formation of glycerophosphoinositol-4-phosphate, a putative novel intracellular messenger in the Ras pathway.

    PubMed Central

    Falasca, M; Carvelli, A; Iurisci, C; Qiu, R G; Symons, M H; Corda, D

    1997-01-01

    Glycerophosphoinositols are phosphoinositide metabolites whose levels are constitutively elevated in Ras-transformed cells. Here, we show that one of these compounds, glycerophosphoinositol-4-phosphate (GroPIns-4-P) responds acutely to the stimulation of the epidermal growth factor receptor, with a fast, massive and transient increase. The mechanism leading to GroPIns-4-P formation involves the activation of phosphoinositide-3 kinase and the small GTP-binding protein Rac, since GroPIns-4-P was neither formed in cells expressing the dominant negative form of Rac nor in cells treated with the phosphoinositide-3 kinase inhibitor wortmannin. GroPIns-4-P has been previously shown to inhibit adenylyl cyclase. Accordingly, epidermal growth factor also decreased the basal, cholera toxin-stimulated, and forskolin-stimulated cyclic AMP levels with kinetics similar to those of GroPIns-4-P formation, suggesting that GroPIns-4-P mediates this inhibitory effect. The hormone-induced formation of GroPIns-4-P was detected in several cell lines of various origin, suggesting that GroPIns-4-P is a novel intracellular messenger of the Ras pathway, possibly able to convey information from tyrosine kinase receptors to the cyclic AMP cascade. PMID:9188097

  14. Mediation of 5-hydroxytryptamine-induced tachycardia in the pig by the putative 5-HT4 receptor.

    PubMed Central

    Villalón, C. M.; den Boer, M. O.; Heiligers, J. P.; Saxena, P. R.

    1990-01-01

    Intravenous bolus injections of 5-hydroxytryptamine (5-HT; 3, 10 and 30 micrograms kg-1), 5-methoxytryptamine (5-MeO-T; 3, 10 and 30 micrograms kg-1), renzapride (BRL 24924; 3, 10, 30 and 100 micrograms kg-1) and isoprenaline (0.03, 0.1 and 0.3 micrograms kg-1) to anaesthetized pigs increased heart rate by, respectively, 22 +/- 3, 44 +/- 3 and 65 +/- 4 beats min-1 (5-HT; n = 17); 12 +/- 1, 26 +/- 2 and 44 +/- 4 beats min-1 (5-MeO-T; n = 15), 5 +/- 2, 11 +/- 2, 18 +/- 4 and 37 +/- 5 beats min-1 (renzapride; n = 8) and 17 +/- 2, 46 +/- 3 and 75 +/- 3 beats min-1 (isoprenaline; n = 13). The responses to 5-HT, 5-MeO-T and renzapride were antagonized by ICS 205-930 (1 and 3 mg kg-1, i.v.), which did not modify the increases in heart rate by isoprenaline. Renzapride showed tachyphylaxis and attenuated the responses to 5-HT. These findings indicate that 5-HT elicits tachycardia in the pig by acting on a novel receptor, either similar or identical to the 5-HT4 receptor identified in mouse brain colliculi. PMID:2207493

  15. Cloning of Frankia species putative tRNA(Pro) genes and their efficacy for pSAM2 site-specific integration in Streptomyces lividans.

    PubMed

    Alegre, M T; Cournoyer, B; Mesas, J M; Guérineau, M; Normand, P; Pernodet, J L

    1994-12-01

    pSAM2 is a conjugative Streptomyces ambofaciens mobile genetic element that can transfer and integrate site specifically in the genome. The chromosomal attachment site (attB) for pSAM2 site-specific recombination for two Frankia species was analyzed. It overlaps putative proline tRNA genes having a 3'-terminal CCA sequence, an uncommon feature among actinomycetes. pSAM2 is able to integrate into a cloned Frankia attB site harbored in Streptomyces lividans. The integration event removes the 3'-terminal CCA sequence and introduces a single nucleotide difference in the T psi C loop of the putative Frankia tRNA(Pro) gene. Major differences between the attP sequence from pSAM2 and the Frankia attB sequence restrict the identity segment to a 43-bp-long region. Only one mismatch is found between these well-conserved att segments. This nucleotide substitution makes a BstBI recognition site in Frankia attB and was used to localize the recombination site in a 25-bp region going from the anticodon to the T psi C loop of the tRNA(Pro) sequence. Integration of pSAM2 into the Frankia attB site is the first step toward introduction of pSAM2 derivatives into Frankia spp.

  16. Cloning of Frankia species putative tRNA(Pro) genes and their efficacy for pSAM2 site-specific integration in Streptomyces lividans.

    PubMed Central

    Alegre, M T; Cournoyer, B; Mesas, J M; Guérineau, M; Normand, P; Pernodet, J L

    1994-01-01

    pSAM2 is a conjugative Streptomyces ambofaciens mobile genetic element that can transfer and integrate site specifically in the genome. The chromosomal attachment site (attB) for pSAM2 site-specific recombination for two Frankia species was analyzed. It overlaps putative proline tRNA genes having a 3'-terminal CCA sequence, an uncommon feature among actinomycetes. pSAM2 is able to integrate into a cloned Frankia attB site harbored in Streptomyces lividans. The integration event removes the 3'-terminal CCA sequence and introduces a single nucleotide difference in the T psi C loop of the putative Frankia tRNA(Pro) gene. Major differences between the attP sequence from pSAM2 and the Frankia attB sequence restrict the identity segment to a 43-bp-long region. Only one mismatch is found between these well-conserved att segments. This nucleotide substitution makes a BstBI recognition site in Frankia attB and was used to localize the recombination site in a 25-bp region going from the anticodon to the T psi C loop of the tRNA(Pro) sequence. Integration of pSAM2 into the Frankia attB site is the first step toward introduction of pSAM2 derivatives into Frankia spp. PMID:7811067

  17. Molecular structure of rat brain apamin receptor: differential photoaffinity labeling of putative K/sup +/ channel subunits and target size analysis

    SciTech Connect

    Seagar, M.J.; Labbe-Jullie, C.; Granier, C.; Goll, A.; Glossmann, H.; Rietschoten, J.V.; Couraud, F.

    1986-07-01

    Two photoreactive apamin derivatives were prepared with an aryl azide group coupled at different positions on the neurotoxin molecule. These ligands were used to identify membrane components in the environment of the neuronal binding site that is associated with a Ca/sup 2 +/-activated K/sup +/ channel. /sup 125/I-(..cap alpha..-ANPAA-Cys/sub 1/)apamin labeled a single M/sub r/ 86,000 chain in cultured neurons whereas two bands corresponding to M/sub r/ 86,000 and 59,000 were detected in synaptic membrane preparations, suggesting that the M/sub r/ 59,000 polypeptide may be a degradation product. Randomly modified /sup 125/I-ANPAA-apamin gave a cross-linking profile equivalent to the sum of those obtained with the two defined derivatives. The apamin binding site seems to be located at the frontier between three or more putative K/sup +/ channel subunits which are only accessible from limited regions of the receptor-associated photoprobe. Irradiation of frozen rat brain membranes with high-energy electrons led to a reduction in /sup 125/I-apamin receptor capacity, yielding a target size for the functional binding unit of M/sub r/ 84,000-115,000, which could be constituted by the M/sub r/ 86,000 subunit alone or by the M/sub r/ 86,000 subunit in conjunction with one of the two smaller subunits.

  18. Further characterization, by use of tryptamine and benzamide derivatives, of the putative 5-HT4 receptor mediating tachycardia in the pig.

    PubMed Central

    Villalón, C. M.; den Boer, M. O.; Heiligers, J. P.; Saxena, P. R.

    1991-01-01

    1. It has recently been shown that the tachycardic response to 5-hydroxytryptamine (5-HT) in the anaesthetized pig, being mimicked by 5-methoxytryptamine and renzapride and blocked by high doses of ICS 205-930, is mediated by the putative 5-HT4 receptor. In the present investigation we have further characterized this receptor. 2. Intravenous bolus injections of the tryptamine derivatives, 5-HT (3, 10 and 30 micrograms kg-1), 5-methoxytryptamine (3, 10 and 30 micrograms kg-1) and alpha-methyl-5-hydroxytryptamine (alpha-methyl-5-HT; 3, 10, 30 and 100 micrograms kg-1), resulted in dose-dependent increases in heart rate of, respectively, 25 +/- 2, 48 +/- 3 and 68 +/- 3 beats min-1 (5-HT; n = 35); 15 +/- 1, 32 +/- 2 and 57 +/- 3 beats min-1 (5-methoxytryptamine; n = 30); 6 +/- 4, 18 +/- 6, 34 +/- 6 and 64 +/- 11 beats min-1 (alpha-methyl-5-HT; n = 3).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2043916

  19. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface

    NASA Astrophysics Data System (ADS)

    Gerszten, Robert E.; Chen, Ji; Ishli, Maki; Ishil, Kenji; Wang, Ling; Nanevicz, Tania; Turck, Christoph W.; Vu, Thien-Khai H.; Coughlin, Shaun R.

    1994-04-01

    G-PROTEIN-COUPLED receptors for catecholamines and some other small ligands are activated when agonists bind to the transmem-brane region of the receptor1. The docking interactions through which peptide agonists activate their receptors are less well characterized2-7. The thrombin receptor is a specialized peptide receptor. It is activated by binding its tethered ligand domain, which is unmasked upon receptor cleavage by thrombin8,9. Human and Xenopus thrombin receptor homologues are each selectively activated by the agonist peptide representing their respective tethered ligand domains. Here we identify receptor domains that confer this agonist specificity by replacing the Xenopus receptor's amino-terminal exodomain and three extracellular loops with the corresponding human structures. This switches receptor specificity from Xenopus to human. The specificity of these thrombin receptors for their respective peptide agonists is thus determined by their extracellular surfaces. Our results indicate that agonist interaction with extracellular domains is important for thrombin receptor activation.

  20. The actinophage RP3 DNA integrates site-specifically into the putative tRNA(Arg)(AGG) gene of Streptomyces rimosus.

    PubMed Central

    Gabriel, K; Schmid, H; Schmidt, U; Rausch, H

    1995-01-01

    The temperate actinophage RP3 integrates site-specifically into the chromosome of Streptomyces rimosus R6-554. The phage attachment site attP and the hybrid attachment sites of the integrated prophage--attL and attR--were cloned and sequenced. The 54nt core sequence, common to all RP3 related attachment sites, comprises the 3' terminal end of a putative tRNA(Arg)(AGG) gene. AttB bears the complete tRNA gene which is restored in attL after integration. A 7.5kb HindIII fragment, bearing attP, was used to construct an integrative plasmid to simulate the integration process in vivo and to localize the phage genes necessary for site specific integration. The int and xis genes were sequenced and compared to other recombination genes. PMID:7870591

  1. CaMKII phosphorylation of the GABAA receptor: receptor subtype- and synapse-specific modulation

    PubMed Central

    Houston, Catriona M; He, Qionger; Smart, Trevor G

    2009-01-01

    As a major inhibitory neurotransmitter, GABA plays a vital role in the brain by controlling the extent of neuronal excitation. This widespread role is reflected by the ubiquitous distribution of GABAA receptors throughout the central nervous system. To regulate the level of neuronal inhibition requires some endogenous control over the release of GABA and/or its postsynaptic response. In this context, Ca2+ ions are often used as primary or secondary messengers frequently resulting in the activation of protein kinases and phosphatases. One such kinase, Ca2+/calmodulin-dependent protein kinase II (CaMKII), can target the GABAA receptor to cause its phosphorylation. Evidence is now emerging, which is reviewed here, that GABAA receptors are indeed substrates for CaMKII and that this covalent modification alters the expression of cell surface receptors and their function. This type of regulation can also feature at inhibitory synapses leading to long-term inhibitory synaptic plasticity. Most recently, CaMKII has now been proposed to differentially phosphorylate particular isoforms of GABAA receptors in a synapse-specific context. PMID:19332484

  2. Demonstration of a specific C3a receptor on guinea pig platelets

    SciTech Connect

    Fukuoka, Y.; Hugli, T.E.

    1988-05-15

    Guinea pig platelets reportedly contain receptors specific for the anaphylatoxin C3a based on both ligand-binding studies and functional responses. A portion of the human 125I-C3a that binds to guinea pig platelets is competitively displaced by excess unlabeled C3a; however, the majority of ligand uptake was nonspecific. Uptake of 125I-C3a by guinea pig platelets is maximal in 1 min, and stimulation of guinea pig platelets by thrombin, ADP, or the Ca2+ ionophore A23187 showed little influence on binding of the ligand. Scatchard analysis indicated that approximately 1200 binding sites for C3a exist per cell with an estimated Kd of 8 x 10(-10) M. Human C3a des Arg also binds to guinea pig platelets, but Scatchard analysis indicated that no specific binding occurred. Because the ligand-binding studies were complicated by high levels of nonspecific uptake, we attempted to chemically cross-link the C3a molecule to a specific component on the platelet surface. Cross-linkage of 125I-C3a to guinea pig platelets with bis(sulfosuccinimidyl)suberate revealed radioactive complexes at 105,000 and 115,000 m.w. on SDS-PAGE gels by autoradiographic analysis. In the presence of excess unlabeled C3a, complex formation was inhibited. No cross-linkage could be demonstrated between the inactive 125I-C3a des Arg and the putative C3a-R on guinea pig platelets. Human C3a, but not C3a des Arg induces serotonin release and aggregation of the guinea pig platelets. Human C3a was unable to induce either serotonin release or promote aggregation of human platelets. Uptake of human 125I-C3a by human platelets was not saturable, and Scatchard analysis was inconclusive. Attempts to cross-link 125I-C3a to components on the surface of human platelets also failed to reveal a ligand-receptor complex. Therefore, we conclude that guinea pig platelets have specific surface receptors to C3a and that human platelets appear devoid of receptors to the anaphylatoxin.

  3. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis

    PubMed Central

    Neubauer, Emilie F.; Poole, Angela Z.; Davy, Simon K.

    2016-01-01

    Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1

  4. The scavenger receptor repertoire in six cnidarian species and its putative role in cnidarian-dinoflagellate symbiosis.

    PubMed

    Neubauer, Emilie F; Poole, Angela Z; Weis, Virginia M; Davy, Simon K

    2016-01-01

    Many cnidarians engage in a mutualism with endosymbiotic photosynthetic dinoflagellates that forms the basis of the coral reef ecosystem. Interpartner interaction and regulation includes involvement of the host innate immune system. Basal metazoans, including cnidarians have diverse and complex innate immune repertoires that are just beginning to be described. Scavenger receptors (SR) are a diverse superfamily of innate immunity genes that recognize a broad array of microbial ligands and participate in phagocytosis of invading microbes. The superfamily includes subclades named SR-A through SR-I that are categorized based on the arrangement of sequence domains including the scavenger receptor cysteine rich (SRCR), the C-type lectin (CTLD) and the CD36 domains. Previous functional and gene expression studies on cnidarian-dinoflagellate symbiosis have implicated SR-like proteins in interpartner communication and regulation. In this study, we characterized the SR repertoire from a combination of genomic and transcriptomic resources from six cnidarian species in the Class Anthozoa. We combined these bioinformatic analyses with functional experiments using the SR inhibitor fucoidan to explore a role for SRs in cnidarian symbiosis and immunity. Bioinformatic searches revealed a large diversity of SR-like genes that resembled SR-As, SR-Bs, SR-Es and SR-Is. SRCRs, CTLDs and CD36 domains were identified in multiple sequences in combinations that were highly homologous to vertebrate SRs as well as in proteins with novel domain combinations. Phylogenetic analyses of CD36 domains of the SR-B-like sequences from a diversity of metazoans grouped cnidarian with bilaterian sequences separate from other basal metazoans. All cnidarian sequences grouped together with moderate support in a subclade separately from bilaterian sequences. Functional experiments were carried out on the sea anemone Aiptasia pallida that engages in a symbiosis with Symbiodinium minutum (clade B1

  5. Overexpression of GbRLK, a putative receptor-like kinase gene, improved cotton tolerance to Verticillium wilt.

    PubMed

    Jun, Zhao; Zhang, Zhiyuan; Gao, Yulong; Zhou, Lei; Fang, Lei; Chen, Xiangdong; Ning, Zhiyuan; Chen, Tianzi; Guo, Wangzhen; Zhang, Tianzhen

    2015-10-08

    Verticillium dahliae is a causative fungal pathogen and only a few genes have been identified that exhibit critical roles in disease resistance and few has shown positive effects on the resistance to Verticillium wilt in transgenic cotton. We cloned a receptor-like kinase gene (GbRLK) induced by Verticillium dahliae (VD) in the disease-resistant cotton Gossypium barbadense cv. Hai7124. Northern blotting revealed that the GbRLK was induced by VD at 96 h after inoculation. The functional GbRLK is from D subgenome since a single base deletion results in a frameshift or dysfunctional homologue in the A subgenome in tetraploid cotton. To verify the function of GbRLK, we developed the overexpression transgenic GbRLK cotton and Arabidopsis lines, and found that they all showed the higher resistance to Verticillium in the greenhouse and field trial. The results of the expression profile using transgenic and non-transgenic Arabidopsis thaliana revealed that the GbRLK regulated expressions of a series genes associated with biotic and abiotic stresses. Therefore, we propose that the increased resistance to Verticillium dahliae infection in transgnic plants could result from reduction in the damage of water loss and regulation of defense gene expression.

  6. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction.

    PubMed

    Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V

    2016-04-01

    The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. © 2016 The Royal Entomological Society.

  7. Characterization of an insect-specific flavivirus (OCFVPT) co-isolated from Ochlerotatus caspius collected in southern Portugal along with a putative new Negev-like virus.

    PubMed

    Ferreira, Daniela Duque; Cook, Shelley; Lopes, Ângela; de Matos, António Pedro; Esteves, Aida; Abecasis, Ana; de Almeida, António Paulo Gouveia; Piedade, João; Parreira, Ricardo

    2013-12-01

    We describe the isolation and characterization of an insect-specific flavivirus (ISF) from Ochlerotatus caspius (Pallas, 1771) mosquitoes collected in southern Portugal. The RNA genome of this virus, tentatively designated OCFVPT, for O. caspius flavivirus from Portugal, encodes a polyprotein showing all the features expected for a flavivirus. As frequently observed for ISF, the viral genomes seems to encode a putative Fairly Interesting Flavivirus ORF (FIFO)-like product, the synthesis of which would occur as a result of a -1 translation frameshift event. OCFVPT was isolated in the C6/36 Stegomyia albopicta (= Aedes albopictus) cell line where it replicates rapidly, but failed to replicate in Vero cells in common with other ISFs. Unlike some of the latter, however, the OCFVPT genome does not seem to be integrated in the mosquito cells we tested. Phylogenetic analyses based on partial ISF NS5 nucleotide sequences placed OCFVPT among recently published viral strains documented from mosquitoes collected in the Iberian Peninsula, while analyses of ORF/E/NS3/or NS5 amino acid sequences cluster OCFVPT with HANKV (Hanko virus), an ISF recently isolated from O. caspius mosquitoes collected in Finland. Taking into account the genetic relatedness with this virus, OCFVPT is not expected to be overtly cytopathic to C6/36 cells. The cytopathic effects associated with its presence in culture supernatants are postulated to be the result of the replication of a co-isolated putative new Negev-like virus.

  8. The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger.

    PubMed Central

    Kudla, B; Caddick, M X; Langdon, T; Martinez-Rossi, N M; Bennett, C F; Sibley, S; Davies, R W; Arst, H N

    1990-01-01

    The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans has been sequenced and its transcript mapped and orientated. A single ORF can encode a protein of 719 amino acids. A 52 amino acid region including a putative 'zinc finger' strongly resembles putative DNA binding regions of the major regulatory protein of erythroid cells. The derived protein sequence also contains a highly acidic region possibly involved in gene activation and 22 copies of the motif S(T)PXX, abundant in DNA binding proteins. Analysis of chromosomal rearrangements and transformation with deletion clones identified 342 N-terminal and 124 C-terminal residues as inessential and localized a C-terminal region required for nitrogen metabolite repressibility. A -1 frameshift eliminating the inessential 122 C-terminal amino acids is a surprising loss-of-function mutation. Extraordinary basicity of the replacement C terminus might explain its phenotype. Mutant sequencing also identified a polypeptide chain termination and several missense mutations, but most interesting are sequence changes associated with specificity mutations. A mutation elevating expression of some structural genes under areA control whilst reducing or not affecting expression of others is a leucine to valine change in the zinc finger loop. It reverts to a partly reciprocal phenotype by replacing the mutant valine by methionine. Images Fig.2 Fig.4 Fig.5 Fig. 8. Fig. 9. PMID:1970293

  9. A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species Colletotrichum graminicola and Colletotrichum sublineola.

    PubMed

    Buiate, E A S; Xavier, K V; Moore, N; Torres, M F; Farman, M L; Schardl, C L; Vaillancourt, L J

    2017-01-10

    Colletotrichum graminicola and C. sublineola cause anthracnose leaf and stalk diseases of maize and sorghum, respectively. In spite of their close evolutionary relationship, the two species are completely host-specific. Host specificity is often attributed to pathogen virulence factors, including specialized secondary metabolites (SSM), and small-secreted protein (SSP) effectors. Genes relevant to these categories were manually annotated in two co-occurring, contemporaneous strains of C. graminicola and C. sublineola. A comparative genomic and phylogenetic analysis was performed to address the evolutionary relationships among these and other divergent gene families in the two strains. Inoculation of maize with C. sublineola, or of sorghum with C. graminicola, resulted in rapid plant cell death at, or just after, the point of penetration. The two fungal genomes were very similar. More than 50% of the assemblies could be directly aligned, and more than 80% of the gene models were syntenous. More than 90% of the predicted proteins had orthologs in both species. Genes lacking orthologs in the other species (non-conserved genes) included many predicted to encode SSM-associated proteins and SSPs. Other common groups of non-conserved proteins included transporters, transcription factors, and CAZymes. Only 32 SSP genes appeared to be specific to C. graminicola, and 21 to C. sublineola. None of the SSM-associated genes were lineage-specific. Two different strains of C. graminicola, and three strains of C. sublineola, differed in no more than 1% percent of gene sequences from one another. Efficient non-host recognition of C. sublineola by maize, and of C. graminicola by sorghum, was observed in epidermal cells as a rapid deployment of visible resistance responses and plant cell death. Numerous non-conserved SSP and SSM-associated predicted proteins that could play a role in this non-host recognition were identified. Additional categories of genes that were also highly

  10. Specific glucocorticoid receptor binding to DNA reconstituted in a nucleosome.

    PubMed Central

    Perlmann, T; Wrange, O

    1988-01-01

    We have reconstituted a nucleosome with core histones from rat liver using a restriction fragment containing a sequence from the mouse mammary tumour virus (MTV) long terminal repeat (LTR). This sequence harbours glucocorticoid responsive elements (GREs) which mediate glucocorticoid hormone induction of transcription from the MTV promoter via glucocorticoid receptor (GR) binding. Exonuclease III and DNase I footprinting demonstrated that the reconstituted nucleosome was specifically located between positions -219 and -76. A nucleosome was previously shown to be located at a similar or identical position in the MTV promoter in situ and to be structurally altered upon glucocorticoid hormone induction. We demonstrated, by DNase I footprinting, that GR is able to bind sequence specifically to the DNA in the in vitro assembled nucleosome. No evidence for unfolding of the nucleosome was obtained, but the DNase I footprinting pattern demonstrated GR induced local alterations in the DNA. Images PMID:2846275

  11. Ligand specificity and evolution of liver X receptors§

    PubMed Central

    Reschly, Erica J.; Ai, Ni; Welsh, William J.; Ekins, Sean; Hagey, Lee R.; Krasowski, Matthew D.

    2008-01-01

    Liver X receptors (LXRs) are key regulators of lipid and cholesterol metabolism in mammals. Little is known, however, about the function and evolution of LXRs in non-mammalian species. The present study reports the cloning of LXRs from African clawed frog (Xenopus laevis), Western clawed frog (Xenopus tropicalis), and zebrafish (Danio rerio), and their functional characterization and comparison with human and mouse LXRs. Additionally, an ortholog of LXR in the chordate invertebrate Ciona intestinalis was cloned and functionally characterized. Ligand specificities of the frog and zebrafish LXRs were very similar to LXRα and LXRβ from human and mouse. All vertebrate LXRs studied were activated robustly by the synthetic ligands T-0901317 and GW3965 and by a variety of oxysterols. In contrast, Ciona LXR was not activated by T-0901317 or GW3965 but was activated by a limited number of oxysterols, as well as some androstane and pregnane steroids. Pharmacophore analysis, homology modeling, and docking studies of Ciona LXR predict a receptor with a more restricted ligand-binding pocket and less intrinsic disorder in the ligand-binding domain compared to vertebrate LXRs. The results suggest that LXRs have a long evolutionary history, with vertebrate LXRs diverging from invertebrate LXRs in ligand specificity. PMID:18395439

  12. Specific inhibition of p110α subunit of PI3K: putative therapeutic strategy for KRAS mutant colorectal cancers

    PubMed Central

    Fernandes, Maria Sofia; Melo, Soraia; Velho, Sérgia; Carneiro, Patrícia; Carneiro, Fátima; Seruca, Raquel

    2016-01-01

    Colorectal cancer (CRC) is a leading cause of cancer mortality worldwide. It is often associated with activating mutations in KRAS leading to deregulation of major signaling pathways as the RAS-RAF-MAPK and PI3K-Akt. However, the therapeutic options for CRC patients harboring somatic KRAS mutations are still very limited. It is therefore urgent to unravel novel therapeutic approaches for those patients. In this study, we have awarded PI3K p110α a key role in CRC cells harboring KRAS/PIK3CA mutations or KRAS mutations alone. Specific silencing of PI3K p110α by small interfering RNA (siRNA) reduced viability and induced apoptosis or cell cycle arrest. In agreement with these cellular effects, PI3K p110α silencing led to alterations in the expression levels of proteins implicated in apoptosis and cell cycle, namely XIAP and pBad in KRAS/PIK3CA mutant cells and cyclin D1 in KRAS mutant cells. To further validate our data, a specific PI3K p110α inhibitor, BYL719, was evaluated. BYL719 mimicked the in vitro siRNA effects on cellular viability and on the alterations of apoptotic- and cell cycle-related proteins in CRC mutant cells. Overall, this study demonstrates that specific inhibition of PI3K p110α could provide an alternative therapeutic approach for CRC patients, particularly those harboring KRAS mutations. PMID:27602501

  13. Closely related mammals have distinct asialoglycoprotein receptor carbohydrate specificities.

    PubMed

    Park, Eric I; Baenziger, Jacques U

    2004-09-24

    We recently reported that the rat asialoglycoprotein receptor binds oligosaccharides terminating with sialic acid (Sia) alpha2,6GalNAc. Despite a high percentage of identical amino acids in their sequences, orthologues of the asialoglycoprotein receptor (ASGP-R) in different mammals differ in their specificity for terminal Siaalpha2,6GalNAc. The recombinant subunit 1 of the ASGP-R from the rat (RHL-1 or rat hepatic lectin) and the mouse (MHL-1 or mouse hepatic lectin), which differ at only 12 positions in the amino acid sequence of their carbohydrate recognition domains, binds Siaalpha2,6GalNAcbeta1,4GlcNAcbeta1,2Man-bovine serum albumin and GalNAcbeta1,4GlcNAcbeta1,2Man-bovine serum albumin in ratios of 16:1.0 and 1.0:1.0, respectively. Mutagenesis was used to show that amino acids both in the immediate vicinity of the proposed binding site for terminal GalNAc and on the alpha2 helix that is distant from the binding site contribute to the specificity for terminal Siaalpha2,6GalNAc. Thus, multiple amino acid sequence alterations in two key locations contribute to the difference in specificity observed for the rat and mouse ASGP-Rs. We hypothesize that the altered specificity of ASPG-R orthologues in such evolutionarily closely related species reflects rapidly changing requirements for recognition of endogenous or exogenous oligosaccharides in vivo.

  14. T-cell Receptor Specificity Maintained by Altered Thermodynamics*

    PubMed Central

    Madura, Florian; Rizkallah, Pierre J.; Miles, Kim M.; Holland, Christopher J.; Bulek, Anna M.; Fuller, Anna; Schauenburg, Andrea J. A.; Miles, John J.; Liddy, Nathaniel; Sami, Malkit; Li, Yi; Hossain, Moushumi; Baker, Brian M.; Jakobsen, Bent K.; Sewell, Andrew K.; Cole, David K.

    2013-01-01

    The T-cell receptor (TCR) recognizes peptides bound to major histocompatibility molecules (MHC) and allows T-cells to interrogate the cellular proteome for internal anomalies from the cell surface. The TCR contacts both MHC and peptide in an interaction characterized by weak affinity (KD = 100 nm to 270 μm). We used phage-display to produce a melanoma-specific TCR (α24β17) with a 30,000-fold enhanced binding affinity (KD = 0.6 nm) to aid our exploration of the molecular mechanisms utilized to maintain peptide specificity. Remarkably, although the enhanced affinity was mediated primarily through new TCR-MHC contacts, α24β17 remained acutely sensitive to modifications at every position along the peptide backbone, mimicking the specificity of the wild type TCR. Thermodynamic analyses revealed an important role for solvation in directing peptide specificity. These findings advance our understanding of the molecular mechanisms that can govern the exquisite peptide specificity characteristic of TCR recognition. PMID:23698002

  15. Large Putative PEST-like Sequence Motif at the Carboxyl Tail of Human Calcium Receptor Directs Lysosomal Degradation and Regulates Cell Surface Receptor Level*

    PubMed Central

    Zhuang, Xiaolei; Northup, John K.; Ray, Kausik

    2012-01-01

    A deletion between amino acid residues Ser895 and Val1075 in the carboxyl terminus of the human calcium receptor (hCaR), which causes autosomal dominant hypocalcemia, showed enhanced signaling activity and increased cell surface expression in HEK293 cells (Lienhardt, A., Garabédian, M. G., Bai, M., Sinding, C., Zhang, Z., Lagarde, J. P., Boulesteix, J., Rigaud, M., Brown, E. M., and Kottler, M. L. (2000) J. Clin. Endocrinol. Metab. 85, 1695–1702). To identify the underlying mechanism(s) for these increases, we investigated the effects of carboxyl tail truncation and deletion in hCaR mutants using a combination of biochemical and cell imaging approaches to define motifs that participate in regulating cell surface numbers of this G protein-coupled receptor. Our data indicate a rapid constitutive receptor internalization of the cell surface hCaR, accumulating in early (Rab7 positive) and late endosomal (LAMP1 positive) sorting compartments, before targeting to lysosomes for degradation. Recycling of hCaR back to the cell surface was also evident. Truncation and deletion mapping defined a 51-amino acid sequence between residues 920 and 970 that is required for targeting to lysosomes and degradation but not for internalization or recycling of the receptor. No singular sequence motif was identified, instead the required sequence elements seem to distribute throughout this entire interval. This interval includes a high proportion of acidic and hydroxylated amino acid residues, suggesting a similarity to PEST-like degradation motif (PESTfind score of +10) and several glutamine repeats. The results define a novel large PEST-like sequence that participates in the sorting of internalized hCaR routed to the lysosomal/degradation pathway that regulates cell surface receptor numbers. PMID:22158862

  16. A novel begomovirus isolated from sida contains putative cis- and trans-acting replication specificity determinants that have evolved independently in several geographical lineages.

    PubMed

    Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R

    2014-09-01

    A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.

  17. Characterization of gprK Encoding a Putative Hybrid G-Protein-Coupled Receptor in Aspergillus fumigatus

    PubMed Central

    Jung, Mun-Gu; Kim, Sung Su; Yu, Jae-Hyuk; Shin, Kwang-Soo

    2016-01-01

    The G-protein-coupled receptor (GPCR) family represents the largest and most varied collection of membrane embedded proteins that are sensitized by ligand binding and interact with heterotrimeric G proteins. Despite their presumed critical roles in fungal biology, the functions of the GPCR family members in the opportunistic human pathogen Aspergillus fumigatus are largely unknown, as only two (GprC and GprD) of the 15 predicted GPCRs have been studied. Here, we characterize the gprK gene, which is predicted to encode a hybrid GPCR with both 7-transmembrane and regulator of G-protein signaling (RGS) domains. The deletion of gprK causes severely impaired asexual development coupled with reduced expression of key developmental activators. Moreover, ΔgprK results in hyper-activation of germination even in the absence of carbon source, and elevated expression and activity of the protein kinase A PkaC1. Furthermore, proliferation of the ΔgprK mutant is restricted on the medium when pentose is the sole carbon source, suggesting that GprK may function in external carbon source sensing. Notably, the absence of gprK results in reduced tolerance to oxidative stress and significantly lowered mRNA levels of the stress-response associated genes sakA and atfA. Activities of catalases and SODs are severely decreased in the ΔgprK mutant, indicating that GprK may function in proper activation of general stress response. The ΔgprK mutant is also defective in gliotoxin (GT) production and slightly less virulent toward the greater wax moth, Galleria mellonella. Transcriptomic studies reveal that a majority of transporters are down-regulated by ΔgprK. In summary, GprK is necessary for proper development, GT production, and oxidative stress response, and functions in down-regulating the PKA-germination pathway. PMID:27584150

  18. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility

    SciTech Connect

    Not Available

    1993-01-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK[sub 6] cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys[sup 524] codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with [sup 32]P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified [sup 32]p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  19. Modulation of Bacillus thuringiensis Phosphatidylinositol-Specific Phospholipase C Activity by Mutations in the Putative Dimerization Interface

    SciTech Connect

    Shi, X.; Shao, C; Zhang, X; Zambonelli, C; Redfield, A; Head, J; Seaton, B; Roberts, M

    2009-01-01

    Cleavage of phosphatidylinositol (PI) to inositol 1,2-(cyclic)-phosphate (cIP) and cIP hydrolysis to inositol 1-phosphate by Bacillus thuringiensis phosphatidylinositol-specific phospholipase C are activated by the enzyme binding to phosphatidylcholine (PC) surfaces. Part of this reflects improved binding of the protein to interfaces. However, crystallographic analysis of an interfacially impaired phosphatidylinositol-specific phospholipase (W47A/W242A) suggested protein dimerization might occur on the membrane. In the W47A/W242A dimer, four tyrosine residues from one monomer interact with the same tyrosine cluster of the other, forming a tight dimer interface close to the membrane binding regions. We have constructed mutant proteins in which two or more of these tyrosine residues have been replaced with serine. Phospholipid binding and enzymatic activity of these mutants have been examined to assess the importance of these residues to enzyme function. Replacing two tyrosines had small effects on enzyme activity. However, removal of three or four tyrosine residues weakened PC binding and reduced PI cleavage by the enzyme as well as PC activation of cIP hydrolysis. Crystal structures of Y247S/Y251S in the absence and presence of myo-inositol as well as Y246S/Y247S/Y248S/Y251S indicate that both mutant proteins crystallized as monomers, were very similar to one another, and had no change in the active site region. Kinetic assays, lipid binding, and structural results indicate that either (i) a specific PC binding site, critical for vesicle activities and cIP activation, has been impaired, or (ii) the reduced dimerization potential for Y246S/Y247S/Y248S and Y246S/Y247S/Y248S/Y251S is responsible for their reduced catalytic activity in all assay systems.

  20. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family

    PubMed Central

    Das, Debanu; Chiu, Hsiu-Ju; Farr, Carol L.; Grant, Joanna C.; Jaroszewski, Lukasz; Knuth, Mark W.; Miller, Mitchell D.; Tien, Henry J.; Elsliger, Marc-André; Deacon, Ashley M.; Godzik, Adam; Lesley, Scott A.; Wilson, Ian A.

    2014-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection, especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family. PMID:24174223

  1. Crystal structure of a putative quorum sensing-regulated protein (PA3611) from the Pseudomonas-specific DUF4146 family.

    PubMed

    Das, Debanu; Chiu, Hsiu-Ju; Farr, Carol L; Grant, Joanna C; Jaroszewski, Lukasz; Knuth, Mark W; Miller, Mitchell D; Tien, Henry J; Elsliger, Marc-André; Deacon, Ashley M; Godzik, Adam; Lesley, Scott A; Wilson, Ian A

    2014-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen commonly found in humans and other organisms and is an important cause of infection especially in patients with compromised immune defense mechanisms. The PA3611 gene of P. aeruginosa PAO1 encodes a secreted protein of unknown function, which has been recently classified into a small Pseudomonas-specific protein family called DUF4146. As part of our effort to extend structural coverage of novel protein space and provide a structure-based functional insight into new protein families, we report the crystal structure of PA3611, the first structural representative of the DUF4146 protein family.

  2. Interactions in the pollen-specific receptor-like kinases-containing signaling network.

    PubMed

    Löcke, Susanne; Fricke, Inka; Mucha, Elena; Humpert, Marie-Luise; Berken, Antje

    2010-12-01

    The pollen-specific receptor-like kinases (PRKs) from Solanum lycopersicum, LePRK1 and LePRK2, are believed to be involved in the regulation of pollen germination and pollen tube growth. They appear to be part of a multimeric complex in which the transmembranic LePRKs presumably have a key position in transducing exogenous signals through the plasma membrane. Here, we focused on extra- and intracellular interactions involving the LePRKs. We show in yeast two-hybrid experiments a cross-interaction of putative PRK-ligands, the oligomerization of LePRK2 and a direct contact of LePRKs to activated Rho proteins of plants (ROPs). Moreover, we observed that pollen-specific RopGEFs, which catalyze ROP activation and may be regulated by PRK interaction, are active in vitro while autoinhibition seems to occur in vivo. We suggest that activation of RopGEFs as a checkpoint in PRK signal transduction is a more complex event including further components in planta. Our findings point to some new aspects in PRK-mediated signal transduction implying a LePRK2 complex with different signaling activity and a further direct control of LePRKs by activated ROP.

  3. A Putative G Protein-Coupled Receptor, RDC1, Is a Novel Coreceptor for Human and Simian Immunodeficiency Viruses

    PubMed Central

    Shimizu, Nobuaki; Soda, Yasushi; Kanbe, Katsuaki; Liu, Hui-yu; Mukai, Ryozaburo; Kitamura, Toshio; Hoshino, Hiroo

    2000-01-01

    More than 10 G protein-coupled receptors (GPCRs) have been shown to act as coreceptors for infection of human immunodeficiency virus type 1 (HIV-1), HIV-2, and simian immunodeficiency virus (SIV). We have isolated HIV-1 variants infectious to primary brain-derived CD4-positive cells (BT-3 and BT-20/N) and U87/CD4 glioma cells that are resistant to T-cell line-tropic (T-tropic), macrophage-tropic (M-tropic), and T- and M-tropic (dualtropic) (X4, R5, and R5X4) HIV-1 strains. These primary brain-derived cells were also highly susceptible to HIV-2ROD, HIV-2SBL6669, and SIVmndGB-1. A factor or coreceptor that determines the susceptibility of these brain-derived cells to these HIV and SIV strains has not been fully identified. To identify this coreceptor, we examined amino acid sequences of all known HIV and SIV coreceptors and noticed that tyrosine residues are well conserved in their extracellular amino-terminal domains. By this criterion, we selected 18 GPCRs as candidates of coreceptors for HIV and SIV strains infectious to these brain-derived cells. mRNA expression of an orphan GPCR, RDC1, was detected in the brain-derived cells, the C8166 T-cell line, and peripheral blood lymphocytes, all of which are susceptible to HIV-1 variants, but not in macrophages, which are resistant to them. When a CD4-expressing cell line, NP-2/CD4, which shows strict resistance to infection not only with HIV-1 but also with HIV-2 or SIV, was transduced with the RDC1 gene, the cells became highly susceptible to HIV-2 and SIVmnd strains but to neither M- nor T-tropic HIV-1 strains. The cells also acquired a low susceptibility to the HIV-1 variants. These findings indicate that RDC1 is a novel coreceptor for several HIV-1, HIV-2, and SIV strains which infect brain-derived cells. PMID:10623723

  4. Novel Anther-Specific myb Genes from Tobacco as Putative Regulators of Phenylalanine Ammonia-Lyase Expression1

    PubMed Central

    Yang, Seungchan; Sweetman, Justin P.; Amirsadeghi, Sasan; Barghchi, Medhi; Huttly, Alison K.; Chung, Won-Il; Twell, David

    2001-01-01

    Two cDNA clones (NtmybAS1 and NtmybAS2) encoding MYB-related proteins with strong sequence similarity to petunia (Petunia hybrida) PhMYB3 were isolated from a tobacco (Nicotiana tabacum cv Samsun) pollen cDNA library. Northern blot and in situ hybridization revealed that NtmybAS transcripts are specifically expressed in both sporophytic and gametophytic tissues of the anther including tapetum, stomium, vascular tissue, and developing pollen. Random binding site selection assays revealed that NtMYBAS1 bound to DNA sequences closely resembling consensus MYB binding sites MBSI and MBSIIG, with a higher affinity for MBSI. Transient expression analyses of the N-terminal MYB domain demonstrated the presence of functional nuclear localization signals, and full-length NtMYBAS1 was able to activate two different phenylalanine ammonia-lyase promoters (PALA and gPAL1) in tobacco leaf protoplasts. Similar analysis of truncated NtmybAS1 cDNAs identified an essential, C-terminal trans-activation domain. Further in situ hybridization analyses demonstrated strict co-expression of NtmybAS and gPAL1 in the tapetum and stomium. Despite abundant expression of NtmybAS transcripts in mature pollen, gPAL1 transcripts were not detectable in pollen. Our data demonstrate that NtMYBAS1 is a functional anther-specific transcription factor, which is likely to be a positive regulator of gPAL1 expression and phenylpropanoid synthesis in sporophytic, but not in gametophytic, tissues of the anther. PMID:11500571

  5. Identification of a Putative Crf Splice Variant and Generation of Recombinant Antibodies for the Specific Detection of Aspergillus fumigatus

    PubMed Central

    Schütte, Mark; Thullier, Philippe; Pelat, Thibaut; Wezler, Xenia; Rosenstock, Philip; Hinz, Dominik; Kirsch, Martina Inga; Hasenberg, Mike; Frank, Ronald; Schirrmann, Thomas; Gunzer, Matthias

    2009-01-01

    Background Aspergillus fumigatus is a common airborne fungal pathogen for humans. It frequently causes an invasive aspergillosis (IA) in immunocompromised patients with poor prognosis. Potent antifungal drugs are very expensive and cause serious adverse effects. Their correct application requires an early and specific diagnosis of IA, which is still not properly achievable. This work aims to a specific detection of A. fumigatus by immunofluorescence and the generation of recombinant antibodies for the detection of A. fumigatus by ELISA. Results The A. fumigatus antigen Crf2 was isolated from a human patient with proven IA. It is a novel variant of a group of surface proteins (Crf1, Asp f9, Asp f16) which belong to the glycosylhydrolase family. Single chain fragment variables (scFvs) were obtained by phage display from a human naive antibody gene library and an immune antibody gene library generated from a macaque immunized with recombinant Crf2. Two different selection strategies were performed and shown to influence the selection of scFvs recognizing the Crf2 antigen in its native conformation. Using these antibodies, Crf2 was localized in growing hyphae of A. fumigatus but not in spores. In addition, the antibodies allowed differentiation between A. fumigatus and related Aspergillus species or Candida albicans by immunofluorescence microscopy. The scFv antibody clones were further characterized for their affinity, the nature of their epitope, their serum stability and their detection limit of Crf2 in human serum. Conclusion Crf2 and the corresponding recombinant antibodies offer a novel approach for the early diagnostics of IA caused by A. fumigatus. PMID:19675673

  6. Variation in the Oxytocin Receptor Gene Predicts Brain Region-Specific Expression and Social Attachment.

    PubMed

    King, Lanikea B; Walum, Hasse; Inoue, Kiyoshi; Eyrich, Nicholas W; Young, Larry J

    2016-07-15

    Oxytocin (OXT) modulates several aspects of social behavior. Intranasal OXT is a leading candidate for treating social deficits in patients with autism spectrum disorder, and common genetic variants in the human OXTR gene are associated with emotion recognition, relationship quality, and autism spectrum disorder. Animal models have revealed that individual differences in Oxtr expression in the brain drive social behavior variation. Our understanding of how genetic variation contributes to brain OXTR expression is very limited. We investigated Oxtr expression in monogamous prairie voles, which have a well-characterized OXT system. We quantified brain region-specific levels of Oxtr messenger RNA and oxytocin receptor protein with established neuroanatomic methods. We used pyrosequencing to investigate allelic imbalance of Oxtr mRNA, a molecular signature of polymorphic genetic regulatory elements. We performed next-generation sequencing to discover variants in and near the Oxtr gene. We investigated social attachment using the partner preference test. Our allelic imbalance data demonstrate that genetic variants contribute to individual differences in Oxtr expression, but only in particular brain regions, including the nucleus accumbens, where oxytocin receptor signaling facilitates social attachment. Next-generation sequencing identified one polymorphism in the Oxtr intron, near a putative cis-regulatory element, explaining 74% of the variance in striatal Oxtr expression specifically. Males homozygous for the high expressing allele display enhanced social attachment. Taken together, these findings provide convincing evidence for robust genetic influence on Oxtr expression and provide novel insights into how noncoding polymorphisms in OXTR might influence individual differences in human social cognition and behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  7. Identification of a reproductive-specific, putative lipid transport protein gene in a queenless ponerine ant Diacamma sp.

    NASA Astrophysics Data System (ADS)

    Okada, Yasukazu; Miyazaki, Satoshi; Koshikawa, Shigeyuki; Cornette, Richard; Maekawa, Kiyoto; Tsuji, Kazuki; Miura, Toru

    2010-11-01

    Of the various characteristics of social insects, communication for reproductive differentiation is one of the most important and basic social interactions among colony members. To elucidate the molecular basis underlying this process, genes responsible for reproductive differentiation in Diacamma were screened using fluorescent differential display. Differential display, together with real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), revealed that a gene belonging to the family of cellular retinaldehyde-binding proteins was specifically expressed in the epidermis of the head, legs, and thorax in reproductives. The deduced protein sequence in the coding region, obtained by rapid amplification of cDNA ends (RACE)-PCR, was found to include cellular retinaldehyde-binding domain (CRAL-TRIO domain), suggesting that DiaCRALDCP functions in transportation of lipids, such as cuticular hydrocarbons. DiaCRALDCP transcript levels immediately decreased 1 day after the gemma mutilation, suggesting that DiaCRALDCP is involved in the physiological changes provoked by the behavioral regulation. Considering these results, the social functions of DiaCRALDCP in Diacamma are discussed.

  8. Hexose Transport in Growing Petunia Pollen Tubes and Characterization of a Pollen-Specific, Putative Monosaccharide Transporter1

    PubMed Central

    Ylstra, Bauke; Garrido, Dolores; Busscher, Jacqueline; van Tunen, Arjen J.

    1998-01-01

    We investigated the molecular and physiological processes of sugar uptake and metabolism during pollen tube growth and plant fertilization. In vitro germination assays showed that petunia (Petunia hybrida) pollen can germinate and grow not only in medium containing sucrose (Suc) as a carbon source, but also in medium containing the monosaccharides glucose (Glc) or fructose (Fru). Furthermore, high-performance liquid chromatography analysis demonstrated a rapid and complete conversion of Suc into equimolar amounts of Glc and Fru when pollen was cultured in a medium containing 2% Suc. This indicates the presence of wall-bound invertase activity and uptake of sugars in the form of monosaccharides by the growing pollen tube. A cDNA designated pmt1 (petunia monosaccharide transporter 1), which is highly homologous to plant monosaccharide transporters, was isolated from petunia. Pmt1 belongs to a small gene family and is expressed specifically in the male gametophyte, but not in any other vegetative or floral tissues. Pmt1 is activated after the first pollen mitosis, and high levels of mRNA accumulate in mature and germinating pollen. A model describing the transport of sugars to the style, the conversion of Suc into Glc and Fru, and the active uptake by a monosaccharide transporter into the pollen tube is presented. PMID:9733549

  9. Molecular characterization and expression analysis of the first Porifera tumor necrosis factor superfamily member and of its putative receptor in the marine sponge Chondrosia reniformis.

    PubMed

    Pozzolini, Marina; Scarfì, Sonia; Ghignone, Stefano; Mussino, Francesca; Vezzulli, Luigi; Cerrano, Carlo; Giovine, Marco

    2016-04-01

    Here we report the molecular cloning and characterization of the first Tumor Necrosis Factor homologous and of its putative receptor in the marine sponge Chondrosia reniformis: chTNF and chTNFR, respectively. The deduced chTNF amino acid sequence is a type II transmembrane protein containing the typical TNFSF domain. Phylogenetic analysis reveals that chTNF is more related to Chordata TNFs rather than to other invertebrates. chTNF and chTNFR are constitutively expressed both in the ectosome and in the choanosome of the sponge, with higher levels in the ectosome. chTNF and chTNFR mRNAs were monitored in sponge fragmorphs treated with Gram(+) or Gram(-) bacteria. chTNF was significantly upregulated in Gram(+)-treated fragmorphs as compared to controls, while chTNFR was upregulated by both treatments. Finally, the possible chTNF fibrogenic role in sponge fragmorphs was studied by TNF inhibitor treatment measuring fibrillar and non fibrillar collagen gene expression; results indicate that the cytokine is involved in sponge collagen deposition and homeostasis.

  10. Changing the insulin receptor to possess insulin-like growth factor I ligand specificity

    SciTech Connect

    Andersen, A.S.; Kjeldsen, T.; Wiberg, F.C.; Christensen, P.M.; Rasmussen, J.S.; Norris, K.; Moeller, K.B.; Moeller, N.P.H. )

    1990-08-14

    To examine the role of the N-terminal part of the insulin-like growth factor I (IGF-I) receptor and insulin receptor in determining ligand specificity, the authors prepared an expression vector encoding a hybrid receptor where exon 1 (encoding the signal peptide and seven amino acids of the {alpha}-subunit), exon 2, and exon 3 of the insulin receptor were replaced with the corresponding IGF-I receptor cDNA (938 nucleotides). To allow direct quantitative comparison of the binding capabilities of this hybrid receptor with those of the human IGF-I receptor and the insulin receptor, all three receptors were expressed in baby hamster kidney (BHK) cells as soluble molecules and partially purified before characterization. The hybrid IGF-I/insulin receptor bound IGF-I with an affinity comparable to that of the wild-type IGF-I receptor. In contrast, the hybrid receptor no longer displayed high-affinity binding of insulin. These results directly demonstrate that it is possible to change the specificity of the insulin receptor to that of the IGF-I receptor and, furthermore, that the binding specificity for IGF-I is encoded within the nucleotide sequence from 135 to 938 of the IGF-I receptor cDNA. Since the hybrid receptor only bound insulin with low affinity, the insulin binding region is likely to be located within exons 2 and 3 of the insulin receptor.

  11. Substrate specificity characterization for eight putative nudix hydrolases. Evaluation of criteria for substrate identification within the Nudix family

    PubMed Central

    Nguyen, Vi N.; Park, Annsea; Xu, Anting; Srouji, John R.

    2016-01-01

    ABSTRACT The nearly 50,000 known Nudix proteins have a diverse array of functions, of which the most extensively studied is the catalyzed hydrolysis of aberrant nucleotide triphosphates. The functions of 171 Nudix proteins have been characterized to some degree, although physiological relevance of the assayed activities has not always been conclusively demonstrated. We investigated substrate specificity for eight structurally characterized Nudix proteins, whose functions were unknown. These proteins were screened for hydrolase activity against a 74‐compound library of known Nudix enzyme substrates. We found substrates for four enzymes with k cat/K m values >10,000 M−1 s−1: Q92EH0_LISIN of Listeria innocua serovar 6a against ADP‐ribose, Q5LBB1_BACFN of Bacillus fragilis against 5‐Me‐CTP, and Q0TTC5_CLOP1 and Q0TS82_CLOP1 of Clostridium perfringens against 8‐oxo‐dATP and 3'‐dGTP, respectively. To ascertain whether these identified substrates were physiologically relevant, we surveyed all reported Nudix hydrolytic activities against NTPs. Twenty‐two Nudix enzymes are reported to have activity against canonical NTPs. With a single exception, we find that the reported k cat/K m values exhibited against these canonical substrates are well under 105 M−1 s−1. By contrast, several Nudix enzymes show much larger k cat/K m values (in the range of 105 to >107 M−1 s−1) against noncanonical NTPs. We therefore conclude that hydrolytic activities exhibited by these enzymes against canonical NTPs are not likely their physiological function, but rather the result of unavoidable collateral damage occasioned by the enzymes' inability to distinguish completely between similar substrate structures. Proteins 2016; 84:1810–1822. © 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc. PMID:27618147

  12. Monoclonal Antibodies Against Fusicoccin with Binding Characteristics Similar to the Putative Fusicoccin Receptor of Higher Plants 1

    PubMed Central

    Feyerabend, Martin; Weiler, Elmar W.

    1987-01-01

    Monoclonal antibodies were raised against fusicoccin. The toxin, linked to bovine serum albumin through its t-pentenyl moiety, served as immunogen. Hybridomas secreting anti-fusicoccin antibodies were screened by radioimmunoassay employing a novel radioactive derivative, [3H]-nor-fusicoccin-alcohol of high specific activity (1.5 × 1014Bq/mole). The two monoclonal antibodies reported here are of high apparent affinity for fusicoccin (0.71 × 10−9 molar and 1.85 × 10−9 molar). This is comparable to the apparent affinity of rabbit antiserum raised against the same type of conjugate (9.3 × 10−9 molar). A method for the single step purification of the monoclonal antibodies from ascites fluid is reported. A solid-phase immunoassay, using alkaline phosphatase as enzyme, exhibits a measuring range from 0.1 to 1.5 picomoles (about 70 picograms to 1 nanogram) of fusicoccin. The displacement of [3H]-nor-fusicoccin-alcohol from the antibodies by compounds structurally related to fusicoccin exhibits similar selectivity as a microsomal binding assay with the same tracer as radiolabeled probe. Images Fig. 2 PMID:16665786

  13. Mechanism of Oligonucleotide Uptake by Cells: Involvement of Specific receptors?

    NASA Astrophysics Data System (ADS)

    Yakubov, Leonid A.; Deeva, Elena A.; Zarytova, Valentina F.; Ivanova, Eugenia M.; Ryte, Antonina S.; Yurchenko, Lyudmila V.; Vlassov, Valentin V.

    1989-09-01

    We have investigated the interaction of oligonucleotides and their alkylating derivatives with mammalian cells. In experiments with L929 mouse fibroblast and Krebs 2 ascites carcinoma cells, it was found that cellular uptake of oligodeoxynucleotide derivatives is achieved by an endocytosis mechanism. Uptake is considerably more efficient at low oligomer concentration (< 1 μ M), because at this concentration a significant percentage of the total oligomer pool is absorbed on the cell surface and internalized by a more efficient absorptive endocytosis process. Two modified proteins were detected in mouse fibroblasts that were treated with the alkylating oligonucleotide derivatives. The binding of the oligomers to the proteins is inhibited by other oligodeoxynucleotides, single- and double-stranded DNA, and RNA. The polyanions heparin and chondroitin sulfates A and B do not inhibit binding. These observations suggest the involvement of specific receptor proteins in binding of oligomers to mammalian cells.

  14. Comparative genomics of Clostridium bolteae and Clostridium clostridioforme reveals species-specific genomic properties and numerous putative antibiotic resistance determinants.

    PubMed

    Dehoux, Pierre; Marvaud, Jean Christophe; Abouelleil, Amr; Earl, Ashlee M; Lambert, Thierry; Dauga, Catherine

    2016-10-21

    Clostridium bolteae and Clostridium clostridioforme, previously included in the complex C. clostridioforme in the group Clostridium XIVa, remain difficult to distinguish by phenotypic methods. These bacteria, prevailing in the human intestinal microbiota, are opportunistic pathogens with various drug susceptibility patterns. In order to better characterize the two species and to obtain information on their antibiotic resistance genes, we analyzed the genomes of six strains of C. bolteae and six strains of C. clostridioforme, isolated from human infection. The genome length of C. bolteae varied from 6159 to 6398 kb, and 5719 to 6059 CDSs were detected. The genomes of C. clostridioforme were smaller, between 5467 and 5927 kb, and contained 5231 to 5916 CDSs. The two species display different metabolic pathways. The genomes of C. bolteae contained lactose operons involving PTS system and complex regulation, which contribute to phenotypic differentiation from C. clostridioforme. The Acetyl-CoA pathway, similar to that of Faecalibacterium prausnitzii, a major butyrate producer in the human gut, was only found in C. clostridioforme. The two species have also developed diverse flagella mobility systems contributing to gut colonization. Their genomes harboured many CDSs involved in resistance to beta-lactams, glycopeptides, macrolides, chloramphenicol, lincosamides, rifampin, linezolid, bacitracin, aminoglycosides and tetracyclines. Overall antimicrobial resistance genes were similar within a species, but strain-specific resistance genes were found. We discovered a new group of genes coding for rifampin resistance in C. bolteae. C. bolteae 90B3 was resistant to phenicols and linezolide in producing a 23S rRNA methyltransferase. C. clostridioforme 90A8 contained the VanB-type Tn1549 operon conferring vancomycin resistance. We also detected numerous genes encoding proteins related to efflux pump systems. Genomic comparison of C. bolteae and C. clostridiofrome revealed

  15. A novel putative lipoprotein receptor (CasLpR) in the hemocytes of the blue crab, Callinectes sapidus: cloning and up-regulated expression after the injection of LPS and LTA.

    PubMed

    Tsutsui, Naoaki; Chung, J Sook

    2012-03-01

    The full-length cDNA encoding a putative lipoprotein receptor (CasLpR) was isolated from the hemocytes of Callinectes sapidus using 5' and 3' RACEs. The open reading frame for CasLpR contains a precursor of putative CasLpR consisting of 1710 amino acid residues including 22 amino acid residues of the signal peptide (22 amino acids). Mature CasLpR (1688 amino acids with 5.6% of phosphorylation sites) has multiple, putative functional domains: five low-density lipoprotein receptor domains in the N-terminus, and a G-protein-coupled receptor proteolysis site domain and a 7 transmembrane receptor (secretin family) domain in the C-terminus. To date, there are no proteins with a similar domain structure in the GenBank. The expression pattern of CasLpR was exclusive in hemocytes among all tested tissues obtained from a juvenile female at intermolt stage: brain, eyestalk ganglia, pericardial organs, and thoracic ganglia complex (nervous system); hepatopancreas (digestive system); heart, artery and hemocytes (circulatory system); gill and antennal gland (excretory system), hypodermis; and Y-organ (endocrine organ). There was no CasLpR expression in the ovary of an adult female. A putative function of CasLpR was examined after challenges of lipopolysaccharides (LPS) and lipoteichoic acid (LTA) in vivo using qRT-PCR assays. Animals at 24 h after injection of LPS or LTA up-regulated the expression of CasLpR in hemocytes by ∼3.5 and 1.4 folds, respectively, compared to the controls that received saline injection. LPS challenge also caused the greatest increment (∼55 folds) of heat shock protein 90 (Hsp90) expression in these samples. These data indicate that putative CasLpR and CasHsp90 may be involved in the defense system or the stress response of C. sapidus.

  16. Cell-type-specific modulation of targets and distractors by dopamine D1 receptors in primate prefrontal cortex

    PubMed Central

    Jacob, Simon N.; Stalter, Maximilian; Nieder, Andreas

    2016-01-01

    The prefrontal cortex (PFC) is crucial for maintaining relevant information in working memory and resisting interference. PFC neurons are strongly regulated by dopamine, but it is unknown whether dopamine receptors are involved in protecting target memories from distracting stimuli. We investigated the prefrontal circuit dynamics and dopaminergic modulation of targets and distractors in monkeys trained to ignore interfering stimuli in a delayed-match-to-numerosity task. We found that dopamine D1 receptors (D1Rs) modulate the recovery of task-relevant information following a distracting stimulus. The direction of modulation is cell-type-specific: in putative pyramidal neurons, D1R inhibition enhances and D1R stimulation attenuates coding of the target stimulus after the interference, while the opposite pattern is observed in putative interneurons. Our results suggest that dopaminergic neuromodulation of PFC circuits regulates mental representations of behaviourally relevant stimuli that compete with task-irrelevant input and could play a central role for cognitive functioning in health and disease. PMID:27807366

  17. Fine specificity and molecular competition in SLAM family receptor signalling.

    PubMed

    Wilson, Timothy J; Garner, Lee I; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H

    2014-01-01

    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  18. Fine Specificity and Molecular Competition in SLAM Family Receptor Signalling

    PubMed Central

    Wilson, Timothy J.; Garner, Lee I.; Metcalfe, Clive; King, Elliott; Margraf, Stefanie; Brown, Marion H.

    2014-01-01

    SLAM family receptors regulate activation and inhibition in immunity through recruitment of activating and inhibitory SH2 domain containing proteins to immunoreceptor tyrosine based switch motifs (ITSMs). Binding of the adaptors, SAP and EAT-2 to ITSMs in the cytoplasmic regions of SLAM family receptors is important for activation. We analysed the fine specificity of SLAM family receptor phosphorylated ITSMs and the conserved tyrosine motif in EAT-2 for SH2 domain containing signalling proteins. Consistent with the literature describing dependence of CRACC (SLAMF7) on EAT-2, CRACC bound EAT-2 (KD = 0.003 μM) with approximately 2 orders of magnitude greater affinity than SAP (KD = 0.44 μM). RNA interference in cytotoxicity assays in NK92 cells showed dependence of CRACC on SAP in addition to EAT-2, indicating selectivity of SAP and EAT-2 may depend on the relative concentrations of the two adaptors. The concentration of SAP was four fold higher than EAT-2 in NK92 cells. Compared with SAP, the significance of EAT-2 recruitment and its downstream effectors are not well characterised. We identified PLCγ1 and PLCγ2 as principal binding partners for the EAT-2 tail. Both PLCγ1 and PLCγ2 are functionally important for cytotoxicity in NK92 cells through CD244 (SLAMF4), NTB-A (SLAMF6) and CRACC. Comparison of the specificity of SH2 domains from activating and inhibitory signalling mediators revealed a hierarchy of affinities for CD244 (SLAMF4) ITSMs. While binding of phosphatase SH2 domains to individual ITSMs of CD244 was weak compared with SAP or EAT-2, binding of tandem SH2 domains of SHP-2 to longer peptides containing tandem phosphorylated ITSMs in human CD244 increased the affinity ten fold. The concentration of the tyrosine phosphatase, SHP-2 was in the order of a magnitude higher than the adaptors, SAP and EAT-2. These data demonstrate a mechanism for direct recruitment of phosphatases in inhibitory signalling by ITSMs, while explaining competitive

  19. Engineering HIV-Specific Immunity with Chimeric Antigen Receptors.

    PubMed

    Kitchen, Scott G; Zack, Jerome A

    2016-12-01

    HIV remains a highly important public health and clinical issue despite many recent advances in attempting to develop a cure, which has remained elusive for most people infected with HIV. HIV disease can be controlled with pharmacologic therapies; however, these treatments are expensive, may have severe side effects, and are not curative. Consequently, an improved means to control or eliminate HIV replication is needed. Cytotoxic T lymphocytes (CTLs) play a critical role in controlling viral replication and are an important part in the ability of the immune response to eradicate most viral infections. There are considerable efforts to enhance CTL responses in HIV-infected individuals in hopes of providing the immune response with armaments to more effectively control viral replication. In this review, we discuss some of these efforts and focus on the development of a gene therapy-based approach to engineer hematopoietic stem cells with an HIV-1-specific chimeric antigen receptor, which seeks to provide an inexhaustible source of HIV-1-specific immune cells that are MHC unrestricted and superior to natural antiviral T cell responses. These efforts provide the basis for further development of T cell functional enhancement to target and treat chronic HIV infection in hopes of eradicating the virus from the body.

  20. Survival of memory T cells specific for Japanese cypress pollen allergen is maintained by cross-stimulation of putative pectate lyases from other plants.

    PubMed

    Nakamura, Y; Takagi, S; Suzuki, M; Ito, H; Murakami, S; Ohta, N

    2001-05-01

    In view of recent studies on the mechanisms of the survival of peripheral memory T cells, we tested the biologic role of pectate lyase, a pectin-degrading enzyme, as the cross-reactive antigen required for the recurring survival signals for human T cells specific for Cha o 1, a pollen allergen molecule of the Japanese cypress. We determined a 16-mer epitope peptide for the T-cell clone, and prepared synthetic oligopeptides of homologous regions in putative pectate lyase of other plants. Of these homologous peptides, ZePel (Zinnia elegans), ban 17 (banana), and Amb a 1.1 (short ragweed) induced strong proliferative responses of the Cha o 1-specific T-cell clone in vitro. In addition, suboptimal doses of peptide homologs derived from banana and short ragweed enhanced the survival potency of this T-cell clone without detectable proliferative responses to the peptides. When there was no antigen stimulation, the T-cell clone decreased in viable cell number and lost antigen-specific proliferation activity on day 6 during in vitro incubation. On the other hand, T-cell clones incubated with these survival-inducing peptides maintained proliferative activity to Cha o 1 even on day 9. Serum derived from the donor patient did not contain detectable levels of IgE specific to banana or short ragweed by CAP-RAST. These results show that human T cells specific for pollen allergen seem to use cross-reactive pectate lyase peptides to deliver survival signals even in the absence of pollen allergen, and memory T cells maintained in such a manner might be functioning at the onset of allergic pollinosis, although pollen allergens are seasonal.

  1. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles.

    PubMed

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-10-09

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level.

  2. Exchanging ligand-binding specificity between a pair of mouse olfactory receptor paralogs reveals odorant recognition principles

    PubMed Central

    Baud, Olivia; Yuan, Shuguang; Veya, Luc; Filipek, Slawomir; Vogel, Horst; Pick, Horst

    2015-01-01

    A multi-gene family of ~1000 G protein-coupled olfactory receptors (ORs) constitutes the molecular basis of mammalian olfaction. Due to the lack of structural data its remarkable capacity to detect and discriminate thousands of odorants remains poorly understood on the structural level of the receptor. Using site-directed mutagenesis we transferred ligand specificity between two functionally related ORs and thereby revealed amino acid residues of central importance for odorant recognition and discrimination of the two receptors. By exchanging two of three residues, differing at equivalent positions of the putative odorant binding site between the mouse OR paralogs Olfr73 (mOR-EG) and Olfr74 (mOR-EV), we selectively changed ligand preference but remarkably also signaling activation strength in both ORs. Computer modeling proposed structural details at atomic resolution how the very same odorant molecule might interact with different contact residues to induce different functional responses in two related receptors. Our findings provide a mechanistic explanation of how the olfactory system distinguishes different molecular aspects of a given odorant molecule, and unravel important molecular details of the combinatorial encoding of odorant identity at the OR level. PMID:26449412

  3. Species-specific sequence in the repeat 3 region of the gene encoding a putative Loa loa allergen: a diagnostic tool for occult loiasis.

    PubMed

    Toure, F S; Egwang, T G; Wahl, G; Millet, P; Bain, O; Georges, A J

    1997-01-01

    A polymerase chain reaction (PCR)-based method to detect Loa loa DNA in the blood lysate of infected individuals is described. A set of primers was designed to amplify the repeat 3 sequence (15r3) of the gene encoding a putative L. loa allergen. The qualitative PCR was carried out using blood lysates from subjects from an L. loaendemic area of Gabon where loiasis exists sympatrically with Mansonella perstans, and from individuals from a loiasis-free area in Togo infected concomitantly with M. perstans and Onchocerca volvulus. No specific amplification was observed after ethidium bromide staining of a gel containing M. perstans and O. volvulus control samples. In contrast, a 396-basepair (bp) DNA was detected in all L. loa microfilaremic individuals and in seven of the 20 L. loa amicrofilaremic subjects diagnosed by leukoconcentration. Qualitative Southern blots carried out at high stringency (65 degrees C) using 15r3 oligonucleotide probe revealed hybridization only with L. loa samples (5 of 5 microfilaremic individuals and 15 of 20 amicrofilaremic individuals), confirming the results obtained with ethidium bromide staining of PCR products. We conclude that this 396-bp sequence could be used as a species-specific diagnostic tool for occult loiasis in an endemic area with concurrent filarial infections.

  4. Development of specificity and stereoselectivity of rat brain dopamine receptors.

    PubMed

    Miller, J C; Friedhoff, A J

    1986-01-01

    Prenatal exposure to the neuroleptic haloperidol has been reported to produce an enduring decrement in the number of dopamine D2 receptors in rat striatum and a persistent diminution of a dopamine dependent behavior, stereotypy. The ontogeny of rat brain dopamine binding sites has been studied in terms of the kinetic properties and phenotypic specificity in rat fetal brain through early postnatal development. Sites showing some properties of the D2 binding site can be found prior to gestational day (GD) 18, can be labeled with [3H]dopamine or [3H]spiroperidol and can be displaced with dopaminergic agonists and antagonists. Saturation kinetics for specific [3H]spiroperidol has previously been found to occur on or about GD 18. It is of interest that the critical period for the prenatal effect of haloperidol to reduce striatal D2 binding sites, GD's 15-18, coincides with the period during which dopamine binding sites lack true specificity, but can be labeled with dopaminergic ligands. In these experiments the development of stereoselectivity of brain dopamine binding sites has been examined. When rat mothers were given either the neuroleptic (+)-butaclamol or its therapeutically inactive isomer (-)-butaclamol during the critical period GD's 15-18, the number of [3H]spiroperidol binding sites in striata of offspring was significantly reduced by both stereoisomers. This is in marked contrast to the postnatal treatment effect by a neuroleptic in which upregulation of striatal D2 binding sites occurs only by treatment with the therapeutically active isomer (+)-butaclamol. In vitro studies of the direct effect of the stereoisomers of butaclamol indicate that the recognition sites detected during fetal brain development with [3H]spiroperidol do not distinguish between the isomers of butaclamol.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. SO2907, A Putative TonB-dependent Receptor, Is Involved in Dissimilatory Iron Reduction by Shewanella oneidensis Strain MR-1

    SciTech Connect

    Qian, Yufeng; Shi, Liang; Tien, Ming

    2011-09-30

    Shewanella oneidensis strain MR-1 utilizes soluble and insoluble ferric ions as terminal electron acceptors during anaerobic respiration. The components of respiratory metabolism are localized in the membrane fractions which include the outer membrane and cytoplasmic membrane. Many of the biological components that interact with the various iron forms are proposed to be localized in these membrane fractions. To identify the iron-binding proteins acting either as an iron transporter or as a terminal iron reductase, we used metal-catalyzed oxidation reactions. This system catalyzed the oxidation of amino acids in close proximity to the iron binding site. The carbonyl groups formed from this oxidation can then be labeled with fluoresceinamine (FLNH2). The peptide harboring the FLNH2 can then be proteolytically digested, purified by HPLC and then identified by MALDI-TOF tandem MS. A predominant peptide was identified to be part of SO2907 that encodes a putative TonB-dependent receptor. Compared to wild type (wt), the so2097 gene deletion (ΔSO2907) mutant has impaired ability to reduce soluble Fe(III), but retains the same ability to respire oxygen or fumarate as the wt. The ΔSO2907 mutant was also impacted in reduction of insoluble iron. Iron binding assays using isothermal titration calorimetry and fluorescence tryptophan quenching demonstrated that a truncated form of heterologous-expressed SO2907 that contains the Fe(III) binding site, is capable of binding soluble Fe(III) forms with Kd of approximate 50 μM. To the best of our knowledge, this is the first report of the physiological role of SO2907 in Fe(III) reduction by MR-1.

  6. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.

    PubMed

    Li, Shuqiang; Yin, Lihui; Cole, Eric S; Udani, Rupa A; Karrer, Kathleen M

    2006-07-15

    The ciliated protozoan Tetrahymena has two nuclei: a germ line micronucleus and a somatic macronucleus. The transcriptionally active macronucleus has about 50 copies of each chromosome. At sexual reproduction (conjugation), the parental macronucleus is degraded and new macronucleus develops from a mitotic product of the zygotic micronucleus. Development of the macronucleus involves massive genome remodeling, including deletion of about 6000 specific internal eliminated sequences (IES) and multiple rounds of DNA replication. A gene encoding a putative signal transduction receptor, ASI2, (anlagen stage induced 2) is up-regulated during development of the new macronuclei (anlagen). Macronuclear ASI2 is nonessential for vegetative growth. Homozygous ASI2 germ line knockout cells with wild type parental macronuclei proceed through mating but arrest at late macronuclear anlagen development and die before the first post-conjugation fission. IES elimination occurs in these cells. Two rounds of postzygotic DNA replication occur normally in progeny of ASI2 germ line knockouts, but endoreduplication of the macronuclear genome is arrested. The germ line ASI2 null phenotype is rescued in a mating of a knockout strain with wild type cells.

  7. Pharmacologic specificity of alpha-2 adrenergic receptor subtypes

    SciTech Connect

    Petrash, A.; Bylund, D.

    1986-03-01

    The authors have defined alpha-2 adrenergic receptor subtypes in human and rat tissues using prazosin as a subtype selective drug. Prazosin has a lower affinity (250 nM) at alpha-2A receptor and a higher affinity (5 nM) at alpha-2B receptors. In order to determine if other adrenergic drugs are selective for one or the other subtypes, the authors performed (/sup 3/H)yohimbine inhibition experiments with various adrenergic drugs in tissues containing alpha-2A, alpha-2B or both subtypes. Oxymetazoline, WB4101 and yohimbine were found to be 80-, 20- and 10-fold more potent at alpha-2A receptors than at alpha-2B receptors. Phentolamine, adazoxan, (+)- and (-)-mianserin, clonidine, (+)-butaclamol, (-)- and (+)-norepinephrine, epinephrine, dopamine and thioridazine were found to have equal affinities for the two subtypes. These results further validate the subdivision of alpha-2 adrenergic receptors into alpha-2A and alpha-2B subtypes.

  8. Inositol 1,4,5-trisphosphate binds to a specific receptor and releases microsomal calcium in the arterior pituitary gland

    SciTech Connect

    Guillemette, G.; Balla, T.; Baukal, A.J.; Catt, K.J.

    1987-12-01

    The properties of inositol 1,4,5-trisphosphate (InsP/sub 3/) receptor sites in the anterior pituitary were evaluated by binding studies with InsP/sub 3/ labeled with /sup 32/P to high specific radioactivity. Specific binding of Ins(/sup 32/P)P/sub 3/ was demonstrable in pituitary membrane preparations and was linearly proportional to the amount of membrane added over the range 0.5-2 mg of protein. Kinetic studies showed that specific InsP/sub 3/ binding was half-maximal in about 40 sec and reached a plateau after 15 min at 0/sup 0/C. Scatchard analysis of the binding data was consistent with a single set of high affinity sites. The specificity of Ins(/sup 32/P)P/sub 3/ binding to these sites was illustrated by the much weaker affinity for structural analogs such as inositol 1-phosphate, phytic acid, 2,3-bisphosphoglycerate, and fructose 1,6-bisphosphate. To assess the functional relevance of the InsP/sub 3/ binding sites, the Ca/sup 2 +/-releasing activity of InsP/sub 3/ was measured in pituitary membrane preparations. Under physiological conditions within the cytosol, the high-affinity InsP/sub 3/ binding sites characterized in pituitary membranes could serve as the putative receptors through which InsP/sub 3/ triggers Ca/sup 2 +/ mobilization in the anterior pituitary gland.

  9. Soluble forms of NCAM and F3 neuronal cell adhesion molecules promote Schwann cell migration: identification of protein tyrosine phosphatases zeta/beta as the putative F3 receptors on Schwann cells.

    PubMed

    Thomaidou, D; Coquillat, D; Meintanis, S; Noda, M; Rougon, G; Matsas, R

    2001-08-01

    Neural cell adhesion molecule (NCAM) and F3 are both axonal adhesion molecules which display homophilic (NCAM) or heterophilic (NCAM, F3) binding activities and participate in bidirectional exchange of information between neurones and glial cells. Engineered Fc chimeric molecules are fusion proteins that contain the extracellular part of NCAM or F3 and the Fc region of human IgG1. Here, we investigated the effect of NCAM-Fc and F3-Fc chimeras on Schwann cell (SC) migration. Binding sites were identified at the surface of cultured SCs by chimera coated fluorospheres. The functional effect of NCAM-Fc and F3-Fc binding was studied in two different SC migration models. In the first, migration is monitored at specific time intervals inside a 1-mm gap produced in a monolayer culture of SCs. In the second, SCs from a dorsal root ganglion explant migrate on a sciatic nerve cryosection. In both systems addition of the chimeras significantly increased the extent of SC migration and this effect could be prevented by the corresponding anti-NCAM or anti-F3 blocking antibodies. Furthermore, antiproteoglycan-type protein tyrosine phosphatase zeta/beta (RPTPzeta/beta) antibodies identified the presence of RPTPzeta/beta on SCs and prevented the enhancing effect of soluble F3 on SC motility by 95%. The F3-Fc coated Sepharose beads precipitated RPTPzeta/beta from SC lysates. Altogether these data point to RPTPzeta/beta is the putative F3 receptor on SCs. These results identify F3 and NCAM receptors on SC as potential mediators of signalling occurring between axons and glial cells during peripheral nerve development and regeneration.

  10. Screening for AMPA receptor auxiliary subunit specific modulators

    PubMed Central

    Azumaya, Caleigh M.; Days, Emily L.; Vinson, Paige N.; Stauffer, Shaun; Sulikowski, Gary; Weaver, C. David; Nakagawa, Terunaga

    2017-01-01

    AMPA receptors (AMPAR) are ligand gated ion channels critical for synaptic transmission and plasticity. Their dysfunction is implicated in a variety of psychiatric and neurological diseases ranging from major depressive disorder to amyotrophic lateral sclerosis. Attempting to potentiate or depress AMPAR activity is an inherently difficult balancing act between effective treatments and debilitating side effects. A newly explored strategy to target subsets of AMPARs in the central nervous system is to identify compounds that affect specific AMPAR-auxiliary subunit complexes. This exploits diverse spatio-temporal expression patterns of known AMPAR auxiliary subunits, providing means for designing brain region-selective compounds. Here we report a high-throughput screening-based pipeline that can identify compounds that are selective for GluA2-CNIH3 and GluA2-stargazin complexes. These compounds will help us build upon the growing library of AMPAR-auxiliary subunit specific inhibitors, which have thus far all been targeted to TARP γ-8. We used a cell-based assay combined with a voltage-sensitive dye (VSD) to identify changes in glutamate-gated cation flow across the membranes of HEK cells co-expressing GluA2 and an auxiliary subunit. We then used a calcium flux assay to further validate hits picked from the VSD assay. VU0612951 and VU0627849 are candidate compounds from the initial screen that were identified as negative and positive allosteric modulators (NAM and PAM), respectively. They both have lower IC50/EC50s on complexes containing stargazin and CNIH3 than GSG1L or the AMPAR alone. We have also identified a candidate compound, VU0539491, that has NAM activity in GluA2(R)-CNIH3 and GluA2(Q) complexes and PAM activity in GluA2(Q)-GSG1L complexes. PMID:28358902

  11. Estrogen receptor subtype- and promoter-specific modulation of aryl hydrocarbon receptor-dependent transcription.

    PubMed

    Wihlén, Björn; Ahmed, Shaimaa; Inzunza, José; Matthews, Jason

    2009-06-01

    In this study, we examined the role of estrogen receptors (ER) in aryl hydrocarbon receptor (AHR)-dependent transactivation. Chromatin immunoprecipitation assays showed that AHR agonists differentially induced recruitment of ERalpha to the AHR target genes CYP1A1 and CYP1B1. Cotreatment with 17beta-estradiol significantly increased beta-naphthoflavone (BNF)- and 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced recruitment of ERalpha to CYP1A1, whereas 3,3'-diindolylmethane induced promoter occupancy of ERalpha at CYP1A1 that was unaffected by cotreatment with 17beta-estradiol. Cyclical recruitment of AHR and ERalpha to CYP1A1 was only observed in cells treated with BNF. Stable and subtype-specific knockdown of ERalpha or ERbeta using shRNA showed that suppression of ERalpha significantly reduced, whereas knockdown of ERbeta significantly enhanced, AHR agonist-induced Cyp1a1 expression in HC11 mouse mammary epithelial cells. AHR agonist-induced Cyp1b1 expression was reduced by ERbeta knockdown but unaffected by ERalpha knockdown. The siRNA-mediated knockdown of ERalpha in MCF-7 human breast cancer cells did not affect 2,3,7,8-tetrachlorodibenzo-p-dioxin-dependent regulation of CYP1A1 and CYP1B1 mRNA expression. In agreement with our in vitro findings in the HC11 cells, ERalpha knockout mice exhibit reduced BNF-dependent induction of Cyp1a1 mRNA. These results establish ligand- and promoter-specific influences on the cyclical recruitment patterns for AHR and show ER species-, subtype-, and promoter-specific modulation of AHR-dependent transcription.

  12. A putative Arabidopsis thaliana glycosyltransferase, At4g01220, which is closely related to three plant cell wall-specific xylosyltransferases, is differentially expressed spatially and temporally.

    PubMed

    Fangel, Jonatan U; Petersen, Bent L; Jensen, Niels B; Willats, William G T; Bacic, Antony; Egelund, Jack

    2011-03-01

    Plant cell wall polysaccharides are amongst the most complex, heterogeneous and abundant bio-molecules on earth. This makes the biosynthetic enzymes, namely the glycosyltransferases and polysaccharide synthases, important research targets in plant science and biotechnology. As an initial step to characterize At4g01220, a putative Arabidopsis thaliana encoding glycosyltransferases in CAZy GT-family-77 that is similar to three known xylosyltransferases involved in the biosynthesis of the pectic polysaccharide, rhamnogalacturonan II, we conducted an expression analysis. In transgenic Arabidopsis thaliana plants containing a fusion between the At4g01220 promoter and the gusA reporter gene we found the expression to be spatially and developmentally regulated. Analysis of Nicotiana benthamiana transfected with the At2g01220::YFP fusion protein revealed that the fusion protein resided in a Brefeldin A-sensitive compartment consistent with a sub-cellular location in the Golgi apparatus. In addition, in silico expression analysis from the Genevestigator database revealed that At4g01220 was up-regulated upon treatment with isoxaben, an inhibitor of cellulose synthesis, which, together with a co-expression analysis that identified a number of plant cell wall co-related biosynthetic genes, suggests involvement in cell wall biosynthesis with pectin being a prime candidate. The data presented provide insights into the expression, sub-cellular location and regulation of At4g01220 under various conditions and may help elucidate its specific function.

  13. Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004.

    PubMed

    Le, Shuai; He, Xuesong; Tan, Yinling; Huang, Guangtao; Zhang, Lin; Lux, Renate; Shi, Wenyuan; Hu, Fuquan

    2013-01-01

    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy.

  14. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  15. Collagenase-3 binds to a specific receptor and requires the low density lipoprotein receptor-related protein for internalization

    NASA Technical Reports Server (NTRS)

    Barmina, O. Y.; Walling, H. W.; Fiacco, G. J.; Freije, J. M.; Lopez-Otin, C.; Jeffrey, J. J.; Partridge, N. C.

    1999-01-01

    We have previously identified a specific receptor for collagenase-3 that mediates the binding, internalization, and degradation of this ligand in UMR 106-01 rat osteoblastic osteosarcoma cells. In the present study, we show that collagenase-3 binding is calcium-dependent and occurs in a variety of cell types, including osteoblastic and fibroblastic cells. We also present evidence supporting a two-step mechanism of collagenase-3 binding and internalization involving both a specific collagenase-3 receptor and the low density lipoprotein receptor-related protein. Ligand blot analysis shows that (125)I-collagenase-3 binds specifically to two proteins ( approximately 170 kDa and approximately 600 kDa) present in UMR 106-01 cells. Western blotting identified the 600-kDa protein as the low density lipoprotein receptor-related protein. Our data suggest that the 170-kDa protein is a specific collagenase-3 receptor. Low density lipoprotein receptor-related protein-null mouse embryo fibroblasts bind but fail to internalize collagenase-3, whereas UMR 106-01 and wild-type mouse embryo fibroblasts bind and internalize collagenase-3. Internalization, but not binding, is inhibited by the 39-kDa receptor-associated protein. We conclude that the internalization of collagenase-3 requires the participation of the low density lipoprotein receptor-related protein and propose a model in which the cell surface interaction of this ligand requires a sequential contribution from two receptors, with the collagenase-3 receptor acting as a high affinity primary binding site and the low density lipoprotein receptor-related protein mediating internalization.

  16. Putative Na+/H+ antiporter of Vibrio cholerae, Vc-NhaP2, mediates the specific K+/H+ exchange in vivo†

    PubMed Central

    Resch, Craig T.; Winogrodzki, Judith L.; Patterson, Curtis T.; Lind, Erin J.; Quinn, Matthew J.; Dibrov, Pavel; Häse, Claudia C.

    2010-01-01

    The existence of bacterial K+/H+ antiporters preventing the over-accumulation of potassium in the cytoplasm was predicted by Peter Mitchell almost fifty years ago. The importance of K+/H+ antiport for bacterial physiology is widely recognized but its molecular mechanisms remain underinvestigated. Here, we demonstrate that a putative Na+/H+ antiporter, Vc-NhaP2, protects cells of Vibrio cholerae growing at pH 6.0 from high concentrations of external K+. Resistance of V. cholerae to Na+ was found to be independent of Vc-NhaP2. When assayed in inside-out membrane vesicles derived from antiporter-deficient Escherichia coli, Vc-NhaP2 catalyzed the electroneutral K+(Rb+)/H+ exchange with pH optimum at ~7.75 with an apparent Km for K+ of 1.62 mM. In the absence of K+ it exhibited Na+/H+ antiport, albeit rather weakly. Interestingly, while Vc-NhaP2 cannot exchange Li+ for protons, elimination of functional Vc-NhaP2 resulted in a significantly higher Li+ resistance of V. cholerae cells growing at pH 6.0, suggesting the possibility of Vc-NhaP2-mediated Li+/K+ antiport. The peculiar cation specificity of Vc-NhaP2 and the presence of its two additional paralogues in the same genome make this transporter an attractive model for detailed analysis of structural determinants of the substrate specificity in alkali cation exchangers. PMID:20163190

  17. Spatiotemporal analysis of putative notochordal cell markers reveals CD24 and keratins 8, 18, and 19 as notochord‐specific markers during early human intervertebral disc development

    PubMed Central

    Rodrigues‐Pinto, Ricardo; Berry, Andrew; Piper‐Hanley, Karen; Hanley, Neil; Richardson, Stephen M.

    2016-01-01

    ABSTRACT In humans, the nucleus pulposus (NP) is composed of large vacuolated notochordal cells in the fetus but, soon after birth, becomes populated by smaller, chondrocyte‐like cells. Although animal studies indicate that notochord‐derived cells persist in the adult NP, the ontogeny of the adult human NP cell population is still unclear. As such, identification of unique notochordal markers is required. This study was conducted to determine the spatiotemporal expression of putative human notochordal markers to aid in the elucidation of the ontogeny of adult human NP cells. Human embryos and fetuses (3.5–18 weeks post‐conception (WPC)) were microdissected to isolate the spine anlagens (notochord and somites/sclerotome). Morphology of the developing IVD was assessed using hematoxylin and eosin. Expression of keratin (KRT) 8, KRT18, KRT19, CD24, GAL3, CD55, BASP1, CTGF, T, CD90, Tie2, and E‐cadherin was assessed using immunohistochemistry. KRT8, KRT18, KRT19 were uniquely expressed by notochordal cells at all spine levels at all stages studied; CD24 was expressed at all stages except 3.5 WPC. While GAL3, CD55, BASP1, CTGF, and T were expressed by notochordal cells at specific stages, they were also co‐expressed by sclerotomal cells. CD90, Tie2, and E‐cadherin expression was not detectable in developing human spine cells at any stage. This study has identified, for the first time, the consistent expression of KRT8, KRT18, KRT19, and CD24 as human notochord‐specific markers during early IVD development. Thus, we propose that these markers can be used to help ascertain the ontogeny of adult human NP cells. © 2016 The Authors. Journal of Orthopaedic Research Published by Wiley Periodicals, Inc. J Orthop Res 34:1327–1340, 2016. PMID:26910849

  18. Lack of Ligand-Selective Binding of the Aryl Hydrocarbon Receptor to Putative DNA Binding Sites Regulating Expression of Bax and Paraoxonase 1 Genes

    PubMed Central

    DeGroot, Danica E.; Hayashi, Ai; Denison, Michael S.

    2013-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA. PMID:24200861

  19. Lack of ligand-selective binding of the aryl hydrocarbon receptor to putative DNA binding sites regulating expression of Bax and paraoxonase 1 genes.

    PubMed

    DeGroot, Danica E; Hayashi, Ai; Denison, Michael S

    2014-01-01

    The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor that mediates the biological and toxicological effects of structurally diverse chemicals through its ability to bind specific DNA recognition sites (dioxin responsive elements (DREs)), and activate transcription of adjacent genes. While the DRE has a highly conserved consensus sequence, it has been suggested that the nucleotide specificity of AhR DNA binding may be ligand-dependent. The upstream regulatory regions of the murine Bax and human paraoxonase 1 (PON1) genes reportedly contain unique DRE-like sequences that respond to AhRs activated by some ligands but not others. Given the significant implications of this observation to understanding the diversity in AhR responses and that of other ligand-dependent nuclear receptors, a combination of DNA binding, nuclear translocation and gene expression analysis was used to investigate the molecular mechanisms underlying these ligand-selective responses. Although known AhR agonists stimulated AhR nuclear translocation, DRE binding and gene expression, the ligand-selective DRE-like DNA elements identified in the Bax and PON1 upstream regulatory regions failed to bind ligand-activated AhR or confer AhR-responsiveness upon a reporter gene. These results argue against the reported ligand-selectivity of AhR DNA binding and suggest DNA binding by ligand activated AhR involves DRE-containing DNA.

  20. Subunit-Specific Trafficking of GABAA Receptors during Status Epilepticus

    PubMed Central

    Goodkin, Howard P.; Joshi, Suchitra; Mtchedlishvili, Zakaria; Brar, Jasmit; Kapur, Jaideep

    2010-01-01

    It is proposed that a reduced surface expression of GABAA receptors (GABARs) contributes to the pathogenesis of status epilepticus (SE), a condition characterized by prolonged seizures. This hypothesis was based on the finding that prolonged epileptiform bursting (repetitive bursts of prolonged depolarizations with superimposed action potentials) in cultures of dissociated hippocampal pyramidal neurons (dissociated cultures) results in the increased intracellular accumulation of GABARs. However, it is not known whether this rapid modification in the surface-expressed GABAR pool results from selective, subunit-dependent or nonselective, subunit-independent internalization of GABARs. In hippocampal slices obtained from animals undergoing prolonged SE (SE-treated slices), we found that the surface expression of the GABARβ2/3 and γ2 subunits was reduced, whereas that of the δ subunit was not. Complementary electrophysiological recordings from dentate granule cells in SE-treated slices demonstrated a reduction in GABAR-mediated synaptic inhibition, but not tonic inhibition. A reduction in the surface expression of the γ2 subunit, but not the δ subunit was also observed in dissociated cultures and organotypic hippocampal slice cultures when incubated in an elevated KCl external medium or an elevated KCl external medium supplemented with NMDA, respectively. Additional studies demonstrated that the reduction in the surface expression of the γ2 subunit was independent of direct ligand binding of the GABAR. These findings demonstrate that the regulation of surface-expressed GABAR pool during SE is subunit-specific and occurs independent of ligand binding. The differential modulation of the surface expression of GABARs during SE has potential implications for the treatment of this neurological emergency. PMID:18322097

  1. Human Y-79 Retinoblastoma Cells Exhibit Specific Insulin Receptors.

    DTIC Science & Technology

    1985-01-01

    receptor. The Scatchard plot of, inulin competition data was curvilinear and was resolved in a high affinity Kd M) - low capacity ( ~ 3,000 sites/cell...containing insulin receptor antibodies (Flier et al 1977) was a gift of Dr. Philip Gorden, Diabetes Branch, NIADDK, NIH. Eagle’s minimum essential medium...Houten, M., Posner, B.I., White, R.J., Ohgaku, S., Horvat, A., and Hemmelgarn, E. (1983) Binding of insulin by monkey and pig hypothalamus. Diabetes 32

  2. 15-Deoxy-Δ12,14-prostaglandin J2-Glycerol Ester, a Putative Metabolite of 2-Arachidonyl Glycerol, Activates Peroxisome Proliferator Activated Receptor γ

    PubMed Central

    Raman, Priyadarshini; Kaplan, Barbara L. F.; Thompson, Jerry T.; Vanden Heuvel, John P.

    2011-01-01

    2-Arachidonyl glycerol (2-AG) is an endogenous arachidonic acid derivative capable of suppressing interleukin (IL)-2 production by activated T cells. 2-AG-mediated IL-2 suppression is dependent on cyclooxygenase-2 (COX-2) metabolism and peroxisome proliferator activated receptor γ (PPARγ) activation. The objective of the present studies was to examine whether 15-deoxy-Δ12,14-PGJ2-glycerol ester (15d-PGJ2-G), a putative metabolite of 2-AG, can mimic the actions of 2-AG on IL-2 regulation through PPARγ activation. 15d-PGJ2-G bound PPARγ-ligand binding domain in a PPARγ competitive binding assay. 15d-PGJ2-G treatment activated PPARγ in a reporter assay, and PPARγ activation was attenuated when a PPARγ antagonist, 2-chloro-5-nitro-N-4-pyridinylbenzamide (T0070907), was present. 15d-PGJ2-G treatment suppressed IL-2 production by activated Jurkat cells, which was partially attenuated when pretreated with T0070907. Moreover, IL-2 suppression was pronounced when 15d-PGJ2-G was present 30 min before or after T-cell activation. Concordant with IL-2 suppression, 15d-PGJ2-G treatment decreased nuclear factor of activated T cells (NFAT) transcriptional activity in transiently transfected Jurkat cells. It is noteworthy that T0070907 alone markedly increased NFAT reporter activity, suggesting the existence of endogenous PPARγ activation and modulation of NFAT. Because COX-2 metabolism of 2-AG is important for IL-2 suppression, the effect of 2-AG on COX-2 and PPARγ mRNA expression was investigated. 2-AG treatment decreased the up-regulation of COX-2 mRNA after T-cell activation, which suggests negative feedback limiting COX-2-mediated metabolism of 2-AG. PPARγ mRNA expression was increased upon activation, and 2-AG treatment produced a modest decrease in PPARγ mRNA expression. Collectively, our findings suggest that 15d-PGJ2-G activates PPARγ to decrease NFAT transcriptional activity and IL-2 expression in activated T cells. PMID:21511917

  3. Mutations in WSC genes for putative stress receptors result in sensitivity to multiple stress conditions and impairment of Rlm1-dependent gene expression in Saccharomyces cerevisiae.

    PubMed

    Zu, T; Verna, J; Ballester, R

    2001-09-01

    Intracellular signaling by mitogen-activated protein (MAP) kinase cascades plays an essential role in the cellular response to environmental stress. In the yeast Saccharomyces cerevisiae, the PKC1-regulated, stress-activated MAP kinase pathway, the MPK1 cascade, is activated by heat and by a decrease in osmolarity. The genes WSC1, WSC2 and WSC3 encode putative receptors that maintain cell wall integrity under conditions of heat stress. Genetic studies place the function of the WSC genes upstream of the MPK1 kinase cascade. To further define the role of the WSC family in the stress response we determined whether: (1) the wscdelta mutants are sensitive to other environmental stress conditions, in addition to heat shock; (2) expression from four transcriptional control elements, known to be activated by stress, is impaired in wscdelta mutants; and (3) Wsc4, a Wsc homolog, has functions that overlap with those of the other Wsc family members. We report here that deletion of WSC and PKC1 causes hypersensitivity to ethanol, hydrogen peroxide and DNA-damaging drugs. In wscdelta mutants expression of beta-galactosidase from the AP-1 response element (ARE), the heat shock response element (HSE) or the stress response element (STRE) is not reduced. In contrast, expression of a reporter gene placed under the control of the Rlm1 (transcription factor)-dependent response element is significantly reduced in wscdelta mutants. This suggests that the lysis defect of wscdelta mutants is at least in part caused by a defect in transcriptional regulation by Rlm1. Phenotypic analysis of the effect of deleting WSC4 in a wsc1delta mutant show that, unlike WSC2 or WSC3, deletion of WSC4 does not exacerbate the lysis defect of a wsc1delta strain. In contrast, deletion of WSC4 enhances the sensitivity of the wsc1delta mutant to heat shock, ethanol, and a DNA-damaging drug, suggesting that WSC4 plays a role in the response to environmental stress but that its function may differ from those of

  4. The Principles of Ligand Specificity on beta-2-adrenergic receptor

    PubMed Central

    Chan, H. C. Stephen; Filipek, Slawomir; Yuan, Shuguang

    2016-01-01

    G protein-coupled receptors are recognized as one of the largest families of membrane proteins. Despite sharing a characteristic seven-transmembrane topology, G protein-coupled receptors regulate a wide range of cellular signaling pathways in response to various physical and chemical stimuli, and prevail as an important target for drug discovery. Notably, the recent progress in crystallographic methods led to a breakthrough in elucidating the structures of membrane proteins. The structures of β2-adrenergic receptor bound with a variety of ligands provide atomic details of the binding modes of agonists, antagonists and inverse agonists. In this study, we selected four representative molecules from each functional class of ligands and investigated their impacts on β2-adrenergic receptor through a total of 12 × 100 ns molecular dynamics simulations. From the obtained trajectories, we generated molecular fingerprints exemplifying propensities of protein-ligand interactions. For each functional class of compounds, we characterized and compared the fluctuation of the protein backbone, the volumes in the intracellular pockets, the water densities in the receptors, the domain interaction networks as well as the movements of transmembrane helices. We discovered that each class of ligands exhibits a distinct mode of interactions with mainly TM5 and TM6, altering the shape and eventually the state of the receptor. Our findings provide insightful prospective into GPCR targeted structure-based drug discoveries. PMID:27703221

  5. Brain region-specific methylation in the promoter of the murine oxytocin receptor gene is involved in its expression regulation.

    PubMed

    Harony-Nicolas, Hala; Mamrut, Shimrat; Brodsky, Leonid; Shahar-Gold, Hadar; Barki-Harrington, Liza; Wagner, Shlomo

    2014-01-01

    Oxytocin is a nine amino acid neuropeptide that is known to play a critical role in fetal expulsion and breast-feeding, and has been recently implicated in mammalian social behavior. The actions of both central and peripheral oxytocin are mediated through the oxytocin receptor (Oxtr), which is encoded by a single gene. In contrast to the highly conserved expression of oxytocin in specific hypothalamic nuclei, the expression of its receptor in the brain is highly diverse among different mammalian species or even within individuals of the same species. The diversity in the pattern of brain Oxtr expression among mammals is thought to contribute to the broad range of social systems and organizations. Yet, the mechanisms underlying this diversity are poorly understood. DNA methylation is a major epigenetic mechanism that regulates gene transcription, and has been linked to reduced expression levels of the Oxtr in individuals with autism. Here we hypothesize that DNA methylation is involved in the expression regulation of Oxtr in the mouse brain. By combining bisulfite DNA conversion and Next-Generation Sequencing we found that specific CpG sites are differentially methylated between distinct brain regions expressing different levels of Oxtr mRNA. Some of these CpG sites are located within putative binding sites of transcription factors known to regulate Oxtr expression, including estrogen receptor α (ERα) and SP1. Specifically, methylation of the SP1 site was found to positively correlate with Oxtr expression. Furthermore, we revealed that the methylation levels of these sites in the various brain regions predict the relationship between ERα and Oxtr mRNA levels. Collectively, our results suggest that brain region-specific expression of the mouse Oxtr gene is epigenetically regulated by DNA methylation of its promoter. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail.

    PubMed

    Hayashi, M K; Haga, T

    1997-04-15

    A putative palmitoylation site, Cys457, of muscarinic acetylcholine receptor m2 subtype (m2 receptor) was eliminated by conversion to alanine or stop codon by site-directed mutagenesis. The mutant m2 receptor C457A was not metabolically labeled with [3H] palmitic acid when expressed in Sf9 cells, whereas the wild-type m2 receptor was labeled under the same conditions. These results confirm that the Cys457 is the palmitoylation site. The rate of palmitoylation was markedly accelerated by addition of agonist, indicating that the palmitoylation reaction is affected by conformational changes of the receptor induced by agonist binding. The m2 receptor mutants without palmitoylation were purified and reconstituted with G proteins into phospholipid vesicles. Both mutants were good substrates of G protein-coupled receptor kinase 2 and the phosphorylation was stimulated by agonist and G protein beta gamma subunits, as was the case for wild-type receptors. The mutant receptors interacted with and activate Gi2 and G(o). However, the rate of [35S] GTP gamma S binding to Gi2 was half as much for the mutants as that for the wild type, and the proportion of guanine nucleotide-sensitive high-affinity agonist binding sites was significantly less for mutants (42-42%) compared to wild type (62%). These results indicate that the palmitoylation of m2 receptors is not an absolute requirement for their interaction with G proteins but enhances the ability of the receptors to interact with G proteins.

  7. The molecular and immunochemical expression of innexins in the yellow fever mosquito, Aedes aegypti: insights into putative life stage- and tissue-specific functions of gap junctions

    PubMed Central

    Calkins, Travis L.; Woods-Acevedo, Mikal A.; Hildebrandt, Oliver; Piermarini, Peter M.

    2015-01-01

    Gap junctions (GJ) mediate direct intercellular communication by forming channels through which certain small molecules and/or ions can pass. Connexins, the proteins that form vertebrate GJ, are well studied and known to contribute to neuronal, muscular and epithelial physiology. Innexins, the GJ proteins of insects, have only recently received much investigative attention and many of their physiological roles remain to be determined. Here we characterize the molecular expression of six innexin (Inx) genes in the yellow fever mosquito Aedes aegypti (AeInx1, AeInx2, AeInx3, AeInx4, AeInx7, and AeInx8) and the immunochemical expression of one innexin protein, AeInx3, in the alimentary canal. We detected the expression of no less than four innexin genes in each mosquito life stage (larva, pupa, adult) and tissue/body region from adult males and females (midgut, Malpighian tubules, hindgut, head, carcass, gonads), suggesting a remarkable potential molecular diversity of GJ in mosquitoes. Moreover, the expression patterns of some innexins were life stage and/or tissue specific, suggestive of potential functional specializations. Cloning of the four full-length cDNAs expressed in the Malpighian tubules of adult females (AeInx1, AeInx2, AeInx3, and AeInx7) revealed evidence for 1) alternative splicing of AeInx1 and AeInx3 transcripts, and 2) putative N-glycosylation of AeInx3 and AeInx7. Finally, immunohistochemistry of AeInx3 in the alimentary canal of larval and adult female mosquitoes confirmed localization of this innexin to the intercellular regions of Malpighian tubule and hindgut epithelial cells, suggesting that it is an important component of GJ in these tissues. PMID:25585357

  8. Cloning and characterisation of a putative pollen-specific polygalacturonase gene (CpPG1) differentially regulated during pollen development in zucchini (Cucurbita pepo L.).

    PubMed

    Carvajal, F; Garrido, D; Jamilena, M; Rosales, R

    2014-03-01

    Studies in zucchini (Cucurbita pepo L. spp. pepo) pollen have been limited to the viability and morphology of the mature pollen grain. The enzyme polygalacturonase (PG) is involved in pollen development and pollination in many species. In this work, we study anther and pollen development of C. pepo and present the cloning and characterisation of a putative PG CpPG1 (Accession no. HQ232488) from pollen cDNA in C. pepo. The predicted protein for CpPG1 has 416 amino acids, with a high homology to other pollen PGs, such as P22 from Oenothera organensis (76%) and PGA3 from Arabidopsis thaliana (73%). CpPG1 belongs to clade C, which comprises PGs expressed in pollen, and presents a 34 amino acid signal peptide for secretion towards the cell wall. DNA-blot analysis revealed that there are at least another two genes that code for PGs in C. pepo. The spatial and temporal accumulation of CpPG1 was studied by semi-quantitative- and qRT-PCR. In addition, mRNA was detected only in anthers, pollen and the rudimentary anthers of bisexual flowers (only present in some zucchini cultivars under certain environmental conditions that trigger anther development in the third whorl of female flowers). However, no expression was detected in cotyledons, stem or fruit. Furthermore, CpPG1 mRNA was accumulated throughout anther development, with the highest expression found in mature pollen. Similarly, exo-PG activity increased from immature anther stages to mature anthers and mature pollen. Overall, these data support the pollen specificity of this gene and suggest an involvement of CpPG1 in pollen development in C. pepo. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  9. Molecular Basis of Signaling Specificity of Insulin and IGF Receptors: Neglected Corners and Recent Advances

    PubMed Central

    Siddle, Kenneth

    2011-01-01

    Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of “metabolic” and “mitogenic” responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to “metabolic” and “mitogenic” responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in “metabolic” or “mitogenic” signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears

  10. The use of receptor-specific antibodies to study G-protein-coupled receptors.

    PubMed

    Gupta, Achla; Devi, Lakshmi A

    2006-07-01

    The identification of G-protein-coupled receptor (GPCR) cDNAs has facilitated a number of studies characterizing the biochemical properties of the receptor protein. Most of these studies have used antibodies directed against the epitope-tagged receptor expressed in heterologous cells, because of the lack of sensitive and selective antibodies capable of recognizing endogenous receptors in their native state. In order to facilitate studies with endogenous receptors, efforts have been made to generate receptor-type selective, sensitive antibodies that are able to recognize endogenous receptors. In this review, we discuss the strategies as well as the details of the techniques used for the generation of monoclonal and polyclonal antibodies with a focus on family A GPCRs.

  11. The Schizosaccharomyces pombe mam2 gene encodes a putative pheromone receptor which has a significant homology with the Saccharomyces cerevisiae Ste2 protein.

    PubMed Central

    Kitamura, K; Shimoda, C

    1991-01-01

    The fission yeast Schizosaccharomyces pombe has two mating-types, h+ (P) and h- (M). The mam2 mutant exhibits an h(-)-specific sterile phenotype. Nucleotide sequencing of the mam2 gene isolated from an S. pombe genomic library revealed an open reading frame composed of 348 amino acids. The deduced mam2 product is a hydrophobic protein of 39 kDa that has significant sequence similarity (26.3% for identical amino acids) with the transmembrane domains of the Saccharomyces cerevisiae STE2 product, the alpha-pheromone receptor. Hydropathicity analysis suggests that the Mam2 protein contains seven possible membrane-spanning domains and a carboxy-terminal hydrophilic region. The mam2 gene was disrupted and found to be non-essential for growth. An h- haploid strain harbouring this disrupted null allele failed to respond to the pheromone of h+ cells, P-factor. These observations imply that the mam2 gene encodes a receptor for P-factor. Transcription of mam2 was induced only when strains containing functional mat1-M allele were cultured under conditions of nitrogen starvation. The mam2 gene was also transcribed in h+/h- diploid strains. The fact that the map1/mam2 homozygous diploid cells are incapable of sporulation implies that the pheromone signalling system is necessary for sporulation in diploid cells. Images PMID:1657593

  12. Antidepressant-like effect of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol, a putative trace amine receptor ligand involves l-arginine-nitric oxide-cyclic guanosine monophosphate pathway.

    PubMed

    Dhir, Ashish; Kulkarni, S K

    2011-10-03

    1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol is a novel putative trace amine receptor modulator hypothesized to be useful for treatment-resistant depression. In our previous study, we have demonstrated the antidepressant-like effect of this molecule in mouse forced swim and tail suspension tests and shown to act via modulating the levels of norepinephrine, serotonin and dopamine. The present study attempts to explore the involvement of l-arginine-nitric oxide-cyclic guanosine monophosphate pathway in the antidepressant-like effect of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol in the mouse forced swim test. The antidepressant-like action of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol (8 mg/kg, i.p) was reversed by pretreatment with L-arginine (750 mg/kg, i.p.), a nitric oxide precursor. In contrast, pretreatment with methylene blue (a soluble guanlyate cyclase inhibitor and nitric oxide synthase (NOS) inhibitor) or 7-nitroindazole (a specific neuronal NOS inhibitor) potentiated the antidepressant-like effect of sub-effective dose of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol (2mg/kg, i.p.) in this test model. Furthermore, the antidepressant-like effect of this molecule (8 mg/kg, i.p.) was reversed by sildenafil (5mg/kg, i.p.), a phosphodiesterase inhibitor. In conclusion, the antidepressant-like action of 1-(7-methoxy-2-methyl-1,2,3,4-tetrahydro-isoquinolin-4-YL)-cyclohexanol involved L-arginine-nitric oxide-cyclic guanosine monophospate signaling pathway.

  13. Structural Characterization of the Putative Cholinergic Binding Region alpha(179-201) of the Nicotinic Acetylcholine Receptor. Part 1. Review and Experimental Design.

    DTIC Science & Technology

    1993-04-01

    Dynamic Model for the Nicotinic Acetylcholine Receptor, in Computer -Assisted Modeling of Receptor-Ligand Interactions: Theoretical Aspects and...Hunkapillar, M.W., Strader, C.D., Hood, LE.-Acetylcholine receptor: complex of homologous subunits. Sceince vol. 208, pp. 1454-1457, 1980 Ragone, R

  14. Specific beta-adrenergic receptor binding of carazolol measured with PET

    SciTech Connect

    Berridge, M.S.; Nelson, A.D.; Zheng, L.

    1994-10-01

    Carazolol is a promising high-affinity beta-adrenergic receptor ligand for the noninvasive determination of beta receptor status using PET> Earlier investigations demonstrated specific receptor binding of carazolol in mice. These PET studies with S(-)-[2{double_prime}-{sup 11}C]carazolol in pigs were performed to explore the utility of the tracer for PET receptor studies. Tracer uptake in the heart and lung was measured by PET as a function of time. Receptors were blocked with propranolol and different doses of ICI 118,551 to estimate specific binding. Fluorine-18-1{double_prime}-Fluorocarazolol and the less active R-enantiomer of [{sup 11}C]-carazolol were also studied. Specific receptor binding was 75% of the total uptake in the heart, preventable and displaceable by propranolol. Dose-dependent competition showed that carazolol binds in vivo to {beta}{sub 1} and to {beta}{sub 2} subtypes. Uptake of the labeled R(=) enantiomer of carazolol was not receptor-specific. Carazolol labeled with {sup 11}C or {sup 18}F is a strong candidate for use in receptor estimation with PET. The in vivo observations were consistent with its known high affinity and slow receptor dissociation rate. Its high specific receptor uptake and low metabolism allow existing kinetic models to be applied for receptor measurements. The {sup 11}C label is convenient for repeated administrations, though {sup 13}F allowed the long observation periods necessary for measurement of the receptor dissociation rate. If needed, nonspecific uptake can be estimated without pharmacologic intervention by using the labeled R enantiomer. 32 refs., 11 figs.

  15. Invertebrate Specific D1-like Dopamine Receptor in Control of Salivary Glands in the Black-Legged Tick Ixodes scapularis

    PubMed Central

    Šimo, Ladislav; Koči, Juraj; Kim, Donghun; Park, Yoonseong

    2014-01-01

    The control of tick salivary secretion, which plays a crucial role in compromising the host immune system, involves complex neural mechanisms. Dopamine is known to be the most potent activator of salivary secretion, as a paracrine/autocrine factor. We describe the invertebrate specific D1-like dopamine receptor (InvD1L), which is highly expressed in tick salivary glands. The InvD1L phylogenic clade was found only in invertebrates, suggesting that this receptor was lost in the vertebrates during evolution. InvD1L expressed in CHO-K1 cells was activated by dopamine with a median effective dose (EC50) of 1.34 μM. Immunohistochemistry using the antibody raised against InvD1L revealed two different types of immunoreactivities: basally located axon terminals that are colocalized with myoinhibitory peptide (MIP) and SIFamide neuropeptides, and longer axon-like processes that are positive only for the InvD1L antibody and extended to the apical parts of the acini. Both structures were closely associated with the myoepithelial cell, as visualized by beta-tubulin antibody, lining the acinar lumen in a web-like fashion. Subcellular localizations of InvD1L in the salivary gland suggest that InvD1L modulates the neuronal activities including MIP/SIFamide varicosities, and leads the contraction of myoepithelial cells and/or of the acinar valve to control the efflux of the luminal content. Combining the previously described D1 receptor with its putative function for activating an influx of fluid through the epithelial cells of acini, we propose that complex control of the tick salivary glands is mediated through two different dopamine receptors, D1 and InvD1L, for different downstream responses of the acinar cells. PMID:24307522

  16. Screening of hormone-like activities in bottled waters available in Southern Spain using receptor-specific bioassays.

    PubMed

    Real, Macarena; Molina-Molina, José-Manuel; Jiménez-Díaz, Inmaculada; Arrebola, Juan Pedro; Sáenz, José-María; Fernández, Mariana F; Olea, Nicolás

    2015-01-01

    Bottled water consumption is a putative source of human exposure to endocrine-disrupting chemicals (EDCs). Research has been conducted on the presence of chemicals with estrogen-like activity in bottled waters and on their estrogenicity, but few data are available on the presence of hormonal activities associated with other nuclear receptors (NRs). The aim of this study was to determine the presence of endocrine activities dependent on the activation of human estrogen receptor alpha (hERa) and/or androgen receptor (hAR) in water in glass or plastic bottles sold to consumers in Southern Spain. Hormone-like activities were evaluated in 29 bottled waters using receptor-specific bioassays based on reporter gene expression in PALM cells [(anti-)androgenicity] and cell proliferation assessment in MCF-7 cells [(anti-)estrogenicity] after optimized solid phase extraction (SPE). All of the water samples analyzed showed hormonal activity. This was estrogenic in 79.3% and anti-estrogenic in 37.9% of samples and was androgenic in 27.5% and anti-androgenic in 41.3%, with mean concentrations per liter of 0.113pM 17β-estradiol (E2) equivalent units (E2Eq), 11.01pM anti-estrogen (ICI 182780) equivalent units (ICI 182780Eq), 0.33pM methyltrienolone (R1881) equivalent units (R1881Eq), and 0.18nM procymidone equivalent units (ProcEq). Bottled water consumption contributes to EDC exposure. Hormone-like activities observed in waters from both plastic and glass bottles suggest that plastic packaging is not the sole source of contamination and that the source of the water and bottling process may play a role, among other factors. Further research is warranted on the cumulative effects of long-term exposure to low doses of EDCs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. The onset of labor alters corticotropin-releasing hormone type 1 receptor variant expression in human myometrium: putative role of interleukin-1beta.

    PubMed

    Markovic, Danijela; Vatish, Manu; Gu, Mei; Slater, Donna; Newton, Rob; Lehnert, Hendrik; Grammatopoulos, Dimitris K

    2007-07-01

    CRH targets the human myometrium during pregnancy. The efficiency of CRH actions is determined by expression of functional receptors (CRH-R), which are dynamically regulated. Studies in myometrial tissue biopsies using quantitative RT-PCR demonstrated that the onset of labor, term or preterm, is associated with a significant 2- to 3-fold increase in CRH-R1 mRNA levels. Detailed analysis of myometrial CRH-R1 mRNA variants showed a decline of the pro-CRH-R1 mRNA encoding the CRH-R1beta variant during labor and increased mRNA levels of CRH-R1d mRNA. Studies in myometrial cells identified IL-1beta as an important regulator of myometrial CRH-R1 gene expression because prolonged treatment of myometrial cells with IL-1beta (1 ng/ml) for 18 h induced expression of CRH-R1 mRNA levels by 1.5- to 2-fold but significantly attenuated CRH-R1beta mRNA expression by 70%. In contrast, IL-1beta had no effect on CRH-R1d mRNA expression. Studies using specific inhibitors suggest that ERK1/2, p38 MAPK, and downstream nuclear translocation of nuclear factor-kappaB mediate IL-1beta effects on myometrial CRH-R1 gene. However, the increased CRH-R1 mRNA expression was associated with a dampening of the receptor efficacy to activate the adenylyl cyclase/cAMP signaling cascade. Thus, our findings suggest that IL-1beta is an important regulator of CRH-R1 expression and functional activity, and this interaction might play a role in the transition of the uterus from quiescence to active contractions necessary for the onset of parturition.

  18. Selection of Progesterone Derivatives Specific to Membrane Progesterone Receptors.

    PubMed

    Polikarpova, A V; Maslakova, A A; Levina, I S; Kulikova, L E; Kuznetsov, Y V; Guseva, A A; Shchelkunova, T A; Zavarzin, I V; Smirnova, O V

    2017-02-01

    The search of selective agonists and antagonists of membrane progesterone receptors (mPRs) is a starting point for the study of progesterone signal transduction mechanisms mediated by mPRs, distinct from nuclear receptors. According to preliminary data, the ligand affinity for mPRs differs significantly from that for classical nuclear progesterone receptors (nPRs), which might indicate structural differences in the ligand-binding pocket of these proteins. In the present work, we analyzed the affinity of several progesterone derivatives for mPRs of human pancreatic adenocarcinoma BxPC3 cell line that is characterized by a high level of mPR mRNA expression and by the absence of expression of nPR mRNA. The values were compared with the affinity of these compounds for nPRs. All tested compounds showed almost no affinity for nPRs, whereas their selectivity towards mPRs was different. Derivatives with an additional 19-hydroxyl group and removed 3-keto group had the highest selectivity for mPRs. These results suggest these compounds as the most selective progesterone analogs for studying the mechanisms of progestin action via mPRs.

  19. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    PubMed Central

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-01-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron–Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum. PMID:26179122

  20. Interneuron- and GABAA receptor-specific inhibitory synaptic plasticity in cerebellar Purkinje cells

    NASA Astrophysics Data System (ADS)

    He, Qionger; Duguid, Ian; Clark, Beverley; Panzanelli, Patrizia; Patel, Bijal; Thomas, Philip; Fritschy, Jean-Marc; Smart, Trevor G.

    2015-07-01

    Inhibitory synaptic plasticity is important for shaping both neuronal excitability and network activity. Here we investigate the input and GABAA receptor subunit specificity of inhibitory synaptic plasticity by studying cerebellar interneuron-Purkinje cell (PC) synapses. Depolarizing PCs initiated a long-lasting increase in GABA-mediated synaptic currents. By stimulating individual interneurons, this plasticity was observed at somatodendritic basket cell synapses, but not at distal dendritic stellate cell synapses. Basket cell synapses predominantly express β2-subunit-containing GABAA receptors; deletion of the β2-subunit ablates this plasticity, demonstrating its reliance on GABAA receptor subunit composition. The increase in synaptic currents is dependent upon an increase in newly synthesized cell surface synaptic GABAA receptors and is abolished by preventing CaMKII phosphorylation of GABAA receptors. Our results reveal a novel GABAA receptor subunit- and input-specific form of inhibitory synaptic plasticity that regulates the temporal firing pattern of the principal output cells of the cerebellum.

  1. Evolution of trace amine associated receptor (TAAR) gene family in vertebrates: lineage-specific expansions and degradations of a second class of vertebrate chemosensory receptors expressed in the olfactory epithelium.

    PubMed

    Hashiguchi, Yasuyuki; Nishida, Mutsumi

    2007-09-01

    The trace amine-associated receptors (TAARs) form a specific family of G protein-coupled receptors in vertebrates. TAARs were initially considered neurotransmitter receptors, but recent study showed that mouse TAARs function as chemosensory receptors in the olfactory epithelium. To clarify the evolutionary dynamics of the TAAR gene family in vertebrates, near-complete repertoires of TAAR genes and pseudogenes were identified from the genomic assemblies of 4 teleost fishes (zebrafish, fugu, stickleback, and medaka), western clawed frogs, chickens, 3 mammals (humans, mice, and opossum), and sea lampreys. Database searches revealed that fishes had many putatively functional TAAR genes (13-109 genes), whereas relatively small numbers of TAAR genes (3-22 genes) were identified in tetrapods. Phylogenetic analysis of these genes indicated that the TAAR gene family was subdivided into 5 subfamilies that diverged before the divergence of ray-finned fishes and tetrapods. In tetrapods, virtually all TAAR genes were located in 1 specific region of their genomes as a gene cluster; however, in fishes, TAAR genes were scattered throughout more than 2 genomic locations. This possibly reflects a whole-genome duplication that occurred in the common ancestor of ray-finned fishes. Expression analysis of zebrafish and stickleback TAAR genes revealed that many TAARs in these fishes were expressed in the olfactory organ, suggesting the relatively high importance of TAARs as chemosensory receptors in fishes. A possible evolutionary history of the vertebrate TAAR gene family was inferred from the phylogenetic and comparative genomic analyses.

  2. Envelope determinants for dual-receptor specificity in feline leukemia virus subgroup A and T variants.

    PubMed

    Cheng, Heather H; Anderson, Maria M; Hankenson, F Claire; Johnston, Lily; Kotwaliwale, Chitra V; Overbaugh, Julie

    2006-02-01

    Gammaretroviruses, including the subgroups A, B, and C of feline leukemia virus (FeLV), use a multiple-membrane-spanning transport protein as a receptor. In some cases, such as FeLV-T, a nonclassical receptor that includes both a transport protein (Pit1) and a soluble cofactor (FeLIX) is required for entry. To define which regions confer specificity to classical versus nonclassical receptor pathways, we engineered mutations found in either FeLV-A/T or FeLV-T, individually and in combination, into the backbone of the transmissible form of the virus, FeLV-A. The receptor specificities of these viruses were tested by measuring infection and binding to cells expressing the FeLV-A receptor or the FeLV-T receptors. FeLV-A receptor specificity was maintained when changes at amino acid position 6, 7, or 8 of the mature envelope glycoprotein were introduced, although differences in infection efficiency were observed. When these N-terminal mutations were introduced together with a C-terminal 4-amino-acid insertion and an adjacent amino acid change, the resulting viruses acquired FeLV-T receptor specificity. Additionally, a W-->L change at amino acid position 378, although not required, enhanced infectivity for some viruses. Thus, we have found that determinants in the N and C termini of the envelope surface unit can direct entry via the nonclassical FeLV-T receptor pathway. The region that has been defined as the receptor binding domain of gammaretroviral envelope proteins determined entry via the FeLV-A receptor independently of the presence of the N- and C-terminal FeLV-T receptor determinants.

  3. A behavioural and biochemical study in mice and rats of putative selective agonists and antagonists for 5-HT1 and 5-HT2 receptors.

    PubMed Central

    Goodwin, G. M.; Green, A. R.

    1985-01-01

    Radioligand binding techniques have demonstrated the existence of 5-hydroxytryptamine (5-HT) binding subtypes: 5-HT2, 5-HT1A and 5-HT1B. These techniques have also indicated that certain drugs appear to show sub-type specificity: 8-hydroxy-2-(di-n-propylamino)tetralin(8-OH-DPAT), a 5-HT1A agonist; 5-methoxy-3(1,2,3,6-tetrahydropyridin-4-yl)1-H indole (RU 24969), a 5-HT1B agonist; and ritanserin, a 5-HT2 antagonist. (-)-Propranolol is a 5-HT1 antagonist of uncertain sub-type specificity. An examination has been made in mice and rats of the behavioural and biochemical effects of these drugs to determine whether the binding sites have physiological functions and further characterise the behavioural models. Administration of carbidopa (25 mg kg-1) plus 5-hydroxytryptophan (100 mg kg-1) produced head-twitch behaviour in mice which was antagonized by ritanserin (ED50 = 65 micrograms kg-1) but not (-)-propranolol (20 mg kg-1). 8-OH-DPAT (1-10 mg kg-1 s.c.) and RU 24949 (5 mg kg-1 i.p.) did not produce head-twitch behaviour. 8-OH-DPAT decreased 5-HTP- but not 5-methoxy-N-N-dimethyltryptamine (5 mg kg-1)-induced head-twitch by a (-)-propranolol-insensitive mechanism. Locomotor activity produced in mice by RU 24969 (3 mg kg-1) was antagonized by (-)-propranolol (20 mg kg-1) but not the (+)-isomer. (-)-Propranolol did not antagonize the behaviour induced in rats. In mice, both 8-OH-DPAT and RU 24969 markedly inhibited whole brain 5-HT synthesis and this effect was not antagonized by (-)-propranolol. In rats, 8-OH-DPAT (3 mg kg-1 s.c.) produced all the behavioural changes seen after quipazine (25 mg kg-1). (-)-Propranolol inhibited the behaviour changes produced by both agonists, while ritanserin antagonized the behaviour produced by quipazine but not 8-OH-DPAT. It is concluded, therefore, that the 5-HT1A receptor exists between the 5-HT2 receptor and the behavioural effectors. 8-OH-DPAT (at 20 degrees C ambient temperature) rapidly decreased rat body temperature, an effect

  4. Afferent-specific innervation of two distinct AMPA receptor subtypes on single hippocampal interneurons.

    PubMed

    Tóth, K; McBain, C J

    1998-11-01

    Using the polyamine toxin philanthotoxin, which selectively blocks calcium-permeable AMPA receptors, we show that synaptic transmission onto single hippocampal interneurons occurs by afferent-specific activation of philanthotoxin-sensitive and -insensitive AMPA receptors. Calcium-permeable AMPA receptors are found exclusively at synapses from mossy fibers. In contrast, synaptic responses evoked by stimulation of CA3 pyramidal neurons are mediated by calcium-impermeable AMPA receptors. Both pathways converge onto single interneurons and can be discriminated with Group II mGluR agonists. Thus, single interneurons target AMPA receptors of different subunit composition to specific postsynaptic sites, providing a mechanism to increase the synapse-specific computational properties of hippocampal interneurons.

  5. Differential subcellular distribution of rat brain dopamine receptors and subtype-specific redistribution induced by cocaine

    PubMed Central

    Voulalas, Pamela J.; Schetz, John; Undieh, Ashiwel S.

    2011-01-01

    We investigated the subcellular distribution of dopamine D1, D2 and D5 receptor subtypes in rat frontal cortex, and examined whether psychostimulant-induced elevation of synaptic dopamine could alter the receptor distribution. Differential detergent solubilization and density gradient centrifugation were used to separate various subcellular fractions, followed by semi-quantitative determination of the relative abundance of specific receptor proteins in each fraction. D1 receptors were predominantly localized to detergent-resistant membranes, and a portion of these receptors also floated on sucrose gradients. These properties are characteristic of proteins found in lipid rafts and caveolae. D2 receptors exhibited variable distribution between cytoplasmic, detergent-soluble and detergent-resistant membrane fractions, yet were not present in buoyant membranes. Most D5 receptor immunoreactivity was distributed into the cytoplasmic fraction, failing to sediment at forces up to 300,000g, while the remainder was localized to detergent-soluble membranes in cortex. D5 receptors were undetectable in detergent-resistant fractions or raft-like subdomains. Following daily cocaine administration for seven days, a significant portion of D1 receptors translocated from detergent-resistant membranes to detergent-soluble membranes and the cytoplasmic fraction. The distributions of D5 and D2 receptor subtypes were not significantly altered by cocaine treatment. These data imply that D5 receptors are predominantly cytoplasmic, D2 receptors are diffusely distributed within the cell, whereas D1 receptors are mostly localized to lipid rafts within the rat frontal cortex. Dopamine receptor subtype localization is susceptible to modulation by pharmacological manipulations that elevate synaptic dopamine, however the functional implications of such drug-induced receptor warrant further investigation. PMID:21236347

  6. Pregnane X Receptor and Cancer: Context-Specificity is Key

    PubMed Central

    Pondugula, Satyanarayana R.; Pavek, Petr; Mani, Sridhar

    2016-01-01

    Pregnane X receptor (PXR) is an adopted orphan nuclear receptor that is activated by a wide-range of endobiotics and xenobiotics, including chemotherapy drugs. PXR plays a major role in the metabolism and clearance of xenobiotics and endobiotics in liver and intestine via induction of drug-metabolizing enzymes and drug-transporting proteins. However, PXR is expressed in several cancer tissues and the accumulating evidence strongly points to the differential role of PXR in cancer growth and progression as well as in chemotherapy outcome. In cancer cells, besides regulating the gene expression of enzymes and proteins involved in drug metabolism and transport, PXR also regulates other genes involved in proliferation, metastasis, apoptosis, anti-apoptosis, inflammation, and oxidative stress. In this review, we focus on the differential role of PXR in a variety of cancers, including prostate, breast, ovarian, endometrial, and colon. We also discuss the future directions to further understand the differential role of PXR in cancer, and conclude with the need to identify novel selective PXR modulators to target PXR in PXR-expressing cancers. PMID:27617265

  7. Sendai virus utilizes specific sialyloligosaccharides as host cell receptor determinants.

    PubMed Central

    Markwell, M A; Paulson, J C

    1980-01-01

    Purified sialyltransferases (CMP-N-acetyl-neuraminate:D-galactosyl-glycoprotein N-acetylneuraminyl-transferase, EC 2.4.99.1) in conjunction with neuraminidase (acylneuraminyl hydrolase, EC 3.2.1.18) were used to produce cell surface sialyloligosaccharides of defined sequence to investigate their role in paramyxovirus infection of host cells. Infection of Madin-Darby bovine kidney cells by Sendai virus was monitored by hemagglutination titer of the virus produced and by changes in morphological characteristics. By either criterion, treatment of the cells with Vibrio cholerae neuraminidase to remove cell surface sialic acids rendered them resistant to infection by Sendai virus. Endogenous replacement of receptors by the cell occurred slowly but supported maximal levels of infection within 6 hr. In contrast, sialylation during a 20-min incubation with CMP-sialic acid and beta-galactoside alpha 2,3-sialytransferase restored full susceptibility to infection. This enzyme elaborates the NeuAc alpha 2,3Gal beta 1,3GalNAc (NeuAc, N-acetylneuraminic acid) sequence on glycoproteins and glycolipids. No restoration of infectivity was observed when neuraminidase-treated cells were sialylated by using beta-galactoside alpha 2,6-sialytransferase, which elaborates the NeuAc-alpha 2,6Gal beta 1,4GlcNAc sequence. These results suggest that sialyloligosaccharide receptor determinants of defined sequence are required for Sendai virus infection of host cells. Images PMID:6255459

  8. Recent Progress in Understanding Subtype Specific Regulation of NMDA Receptors by G Protein Coupled Receptors (GPCRs)

    PubMed Central

    Yang, Kai; Jackson, Michael F.; MacDonald, John F.

    2014-01-01

    G Protein Coupled Receptors (GPCRs) are the largest family of receptors whose ligands constitute nearly a third of prescription drugs in the market. They are widely involved in diverse physiological functions including learning and memory. NMDA receptors (NMDARs), which belong to the ionotropic glutamate receptor family, are likewise ubiquitously expressed in the central nervous system (CNS) and play a pivotal role in learning and memory. Despite its critical contribution to physiological and pathophysiological processes, few pharmacological interventions aimed directly at regulating NMDAR function have been developed to date. However, it is well established that NMDAR function is precisely regulated by cellular signalling cascades recruited downstream of G protein coupled receptor (GPCR) stimulation. Accordingly, the downstream regulation of NMDARs likely represents an important determinant of outcome following treatment with neuropsychiatric agents that target selected GPCRs. Importantly, the functional consequence of such regulation on NMDAR function varies, based not only on the identity of the GPCR, but also on the cell type in which relevant receptors are expressed. Indeed, the mechanisms responsible for regulating NMDARs by GPCRs involve numerous intracellular signalling molecules and regulatory proteins that vary from one cell type to another. In the present article, we highlight recent findings from studies that have uncovered novel mechanisms by which selected GPCRs regulate NMDAR function and consequently NMDAR-dependent plasticity. PMID:24562329

  9. A transgenic mouse model of neuroepithelial cell specific inducible overexpression of dopamine D1-receptor

    PubMed Central

    Fujimoto, Kumiko; Araki, Kiyomi; McCarthy, Deirdre M.; Sims, John R.; Ren, Jia-Qian; Zhang, Xuan; Bhide, Pradeep G.

    2010-01-01

    Dopamine and its receptors appear in the brain during early embryonic period suggesting a role for dopamine in brain development. In fact, dopamine receptor imbalance resulting from impaired physiological balance between D1- and D2-receptor activities can perturb brain development and lead to persisting changes in brain structure and function. Dopamine receptor imbalance can be produced experimentally using pharmacological or genetic methods. Pharmacological methods tend to activate or antagonize the receptors in all cell types. In the traditional gene knockout models the receptor imbalance occurs during development and also at maturity. Therefore, assaying the effects of dopamine imbalance on specific cell types (e.g. precursor versus postmitotic cells) or at specific periods of brain development (e.g. pre- or postnatal periods) is not feasible in these models. We describe a novel transgenic mouse model based on the tetracycline dependent inducible gene expression system in which dopamine D1-receptor transgene expression is induced selectively in neuroepithelial cells of the embryonic brain at experimenter-chosen intervals of brain development. In this model, doxycycline-induced expression of the transgene causes significant overexpression of the D1-receptor and significant reductions in the incorporation of the S-phase marker bromodeoxyuridine into neuroepithelial cells of the basal and dorsal telencephalon indicating marked effects on telencephalic neurogenesis. The D1-receptor overexpression occurs at higher levels in the medial ganglionic eminence than the lateral ganglionic eminence or cerebral wall. Moreover, although the transgene is induced selectively in the neuroepithelium, D1-receptor protein overexpression appears to persist in postmitotic cells. The mouse model can be modified for neuroepithelial cell-specific inducible expression of other transgenes or induction of the D1-receptor transgene in other cells in specific brain regions by crossbreeding

  10. Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies.

    PubMed

    Zhang, Wei-Jie; Luo, Xiao; Liu, Ya-Li; Shao, Xiao-Xia; Wade, John D; Bathgate, Ross A D; Guo, Zhan-Yun

    2012-08-01

    Relaxin-3 (also known as INSL7) is a recently identified neuropeptide belonging to the insulin/relaxin superfamily. It has putative roles in the regulation of stress responses, food intake, and reproduction by activation of its cognate G-protein-coupled receptor RXFP3. It also binds and activates the relaxin family peptide receptors RXFP1 and RXFP4 in vitro. To obtain a europium-labeled relaxin-3 as tracer for studying the interaction of these receptors with various ligands, in the present work we propose a novel site-specific labeling strategy for the recombinant human relaxin-3 that has been previously prepared in our laboratory. First, the N-terminal 6 × His-tag of the single-chain relaxin-3 precursor was removed by Aeromonas aminopeptidase and all of the primary amines of the resultant peptide were reversibly blocked by citroconic anhydride. Second, the A-chain N-terminus of the blocked peptide was released by endoproteinase Asp-N cleavage that removed the linker peptide between the B- and A-chains. Third, an alkyne moiety was introduced to the newly released A-chain N-terminus by reaction with the highly active primary amine-specific N-hydroxysuccinimide ester. Fourth, after removal of the reversible blockage under mild acidic condition, europium-loaded DOTA with an azide moiety was introduced to the two-chain relaxin-3 carrying the alkyne moiety through click chemistry. Using this site-specific labeling strategy, homogeneous monoeuropium-labeled human relaxin-3 could be obtained with good overall yield. In contrast, conventional random labeling resulted in a complex mixture that was poorly resolved because human relaxin-3 has four primary amine moieties that all react with the modification reagent. Both saturation and competition binding assays demonstrated that the DOTA/Eu(3+)-labeled relaxin-3 retained high binding affinity for human RXFP3, RXFP4, and RXFP1 and was therefore a suitable non-radioactive and stable tracer to study the interaction of various

  11. A Novel Method for Screening Adenosine Receptor Specific Agonists for Use in Adenosine Drug Development

    PubMed Central

    Jones, Karlie R.; Choi, Uimook; Gao, Ji-Liang; Thompson, Robert D.; Rodman, Larry E.; Malech, Harry L.; Kang, Elizabeth M.

    2017-01-01

    Agonists that target the A1, A2A, A2B and A3 adenosine receptors have potential to be potent treatment options for a number of diseases, including autoimmune diseases, cardiovascular disease and cancer. Because each of these adenosine receptors plays a distinct role throughout the body, obtaining highly specific receptor agonists is essential. Of these receptors, the adenosine A2AR and A2BR share many sequence and structural similarities but highly differ in their responses to inflammatory stimuli. Our laboratory, using a combination of specially developed cell lines and calcium release analysis hardware, has created a new and faster method for determining specificity of synthetic adenosine agonist compounds for the A2A and A2B receptors in human cells. A2A receptor expression was effectively removed from K562 cells, resulting in the development of a distinct null line. Using HIV-lentivector and plasmid DNA transfection, we also developed A2A and A2B receptor over-expressing lines. As adenosine is known to cause changes in intracellular calcium levels upon addition to cell culture, calcium release can be determined in these cell lines upon compound addition, providing a functional readout of receptor activation and allowing us to isolate the most specific adenosine agonist compounds. PMID:28317879

  12. Can Specific Protein-Lipid Interactions Stabilize an Active State of the Beta 2 Adrenergic Receptor?

    PubMed Central

    Neale, Chris; Herce, Henry D.; Pomès, Régis; García, Angel E.

    2015-01-01

    G-protein-coupled receptors are eukaryotic membrane proteins with broad biological and pharmacological relevance. Like all membrane-embedded proteins, their location and orientation are influenced by lipids, which can also impact protein function via specific interactions. Extensive simulations totaling 0.25 ms reveal a process in which phospholipids from the membrane’s cytosolic leaflet enter the empty G-protein binding site of an activated β2 adrenergic receptor and form salt-bridge interactions that inhibit ionic lock formation and prolong active-state residency. Simulations of the receptor embedded in an anionic membrane show increased lipid binding, providing a molecular mechanism for the experimental observation that anionic lipids can enhance receptor activity. Conservation of the arginine component of the ionic lock among Rhodopsin-like G-protein-coupled receptors suggests that intracellular lipid ingression between receptor helices H6 and H7 may be a general mechanism for active-state stabilization. PMID:26488656

  13. The Janus Kinase (JAK) FERM and SH2 Domains: Bringing Specificity to JAK–Receptor Interactions

    PubMed Central

    Ferrao, Ryan; Lupardus, Patrick J.

    2017-01-01

    The Janus kinases (JAKs) are non-receptor tyrosine kinases essential for signaling in response to cytokines and interferons and thereby control many essential functions in growth, development, and immune regulation. JAKs are unique among tyrosine kinases for their constitutive yet non-covalent association with class I and II cytokine receptors, which upon cytokine binding bring together two JAKs to create an active signaling complex. JAK association with cytokine receptors is facilitated by N-terminal FERM and SH2 domains, both of which are classical mediators of peptide interactions. Together, the JAK FERM and SH2 domains mediate a bipartite interaction with two distinct receptor peptide motifs, the proline-rich “Box1” and hydrophobic “Box2,” which are present in the intracellular domain of cytokine receptors. While the general sidechain chemistry of Box1 and Box2 peptides is conserved between receptors, they share very weak primary sequence homology, making it impossible to posit why certain JAKs preferentially interact with and signal through specific subsets of cytokine receptors. Here, we review the structure and function of the JAK FERM and SH2 domains in light of several recent studies that reveal their atomic structure and elucidate interaction mechanisms with both the Box1 and Box2 receptor motifs. These crystal structures demonstrate how evolution has repurposed the JAK FERM and SH2 domains into a receptor-binding module that facilitates interactions with multiple receptors possessing diverse primary sequences. PMID:28458652

  14. Identification of a fibronectin receptor specific for rat liver endothelial cells

    SciTech Connect

    Johansson, S.; Gustafson, S.; Pertoft, H. )

    1987-10-01

    Antibodies raised against the fibronectin receptor of rat hepatocytes recognized one protein in immunoblotting of solubilized rat liver endothelial cells (LEC). The antibodies specifically precipitated a 200-kDa protein together with the 135-kDa component from {sup 125}I-labeled LEC. Spreading of LEC on fibronectin, but not on laminin or collagen, was inhibited by monovalent Fab fragments of the antibodies, implicating that the 135/200-kDa complex is a specific fibronectin receptor. The results indicate that LEC, hepatocytes, and fibroblasts of rat carry different fibronectin receptors, suggesting that the interaction of fibronectin with these cells may have different functional roles.

  15. Molecular cloning of the cDNA and chromosomal localization of the gene for a putative seven-transmembrane segment (7-TMS) receptor isolated from human spleen

    SciTech Connect

    Federsppiel, B.; Melhado, I.G.; Delaney, A.; Clark-Lewis, I. ); Duncan, A.M.V. ); Jirik, F.R. )

    1993-06-01

    A family of proinflammatory cytokines sharing several structural features has been described and includes, for example, interleukin-8, monocyte chemoattractant protein-1, and melanocyte growth stimulatory activity. Recently, the receptors for interleukin-8 have been isolated and found to belong to the seven-transmembrane domain class of G protein-coupled receptors. As other members of this cytokine family likely interact with similar receptors, the polymerase chain reaction was employed to isolate related receptors from human peripheral blood adherent cells. Degenerate oligonucleotide primers based on the rabbit interleukin-8 receptor sequence were used. The corresponding full-length cDNA was isolated from a human spleen cDNA library. The predicted protein sequence of this clone, designated pBE1.3, was 93% identical to that of a cDNA isolated from bovine locus coeruleus, which apparently encodes a neuropeptide Y receptor, and also shows similarity with the interleukin-8 receptor and the human cytomegalovirus US28 sequences. The gene, designated D2S201E, was localized to human chromosome 2q21. By Northern blotting, transcripts hybridizing to this cDNA were present in a variety of tissues and cells, including those of hemopoietic origin. 32 refs., 5 figs.

  16. BGC20-1531, a novel, potent and selective prostanoid EP4 receptor antagonist: a putative new treatment for migraine headache

    PubMed Central

    Maubach, KA; Davis, RJ; Clark, DE; Fenton, G; Lockey, PM; Clark, KL; Oxford, AW; Hagan, RM; Routledge, C; Coleman, RA

    2009-01-01

    Background and purpose: Prostanoid EP4 receptor antagonists may have therapeutic utility in the treatment of migraine since EP4 receptors have been shown to be involved in prostaglandin (PG)E2-induced cerebral vascular dilatation, which may be an important contributor to migraine pain. This study reports the pharmacological characterization of BGC20-1531, a novel EP4 receptor antagonist. Experimental approach: BGC20-1531 was characterized in radioligand binding and in vitro functional assays employing recombinant and native EP4 receptors. Changes in canine carotid haemodynamics were used to assess the pharmacodynamic profile of BGC20-1531 in vivo. Key results: BGC20-1531 exhibited high affinity at recombinant human EP4 receptors expressed in cell lines (pKB 7.6) and native EP4 receptors in human cerebral and meningeal artery (pKB 7.6–7.8) but showed no appreciable affinity at a wide range of other receptors (including other prostanoid receptors), channels, transporters and enzymes (pKi < 5). BGC20-1531 competitively antagonized PGE2-induced vasodilatation of human middle cerebral (pKB 7.8) and meningeal (pKB 7.6) arteries in vitro, but had no effect on responses induced by PGE2 on coronary, pulmonary or renal arteries in vitro. BGC20-1531 (1–10 mg·kg−1 i.v.) caused a dose-dependent antagonism of the PGE2-induced increase in canine carotid blood flow in vivo. Conclusions and implications: BGC20-1531 is a potent and selective antagonist at EP4 receptors in vitro and in vivo, with the potential to alleviate the symptoms of migraine that result from cerebral vasodilatation. BGC20-1531 is currently in clinical development for the treatment of migraine headache. PMID:19154437

  17. [Subtype-specific clinically important effects of alpha 2-adrenergic receptors].

    PubMed

    Shishkina, G T; Dygalo, N N

    2002-01-01

    A- B- and C-subtypes of alpha 2-adrenoreceptors present in all mammals are involved in responses to currently existing subtype-nonselective ligands of these receptors widely used in medicine. Each of the subtypes has its own specific distribution in tissue and cells, onthogenetic pattern, specific regulation of activity and expression, and, as result, specific physiological functions. The latter suggests opportunities of using the subtype-specific for correction of the functions depending on this receptor. The article reviews the role of individual subtypes of alpha 2-adrenoreceptors in regulation of neurochemical transmission of cardiovascular system, psychoemotional state and development of psychic disorders, and also male sexual behaviour.

  18. Glucocorticoids and their receptors: insights into specific roles in mitochondria.

    PubMed

    Lee, Sung-Ryul; Kim, Hyoung-Kyu; Song, In-Sung; Youm, Jaeboum; Dizon, Louise Anne; Jeong, Seung-Hun; Ko, Tae-Hee; Heo, Hye-Jin; Ko, Kyoung Soo; Rhee, Byoung Doo; Kim, Nari; Han, Jin

    2013-05-01

    Glucocorticoids (GCs) affect most physiological systems and are the most frequently used drugs for multiple disorders and organ transplantation. GC functions depend on a balance between circulating GC and cytoplasmic glucocorticoid receptor II (GR). Mitochondria individually enclose circular, double-stranded DNA that is expressed and replicated in response to nuclear-encoded factors imported from the cytoplasm. Fine-tuning and response to cellular demands should be coordinately regulated by the nucleus and mitochondria; thus mitochondrial-nuclear interaction is vital to optimal mitochondrial function. Elucidation of the direct and indirect effects of steroids, including GCs, on mitochondria is an important and emerging field of research. Mitochondria may also be under GC control because GRs are present in mitochondria, and glucocorticoid response elements (GREs) reside in the mitochondrial genome. Therefore, mitochondrial gene expression can be regulated by GCs via at least two different mechanisms: direct action on mitochondrial DNA and oxidative phosphorylation (OXPHOS) genes, or by an indirect effect through interaction with nuclear genes. In this review, we outline possible mechanisms of regulation of mitochondrial genes in response to GCs in view of translocation of the GR into mitochondria and the possible regulation of OXPHOS genes by GREs in the mitochondrial genome.

  19. Validation of a P2Y12-receptor specific whole blood platelet aggregation assay.

    PubMed

    Amann, Michael; Ferenc, Miroslaw; Valina, Christian M; Bömicke, Timo; Stratz, Christian; Leggewie, Stefan; Trenk, Dietmar; Neumann, Franz-Josef; Hochholzer, Willibald

    2016-11-01

    Testing of P2Y12-receptor antagonist effects can support clinical decision-making. However, most platelet function assays use only ADP as agonist which is not P2Y12-receptor specific. For this reason P2Y12-receptor specific assays have been developed by adding prostaglandin E1 (PGE1) to reduce ADP-induced platelet activation via the P2Y1-receptor. The present study sought to evaluate a P2Y12-receptor specific assay for determination of pharmacodynamic and clinical outcomes. This study enrolled 400 patients undergoing coronary stenting after loading with clopidogrel or prasugrel. ADP-induced platelet reactivity was assessed by whole blood aggregometry at multiple time points with a standard ADP assay (ADPtest) and a P2Y12-receptor specific assay (ADPtest HS, both run on Multiplate Analyzer, Roche Diagnostics). Patients were clinically followed for 1 month and all events adjudicated by an independent committee. In total, 2084 pairs of test results of ADPtest and ADPtest HS were available showing a strong correlation between results of both assays (r = 0.96, p < 0.001). These findings prevailed in multiple prespecified subgroups (e.g., age; body mass index; diabetes). Calculated cutoffs for ADPtest HS and the established cutoffs of ADPtest showed a substantial agreement for prediction of ischemic and hemorrhagic events with a Cohen's κ of 0.66 and 0.66, respectively. The P2Y12-receptor specific ADPtest HS assay appears similarly predictive for pharmacodynamic and clinical outcomes as compared to the established ADPtest assay indicating its applicability for clinical use. Further evaluation in large cohorts is needed to determine if P2Y12-receptor specific testing offers any advantage for prediction of clinical outcome.

  20. Particulate matter inflammation and receptor sensitivity are target cell specific.

    PubMed

    Veronesi, Bellina; de Haar, Colin; Roy, Josee; Oortgiesen, Marga

    2002-02-01

    The complexity of primary source particulate matter (PM) and the various cell types encountered by its inhalation raise the possibility that target cells are differentially activated. Since epithelial cells, which line the nasal-tracheal-bronchial airways, and sensory C fibers, which terminate throughout this epithelial layer, are initially targeted by inhaled PM, we compared their relative biological response in vitro to PM originating from volcanic (MSH), anthropogenic (diesel), residential (woodstove), urban ambient (St. Louis, Ottawa), and industrial emission (coal fly ash, CFA; residual oil fly ash, ROFA; oil fly ash, OFA) sources. Increases in intracellular calcium (i.e., [Ca(2+)](i)) are a second-messenger event that indicates cellular activation and signal transduction, in both nerve and epithelial cells. Single-cell calcium imaging recordings were taken of human bronchial epithelial cells (BEAS-2B) exposed to selected PM (50 microg/ml or 30 microg/cm(2)). These cells responded with variable increases in [Ca(2+)](i) ranging from abrupt increases, which returned to baseline upon washing of the cells, to oscillations of the [Ca(2+)](i) that did not wash out. Increases in [Ca(2+)](i) and inflammatory cytokine (i.e., interleukin 6, IL-6) release were measured in populations of BEAS-2B cells exposed to PM (50 microg/ml) and were shown to significantly correlate (r(2) =.80). BEAS-2B cells, stained histochemically with cobalt, displayed a concentration-dependent precipitation in response to acid pH and capsaicin, indicating the presence of acid-sensitive pathways (e.g., VR1 and acid-sensitive receptors). To demonstrate the relevance of these pathways to inflammatory cytokine (i.e., IL-6) release, BEAS-2B cells were pretreated (15 min) with antagonists to the vanilloid (VR1) receptor (i.e., capsazepine, CPZ) or acid-sensitive pathways (i.e., amiloride) before their exposure to the selected PM. A significant reduction of IL-6 release occurred in response to all PM

  1. Receptor imaging with atrial natriuretic peptide. Part 1: High specific activity iodine-123-atrial natriuretic peptide.

    PubMed

    Lambert, R; Willenbrock, R; Tremblay, J; Bavaria, G; Langlois, Y; Hogan, K; Tartaglia, D; Flanagan, R J; Hamet, P

    1994-04-01

    Atrial natriuretic peptide (ANP) was labeled in high specific activity using 123I (p,2n). The biodistribution of 123I-ANP was studied in green vervet monkeys by gamma scintigraphy and in rats by dissection and gamma counting. Iodine-125-ANP was also studied in monkeys by in vitro autoradiography. Iodine-123-ANP showed rapid blood clearance with localization to ANP receptors in the kidneys and lungs, which accounted for 35% of total uptake. In vivo competition imaging studies using cold ANP99-126 and C-ANP102-121 proved that uptake is receptor mediated and allowed imaging of the differential biodistribution of A/B and C-ANP receptor families. Thus, it was possible through the use of selective receptor occupation to prevent uptake in certain organs and to effectively steer the labeled ANP to others. The observed biodistribution patterns were confirmed by an in vitro study using 125I-ANP in the same monkeys, which correlated the scintigraphic images with receptor distribution. An in vivo biodistribution study in rats showed a profound effect of specific activity on biodistribution, with a cutoff for receptor uptake at less than 3000 Ci/mmole. Gamma scintigraphy with 123I-ANP permits the imaging of ANP receptors in vivo. In contrast to receptor imaging with either organic molecules or antibodies, ANP provides rapid first-pass uptake and substantial accumulation (%dose/organ approximately 20% or greater) in receptors. The key to receptor imaging with peptides is high specific activity. Labeled ANP offers potential as a diagnostic tool for diabetic nephropathy, particularly for quantifying the involvement of glomerular disease.

  2. Mannose-specific lectins modulate ligand binding to AMPA-type glutamate receptors.

    PubMed

    Hoffman, K B; Kessler, M; Ta, J; Lam, L; Lynch, G

    1998-06-08

    Binding of [3H]AMPA was increased above control levels in rat brain membranes that had been incubated with concanavalin A (Con A) or a lectin from Lens culinaris (LC), both of which bind mannose residues. This did not occur with any of six lectins with other specificities. The magnitude of the increased binding varied from 15% in cortex to 70% in hippocampus and decreased significantly between 3 weeks and 6 months of age. Succinylated Con A was without effect and neither Con A nor LC increased binding to solubilized AMPA receptors. Increases in binding were not obtained in membranes purified from HEK293 cell lines expressing homomeric AMPA receptors. This indicates that mannose specific lectins may enhance binding by cross-linking AMPA receptors to each other or to proteins that are specific to brain. Con A has been reported to reduce glutamate receptor desensitization with higher efficacy at kainate than at AMPA receptors; the increase in binding reported here appears to be unrelated to such effects because (1) it was not affected by drugs that block desensitization and (2) [3H]kainate binding was reduced rather than increased by Con A. These observations suggest that AMPA receptor kinetic properties not involving desensitization are influenced by extracellular interactions between the receptors and other transmembrane proteins. Copyright 1998 Elsevier Science B.V. All rights reserved.

  3. Visualization of multiple opioid-receptor types in rat striatum after specific mesencephalic lesions

    SciTech Connect

    Eghbali, M.; Santoro, C.; Paredes, W.; Gardner, E.L.; Zukin, R.S.

    1987-09-01

    In order to gain insight into a possible modulatory role for ..mu.., delta, and kappa opioid receptors of the nigrostriatal dopaminergic pathway, the authors investigated the topographical organization of the receptors with respect to pre- and postsynaptic membranes. Dopaminergic terminals projecting from the substantia nigra to the corpus striatum were destroyed by unilateral injection of 6-hydroxydopamine into the susbstantia nigra. Quantitative receptor assays using highly specific radioligands were used to measure the density of striatal ..mu.., delta, and kappa receptors before and after denervation. Quantitative in vitro autoradiography was used to visualize the neuroanatomical pattern of receptors on lesioned and nonlesioned sides of the brain under the light microscope. Loss of ..mu.. receptors in striatal patches was striking in the ventro-lateral areas of the striatum, whereas the most notable loss of delta receptors was found in the central striatum. Other brain areas did not differ significantly in ..mu.. receptor density between the lesioned and nonlesioned sides, as determined by autoradiography. These findings suggest that a high percentage of ..mu.. and delta receptors in the striatum are located on the nigrostriatal dopaminergic terminals and support the concept of a modulatory role for ..mu.. and delta opioid peptides in the nigrostriatal dopaminergic pathway.

  4. Specific mutations in the estrogen receptor change the properties of antiestrogens to full agonists.

    PubMed Central

    Mahfoudi, A; Roulet, E; Dauvois, S; Parker, M G; Wahli, W

    1995-01-01

    The estrogen receptor (ER) stimulates transcription of target genes by means of its two transcriptional activation domains, AF-1 in the N-terminal part of the receptor and AF-2 in its ligand-binding domain. AF-2 activity is dependent upon a putative amphipathic alpha-helix between residues 538 and 552 in the mouse ER. Point mutagenesis of conserved hydrophobic residues within this region reduces estrogen-dependent transcriptional activation without affecting hormone and DNA binding significantly. Here we show that these mutations dramatically alter the pharmacology of estrogen antagonists. Both tamoxifen and ICI 164,384 behave as strong agonists in HeLa cells expressing the ER mutants. In contrast to the wild-type ER, the mutant receptors maintain nuclear localization and DNA-binding activity after ICI 164,384 treatment. Structural alterations in AF-2 caused by gene mutations such as those described herein or by estrogen-independent signaling pathways may account for the insensitivity of some breast cancers to tamoxifen treatment. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:7753783

  5. Structural Characterization of the Hemagglutinin Receptor Specificity from the 2009 H1N1 Influenza Pandemic

    SciTech Connect

    Xu, Rui; McBride, Ryan; Nycholat, Corwin M.; Paulson, James C.; Wilson, Ian A.

    2012-02-13

    Influenza virus hemagglutinin (HA) is the viral envelope protein that mediates viral attachment to host cells and elicits membrane fusion. The HA receptor-binding specificity is a key determinant for the host range and transmissibility of influenza viruses. In human pandemics of the 20th century, the HA normally has acquired specificity for human-like receptors before widespread infection. Crystal structures of the H1 HA from the 2009 human pandemic (A/California/04/2009 [CA04]) in complex with human and avian receptor analogs reveal conserved recognition of the terminal sialic acid of the glycan ligands. However, favorable interactions beyond the sialic acid are found only for {alpha}2-6-linked glycans and are mediated by Asp190 and Asp225, which hydrogen bond with Gal-2 and GlcNAc-3. For {alpha}2-3-linked glycan receptors, no specific interactions beyond the terminal sialic acid are observed. Our structural and glycan microarray analyses, in the context of other high-resolution HA structures with {alpha}2-6- and {alpha}2-3-linked glycans, now elucidate the structural basis of receptor-binding specificity for H1 HAs in human and avian viruses and provide a structural explanation for the preference for {alpha}2-6 siaylated glycan receptors for the 2009 pandemic swine flu virus.

  6. The abnormal cannabidiol analogue O-1602 reduces nociception in a rat model of acute arthritis via the putative cannabinoid receptor GPR55.

    PubMed

    Schuelert, Niklas; McDougall, Jason J

    2011-08-01

    Cannabinoids classically act via CB₁ and CB₂ receptors to modulate nociception; however, recent findings suggest that some cannabinoids bind to atypical receptors. One such receptor is GPR55 which is activated by the abnormal cannabidiol analogue O-1602. This study investigated whether the synthetic GPR55 agonist O-1602 can alter joint nociception in a rat model of acute joint inflammation. Acute (24 h) inflammatory joint pain was induced in male Wistar rats by intra-articular injection of 2% kaolin and 2% carrageenan. Single unit extracellular recordings were made from arthritic joint afferents in response to mechanical rotation of the knee. Peripheral administration of O-1602 significantly reduced movement-evoked firing of nociceptive C fibres and this effect was blocked by the GPR55 receptor antagonist O-1918. Co-administration of the CB₁ and CB₂ antagonists (AM281 and AM630 respectively) had no effect on O-1602 responses. This study clearly shows that atypical cannabinoid receptors are involved in joint nociception and these novel targets may be advantageous for the treatment of inflammatory pain.

  7. Mutational analysis of the complement receptor type 2 (CR2/CD21)-C3d interaction reveals a putative charged SCR1 binding site for C3d.

    PubMed

    Hannan, Jonathan P; Young, Kendra A; Guthridge, Joel M; Asokan, Rengasamy; Szakonyi, Gerda; Chen, Xiaojiang S; Holers, V Michael

    2005-02-25

    We have characterized the interaction between the first two short consensus repeats (SCR1-2) of complement receptor type 2 (CR2, CD21) and C3d in solution, by utilising the available crystal structures of free and C3d-bound forms of CR2 to create a series of informative mutations targeting specific areas of the CR2-C3d complex. Wild-type and mutant forms of CR2 were expressed on the surface of K562 erythroleukemia cells and their binding ability assessed using C3dg-biotin tetramers complexed to fluorochrome conjugated streptavidin and measured by flow cytometry. Mutations directed at the SCR2-C3d interface (R83A, R83E, G84Y) were found to strongly disrupt C3dg binding, supporting the conclusion that the SCR2 interface reflected in the crystal structure is correct. Previous epitope and peptide mapping studies have also indicated that the PILN11GR13IS sequence of the first inter-cysteine region of SCR1 is essential for the binding of iC3b. Mutations targeting residues within or in close spatial proximity to this area (N11A, N11E, R13A, R13E, Y16A, S32A, S32E), and a number of other positively charged residues located primarily on a contiguous face of SCR1 (R28A, R28E, R36A, R36E, K41A, K41E, K50A, K50E, K57A, K57E, K67A, K67E), have allowed us to reassess those regions on SCR1 that are essential for CR2-C3d binding. The nature of this interaction and the possibility of a direct SCR1-C3d association are discussed extensively. Finally, a D52N mutant was constructed introducing an N-glycosylation sequence at an area central to the CR2 dimer interface. This mutation was designed to disrupt the CR2-C3d interaction, either directly through steric inhibition, or indirectly through disruption of a physiological dimer. However, no difference in C3dg binding relative to wild-type CR2 could be observed for this mutant, suggesting that the dimer may only be found in the crystal form of CR2.

  8. Interaction of xenobiotics with estrogen receptors α and β and a putative plasma sex hormone-binding globulin from channel catfish (Ictalurus punctatus)

    USGS Publications Warehouse

    Gale, William L.; Patino, Reynaldo; Maule, Alec G.

    2004-01-01

    Estrogens are important regulators of physiological functions. Although environmental contaminants (xenoestrogens) which interfere with estrogen signaling are of increasing concern, there is only limited information about their ability to interact with estrogen-binding proteins (SHBG) or receptors (ER). Recombinant ER?? and ?? were obtained after transient transfection of COS-7 cells with channel catfish ER cDNA. Plasma from adult female channel catfish was the source of SHBG. Tritiated estradiol ( 3H-E2) was used in standard radioligand-binding assays to characterize the binding properties of channel catfish SHBG (ccfSHBG) and to estimate the inhibition constants for various estrogenic compounds. Binding of 3H-E2 to ccfSHBG was saturable and of high affinity with a Kd (??SE) of 1.9??0.14nM and a Bmax of 14.3??2.4pmol/mg protein (n=3 assays). Additionally, ccfSHBG displayed binding specificity for androgens and estrogens. Endosulfan, 4-nonylphenol, and 4-octylphenol displaced 3H-E2 binding to ccfSHBG albeit only at very high concentrations, whereas dieldrin and atrazine showed little displacement activity even at the highest concentrations used. The synthetic estrogen ethynylestradiol had higher affinity than E2 for ccfSHBG. This finding differs from results with human and rainbow trout SHBG. The alkylphenolic compounds (4-octylphenol and 4-nonylphenol) displayed some ability to displace 3H-E2 binding from ER?? and ?? at high concentrations, but dieldrin and atrazine had little binding activity for both ER subtypes and endosulfan for ER??. The xenobiotics tested generally showed equivalent or greater affinity for ER?? than ER??, whereas natural estrogens had much greater affinity for ER?? than ER??. These observations suggest that results of studies using fish tissue ER extracts must be interpreted with caution, since both ER subtypes may be present, and that the binding of xenoestrogens to SHBG must be taken into account for proper assessment of endocrine

  9. Molecular cloning and tissue-specific expression of Toll-like receptor 5 gene from turkeys.

    PubMed

    Gopinath, V P; Biswas, Moanaro; Raj, Gopal Dhinakar; Raja, A; Kumanan, A K; Elankumaran, Subbiah

    2011-09-01

    Toll-like receptors (TLRs), a family of transmembrane and cytosolic proteins, detect microbial patterns, initiating innate immune responses in various organisms. Although they are abundant, genetic characterization and functional differences of TLRs in economically important avian species such as chickens and turkeys have not been investigated in detail. In this study, the putative TLR5 coding region from turkey genome was sequenced, and its homology to other vertebrate species was analyzed. Secondary structure analysis revealed protein motifs typical of the chicken TLR5 protein structure, with 97% amino acid identity between them. mRNA expression profiling in adult turkeys revealed abundant TLR5 expression in a broad range of tissues. Stimulation with the TLR5 ligand flagellin resulted in the production of the inflammatory mediators interleukin (IL)-1beta, IL-6, and nitric oxide in peripheral blood mononuclear cells. To our knowledge, this is the first complete turkey TLR5 coding DNA sequence reported in sequence databases.

  10. [Studying specific effects of nootropic drugs on glutamate receptors in the rat brain].

    PubMed

    Firstova, Iu Iu; Vasil'eva, E V; Kovalev, G I

    2011-01-01

    The influence of nootropic drugs of different groups (piracetam, phenotropil, nooglutil, noopept, semax, meclofenoxate, pantocalcine, and dimebon) on the binding of the corresponding ligands to AMPA, NMDA, and mGlu receptors of rat brain has been studied by the method of radio-ligand binding in vitro. It is established that nooglutil exhibits pharmacologically significant competition with a selective agonist of AMPA receptors ([G-3H]Ro 48-8587) for the receptor binding sites (with IC50 = 6.4 +/- 0.2 microM), while the competition of noopept for these receptor binding sites was lower by an order of magnitude (IC50 = 80 +/- 5.6 microM). The heptapeptide drug semax was moderately competitive with [G-3H]LY 354740 for mGlu receptor sites (IC50 = 33 +/- 2.4 microM). Dimebon moderately influenced the specific binding of the ligand of NMDA receptor channel ([G-3H]MK-801) at IC50 = 59 +/- 3.6 microM. Nootropic drugs of the pyrrolidone group (piracetam, phenotropil) as well as meclofenoxate, pantocalcine (pantogam) in a broad rage of concentrations (10(-4)-10(-10) M) did not affect the binding of the corresponding ligands to glutamate receptors (IC50 100 pM). Thus, the direct neurochemical investigation was used for the first time to qualitatively characterize the specific binding sites for nooglutil and (to a lower extent) noopept on AMPA receptors, for semax on metabotropic glutamate receptors, and for dimebon on the channel region of NMDA receptors. The results are indicative of a selective action of some nootropes on the glutamate family.

  11. Finasteride treatment alters tissue specific androgen receptor expression in prostate tissues.

    PubMed

    Bauman, Tyler M; Sehgal, Priyanka D; Johnson, Karen A; Pier, Thomas; Bruskewitz, Reginald C; Ricke, William A; Huang, Wei

    2014-06-01

    Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. © 2014 Wiley Periodicals, Inc.

  12. Finasteride Treatment Alters Tissue Specific Androgen Receptor Expression in Prostate Tissues

    PubMed Central

    Bauman, Tyler M.; Sehgal, Priyanka D.; Johnson, Karen A.; Pier, Thomas; Bruskewitz, Reginald C.; Ricke, William A.; Huang, Wei

    2014-01-01

    BACKGROUND Normal and pathologic growth of the prostate is dependent on the synthesis of dihydrotestosterone (DHT) from testosterone by 5α-reductase. Finasteride is a selective inhibitor of 5α-reductase 2, one isozyme of 5α-reductase found in abundance in the human prostate. The objective of this study was to investigate the effects of finasteride on androgen receptor expression and tissue morphology in human benign prostatic hyperplasia specimens. METHODS Patients undergoing transurethral resection of the prostate and either treated or not treated with finasteride between 2004 and 2010 at the University of Wisconsin-Hospital were retrospectively identified using an institutional database. Prostate specimens from each patient were triple-stained for androgen receptor, prostate-specific antigen, and basal marker cytokeratin 5. Morphometric analysis was performed using the multispectral imaging, and results were compared between groups of finasteride treated and non-treated patients. RESULTS Epithelial androgen receptor but not stromal androgen receptor expression was significantly lower in patients treated with finasteride than in non-treated patients. Androgen receptor-regulated prostate-specific antigen was not significantly decreased in finasteride-treated patients. Significant luminal epithelial atrophy and basal cell hyperplasia were prevalent in finasteride treated patients. Epithelial androgen receptor expression was highly correlated to the level of luminal epithelial atrophy. CONCLUSIONS In this study, finasteride decreased the expression of epithelial androgen receptor in a tissue specific manner. The correlation between epithelial androgen receptor and the extent of luminal epithelial atrophy suggests that epithelial androgen receptor may be directly regulating the atrophic effects observed with finasteride treatment. PMID:24789081

  13. Purification and characterization of mu-specific opioid receptor from rat brain

    SciTech Connect

    Hasegawa, J.; Cho, T.M.; Ge, B.L.; Loh, H.H.

    1986-03-05

    A mu-specific opioid receptor was purified to apparent homogeneity from rat brain membranes by 6-succinylmorphine affinity chromatography, Ultrogel filtration, wheat germ agglutinin affinity chromatography, and isoelectric focusing. The purified receptor had a molecular weight of 58,000 as determined by polyacrylamide gel electrophoresis, and was judged to be homogeneous by the following criteria: (1) a single band on the SDS gel; and (2) a specific opioid binding activity of 17,720 pmole/mg protein, close to the theoretical value. In addition, the 58,000 molecular weight value agrees closely with that determined by covalently labelling purified receptor with bromoacetyl-/sup 3/H-dihydromorphine or with /sup 125/I-beta-endorphin and dimethyl suberimidate. To their knowledge, this is the first complete purification of an opioid receptor that retains its ability to bind opiates.

  14. Regulation of α2B-Adrenerigc Receptor Export Trafficking by Specific Motifs.

    PubMed

    Wu, Guangyu; Davis, Jason E; Zhang, Maoxiang

    2015-01-01

    Intracellular trafficking and precise targeting to specific locations of G protein-coupled receptors (GPCRs) control the physiological functions of the receptors. Compared to the extensive efforts dedicated to understanding the events involved in the endocytic and recycling pathways, the molecular mechanisms underlying the transport of the GPCR superfamily from the endoplasmic reticulum (ER) through the Golgi to the plasma membrane are relatively less well defined. Over the past years, we have used α(2B)-adrenergic receptor (α(2B)-AR) as a model to define the factors that control GPCR export trafficking. In this chapter, we will review specific motifs identified to mediate the export of nascent α(2B)-AR from the ER and the Golgi and discuss the possible underlying mechanisms. As these motifs are highly conserved among GPCRs, they may provide common mechanisms for export trafficking of these receptors.

  15. Identification of novel putative-binding proteins for cellular prion protein and a specific interaction with the STIP1 homology and U-Box-containing protein 1.

    PubMed

    Gimenez, Ana Paula Lappas; Richter, Larissa Morato Luciani; Atherino, Mariana Campos; Beirão, Breno Castello Branco; Fávaro, Celso; Costa, Michele Dietrich Moura; Zanata, Silvio Marques; Malnic, Bettina; Mercadante, Adriana Frohlich

    2015-01-01

    Prion diseases involve the conversion of the endogenous cellular prion protein, PrP(C), into a misfolded infectious isoform, PrP(Sc). Several functions have been attributed to PrP(C), and its role has also been investigated in the olfactory system. PrP(C) is expressed in both the olfactory bulb (OB) and olfactory epithelium (OE) and the nasal cavity is an important route of transmission of diseases caused by prions. Moreover, Prnp(-/-) mice showed impaired behavior in olfactory tests. Given the high PrP(C) expression in OE and its putative role in olfaction, we screened a mouse OE cDNA library to identify novel PrP(C)-binding partners. Ten different putative PrP(C) ligands were identified, which were involved in functions such as cellular proliferation and apoptosis, cytoskeleton and vesicle transport, ubiquitination of proteins, stress response, and other physiological processes. In vitro binding assays confirmed the interaction of PrP(C) with STIP1 homology and U-Box containing protein 1 (Stub1) and are reported here for the first time. Stub1 is a co-chaperone with ubiquitin E3-ligase activity, which is associated with neurodegenerative diseases characterized by protein misfolding and aggregation. Physiological and pathological implications of PrP(C)-Stub1 interaction are under investigation. The PrP(C)-binding proteins identified here are not exclusive to the OE, suggesting that these interactions may occur in other tissues and play general biological roles. These data corroborate the proposal that PrP(C) is part of a multiprotein complex that modulates several cellular functions and provide a platform for further studies on the physiological and pathological roles of prion protein.

  16. Molecular Characterization and Functional Regulation of Melanocortin 2 Receptor (MC2R) in the Sea Bass. A Putative Role in the Adaptation to Stress

    PubMed Central

    Agulleiro, Maria Josep; Sánchez, Elisa; Leal, Esther; Cortés, Raúl; Fernández-Durán, Begoña; Guillot, Raúl; Davis, Perry; Dores, Robert M.; Gallo-Payet, Nicole; Cerdá-Reverter, José Miguel

    2013-01-01

    The activation of melanocortin 2 receptor (MC2R) by ACTH mediates the signaling cascade leading to steroid synthesis in the interrenal tissue (analogous to the adrenal cortex in mammals) of fish. However, little is known about the functional regulation of this receptor in fish. In this work described, we cloned sea bass MC2R from a liver cDNA. SbMC2R requires the melanocortin 2 receptor accessory protein (MRAP) for its functional expression. Dietary cortisol but not long-term stress protocols downregulated interrenal sbMC2R expression. Data suggest the existence of a negative feedback on interrenal sbMC2R expression imposed by local or systemic glucocorticoids. This feedback could be involved in long-term stress adaptation by regulating interrenal sensitivity to ACTH. ACTH-induced MC2R activation stimulates hepatic lipolysis, suggesting that ACTH may mediate stress-induced effects upstream of cortisol release. PMID:23724142

  17. AtAGP18, a lysine-rich arabinogalactan protein in Arabidopsis thaliana, functions in plant growth and development as a putative co-receptor for signal transduction.

    PubMed

    Zhang, Yizhu; Yang, Jie; Showalter, Allan M

    2011-06-01

    Arabinogalactan-proteins (AGPs) are a class of hyperglycosylated, hydroxyproline-rich glycoproteins that are widely distributed in the plant kingdom. AtAGP17, 18 and 19 are homologous genes encoding three classical lysine-rich AGPs in Arabidopsis. We observed subcellular localization of AtAGP18 at the plasma membrane by expressing a translational fusion gene construction of AtAGP18 attached to a green fluorescent protein (GFP) tag in Arabidopsis plants. We also overexpressed AtAGP18 without the GFP tag in Arabidopsis plants, and the resulting transgenic plants had a short, bushy phenotype. Here we discuss putative roles of AtAGP18 as a glycosylphosphatidylinositol (GPI)-anchored protein involved in a signal transduction pathway regulating plant growth and development.

  18. AtAGP18, a lysine-rich arabinogalactan protein in Arabidopsis thaliana, functions in plant growth and development as a putative co-receptor for signal transduction

    PubMed Central

    Zhang, Yizhu; Yang, Jie

    2011-01-01

    Arabinogalactan-proteins (AGPs) are a class of hyperglycosylated, hydroxyproline-rich glycoproteins that are widely distributed in the plant kingdom. AtAGP17, 18 and 19 are homologous genes encoding three classical lysine-rich AGPs in Arabidopsis. We observed subcellular localization of AtAGP18 at the plasma membrane by expressing a translational fusion gene construction of AtAGP18 attached to a green fluorescent protein (GFP) tag in Arabidopsis plants. We also overexpressed AtAGP18 without the GFP tag in Arabidopsis plants, and the resulting transgenic plants had a short, bushy phenotype. Here we discuss putative roles of AtAGP18 as a glycosylphosphatidylinositol (GPI)-anchored protein involved in a signal transduction pathway regulating plant growth and development. PMID:21849816

  19. Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention.

    PubMed

    Ge, Yuqiang; Bagnall, Alan; Stricklett, Peter K; Strait, Kevin; Webb, David J; Kotelevtsev, Yuri; Kohan, Donald E

    2006-12-01

    Collecting duct (CD)-derived endothelin-1 (ET-1) inhibits renal Na reabsorption and its deficiency increases blood pressure (BP). The role of CD endothelin B (ETB) receptors in mediating these effects is unknown. CD-specific knockout of the ETB receptor was achieved using an aquaporin-2 promoter-Cre recombinase transgene and the loxP-flanked ETB receptor gene (CD ETB KO). Systolic BP in mice with CD-specific knockout of the ETB receptor, ETA receptor (CD ETA KO) and ET-1 (CD ET-1 KO), and their respective controls were compared during normal- and high-salt diet. On a normal-sodium diet, CD ETB KO mice had elevated BP, which increased further during high salt feeding. However, the degree of hypertension in CD ETB KO mice and the further increase in BP during salt feeding were lower than that of CD ET-1 KO mice, whereas CD ETA KO mice were normotensive. CD ETB KO mice had impaired sodium excretion following acute sodium loading. Aldosterone and plasma renin activity were decreased in CD ETB KO mice on normal- and high-sodium diets, while plasma and urinary ET-1 levels did not differ from controls. In conclusion, the CD ETB receptor partially mediates the antihypertensive and natriuretic effects of ET-1. CD ETA and ETB receptors do not fully account for the antihypertensive and natriuretic effects of CD-derived ET-1, suggesting paracrine effects of this peptide.

  20. Putative TRP channel antagonists, SKF 96365, flufenamic acid and 2-APB, are non-competitive antagonists at recombinant human α1β2γ2 GABA(A) receptors.

    PubMed

    Rae, M G; Hilton, J; Sharkey, J

    2012-05-01

    Although transient receptor potential (TRP) channel biology research has expanded rapidly in recent years, the field is hampered by the widely held, but relatively poorly investigated, belief that most of the pharmacological tools used to investigate TRP channel function may not be particularly selective for their intended targets. The objective of this study was therefore to determine if this was indeed the case by systematically evaluating the effects of three routinely used putative TRP channel antagonists, SKF 96365, flufenamic acid (FF) and 2-aminoethoxydiphenyl borate (2-APB) against one of the most widely expressed CNS receptor subtypes CNS, the human α1β2γ2 GABA(A) receptor. Using whole cell patch-clamp recording to record responses to rapidly applied GABA in the absence and presence of the three putative antagonists in turn we found that SKF 96365 (1-100 μM) and FF (1-100 μM) significantly inhibited GABA responses of recombinant human α1β2γ2 GABA(A) receptor stably expressed in HEK293 cells with IC(50) values of 13.4 ± 5.1 and 1.9 ± 1.4 μM, respectively, suppressing the maximal response to GABA at all concentrations used in a manner consistent with a non-competitive mode of action. SKF 96365 and FF also both significantly reduced desensitisation and prolonged the deactivation kinetics of the receptors to GABA (1mM; P<0.05). 2-APB (10-1000 μM) also inhibited responses to GABA at all concentrations used with an IC(50) value of 16.7 ± 5.4 μM (n=3-5) but had no significant effect on the activation, desensitisation or deactivation kinetics of the GABA responses. Taken together this investigation revealed that these widely utilised TRP channel antagonists display significant 'off-target' effects at concentrations that are routinely used for the study of TRP channel function in numerous biological systems and as such, data which is obtained utilising these compounds should be interpreted with caution.

  1. NHERF2 specifically interacts with LPA2 receptor and defines the specificity and efficiency of receptor-mediated phospholipase C-beta3 activation.

    PubMed

    Oh, Yong-Seok; Jo, Nam Won; Choi, Jung Woong; Kim, Hyeon Soo; Seo, Sang-Won; Kang, Kyung-Ok; Hwang, Jong-Ik; Heo, Kyun; Kim, Sun-Hee; Kim, Yun-Hee; Kim, In-Hoo; Kim, Jae Ho; Banno, Yoshiko; Ryu, Sung Ho; Suh, Pann-Ghill

    2004-06-01

    Lysophosphatidic acid (LPA) activates a family of cognate G protein-coupled receptors and is involved in various pathophysiological processes. However, it is not clearly understood how these LPA receptors are specifically coupled to their downstream signaling molecules. This study found that LPA(2), but not the other LPA receptor isoforms, specifically interacts with Na(+)/H(+) exchanger regulatory factor2 (NHERF2). In addition, the interaction between them requires the C-terminal PDZ domain-binding motif of LPA(2) and the second PDZ domain of NHERF2. Moreover, the stable expression of NHERF2 potentiated LPA-induced phospholipase C-beta (PLC-beta) activation, which was markedly attenuated by either a mutation in the PDZ-binding motif of LPA(2) or by the gene silencing of NHERF2. Using its second PDZ domain, NHERF2 was found to indirectly link LPA(2) to PLC-beta3 to form a complex, and the other PLC-beta isozymes were not included in the protein complex. Consistently, LPA(2)-mediated PLC-beta activation was specifically inhibited by the gene silencing of PLC-beta3. In addition, NHERF2 increases LPA-induced ERK activation, which is followed by cyclooxygenase-2 induction via a PLC-dependent pathway. Overall, the results suggest that a ternary complex composed of LPA(2), NHERF2, and PLC-beta3 may play a key role in the LPA(2)-mediated PLC-beta signaling pathway.

  2. Structural basis for specificity of TGF[beta] family receptor small molecule inhibitors

    SciTech Connect

    Ogunjimi, Abiodun A.; Zeqiraj, Elton; Ceccarelli, Derek F.; Sicheri, Frank; Wrana, Jeffrey L.; David, Laurent

    2012-07-24

    Transforming growth factor-{beta} (TGF{beta}) receptor kinase inhibitors have a great therapeutic potential. SB431542 is one of the mainly used kinase inhibitors of the TGF{beta}/Activin pathway receptors, but needs improvement of its EC{sub 50} (EC{sub 50} = 1 {mu}M) to be translated to clinical use. A key feature of SB431542 is that it specifically targets receptors from the TGF{beta}/Activin pathway but not the closely related receptors from the bone morphogenic proteins (BMP) pathway. To understand the mechanisms of this selectivity, we solved the crystal structure of the TGF{beta} type I receptor (T{beta}RI) kinase domain in complex with SB431542. We mutated T{beta}RI residues coordinating SB431542 to their counterparts in activin-receptor like kinase 2 (ALK2), a BMP receptor kinase, and tested the kinase activity of mutated T{beta}RI. We discovered that a Ser280Thr mutation yielded a T{beta}RI variant that was resistant to SB431542 inhibition. Furthermore, the corresponding Thr283Ser mutation in ALK2 yielded a BMP receptor sensitive to SB431542. This demonstrated that Ser280 is the key determinant of selectivity for SB431542. This work provides a framework for optimising the SB431542 scaffold to more potent and selective inhibitors of the TGF{beta}/Activin pathway.

  3. Functional studies of host-specific ephrin-B ligands as Henipavirus receptors.

    PubMed

    Bossart, Katharine N; Tachedjian, Mary; McEachern, Jennifer A; Crameri, Gary; Zhu, Zhongyu; Dimitrov, Dimiter S; Broder, Christopher C; Wang, Lin-Fa

    2008-03-15

    Hendra virus (HeV) and Nipah virus (NiV) are closely related paramyxoviruses that infect and cause disease in a wide range of mammalian hosts. To determine whether host receptor molecules play a role in species-specific and/or virus-specific infection we have cloned and characterized ephrin-B2 and ephrin-B3 ligands from a range of species, including human, horse, pig, cat, dog, bats (Pteropus alecto and Pteropus vampyrus) and mouse. HeV and NiV were both able to infect cells expressing any of the ephrin-B2 and ephrin-B3 molecules. There did not appear to be significant differences in receptor function from different species or receptor usage by HeV and NiV. Soluble ephrin ligands, their receptors and G-specific human monoclonal antibodies differentially blocked henipavirus infections suggesting different receptor affinities, overlapping receptor binding domains of the henipavirus attachment glycoprotein (G) and that the functional domains of the ephrin ligands may be important for henipavirus binding.

  4. Expression of the putative gonadotropin-inhibitory hormone receptor, NPFFR1, in the anterior pituitary gland of the gilt is affected by age and sexual maturation

    USDA-ARS?s Scientific Manuscript database

    Gonadotropin-inhibitory hormone (GnIH) purportedly suppresses secretion of luteinizing hormone (LH) by acting through a G-protein coupled receptor (NPFFR1) in the anterior pituitary gland and hypothalamus. The objective of these studies was to determine if expression of mRNA for NPFFR1 in the reprod...

  5. AgCad2 cadherin in Anopheles gambiae larvae is a putative receptor of Cry11Ba toxin of Bacillus thuringiensis subsp. jegathesan.

    PubMed

    Hua, Gang; Zhang, Qi; Zhang, Rui; Abdullah, Amir M; Linser, Paul J; Adang, Michael J

    2013-02-01

    In an effort to study the mode of action of Cry11Ba, we identified toxin binding proteins in Anopheles gambiae larval midgut and investigated their receptor roles. Previously, an aminopeptidase (AgAPN2) and an alkaline phosphatase (AgALP1) were identified as receptors for Cry11Ba toxin in A. gambiae. However, an A. gambiae cadherin (AgCad1) that bound Cry11Ba with low affinity (K(d) = 766 nM) did not support a receptor role of AgCad1 for Cry11Ba. Here, we studied a second A. gambiae cadherin (AgCad2) that shares 14% identity to AgCad1. Immunohistochemical study showed that the protein is localized on A. gambiae larval midgut apical membranes. Its cDNA was cloned and the protein was analyzed as a transmembrane protein containing 14 cadherin repeats. An Escherichia coli expressed CR14MPED fragment of AgCad2 bound Cry11Ba with high affinity (K(d) = 11.8 nM), blocked Cry11Ba binding to A. gambiae brush border vesicles and reduced Cry11Ba toxicity in bioassays. Its binding to Cry11Ba could be completely competed off by AgCad1, but only partially competed by AgALP1. The results are evidence that AgCad2 may function as a receptor for Cry11Ba in A. gambiae larvae.

  6. GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways.

    PubMed

    Lou, X; Yano, H; Lee, F; Chao, M V; Farquhar, M G

    2001-03-01

    NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-gamma1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways.

  7. GIPC and GAIP Form a Complex with TrkA: A Putative Link between G Protein and Receptor Tyrosine Kinase Pathways

    PubMed Central

    Lou, Xiaojing; Yano, Hiroko; Lee, Francis; Chao, Moses V.; Farquhar, Marilyn Gist

    2001-01-01

    NGF initiates the majority of its neurotrophic effects by promoting the activation of the tyrosine kinase receptor TrkA. Here we describe a novel interaction between TrkA and GIPC, a PDZ domain protein. GIPC binds to the juxtamembrane region of TrkA through its PDZ domain. The PDZ domain of GIPC also interacts with GAIP, an RGS (regulators of G protein signaling) protein. GIPC and GAIP are components of a G protein-coupled signaling complex thought to be involved in vesicular trafficking. In transfected HEK 293T cells GIPC, GAIP, and TrkA form a coprecipitable protein complex. Both TrkA and GAIP bind to the PDZ domain of GIPC, but their binding sites within the PDZ domain are different. The association of endogenous GIPC with the TrkA receptor was confirmed by coimmunoprecipitation in PC12 (615) cells stably expressing TrkA. By immunofluorescence GIPC colocalizes with phosphorylated TrkA receptors in retrograde transport vesicles located in the neurites and cell bodies of differentiated PC12 (615) cells. These results suggest that GIPC, like other PDZ domain proteins, serves to cluster transmembrane receptors with signaling molecules. When GIPC is overexpressed in PC12 (615) cells, NGF-induced phosphorylation of mitogen-activated protein (MAP) kinase (Erk1/2) decreases; however, there is no effect on phosphorylation of Akt, phospholipase C-γ1, or Shc. The association of TrkA receptors with GIPC and GAIP plus the inhibition of MAP kinase by GIPC suggests that GIPC may provide a link between TrkA and G protein signaling pathways. PMID:11251075

  8. Sex-specific fitness effects of unpredictable early life conditions are associated with DNA methylation in the avian glucocorticoid receptor.

    PubMed

    Rubenstein, Dustin R; Skolnik, Hannah; Berrio, Alejandro; Champagne, Frances A; Phelps, Steven; Solomon, Joseph

    2016-04-01

    Organisms can adapt to variable environments by using environmental cues to modulate developmental gene expression. In principle, maternal influences can adaptively adjust offspring phenotype when early life and adult environments match, but they may be maladaptive when future environments are not predictable. One of the best-studied 'maternal effects' is through modification of the offspring's hypothalamic-pituitary-adrenal (HPA) axis, the neuroendocrine system that controls responses to stress. In addition to the direct transfer of glucocorticoids from mother to offspring, offspring HPA function and other phenotypes can also be affected by epigenetic modifications like DNA methylation of the glucocorticoid receptor promoter. Here we examine how among-year variation in rainfall is related to DNA methylation during development and fitness in adulthood in the superb starling (Lamprotornis superbus), which lives in a climatically unpredictable environment where early life and adult environments are unlikely to match. We found that DNA methylation in the putative promoter of the glucocorticoid receptor gene is reduced in chicks - particularly in males - born following drier prebreeding periods. Additionally, DNA methylation is lower in males that become breeders than those that never breed. However, there is no relationship in females between DNA methylation and the likelihood of dispersing from the natal group to breed elsewhere. These results suggest that early life conditions may positively affect fitness in a sex-specific manner through chemical modification of an HPA-associated gene. This study is the first to show that epigenetic modifications during early life may influence the fitness of free-living organisms adapted to unpredictable environments.

  9. Spo5/Mug12, a Putative Meiosis-Specific RNA-Binding Protein, Is Essential for Meiotic Progression and Forms Mei2 Dot-Like Nuclear Foci†

    PubMed Central

    Kasama, Takashi; Shigehisa, Akira; Hirata, Aiko; Saito, Takamune T.; Tougan, Takahiro; Okuzaki, Daisuke; Nojima, Hiroshi

    2006-01-01

    We report here a functional analysis of spo5+(mug12+) of Schizosaccharomyces pombe, which encodes a putative RNA-binding protein. The disruption of spo5+ caused abnormal sporulation, generating inviable spores due to failed forespore membrane formation and the absence of a spore wall, as determined by electron microscopy. Spo5 regulates the progression of meiosis I because spo5 mutant cells display normal premeiotic DNA synthesis and the timely initiation of meiosis I but they show a delay in the peaking of cells with two nuclei, abnormal tyrosine 15 dephosphorylation of Cdc2, incomplete degradation of Cdc13, retarded formation and repair of double strand breaks, and a reduced frequency of intragenic recombination. Immunostaining showed that Spo5-green fluorescent protein (GFP) appeared in the cytoplasm at the horsetail phase, peaked around the metaphase I to anaphase I transition, and suddenly disappeared after anaphase II. Images of Spo5-GFP in living cells revealed that Spo5 forms a dot in the nucleus at prophase I that colocalized with the Mei2 dot. Unlike the Mei2 dot, however, the Spo5 dot was observed even in sme2Δ cells. Taken together, we conclude that Spo5 is a novel regulator of meiosis I and that it may function in the vicinity of the Mei2 dot. PMID:16896214

  10. AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development

    PubMed Central

    Synek, Lukáš; Schlager, Nicole; Eliáš, Marek; Quentin, Michaël; Hauser, Marie-Theres; Žárský, Viktor

    2010-01-01

    Summary The exocyst is a hetero-oligomeric protein complex involved in exocytosis and has been extensively studied in yeast and animal cells. Evidence is now accumulating that the exocyst is also present in plants. Bioinformatic analysis of genes encoding plant homologs of the exocyst subunit, Exo70, revealed that three Exo70 subgroups are evolutionarily conserved among angiosperms, lycophytes and mosses. Arabidopsis and rice contain 22 and approximately 39 EXO70 genes, respectively, which can be classified into nine clusters considered to be ancient in angiosperms (one has been lost in Arabidopsis). We characterized two independent T-DNA insertional mutants of the AtEXO70A1 gene (exo70A1-1 and exo70A1-2). Heterozygous EXO70A1/exo70A1 plants appear to be normal and segregate in a 1:2:1 ratio, suggesting that neither male nor female gametophytes are affected by the EXO70A1 disruption. However, both exo70A1-1 and exo70A1-2 homozygotes exhibit an array of phenotypic defects. The polar growth of root hairs and stigmatic papillae is disturbed. Organs are generally smaller, plants show a loss of apical dominance and indeterminate growth where instead of floral meristems new lateral inflorescences are initiated in a reiterative manner. Both exo70A1 mutants have dramatically reduced fertility. These results suggest that the putative exocyst subunit EXO70A1 is involved in cell and organ morphogenesis. PMID:16942608

  11. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    PubMed

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-09

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  12. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants.

    PubMed

    Gruhn, Nijuscha; Halawa, Mhyeddeen; Snel, Berend; Seidl, Michael F; Heyl, Alexander

    2014-05-01

    The two-component signaling system--the major signaling pathway of bacteria--is found among higher eukaryotes only in plants, where it regulates diverse processes, such as the signaling of the phytohormone cytokinin. Cytokinin is perceived by a hybrid histidine (His) kinase receptor, and the signal is transduced by a multistep phosphorelay system of His phosphotransfer proteins and different classes of response regulators (RRs). To shed light on the origin and evolution of the two-component signaling system members in plants, we conducted a comprehensive domain-based phylogenetic study across the relevant kingdoms, including Charophyceae algae, the group of green algae giving rise to land plants. Surprisingly, we identified a subfamily of cytokinin receptors with members only from the early diverging land plants Marchantia polymorpha and Physcomitrella patens and then experimentally characterized two members of this subfamily. His phosphotransfer proteins of Charophyceae seemed to be more closely related to land plants than to other groups of green algae. Farther down the signaling pathway, the type-B RRs were found across all plant clades, but many members lack either the canonical Asp residue or the DNA binding domain. In contrast, the type-A RRs seemed to be limited to land plants. Finally, the analysis provided hints that one additional group of RRs, the type-C RRs, might be degenerated receptors and thus, of a different evolutionary origin than bona fide RRs.

  13. Ligand specificities of recombinant retinoic acid receptors RAR alpha and RAR beta.

    PubMed Central

    Crettaz, M; Baron, A; Siegenthaler, G; Hunziker, W

    1990-01-01

    Binding of retinoic acid (RA) to specific RA receptors alpha and beta (RAR alpha and RAR beta) was studied. Receptors were obtained in two ways: (1) full-length receptors were produced by transient expression of the respective human cDNAs in COS 1 cells; and (2) the ligand-binding domains of RAR alpha and RAR beta were produced in Escherichia coli. RA binding to the wild-type and truncated forms of the receptor was identical for both RAR alpha and RAR beta, indicating that the ligand-binding domains have retained the binding characteristics of the intact receptors. Furthermore, RA bound with the same affinity to both RAR alpha and RAR beta. Only retinoid analogues with an acidic end-group were able to actively bind to both receptors. On measuring the binding of various retinoids, we have found that the properties of the ligand-binding sites of RAR alpha and RAR beta were rather similar. Two retinoid analogues were capable of binding preferentially to either RAR alpha or RAR beta, suggesting that it may be possible to synthesize specific ligands for RAR alpha and RAR beta. PMID:2176462

  14. Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development.

    PubMed

    Stetak, Attila; Hoier, Erika Fröhli; Croce, Assunta; Cassata, Giuseppe; Di Fiore, Pier Paolo; Hajnal, Alex

    2006-06-07

    By controlling the subcellular localization of growth factor receptors, cells can modulate the activity of intracellular signal transduction pathways. During Caenorhabditis elegans vulval development, a ternary complex consisting of the LIN-7, LIN-2 and LIN-10 PDZ domain proteins localizes the epidermal growth factor receptor (EGFR) to the basolateral compartment of the vulval precursor cells (VPCs) to allow efficient receptor activation by the inductive EGF signal from the anchor cell. We have identified EGFR substrate protein-8 (EPS-8) as a novel component of the EGFR localization complex that links receptor trafficking to cell fate specification. EPS-8 expression is upregulated in the primary VPCs, where it creates a positive feedback loop in the EGFR/RAS/MAPK pathway. The membrane-associated guanylate kinase LIN-2 recruits EPS-8 into the receptor localization complex to retain the EGFR on the basolateral plasma membrane, and thus allow maximal receptor activation in the primary cell lineage. Low levels of EPS-8 in the neighboring secondary VPCs result in the rapid degradation of the EGFR, allowing these cells to adopt the secondary cell fate. Extracellular signals thus regulate EGFR trafficking in a cell type-specific manner to control pattern formation during organogenesis.

  15. Cell fate-specific regulation of EGF receptor trafficking during Caenorhabditis elegans vulval development

    PubMed Central

    Stetak, Attila; Hoier, Erika Fröhli; Croce, Assunta; Cassata, Giuseppe; Di Fiore, Pier Paolo; Hajnal, Alex

    2006-01-01

    By controlling the subcellular localization of growth factor receptors, cells can modulate the activity of intracellular signal transduction pathways. During Caenorhabditis elegans vulval development, a ternary complex consisting of the LIN-7, LIN-2 and LIN-10 PDZ domain proteins localizes the epidermal growth factor receptor (EGFR) to the basolateral compartment of the vulval precursor cells (VPCs) to allow efficient receptor activation by the inductive EGF signal from the anchor cell. We have identified EGFR substrate protein-8 (EPS-8) as a novel component of the EGFR localization complex that links receptor trafficking to cell fate specification. EPS-8 expression is upregulated in the primary VPCs, where it creates a positive feedback loop in the EGFR/RAS/MAPK pathway. The membrane-associated guanylate kinase LIN-2 recruits EPS-8 into the receptor localization complex to retain the EGFR on the basolateral plasma membrane, and thus allow maximal receptor activation in the primary cell lineage. Low levels of EPS-8 in the neighboring secondary VPCs result in the rapid degradation of the EGFR, allowing these cells to adopt the secondary cell fate. Extracellular signals thus regulate EGFR trafficking in a cell type-specific manner to control pattern formation during organogenesis. PMID:16688213

  16. Atomic basis of the exquisite specificity of phosphate and sulfate transport receptors.

    PubMed

    Quiocho, F A

    1996-04-01

    We have determined, by the method of x-ray crystallography, the 1.7 A resolution three-dimensional structures of the ligand-bound form of the phosphate receptor as well as the sulfate receptor. These protein structures provide an unprecedented atomic-level understanding of the mechanism governing the exquisite specificity of each receptor. Although they lack amino acid sequence homology, both receptors have very similar three-dimensional structure. The structure consists of two globular domains separated by a deep cleft which contains the ligand-binding site. The bound phosphate and sulfate are totally devoid of water of hydration. The bound phosphate is tightly held in place by 12 hydrogen bonds, 11 with donor and 1 with acceptor groups. The acceptor group (an Asp carboxylate side chain) plays three key roles. It confers specificity by directly recognizing one proton of either the monobasic or dibasic phosphate. It also assists in the recognition of another proton of the monobasic phosphate. Finally, because of charge repulsion, it disallows binding of fully ionized sulfate. The sulfate bound to the sulfate receptor makes seven hydrogen bonds with uncharged polar groups exclusively. The absence of an acceptor group in the binding site of the sulfate receptor is not conducive to phosphate binding.

  17. Specific Retrograde Transduction of Spinal Motor Neurons Using Lentiviral Vectors Targeted to Presynaptic NMJ Receptors

    PubMed Central

    Eleftheriadou, I; Trabalza, A; Ellison, SM; Gharun, K; Mazarakis, ND

    2014-01-01

    To understand how receptors are involved in neuronal trafficking and to be able to utilize them for specific targeting via the peripheral route would be of great benefit. Here, we describe the generation of novel lentiviral vectors with tropism to motor neurons that were made by coexpressing onto the lentiviral surface a fusogenic glycoprotein (mutated sindbis G) and an antibody against a cell-surface receptor (Thy1.1, p75NTR, or coxsackievirus and adenovirus receptor) on the presynaptic terminal of the neuromuscular junction. These vectors exhibit binding specificity and efficient transduction of receptor positive cell lines and primary motor neurons in vitro. Targeting of each of these receptors conferred to these vectors the capability of being transported retrogradely from the axonal tip, leading to transduction of motor neurons in vitro in compartmented microfluidic cultures. In vivo delivery of coxsackievirus and adenovirus receptor-targeted vectors in leg muscles of mice resulted in predicted patterns of motor neuron labeling in lumbar spinal cord. This opens up the clinical potential of these vectors for minimally invasive administration of central nervous system-targeted therapeutics in motor neuron diseases. PMID:24670531

  18. The ligand specificities of the insulin receptor and the insulin-like growth factor I receptor reside in different regions of a common binding site

    SciTech Connect

    Kjeldsen, T.; Andersen, A.S.; Wiberg, F.C.; Rasmussen, J.S.; Schaeffer, L.; Balschmidt, P.; Moller, K.B.; Moller, N.P.H. )

    1991-05-15

    To identify the region(s) of the insulin receptor and the insulin-like growth factor I (IGF-I) receptor responsible for ligand specificity (high-affinity binding), expression vectors encoding soluble chimeric insulin/IGF-I receptors were prepared. The chimeric receptors were expressed in mammalian cells and partially purified. Binding studies revealed that a construct comprising an IGF-I receptor in which the 68 N-terminal amino acids of the insulin receptor {alpha}-subunit had replaced the equivalent IGF-I receptor segment displayed a markedly increased affinity for insulin. In contrast, the corresponding IGF-I receptor sequence is not critical for high-affinity IGF-I binding. It is shown that part of the cysteine-rich domain determines IGF-I specificity. The authors have previously shown that exchanging exons 1, 2, and 3 of the insulin receptor with the corresponding IGF-I receptor sequence results in loss of high affinity for insulin and gain of high affinity for IGF-I. Consequently, it is suggested that the ligand specificities of the two receptors (i.e., the sequences that discriminate between insulin and IGF-I) reside in different regions of a binding site with common features present in both receptors.

  19. Transmembrane interactions and the mechanism of capping of surface receptors by their specific ligands.

    PubMed Central

    Bourguignon, L Y; Singer, S J

    1977-01-01

    The mechanism of capping of cell surface receptors has been examined by a double fluorescence staining procedure that permitted simultaneous observations of the distribution of a surface-bound ligand together with intracellular actin or myosin. At an early stage in the capping of the T-25 antigen or the H2 histocompatibility antigens on mouse splenic T lymphocytes, or of concanavalin A receptors on HeLa cells, when the specific receptors in question were collected into patches that were distributed over the entire cell surface, the intracellular membrane-associated actin or myosin was also accumulated into patches that were located directly under the receptor patches. These and other results have led us to propose a general molecular mechanism for the process of capping, in which actin and myosin are directly involved. It is suggested that membrane-associated actin is directly or indirectly bound to an integral protein or class of proteins, X, in the plasma membranes of eukaryotic cells. When any receptor in the membrane is aggregated by an external multivalent ligand, the aggregate binds effectively to X, whereas unaggregated receptors do not bind to X. The receptor aggregates, linked to actin (and myosin) through X, are then actively collected into a cap by an analogue of the actin--myosin sliding filament mechanism of muscle contraction. Images PMID:337308

  20. Disease-Specific Heteromerization of G-Protein-Coupled Receptors That Target Drugs of Abuse

    PubMed Central

    Gomes, Ivone; Fujita, Wakako; Chandrakala, Moraje V.; Devi, Lakshmi A.

    2014-01-01

    Drugs of abuse such as morphine or marijuana exert their effects through the activation of G-protein-coupled receptors (GPCRs), the opioid and cannabinoid receptors, respectively. Moreover, interactions between either of these receptors have been shown to be involved in the rewarding effects of drugs of abuse. Recent advances in the field, using a variety of approaches, have demonstrated that many GPCRs, including opioid, cannabinoid, and dopamine receptors, can form associations between different receptor subtypes or with other GPCRs to form heteromeric complexes. The formation of these complexes, in turn, leads to the modulation of the properties of individual protomers. The development of tools that can selectively disrupt GPCR heteromers as well as monoclonal antibodies that can selectively block signaling by specific heteromer pairs has indicated that heteromers involving opioid, cannabinoid, or dopamine receptors may play a role in various disease states. In this review, we describe evidence for opioid, cannabinoid, and dopamine receptor heteromerization and the potential role of GPCR heteromers in pathophysiological conditions. PMID:23663971

  1. Noladin ether, a putative endocannabinoid, attenuates sensory neurotransmission in the rat isolated mesenteric arterial bed via a non-CB1/CB2 Gi/o linked receptor

    PubMed Central

    Duncan, Marnie; Millns, Paul; Smart, Darren; Wright, James E; Kendall, David A; Ralevic, Vera

    2004-01-01

    Noladin ether has recently been reported to be an endocannabinoid, with selectivity for the cannabinoid (CB) CB1 receptor. In the present study, we investigated the effects of noladin ether in the rat isolated mesenteric arterial bed, cultured dorsal root ganglia (DRG) cells and human vanilloid (TRPV1)-receptor-expressing HEK293 cells (TRPV1-HEK293 cells). Electrical field stimulation of the mesenteric bed evoked frequency-dependent vasorelaxation due to the action of calcitonin gene-related peptide (CGRP) released from sensory nerves. Noladin ether (0.1–3 μM) attenuated sensory neurogenic relaxation in a concentration-dependent manner. Noladin ether (1 μM) reduced vasorelaxation at a submaximal frequency (8 Hz), from 57.3±6.8 to 23.3±3.8% (P<0.05, n=4). The inhibitory effects of noladin ether were unaffected by the CB1 antagonists SR141716A and LY320135, and the CB2 antagonist SR144528 (1 μM). Noladin ether had no effect on vasorelaxation elicited by exogenous CGRP or capsaicin. These data suggest that noladin ether is acting at a prejunctional site and no interaction with TRPV1 is involved. In mesenteric beds from pertussis toxin (PTX)-pretreated rats, the inhibitory actions of noladin ether on sensory neurotransmission were abolished, indicating the involvement of Gi/o protein-coupled receptors. Noladin ether evoked a concentration-dependent increase in intracellular Ca2+ concentration in TRPV1-HEK293 cells at 10 μM (36.5±3.2% of maximal capsaicin-induced response), but it was a less potent agonist than both capsaicin and anandamide and at 1 μM it was essentially inactive. Noladin ether (1 μM) had no effect on capsaicin-evoked Ca2+ responses in DRG cells, and produced no response alone, indicating it neither modulates nor acts directly on TRPV1 receptors. These data demonstrate that noladin ether attenuates sensory neurotransmission in rat mesenteric arteries via a non-CB1 non-CB2 PTX-sensitive prejunctional site, independently of TRPV1 receptors

  2. Three mutations switch H7N9 influenza to human-type receptor specificity.

    PubMed

    de Vries, Robert P; Peng, Wenjie; Grant, Oliver C; Thompson, Andrew J; Zhu, Xueyong; Bouwman, Kim M; de la Pena, Alba T Torrents; van Breemen, Marielle J; Ambepitiya Wickramasinghe, Iresha N; de Haan, Cornelis A M; Yu, Wenli; McBride, Ryan; Sanders, Rogier W; Woods, Robert J; Verheije, Monique H; Wilson, Ian A; Paulson, James C

    2017-06-01

    The avian H7N9 influenza outbreak in 2013 resulted from an unprecedented incidence of influenza transmission to humans from infected poultry. The majority of human H7N9 isolates contained a hemagglutinin (HA) mutation (Q226L) that has previously been associated with a switch in receptor specificity from avian-type (NeuAcα2-3Gal) to human-type (NeuAcα2-6Gal), as documented for the avian progenitors of the 1957 (H2N2) and 1968 (H3N2) human influenza pandemic viruses. While this raised concern that the H7N9 virus was adapting to humans, the mutation was not sufficient to switch the receptor specificity of H7N9, and has not resulted in sustained transmission in humans. To determine if the H7 HA was capable of acquiring human-type receptor specificity, we conducted mutation analyses. Remarkably, three amino acid mutations conferred a switch in specificity for human-type receptors that resembled the specificity of the 2009 human H1 pandemic virus, and promoted binding to human trachea epithelial cells.

  3. Role of receptor binding specificity in influenza A virus transmission and pathogenesis.

    PubMed

    de Graaf, Miranda; Fouchier, Ron A M

    2014-04-16

    The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed.

  4. Interaction of urokinase with specific receptors stimulates mobilization of bovine adrenal capillary endothelial cells

    SciTech Connect

    Fibbi, G.; Ziche, M.; Morbidelli, L. ); Magnelli, L.; Del Rosso, M. )

    1988-12-01

    On the basis of {sup 125}I-labeled plasminogen activator binding analysis the authors have found that bovine adrenal capillary endothelial cells have specific receptors for human urinary-type plasminogen activator on the cell membrane. Each cell exposes about 37,000 free receptors with a K{sub d} of 0.8958{times}10{sup {minus}12} M. A monoclonal antibody against the 17,500 proteolytic fragment of the A chain of the plasminogen activator, not containing the catalytic site of the enzyme, impaired the specific binding, thus suggesting the involvement of a sequence present on the A chain in the interaction with the receptor, as previously shown in other cell model systems. Both the native molecule and the A chain are able to stimulate endothelial cell motility in the Boyden chamber, when used at nanomolar concentrations. The use of the same monoclonal antibody that can inhibit ligand-receptor interaction can impair the plasminogen activator and A-chain-induced endothelial cell motility, suggesting that under the conditions used in this in vitro model system, the motility of bovine adrenal capillary endothelial cells depends on the specific interaction of the ligand with free receptors on the surface of endothelial cells.

  5. Role of receptor binding specificity in influenza A virus transmission and pathogenesis

    PubMed Central

    de Graaf, Miranda; Fouchier, Ron A M

    2014-01-01

    The recent emergence of a novel avian A/H7N9 influenza virus in poultry and humans in China, as well as laboratory studies on adaptation and transmission of avian A/H5N1 influenza viruses, has shed new light on influenza virus adaptation to mammals. One of the biological traits required for animal influenza viruses to cross the species barrier that received considerable attention in animal model studies, in vitro assays, and structural analyses is receptor binding specificity. Sialylated glycans present on the apical surface of host cells can function as receptors for the influenza virus hemagglutinin (HA) protein. Avian and human influenza viruses typically have a different sialic acid (SA)-binding preference and only few amino acid changes in the HA protein can cause a switch from avian to human receptor specificity. Recent experiments using glycan arrays, virus histochemistry, animal models, and structural analyses of HA have added a wealth of knowledge on receptor binding specificity. Here, we review recent data on the interaction between influenza virus HA and SA receptors of the host, and the impact on virus host range, pathogenesis, and transmission. Remaining challenges and future research priorities are also discussed. PMID:24668228

  6. Cytoplasmic domains determine signal specificity, cellular routing characteristics and influence ligand binding of epidermal growth factor and insulin receptors.

    PubMed Central

    Riedel, H; Dull, T J; Honegger, A M; Schlessinger, J; Ullrich, A

    1989-01-01

    The cell surface receptors for insulin and epidermal growth factor (EGF) both employ a tyrosine-specific protein kinase activity to fulfil their distinct biological roles. To identify the structural domains responsible for various receptor activities, we have generated chimeric receptor polypeptides consisting of major EGF and insulin receptor structural domains and examined their biochemical properties and cellular signalling activities. The EGF-insulin receptor hybrids are properly synthesized and transported to the cell surface, where they form binding competent structures that are defined by the origin of their extracellular domains. While their ligand binding affinities are altered, we find that these chimeric receptors are fully functional in transmitting signals across the plasma membrane and into the cell. Thus, EGF receptor and insulin receptor cytoplasmic domain signalling capabilities are independent of their new heterotetrameric or monomeric environments respectively. Furthermore, the cytoplasmic domains carry the structural determinants that define kinase specificity, mitogenic and transforming potential, and receptor routing. Images PMID:2583088

  7. Salicylate, an aspirin metabolite, specifically inhibits the current mediated by glycine receptors containing α1-subunits

    PubMed Central

    Lu, Y-G; Tang, Z-Q; Ye, Z-Y; Wang, H-T; Huang, Y-N; Zhou, K-Q; Zhang, M; Xu, T-L; Chen, L

    2009-01-01

    Background and purpose: Aspirin or its metabolite sodium salicylate is widely prescribed and has many side effects. Previous studies suggest that targeting neuronal receptors/ion channels is one of the pathways by which salicylate causes side effects in the nervous system. The present study aimed to investigate the functional action of salicylate on glycine receptors at a molecular level. Experimental approach: Whole-cell patch-clamp and site-directed mutagenesis were deployed to examine the effects of salicylate on the currents mediated by native glycine receptors in cultured neurones of rat inferior colliculus and by glycine receptors expressed in HEK293T cells. Key results: Salicylate effectively inhibited the maximal current mediated by native glycine receptors without altering the EC50 and the Hill coefficient, demonstrating a non-competitive action of salicylate. Only when applied simultaneously with glycine and extracellularly, could salicylate produce this antagonism. In HEK293T cells transfected with either α1-, α2-, α3-, α1β-, α2β- or α3β-glycine receptors, salicylate only inhibited the current mediated by those receptors that contained the α1-subunit. A single site mutation of I240V in the α1-subunit abolished inhibition by salicylate. Conclusions and implications: Salicylate is a non-competitive antagonist specifically on glycine receptors containing α1-subunits. This action critically involves the isoleucine-240 in the first transmembrane segment of the α1-subunit. Our findings may increase our understanding of the receptors involved in the side effects of salicylate on the central nervous system, such as seizures and tinnitus. PMID:19594751

  8. Ligand Specificity and Evolution of Mammalian Musk Odor Receptors: Effect of Single Receptor Deletion on Odor Detection.

    PubMed

    Sato-Akuhara, Narumi; Horio, Nao; Kato-Namba, Aya; Yoshikawa, Keiichi; Niimura, Yoshihito; Ihara, Sayoko; Shirasu, Mika; Touhara, Kazushige

    2016-04-20

    Musk odors have been used widely for fragrance and medicine for >2000 years because of their fascinating scent and physiological effects. Therefore, fragrance manufacturers have been eager to develop high-quality musk compounds that are safe and easily synthesized. We recently identified muscone-responsive olfactory receptors (ORs) MOR215-1 and OR5AN1 in mice and humans, respectively (Shirasu et al., 2014). In this study, we identified musk ORs that are evolutionarily closely related to MOR215-1 or OR5AN1 in various primates and investigated structure-activity relationships for various musk odorants and related compounds. We found that each species has one or two functional musk ORs that exhibit specific ligand spectra to musk compounds. Some of them, including the human OR5AN1, responded to nitro musks with chemical properties distinct from muscone. The ligand specificity of OR5AN1 reflects the perception of musk odors in humans. Genetic deletion of MOR215-1 in mice resulted in drastic reduction of sensitivity to muscone, suggesting that MOR215-1 plays a critical role in muscone perception. Therefore, the current study reveals a clear link between the identified OR and muscone perception. Moreover, the strategy established for screening ligands for the muscone OR may facilitate the development of novel and commercially useful musk odors. The long-sought musk odor receptor family in mammals was discovered and found to be well conserved and narrowly tuned to musk odors. In mice, deletion of the most sensitive musk receptor resulted in drastic reduction in sensitivity to muscone, demonstrating a strong link between receptor and odor perception. In humans, we found one musk receptor that recognized both macrocyclic and nitro musks that had distinct chemical structures. The structure-activity relationships were in a good agreement with human sensory perception and therefore may be used to develop novel musk aroma in fragrance fields. Finally, identification of a

  9. Peptidergic signaling in Calanus finmarchicus (Crustacea, Copepoda): in silico identification of putative peptide hormones and their receptors using a de novo assembled transcriptome.

    PubMed

    Christie, Andrew E; Roncalli, Vittoria; Wu, Le-Shin; Ganote, Carrie L; Doak, Thomas; Lenz, Petra H

    2013-06-15

    The copepod Calanus finmarchicus is the most abundant zooplankton species in the North Atlantic. While the life history of this crustacean is well studied, little is known about its peptidergic signaling systems despite the fact that these pathways are undoubtedly important components of its physiological/behavioral control systems. Here we have generated and used a de novo assembled transcriptome for C. finmarchicus (206,041 sequences in total) to identify peptide precursor proteins and receptors. Using known protein queries, 34 transcripts encoding peptide preprohormones and 18 encoding peptide receptors were identified. Using a combination of online software programs and homology to known arthropod isoforms, 148 mature peptides were predicted from the deduced precursors, including members of the allatostatin-A, allatostatin-B, allatostatin-C, bursicon, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide (myosuppressin, neuropeptide F [NPF] and extended FL/IRFamide subfamilies), leucokinin, neuroparsin, orcokinin, orcomyotropin, periviscerokinin, RYamide and tachykinin-related peptide (TRP) families. The identified receptors included ones for allatostatin-A, allatostatin-C, bursicon, CCAP, DH31, DH44, ecdysis-triggering hormone, NPF, short NPF, FMRFamide, insulin-like peptide, leucokinin, periviscerokinin, pigment dispersing hormone, and TRP. Developmental profiling of the identified transcripts in embryos, early nauplii, late nauplii, early copepodites, late copepodites, and adult females was also undertaken, with all showing the highest expression levels in the naupliar and copepodite stages. Collectively, these data radically expand the catalog of known C. finmarchicus peptidergic signaling proteins and provide a foundation for experiments directed at understanding the physiological roles served by them in this species. Copyright © 2013 Elsevier Inc. All

  10. The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception.

    PubMed

    Chinchilla, Delphine; Bauer, Zsuzsa; Regenass, Martin; Boller, Thomas; Felix, Georg

    2006-02-01

    Flagellin, the main building block of the bacterial flagellum, acts as a pathogen-associated molecular pattern triggering the innate immune response in animals and plants. In Arabidopsis thaliana, the Leu-rich repeat transmembrane receptor kinase FLAGELLIN SENSITIVE2 (FLS2) is essential for flagellin perception. Here, we demonstrate the specific interaction of the elicitor-active epitope flg22 with the FLS2 protein by chemical cross-linking and immunoprecipitation. The functionality of this receptor was further tested by heterologous expression of the Arabidopsis FLS2 gene in tomato (Lycopersicon esculentum) cells. The perception of flg22 in tomato differs characteristically from that in Arabidopsis. Expression of Arabidopsis FLS2 conferred an additional flg22-perception system on the cells of tomato, which showed all of the properties characteristic of the perception of this elicitor in Arabidopsis. In summary, these results show that FLS2 constitutes the pattern-recognition receptor that determines the specificity of flagellin perception.

  11. Multiple specific binding sites for purified glucocorticoid receptors on mammary tumor virus DNA.

    PubMed

    Payvar, F; Firestone, G L; Ross, S R; Chandler, V L; Wrange, O; Carlstedt-Duke, J; Gustafsson, J A; Yamamoto, K R

    1982-01-01

    Glucocorticoid hormones selectively stimulate the rate of transcription of integrated mammary tumor virus (MTV) sequences in infected rat hepatoma cells. Using two independent assays, we find that purified rat liver glucocorticoid receptor protein binds specifically to at least four widely separated regions on pure MTV proviral DNA. One of these specific binding domains, which itself contains at least two distinct receptor binding sites, resides within a fragment of viral DNA that maps 110-449 bp upstream of the promoter for MTV RNA synthesis. Three other binding domains lie downstream of the promoter and within the MTV primary transcription unit. Restriction fragments bearing separate binding domains have been introduced into cultured cells; transformants have been recovered in which the introduced fragments are expressed under glucocorticoid control. Thus, it appears that this assay will be useful for assessing the biological significance of the receptor binding sites detected in vitro.

  12. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon.

    PubMed

    Feng, Ying; Yin, Yanhai; Fei, Shuizhang

    2015-05-01

    Brassinosteroids (BRs) play important roles in plant growth, development and responses to a range of environmental cues. Although the mechanism of how BRs regulate growth and development is well-understood in Arabidopsis, the effect of BRs on stress tolerance, particularly drought tolerance remains unknown. We isolated a BRI1 (BRASSINOSTEROID INSENSITIVE 1) homologous gene, BdBRI1 from Brachypodium distachyon, a model for temperate grasses and cereals, created and characterized RNA interference (RNAi) knockdown mutants for BdBRI1 in Brachypodium. The loss-of-function BdBRI1-RNAi mutants exhibited reduced plant height, shortened internodes, narrow and short leaf, and reduced expression of BR signaling genes, BdBES1, BdBZR1, BdBLE2, and enhanced expression of BR biosynthesis genes BdD2, BdCPD and BdDWF4. More importantly, BdBRI1 RNAi mutants exhibited enhanced drought tolerance, accompanied by highly elevated expression of drought-responsive genes, BdP5CS, BdCOR47/BdRD17, together with BdERD1 and BdRD26, two putative targets of the transcription factors BES1 and BZR1 that are key components of the BR signaling pathway. Our results suggest that BR signaling and biosynthesis are largely conserved among Arabidopsis, rice and Brachypodium, and that BR signaling plays an important role in drought tolerance by directly regulating expression of key drought-responsive genes. The effect of BR biosynthesis or crosstalks between BR and other hormones or components of stress signaling pathways on drought tolerance is discussed.

  13. Straub tail reaction in mice treated with σ(1) receptor antagonist in combination with methamphetamine.

    PubMed

    Kitanaka, Junichi; Kitanaka, Nobue; Hall, F Scott; Uhl, George R; Tanaka, Koh-Ichi; Nishiyama, Nobuyoshi; Takemura, Motohiko

    2012-10-30

    Straub tail reaction (STR) was observed in male ddY mice after simultaneous administration with BMY 14802 (a non-specific σ receptor antagonist) and methamphetamine (METH). The intensity and duration of STR depended on the dose of BMY 14802. The tail reaction was inhibited completely by (+)-SKF 10,047 (a putative σ(1) receptor agonist) and partially by PB 28 (a putative σ(2) receptor agonist). The STR was mimicked in mice treated with BD 1047 (a putative σ(1) receptor antagonist), but not SM-21, a putative σ(2) receptor antagonist, in combination with METH. STR evoked with BD 1047 plus METH was inhibited by (+)-SKF 10,047. STR induced by BMY 14802 and METH was abolished by naloxone (a relatively non-selective opioid receptor antagonist) or U-50,488H (a selective κ-agonist), suggesting that the STR may be mediated by activation of opioid receptor system.

  14. A calcium and free fatty acid-modulated protein kinase as putative effector of the fusicoccin 14-3-3 receptor.

    PubMed Central

    van der Hoeven, P C; Siderius, M; Korthout, H A; Drabkin, A V; de Boer, A H

    1996-01-01

    A protein kinase that is activated by calcium and cis-unsaturated fatty acids has been characterized from oat (Avena sativa L.) root plasma membranes. The kinase phosphorylates a synthetic peptide with a motif (-R-T-L-S-) that can be phosphorylated by both protein kinase C (PKC) and calcium-dependent protein kinase (CDPK)-type kinases. Calphostin C and chelerythrine, two PKC inhibitors, completely inhibited the kinase activity with values of inhibitor concentration for 50% inhibition of 0.7 and 30 microns, respectively. At low Ca2+ concentrations cis-unsaturated fatty acids (linolenic acid, linoleic acid, arachidonic acid, and oleic acid) stimulated the kinase activity almost 10-fold. The two inhibitors of the kinase, calphostin C and chelerythrin, strongly reduced the fusicoccin (FC)-induced H+ extrusion, and the activators of the kinase, the cis-unsaturated fatty acids, prevented [3H]FC binding to the FC 14-3-3 receptor. CDPK antibodies cross-reacted with a 43-kD band in the plasma membrane and in a purified FC receptor fraction. A polypeptide with the same apparent molecular mass was recognized by a synthetic peptide that has a sequence homologous to the annexin-like domain from barely 14-3-3. The possibility of the involvement of a kinase, with properties from both CDPK and PKC, and a phospholipase A2 in the FC Signal transduction pathway is discussed. PMID:8754686

  15. Properties and Therapeutic Potential of Transient Receptor Potential Channels with Putative Roles in Adversity: Focus on TRPC5, TRPM2 and TRPA1

    PubMed Central

    Jiang, L.H; Gamper, N; Beech, D.J

    2011-01-01

    Mammals contain 28 genes encoding Transient Receptor Potential (TRP) proteins. The proteins assemble into cationic channels, often with calcium permeability. Important roles in physiology and disease have emerged and so there is interest in whether the channels might be suitable therapeutic drug targets. Here we review selected members of three subfamilies of mammalian TRP channel (TRPC5, TRPM2 and TRPA1) that show relevance to sensing of adversity by cells and biological systems. Summarized are the cellular and tissue distributions, general properties, endogenous modulators, protein partners, cellular and tissue functions, therapeutic potential, and pharmacology. TRPC5 is stimulated by receptor agonists and other factors that include lipids and metal ions; it heteromultimerises with other TRPC proteins and is involved in cell movement and anxiety control. TRPM2 is activated by hydrogen peroxide; it is implicated in stress-related inflammatory, vascular and neurodegenerative conditions. TRPA1 is stimulated by a wide range of irritants including mustard oil and nicotine but also, controversially, noxious cold and mechanical pressure; it is implicated in pain and inflammatory responses, including in the airways. The channels have in common that they show polymodal stimulation, have activities that are enhanced by redox factors, are permeable to calcium, and are facilitated by elevations of intracellular calcium. Developing inhibitors of the channels could lead to new agents for a variety of conditions: for example, suppressing unwanted tissue remodeling, inflammation, pain and anxiety, and addressing problems relating to asthma and stroke. PMID:21291387

  16. Structural basis for the interaction of human β-defensin 6 and its putative chemokine receptor CCR2 and breast cancer microvesicles.

    PubMed

    De Paula, V S; Gomes, N S F; Lima, L G; Miyamoto, C A; Monteiro, R Q; Almeida, F C L; Valente, A P

    2013-11-15

    Human β-defensins (hBDs) are believed to function as alarm molecules that stimulate the adaptive immune system when a threat is present. In addition to its antimicrobial activity, defensins present other activities such as chemoattraction of a range of different cell types to the sites of inflammation. We have solved the structure of the hBD6 by NMR spectroscopy that contains a conserved β-defensin domain followed by an extended C-terminus. We use NMR to monitor the interaction of hBD6 with microvesicles shed by breast cancer cell lines and with peptides derived from the extracellular domain of CC chemokine receptor 2 (Nt-CCR2) possessing or not possessing sulfation on Tyr26 and Tyr28. The NMR-derived model of the hBD6/CCR2 complex reveals a contiguous binding surface on hBD6, which comprises amino acid residues of the α-helix and β2-β3 loop. The microvesicle binding surface partially overlaps with the chemokine receptor interface. NMR spin relaxation suggests that free hBD6 and the hBD6/CCR2 complex exhibit microsecond-to-millisecond conformational dynamics encompassing the CCR2 binding site, which might facilitate selection of the molecular configuration optimal for binding. These data offer new insights into the structure-function relation of the hBD6-CCR2 interaction, which is a promising target for the design of novel anticancer agents. © 2013.

  17. Tissue-specific Regulation of Porcine Prolactin Receptor Expression by Estrogen, Progesterone and Prolactin

    USDA-ARS?s Scientific Manuscript database

    Prolactin (PRL) acts through its receptor (PRLR) via both endocrine and local paracrine/autocrine pathways to regulate biological processes including reproduction and lactation. We analyzed the tissue and stage of gestation-specific regulation of PRL and PRLR expression in various tissues of pigs. ...

  18. Specificity, Privacy, and Degeneracy in the CD4 T Cell Receptor Repertoire Following Immunization

    PubMed Central

    Sun, Yuxin; Best, Katharine; Cinelli, Mattia; Heather, James M.; Reich-Zeliger, Shlomit; Shifrut, Eric; Friedman, Nir; Shawe-Taylor, John; Chain, Benny

    2017-01-01

    T cells recognize antigen using a large and diverse set of antigen-specific receptors created by a complex process of imprecise somatic cell gene rearrangements. In response to antigen-/receptor-binding-specific T cells then divide to form memory and effector populations. We apply high-throughput sequencing to investigate the global changes in T cell receptor sequences following immunization with ovalbumin (OVA) and adjuvant, to understand how adaptive immunity achieves specificity. Each immunized mouse contained a predominantly private but related set of expanded CDR3β sequences. We used machine learning to identify common patterns which distinguished repertoires from mice immunized with adjuvant with and without OVA. The CDR3β sequences were deconstructed into sets of overlapping contiguous amino acid triplets. The frequencies of these motifs were used to train the linear programming boosting (LPBoost) algorithm LPBoost to classify between TCR repertoires. LPBoost could distinguish between the two classes of repertoire with accuracies above 80%, using a small subset of triplet sequences present at defined positions along the CDR3. The results suggest a model in which such motifs confer degenerate antigen specificity in the context of a highly diverse and largely private set of T cell receptors. PMID:28450864

  19. Characterization of muscarinic receptor subtypes in primary cultures of cerebellar granule cells using specific muscarinic receptor antagonists

    SciTech Connect

    McLeskey, S.W.

    1989-01-01

    In cerebellar granule cell cultures, two muscarinic receptor mediated responses were observed: inhibition of adenylate cyclase (M-AC) and stimulation of phosphoinositide hydrolysis (M-PI). These responses were antagonized by three purported specific muscarinic antagonists: pirenzipine and (-)QNX (specific for M-PI) and methoctramine (specific for M-AC). However, the specificity for the three antagonists in blocking these responses is not comparable to the specificity observed in binding studies on these cells or to that quoted in the literature. Two peaks of molecular sizes were found in these cells corresponding to the two molecular sizes of muscarinic receptive proteins reported in the literature. Muscarinic receptive proteins were alkylated with {sup 3}H-propylbenzilylcholine mustard followed by sodium dodecylsulfate polyacrylamide gel electrophoresis. Pirenzipine and (-)QNX were able to block alkylation of the high molecular size peak, which corresponds to the receptive protein m{sub 3} reported in the literature. Methoctramine was able to block alkylation of a portion of the lower molecular size peak, possibly corresponding to the m{sub 2} and/or m{sub 4} receptive proteins reported in the literature. Studies attempting to show the presence of receptor reserve for either of the two biochemical responses present in these cells by alkylation of the receptive protein with nonradiolabeled propylbenzilylcholine mustard (PBCM) were confounded by specificity of this agent for the lower molecular weight peak of muscarinic receptive protein. Thus the muscarinic receptive proteins coupled to M-AC were alkylated preferentially over the ones coupled to M-PI.

  20. Isolation of a putative probiotic strain S12 and its effect on growth performance, non-specific immunity and disease-resistance of white shrimp, Litopenaeus vannamei.

    PubMed

    Liu, Hongyu; Li, Zheng; Tan, Beiping; Lao, Ye; Duan, Zhiyong; Sun, Wuwei; Dong, Xiaohui

    2014-12-01

    The common pathogens in aquaculture are very different from those in terrestrial animals. The objective of this study was to isolate probiotic strain (s) from the digestive tract of healthy white shrimp Litopenaeus vannamei which was effective against aquatic animal pathogens. The putative probiotic strain S12 was identified as Bacillus subtilis based on the morphological and biochemical properties and 16S rDNA gene sequencing. The L. vannamei were fed with five different diets: control (basal diet with no probiotics or antibiotics), antibiotic control (basal diet supplemented with 0.3% florfenicol), basal diet supplemented with 5 × 10(9) cfu kg(-1) , 5 × 10(10) cfu kg(-1) and 5 × 10(11) cfu kg(-1) probiotic S12 (PS1-3). Each diet was randomly fed to quadruplication groups of 40 shrimps (0.4 ± 0.01 g) reared in tanks. After an 8-week feeding, the survival rate of shrimps fed with PS1 and PS3 were the highest among all treatments (P < 0.05). The moisture content of shrimps fed with florfenicol was significantly lower than that of the control group (P < 0.05). The supplement of probiotic S12 decreased the body crude lipid significantly (P < 0.05). The activities of phagocytic rate, lysozyme (LZ), superoxide dismutase phenoloxidase (SOD) and antibacterial activity were significantly higher than those in the control (P < 0.05), and the activities of SOD and the antibacterial activity in PS2 and PS3 were significantly higher than those in antibiotic control (P < 0.05). When infected with Vibrio harveyi at 4-weeks, the mortality was significantly lower (P < 0.05) in PS2 and PS3 groups than that in the control. After being infected with V. harveyi at 8-weeks, the mortality was significantly lower in the probiotic and antibiotic groups than that in the control (P < 0.05). This study suggested that probiotics could be used as an effective immunopotentiator, the optimal dose of the probiotic strain S12 is 5 × 10(10) cfu kg(-1) diet.

  1. Evidence for specific DNA sequences in the nuclear acceptor sites of the avian oviduct progesterone receptor.

    PubMed Central

    Toyoda, H; Seelke, R W; Littlefield, B A; Spelsberg, T C

    1985-01-01

    Recent studies have shown that saturable high-capacity nuclear binding sites (termed acceptor sites) for the avian oviduct progesterone receptor can be reconstituted by rehybridizing a specific oviduct chromatin protein fraction (CP-3) to pure hen DNA to generate a reconstituted nucleoacidic protein (NAP). Only a limited number of acceptor sites can be generated on hen DNA even at high protein/DNA ratios. This suggests the existence of a limited number of specific sequences in the avian genome that can participate in the acceptor sites. The studies presented in this paper show a specificity as to the source of DNA that can generate acceptor sites using hen oviduct CP-3 protein. The acceptor protein binds to all DNAs but generates acceptor sites only on DNAs from certain animals. The acceptor sites for the progesterone receptor, generated with heterologous mammalian DNAs and the avian oviduct CP-3 fraction, show saturation not only in number of acceptor sites generated on the DNAs but also in progesterone receptor binding. Binding to these sites is also receptor dependent. Using oviduct receptors from particular physiological states of the birds wherein the receptors do not bind to nuclear sites in vivo, it was found that the cell-free binding to these heterologous complexes of hen CP-3 protein and DNA from another species, termed heterologous NAP, is similarly absent. Thus, the cell-free binding to the native oviduct NAP and the heterologous NAP markedly resembles the nuclear binding in vivo. Interestingly, synthetic DNAs rich in adenine and thymine, but not those rich in guanine and cytosine, are capable of generating acceptor sites. Species-specific DNA sequences, as well as specific chromatin proteins, therefore, appear to be involved in the nuclear acceptor sites for the avian oviduct progesterone receptor. The DNA sequences appear to be conserved throughout most of the vertebrates but not among nonvertebrates as are the steroid hormones and their receptors

  2. Chemokine receptor-specific antibodies in cancer immunotherapy: achievements and challenges.

    PubMed

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A; Kremer, Leonor

    2015-01-01

    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications.

  3. A specific combination of substrates is involved in signal transduction by the kit-encoded receptor.

    PubMed Central

    Lev, S; Givol, D; Yarden, Y

    1991-01-01

    The kit protooncogene encodes a transmembrane tyrosine kinase related to the receptors for the platelet derived growth factor (PDGF-R) and the macrophage growth factor (CSF1-R), and was very recently shown to bind a stem cell factor. To compare signal transduction by the kit kinase with signaling by homologous receptors we constructed a chimeric protein composed of the extracellular domain of the epidermal growth factor receptor (EGF-R) and the transmembrane and cytoplasmic domains of kit. We have previously shown that the chimeric receptor transmits potent mitogenic and transforming signals in response to the heterologous ligand. Here we demonstrate that upon ligand binding, the ligand-receptor complex undergoes endocytosis and degradation and induces short- and long-term cellular effects. Examination of the signal transduction pathway revealed that the activated kit kinase strongly associates with phosphatidylinositol 3'-kinase activity and a phosphoprotein of 85 kd. In addition, the ligand-stimulated kit kinase is coupled to modifications of phospholipase C gamma and the Raf1 protein kinase. However, it does not lead to a significant change in the production of inositol phosphate. Comparison of our results with the known signaling pathways of PDGF-R and CSF1-R suggests that each receptor is coupled to a specific combination of signal transducers. Images PMID:1705885

  4. Expression of growth arrest-specific gene 6 and its receptors in dysfunctional human renal allografts.

    PubMed

    Yin, Jian L; Hambly, Brett D; Bao, Shi S; Painter, Dorothy; Bishop, G Alex; Eris, Josette M

    2003-09-01

    Growth arrest-specific gene 6 (Gas6) and its receptors Rse, Axl and Mer have recently been found to be involved in a rat model of chronic allograft nephropathy (CAN). Thus, in this study we investigated the function of Gas6 and its receptors in human renal allograft dysfunction. Expression of Gas6 and its receptors was detected by immunohistochemical staining. Gas6 and its receptors were widely expressed in glomeruli, tubules and vessels of renal allografts. Gas6 expression was detected in normal-functioning allografts and was increased in acute rejection ( P<0.05), acute tubular necrosis ( P<0.05) and CAN ( P<0.01). Gas6 receptors were not upregulated in any of the allograft groups, except for the Axl receptor, which increased only in acute tubular necrosis ( P<0.01). Gas6 expression was also found to correspond with the expression of alpha-smooth muscle actin, a general marker of CAN ( r(2)=0.21, P<0.01). These findings suggest that Gas6, acting as a growth factor, is increased in the process of kidney allograft dysfunction and in CAN.

  5. Chemokine Receptor-Specific Antibodies in Cancer Immunotherapy: Achievements and Challenges

    PubMed Central

    Vela, Maria; Aris, Mariana; Llorente, Mercedes; Garcia-Sanz, Jose A.; Kremer, Leonor

    2015-01-01

    The 1990s brought a burst of information regarding the structure, expression pattern, and role in leukocyte migration and adhesion of chemokines and their receptors. At that time, the FDA approved the first therapeutic antibodies for cancer treatment. A few years later, it was reported that the chemokine receptors CXCR4 and CCR7 were involved on directing metastases to liver, lung, bone marrow, or lymph nodes, and the over-expression of CCR4, CCR6, and CCR9 by certain tumors. The possibility of inhibiting the interaction of chemokine receptors present on the surface of tumor cells with their ligands emerged as a new therapeutic approach. Therefore, many research groups and companies began to develop small molecule antagonists and specific antibodies, aiming to neutralize signaling from these receptors. Despite great expectations, so far, only one anti-chemokine receptor antibody has been approved for its clinical use, mogamulizumab, an anti-CCR4 antibody, granted in Japan to treat refractory adult T-cell leukemia and lymphoma. Here, we review the main achievements obtained with anti-chemokine receptor antibodies for cancer immunotherapy, including discovery and clinical studies, proposed mechanisms of action, and therapeutic applications. PMID:25688243

  6. Collecting duct-specific endothelin B receptor knockout increases ENaC activity

    PubMed Central

    Bugaj, Vladislav; Mironova, Elena; Kohan, Donald E.

    2012-01-01

    Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na+ excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na+ channel (ENaC) is limiting for Na+ reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na+ regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na+ intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na+ regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na+ feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na+ retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD. PMID:21918182

  7. Crystallization and X-ray crystallographic analysis of recombinant TylP, a putative γ-butyrolactone receptor protein from Streptomyces fradiae.

    PubMed

    Mohd-Sharif, Nurhikmah; Shaibullah, Sofiyah; Givajothi, Vasanthakumar; Tan, Cheng Seng; Ho, Kok Lian; Teh, Aik Hong; Baharum, Syarul Nataqain; Waterman, Jitka; Ng, Chyan Leong

    2017-02-01

    TylP is one of five regulatory proteins involved in the regulation of antibiotic (tylosin) production, morphological and physiological differentiation in Streptomyces fradiae. Its function is similar to those of various γ-butyrolactone receptor proteins. In this report, N-terminally His-tagged recombinant TylP protein (rTylP) was overproduced in Escherichia coli and purified to homogeneity. The rTylP protein was crystallized from a reservoir solution comprising 34%(v/v) ethylene glycol and 5%(v/v) glycerol. The protein crystals diffracted X-rays to 3.05 Å resolution and belonged to the trigonal space group P3121, with unit-cell parameters a = b = 126.62, c = 95.63 Å.

  8. Stereoselective modulatory actions of oleamide on GABA(A) receptors and voltage-gated Na(+) channels in vitro: a putative endogenous ligand for depressant drug sites in CNS.

    PubMed

    Verdon, B; Zheng, J; Nicholson, R A; Ganelli, C R; Lees, G

    2000-01-01

    1. cis-9,10-octadecenoamide ('oleamide') accumulates in CSF on sleep deprivation. It induces sleep in animals (the trans form is inactive) but its cellular actions are poorly characterized. We have used electrophysiology in cultures from embryonic rat cortex and biochemical studies in mouse nerve preparations to address these issues. 2. Twenty microM cis-oleamide (but not trans) reversibly enhanced GABA(A) currents and depressed the frequency of spontaneous excitatory and inhibitory synaptic activity in cultured networks. 3. cis-oleamide stereoselectively blocked veratridine-induced (but not K(+)-induced) depolarisation of mouse synaptoneurosomes (IC(50), 13. 9 microM). 4. The cis isomer stereoselectively blocked veratridine-induced (but not K(+)-induced) [(3)H]-GABA release from mouse synaptosomes (IC(50), 4.6 microM). 5. At 20 microM cis-oleamide, but not trans, produced a marked inhibition of Na(+) channel-dependent rises in intrasynaptosomal Ca(2+). 6. The physiological significance of these observations was examined by isolating Na(+) spikes in cultured pyramidal neurones. Sixty-four microM cis-oleamide did not significantly alter the amplitude, rate of rise or duration of unitary action potentials (1 Hz). 7. cis-Oleamide stereoselectively suppressed sustained repetitive firing (SRF) in these cells with an EC(50) of 4.1 microM suggesting a frequency- or state-dependent block of voltage-gated Na(+) channels. 8. Oleamide is a stereoselective modulator of both postsynaptic GABA(A) receptors and presynaptic or somatic voltage-gated Na(+) channels which are crucial for synaptic inhibition and conduction. The modulatory actions are strikingly similar to those displayed by sedative or anticonvulsant barbiturates and a variety of general anaesthetics. 9. Oleamide may represent an endogenous modulator for drug receptors and an important regulator of arousal.

  9. Stereoselective modulatory actions of oleamide on GABAA receptors and voltage-gated Na+ channels in vitro: a putative endogenous ligand for depressant drug sites in CNS

    PubMed Central

    Verdon, Bernard; Zheng, Jian; Nicholson, Russell A; Ganelli, C Robin; Lees, George

    2000-01-01

    cis-9,10-octadecenoamide (‘oleamide') accumulates in CSF on sleep deprivation. It induces sleep in animals (the trans form is inactive) but its cellular actions are poorly characterized. We have used electrophysiology in cultures from embryonic rat cortex and biochemical studies in mouse nerve preparations to address these issues. Twenty μM cis-oleamide (but not trans) reversibly enhanced GABAA currents and depressed the frequency of spontaneous excitatory and inhibitory synaptic activity in cultured networks. cis-oleamide stereoselectively blocked veratridine-induced (but not K+-induced) depolarisation of mouse synaptoneurosomes (IC50, 13.9 μM). The cis isomer stereoselectively blocked veratridine-induced (but not K+-induced) [3H]-GABA release from mouse synaptosomes (IC50, 4.6 μM). At 20 μM cis-oleamide, but not trans, produced a marked inhibition of Na+ channel-dependent rises in intrasynaptosomal Ca2+. The physiological significance of these observations was examined by isolating Na+ spikes in cultured pyramidal neurones. Sixty-four μM cis-oleamide did not significantly alter the amplitude, rate of rise or duration of unitary action potentials (1 Hz). cis-Oleamide stereoselectively suppressed sustained repetitive firing (SRF) in these cells with an EC50 of 4.1 μM suggesting a frequency- or state-dependent block of voltage-gated Na+ channels. Oleamide is a stereoselective modulator of both postsynaptic GABAA receptors and presynaptic or somatic voltage-gated Na+ channels which are crucial for synaptic inhibition and conduction. The modulatory actions are strikingly similar to those displayed by sedative or anticonvulsant barbiturates and a variety of general anaesthetics. Oleamide may represent an endogenous modulator for drug receptors and an important regulator of arousal. PMID:10694234

  10. Chimeric Antigen Receptor (CAR)-Specific Monoclonal Antibody to Detect CD19-Specific T Cells in Clinical Trials

    PubMed Central

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246

  11. Chimeric antigen receptor (CAR)-specific monoclonal antibody to detect CD19-specific T cells in clinical trials.

    PubMed

    Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A; Champlin, Richard E; Cooper, Laurence J N

    2013-01-01

    Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR(+) T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19(+) tumor targets. This clone can be used to detect CD19-specific CAR(+) T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR(+) T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy.

  12. Alterations in Hemagglutinin Receptor-Binding Specificity Accompany the Emergence of Highly Pathogenic Avian Influenza Viruses

    PubMed Central

    Mochalova, Larisa; Harder, Timm; Tuzikov, Alexander; Bovin, Nicolai; Wolff, Thorsten; Matrosovich, Mikhail; Schweiger, Brunhilde

    2015-01-01

    ABSTRACT Highly pathogenic avian influenza viruses (HPAIVs) of hemagglutinin H5 and H7 subtypes emerge after introduction of low-pathogenic avian influenza viruses (LPAIVs) from wild birds into poultry flocks, followed by subsequent circulation and evolution. The acquisition of multiple basic amino acids at the endoproteolytical cleavage site of the hemagglutinin (HA) is a molecular indicator for high pathogenicity, at least for infections of gallinaceous poultry. Apart from the well-studied significance of the multibasic HA cleavage site, there is only limited knowledge on other alterations in the HA and neuraminidase (NA) molecules associated with changes in tropism during the emergence of HPAIVs from LPAIVs. We hypothesized that changes in tropism may require alterations of the sialyloligosaccharide specificities of HA and NA. To test this hypothesis, we compared a number of LPAIVs and HPAIVs for their HA-mediated binding and NA-mediated desialylation of a set of synthetic receptor analogs, namely, α2-3-sialylated oligosaccharides. NA substrate specificity correlated with structural groups of NAs and did not correlate with pathogenic potential of the virus. In contrast, all HPAIVs differed from LPAIVs by a higher HA receptor-binding affinity toward the trisaccharides Neu5Acα2-3Galβ1-4GlcNAcβ (3′SLN) and Neu5Acα2-3Galβ1-3GlcNAcβ (SiaLec) and by the ability to discriminate between the nonfucosylated and fucosylated sialyloligosaccharides 3′SLN and Neu5Acα2-3Galβ1-4(Fucα1-3)GlcNAcβ (SiaLex), respectively. These results suggest that alteration of the receptor-binding specificity accompanies emergence of the HPAIVs from their low-pathogenic precursors. IMPORTANCE Here, we have found for the first time correlations of receptor-binding properties of the HA with a highly pathogenic phenotype of poultry viruses. Our study suggests that enhanced receptor-binding affinity of HPAIVs for a typical “poultry-like” receptor, 3′SLN, is provided by

  13. Regulation of Receptor Binding Specificity of FGF9 by an Autoinhibitory Homodimerization.

    PubMed

    Liu, Yang; Ma, Jinghong; Beenken, Andrew; Srinivasan, Lakshmi; Eliseenkova, Anna V; Mohammadi, Moosa

    2017-09-05

    The epithelial fibroblast growth factor 9 (FGF9) subfamily specifically binds and activates the mesenchymal "c" splice isoform of FGF receptors 1-3 (FGFR1-3) to regulate organogenesis and tissue homeostasis. The unique N and C termini of FGF9 subfamily ligands mediate a reversible homodimerization that occludes major receptor binding sites within the ligand core region. Here we provide compelling X-ray crystallographic, biophysical, and biochemical data showing that homodimerization controls receptor binding specificity of the FGF9 subfamily by keeping the concentration of active FGF9 monomers at a level, which is sufficient for a normal FGFR "c" isoform binding/signaling, but is insufficient for an illegitimate FGFR "b" isoform binding/signaling. We show that deletion of the N terminus or alanine substitutions in the C terminus of FGF9 skews the delicate ligand equilibrium toward active FGF9 monomers causing off-target binding and activation of FGFR b isoforms. Our study is the first to implicate ligand homodimerization in the regulation of ligand-receptor specificity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Expanded functions for a family of plant intracellular immune receptors beyond specific recognition of pathogen effectors.

    PubMed

    Bonardi, Vera; Tang, Saijun; Stallmann, Anna; Roberts, Melinda; Cherkis, Karen; Dangl, Jeffery L

    2011-09-27

    Plants and animals deploy intracellular immune receptors that perceive specific pathogen effector proteins and microbial products delivered into the host cell. We demonstrate that the ADR1 family of Arabidopsis nucleotide-binding leucine-rich repeat (NB-LRR) receptors regulates accumulation of the defense hormone salicylic acid during three different types of immune response: (i) ADRs are required as "helper NB-LRRs" to transduce signals downstream of specific NB-LRR receptor activation during effector-triggered immunity; (ii) ADRs are required for basal defense against virulent pathogens; and (iii) ADRs regulate microbial-associated molecular pattern-dependent salicylic acid accumulation induced by infection with a disarmed pathogen. Remarkably, these functions do not require an intact P-loop motif for at least one ADR1 family member. Our results suggest that some NB-LRR proteins can serve additional functions beyond canonical, P-loop-dependent activation by specific virulence effectors, extending analogies between intracellular innate immune receptor function from plants and animals.

  15. Analysis of Light- and Carbon-Specific Transcriptomes Implicates a Class of G-Protein-Coupled Receptors in Cellulose Sensing

    PubMed Central

    Stappler, Eva; Dattenböck, Christoph; Tisch, Doris

    2017-01-01

    ABSTRACT In fungi, most metabolic processes are subject to regulation by light. Trichoderma reesei is adapted to degradation of plant cell walls and regulates production of the required enzymes in a manner dependent on the nutrient source and the light status. Here we investigated the interrelated relevance of two regulation levels of the transcriptome of T. reesei: light regulation and carbon source-dependent control. We show that the carbon source (cellulose, lactose, sophorose, glucose, or glycerol) is the major source of variation, with light having a modulating effect on transcript regulation. A total of 907 genes were regulated under cellulase-inducing conditions in light, and 947 genes were regulated in darkness, with 530 genes overlapping (1,324 in total). Only 218 of the 1,324 induction-specific genes were independent of light and not regulated by the BLR1, BLR2, and ENV1 photoreceptors. Analysis of the genomic distribution of genes regulated by light upon growth on cellulose revealed considerable overlap of light-regulated clusters with induction-specific clusters and carbohydrate-active enzyme (CAZyme) clusters. Further, we found evidence for the operation of a sensing mechanism for solid cellulosic substrates, with regulation of genes such as swo1, cip1, and cip2 or of genes encoding hydrophobins which is related to the cyclic AMP (cAMP)-dependent regulatory output of ENV1. We identified class XIII G-protein-coupled receptors (GPCRs) CSG1 and CSG2 in T. reesei as putative cellulose/glucose-sensing GPCRs. Our data indicate that the cellulase regulation pathway is bipartite, comprising a section corresponding to transcriptional regulation and one corresponding to posttranscriptional regulation, with the two connected by the function of CSG1. IMPORTANCE In fungi, most metabolic processes are subject to regulation by light. For Trichoderma reesei, light-dependent regulation of cellulase gene expression is specifically shown. Therefore, we intended to

  16. Denatured G-protein coupled receptors as immunogens to generate highly specific antibodies.

    PubMed

    Talmont, Franck; Moulédous, Lionel; Boué, Jérôme; Mollereau, Catherine; Dietrich, Gilles

    2012-01-01

    G-protein coupled receptors (GPCRs) play a major role in a number of physiological and pathological processes. Thus, GPCRs have become the most frequent targets for development of new therapeutic drugs. In this context, the availability of highly specific antibodies may be decisive to obtain reliable findings on localization, function and medical relevance of GPCRs. However, the rapid and easy generation of highly selective anti-GPCR antibodies is still a challenge. Herein, we report that highly specific antibodies suitable for detection of GPCRs in native and unfolded forms can be elicited by immunizing animals against purified full length denatured recombinant GPCRs. Contrasting with the currently admitted postulate, our study shows that an active and well-folded GPCR is not required for the production of specific anti-GPCR antibodies. This new immunizing strategy validated with three different human GPCR (μ-opioid, κ-opioid, neuropeptide FF2 receptors) might be generalized to other members of the GPCR family.

  17. The glucocorticoid receptor dimer interface allosterically transmits sequence-specific DNA signals.

    PubMed

    Watson, Lisa C; Kuchenbecker, Kristopher M; Schiller, Benjamin J; Gross, John D; Pufall, Miles A; Yamamoto, Keith R

    2013-07-01

    Glucocorticoid receptor (GR) binds to genomic response elements and regulates gene transcription with cell and gene specificity. Within a response element, the precise sequence to which the receptor binds has been implicated in directing its structure and activity. Here, we use NMR chemical-shift difference mapping to show that nonspecific interactions with bases at particular positions in the binding sequence, such as those of the 'spacer', affect the conformation of distinct regions of the rat GR DNA-binding domain. These regions include the DNA-binding surface, the 'lever arm' and the dimerization interface, suggesting an allosteric pathway that signals between the DNA-binding sequence and the associated dimer partner. Disrupting this pathway by mutating the dimer interface alters sequence-specific conformations, DNA-binding kinetics and transcriptional activity. Our study demonstrates that GR dimer partners collaborate to read DNA shape and to direct sequence-specific gene activity.

  18. Insulin-Insulin-like Growth Factors Hybrids as Molecular Probes of Hormone:Receptor Binding Specificity.

    PubMed

    Křížková, Květoslava; Chrudinová, Martina; Povalová, Anna; Selicharová, Irena; Collinsová, Michaela; Vaněk, Václav; Brzozowski, Andrzej M; Jiráček, Jiří; Žáková, Lenka

    2016-05-31

    Insulin, insulin-like growth factors 1 and 2 (IGF-1 and -2, respectively), and their receptors (IR and IGF-1R) are the key elements of a complex hormonal system that is essential for the development and functioning of humans. The C and D domains of IGFs (absent in insulin) likely play important roles in the differential binding of IGF-1 and -2 to IGF-1R and to the isoforms of IR (IR-A and IR-B) and specific activation of these receptors. Here, we attempted to probe the impact of IGF-1 and IGF-2 D domains (DI and DII, respectively) and the IGF-2 C domain (CII) on the receptor specificity of these hormones. For this, we made two types of insulin hybrid analogues: (i) with the C-terminus of the insulin A chain extended by the amino acids from the DI and DII domains and (ii) with the C-terminus of the insulin B chain extended by some amino acids derived from the CII domain. The receptor binding affinities of these analogues and their receptor autophosphorylation potentials were characterized. Our results indicate that the DI domain has a more negative impact than the DII domain does on binding to IR, and that the DI domain Pro-Leu-Lys residues are important factors for a different IR-A versus IR-B binding affinity of IGF-1. We also showed that the additions of amino acids that partially "mimic" the CII domain, to the C-terminus of the insulin B chain, change the binding and autophosphorylation specificity of insulin in favor of the "metabolic" IR-B isoform. This opens new venues for rational enhancement of insulin IR-B specificity by modifications beyond the C-terminus of its B chain.

  19. Preferential up-regulation of osteopontin in primary central nervous system lymphoma does not correlate with putative receptor CD44v6 or CD44H expression.

    PubMed

    Yuan, Ji; Gu, Keni; He, Jianqing; Sharma, Suash

    2013-04-01

    Osteopontin (SPP1) is reportedly the most up-regulated gene in primary central nervous system lymphoma (PCNSL). Our objective was to confirm immunoexpression of osteopontin and determine if CD44v6 and CD44H played a significant role as receptors for osteopontin in PCNSL. Twenty PCNSL, 12 nodal diffuse large B-cell lymphoma (N-DLBCL), and 17 extra-nodal DLBCL (EN-DLBCL) archival pathology cases were examined. Osteopontin nuclear positivity was observed in 20 (100%) of 20 PCNSL cases, 16 (95 %) of 17 EN-DLBCL, and 3 of 12 (25%) N-DLBCL. The immunohistochemical score of osteopontin in PCNSL (7.0 ± 3.5) and EN-DLBCL (4.4 ± 4.1) was significantly higher than N-DLBCL (0.3 ± 0.6). Sixteen cases were positive for CD44v6 (33%), including 6 PCNSL, and 5 each EN-DLBCL and N-DLBCL; no statistical difference was observed. CD44H was positive in all cases except one PCNSL but without any significant differences across the 3 groups. CD44H expression was significantly higher in non-germinal center B-cell (GCB) (score 12 ± 1.5) as compared to the GCB group (9.5 ± 3.1), and in non-GCB PCNSL (7.9 ± 4.2) as compared to non-GCB non-CNS lymphoma (2.8 ± 4.0) (P = .009); the differences were insignificant for osteopontin and CD44v6. Neither CD44H nor CD44v6 scores correlated with the osteopontin expression score or Ki-67 index. Osteopontin immunoexpression was highest in PCNSL, suggesting its probable role in its pathogenesis. However, its lack of correlation with CD44v6 excludes the latter as the likely osteopontin receptor in PCNSL. The significantly higher CD44H expression in the non-GCB than GCB group may contribute to the aggressiveness of the non-GCB DLBCL. Further studies are needed to elucidate the pathway and the prognostic/predictive role of osteopontin in PCNSL. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Lineage-Specific Expansion of Vomeronasal Type 2 Receptor-Like (OlfC) Genes in Cichlids May Contribute to Diversification of Amino Acid Detection Systems

    PubMed Central

    Nikaido, Masato; Suzuki, Hikoyu; Toyoda, Atsushi; Fujiyama, Asao; Hagino-Yamagishi, Kimiko; Kocher, Thomas D.; Carleton, Karen; Okada, Norihiro

    2013-01-01

    Fish use olfaction to sense a variety of nonvolatile chemical signals in water. However, the evolutionary importance of olfaction in species-rich cichlids is controversial. Here, we determined an almost complete sequence of the vomeronasal type 2 receptor-like (OlfC: putative amino acids receptor in teleosts) gene cluster using the bacterial artificial chromosome library of the Lake Victoria cichlid, Haplochromis chilotes. In the cluster region, we found 61 intact OlfC genes, which is the largest number of OlfC genes identified among the seven teleost fish investigated to date. Data mining of the Oreochromis niloticus (Nile tilapia) draft genome sequence, and genomic Southern hybridization analysis revealed that the ancestor of all modern cichlids had already developed almost the same OlfC gene repertoire, which was accomplished by lineage-specific gene expansions. Furthermore, comparison of receptor sequences showed that recently duplicated paralogs are more variable than orthologs of different species at particular sites that were predicted to be involved in amino acid selectivity. Thus, the increase of paralogs through gene expansion may lead to functional diversification in detection of amino acids. This study implies that cichlids have developed a potent capacity to detect a variety of amino acids (and their derivatives) through OlfCs, which may have contributed to the extraordinary diversity of their feeding habitats. PMID:23501830

  1. Cell wall-associated ROOT HAIR SPECIFIC 10, a proline-rich receptor-like kinase, is a negative modulator of Arabidopsis root hair growth

    PubMed Central

    Hwang, Youra; Lee, Hyodong; Lee, Young-Sook; Cho, Hyung-Taeg

    2016-01-01

    Plant cell growth is restricted by the cell wall, and cell wall dynamics act as signals for the cytoplasmic and nuclear events of cell growth. Among various receptor kinases, ROOT HAIR SPECIFIC 10 (RHS10) belongs to a poorly known receptor kinase subfamily with a proline-rich extracellular domain. Here, we report that RHS10 defines the root hair length of Arabidopsis thaliana by negatively regulating hair growth. RHS10 modulates the duration of root hair growth rather than the growth rate. As poplar and rice RHS10 orthologs also showed a root hair-inhibitory function, this receptor kinase-mediated function appears to be conserved in angiosperms. RHS10 showed a strong association with the cell wall, most probably through its extracellular proline-rich domain (ECD). Deletion analysis of the ECD demonstrated that a minimal extracellular part, which includes a few proline residues, is required for RHS10-mediated root hair inhibition. RHS10 suppressed the accumulation of reactive oxygen species (ROS) in the root, which are necessary for root hair growth. A yeast two-hybrid screening identified an RNase (RNS2) as a putative downstream target of RHS10. Accordingly, RHS10 overexpression decreased and RHS10 loss increased RNA levels in the hair-growing root region. Our results suggest that RHS10 mediates cell wall-associated signals to maintain proper root hair length, at least in part by regulating RNA catabolism and ROS accumulation. PMID:26884603

  2. Effects of the mango components mangiferin and quercetin and the putative mangiferin metabolite norathyriol on the transactivation of peroxisome proliferator-activated receptor isoforms.

    PubMed

    Wilkinson, Ashley S; Monteith, Gregory R; Shaw, P Nicholas; Lin, Chun-Nam; Gidley, Michael J; Roberts-Thomson, Sarah J

    2008-05-14

    Mangos are a source of bioactive compounds with potential health-promoting activity. This study evaluated the abilities of the mango components quercetin and mangiferin and the aglycone derivative of mangiferin, norathyriol, to modulate the transactivation of peroxisome proliferator-activated receptor isoforms (PPARs). PPARs are transcription factors important in many human diseases. Through the use of a gene reporter assay it was shown that quercetin inhibited the activation of all three isoforms of PPARs (PPARgamma IC(50) = 56.3 microM; PPARalpha IC(50) = 59.6 microM; PPARbeta IC(50) = 76.9 microM) as did norathyriol (PPARgamma IC(50) = 153.5 microM; PPARalpha IC(50) = 92.8 microM; PPARbeta IC(50) = 102.4 microM), whereas mangiferin did not inhibit the transactivation of any isoform. These findings suggest that mango components and metabolites may alter transcription and could contribute to positive health benefits via this or similar mechanisms.

  3. Innate responses to putative ancestral hosts: is the attraction of Western flower thrips to pine pollen a result of relict olfactory receptors?

    PubMed

    Abdullah, Zayed S; Ficken, Katherine J; Greenfield, Bethany P J; Butt, Tariq M

    2014-06-01

    Pollinophagy is widely documented in the order Thysanoptera, with representative individuals from six of the nine divergent families known to feed on pollen. Various pollens of the genus Pinus increase the development time, fecundity, longevity, and settling preference of Western Flower Thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Certain species of flower thrips discriminate among pollen types, but no studies have elucidated the olfactory cues that play a role in their pollen preferences. In this study, the volatile organic compounds emitted by pollens of the genus Pinus were elucidated. Various chemicals from pollen headspace elicited electrophysiological responses from WFT antennae. The compound (S)-(-)-verbenone, identified in pollen headspace, attracted WFT in a 4-arm olfactometer. This compound has potential for use in integrated pest management programs against the pest. We present the hypothesis that this polyphagous insect may have retained ancestral 'relict' olfactory receptors through the course of evolution, to explain this attraction to pine pollen. This attraction has allowed the insect to find and exploit an unusual nutrient source that significantly increases its fitness. The study demonstrates how fossil record analysis and subsequent evolutionary knowledge can aid in explaining possibilities as to why some insects sense and respond to chemicals that would otherwise seem peculiar to their ecology, allowing insight into the evolutionary forces that may shape insect olfactory systems over time.

  4. Peroxisome proliferator-activated receptor structures: ligand specificity, molecular switch and interactions with regulators.

    PubMed

    Zoete, Vincent; Grosdidier, Aurelien; Michielin, Olivier

    2007-08-01

    Peroxisome proliferator-activated receptors (PPARs) compose a family of nuclear receptors that mediate the effects of lipidic ligands at the transcriptional level. In this review, we highlight advances in the understanding of the PPAR ligand binding domain (LBD) structure at the atomic level. The overall structure of PPARs LBD is described, and important protein ligand interactions are presented. Structure-activity relationships between isotypes structures and ligand specificity are addressed. It is shown that the numerous experimental three-dimensional structures available, together with in silico simulations, help understanding the role played by the activating function-2 (AF-2) in PPARs activation and its underlying molecular mechanism. The relation between the PPARs constitutive activity and the intrinsic stability of the active conformation is discussed. Finally, the interactions of PPARs LBD with co-activators or co-repressors, as well as with the retinoid X receptor (RXR) are described and considered in relation to PPARs activation.

  5. Localization of an epithelial-specific receptor kinase (EDDR1) to chromosome 6q16.

    PubMed

    Shelling, A N; Butler, R; Jones, T; Laval, S; Boyle, J M; Ganesan, T S

    1995-01-20

    A protein receptor tyrosine kinase (EDDR1) has been isolated from a complementary DNA library of SKOV-3, an epithelial ovarian cancer cell line. The primary structure of the predicted amino acid sequence of the protein shows a novel N-terminal region that has homology to a factor VIII-like domain. The C-terminal catalytic domain has all of the canonical sequence motifs of a receptor tyrosine kinase with homology to the TRK-2H protein (49%), which suggests that it is a type II receptor. It is expressed in epithelial cells of several tissues. To determine the chromosomal localization of the gene, somatic cell hybrids were analyzed by PCR amplification using oligonucleotide primers specific for EDDR1. Segregation was observed to a hybrid containing human chromosome 6. Cosmids for EDDR1 were isolated from a human chromosome 6 cosmid library and were shown by fluorescence in situ hybridization to map to 6q16.

  6. Localization of an epithelial-specific receptor kinase (EDDR1) to chromosome 6q16

    SciTech Connect

    Shelling, A.N.; Butler, R.; Laval, S.

    1995-01-20

    A protein receptor tyrosine kinase (EDDR1) has been isolated from a complementary DNA library of SROV-3, an epithelial ovarian cancer cell line. The primary structure of the predicted amino acid sequence of the protein shows a novel N-terminal region that has homology to a factor VIII-like domain. The C-terminal catalytic domain has all of the canonical sequence motifs of a receptor tyrosine kinase with homology to the TRK-2H protein (49%), which suggests that it is a type II receptor. It is expressed in epithelial cells of several tissues. To determine the chromosomal localization of the gene, somatic cell hybrids were analyzed by PCR amplification using oligonucleotide primers specific for EDDR1. Segregation was observed to a hybrid containing human chromosome 6. Cosmids for EDDR1 were isolated from a human chromosome 6 cosmid library and were shown by fluorescence in situ hybridization to map to 6q16. 22 refs., 4 figs.

  7. Deficits in sensory-specific devaluation task performance following genetic deletions of cannabinoid (CB1) receptor.

    PubMed

    Crombag, Hans S; Johnson, Alexander W; Zimmer, Anne M; Zimmer, Andreas; Holland, Peter C

    2010-01-01

    Cannabinoid CB1 receptor is abundantly expressed throughout the CNS and is implicated in numerous physiological and behavioral functions, including appetite and feeding. In the present study, wild-type and CB1 heterozygous and homozygous knockout mice were tested on an instrumental outcome-selective devaluation task to assess changes in acquired instrumental response levels for a distinct food reward following selective satiation. Deletion of CB1 receptor, as well as reduction in CB1 expression (HET), produced deficits in outcome-selective instrumental devaluation. These results identify a critical role for CB1 receptor in the ability of animals to represent, update, and/or use sensory-specific outcome representations to alter appetitive behaviors.

  8. Interaction of the putative tyrosine recombinases RipX (UU145), XerC (UU222), and CodV (UU529) of Ureaplasma parvum serovar 3 with specific DNA

    PubMed Central

    Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim

    2013-01-01

    Phase variation of two loci (‘mba locus’ and ‘UU172 phase-variable element’) in Ureaplasma parvum serovar 3 has been suggested as result of site-specific DNA inversion occurring at short inverted repeats. Three potential tyrosine recombinases (RipX, XerC, and CodV encoded by the genes UU145, UU222, and UU529) have been annotated in the genome of U. parvum serovar 3, which could be mediators in the proposed recombination event. We document that only orthologs of the gene xerC are present in all strains that show phase variation in the two loci. We demonstrate in vitro binding of recombinant maltose-binding protein fusions of XerC to the inverted repeats of the phase-variable loci, of RipX to a direct repeat that flanks a 20-kbp region, which has been proposed as putative pathogenicity island, and of CodV to a putative dif site. Co-transformation of the model organism Mycoplasma pneumoniae M129 with both the ‘mba locus’ and the recombinase gene xerC behind an active promoter region resulted in DNA inversion in the ‘mba locus’. Results suggest that XerC of U. parvum serovar 3 is a mediator in the proposed DNA inversion event of the two phase-variable loci. PMID:23305333

  9. The specificity of some agonists and antagonists for nicotine-sensitive receptors in ganglia

    PubMed Central

    Barlow, R.B.; Bowman, Frances; Ison, R.R.; McQueen, D.S.

    1974-01-01

    1 The guinea-pig isolated ileum has been used to estimate the ability of substituted phenylalkylonium salts (related to nicotine) to stimulate or block receptors in ganglia. The effects of hexamethonium were used to indicate which were the most specific ganglion stimulants; these were tested on the blood-pressure of pithed rats and for neuromuscular blocking activity on the rat diaphragm preparation. 2 m-Hydroxyphenylpropyltrimethylammonium and 3,4-dihydroxyphenethyltrimethylammonium (coryneine, `quaternary dopamine') were the most active and specific ganglion stimulants but their usefulness in vivo may be limited by their neuromuscular blocking activity. The analogous tertiary compounds are being investigated. 3 The affinities of substances which were blocking agents at ganglionic receptors were measured on the isolated ileum with m-hydroxyphenylpropyltrimethylammonium as agonist. The affinities of selected compounds for postganglionic receptors were measured in experiments on the ileum in the presence of hexamethonium and with carbachol as agonist. Some of the compounds were tested for neuromuscular blocking activity on the rat diaphragm. 4 Phenylbutyldiethylamine had ganglion-blocking activity greater than pempidine and little postganglionic blocking or neuromuscular blocking activity. Its triethylammonium analogue had higher ganglion-blocking activity but had appreciable neuromuscular blocking activity. 5 The aromatic ring system is not essential either for activity or affinity and the effects of substituents are not related to their effects on electron distribution. Stimulant activity is enhanced only by hydroxyl or amino groups in suitable positions; it is not improved by the presence of rigid features (double or triple bonds or a cyclopropane ring) in the side chain. Affinity is slightly increased by chloro or bromo groups in suitable positions but the unsubstituted compounds are among those with the highest affinity. Substituents have similar effects on

  10. Color-specific conditioning effects due to both orange and blue stimuli are observed in a Halobacterium salinarum strain devoid of putative methylatable sites on HtrI.

    PubMed

    Lucia, S; Cercignani, G; Frediani, A; Petracchi, D

    2003-01-01

    Behavioral responses of Halobacterium salinarum appear as changes in the frequency of motion reversals. Turning on orange light decreases the reversal frequency, whereas blue light induces reversals. Light pulses normally induce the same response as step-up stimuli. However, anomalous behavioral reactions, including inverse responses, are seen when stimuli are applied in sequence. The occurrence of a prior stimulus is conditioning for successive stimulation on a time scale of the same order of adaptational processes. These prolonged conditioning effects are color-specific. The only adaptation process identified so far is methylation of the transducers, and this could be somehow color-specific. Therefore we tested for the behavioral anomalies in a mutant in which all methylation sites on the transducer have been eliminated. The results show that behavioral anomalies are unaffected by the absence of methylation processes on the transducer.

  11. Life Stage-Specific Cargo Receptors Facilitate Glycosylphosphatidylinositol-Anchored Surface Coat Protein Transport in Trypanosoma brucei.

    PubMed

    Kruzel, Emilia K; Zimmett, George P; Bangs, James D

    2017-01-01

    The critical virulence factor of bloodstream-form Trypanosoma brucei is the glycosylphosphatidylinositol (GPI)-anchored variant surface glycoprotein (VSG). Endoplasmic reticulum (ER) exit of VSG is GPI dependent and relies on a discrete subset of COPII machinery (TbSec23.2/TbSec24.1). In other systems, p24 transmembrane adaptor proteins selectively recruit GPI-anchored cargo into nascent COPII vesicles. Trypanosomes have eight putative p24s (TbERP1 to TbERP8) that are constitutively expressed at the mRNA level. However, only four TbERP proteins (TbERP1, -2, -3, and -8) are detectable in bloodstream-form parasites. All four colocalize to ER exit sites, are required for efficient GPI-dependent ER exit, and are interdependent for steady-state stability. These results suggest shared function as an oligomeric ER GPI-cargo receptor. This cohort also mediates rapid forward trafficking of the soluble lysosomal hydrolase TbCatL. Procyclic insect-stage trypanosomes have a distinct surface protein, procyclin, bearing a different GPI anchor structure. A separate cohort of TbERP proteins (TbERP1, -2, -4, and -8) are expressed in procyclic parasites and also function in GPI-dependent ER exit. Collectively, these results suggest developmentally regulated TbERP cohorts, likely in obligate assemblies, that may recognize stage-specific GPI anchors to facilitate GPI-cargo trafficking throughout the parasite life cycle. IMPORTANCE African trypanosomes are protozoan parasites that cause African sleeping sickness. Critical to the success of the parasite is the variant surface glycoprotein (VSG), which covers the parasite cell surface and which is essential for evasion of the host immune system. VSG is membrane bound by a glycolipid (GPI) anchor that is attached in the earliest compartment of the secretory pathway, the endoplasmic reticulum (ER). We have previously shown that the anchor acts as a positive forward trafficking signal for ER exit, implying a cognate receptor mechanism for

  12. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function.

    PubMed

    Pradhan, Amynah A; Perroy, Julie; Walwyn, Wendy M; Smith, Monique L; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L; Evans, Christopher J

    2016-03-23

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor-Ca(2+)channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560) preferentially recruit

  13. Comparative Mitochondrial Genomics of Freshwater Mussels (Bivalvia: Unionoida) With Doubly Uniparental Inheritance of mtDNA: Gender-Specific Open Reading Frames and Putative Origins of Replication

    PubMed Central

    Breton, Sophie; Beaupré, Hélène Doucet; Stewart, Donald T.; Piontkivska, Helen; Karmakar, Moumita; Bogan, Arthur E.; Blier, Pierre U.; Hoeh, Walter R.

    2009-01-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (OH) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (OL) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted. PMID:19822725

  14. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease*

    PubMed Central

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca

    2016-01-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  15. Comparative mitochondrial genomics of freshwater mussels (Bivalvia: Unionoida) with doubly uniparental inheritance of mtDNA: gender-specific open reading frames and putative origins of replication.

    PubMed

    Breton, Sophie; Beaupré, Hélène Doucet; Stewart, Donald T; Piontkivska, Helen; Karmakar, Moumita; Bogan, Arthur E; Blier, Pierre U; Hoeh, Walter R

    2009-12-01

    Doubly uniparental inheritance (DUI) of mitochondrial DNA in marine mussels (Mytiloida), freshwater mussels (Unionoida), and marine clams (Veneroida) is the only known exception to the general rule of strict maternal transmission of mtDNA in animals. DUI is characterized by the presence of gender-associated mitochondrial DNA lineages that are inherited through males (male-transmitted or M types) or females (female-transmitted or F types), respectively. This unusual system constitutes an excellent model for studying basic aspects of mitochondrial DNA inheritance and the evolution of mtDNA genomes in general. Here we compare published mitochondrial genomes of unionoid bivalve species with DUI, with an emphasis on characterizing unassigned regions, to identify regions of the F and M mtDNA genomes that could (i) play a role in replication or transcription of the mtDNA molecule and/or (ii) determine whether a genome will be transmitted via the female or the male gamete. Our results reveal the presence of one F-specific and one M-specific open reading frames (ORFs), and we hypothesize that they play a role in the transmission and/or gender-specific adaptive functions of the M and F mtDNA genomes in unionoid bivalves. Three major unassigned regions shared among all F and M unionoid genomes have also been identified, and our results indicate that (i) two of them are potential heavy-strand control regions (O(H)) for regulating replication and/or transcription and that (ii) multiple and potentially bidirectional light-strand origins of replication (O(L)) are present in unionoid F and M mitochondrial genomes. We propose that unassigned regions are the most promising candidate sequences in which to find regulatory and/or gender-specific sequences that could determine whether a mitochondrial genome will be maternally or paternally transmitted.

  16. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects

    PubMed Central

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling

    2017-01-01

    Abstract The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain–containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. PMID:28444351

  17. Comparative genomic analysis of SET domain family reveals the origin, expansion, and putative function of the arthropod-specific SmydA genes as histone modifiers in insects.

    PubMed

    Jiang, Feng; Liu, Qing; Wang, Yanli; Zhang, Jie; Wang, Huimin; Song, Tianqi; Yang, Meiling; Wang, Xianhui; Kang, Le

    2017-06-01

    The SET domain is an evolutionarily conserved motif present in histone lysine methyltransferases, which are important in the regulation of chromatin and gene expression in animals. In this study, we searched for SET domain-containing genes (SET genes) in all of the 147 arthropod genomes sequenced at the time of carrying out this experiment to understand the evolutionary history by which SET domains have evolved in insects. Phylogenetic and ancestral state reconstruction analysis revealed an arthropod-specific SET gene family, named SmydA, that is ancestral to arthropod animals and specifically diversified during insect evolution. Considering that pseudogenization is the most probable fate of the new emerging gene copies, we provided experimental and evolutionary evidence to demonstrate their essential functions. Fluorescence in situ hybridization analysis and in vitro methyltransferase activity assays showed that the SmydA-2 gene was transcriptionally active and retained the original histone methylation activity. Expression knockdown by RNA interference significantly increased mortality, implying that the SmydA genes may be essential for insect survival. We further showed predominantly strong purifying selection on the SmydA gene family and a potential association between the regulation of gene expression and insect phenotypic plasticity by transcriptome analysis. Overall, these data suggest that the SmydA gene family retains essential functions that may possibly define novel regulatory pathways in insects. This work provides insights into the roles of lineage-specific domain duplication in insect evolution. © The Authors 2017. Published by Oxford University Press.

  18. Association of elevated rotavirus-specific antibody titers with HBGA secretor status in Swedish individuals: The FUT2 gene as a putative susceptibility determinant for infection.

    PubMed

    Günaydın, Gökçe; Nordgren, Johan; Sharma, Sumit; Hammarström, Lennart

    2016-01-04

    The histo-blood group antigens (HBGAs) have recently been suggested to serve as attachment factors for rotavirus VP8* (P-genotype) in vitro and associated with susceptibility in vivo. We thus investigated whether rotavirus antibody titers and genotype specific neutralization titers correlate with HBGA status in Swedish individuals. We investigated the effect of inactivating mutations in the secretor FUT2 (rs601338) and Lewis FUT3 genes (rs28362459, rs3894326, rs812936 and rs778986) on serum IgG antibody titers and neutralizing antibody titers to rotavirus strains of the P[8] and P[6] genotypes in Swedish healthy blood donors and patients with IgA deficiency using genotyping, enzyme linked immunosorbent assay and a neutralization assay. Rotavirus-specific serum IgG and neutralizing antibody titers to the Wa strain (G1P[8]), but not to the ST3 (G4P[6]) strain, were significantly higher in secretors (with at least one functional FUT2 gene) than in non-secretors (P<0.001) (with homozygous nonsense mutation in the FUT2 gene). Thus, our results represent that secretors show elevated rotavirus specific serum antibodies, suggesting a higher susceptibility to rotavirus infections, as compared to non-secretors in Sweden.

  19. G-protein-coupled receptor kinase specificity for beta-arrestin recruitment to the beta2-adrenergic receptor revealed by fluorescence resonance energy transfer.

    PubMed

    Violin, Jonathan D; Ren, Xiu-Rong; Lefkowitz, Robert J

    2006-07-21

    The small family of G-protein-coupled receptor kinases (GRKs) regulate cell signaling by phosphorylating heptahelical receptors, thereby promoting receptor interaction with beta-arrestins. This switches a receptor from G-protein activation to G-protein desensitization, receptor internalization, and beta-arrestin-dependent signal activation. However, the specificity of GRKs for recruiting beta-arrestins to specific receptors has not been elucidated. Here we use the beta(2)-adrenergic receptor (beta(2)AR), the archetypal nonvisual heptahelical receptor, as a model to test functional GRK specificity. We monitor endogenous GRK activity with a fluorescence resonance energy transfer assay in live cells by measuring kinetics of the interaction between the beta(2)AR and beta-arrestins. We show that beta(2)AR phosphorylation is required for high affinity beta-arrestin binding, and we use small interfering RNA silencing to show that HEK-293 and U2-OS cells use different subsets of their expressed GRKs to promote beta-arrestin recruitment, with significant GRK redundancy evident in both cell types. Surprisingly, the GRK specificity for beta-arrestin recruitment does not correlate with that for bulk receptor phosphorylation, indicating that beta-arrestin recruitment is specific for a subset of receptor phosphorylations on specific sites. Moreover, multiple members of the GRK family are able to phosphorylate the beta(2)AR and induce beta-arrestin recruitment, with their relative contributions largely determined by their relative expression levels. Because GRK isoforms vary in their regulation, this partially redundant system ensures beta-arrestin recruitment while providing the opportunity for tissue-specific regulation of the rate of beta-arrestin recruitment.

  20. Expression of endothelial cell-specific receptor tyrosine kinases and growth factors in human brain tumors.

    PubMed Central

    Hatva, E.; Kaipainen, A.; Mentula, P.; Jääskeläinen, J.; Paetau, A.; Haltia, M.; Alitalo, K.

    1995-01-01

    Key growth factor-receptor interactions involved in angiogenesis are possible targets for therapy of CNS tumors. Vascular endothelial growth factor (VEGF) is a highly specific endothelial cell mitogen that has been shown to stimulate angiogenesis, a requirement for solid tumor growth. The expression of VEGF, the closely related placental growth factor (PIGF), the newly cloned endothelial high affinity VEGF receptors KDR and FLT1, and the endothelial orphan receptors FLT4 and Tie were analyzed by in situ hybridization in normal human brain tissue and in the following CNS tumors: gliomas, grades II, III, IV; meningiomas, grades I and II; and melanoma metastases to the cerebrum. VEGF mRNA was up-regulated in the majority of low grade tumors studied and was highly expressed in cells of malignant gliomas. Significantly elevated levels of Tie, KDR, and FLT1 mRNAs, but not FLT4 mRNA, were observed in malignant tumor endothelia, as well as in endothelia of tissues directly adjacent to the tumor margin. In comparison, there was little or no receptor expression in normal brain vasculature. Our results are consistent with the hypothesis that these endothelial receptors are induced during tumor progression and may play a role in tumor angiogenesis. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7856749

  1. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    PubMed

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  2. [Characterization of a putative S locus encoded receptor protein kinase and its role in self-incompatibility]. Progress report, January 1993

    SciTech Connect

    Not Available

    1993-06-01

    The serine/threonine protein kinase (SRK) protein was predicted to be similar to the growth factor receptor tyrosine kinases in animals but its amino acid sequence of the catalytic domain is more similar to that of the catalytic domains of protein serine/threonine kinases than to protein tyrosine kinases. We have shown that the SRK protein has intrinsic scrine/threonine kinase activity. We subcloned the protein kinase-homologous domain of the SRK{sub 6} cDNA into the bacterial expression vector pGEX-3X and we have constructed a second plasmid identical to the first except that it carried a conservative mutation that substituted Arg for the Lys{sup 524} codon of SRK6 This lysine corresponds to the ATP-binding site, is essential in protein kinases, and is a common target for site-directed mutagenesis as a means to obtain kinase-defective proteins. Cultures bearing the wild-type and mutant SRK catalytic domains each produced an approximately 64 kD protein that reacted with anti-SRK6 antibodies. Following pulse-labeling with {sup 32}P we found that the wild-type SRK6 protein but not the mutant form was detectably phosphorylated. Phosphoamino acid analysis of the affinity purified {sup 32}p-labeled GST-SRK6 fusion protein demonstrated that SRK was phosphorylated predominantly on semine and to a lesser extent on threonine, but not on tyrosine. Thus, SRK6 is a functional serine/threonine protein kinase.

  3. Macrophage mannose receptor-specific gene delivery vehicle for macrophage engineering.

    PubMed

    Ruan, Gui-Xin; Chen, Yu-Zhe; Yao, Xing-Lei; Du, Anariwa; Tang, Gu-Ping; Shen, You-Qing; Tabata, Yasuhiko; Gao, Jian-Qing

    2014-05-01

    Macrophages are the most plastic cells in the hematopoietic system and they exhibit great functional diversity. They have been extensively applied in anti-inflammatory, anti-fibrotic and anti-cancer therapies. However, the application of macrophages is limited by the efficiency of their engineering. The macrophage mannose receptor (MMR, CD206), a C-type lectin receptor, is ubiquitously expressed on macrophages and has a high affinity for mannose oligosaccharides. In the present study, we developed a novel non-viral vehicle with specific affinity for MMR. Mannan was cationized with spermine at a grafted ratio of ∼12% to deliver DNA and was characterized as a stable system for delivery. This spermine-mannan (SM)-based delivery system was evaluated as a biocompatible vehicle with superior transfection efficiency on murine macrophages, up to 28.5-fold higher than spermine-pullulan, 11.5-fold higher than polyethylenimine and 3.0-fold higher than Lipofectamine™ 2000. We confirmed that the SM-based delivery system for macrophages transfection was MMR-specific and we described the intracellular transport of the delivery system. To our knowledge, this is the first study using SM to demonstrate a mannose receptor-specific gene delivery system, thereby highlighting the potential of a novel specific non-viral delivery vehicle for macrophage engineering.

  4. Regulation of platelet activating factor receptor coupled phosphoinositide-specific phospholipase C activity

    SciTech Connect

    Morrison, W.J.

    1988-01-01

    The major objectives of this study were two-fold. The first was to establish whether binding of platelet activating factor (PAF) to its receptor was integral to the stimulation of polyphosphoinositide-specific phospholipase C (PLC) in rabbit platelets. The second was to determine regulatory features of this receptor-coupled mechanism. ({sup 3}H)PAF binding demonstrated two binding sites, a high affinity site with a inhibitory constant (Ki) of 2.65 nM and a low affinity site with a Ki of 0.80 {mu}M. PAF receptor coupled activation of phosphoinositide-specific PLC was studied in platelets which were made refractory, by short term pretreatments, to either PAF or thrombin. Saponin-permeabilized rabbit platelets continue to regulate the mechanism(s) coupling PAF receptors to PLC stimulation. However, TRP{gamma}S and GDP{beta}S, which affect guanine nucleotide regulatory protein functions, were unable to modulate the PLC activity to any appreciable extent as compared to PAF. The possible involvement of protein kinase C (PKC) activation in regulating PAF-stimulated PLC activity was studied in rabbit platelets pretreated with staurosporine followed by pretreatments with PAF or phorbol 12-myristate 13-acetate (PMA).

  5. The binding of NCAM to FGFR1 induces a specific cellular response mediated by receptor trafficking

    PubMed Central

    Francavilla, Chiara; Cattaneo, Paola; Berezin, Vladimir; Bock, Elisabeth; Ami, Diletta; de Marco, Ario; Christofori, Gerhard

    2009-01-01

    Neural cell adhesion molecule (NCAM) associates with fibroblast growth factor (FGF) receptor-1 (FGFR1). However, the biological significance of this interaction remains largely elusive. In this study, we show that NCAM induces a specific, FGFR1-mediated cellular response that is remarkably different from that elicited by FGF-2. In contrast to FGF-induced degradation of endocytic FGFR1, NCAM promotes the stabilization of the receptor, which is recycled to the cell surface in a Rab11- and Src-dependent manner. In turn, FGFR1 recycling is required for NCAM-induced sustained activation of various effectors. Furthermore, NCAM, but not FGF-2, promotes cell migration, and this response depends on FGFR1 recycling and sustained Src activation. Our results implicate NCAM as a nonconventional ligand for FGFR1 that exerts a peculiar control on the intracellular trafficking of the receptor, resulting in a specific cellular response. Besides introducing a further level of complexity in the regulation of FGFR1 function, our findings highlight the link of FGFR recycling with sustained signaling and cell migration and the critical role of these events in dictating the cellular response evoked by receptor activation. PMID:20038681

  6. First Principles Hierarchical Selection and Testing of Anion Receptors for High Specific Energy Lithium-Fluoride Batteries

    DTIC Science & Technology

    2009-01-01

    BF3 (in the form of the lithiated salt LiBF4 ) anion receptor. These cells showed comparable specific capacity to the tris pentafluorophenyl borane...cathode specific capacity vs. voltage for BF3 anion receptor (in the lithiated salt form LiBF4 ). From these data, and from previous and/or

  7. The maize (Zea mays L.) roothairless3 gene encodes a putative GPI-anchored, monocot-specific, COBRA-like protein that significantly affects grain yield

    PubMed Central

    Hochholdinger, Frank; Wen, Tsui-Jung; Zimmermann, Roman; Chimot-Marolle, Patricia; da Costa e Silva, Oswaldo; Bruce, Wesley; Lamkey, Kendall R; Wienand, Udo; Schnable, Patrick S

    2008-01-01

    Summary The rth3 (roothairless 3) mutant is specifically affected in root hair elongation. We report here the cloning of the rth3 gene via a PCR-based strategy (amplification of insertion mutagenized sites) and demonstrate that it encodes a COBRA-like protein that displays all the structural features of a glycosylphosphatidylinositol anchor. Genes of the COBRA family are involved in various types of cell expansion and cell wall biosynthesis. The rth3 gene belongs to a monocot-specific clade of the COBRA gene family comprising two maize and two rice genes. While the rice (Oryza sativa) gene OsBC1L1 appears to be orthologous to rth3 based on sequence similarity (86% identity at the protein level) and maize/rice synteny, the maize (Zea mays L.) rth3-like gene does not appear to be a functional homolog of rth3 based on their distinct expression profiles. Massively parallel signature sequencing analysis detected rth3 expression in all analyzed tissues, but at relatively low levels, with the most abundant expression in primary roots where the root hair phenotype is manifested. In situ hybridization experiments confine rth3 expression to root hair-forming epidermal cells and lateral root primordia. Remarkably, in replicated field trials involving near-isogenic lines, the rth3 mutant conferred significant losses in grain yield. PMID:18298667

  8. A reversed genetic approach reveals the coenzyme specificity and other catalytic properties of three enzymes putatively involved in anaerobic oxidation of methane with sulfate.

    PubMed

    Kojima, Hisaya; Moll, Johanna; Kahnt, Jörg; Fukui, Manabu; Shima, Seigo

    2014-11-01

    Consortia of anaerobic methanotrophic (ANME) archaea and delta-proteobacteria anaerobically oxidize methane coupled to sulfate reduction to sulfide. The metagenome of ANME-1 archaea contains genes homologous to genes otherwise only found in methanogenic archaea, and transcription of some of these genes in ANME-1 cells has been shown. We now have heterologously expressed three of these genes in Escherichia coli, namely those homologous to genes for formylmethanofuran : tetrahydromethanopterin formyltransferase, methenyltetrahydromethanopterin cyclohydrolase (Mch) and coenzyme F420 -dependent methylenetetrahydromethanopterin dehydrogenase (Mtd), and have characterized the overproduced enzymes with respect to their coenzyme specificity and other catalytic properties. The three enzymes from ANME-1 were found to catalyse the same reactions and with similar specific activities using identical coenzymes as the respective enzymes in methanogenic archaea, the apparent Km for their substrates being in the same concentration range. The results support the proposal that anaerobic oxidation of methane to CO₂in ANME involves the same enzymes and coenzymes as CO₂reduction to methane in methanogenic archaea. Interestingly, the activity of Mch and the stability of Mtd from ANME-1 were found to be dependent on the presence of 0.5-1.0 M potassium phosphate, which suggested that ANME-1 archaea contain high concentrations of lyotropic salts, presumably as compatible solutes.

  9. The selective 5-HT6 receptor antagonist SLV has putative cognitive- and social interaction enhancing properties in rodent models of cognitive impairment.

    PubMed

    de Bruin, N M W J; van Loevezijn, A; Wicke, K M; de Haan, M; Venhorst, J; Lange, J H M; de Groote, L; van der Neut, M A W; Prickaerts, J; Andriambeloson, E; Foley, A G; van Drimmelen, M; van der Wetering, M; Kruse, C G

    2016-09-01

    In the present study, our aim was to investigate whether the novel highly selective 5-hydroxytryptamine6 (5-HT6) receptor antagonist SLV can ameliorate impairments in cognition and social interaction with potential relevance for both schizophrenia and Alzheimer's disease (AD). SLV sub-chronically - treated Wistar rats reared in isolation showed significantly enhanced prepulse inhibition (PPI) and object recognition performance when compared to vehicle - treated rats. In the isolated rats, also a significant reduction in expression of hippocampal neural cell adhesion molecule polysialylation (NCAM-PSA) was found which was ameliorated following treatment with SLV (30mg/kg). The social engagement deficit in rats exposed in utero (on gestational day 12.5) to valproic acid (VPA) was reversed by treatment with SLV (30mg/kg). SLV (20 and 30mg/kg, p.o.) fully reversed MK-801 - induced deficits in the ORT and also scopolamine - induced deficits in both the Object Recognition Task (ORT) and Object Location Task (OLT) in Wistar rats. In addition, a combination of sub-optimal doses of SLV and donepezil attenuated scopolamine-induced ORT deficits. Furthermore, SLV (10mg/kg, p.o.) reversed spontaneous alternation deficits in the T-maze induced by MK-801 administration in Swiss mice and in aged C57Bl/6J mice. SLV additionally improved T-Maze spatial learning and passive avoidance learning in Sprague-Dawley rats with amyoid-beta (Aβ) injections into the hippocampus. In contrast, no benefits were found with SLV or the tested reference compounds (donepezil and RVT-101) on cognitive performance of 12months old Tg2576 mice. Also, in the social recognition task, an absence of cognitive enhancing properties was observed with SLV on "normal forgetting" in Wistar rats. Finally, analysis of spontaneous inhibitory postsynaptic currents (sIPSCs) frequency recorded from pyramidal cells revealed a reduction in the presence of 1μM of SLV. In conclusion, SLV was investigated in several rodent

  10. PCB 126 and Other Dioxin-Like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor

    PubMed Central

    Zhang, Wenshuo; Sargis, Robert M.; Volden, Paul A.; Carmean, Christopher M.; Sun, Xiao J.; Brady, Matthew J.

    2012-01-01

    Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism. PMID:22615911

  11. The murine DUB-1 gene is specifically induced by the betac subunit of interleukin-3 receptor.

    PubMed Central

    Zhu, Y; Pless, M; Inhorn, R; Mathey-Prevot, B; D'Andrea, A D

    1996-01-01

    Cytokines regulate cell growth and differentiation by inducing the expression of specific target genes. We have recently isolated a cytokine-inducible, immediate-early cDNA, DUB-1, that encodes a deubiquitinating enzyme. The DUB-1 mRNA was specifically induced by the receptors for interleukin-3, granulocyte-macrophage colony-stimulating factor, and interleukin-5, suggesting a role for the beta common (betac subunit known to be shared by these receptors. In order to identify the mechanism of cytokine induction, we isolated a murine genomic clone for DUB-1 containing a functional promoter region. The DUB-1 gene contains two exons, and the nucleotide sequence of its coding region is identical to the sequence of DUB-1 cDNA. Various regions of the 5' flanking region of the DUB-1 gene were assayed for cytokine-inducible activity. An enhancer region that retains the beta c-specific inducible activity of the DUB-1 gene was identified. Enhancer activity was localized to a 112-bp fragment located 1.4 kb upstream from the ATG start codon. Gel mobility shift assays revealed two specific protein complexes that bound to this minimal enhancer region. One complex was induced by betac signaling, while the other was noninducible. Finally, the membrane-proximal region of human betac was required for DUB-1 induction. In conclusion, DUB-1 is the first example of an immediate-early gene that is induced by a specific subunit of a cytokine receptor. Further analysis of the DUB-1 enhancer element may reveal specific determinants of a betac-specific signaling pathway. PMID:8756639

  12. Trafficking receptor signatures define blood plasmablasts responding to tissue-specific immune challenge

    PubMed Central

    Seong, Yekyung; Lazarus, Nicole H.; Sutherland, Lusijah; Habtezion, Aida; Abramson, Tzvia; He, Xiao-Song; Greenberg, Harry B.

    2017-01-01

    Antibody-secreting cells are generated in regional lymphoid tissues and traffic as plasmablasts (PBs) via lymph and blood to target sites for local immunity. We used multiparameter flow cytometry to define PB trafficking programs (TPs, combinations of adhesion molecules and chemoattractant receptors) and their imprinting in patients in response to localized infection or immune insults. TPs enriched after infection or autoimmune inflammation of mucosae correlate with sites of immune response or symptoms, with different TPs imprinted during small intestinal, colon, throat, and upper respiratory immune challenge. PBs induced after intramuscular or intradermal influenza vaccination, including flu-specific antibody–secreting cells, display TPs characterized by the lack of mucosal homing receptors. PBs of healthy donors display diverse mucosa-associated TPs, consistent with homeostatic immune activity. Identification of TP signatures of PBs may facilitate noninvasive monitoring of organ-specific immune responses. PMID:28352656

  13. Defined Folate-PEG-siRNA Conjugates for Receptor-specific Gene Silencing

    PubMed Central

    Dohmen, Christian; Fröhlich, Thomas; Lächelt, Ulrich; Röhl, Ingo; Vornlocher, Hans-Peter; Hadwiger, Philipp; Wagner, Ernst

    2012-01-01

    Gene silencing mediated by small interfering RNA (siRNA) is a novel approach in the development of new cancer therapeutics. Polycations used for nucleic acid delivery still remain heterogeneous compounds, despite continuous progress in polymer synthetic technologies. Here we report the development of a structural defined folic acid polyethylene glycol (PEG) siRNA conjugate accessible via click chemistry yielding a monodisperse ligand-PEG-siRNA conjugate. The folic acid targeting ligand was synthesized by solid phase supported peptide chemistry. The conjugate was shown to be specifically internalized into folic acid receptor expressing cells. When combined with a structurally defined polycation, again synthesized with the precision of solid phase chemistry, efficient receptor specific gene silencing is achieved. PMID:23344624

  14. Trafficking receptor signatures define blood plasmablasts responding to tissue-specific immune challenge.

    PubMed

    Seong, Yekyung; Lazarus, Nicole H; Sutherland, Lusijah; Habtezion, Aida; Abramson, Tzvia; He, Xiao-Song; Greenberg, Harry B; Butcher, Eugene C

    2017-03-23

    Antibody-secreting cells are generated in regional lymphoid tissues and traffic as plasmablasts (PBs) via lymph and blood to target sites for local immunity. We used multiparameter flow cytometry to define PB trafficking programs (TPs, combinations of adhesion molecules and chemoattractant receptors) and their imprinting in patients in response to localized infection or immune insults. TPs enriched after infection or autoimmune inflammation of mucosae correlate with sites of immune response or symptoms, with different TPs imprinted during small intestinal, colon, throat, and upper respiratory immune challenge. PBs induced after intramuscular or intradermal influenza vaccination, including flu-specific antibody-secreting cells, display TPs characterized by the lack of mucosal homing receptors. PBs of healthy donors display diverse mucosa-associated TPs, consistent with homeostatic immune activity. Identification of TP signatures of PBs may facilitate noninvasive monitoring of organ-specific immune responses.

  15. Pharmacological profile of the 5-HT-induced inhibition of cardioaccelerator sympathetic outflow in pithed rats: correlation with 5-HT1 and putative 5-ht5A/5B receptors

    PubMed Central

    Sánchez-López, Araceli; Centurión, David; Vázquez, Erika; Arulmani, Udayasankar; Saxena, Pramod R; Villalón, Carlos M

    2003-01-01

    Continuous infusions of 5-hydroxytryptamine (5-HT) inhibit the tachycardiac responses to preganglionic (C7-T1) sympathetic stimulation in pithed rats pretreated with desipramine. The present study identified the pharmacological profile of this inhibitory action of 5-HT. The inhibition induced by intravenous (i.v.) continuous infusions of 5-HT (5.6 μg kg−1 min−1) on sympathetically induced tachycardiac responses remained unaltered after i.v. treatment with saline or the antagonists GR 127935 (5-HT1B/1D), the combination of WAY 100635 (5-HT1A) plus GR 127935, ritanserin (5-HT2), tropisetron (5-HT3/4), LY215840 (5-HT7) or a cocktail of antagonists/inhibitors consisting of yohimbine (α2), prazosin (α1), ritanserin, GR 127935, WAY 100635 and indomethacin (cyclooxygenase), but was abolished by methiothepin (5-HT1/2/6/7 and recombinant 5-ht5A/5B). These drugs, used in doses high enough to block their respective receptors/mechanisms, did not modify the sympathetically induced tachycardiac responses per se. I.v. continuous infusions of the agonists 5-carboxamidotryptamine (5-CT; 5-HT1/7 and recombinant 5-ht5A/5B), CP 93,129 (r5-HT1B), sumatriptan (5-HT1B/1D), PNU-142633 (5-HT1D) and ergotamine (5-HT1B/1D and recombinant 5-ht5A/5B) mimicked the above sympatho-inhibition to 5-HT. In contrast, the agonists indorenate (5-HT1A) and LY344864 (5-ht1F) were inactive. Interestingly, 5-CT-induced cardiac sympatho-inhibition was abolished by methiothepin, the cocktail of antagonists/inhibitors, GR 127935 or the combination of SB224289 (5-HT1B) plus BRL15572 (5-HT1D), but remained unchanged when SB224289 or BRL15572 were given separately. Therefore, 5-HT-induced cardiac sympatho-inhibition, being unrelated to 5-HT2, 5-HT3, 5-HT4, 5-ht6, 5-HT7 receptors, α1/2-adrenoceptor or prostaglandin synthesis, seems to be primarily mediated by (i) 5-HT1 (probably 5-HT1B/1D) receptors and (ii) a novel mechanism antagonized by methiothepin that, most likely, involves putative 5-ht5A/5B

  16. Agonist-Specific Recruitment of Arrestin Isoforms Differentially Modify Delta Opioid Receptor Function

    PubMed Central

    Perroy, Julie; Walwyn, Wendy M.; Smith, Monique L.; Vicente-Sanchez, Ana; Segura, Laura; Bana, Alia; Kieffer, Brigitte L.; Evans, Christopher J.

    2016-01-01

    Ligand-specific recruitment of arrestins facilitates functional selectivity of G-protein-coupled receptor signaling. Here, we describe agonist-selective recruitment of different arrestin isoforms to the delta opioid receptor in mice. A high-internalizing delta opioid receptor agonist (SNC80) preferentially recruited arrestin 2 and, in arrestin 2 knock-outs (KOs), we observed a significant increase in the potency of SNC80 to inhibit mechanical hyperalgesia and decreased acute tolerance. In contrast, the low-internalizing delta agonists (ARM390, JNJ20788560) preferentially recruited arrestin 3 with unaltered behavioral effects in arrestin 2 KOs. Surprisingly, arrestin 3 KO revealed an acute tolerance to these low-internalizing agonists, an effect never observed in wild-type animals. Furthermore, we examined delta opioid receptor–Ca2+ channel coupling in dorsal root ganglia desensitized by ARM390 and the rate of resensitization was correspondingly decreased in arrestin 3 KOs. Live-cell imaging in HEK293 cells revealed that delta opioid receptors are in pre-engaged complexes with arrestin 3 at the cell membrane and that ARM390 strengthens this membrane interaction. The disruption of these complexes in arrestin 3 KOs likely accounts for the altered responses to low-internalizing agonists. Together, our results show agonist-selective recruitment of arrestin isoforms and reveal a novel endogenous role of arrestin 3 as a facilitator of resensitization and an inhibitor of tolerance mechanisms. SIGNIFICANCE STATEMENT Agonists that bind to the same receptor can produce highly distinct signaling events and arrestins are a major mediator of this ligand bias. Here, we demonstrate that delta opioid receptor agonists differentially recruit arrestin isoforms. We found that the high-internalizing agonist SNC80 preferentially recruits arrestin 2 and knock-out (KO) of this protein results in increased efficacy of SNC80. In contrast, low-internalizing agonists (ARM390 and JNJ20788560

  17. Raft aggregation with specific receptor recruitment is required for microglial phagocytosis of Aβ42

    PubMed Central

    Persaud-Sawin, Dixie-Ann; Banach, Lynna; Harry, G. Jean

    2009-01-01

    Microglial phagocytosis contributes to the maintenance of brain homeostasis. Mechanisms involved however, remain unclear. Using Aβ42 solely as a stimulant, we provide novel insight into regulation of microglial phagocytosis by rafts. We demonstrate the existence of an Aβ42 threshold level of 250pg/ml, above which microglial phagocytic function is impaired. Low levels of Aβ42 facilitate fluorescent bead uptake, whereas phagocytosis is inhibited when Aβ42 accumulates. We also show that region-specific raft clustering occurs prior to microglial phagocytosis. Low Aβ42 levels stimulated this type of raft aggregation, but high Aβ42 levels inhibited it. Additionally, treatment with high Aβ42 concentrations caused a redistribution of the raft structural protein flotillin1 from low to higher density fractions along a sucrose gradient. This suggests a loss of raft structural integrity. Certain non-steroidal anti-inflammatory drugs, e.g. the COX-2-specific NSAID, celecoxib, raise Aβ42 levels. We demonstrated that prolonged celecoxib exposure can disrupt rafts in a manner similar to that seen in an elevated Aβ42 environment: abnormal raft aggregation and Flot1 distribution. This resulted in aberrant receptor recruitment to rafts and impaired receptor-mediated phagocytosis by microglial cells. Specifically, recruitment of the scavenger receptor CD36 to rafts during active phagocytosis was affected. Thus, we propose that maintaining raft integrity is crucial to determining microglial phagocytic outcomes and disease progression. PMID:18756527

  18. Validating Antibodies to the Cannabinoid CB2 Receptor: Antibody Sensitivity Is Not Evidence of Antibody Specificity.

    PubMed

    Marchalant, Yannick; Brownjohn, Philip W; Bonnet, Amandine; Kleffmann, Torsten; Ashton, John C

    2014-06-01

    Antibody-based methods for the detection and quantification of membrane integral proteins, in particular, the G protein-coupled receptors (GPCRs), have been plagued with issues of primary antibody specificity. In this report, we investigate one of the most commonly utilized commercial antibodies for the cannabinoid CB2 receptor, a GPCR, using immunoblotting in combination with mass spectrometry. In this way, we were able to develop powerful negative and novel positive controls. By doing this, we are able to demonstrate that it is possible for an antibody to be sensitive for a protein of interest-in this case CB2-but still cross-react with other proteins and therefore lack specificity. Specifically, we were able to use western blotting combined with mass spectrometry to unequivocally identify CB2 protein in over-expressing cell lines. This shows that a common practice of validating antibodies with positive controls only is insufficient to ensure antibody reliability. In addition, our work is the first to develop a label-free method of protein detection using mass spectrometry that, with further refinement, could provide unequivocal identification of CB2 receptor protein in native tissues.

  19. Stimulation of sky receptor tyrosine kinase by the product of growth arrest-specific gene 6.

    PubMed

    Ohashi, K; Nagata, K; Toshima, J; Nakano, T; Arita, H; Tsuda, H; Suzuki, K; Mizuno, K

    1995-09-29

    Sky (also called Rse, Brt, and Tyro3) is a member of a subfamily of related receptor tyrosine kinases, including Axl/Ufo/Ark and c-Eyk/Mer. We obtained evidence that Gas6 (the product of growth arrest-specific gene 6) is a ligand of the Sky receptor tyrosine kinase. Gas6, but not protein S (an anticoagulant protein structurally similar to Gas6), specifically bound to the soluble form of Sky (Sky-Fc), composed of the extracellular domain of Sky fused to the Fc domain of human immunoglobulin G1. The native and recombinant Gas6, but not protein S, stimulated tyrosine phosphorylation of Sky ectopically expressed in Chinese hamster ovary cells. Stimulation of Sky in response to Gas6 was inhibited by Sky-Fc. The half-maximal concentration of Gas6 that stimulated Sky was about 1 nM. Thus, Gas6 as a ligand for Sky specifically binds to and stimulates Sky receptor tyrosine kinase.

  20. A Spodoptera exigua cadherin serves as a putative receptor for Bacillus thuringiensis Cry1Ca toxin and shows differential enhancement of Cry1Ca and Cry1Ac toxicity.

    PubMed

    Ren, Xiang-Liang; Chen, Rui-Rui; Zhang, Ying; Ma, Yan; Cui, Jin-Jie; Han, Zhao-Jun; Mu, Li-Li; Li, Guo-Qing

    2013-09-01

    Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A remains unproven. In the present paper, we first cloned a cadherin-like gene, SeCad1b, from Spodoptera exigua (relatively susceptible to Cry1Ca). SeCad1b was highly expressed in the larval gut but scarcely detected in fat body, Malpighian tubules, and remaining carcass. Second, we bacterially expressed truncated cadherin rSeCad1bp and its interspecific homologue rHaBtRp from Helicoverpa armigera (more sensitive to Cry1Ac) containing the putative toxin-binding regions. Competitive binding assays showed that both Cry1Ca and Cry1Ac could bind to rSeCad1bp and rHaBtRp, and they did not compete with each other. Third, Cry1Ca ingestion killed larvae and decreased the weight of surviving larvae. Dietary introduction of SeCad1b double-stranded RNA (dsRNA) reduced approximately 80% of the target mRNA and partially alleviated the negative effect of Cry1Ca on larval survival and growth. Lastly, rSeCad1bp and rHaBtRp differentially enhanced the negative effects of Cry1Ca and Cry1Ac on the larval mortalities and growth of S. exigua and H. armigera. Thus, we provide the first lines of evidence to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca.

  1. A Spodoptera exigua Cadherin Serves as a Putative Receptor for Bacillus thuringiensis Cry1Ca Toxin and Shows Differential Enhancement of Cry1Ca and Cry1Ac Toxicity

    PubMed Central

    Ren, Xiang-Liang; Chen, Rui-Rui; Zhang, Ying; Ma, Yan; Cui, Jin-Jie; Han, Zhao-Jun; Mu, Li-Li

    2013-01-01

    Crystal toxin Cry1Ca from Bacillus thuringiensis has an insecticidal spectrum encompassing lepidopteran insects that are tolerant to current commercially used B. thuringiensis crops (Bt crops) expressing Cry1A toxins and may be useful as a potential bioinsecticide. The mode of action of Cry1A is fairly well understood. However, whether Cry1Ca interacts with the same receptor proteins as Cry1A remains unproven. In the present paper, we first cloned a cadherin-like gene, SeCad1b, from Spodoptera exigua (relatively susceptible to Cry1Ca). SeCad1b was highly expressed in the larval gut but scarcely detected in fat body, Malpighian tubules, and remaining carcass. Second, we bacterially expressed truncated cadherin rSeCad1bp and its interspecific homologue rHaBtRp from Helicoverpa armigera (more sensitive to Cry1Ac) containing the putative toxin-binding regions. Competitive binding assays showed that both Cry1Ca and Cry1Ac could bind to rSeCad1bp and rHaBtRp, and they did not compete with each other. Third, Cry1Ca ingestion killed larvae and decreased the weight of surviving larvae. Dietary introduction of SeCad1b double-stranded RNA (dsRNA) reduced approximately 80% of the target mRNA and partially alleviated the negative effect of Cry1Ca on larval survival and growth. Lastly, rSeCad1bp and rHaBtRp differentially enhanced the negative effects of Cry1Ca and Cry1Ac on the larval mortalities and growth of S. exigua and H. armigera. Thus, we provide the first lines of evidence to suggest that SeCad1b from S. exigua is a functional receptor of Cry1Ca. PMID:23835184

  2. CB(1) receptor allosteric modulators display both agonist and signaling pathway specificity.

    PubMed

    Baillie, Gemma L; Horswill, James G; Anavi-Goffer, Sharon; Reggio, Patricia H; Bolognini, Daniele; Abood, Mary E; McAllister, Sean; Strange, Phillip G; Stephens, Gary J; Pertwee, Roger G; Ross, Ruth A

    2013-02-01

    We have previously identified allosteric modulators of the cannabinoid CB(1) receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB(1) receptor agonist [(3)H]CP55940 but producing a decrease in CB(1) receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB(1) receptor activation. We assessed the effect of these compounds on CB(1) receptor agonist-induced [(35)S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB(1) agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [(3)H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5'-O-(3-[(35)S]thio)triphosphate ([(35)S]GTPγS) binding, simulation (Gα(s)-mediated), and inhibition (Gα(i)-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB(1) agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway.

  3. CB1 Receptor Allosteric Modulators Display Both Agonist and Signaling Pathway Specificity

    PubMed Central

    Baillie, Gemma L.; Horswill, James G.; Anavi-Goffer, Sharon; Reggio, Patricia H.; Bolognini, Daniele; Abood, Mary E.; McAllister, Sean; Strange, Phillip G.; Stephens, Gary J.; Pertwee, Roger G.

    2013-01-01

    We have previously identified allosteric modulators of the cannabinoid CB1 receptor (Org 27569, PSNCBAM-1) that display a contradictory pharmacological profile: increasing the specific binding of the CB1 receptor agonist [3H]CP55940 but producing a decrease in CB1 receptor agonist efficacy. Here we investigated the effect one or both compounds in a broad range of signaling endpoints linked to CB1 receptor activation. We assessed the effect of these compounds on CB1 receptor agonist–induced [35S]GTPγS binding, inhibition, and stimulation of forskolin-stimulated cAMP production, phosphorylation of extracellular signal-regulated kinases (ERK), and β-arrestin recruitment. We also investigated the effect of these allosteric modulators on CB1 agonist binding kinetics. Both compounds display ligand dependence, being significantly more potent as modulators of CP55940 signaling as compared with WIN55212 and having little effect on [3H]WIN55212 binding. Org 27569 displays biased antagonism whereby it inhibits: agonist-induced guanosine 5′-O-(3-[35S]thio)triphosphate ([35S]GTPγS) binding, simulation (Gαs-mediated), and inhibition (Gαi-mediated) of cAMP production and β-arrestin recruitment. In contrast, it acts as an enhancer of agonist-induced ERK phosphorylation. Alone, the compound can act also as an allosteric agonist, increasing cAMP production and ERK phosphorylation. We find that in both saturation and kinetic-binding experiments, the Org 27569 and PSNCBAM-1 appeared to influence only orthosteric ligand maximum occupancy rather than affinity. The data indicate that the allosteric modulators share a common mechanism whereby they increase available high-affinity CB1 agonist binding sites. The receptor conformation stabilized by the allosterics appears to induce signaling and also selectively traffics orthosteric agonist signaling via the ERK phosphorylation pathway. PMID:23160940

  4. Identification of an extracellular segment of the oxytocin receptor providing agonist-specific binding epitopes.

    PubMed

    Hawtin, S R; Howard, H C; Wheatley, M

    2001-03-01

    The effects of the peptide hormone oxytocin are mediated by oxytocin receptors (OTRs) expressed by the target tissue. The OTR is a member of the large family of G-protein-coupled receptors. Defining differences between the interaction of agonists and antagonists with the OTR at the molecular level is of fundamental importance, and is addressed in this study. Using truncated and chimaeric receptor constructs, we establish that a small 12-residue segment in the distal portion of the N-terminus of the human OTR provides important epitopes which are required for agonist binding. In contrast, this segment does not contribute to the binding site for antagonists, whether peptide or non-peptide. It does, however, have a role in agonist-induced OTR signalling. Oxytocin is also an agonist at the vasopressin V(1a) receptor (V(1a)R). A chimaeric receptor (V(1a)R(N)-OTR) was engineered in which the N-terminus of the OTR was substituted by the corresponding, but unrelated, sequence from the N-terminus of the V(1a)R. We show that the V(1a)R N-terminus present in V(1a)R(N)-OTR fully restored both agonist binding and intracellular signalling to a dysfunctional truncated OTR construct. The N-terminal segment does not, however, contribute to receptor-selective agonism between the OTR and the V(1a)R. Our data establish a key role for the distal N-terminus of the OTR in providing agonist-specific binding epitopes.

  5. Altered adrenergic response and specificity of the receptors in rat ascites hepatoma AH130.

    PubMed

    Sanae, F; Miyamoto, K; Koshiura, R

    1989-11-15

    Adenylate cyclase activation through adrenergic receptors in rat ascites hepatoma (AH) 130 cells in response to adrenergic drugs was studied, and receptor binding and displacement were compared with those of normal rat hepatocytes. Epinephrine (Epi) and norepinephrine (NE) activated AH130 adenylate cyclase about half as much as isoproterenol (IPN) but equaled IPN after treatment with the alpha-antagonist phentolamine or islet-activating protein (IAP). The three catecholamines in hepatocytes were similar regardless of phentolamine or IAP. These catecholamines activated adenylate cyclase in order of IPN greater than NE greater than Epi in AH130 cells but IPN greater than Epi greater than NE in hepatocytes. We then used the alpha 1-selective ligand [3H]prazosin, the alpha 2-selective ligand [3H]clonidine, and the beta-ligand [125I]iodocyanopindolol [( 125I]ICYP), and found that AH130 cells had few prazosin-binding sites, about eight times as many clonidine-binding sites with high affinity, and many more ICYP-binding sites than in hepatocytes. The dissociation constant (Ki) of the beta 1-selective drug metoprolol by Hofstee plots for AH130 cells was lower than that for hepatocytes. The inhibition of specific ICYP binding by the beta 2-selective agonist salbutamol for AH130 cells gave only one Ki value which was much higher than both high and low Ki values of the drug for hepatocytes. These findings indicate that the alpha- and beta-adrenergic receptors in hepatocytes are predominantly alpha 1-type and beta 2-type, but that those in AH130 cells are predominantly alpha 2-type and beta 1-type, and the low adrenergic response of AH130 cells is due to the dominant appearance of alpha 2-adrenergic receptors, linked with the inhibitory guanine-nucleotide binding regulatory protein, instead of alpha 1-adrenergic receptors, and beta 1-adrenergic receptors with low affinity for the hormone.

  6. ACTH Receptor (MC2R) Specificity: What Do We Know About Underlying Molecular Mechanisms?

    PubMed

    Fridmanis, Davids; Roga, Ance; Klovins, Janis

    2017-01-01

    Coincidentally, the release of this Research Topic in Frontiers in Endocrinology takes place 25 years after the discovery of the adrenocorticotropic hormone receptor (ACTHR) by Mountjoy and colleagues. In subsequent years, following the discovery of other types of mammalian melanocortin receptors (MCRs), ACTHR also became known as melanocortin type 2 receptor (MC2R). At present, five types of MCRs have been reported, all of which share significant sequence similarity at the amino acid level, and all of which specifically bind melanocortins (MCs)-a group of biologically active peptides generated by proteolysis of the proopiomelanocortin precursor. All MCs share an identical -H-F-R-W- pharmacophore sequence. α-Melanocyte-stimulating hormone (α-MSH) and adrenocorticotropic hormone (ACTH) are the most extensively studied MCs and are derived from the same region. Essentially, α-MSH is formed from the first 13 amino acid residues of ACTH. ACTHR is unique among MCRs because it binds one sole ligand-ACTH, which makes it a very attractive research object for molecular pharmacologists. However, much research has failed, and functional studies of this receptor are lagging behind other MCRs. The reason for these difficulties has already been outlined by Mountjoy and colleagues in their publication on ACTHR coding sequence discovery where the Cloudman S91 melanoma cell line was used for receptor expression because it was a "more sensitive assay system." Subsequent work showed that ACTHR could be successfully expressed only in endogenous MCR-expressing cell lines, since in other cell lines it is retained within the endoplasmic reticulum. The resolution of this methodological problem came in 2005 with the discovery of melanocortin receptor accessory protein, which is required for the formation of functionally active ACTHR. The decade that followed this discovery was filled with exciting research that provided insight into the molecular mechanisms underlying the action of

  7. Carbohydrate Malabsorption and Putative Carbohydrate-Specific Small Intestinal Bacterial Overgrowth: Prevalence and Diagnostic Overlap Observed in an Austrian Outpatient Center.

    PubMed

    Enko, Dietmar; Kriegshäuser, Gernot; Kimbacher, Christine; Stolba, Robert; Mangge, Harald; Halwachs-Baumann, Gabriele

    2015-01-01

    While lactose malabsorption is a well-investigated condition, few epidemiologic data are available for fructose and sorbitol malabsorption. The aim of this study was to assess the prevalence rates for primary lactose malabsorption, fructose and sorbitol malabsorption, and carbohydrate-specific small intestinal bacterial overgrowth (cs-SIBO) in an Austrian outpatient center. In total, 306 adult patients, who were primarily referred with suspected carbohydrate malabsorption by general practitioners to our outpatient clinic, underwent genetic testing (C/T-13910 polymorphism) for primary lactose malabsorption, and a combined hydrogen (H2)/methane (CH4) breath test for fructose (25 g) and sorbitol (12.5 g) malabsorption. Cohen's kappa (κ) was calculated for agreement between positive breath test results and self-reported symptoms during the test. Seventy-eight (25.49%) patients were C/C-13910 homozygotes, indicating primary lactose malabsorption. Thirty-four (11.11%) and 57 (18.63%) patients were classified as fructose and sorbitol malabsorbers. Cohen's κ measuring agreements between positive fructose and sorbitol breath test results and self-reported symptoms during the test were 0.33 and 0.49, respectively. Twenty-nine (9.50%) patients with an early H2/CH4 peak (i.e. within 60 minutes after fructose and/or sorbitol ingestion) were diagnosed with cs-SIBO. In Austria, carbohydrate malabsorption is a frequent condition in patients referred by general practitioners to carbohydrate malabsorption testing. © 2015 S. Karger AG, Basel.

  8. Osteo-Chondroprogenitor–Specific Deletion of the Selenocysteine tRNA Gene, Trsp, Leads to Chondronecrosis and Abnormal Skeletal Development: A Putative Model for Kashin-Beck Disease

    PubMed Central

    Downey, Charlene M.; Horton, Chelsea R.; Carlson, Bradley A.; Parsons, Trish E.; Hatfield, Dolph L.; Hallgrímsson, Benedikt; Jirik, Frank R.

    2009-01-01

    Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation. To investigate the effects of skeletal selenoprotein deficiency, a Cre recombinase transgenic mouse line was used to trigger Trsp gene deletions in osteo-chondroprogenitors. Trsp encodes selenocysteine tRNA[Ser]Sec, required for the incorporation of selenocysteine residues into selenoproteins. The mutant mice exhibited growth retardation, epiphyseal growth plate abnormalities, and delayed skeletal ossification, as well as marked chondronecrosis of articular, auricular, and tracheal cartilages. Phenotypically, the mice thus replicated a number of the pathological features of Kashin-Beck disease, supporting the notion that selenium deficiency is important to the development of this syndrome. PMID:19696890

  9. Altered DLPFC-Hippocampus Connectivity During Working Memory: Independent Replication and Disorder Specificity of a Putative Genetic Risk Phenotype for Schizophrenia.

    PubMed

    Schneider, Michael; Walter, Henrik; Moessnang, Carolin; Schäfer, Axel; Erk, Susanne; Mohnke, Sebastian; Romund, Lydia; Garbusow, Maria; Dixson, Luanna; Heinz, Andreas; Romanczuk-Seiferth, Nina; Meyer-Lindenberg, Andreas; Tost, Heike

    2017-09-01

    Altered connectivity of dorsolateral prefrontal cortex (DLPFC) and hippocampus during working memory is considered an intermediate phenotype for schizophrenia (SCZ), but the relevance for other mental disorders with shared genetic background remains unknown. Here we investigated its presence in unaffected first-degree relatives of patients with bipolar disorder (BD) or major depressive disorder (MDD). Furthermore, we aimed to provide an independent replication of this phenotype in first-degree relatives of SCZ patients. We acquired functional magnetic resonance imaging (fMRI) data from 309 healthy controls and 218 healthy first-degree relatives of index patients with SCZ (n = 62), BD (n = 66) and MDD (n = 90), who completed the n-back working memory paradigm. We observed a significant group effect on DLPFC-hippocampus coupling (PFWE = .031, all P-values region of interest [ROI] corrected). Post hoc comparisons revealed that this effect was driven by the SCZ relatives, who showed a significant increase in the negative functional connectivity of the DLPFC and right hippocampus compared to controls (PFWE = .001), BD relatives (PFWE = .015) and trend-wise also MDD relatives (PFWE = .082). Comparison of BD and MDD relatives to the controls revealed no difference (PFWE-values > .451). Supplementary analyses suggested that the SCZ relatives finding is robust to a range of potential confounds, including structural differences. Our data further support altered DLPFC-hippocampus connectivity during working memory as an intermediate phenotype for SCZ. This suggests that this phenotype is relatively specific to SCZ and does not translate to other genetically related disorders in the mood-psychosis spectrum. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  10. Stage-specific excretory/secretory small heat shock proteins from the parasitic nematode Strongyloides ratti: putative links to host’s intestinal mucosal defense system

    PubMed Central

    Younis, Abuelhassan Elshazly; Geisinger, Frank; Ajonina-Ekoti, Irene; Soblik, Hanns; Steen, Hanno; Mitreva, Makedonka; Erttmann, Klaus D.; Perbandt, Markus; Liebau, Eva; Brattig, Norbert W.

    2013-01-01

    SUMMARY In search of molecules involved in the interaction of intestinal nematodes and mammalian mucosal host cells, we performed mass spectrometry to identify excretory/secretory proteins (ESP) from Strongyloides ratti. In addition to other peptides, we detected in the ESP of parasitic female stage peptides homologous to the Caenorhabditis elegans heat shock protein-17, named Sra-HSP-17.1 (~19 kDa) and Sra-HSP-17.2 (~ 18 kDa) with 49% amino acid identity. The full-length cDNAs (483 bp and 474 bp, respectively) were identified and the genomic organization analyzed. To allow further characterization, the proteins were recombinantly expressed and purified. Profiling of transcription by qRT-PCR and of protein by ELISA in various developmental stages revealed parasitic female-specific expression. The sequence analysis of both DNA and amino acid sequence showed two genes share a conserved alpha-crystallin domain and variable N-terminals. The Sra-HSP-17 proteins showed the highest homology to the deduced small heat-shock protein sequence of the human pathogen S. stercoralis. We observed strong immunogenicity of both proteins, leading to high IgG responses following infection of rats. Flow cytometric analysis indicated the binding of Sra-HSP-17s to the monocytes/macrophage lineage but not to peripheral lymphocytes or neutrophils. A rat intestinal epithelial cell line showed dose dependent binding to Sra-HSP-17.1, but not to Sra-HSP-17.2. Exposed monocytes released IL-10 but not TNF-alpha in response to Sra-HSP-17s, suggesting a possible involvement of secreted female proteins in host immune responses. PMID:21762402

  11. Stage-specific excretory-secretory small heat shock proteins from the parasitic nematode Strongyloides ratti--putative links to host's intestinal mucosal defense system.

    PubMed

    Younis, Abuelhassan Elshazly; Geisinger, Frank; Ajonina-Ekoti, Irene; Soblik, Hanns; Steen, Hanno; Mitreva, Makedonka; Erttmann, Klaus D; Perbandt, Markus; Liebau, Eva; Brattig, Norbert W

    2011-09-01

    In a search for molecules involved in the interaction between intestinal nematodes and mammalian mucosal host cells, we performed MS to identify excretory-secretory proteins from Strongyloides ratti. In the excretory-secretory proteins of the parasitic female stage, we detected, in addition to other peptides, peptides homologous with the Caenorhabditis elegans heat shock protein (HSP)-17, named Sra-HSP-17.1 (∼ 19 kDa) and Sra-HSP-17.2 (∼ 18 kDa), with 49% amino acid identity. The full-length cDNAs (483 bp and 474 bp, respectively) were identified, and the genomic organization was analyzed. To allow further characterization, the proteins were recombinantly expressed and purified. Profiling of transcription by quantitative real-time-PCR and of protein by ELISA in various developmental stages revealed parasitic female-specific expression. Sequence analyses of both the DNA and amino acid sequences showed that the two proteins share a conserved α-crystallin domain and variable N-terminals. The Sra-HSP-17s showed the highest homology with the deduced small HSP sequence of the human pathogen Strongyloides stercoralis. We observed strong immunogenicity of both proteins, leading to strong IgG responses following infection of rats. Flow cytometric analysis indicated the binding of Sra-HSP-17s to the monocyte-macrophage lineage but not to peripheral lymphocytes or neutrophils. A rat intestinal epithelial cell line showed dose-dependent binding to Sra-HSP-17.1, but not to Sra-HSP-17.2. Exposed monocytes released interleukin-10 but not tumor necrosis factor-α in response to Sra-HSP-17s, suggesting the possible involvement of secreted female proteins in host immune responses. © 2011 The Authors Journal compilation © 2011 FEBS.

  12. Organ-Specific Attenuation of Murine Hepatitis Virus Strain A59 by Replacement of Catalytic Residues in the Putative Viral Cyclic Phosphodiesterase ns2▿

    PubMed Central

    Roth-Cross, Jessica K.; Stokes, Helen; Chang, Guohui; Chua, Ming Ming; Thiel, Volker; Weiss, Susan R.; Gorbalenya, Alexander E.; Siddell, Stuart G.

    2009-01-01

    The Murine hepatitis virus (MHV) strain A59 ns2 protein is a 30-kDa nonstructural protein that is expressed from a subgenomic mRNA in the cytoplasm of virus-infected cells. Its homologs are also encoded in other closely related group 2a coronaviruses and more distantly related toroviruses. Together, these proteins comprise a subset of a large superfamily of 2H phosphoesterase proteins that are distinguished by a pair of conserved His-x-Thr/Ser motifs encompassing catalytically important residues. We have used a vaccinia virus-based reverse genetic system to produce recombinant viruses encoding ns2 proteins with single-amino-acid substitutions in, or adjacent to, these conserved motifs, namely, inf-ns2 H46A, inf-ns2 S48A, inf-ns2-S120A, and inf-ns2-H126R. All of the mutant viruses replicate in mouse 17 clone 1 fibroblast cells and mouse embryonic cells to the same extent as the parental wild-type recombinant virus, inf-MHV-A59. However, compared to inf-MHV-A59, the inf-ns2 H46A and inf-ns2-H126R mutants are highly attenuated for replication in mouse liver following intrahepatic inoculation. Interestingly, none of the mutant viruses were attenuated for replication in mouse brain following intracranial inoculation. These results show that the ns2 protein of MHV-A59 has an important role in virus pathogenicity and that a substitution of the histidine residues of the MHV-A59 ns2 His-x-Thr/Ser motifs is critical for virus virulence in the liver but not in the brain. This novel phenotype suggests a strategy to investigate the function of the MHV-A59 ns2 protein involving the search for organ-specific proteins or RNAs that react differentially to wild-type and mutant ns2 proteins. PMID:19176619

  13. Tissue-specific pioneer factors associate with androgen receptor cistromes and transcription programs

    PubMed Central

    Pihlajamaa, Päivi; Sahu, Biswajyoti; Lyly, Lauri; Aittomäki, Viljami; Hautaniemi, Sampsa; Jänne, Olli A

    2014-01-01

    Androgen receptor (AR) binds male sex steroids and mediates physiological androgen actions in target tissues. ChIP-seq analyses of AR-binding events in murine prostate, kidney and epididymis show that in vivo AR cistromes and their respective androgen-dependent transcription programs are highly tissue specific mediating distinct biological pathways. This high order of tissue specificity is achieved by the use of exclusive collaborating factors in the three androgen-responsive tissues. We find two novel collaborating factors for AR signaling in vivo—Hnf4α (hepatocyte nuclear factor 4α) in mouse kidney and AP-2α (activating enhancer binding protein 2α) in mouse epididymis—that define tissue-specific AR recruitment. In mouse prostate, FoxA1 serves for the same purpose. FoxA1, Hnf4α and AP-2α motifs are over-represented within unique AR-binding loci, and the cistromes of these factors show substantial overlap with AR-binding events distinct to each tissue type. These licensing or pioneering factors are constitutively bound to chromatin and guide AR to specific genomic loci upon hormone exposure. Collectively, liganded receptor and its DNA-response elements are required but not sufficient for establishment of tissue-specific transcription programs. PMID:24451200

  14. Identification and Characterization of Receptor-Specific Peptides for siRNA Delivery

    PubMed Central

    2012-01-01

    Tumor-targeted delivery of siRNA remains a major barrier in fully realizing the therapeutic potential of RNA interference. While cell-penetrating peptides (CPP) are promising siRNA carrier candidates, they are universal internalizers that lack cell-type specificity. Herein, we design and screen a library of tandem tumor-targeting and cell-penetrating peptides that condense siRNA into stable nanocomplexes for cell type-specific siRNA delivery. Through physiochemical and biological characterization, we identify a subset of the nanocomplex library of that are taken up by cells via endocytosis, trigger endosomal escape and unpacking of the carrier, and ultimately deliver siRNA to the cytosol in a receptor-specific fashion. To better understand the structure–activity relationships that govern receptor-specific siRNA delivery, we employ computational regression analysis and identify a set of key