Characterization of carotenoid hydroxylase gene promoter in Haematococcus pluvialis.
Meng, C X; Wei, W; Su, Z- L; Qin, S
2006-10-01
Astaxanthin, a high-value ketocarotenoid is mainly used in fish aquaculture. It also has potential in human health due to its higher antioxidant capacity than beta-carotene and vitamin E. The unicellular green alga Haematococcus pluvialis is known to accumulate astaxanthin in response to environmental stresses, such as high light intensity and salt stress. Carotenoid hydroxylase plays a key role in astaxanthin biosynthesis in H. pluvialis. In this paper, we report the characterization of a promoter-like region (-378 to -22 bp) of carotenoid hydroxylase gene by cloning, sequence analysis and functional verification of its 919 bp 5'-flanking region in H. pluvialis. The 5'-flanking region was characterized using micro-particle bombardment method and transient expression of LacZ reporter gene. Results of sequence analysis showed that the 5'-flanking region might have putative cis-acting elements, such as ABA (abscisic acid)-responsive element (ABRE), C-repeat/dehydration responsive element (C-repeat/DRE), ethylene-responsive element (ERE), heat-shock element (HSE), wound-responsive element (WUN-motif), gibberellin-responsive element (P-box), MYB-binding site (MBS) etc., except for typical TATA and CCAAT boxes. Results of 5' deletions construct and beta-galactosidase assays revealed that a highest promoter-like region might exist from -378 to -22 bp and some negative regulatory elements might lie in the region from -919 to -378 bp. Results of site-directed mutagenesis of a putative C-repeat/DRE and an ABRE-like motif in the promoter-like region (-378 to -22 bp) indicated that the putative C-repeat/DRE and ABRE-like motif might be important for expression of carotenoid hydroxylase gene.
Kamalakaran, Sitharthan; Radhakrishnan, Senthil K; Beck, William T
2005-06-03
We developed a pipeline to identify novel genes regulated by the steroid hormone-dependent transcription factor, estrogen receptor, through a systematic analysis of upstream regions of all human and mouse genes. We built a data base of putative promoter regions for 23,077 human and 19,984 mouse transcripts from National Center for Biotechnology Information annotation and 8793 human and 6785 mouse promoters from the Data Base of Transcriptional Start Sites. We used this data base of putative promoters to identify potential targets of estrogen receptor by identifying estrogen response elements (EREs) in their promoters. Our program correctly identified EREs in genes known to be regulated by estrogen in addition to several new genes whose putative promoters contained EREs. We validated six genes (KIAA1243, NRIP1, MADH9, NME3, TPD52L, and ABCG2) to be estrogen-responsive in MCF7 cells using reverse transcription PCR. To allow for extensibility of our program in identifying targets of other transcription factors, we have built a Web interface to access our data base and programs. Our Web-based program for Promoter Analysis of Genome, PAGen@UIC, allows a user to identify putative target genes for vertebrate transcription factors through the analysis of their upstream sequences. The interface allows the user to search the human and mouse promoter data bases for potential target genes containing one or more listed transcription factor binding sites (TFBSs) in their upstream elements, using either regular expression-based consensus or position weight matrices. The data base can also be searched for promoters harboring user-defined TFBSs given as a consensus or a position weight matrix. Furthermore, the user can retrieve putative promoter sequences for any given gene together with identified TFBSs located on its promoter. Orthologous promoters are also analyzed to determine conserved elements.
Zhang, Weixiong; Ruan, Jianhua; Ho, Tuan-Hua David; You, Youngsook; Yu, Taotao; Quatrano, Ralph S
2005-07-15
A fundamental problem of computational genomics is identifying the genes that respond to certain endogenous cues and environmental stimuli. This problem can be referred to as targeted gene finding. Since gene regulation is mainly determined by the binding of transcription factors and cis-regulatory DNA sequences, most existing gene annotation methods, which exploit the conservation of open reading frames, are not effective in finding target genes. A viable approach to targeted gene finding is to exploit the cis-regulatory elements that are known to be responsible for the transcription of target genes. Given such cis-elements, putative target genes whose promoters contain the elements can be identified. As a case study, we apply the above approach to predict the genes in model plant Arabidopsis thaliana which are inducible by a phytohormone, abscisic acid (ABA), and abiotic stress, such as drought, cold and salinity. We first construct and analyze two ABA specific cis-elements, ABA-responsive element (ABRE) and its coupling element (CE), in A.thaliana, based on their conservation in rice and other cereal plants. We then use the ABRE-CE module to identify putative ABA-responsive genes in A.thaliana. Based on RT-PCR verification and the results from literature, this method has an accuracy rate of 67.5% for the top 40 predictions. The cis-element based targeted gene finding approach is expected to be widely applicable since a large number of cis-elements in many species are available.
Satheesh, Viswanathan; Jagannadham, P Tej Kumar; Chidambaranathan, Parameswaran; Jain, P K; Srinivasan, R
2014-12-01
The NAC (NAM, ATAF and CUC) proteins are plant-specific transcription factors implicated in development and stress responses. In the present study 88 pigeonpea NAC genes were identified from the recently published draft genome of pigeonpea by using homology based and de novo prediction programmes. These sequences were further subjected to phylogenetic, motif and promoter analyses. In motif analysis, highly conserved motifs were identified in the NAC domain and also in the C-terminal region of the NAC proteins. A phylogenetic reconstruction using pigeonpea, Arabidopsis and soybean NAC genes revealed 33 putative stress-responsive pigeonpea NAC genes. Several stress-responsive cis-elements were identified through in silico analysis of the promoters of these putative stress-responsive genes. This analysis is the first report of NAC gene family in pigeonpea and will be useful for the identification and selection of candidate genes associated with stress tolerance.
Sex change strategy and the aromatase genes.
Gardner, L; Anderson, T; Place, A R; Dixon, B; Elizur, A
2005-04-01
Sequential hermaphroditism is a common reproductive strategy in many teleosts. Steroid production is known to mediate both the natural and induced sex change, yet beyond this the physiology directing this process has received little attention. Cytochrome P450 aromatase is a key enzyme in the hormonal pathway catalysing the conversion of sex steroids, androgens to oestrogens, and thus is highly relevant to the process of sex change. This study reports the isolation of cDNA sequences for aromatase isoforms CYP19A1 and CYP19A2 from teleost species representing three forms of sexual hermaphroditism: Lates calcarifer (protandry), Cromileptes altivelis (protogyny), and Gobiodon histrio (bi-directional). Deduced amino acid analysis of these isoforms with other reported isoforms from gonochoristic (single sex) teleosts revealed 56-95% identity within the same isoform while only 48-65% identity between isoforms irrespective of species and sexual strategy. Phylogenetic analysis supported this result separating sequences into isoform exclusive clades in spite of species apparent evolutionary distance. Furthermore, this study isolates 5' flanking regions of all above genes and describes putative cis-acting elements therein. Elements identified include steroidogenic factor 1 binding site (SF-1), oestrogen response element (ERE), progesterone response element (PRE), androgen response element (ARE), glucocorticoid response elements (GRE), peroxisome proliferator-activated receptor alpha/retinoid X receptor alpha heterodimer responsive element (PPARalpha/RXRalpha), nuclear factor kappabeta (NF-kappabeta), SOX 5, SOX 9, and Wilms tumor suppressor (WTI). A hypothetical in vivo model was constructed for both isoforms highlighting potential roles of these putative cis-acting elements with reference to normal function and sexual hermaphroditism.
Pintchovski, Sean A.; Peebles, Carol L.; Kim, Hong Joo; Verdin, Eric; Finkbeiner, Steven
2010-01-01
The immediate-early effector gene Arc/Arg3.1 is robustly upregulated by synaptic activity associated with learning and memory. Here we show in primary cortical neuron culture that diverse stimuli induce Arc expression through new transcription. Searching for regulatory regions important for Arc transcription, we found nine DNaseI-sensitive nucleosome-depleted sites at this genomic locus. A reporter gene encompassing these sites responded to synaptic activity in an NMDA receptor–dependent manner, consistent with endogenous Arc mRNA. Responsiveness mapped to two enhancer regions ∼6.5 kb and ∼1.4 kb upstream of Arc. We dissected these regions further and found that the proximal enhancer contains a functional and conserved “Zeste-like” response element that binds a putative novel nuclear protein in neurons. Therefore, activity regulates Arc transcription partly by a novel signaling pathway. We also found that the distal enhancer has a functional and highly conserved serum response element. This element binds serum response factor, which is recruited by synaptic activity to regulate Arc. Thus, Arc is the first target of serum response factor that functions at synapses to mediate plasticity. PMID:19193899
Glucocorticoid Regulation of the Vitamin D Receptor
Hidalgo, Alejandro A.; Trump, Donald L.; Johnson, Candace S.
2010-01-01
Many studies indicate calcitriol has potent anti-tumor activity in different types of cancers. However, high levels of vitamin D can produce hypercalcemia in some patients. Glucocorticoids are used to ameliorate hypercalcemia and to enhance calcitriol anti-tumor activity. Calcitriol in combination with the glucocorticoid dexamethasone (Dex) increased vitamin D receptor (VDR) protein levels and ligand binding in squamous cell carcinoma VII (SCC). In this study we found that both calcitriol and Dex induce VDR- and glucocorticoid receptor (GR)-mediated transcription respectively, indicating both hormone receptors are active in SCC. Pre-treatment with Dex increases VDR-mediated transcription at the human CYP24A1 promoter. Whereas, pre-treatment with other steroid hormones, including dihydrotestosterone and R1881, has no effect on VDR-mediated transcription. Real-time PCR indicates treatment with Dex increases Vdr transcripts in a time-dependent manner, suggesting Dex may directly regulate expression of Vdr. Numerous putative glucocorticoid response elements (GREs) were found in the Vdr gene. Chromatin immunoprecipitation (ChIP) assay demonstrated GR binding at several putative GREs located within the mouse Vdr gene. However, none of the putative GREs studied increase GR-mediated transcription in luciferase reporter assays. In an attempt to identify the response element responsible for Vdr transcript regulation, future studies will continue to analyze newly identified GREs more distal from the Vdr gene promoter. PMID:20398752
Thompson, P D; Hsieh, J C; Whitfield, G K; Haussler, C A; Jurutka, P W; Galligan, M A; Tillman, J B; Spindler, S R; Haussler, M R
1999-12-01
The vitamin D receptor (VDR) is a transcription factor believed to function as a heterodimer with the retinoid X receptor (RXR). However, it was reported [Schräder et al., 1994] that, on putative vitamin D response elements (VDREs) within the rat 9k and mouse 28k calcium binding protein genes (rCaBP 9k and mCaBP 28k), VDR and thyroid hormone receptor (TR) form heterodimers that transactivate in response to both 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) and triiodothyronine (T(3)). We, therefore, examined associations of these receptors on the putative rCaBP 9k and mCaBP 28k VDREs, as well as on established VDREs from the rat osteocalcin (rOC) and mouse osteopontin (mOP) genes, plus the thyroid hormone response element (TRE) from the rat myosin heavy chain (rMHC) gene. In gel mobility shift assays, we found no evidence for VDR-TR heterodimer interaction with any tested element. Further, employing these hormone response elements linked to reporter genes in transfected cells, VDR and TR mediated responses to their cognate ligands only from the rOC/mOP and rMHC elements, respectively, while the CaBP elements were unresponsive to any combination of ligand(s). Utilizing the rOC and mOP VDREs, two distinct repressive actions of TR on VDR-mediated signaling were demonstrated: a T(3)-independent action, presumably via direct TR-RXR competition for DNA binding, and a T(3)-dependent repression, likely by diversion of limiting RXR from VDR-RXR toward the formation of TR-RXR heterodimers. The relative importance of these two mechanisms differed in a response element-specific manner. These results may provide a partial explanation for the observed association between hyperthyroidism and bone demineralization/osteoporosis. Copyright 1999 Wiley-Liss, Inc.
Giger, Julia M; Haddad, Fadia; Qin, Anqi X; Baldwin, Kenneth M
2002-03-01
Functional overload (OL) of the rat plantaris muscle by the removal of synergistic muscles induces a shift in the myosin heavy chain (MHC) isoform expression profile from the fast isoforms toward the slow type I, or, beta-MHC isoform. Different length rat beta-MHC promoters were linked to a firefly luciferase reporter gene and injected in control and OL plantaris muscles. Reporter activities of -3,500, -914, -408, and -215 bp promoters increased in response to 1 wk of OL. The smallest -171 bp promoter was not responsive to OL. Mutation analyses of putative regulatory elements within the -171 and -408 bp region were performed. The -408 bp promoters containing mutations of the betae1, distal muscle CAT (MCAT; betae2), CACC, or A/T-rich (GATA), were still responsive to OL. Only the proximal MCAT (betae3) mutation abolished the OL response. Gel mobility shift assays revealed a significantly higher level of complex formation of the betae3 probe with nuclear protein from OL plantaris compared with control plantaris. These results suggest that the betae3 site functions as a putative OL-responsive element in the rat beta-MHC gene promoter.
The molecular basis of ethylene signalling in Arabidopsis
NASA Technical Reports Server (NTRS)
Woeste, K.; Kieber, J. J.; Evans, M. L. (Principal Investigator)
1998-01-01
The simple gas ethylene profoundly influences plants at nearly every stage of growth and development. In the past ten years, the use of a genetic approach, based on the triple response phenotype, has been a powerful tool for investigating the molecular events that underlie these effects. Several fundamental elements of the pathway have been described: a receptor with homology to bacterial two-component histidine kinases (ETR1), elements of a MAP kinase cascade (CTR1) and a putative transcription factor (EIN3). Taken together, these elements can be assembled into a simple, linear model for ethylene signalling that accounts for most of the well-characterized ethylene mediated responses.
Vanacker, J M; Corbau, R; Adelmant, G; Perros, M; Laudet, V; Rommelaere, J
1996-01-01
The promoter of the thyroid hormone receptor alpha gene (c-erbA-1) is activated by the nonstructural protein 1 (NS1) of parvovirus minute virus of mice (prototype strain [MVMp]) in ras-transformed FREJ4 cells that are permissive for lytic MVMp replication. This stimulation may be related to the sensitivity of host cells to MVMp, as it does not take place in parental FR3T3 cells, which are resistant to the parvovirus killing effect. The analysis of a series of deletion and point mutants of the c-erbA-1 promoter led to the identification of an upstream region that is necessary for NS1-driven transactivation. This sequence harbors a putative hormone-responsive element and is sufficient to render a minimal promoter NS1 inducible in FREJ4 but not in FR3T3 cells, and it is involved in distinct interactions with proteins from the respective cell lines. The NS1-responsive element of the c-erbA-1 promoter bears no homology with sequences that were previously reported to be necessary for NS1 DNA binding and transactivation. Altogether, our data point to a novel, cell-specific mechanism of promoter activation by NS1. PMID:8642664
Montgomery, H J; Romanov, V; Guillemette, J G
2000-02-18
Neuronal nitric-oxide synthase (NOS) and endothelial NOS are constitutive NOS isoforms that are activated by binding calmodulin in response to elevated intracellular calcium. In contrast, the inducible NOS isoform binds calmodulin at low basal levels of calcium in resting cells. Primary sequence comparisons show that each constitutive NOS isozyme contains a polypeptide segment within its reductase domain, which is absent in the inducible NOS enzyme. To study a possible link between the presence of these additional polypeptide segments in constitutive NOS enzymes and their calcium-dependent calmodulin activation, three deletion mutants were created. The putative inhibitory insert was removed from the FMN binding regions of the neuronal NOS holoenzyme and from two truncated neuronal NOS reductase enzymes in which the calmodulin binding region was either included or deleted. All three mutant enzymes showed reduced incorporation of FMN and required reconstitution with exogenous FMN for activity. The combined removal of both the calmodulin binding domain and the putative inhibitory insert did not result in a calmodulin-independent neuronal NOS reductase. Thus, although the putative inhibitory element has an effect on the calcium-dependent calmodulin activation of neuronal NOS, it does not have the properties of the typical autoinhibitory domain found in calmodulin-activated enzymes.
Joubert, D Albert; de Lorenzo, Giulia; Vivier, Melané A
2013-03-01
Regulation of defense in plants is a complex process mediated by various signaling pathways. Promoter analysis of defense-related genes is useful to understand these signaling pathways involved in regulation. To this end, the regulation of the polygalacturonase-inhibiting protein encoding gene from Vitis vinifera L. (Vvpgip1) was analyzed with regard to expression pattern and induction profile as well as the promoter in terms of putative regulatory elements present, core promoter size and the start of transcription. Expression of Vvpgip1 is tissue-specific and developmentally regulated. Vvpgip1 expression was induced in response to auxin, salicylic acid and sugar treatment, wounding and pathogen infection. The start of transcription was mapped to 17 bp upstream of the ATG and the core promoter was mapped to the 137 bp upstream of the ATG. Fructose- and Botrytis responsiveness were identified in the region between positions -3.1 and -1.5 kb. The analyses showed induction in water when the leaves were submersed and this response and the response to wounding mapped to the region between positions -1.1 and -0.1 kb. In silico analyses revealed putative cis-acting elements in these areas that correspond well to the induction stimuli tested.
NASA Astrophysics Data System (ADS)
Omar, Aimi Farehah; Ismail, Ismanizan
2016-11-01
Sesquiterpene synthase (SS) catalyzes the formation of sesquiterpenes from farnesyl diphosphate (FDP) via carbocation intermediates. In this study, the promoter region of sesquiterpene synthase was isolated from Persicaria minor to identify possible cis-acting elements in the promoter. The full-length PmSS promoter of P. minor is 1824-bp sequences. The sequence was analyzed and several putative cis-acting regulatory elements were identified. Three cis-acting regulatory elements were selected for deletion analysis which are cis-acting element involved in wound responsiveness (WUN), cis - acting element involved in defense and stress responsiveness (TC) and cis-acting element involved in ABA responsiveness (ABRE). Series of deletions were conducted to assess the promoter activity producing three truncated fragments promoter; Prom 2 1606-bp, Prom 3 1144- bp, and Prom 4 921-bp. The full-length promoter and its deletion series were cloned into the pBGWFS7 vector which contain β-glucuronidase (GUS) gene and green fluorescent protein (GFP) as the reporter gene. All constructs were successfully transformed into Arabidopsis thaliana based on PCR of positive BASTA resistance plants.
Molecular and functional characterization of the promoter of ETS2, the human c-ets-2 gene.
Mavrothalassitis, G J; Watson, D K; Papas, T S
1990-01-01
The 5' end of the human c-ets-2 gene, ETS2, was cloned and characterized. The major transcription initiation start sites were identified, and the pertinent sequences surrounding the ETS2 promoter were determined. The promoter region of ETS2 does not possess typical "TATA" and "CAAT" elements. However, this promoter contains several repeat regions, as well as two consensus AP2 binding sites and three putative Sp1 sites. There is also a palindromic region similar to the serum response element of the c-fos gene, located 1400 base pairs (bp) upstream from the first major transcription initiation site. A G + C-rich sequence (GC element) with dyad symmetry can be seen in the ETS2 promoter, immediately following an unusually long (approximately 250-bp) polypurine-polypyrimidine tract. A series of deletion fragments from the putative promoter region were ligated in front of the bacterial chloramphenicol acetyltransferase gene and tested for activity following transfection into HeLa cells. The 5' boundary of the region needed for maximum promoter activity was found to be 159 bp upstream of the major initiation site. This region of 159 bp contains putative binding sites for transcription factors Sp1 and AP2 (one for each), the GC element, one small forward repeat, one inverted repeat, and half of the polypurine-pyrimidine tract. The promoter of ETS2 (within the polypyrimidine tract) serves to illustrate an alternative structure that may be present in genes with "TATA-less" promoters. Images PMID:2405393
Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize.
Busk, P K; Jensen, A B; Pagès, M
1997-06-01
The rab17 gene from maize is transcribed in late embryonic development and is responsive to abscisic acid and water stress in embryo and vegetative tissues. In vivo footprinting and transient transformation of rab17 were performed in embryos and vegetative tissues to characterize the cis-elements involved in regulation of the gene. By in vivo footprinting, protein binding was observed to nine elements in the promoter, which correspond to five putative ABREs (abscisic acid responsive elements) and four other sequences. The footprints indicated that distinct proteins interact with these elements in the two developmental stages. In transient transformation, six of the elements were important for high level expression of the rab17 promoter in embryos, whereas only three elements were important in leaves. The cis-acting sequences can be divided in embryo-specific, ABA-specific and leaf-specific elements on the basis of protein binding and the ability to confer expression of rab17. We found one positive, new element, called GRA, with the sequence CACTGGCCGCCC. This element was important for transcription in leaves but not in embryos. Two other non-ABRE elements that stimulated transcription from the rab17 promoter resemble previously described abscisic acid and drought-inducible elements. There were differences in protein binding and function of the five ABREs in the rab17 promoter. The possible reasons for these differences are discussed. The in vivo data obtained suggest that an embryo-specific pathway regulates transcription of the rab genes during development, whereas another pathway is responsible for induction in response to ABA and drought in vegetative tissues.
Characterization of noncoding regulatory DNA in the human genome.
Elkon, Ran; Agami, Reuven
2017-08-08
Genetic variants associated with common diseases are usually located in noncoding parts of the human genome. Delineation of the full repertoire of functional noncoding elements, together with efficient methods for probing their biological roles, is therefore of crucial importance. Over the past decade, DNA accessibility and various epigenetic modifications have been associated with regulatory functions. Mapping these features across the genome has enabled researchers to begin to document the full complement of putative regulatory elements. High-throughput reporter assays to probe the functions of regulatory regions have also been developed but these methods separate putative regulatory elements from the chromosome so that any effects of chromatin context and long-range regulatory interactions are lost. Definitive assignment of function(s) to putative cis-regulatory elements requires perturbation of these elements. Genome-editing technologies are now transforming our ability to perturb regulatory elements across entire genomes. Interpretation of high-throughput genetic screens that incorporate genome editors might enable the construction of an unbiased map of functional noncoding elements in the human genome.
2011-01-01
Background Phytohormones organize plant development and environmental adaptation through cell-to-cell signal transduction, and their action involves transcriptional activation. Recent international efforts to establish and maintain public databases of Arabidopsis microarray data have enabled the utilization of this data in the analysis of various phytohormone responses, providing genome-wide identification of promoters targeted by phytohormones. Results We utilized such microarray data for prediction of cis-regulatory elements with an octamer-based approach. Our test prediction of a drought-responsive RD29A promoter with the aid of microarray data for response to drought, ABA and overexpression of DREB1A, a key regulator of cold and drought response, provided reasonable results that fit with the experimentally identified regulatory elements. With this succession, we expanded the prediction to various phytohormone responses, including those for abscisic acid, auxin, cytokinin, ethylene, brassinosteroid, jasmonic acid, and salicylic acid, as well as for hydrogen peroxide, drought and DREB1A overexpression. Totally 622 promoters that are activated by phytohormones were subjected to the prediction. In addition, we have assigned putative functions to 53 octamers of the Regulatory Element Group (REG) that have been extracted as position-dependent cis-regulatory elements with the aid of their feature of preferential appearance in the promoter region. Conclusions Our prediction of Arabidopsis cis-regulatory elements for phytohormone responses provides guidance for experimental analysis of promoters to reveal the basis of the transcriptional network of phytohormone responses. PMID:21349196
Hafemeister, Christoph; Nicotra, Adrienne B.; Jagadish, S.V. Krishna; Bonneau, Richard; Purugganan, Michael
2016-01-01
Environmental gene regulatory influence networks (EGRINs) coordinate the timing and rate of gene expression in response to environmental signals. EGRINs encompass many layers of regulation, which culminate in changes in accumulated transcript levels. Here, we inferred EGRINs for the response of five tropical Asian rice (Oryza sativa) cultivars to high temperatures, water deficit, and agricultural field conditions by systematically integrating time-series transcriptome data, patterns of nucleosome-free chromatin, and the occurrence of known cis-regulatory elements. First, we identified 5447 putative target genes for 445 transcription factors (TFs) by connecting TFs with genes harboring known cis-regulatory motifs in nucleosome-free regions proximal to their transcriptional start sites. We then used network component analysis to estimate the regulatory activity for each TF based on the expression of its putative target genes. Finally, we inferred an EGRIN using the estimated transcription factor activity (TFA) as the regulator. The EGRINs include regulatory interactions between 4052 target genes regulated by 113 TFs. We resolved distinct regulatory roles for members of the heat shock factor family, including a putative regulatory connection between abiotic stress and the circadian clock. TFA estimation using network component analysis is an effective way of incorporating multiple genome-scale measurements into network inference. PMID:27655842
Lüneberg, E; Mayer, B; Daryab, N; Kooistra, O; Zähringer, U; Rohde, M; Swanson, J; Frosch, M
2001-03-01
We recently described the phase-variable expression of a virulence-associated lipopolysaccharide (LPS) epitope in Legionella pneumophila. In this study, the molecular mechanism for phase variation was investigated. We identified a 30 kb unstable genetic element as the molecular origin for LPS phase variation. Thirty putative genes were encoded on the 30 kb sequence, organized in two putative opposite transcription units. Some of the open reading frames (ORFs) shared homologies with bacteriophage genes, suggesting that the 30 kb element was of phage origin. In the virulent wild-type strain, the 30 kb element was located on the chromosome, whereas excision from the chromosome and replication as a high-copy plasmid resulted in the mutant phenotype, which is characterized by alteration of an LPS epitope and loss of virulence. Mapping and sequencing of the insertion site in the genome revealed that the chromosomal attachment site was located in an intergenic region flanked by genes of unknown function. As phage release could not be induced by mitomycin C, it is conceivable that the 30 kb element is a non-functional phage remnant. The protein encoded by ORF T on the 30 kb plasmid could be isolated by an outer membrane preparation, indicating that the genes encoded on the 30 kb element are expressed in the mutant phenotype. Therefore, it is conceivable that the phenotypic alterations seen in the mutant depend on high-copy replication of the 30 kb element and expression of the encoded genes. Excision of the 30 kb element from the chromosome was found to occur in a RecA-independent pathway, presumably by the involvement of RecE, RecT and RusA homologues that are encoded on the 30 kb element.
Patel, Hardip; Forêt, Sylvain; Karlsen, Bård Ove; Jørgensen, Tor Erik; Hall-Spencer, Jason M
2018-01-01
Abstract Cnidarians harbor a variety of small regulatory RNAs that include microRNAs (miRNAs) and PIWI-interacting RNAs (piRNAs), but detailed information is limited. Here, we report the identification and expression of novel miRNAs and putative piRNAs, as well as their genomic loci, in the symbiotic sea anemone Anemonia viridis. We generated a draft assembly of the A. viridis genome with putative size of 313 Mb that appeared to be composed of about 36% repeats, including known transposable elements. We detected approximately equal fractions of DNA transposons and retrotransposons. Deep sequencing of small RNA libraries constructed from A. viridis adults sampled at a natural CO2 gradient off Vulcano Island, Italy, identified 70 distinct miRNAs. Eight were homologous to previously reported miRNAs in cnidarians, whereas 62 appeared novel. Nine miRNAs were recognized as differentially expressed along the natural seawater pH gradient. We found a highly abundant and diverse population of piRNAs, with a substantial fraction showing ping–pong signatures. We identified nearly 22% putative piRNAs potentially targeting transposable elements within the A. viridis genome. The A. viridis genome appeared similar in size to that of other hexacorals with a very high divergence of transposable elements resembling that of the sea anemone genus Exaiptasia. The genome encodes and expresses a high number of small regulatory RNAs, which include novel miRNAs and piRNAs. Differentially expressed small RNAs along the seawater pH gradient indicated regulatory gene responses to environmental stressors. PMID:29385567
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon, Deug-Nam; Park, Mi-Ryung; Park, Jong-Yi
Highlights: {yields} The sequences of -604 to -84 bp of the pUPII promoter contained the region of a putative negative cis-regulatory element. {yields} The core promoter was located in the 5F-1. {yields} Transcription factor HNF4 can directly bind in the pUPII core promoter region, which plays a critical role in controlling promoter activity. {yields} These features of the pUPII promoter are fundamental to development of a target-specific vector. -- Abstract: Uroplakin II (UPII) is a one of the integral membrane proteins synthesized as a major differentiation product of mammalian urothelium. UPII gene expression is bladder specific and differentiation dependent, butmore » little is known about its transcription response elements and molecular mechanism. To identify the cis-regulatory elements in the pig UPII (pUPII) gene promoter region, we constructed pUPII 5' upstream region deletion mutants and demonstrated that each of the deletion mutants participates in controlling the expression of the pUPII gene in human bladder carcinoma RT4 cells. We also identified a new core promoter region and putative negative cis-regulatory element within a minimal promoter region. In addition, we showed that hepatocyte nuclear factor 4 (HNF4) can directly bind in the pUPII core promoter (5F-1) region, which plays a critical role in controlling promoter activity. Transient cotransfection experiments showed that HNF4 positively regulates pUPII gene promoter activity. Thus, the binding element and its binding protein, HNF4 transcription factor, may be involved in the mechanism that specifically regulates pUPII gene transcription.« less
Rabara, Roel C; Tripathi, Prateek; Lin, Jun; Rushton, Paul J
2013-02-15
Drought is one of the important environmental factors affecting crop production worldwide and therefore understanding the molecular response of plant to stress is an important step in crop improvement. WRKY transcription factors are one of the 10 largest transcription factor families across the green lineage. In this study, highly upregulated dehydration-induced WRKY and enzyme-coding genes from tobacco and soybean were selected from microarray data for promoter analyses. Putative stress-related cis-regulatory elements such as TGACG motif, ABRE-like elements; W and G-like sequences were identified by an in silico analyses of promoter region of the selected genes. GFP quantification of transgenic BY-2 cell culture showed these promoters direct higher expression in-response to 100 μM JA treatment compared to 100 μM ABA, 10% PEG and 85 mM NaCl treatments. Thus promoter activity upon JA treatment and enrichment of MeJA-responsive elements in the promoter of the selected genes provides insights for these genes to be jasmonic acid responsive with potential of mediating cross-talk during dehydration responses. Copyright © 2013 Elsevier Inc. All rights reserved.
Freitas, F Zanolli; Bertolini, M C
2004-12-01
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase ( gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30 degrees C to 45 degrees C). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans -acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Kumar, Hitesh; Kumar, Sanjay
2013-09-15
The leaves of stevia [Stevia rebaudiana (Bertoni)] are a rich source of steviol glycosides that are used as non-calorific sweetener in many countries around the world. Steviol moiety of steviol glycosides is synthesized via plastidial 2C-methyl-D-erythritol 4-phosphate pathway, where (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase (HDR) is the key enzyme. HDR catalyzes the simultaneous conversion of (E)-4-hydroxy-3-methylbut-2-enyl diphosphate into five carbon isoprenoid units, isopentenyl diphosphate and dimethylallyl diphosphate. Stevia HDR (SrHDR) successfully rescued HDR lethal mutant strain MG1655 ara<>ispH upon genetic complementation, suggesting SrHDR to encode a functional protein. The gene exhibited diurnal variation in expression. To identify the possible regulatory elements, upstream region of the gene was cloned and putative cis-acting elements were detected by in silico analysis. Electrophoretic mobility shift assay, using a putative light responsive element GATA showed the binding of nuclear proteins (NP) isolated from leaves during light period of the day, but not with the NP from leaves during the dark period. Data suggested the involvement of GATA box in light mediated gene regulation of SrHDR in stevia. Copyright © 2013 Elsevier B.V. All rights reserved.
Onishi, M; Tachi, H; Kojima, T; Shiraiwa, M; Takahara, H
2006-10-01
We identified a novel salt-inducible soybean gene encoding an acidic-isoform of pathogenesis-related protein group 5 (PR-5 protein). The soybean PR-5-homologous gene, designated as Glycine max osmotin-like protein, acidic isoform (GmOLPa)), encodes a putative polypeptide having an N-terminal signal peptide. The mature GmOLPa protein without the signal peptide has a calculated molecular mass of 21.5 kDa and a pI value of 4.4, and was distinguishable from a known PR-5-homologous gene of soybean (namely P21 protein) through examination of the structural features. A comparison with two intracellular salt-inducible PR-5 proteins, tobacco osmotin and tomato NP24, revealed that GmOLPa did not have a C-terminal extension sequence functioning as a vacuole-targeting motif. The GmOLPa gene was transcribed constitutively in the soybean root and was induced almost exclusively in the root during 24 h of high-salt stress (300 mM NaCl). Interestingly, GmOLPa gene expression in the stem and leaf, not observed until 24 h, was markedly induced at 48 and 72 h after commencement of the high-salt stress. Abscisic acid (ABA) and dehydration also induced expression of the GmOLPa gene in the root; additionally, dehydration slightly induced expression in the stem and leaf. In fact, the 5'-upstream sequence of the GmOLPa gene contained several putative cis-elements known to be involved in responsiveness to ABA and dehydration, e.g. ABA-responsive element (ABRE), MYB/MYC, and low temperature-responsive element (LTRE). These results suggested that GmOLPa may function as a protective PR-5 protein in the extracellular space of the soybean root in response to high-salt stress and dehydration.
Mruczek, Ryan E. B.
2012-01-01
The cerebral cortex is composed of many distinct classes of neurons. Numerous studies have demonstrated corresponding differences in neuronal properties across cell types, but these comparisons have largely been limited to conditions outside of awake, behaving animals. Thus the functional role of the various cell types is not well understood. Here, we investigate differences in the functional properties of two widespread and broad classes of cells in inferior temporal cortex of macaque monkeys: inhibitory interneurons and excitatory projection cells. Cells were classified as putative inhibitory or putative excitatory neurons on the basis of their extracellular waveform characteristics (e.g., spike duration). Consistent with previous intracellular recordings in cortical slices, putative inhibitory neurons had higher spontaneous firing rates and higher stimulus-evoked firing rates than putative excitatory neurons. Additionally, putative excitatory neurons were more susceptible to spike waveform adaptation following very short interspike intervals. Finally, we compared two functional properties of each neuron's stimulus-evoked response: stimulus selectivity and response latency. First, putative excitatory neurons showed stronger stimulus selectivity compared with putative inhibitory neurons. Second, putative inhibitory neurons had shorter response latencies compared with putative excitatory neurons. Selectivity differences were maintained and latency differences were enhanced during a visual search task emulating more natural viewing conditions. Our results suggest that short-latency inhibitory responses are likely to sculpt visual processing in excitatory neurons, yielding a sparser visual representation. PMID:22933717
Transcriptional analysis of the bglP gene from Streptococcus mutans.
Cote, Christopher K; Honeyman, Allen L
2006-04-21
An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript.
Transcriptional analysis of the bglP gene from Streptococcus mutans
Cote, Christopher K; Honeyman, Allen L
2006-01-01
Background An open reading frame encoding a putative antiterminator protein, LicT, was identified in the genomic sequence of Streptococcus mutans. A potential ribonucleic antitermination (RAT) site to which the LicT protein would potentially bind has been identified immediately adjacent to this open reading frame. The licT gene and RAT site are both located 5' to a beta-glucoside PTS regulon previously described in S. mutans that is responsible for esculin utilization in the presence of glucose. It was hypothesized that antitermination is the regulatory mechanism that is responsible for the control of the bglP gene expression, which encodes an esculin-specific PTS enzyme II. Results To localize the promoter activity associated with the bglP locus, a series of transcriptional lacZ gene fusions was formed on a reporter shuttle vector using various DNA fragments from the bglP promoter region. Subsequent beta-galactosidase assays in S. mutans localized the bglP promoter region and identified putative -35 and -10 promoter elements. Primer extension analysis identified the bglP transcriptional start site. In addition, a terminated bglP transcript formed by transcriptional termination was identified via transcript mapping experiments. Conclusion The physical location of these genetic elements, the RAT site and the promoter regions, and the identification of a short terminated mRNA support the hypothesis that antitermination regulates the bglP transcript. PMID:16630357
Structure and transcriptional regulation of the major intrinsic protein gene family in grapevine.
Wong, Darren Chern Jan; Zhang, Li; Merlin, Isabelle; Castellarin, Simone D; Gambetta, Gregory A
2018-04-11
The major intrinsic protein (MIP) family is a family of proteins, including aquaporins, which facilitate water and small molecule transport across plasma membranes. In plants, MIPs function in a huge variety of processes including water transport, growth, stress response, and fruit development. In this study, we characterize the structure and transcriptional regulation of the MIP family in grapevine, describing the putative genome duplication events leading to the family structure and characterizing the family's tissue and developmental specific expression patterns across numerous preexisting microarray and RNAseq datasets. Gene co-expression network (GCN) analyses were carried out across these datasets and the promoters of each family member were analyzed for cis-regulatory element structure in order to provide insight into their transcriptional regulation. A total of 29 Vitis vinifera MIP family members (excluding putative pseudogenes) were identified of which all but two were mapped onto Vitis vinifera chromosomes. In this study, segmental duplication events were identified for five plasma membrane intrinsic protein (PIP) and four tonoplast intrinsic protein (TIP) genes, contributing to the expansion of PIPs and TIPs in grapevine. Grapevine MIP family members have distinct tissue and developmental expression patterns and hierarchical clustering revealed two primary groups regardless of the datasets analyzed. Composite microarray and RNA-seq gene co-expression networks (GCNs) highlighted the relationships between MIP genes and functional categories involved in cell wall modification and transport, as well as with other MIPs revealing a strong co-regulation within the family itself. Some duplicated MIP family members have undergone sub-functionalization and exhibit distinct expression patterns and GCNs. Cis-regulatory element (CRE) analyses of the MIP promoters and their associated GCN members revealed enrichment for numerous CREs including AP2/ERFs and NACs. Combining phylogenetic analyses, gene expression profiling, gene co-expression network analyses, and cis-regulatory element enrichment, this study provides a comprehensive overview of the structure and transcriptional regulation of the grapevine MIP family. The study highlights the duplication and sub-functionalization of the family, its strong coordinated expression with genes involved in growth and transport, and the putative classes of TFs responsible for its regulation.
Alphavirus replicon approach to promoterless analysis of IRES elements.
Kamrud, K I; Custer, M; Dudek, J M; Owens, G; Alterson, K D; Lee, J S; Groebner, J L; Smith, J F
2007-04-10
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced >95% compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development.
Alphavirus Replicon Approach to Promoterless Analysis of IRES Elements
Kamrud, K.I.; Custer, M.; Dudek, J.M.; Owens, G.; Alterson, K.D.; Lee, J.S.; Groebner, J.L.; Smith, J.F.
2007-01-01
Here we describe a system for promoterless analysis of putative internal ribosome entry site (IRES) elements using an alphavirus (Family Togaviridae) replicon vector. The system uses the alphavirus subgenomic promoter to produce transcripts that, when modified to contain a spacer region upstream of an IRES element, allow analysis of cap-independent translation of genes of interest (GOI). If the IRES element is removed, translation of the subgenomic transcript can be reduced > 95 % compared to the same transcript containing a functional IRES element. Alphavirus replicons, used in this manner, offer an alternative to standard dicistronic DNA vectors or in-vitro translation systems currently used to analyze putative IRES elements. In addition, protein expression levels varied depending on the spacer element located upstream of each IRES. The ability to modulate the level of expression from alphavirus vectors should extend the utility of these vectors in vaccine development. PMID:17156813
Niederwanger, Michael; Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard
2017-08-11
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata , one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails.
Dvorak, Martin; Schnegg, Raimund; Pedrini-Martha, Veronika; Bacher, Katharina; Bidoli, Massimo; Dallinger, Reinhard
2017-01-01
Metallothioneins (MTs) are low-molecular-mass, cysteine-rich, metal binding proteins. In most animal species, they are involved in metal homeostasis and detoxification, and provide protection from oxidative stress. Gastropod MTs are highly diversified, exhibiting unique features and adaptations like metal specificity and multiplications of their metal binding domains. Here, we show that the MT gene of Biomphalaria glabrata, one of the largest MT genes identified so far, is composed in a unique way. The encoding for an MT protein has a three-domain structure and a C-terminal, Cys-rich extension. Using a bioinformatic approach involving structural and in silico analysis of putative transcription factor binding sites (TFBs), we found that this MT gene consists of five exons and four introns. It exhibits a regulatory promoter region containing three metal-responsive elements (MREs) and several TFBs with putative involvement in environmental stress response, and regulation of gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) data indicate that the MT gene is not inducible by cadmium (Cd) nor by temperature challenges (heat and cold), despite significant Cd uptake within the midgut gland and the high Cd tolerance of metal-exposed snails. PMID:28800079
Isolation and characterization of a water stress-specific genomic gene, pwsi 18, from rice.
Joshee, N; Kisaka, H; Kitagawa, Y
1998-01-01
One of the water stress-specific cDNA clones of rice characterised previously, wsi18, was selected for further study. The wsi18 gene can be induced by water stress conditions such as mannitol, NaCl, and dryness, but not by ABA, cold, or heat. A genomic clone for wsi18, pwsi18, contained about 1.7 kbp of the 5' upstream sequence, two introns, and the full coding sequence. The 5'-upstream sequence of pwsi18 contained putative cis-acting elements, namely an ABA-responsive element (ABRE), three G-boxes, three E-boxes, a MEF-2 sequence, four direct and two inverted repeats, and four sequences similar to DRE, which is involved in the dehydration response of Arabidopsis genes. The gusA reporter gene under the control of the pwsi18 promoter showed transient expression in response to water stress. Deletion of the downstream DRE-like sequence between the distal G-boxes-2 and -3 resulted in rather low GUS expression.
Manavella, Pablo A; Dezar, Carlos A; Ariel, Federico D; Chan, Raquel L
2008-10-01
HAHB4 is a sunflower gene encoding a homeodomain-leucine zipper (HD-Zip) transcription factor. It was previously demonstrated that this gene is regulated at the transcriptional level by several abiotic factors and hormones. A previous analysis in the PLACE database revealed the presence of four putative ABREs. In this work these four elements and also one W-box and two root-specific expression elements were characterized as functional. Site-directed mutagenesis on the promoter, stable transformation of Arabidopis plants as well as transient transformation of sunflower leaves, were performed. The analysis of the transformants was carried out by histochemistry and real time RT-PCR. The results indicate that just one ABRE out of the four is responsible for ABA, NaCl and drought regulation. However, NaCl induction occurs also by an additional ABA-independent way involving another two overlapped ABREs. On the other hand, it was determined that the W-box located 5' upstream is responsive to ethylene and only two root-specific expression elements, among the several detected, are functional but redundant. Conservation of molecular mechanisms between sunflower and Arabidopsis is strongly supported by this experimental work.
Yokoi, Isao; Komatsu, Hidehiko
2010-09-01
Visual grouping of discrete elements is an important function for object recognition. We recently conducted an experiment to study neural correlates of visual grouping. We recorded neuronal activities while monkeys performed a grouping detection task in which they discriminated visual patterns composed of discrete dots arranged in a cross and detected targets in which dots with the same contrast were aligned horizontally or vertically. We found that some neurons in the lateral bank of the intraparietal sulcus exhibit activity related to visual grouping. In the present study, we analyzed how different types of neurons contribute to visual grouping. We classified the recorded neurons as putative pyramidal neurons or putative interneurons, depending on the duration of their action potentials. We found that putative pyramidal neurons exhibited selectivity for the orientation of the target, and this selectivity was enhanced by attention to a particular target orientation. By contrast, putative interneurons responded more strongly to the target stimuli than to the nontargets, regardless of the orientation of the target. These results suggest that different classes of parietal neurons contribute differently to the grouping of discrete elements.
Endogenous Retrovirus 3 – History, Physiology, and Pathology
Bustamante Rivera, Yomara Y.; Brütting, Christine; Schmidt, Caroline; Volkmer, Ines; Staege, Martin S.
2018-01-01
Endogenous viral elements (EVE) seem to be present in all eukaryotic genomes. The composition of EVE varies between different species. The endogenous retrovirus 3 (ERV3) is one of these elements that is present only in humans and other Catarrhini. Conservation of ERV3 in most of the investigated Catarrhini and the expression pattern in normal tissues suggest a putative physiological role of ERV3. On the other hand, ERV3 has been implicated in the pathogenesis of auto-immunity and cancer. In the present review we summarize knowledge about this interesting EVE. We propose the model that expression of ERV3 (and probably other EVE loci) under pathological conditions might be part of a metazoan SOS response. PMID:29379485
Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing
2014-01-01
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein could mediate ABA signaling both in rose and in A. thaliana. PMID:25290154
Jiang, Guimei; Jiang, Xinqiang; Lü, Peitao; Liu, Jitao; Gao, Junping; Zhang, Changqing
2014-01-01
Plant transcription factors involved in stress responses are generally classified by their involvement in either the abscisic acid (ABA)-dependent or the ABA-independent regulatory pathways. A stress-associated NAC gene from rose (Rosa hybrida), RhNAC3, was previously found to increase dehydration tolerance in both rose and Arabidopsis. However, the regulatory mechanism involved in RhNAC3 action is still not fully understood. In this study, we isolated and analyzed the upstream regulatory sequence of RhNAC3 and found many stress-related cis-elements to be present in the promoter, with five ABA-responsive element (ABRE) motifs being of particular interest. Characterization of Arabidopsis thaliana plants transformed with the putative RhNAC3 promoter sequence fused to the β-glucuronidase (GUS) reporter gene revealed that RhNAC3 is expressed at high basal levels in leaf guard cells and in vascular tissues. Moreover, the ABRE motifs in the RhNAC3 promoter were observed to have a cumulative effect on the transcriptional activity of this gene both in the presence and absence of exogenous ABA. Overexpression of RhNAC3 in A. thaliana resulted in ABA hypersensitivity during seed germination and promoted leaf closure after ABA or drought treatments. Additionally, the expression of 11 ABA-responsive genes was induced to a greater degree by dehydration in the transgenic plants overexpressing RhNAC3 than control lines transformed with the vector alone. Further analysis revealed that all these genes contain NAC binding cis-elements in their promoter regions, and RhNAC3 was found to partially bind to these putative NAC recognition sites. We further found that of 219 A. thaliana genes previously shown by microarray analysis to be regulated by heterologous overexpression RhNAC3, 85 are responsive to ABA. In rose, the expression of genes downstream of the ABA-signaling pathways was also repressed in RhNAC3-silenced petals. Taken together, we propose that the rose RhNAC3 protein could mediate ABA signaling both in rose and in A. thaliana.
Modulation of hepatocyte growth factor gene expression by estrogen in mouse ovary.
Liu, Y; Lin, L; Zarnegar, R
1994-09-01
Hepatocyte growth factor (HGF) is expressed in a variety of tissues and cell types under normal conditions and in response to various stimuli such as tissue injury. In the present study, we demonstrate that the transcription of the HGF gene is stimulated by estrogen in mouse ovary. A single injection of 17 beta-estradiol results in a dramatic and transient elevation of the levels of mouse HGF mRNA. Sequence analysis has found that two putative estrogen responsive elements (ERE) reside at -872 in the 5'-flanking region and at +511 in the first intron, respectively, of the mouse HGF gene. To test whether these ERE elements are responsible for estrogen induction of HGF gene expression, chimeric plasmids containing variable regions of the 5'-flanking sequence of HGF gene and the coding region for chloramphenicol acetyltransferase (CAT) gene were transiently transfected into both human endometrial carcinoma RL 95-2 cells and mouse fibroblast NIH 3T3 cells to assess hormone responsiveness. Transfection results indicate that the ERE elements of the mouse HGF gene can confer estrogen action to either homologous or heterologous promoters. Nuclear protein extracts either from RL95-2 cells transfected with the estrogen receptor expression vector or from mouse liver bound in vitro to ERE elements specifically, as shown by band shift assay. Therefore, our results demonstrate that the HGF gene is transcriptionally regulated by estrogen in mouse ovary; and such regulation is mediated via a direct interaction of the estrogen receptor complex with cis-acting ERE elements identified in the mouse HGF gene.
Gonsky, R; Deem, R L; Bream, J H; Young, H A; Targan, S R
2006-07-01
This study examines mucosa-specific regulatory pathways involved in modulation of interferon-gamma (IFN-gamma) in lamina propria T cells. Previous studies identified mucosa-specific CD2 cis-elements within the -204 to -108 bp IFNG promoter. Within this region, a single-site nucleotide polymorphism, -179G/T, imparts tumor necrosis factor-alpha stimulation of IFNG in peripheral blood lymphocytes, and is linked with accelerated AIDS progression. We discovered a putative estrogen response element (ERE) introduced by the -179T, which displays selective activation in peripheral blood mononuclear cells (PBMC) vs lamina propria mononuclear cells (LPMC). Transfection of PBMC with constructs containing the -179G or -179T site revealed CD2-mediated enhancement of the -179T compared to -179G allele, although, in LPMC, a similar level of expression was detected. Electrophoretic mobility shift assay (EMSA) analysis demonstrated CD2-mediated nucleoprotein binding to the -179T but not the -179G in PBMC. In LPMC, binding is constitutive to both -179G and -179T regions. Sequence and EMSA analysis suggests that the -179T allele creates an ERE-like binding site capable of binding recombinant estrogen receptor. Estrogen response element transactivation is enhanced by CD2 signaling, but inhibited by estrogen in PBMC but not in LPMC, although expression of estrogen receptor was similar. This is the first report to describe a potential molecular mechanism responsible for selectively controlling IFN-gamma production in LPMC.
Acosta-MontesdeOca, Adriana; Zariñán, Teresa; Macías, Héctor; Pérez-Solís, Marco A; Ulloa-Aguirre, Alfredo; Gutiérrez-Sagal, Rubén
2012-05-01
To gain further insight on the estrogen-dependent transcriptional regulation of the uteroglobin (UG) gene, we cloned the 5'-flanking region of the UG gene from the phylogenetically ancient volcano rabbit (Romerolagus diazi; Rd). The cloned region spans 812 base pairs (bp; -812/-1) and contains a noncanonical TATA box (TACA). The translation start site is 48 bp downstream from the putative transcription initiation site (AGA), and is preceded by a consensus Kozak box. Comparison of the Rd-UG gene with that previously isolated from rabbits (Oryctolagus cuniculus) showed 93% in sequence identity as well as a number of conserved cis-acting elements, including the estrogen-response element (ERE; -265/-251), which differs from the consensus by two nucleotides. In MCF-7 cells, 17β-estradiol (E(2)) induced transcription of a luciferase reporter driven by the Rd-UG promoter in a similar manner as in an equivalent rabbit UG reporter; the Rd-UG promoter was 30% more responsive to E(2) than the rabbit promoter. Mutagenesis studies on the Rd-ERE confirmed this cis-element as a target of E(2) as two luciferase mutant reporters of the Rd-promoter, one with the rabbit and the other with the consensus ERE, were more responsive to the hormone than the wild-type reporter. Gel shift and super-shift assays showed that estrogen receptor-α indeed binds to the imperfect palindromic sequence of the Rd-ERE. Copyright © 2012 Wiley Periodicals, Inc.
Ross, Christian; Shen, Qingxi J
2006-09-01
Abscisic acid (ABA) is one of the central plant hormones, responsible for controlling both maturation and germination in seeds, as well as mediating adaptive responses to desiccation, injury, and pathogen infection in vegetative tissues. Thorough analyses of two barley genes, HVA1 and HVA22, indicate that their response to ABA relies on the interaction of two cis-acting elements in their promoters, an ABA response element (ABRE) and a coupling element (CE). Together, they form an ABA response promoter complex (ABRC). Comparison of promoters of barley HVA1 and it rice orthologue indicates that the structures and sequences of their ABRCs are highly similar. Prediction of ABA responsive genes in the rice genome is then tractable to a bioinformatics approach based on the structures of the well-defined barley ABRCs. Here we describe a model developed based on the consensus, inter-element spacing and orientations of experimentally determined ABREs and CEs. Our search of the rice promoter database for promoters that fit the model has generated a partial list of genes in rice that have a high likelihood of being involved in the ABA signaling network. The ABA inducibility of some of the rice genes identified was validated with quantitative reverse transcription PCR (QPCR). By limiting our input data to known enhancer modules and experimentally derived rules, we have generated a high confidence subset of ABA-regulated genes. The results suggest that the pathways by which cereals respond to biotic and abiotic stresses overlap significantly, and that regulation is not confined to the level transcription. The large fraction of putative regulatory genes carrying HVA1-like enhancer modules in their promoters suggests the ABA signal enters at multiple points into a complex regulatory network that remains largely unmapped.
García Guerreiro, M P; Fontdevila, A
2007-01-01
A new transposable element, Isis, is identified as a LTR retrotransposon in Drosophila buzzatii. DNA sequence analysis shows that Isis contains three long ORFs similar to gag, pol and env genes of retroviruses. The ORF1 exhibits sequence homology to matrix, capsid and nucleocapsid gag proteins and ORF2 encodes a putative protease (PR), a reverse transcriptase (RT), an Rnase H (RH) and an integrase (IN) region. The analysis of a putative env product, encoded by the env ORF3, shows a degenerated protein containing several stop codons. The molecular study of the putative proteins coded by this new element shows striking similarities to both Ulysses and Osvaldo elements, two LTR retrotransposons, present in D. virilis and D. buzzatii, respectively. Comparisons of the predicted Isis RT to several known retrotransposons show strong phylogenetic relationships to gypsy-like elements, particulary to Ulysses retrotransposon. Studies of Isis chromosomal distribution show a strong hybridization signal in centromeric and pericentromeric regions, and a scattered distribution along all chromosomal arms. The existence of insertional polymorphisms between different strains and high molecular weight bands by Southern blot suggests the existence of full-sized copies that have been active recently. The presence of euchromatic insertion sites coincident between Isis and Osvaldo could indicate preferential insertion sites of Osvaldo element into Isis sequence or vice versa. Moreover, the presence of Isis in different species of the buzzatii complex indicates the ancient origin of this element.
Wang, Wei; Liu, Ji-Hong
2015-01-25
Polyamine oxidases (PAOs) are FAD-dependent enzymes associated with polyamine catabolism. In plants, increasing evidences support that PAO genes play essential roles in abiotic and biotic stresses response. In this study, six putative PAO genes (CsPAO1-CsPAO6) were unraveled in sweet orange (Citrus sinensis) using the released citrus genome sequences. A total of 203 putative cis-regulatory elements involved in hormone and stress response were predicted in 1.5-kb promoter regions at the upstream of CsPAOs. The CsPAOs can be divided into four major groups, with similar organizations with their counterparts of Arabidopsis thaliana. Transcripts of CsPAOs were detected in leaf, stem, cotyledon, and root, with the highest levels detected in the roots. The CsPAOs displayed various responses to exogenous treatments with polyamines and ABA and were differentially altered by abiotic stresses, including cold, salt, and mannitol. Overexpression of CsPAO3 in tobacco demonstrated that spermidine and spermine were decreased in the transgenic line, while putrescine was significantly enhanced, implying a potential role of this gene in polyamine back conversion. These data provide valuable knowledge for understanding the roles of the PAO genes in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Dynamic gene expression changes precede dioxin-induced liver pathogenesis in medaka fish.
Volz, David C; Hinton, David E; Law, J McHugh; Kullman, Seth W
2006-02-01
A major challenge for environmental genomics is linking gene expression to cellular toxicity and morphological alteration. Herein, we address complexities related to hepatic gene expression responses after a single injection of the aryl hydrocarbon receptor (AHR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (dioxin) and illustrate an initial stress response followed by cytologic and adaptive changes in the teleost fish medaka. Using a custom 175-gene array, we find that overall hepatic gene expression and histological changes are strongly dependent on dose and time. The most pronounced dioxin-induced gene expression changes occurred early and preceded morphologic alteration in the liver. Following a systematic search for putative Ah response elements (AHREs) (5'-CACGCA-3') within 2000 bp upstream of the predicted transcriptional start site, the majority (87%) of genes screened in this study did not contain an AHRE, suggesting that gene expression was not solely dependent on AHRE-mediated transcription. Moreover, in the highest dosage, we observed gene expression changes associated with adaptation that persisted for almost two weeks, including induction of a gene putatively identified as ependymin that may function in hepatic injury repair. These data suggest that the cellular response to dioxin involves both AHRE- and non-AHRE-mediated transcription, and that coupling gene expression profiling with analysis of morphologic pathogenesis is essential for establishing temporal relationships between transcriptional changes, toxicity, and adaptation to hepatic injury.
Hemolin-A lepidopteran anti-viral defense factor?
Terenius, Olle
2008-01-01
Immunity in insects has largely focused on responses towards bacteria and fungi, but recently the study of immune responses against viral infections has also received attention. In Lepidoptera, phagocytosis and encapsulation mediated by hemocytes, and apoptosis are part of the response against virus infection; however, many studies also suggest the presence of unknown factors involved in the anti-viral defense. An up-regulation of the lepidopteran-specific pattern recognition protein Hemolin after baculovirus infection in the Chinese oak silkmoth and discovery of putative virus responsive elements in the up-stream regions of Hemolin in the Cecropia moth and the Tobacco horn worm could suggest that Hemolin is involved in virus defense. In this paper, a number of studies investigating baculovirus pathogenesis, and others analyzing Hemolin expression have been revisited leading to the speculation that Hemolin could be engaged in several anti-viral processes.
Ciok, Anna; Adamczuk, Marcin; Bartosik, Dariusz; Dziewit, Lukasz
2016-11-28
Pseudomonas strains isolated from the heavily contaminated Lubin copper mine and Zelazny Most post-flotation waste reservoir in Poland were screened for the presence of integrons. This analysis revealed that two strains carried homologous DNA regions composed of a gene encoding a DNA_BRE_C domain-containing tyrosine recombinase (with no significant sequence similarity to other integrases of integrons) plus a three-component array of putative integron gene cassettes. The predicted gene cassettes encode three putative polypeptides with homology to (i) transmembrane proteins, (ii) GCN5 family acetyltransferases, and (iii) hypothetical proteins of unknown function (homologous proteins are encoded by the gene cassettes of several class 1 integrons). Comparative sequence analyses identified three structural variants of these novel integron-like elements within the sequenced bacterial genomes. Analysis of their distribution revealed that they are found exclusively in strains of the genus Pseudomonas .
NASA Astrophysics Data System (ADS)
Li, Shengjie; Bai, Junjie; Wang, Lin
2008-08-01
Myostatin or GDF-8, a member of the transforming growth factor-β (TGF-β) superfamily, has been demonstrated to be a negative regulator of skeletal muscle mass in mammals. In the present study, we obtained a 5.64 kb sequence of myostatin encoding gene and its promoter from largemouth bass ( Micropterus salmoides). The myostatin encoding gene consisted of three exons (488 bp, 371 bp and 1779 bp, respectively) and two introns (390 bp and 855 bp, respectively). The intron-exon boundaries were conservative in comparison with those of mammalian myostatin encoding genes, whereas the size of introns was smaller than that of mammals. Sequence analysis of 1.569 kb of the largemouth bass myostatin gene promoter region revealed that it contained two TATA boxes, one CAAT box and nine putative E-boxes. Putative muscle growth response elements for myocyte enhancer factor 2 (MEF2), serum response factor (SRF), activator protein 1 (AP1), etc., and muscle-specific Mt binding site (MTBF) were also detected. Some of the transcription factor binding sites were conserved among five teleost species. This information will be useful for studying the transcriptional regulation of myostatin in fish.
Evolution of UCP1 Transcriptional Regulatory Elements Across the Mammalian Phylogeny
Gaudry, Michael J.; Campbell, Kevin L.
2017-01-01
Uncoupling protein 1 (UCP1) permits non-shivering thermogenesis (NST) when highly expressed in brown adipose tissue (BAT) mitochondria. Exclusive to placental mammals, BAT has commonly been regarded to be advantageous for thermoregulation in hibernators, small-bodied species, and the neonates of larger species. While numerous regulatory control motifs associated with UCP1 transcription have been proposed for murid rodents, it remains unclear whether these are conserved across the eutherian mammal phylogeny and hence essential for UCP1 expression. To address this shortcoming, we conducted a broad comparative survey of putative UCP1 transcriptional regulatory elements in 139 mammals (135 eutherians). We find no evidence for presence of a UCP1 enhancer in monotremes and marsupials, supporting the hypothesis that this control region evolved in a stem eutherian ancestor. We additionally reveal that several putative promoter elements (e.g., CRE-4, CCAAT) identified in murid rodents are not conserved among BAT-expressing eutherians, and together with the putative regulatory region (PRR) and CpG island do not appear to be crucial for UCP1 expression. The specificity and importance of the upTRE, dnTRE, URE1, CRE-2, RARE-2, NBRE, BRE-1, and BRE-2 enhancer elements first described from rats and mice are moreover uncertain as these motifs differ substantially—but generally remain highly conserved—in other BAT-expressing eutherians. Other UCP1 enhancer motifs (CRE-3, PPRE, and RARE-3) as well as the TATA box are also highly conserved in nearly all eutherian lineages with an intact UCP1. While these transcriptional regulatory motifs are generally also maintained in species where this gene is pseudogenized, the loss or degeneration of key basal promoter (e.g., TATA box) and enhancer elements in other UCP1-lacking lineages make it unlikely that the enhancer region is pleiotropic (i.e., co-regulates additional genes). Importantly, differential losses of (or mutations within) putative regulatory elements among the eutherian lineages with an intact UCP1 suggests that the transcriptional control of gene expression is not highly conserved in this mammalian clade. PMID:28979209
Quarta, Angela; Mita, Giovanni; Durante, Miriana; Arlorio, Marco; De Paolis, Angelo
2013-07-01
The polyphenol oxidase (PPO) enzyme, which can catalyze the oxidation of phenolics to quinones, has been reported to be involved in undesirable browning in many plant foods. This phenomenon is particularly severe in artichoke heads wounded during the manufacturing process. A full-length cDNA encoding for a putative polyphenol oxidase (designated as CsPPO) along with a 1432 bp sequence upstream of the starting ATG codon was characterized for the first time from [Cynara cardunculus var. scolymus (L.) Fiori]. The 1764 bp CsPPO sequence encodes a putative protein of 587 amino acids with a calculated molecular mass of 65,327 Da and an isoelectric point of 5.50. Analysis of the promoter region revealed the presence of cis-acting elements, some of which are putatively involved in the response to light and wounds. Expression analysis of the gene in wounded capitula indicated that CsPPO was significantly induced after 48 h, even though the browning process had started earlier. This suggests that the early browning event observed in artichoke heads was not directly related to de novo mRNA synthesis. Finally, we provide the complete gene sequence encoding for polyphenol oxidase and the upstream regulative region in artichoke. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Cloning and characterization of the ONAC106 gene from Oryza sativa cultivar Kuku Belang
NASA Astrophysics Data System (ADS)
Basri, Khairunnisa; Sukiran, Noor Liyana; Zainal, Zamri
2016-11-01
Plants possess different mechanisms in stress response, where induction of stress-responsive genes provides tolerance to unfavorable conditions. Stress-responsive genes are characterized for functional and regulatory genes that help in overcoming stress by molecular, biochemical and morphological adaptations. NAC transcription factors are one of the regulatory proteins that involved in stress signaling pathway. A putative NAC transcription factor, ONAC016 was identified from drought transcriptomic data. Our data suggested that ONAC106 was induced by drought, but its function in abiotic stress is still unclear. In silico analysis of ONAC106 showed that this gene encodes 334 amino acids, and its protein consists of NAM (No Apical Meristem) domain. The orthologue of ONAC106 was present in several Poaceae family members, suggesting that ONAC106 is unique to monocot plants only. We found that ONAC106 was induced by salt and cold stresses, indicating that this gene involves in abiotic stress response. In addition, we also found that ONAC106 might function in defense response to pathogen invasion. The ABRE (Abscisic Acid Regulatory Element) cis-element was identified in the promoter region of ONAC106, suggesting that it may involve in the abscisic acid (ABA)-dependent signaling pathway. Based on this preliminary result, we hypothesize that ONAC106 may play a role in abiotic stress response by regulating ABA-responsive genes.
Łochowska, Anna; Iwanicka-Nowicka, Roksana; Zielak, Agata; Modelewska, Anna; Thomas, Mark S.; Hryniewicz, Monika M.
2011-01-01
The genome of Burkholderia cenocepacia contains two genes encoding closely related LysR-type transcriptional regulators, CysB and SsuR, involved in control of sulfur assimilation processes. In this study we show that the function of SsuR is essential for the utilization of a number of organic sulfur sources of either environmental or human origin. Among the genes upregulated by SsuR identified here are the tauABC operon encoding a predicted taurine transporter, three tauD-type genes encoding putative taurine dioxygenases, and atsA encoding a putative arylsulfatase. The role of SsuR in expression of these genes/operons was characterized through (i) construction of transcriptional reporter fusions to candidate promoter regions and analysis of their expression in the presence/absence of SsuR and (ii) testing the ability of SsuR to bind SsuR-responsive promoter regions. We also demonstrate that expression of SsuR-activated genes is not repressed in the presence of inorganic sulfate. A more detailed analysis of four SsuR-responsive promoter regions indicated that ∼44 bp of the DNA sequence preceding and/or overlapping the predicted −35 element of such promoters is sufficient for SsuR binding. The DNA sequence homology among SsuR “recognition motifs” at different responsive promoters appears to be limited. PMID:21317335
The association of air temperature with cardiac arrhythmias
NASA Astrophysics Data System (ADS)
Čulić, Viktor
2017-11-01
The body response to meteorological influences may activate pathophysiological mechanisms facilitating the occurrence of cardiac arrhythmias in susceptible patients. Putative underlying mechanisms include changes in systemic vascular resistance and blood pressure, as well as a network of proinflammatory and procoagulant processes. Such a chain reaction probably occurs within the time window of several hours, so use of daily average values of meteorological elements do not seem appropriate for investigation in this area. In addition, overall synoptic situation, and season-specific combinations of meteorological elements and air pollutant levels probably cause the overall effect rather than a single atmospheric element. Particularly strong interrelations have been described among wind speed, air pressure and temperature, relative air humidity, and suspended particulate matter. This may be the main reason why studies examining the association between temperature and ventricular arrhythmias have found linear positive, negative, J-shaped or no association. Further understanding of the pathophysiological adaptation to atmospheric environment may help in providing recommendations for protective measures during "bad" weather conditions in patients with cardiac arrhythmias.
The beginning of kinesin's force-generating cycle visualized at 9-Å resolution
Sindelar, Charles V.; Downing, Kenneth H.
2007-01-01
We have used cryo-electron microscopy of kinesin-decorated microtubules to resolve the structure of the motor protein kinesin's crucial nucleotide response elements, switch I and the switch II helix, in kinesin's poorly understood nucleotide-free state. Both of the switch elements undergo conformational change relative to the microtubule-free state. The changes in switch I suggest a role for it in “ejecting” adenosine diphosphate when kinesin initially binds to the microtubule. The switch II helix has an N-terminal extension, apparently stabilized by conserved microtubule contacts, implying a microtubule activation mechanism that could convey the state of the bound nucleotide to kinesin's putative force-delivering element (the “neck linker”). In deriving this structure, we have adapted an image-processing technique, single-particle reconstruction, for analyzing decorated microtubules. The resulting reconstruction visualizes the asymmetric seam present in native, 13-protofilament microtubules, and this method will provide an avenue to higher-resolution characterization of a variety of microtubule- binding proteins, as well as the microtubule itself. PMID:17470637
Computational methods in sequence and structure prediction
NASA Astrophysics Data System (ADS)
Lang, Caiyi
This dissertation is organized into two parts. In the first part, we will discuss three computational methods for cis-regulatory element recognition in three different gene regulatory networks as the following: (a) Using a comprehensive "Phylogenetic Footprinting Comparison" method, we will investigate the promoter sequence structures of three enzymes (PAL, CHS and DFR) that catalyze sequential steps in the pathway from phenylalanine to anthocyanins in plants. Our result shows there exists a putative cis-regulatory element "AC(C/G)TAC(C)" in the upstream of these enzyme genes. We propose this cis-regulatory element to be responsible for the genetic regulation of these three enzymes and this element, might also be the binding site for MYB class transcription factor PAP1. (b) We will investigate the role of the Arabidopsis gene glutamate receptor 1.1 (AtGLR1.1) in C and N metabolism by utilizing the microarray data we obtained from AtGLR1.1 deficient lines (antiAtGLR1.1). We focus our investigation on the putatively co-regulated transcript profile of 876 genes we have collected in antiAtGLR1.1 lines. By (a) scanning the occurrence of several groups of known abscisic acid (ABA) related cisregulatory elements in the upstream regions of 876 Arabidopsis genes; and (b) exhaustive scanning of all possible 6-10 bps motif occurrence in the upstream regions of the same set of genes, we are able to make a quantative estimation on the enrichment level of each of the cis-regulatory element candidates. We finally conclude that one specific cis-regulatory element group, called "ABRE" elements, are statistically highly enriched within the 876-gene group as compared to their occurrence within the genome. (c) We will introduce a new general purpose algorithm, called "fuzzy REDUCE1", which we have developed recently for automated cis-regulatory element identification. In the second part, we will discuss our newly devised protein design framework. With this framework we have developed a software package which is capable of designing novel protein structures at the atomic resolution. This software package allows us to perform protein structure design with a flexible backbone. The backbone flexibility includes loop region relaxation as well as a secondary structure collective mode relaxation scheme. (Abstract shortened by UMI.)
Identification and characterization of cell-specific enhancer elements for the mouse ETF/Tead2 gene.
Tanoue, Y; Yasunami, M; Suzuki, K; Ohkubo, H
2001-12-21
We have identified and characterized by transient transfection assays the cell-specific 117-bp enhancer sequence in the first intron of the mouse ETF (Embryonic TEA domain-containing factor)/Tead2 gene required for transcriptional activation in ETF/Tead2 gene-expressing cells, such as P19 cells. The 117-bp enhancer contains one GC-rich sequence (5'-GGGGCGGGG-3'), termed the GC box, and two tandemly repeated GA-rich sequences (5'-GGGGGAGGGG-3'), termed the proximal and distal GA elements. Further analyses, including transfection studies and electrophoretic mobility shift assays using a series of deletion and mutation constructs, indicated that Sp1, a putative activator, may be required to predominate over its competition with another unknown putative repressor, termed the GA element-binding factor, for binding to both the GC box, which overlapped with the proximal GA element, and the distal GA element in the 117-bp sequence in order to achieve a full enhancer activity. We also discuss a possible mechanism underlying the cell-specific enhancer activity of the 117-bp sequence.
Luis F. Larrondo; Paulo Canessa; Rafael Vicuna; Philip Stewart; Amber Vanden Wymelenberg; Dan Cullen
2007-01-01
We describe the structure, organization, and transcriptional impact of repetitive elements within the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Searches of the P. chrysosporium genome revealed five copies of pce1, a 1,750-nt non-autonomous, class II element. Alleles encoding a putative glucosyltransferase and a cytochrome P450 harbor pce insertions...
de Vega-Bartol, José J; Simões, Marta; Lorenz, W Walter; Rodrigues, Andreia S; Alba, Rob; Dean, Jeffrey F D; Miguel, Célia M
2013-08-30
It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms.
2013-01-01
Background It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and gymnosperms result from differential gene regulation. To address this issue, we have performed the first transcriptomic analysis of zygotic embryo development in a conifer species (Pinus pinaster) focusing our study in particular on regulatory genes playing important roles during plant embryo development, namely epigenetic regulators and transcription factors. Results Microarray analysis of P. pinaster zygotic embryogenesis was performed at five periods of embryo development from early developing to mature embryos. Our results show that most changes in transcript levels occurred in the first and the last embryo stage-to-stage transitions, namely early to pre-cotyledonary embryo and cotyledonary to mature embryo. An analysis of functional categories for genes that were differentially expressed through embryogenesis highlighted several epigenetic regulation mechanisms. While putative orthologs of transcripts associated with mechanisms that target transposable elements and repetitive sequences were strongly expressed in early embryogenesis, PRC2-mediated repression of genes seemed more relevant during late embryogenesis. On the other hand, functions related to sRNA pathways appeared differentially regulated across all stages of embryo development with a prevalence of miRNA functions in mid to late embryogenesis. Identification of putative transcription factor genes differentially regulated between consecutive embryo stages was strongly suggestive of the relevance of auxin responses and regulation of auxin carriers during early embryogenesis. Such responses could be involved in establishing embryo patterning. Later in development, transcripts with homology to genes acting on modulation of auxin flow and determination of adaxial-abaxial polarity were up-regulated, as were putative orthologs of genes required for meristem formation and function as well as establishment of organ boundaries. Comparative analysis with A. thaliana embryogenesis also highlighted genes involved in auxin-mediated responses, as well as epigenetic regulation, indicating highly correlated transcript profiles between the two species. Conclusions This is the first report of a time-course transcriptomic analysis of zygotic embryogenesis in a conifer. Taken together our results show that epigenetic regulation and transcriptional control related to auxin transport and response are critical during early to mid stages of pine embryogenesis and that important events during embryogenesis seem to be coordinated by putative orthologs of major developmental regulators in angiosperms. PMID:23987738
Feltus, F A; Groner, B; Melner, M H
1999-07-01
Altered PRL levels are associated with infertility in women. Molecular targets at which PRL elicits these effects have yet to be determined. These studies demonstrate transcriptional regulation by PRL of the gene encoding the final enzymatic step in progesterone biosynthesis: 3beta-hydroxysteroid dehydrogenase/delta5-delta4 isomerase (3beta-HSD). A 9/9 match with the consensus Stat5 response element was identified at -110 to -118 in the human Type II 3beta-HSD promoter. 3beta-HSD chloramphenicol acetyltransferase (CAT) reporter constructs containing either an intact or mutated Stat5 element were tested for PRL activation. Expression vectors for Stat5 and the PRL receptor were cotransfected with a -300 --> +45 3beta-HSD CAT reporter construct into HeLa cells, which resulted in a 21-fold increase in reporter activity in the presence of PRL. Promoter activity showed an increased response with a stepwise elevation of transfected Stat5 expression or by treatment with increasing concentrations of PRL (max, 250 ng/ml). This effect was dramatically reduced when the putative Stat5 response element was removed by 5'-deletion of the promoter or by the introduction of a 3-bp mutation into critical nucleotides in the element. Furthermore, 32P-labeled promoter fragments containing the Stat5 element were shifted in electrophoretic mobility shift assay experiments using nuclear extracts from cells treated with PRL, and this complex was supershifted with antibodies to Stat5. These results demonstrate that PRL has the ability to regulate expression of a key human enzyme gene (type II 3beta-HSD) in the progesterone biosynthetic pathway, which is essential for maintaining pregnancy.
Zhao, Danying; Shen, Lin; Fan, Bei; Yu, Mengmeng; Zheng, Yang; Lv, Shengnan; Sheng, Jiping
2009-10-20
C-repeat/dehydration-responsive element binding factor (CBF) is a transcription factor regulating cold response in plants, of which little is known in fruits. We showed a double-peak expression pattern of Lycopersicon esculentum putative transcriptional activator CBF1 (LeCBF1) in mature green fruit. The peaks appeared at 2 and 16 h after subjection to cold storage (2 degrees C). The second peak was coincident with, and thus caused by a peak in endogenous ethylene production. We showed that LeCBF1 expression was regulated by exogenous ethylene and 1-methylcyclopropene, and was not expressed without cold induction. LeCBF1 expression was different in the five maturation stages of fruits, but expression peaked at 2 h at all stages.
Gravity-regulated gene expression in Arabidopsis thaliana
NASA Astrophysics Data System (ADS)
Sederoff, Heike; Brown, Christopher S.; Heber, Steffen; Kajla, Jyoti D.; Kumar, Sandeep; Lomax, Terri L.; Wheeler, Benjamin; Yalamanchili, Roopa
Plant growth and development is regulated by changes in environmental signals. Plants sense environmental changes and respond to them by modifying gene expression programs to ad-just cell growth, differentiation, and metabolism. Functional expression of genes comprises many different processes including transcription, translation, post-transcriptional and post-translational modifications, as well as the degradation of RNA and proteins. Recently, it was discovered that small RNAs (sRNA, 18-24 nucleotides long), which are heritable and systemic, are key elements in regulating gene expression in response to biotic and abiotic changes. Sev-eral different classes of sRNAs have been identified that are part of a non-cell autonomous and phloem-mobile network of regulators affecting transcript stability, translational kinetics, and DNA methylation patterns responsible for heritable transcriptional silencing (epigenetics). Our research has focused on gene expression changes in response to gravistimulation of Arabidopsis roots. Using high-throughput technologies including microarrays and 454 sequencing, we iden-tified rapid changes in transcript abundance of genes as well as differential expression of small RNA in Arabidopsis root apices after minutes of reorientation. Some of the differentially regu-lated transcripts are encoded by genes that are important for the bending response. Functional mutants of those genes respond faster to reorientation than the respective wild type plants, indicating that these proteins are repressors of differential cell elongation. We compared the gravity responsive sRNAs to the changes in transcript abundances of their putative targets and identified several potential miRNA: target pairs. Currently, we are using mutant and transgenic Arabidopsis plants to characterize the function of those miRNAs and their putative targets in gravitropic and phototropic responses in Arabidopsis.
A Role for the GCC-Box in Jasmonate-Mediated Activation of the PDF1.2 Gene of Arabidopsis1
Brown, Rebecca L.; Kazan, Kemal; McGrath, Ken C.; Maclean, Don J.; Manners, John M.
2003-01-01
The PDF1.2 gene of Arabidopsis encoding a plant defensin is commonly used as a marker for characterization of the jasmonate-dependent defense responses. Here, using PDF1.2 promoter-deletion lines linked to the β-glucoronidase-reporter gene, we examined putative promoter elements associated with jasmonate-responsive expression of this gene. Using stably transformed plants, we first characterized the extended promoter region that positively regulates basal expression from the PDF1.2 promoter. Second, using promoter deletion constructs including one from which the GCC-box region was deleted, we observed a substantially lower response to jasmonate than lines carrying this motif. In addition, point mutations introduced into the core GCC-box sequence substantially reduced jasmonate responsiveness, whereas addition of a 20-nucleotide-long promoter element carrying the core GCC-box and flanking nucleotides provided jasmonate responsiveness to a 35S minimal promoter. Taken together, these results indicated that the GCC-box plays a key role in conferring jasmonate responsiveness to the PDF1.2 promoter. However, deletion or specific mutations introduced into the core GCC-box did not completely abolish the jasmonate responsiveness of the promoter, suggesting that the other promoter elements lying downstream from the GCC-box region may also contribute to jasmonate responsiveness. In other experiments, we identified a jasmonate- and pathogen-responsive ethylene response factor transcription factor, AtERF2, which when overexpressed in transgenic Arabidopsis plants activated transcription from the PDF1.2, Thi2.1, and PR4 (basic chitinase) genes, all of which contain a GCC-box sequence in their promoters. Our results suggest that in addition to their roles in regulating ethylene-mediated gene expression, ethylene response factors also appear to play important roles in regulating jasmonate-responsive gene expression, possibly via interaction with the GCC-box. PMID:12805630
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Kalari Satish; Ravi Kumar, B.; Siddavattam, Dayananda
2006-07-07
In continuation of our recent observations indicating the presence of a lone calcineurin-dependent response element (CDRE) in the -3730 bp upstream region of copper-induced metallothionein (CuMT) gene of Neurospora [K.S. Kumar, S. Dayananda, C. Subramanyam, Copper alone, but not oxidative stress, induces copper-metallothionein gene in Neurospora crassa, FEMS Microbiol. Lett. 242 (2005) 45-50], we isolated and characterized the CDRE-binding protein. The cloned upstream region of CuMT gene was used as the template to specifically amplify CDRE element, which was immobilized on CNBr-activated Sepharose 4B for use as the affinity matrix to purify the CDRE binding protein from nuclear extracts obtainedmore » from Neurospora cultures grown in presence of copper. Two-dimensional gel electrophoresis of the affinity purified protein revealed the presence of a single 17 kDa protein, which was identified and characterized by MALDI-TOF. Peptide mass finger printing of tryptic digests and analysis of the 17 kDa protein matched with the regulatory {beta}-subunit of calcineurin (Ca{sup 2+}-calmodulin dependent protein phosphatase). Parallel identification of nuclear localization signals in this protein by in silico analysis suggests a putative role for calcineurin in the regulation of CuMT gene expression.« less
Sugar regulation of SUGAR TRANSPORTER PROTEIN 1 (STP1) expression in Arabidopsis thaliana
Cordoba, Elizabeth; Aceves-Zamudio, Denise Lizeth; Hernández-Bernal, Alma Fabiola; Ramos-Vega, Maricela; León, Patricia
2015-01-01
Sugars regulate the expression of many genes at the transcriptional level. In Arabidopsis thaliana, sugars induce or repress the expression of >1800 genes, including the STP1 (SUGAR TRANSPORTER PROTEIN 1) gene, which encodes an H+/monosaccharide cotransporter. STP1 transcript levels decrease more rapidly after the addition of low concentrations of sugars than the levels of other repressed genes, such as DIN6 (DARK-INDUCED 6). We found that this regulation is exerted at the transcriptional level and is initiated by phosphorylatable sugars. Interestingly, the sugar signal that modulates STP1 expression is transmitted through a HEXOKINASE 1-independent signalling pathway. Finally, analysis of the STP1 5′ regulatory region allowed us to delimit a region of 309bp that contains the cis elements implicated in the glucose regulation of STP1 expression. Putative cis-acting elements involved in this response were identified. PMID:25281700
Bu, Huajie; Narisu, Narisu; Schlick, Bettina; Rainer, Johannes; Manke, Thomas; Schäfer, Georg; Pasqualini, Lorenza; Chines, Peter; Schweiger, Michal R.; Fuchsberger, Christian
2015-01-01
ABSTRACT Genome‐wide association studies have identified genomic loci, whose single‐nucleotide polymorphisms (SNPs) predispose to prostate cancer (PCa). However, the mechanisms of most of these variants are largely unknown. We integrated chromatin‐immunoprecipitation‐coupled sequencing and microarray expression profiling in TMPRSS2‐ERG gene rearrangement positive DUCaP cells with the GWAS PCa risk SNPs catalog to identify disease susceptibility SNPs localized within functional androgen receptor‐binding sites (ARBSs). Among the 48 GWAS index risk SNPs and 3,917 linked SNPs, 80 were found located in ARBSs. Of these, rs11891426:T>G in an intron of the melanophilin gene (MLPH) was within a novel putative auxiliary AR‐binding motif, which is enriched in the neighborhood of canonical androgen‐responsive elements. T→G exchange attenuated the transcriptional activity of the ARBS in an AR reporter gene assay. The expression of MLPH in primary prostate tumors was significantly lower in those with the G compared with the T allele and correlated significantly with AR protein. Higher melanophilin level in prostate tissue of patients with a favorable PCa risk profile points out a tumor‐suppressive effect. These results unravel a hidden link between AR and a functional putative PCa risk SNP, whose allele alteration affects androgen regulation of its host gene MLPH. PMID:26411452
Transcriptional Regulatory Network Analysis of MYB Transcription Factor Family Genes in Rice.
Smita, Shuchi; Katiyar, Amit; Chinnusamy, Viswanathan; Pandey, Dev M; Bansal, Kailash C
2015-01-01
MYB transcription factor (TF) is one of the largest TF families and regulates defense responses to various stresses, hormone signaling as well as many metabolic and developmental processes in plants. Understanding these regulatory hierarchies of gene expression networks in response to developmental and environmental cues is a major challenge due to the complex interactions between the genetic elements. Correlation analyses are useful to unravel co-regulated gene pairs governing biological process as well as identification of new candidate hub genes in response to these complex processes. High throughput expression profiling data are highly useful for construction of co-expression networks. In the present study, we utilized transcriptome data for comprehensive regulatory network studies of MYB TFs by "top-down" and "guide-gene" approaches. More than 50% of OsMYBs were strongly correlated under 50 experimental conditions with 51 hub genes via "top-down" approach. Further, clusters were identified using Markov Clustering (MCL). To maximize the clustering performance, parameter evaluation of the MCL inflation score (I) was performed in terms of enriched GO categories by measuring F-score. Comparison of co-expressed cluster and clads analyzed from phylogenetic analysis signifies their evolutionarily conserved co-regulatory role. We utilized compendium of known interaction and biological role with Gene Ontology enrichment analysis to hypothesize function of coexpressed OsMYBs. In the other part, the transcriptional regulatory network analysis by "guide-gene" approach revealed 40 putative targets of 26 OsMYB TF hubs with high correlation value utilizing 815 microarray data. The putative targets with MYB-binding cis-elements enrichment in their promoter region, functional co-occurrence as well as nuclear localization supports our finding. Specially, enrichment of MYB binding regions involved in drought-inducibility implying their regulatory role in drought response in rice. Thus, the co-regulatory network analysis facilitated the identification of complex OsMYB regulatory networks, and candidate target regulon genes of selected guide MYB genes. The results contribute to the candidate gene screening, and experimentally testable hypotheses for potential regulatory MYB TFs, and their targets under stress conditions.
Assessment of the Requirements for Magnesium Transporters in Bacillus subtilis
Wakeman, Catherine A.; Goodson, Jonathan R.; Zacharia, Vineetha M.
2014-01-01
Magnesium is the most abundant divalent metal in cells and is required for many structural and enzymatic functions. For bacteria, at least three families of proteins function as magnesium transporters. In recent years, it has been shown that a subset of these transport proteins is regulated by magnesium-responsive genetic control elements. In this study, we investigated the cellular requirements for magnesium homeostasis in the model microorganism Bacillus subtilis. Putative magnesium transporter genes were mutationally disrupted, singly and in combination, in order to assess their general importance. Mutation of only one of these genes resulted in strong dependency on supplemental extracellular magnesium. Notably, this transporter gene, mgtE, is known to be under magnesium-responsive genetic regulatory control. This suggests that the identification of magnesium-responsive genetic mechanisms may generally denote primary transport proteins for bacteria. To investigate whether B. subtilis encodes yet additional classes of transport mechanisms, suppressor strains that permitted the growth of a transporter-defective mutant were identified. Several of these strains were sequenced to determine the genetic basis of the suppressor phenotypes. None of these mutations occurred in transport protein homologues; instead, they affected housekeeping functions, such as signal recognition particle components and ATP synthase machinery. From these aggregate data, we speculate that the mgtE protein provides the primary route of magnesium import in B. subtilis and that the other putative transport proteins are likely to be utilized for more-specialized growth conditions. PMID:24415722
USDA-ARS?s Scientific Manuscript database
A transient in vivo P element excision assay was used to test the regulatory properties of putative repressor-encoding plasmids in Drosophila melanogaster embryos. The somatic expression of an unmodified transposase transcription unit under the control of a heat shock gene promoter (phsn) effectivel...
Jie Jin, Feng; Hara, Seiichi; Sato, Atsushi; Koyama, Yasuji
2014-01-01
Wild-type Aspergillus oryzae RIB40 contains two copies of the AO090005001597 gene. We previously constructed A. oryzae RIB40 strain, RKuAF8B, with multiple chromosomal deletions, in which the AO090005001597 copy number was found to be increased significantly. Sequence analysis indicated that AO090005001597 is part of a putative 6,000-bp retrotransposable element, flanked by two long terminal repeats (LTRs) of 669 bp, with characteristics of retroviruses and retrotransposons, and thus designated AoLTR (A. oryzae LTR-retrotransposable element). AoLTR comprised putative reverse transcriptase, RNase H, and integrase domains. The deduced amino acid sequence alignment of AoLTR showed 94% overall identity with AFLAV, an A. flavus Tf1/sushi retrotransposon. Quantitative real-time RT-PCR showed that AoLTR gene expression was significantly increased in the RKuAF8B, in accordance with the increased copy number. Inverse PCR indicated that the full-length retrotransposable element was randomly integrated into multiple genomic locations. However, no obvious phenotypic changes were associated with the increased AoLTR gene copy number.
Structure, Regulation, and Putative Function of the Arginine Deiminase System of Streptococcus suis
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative β-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions. PMID:16385025
Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis.
Gruening, Petra; Fulde, Marcus; Valentin-Weigand, Peter; Goethe, Ralph
2006-01-01
Streptococcus suis is an important cause of infectious diseases in young pigs. Little is known about the virulence factors or protective antigens of S. suis. Recently, we have identified two proteins of the arginine deiminase system (ADS) of S. suis, which were temperature induced and expressed on the streptococcal surface (N. Winterhoff, R. Goethe, P. Gruening, M. Rohde, H. Kalisz, H. E. Smith, and P. Valentin-Weigand, J. Bacteriol. 184:6768-6776, 2002). In the present study, we analyzed the complete ADS of S. suis. Due to their homologies to the recently published S. gordonii ADS genes, the genes for arginine deiminase, ornithine carbamoyl-transferase, and carbamate kinase, which were previously designated adiS, octS, and ckS, respectively, were renamed arcA, arcB, and arcC, respectively. Our data revealed that arcA, arcB, and arcC of the S. suis ADS are transcribed from an operon (arcABC operon). Additionally, putative ADS-associated genes were cloned and sequenced which, however, did not belong to the arcABC operon. These were the flpS gene upstream of the arcABC operon with homology to the flp transcription regulator of S. gordonii and the arcD, arcT, arcH, and argR genes downstream of the arcABC operon with high homologies to a putative arginine-ornithine antiporter, a putative dipeptidase of S. gordonii, a putative beta-N-acetylhexosaminidase of S. pneumoniae, and a putative arginine repressor of S. gordonii, respectively. The transcriptional start point of the arcABC operon was determined, and promoter analysis provided evidence that multiple factors contribute to the regulation of the ADS. Thus, a putative binding site for a transcription regulator of the Crp/Fnr family, an ArgR-binding site, and two cis-acting catabolite response elements were identified in the promoter-operator region of the operon. Consistent with this, we could demonstrate that the ADS of S. suis is inducible by arginine and reduced O2 tension and subject to carbon catabolite repression. Furthermore, comparing an arcA knockout mutant in which expression of the three operon-encoded proteins was abolished with the parental wild-type strain showed that the arcABC operon of S. suis contributes to survival under acidic conditions.
Vischi Winck, Flavia; Arvidsson, Samuel; Riaño-Pachón, Diego Mauricio; Hempel, Sabrina; Koseska, Aneta; Nikoloski, Zoran; Urbina Gomez, David Alejandro; Rupprecht, Jens; Mueller-Roeber, Bernd
2013-01-01
The unicellular green alga Chlamydomonas reinhardtii is a long-established model organism for studies on photosynthesis and carbon metabolism-related physiology. Under conditions of air-level carbon dioxide concentration [CO2], a carbon concentrating mechanism (CCM) is induced to facilitate cellular carbon uptake. CCM increases the availability of carbon dioxide at the site of cellular carbon fixation. To improve our understanding of the transcriptional control of the CCM, we employed FAIRE-seq (formaldehyde-assisted Isolation of Regulatory Elements, followed by deep sequencing) to determine nucleosome-depleted chromatin regions of algal cells subjected to carbon deprivation. Our FAIRE data recapitulated the positions of known regulatory elements in the promoter of the periplasmic carbonic anhydrase (Cah1) gene, which is upregulated during CCM induction, and revealed new candidate regulatory elements at a genome-wide scale. In addition, time series expression patterns of 130 transcription factor (TF) and transcription regulator (TR) genes were obtained for cells cultured under photoautotrophic condition and subjected to a shift from high to low [CO2]. Groups of co-expressed genes were identified and a putative directed gene-regulatory network underlying the CCM was reconstructed from the gene expression data using the recently developed IOTA (inner composition alignment) method. Among the candidate regulatory genes, two members of the MYB-related TF family, Lcr1 (Low-CO 2 response regulator 1) and Lcr2 (Low-CO 2 response regulator 2), may play an important role in down-regulating the expression of a particular set of TF and TR genes in response to low [CO2]. The results obtained provide new insights into the transcriptional control of the CCM and revealed more than 60 new candidate regulatory genes. Deep sequencing of nucleosome-depleted genomic regions indicated the presence of new, previously unknown regulatory elements in the C. reinhardtii genome. Our work can serve as a basis for future functional studies of transcriptional regulator genes and genomic regulatory elements in Chlamydomonas. PMID:24224019
Arloth, Janine; Bogdan, Ryan; Weber, Peter; Frishman, Goar; Menke, Andreas; Wagner, Klaus V.; Balsevich, Georgia; Schmidt, Mathias V.; Karbalai, Nazanin; Czamara, Darina; Altmann, Andre; Trümbach, Dietrich; Wurst, Wolfgang; Mehta, Divya; Uhr, Manfred; Klengel, Torsten; Erhardt, Angelika; Carey, Caitlin E.; Conley, Emily Drabant; Ripke, Stephan; Wray, Naomi R.; Lewis, Cathryn M.; Hamilton, Steven P.; Weissman, Myrna M.; Breen, Gerome; Byrne, Enda M.; Blackwood, Douglas H.R.; Boomsma, Dorret I.; Cichon, Sven; Heath, Andrew C.; Holsboer, Florian; Lucae, Susanne; Madden, Pamela A.F.; Martin, Nicholas G.; McGuffin, Peter; Muglia, Pierandrea; Noethen, Markus M.; Penninx, Brenda P.; Pergadia, Michele L.; Potash, James B.; Rietschel, Marcella; Lin, Danyu; Müller-Myhsok, Bertram; Shi, Jianxin; Steinberg, Stacy; Grabe, Hans J.; Lichtenstein, Paul; Magnusson, Patrik; Perlis, Roy H.; Preisig, Martin; Smoller, Jordan W.; Stefansson, Kari; Uher, Rudolf; Kutalik, Zoltan; Tansey, Katherine E.; Teumer, Alexander; Viktorin, Alexander; Barnes, Michael R.; Bettecken, Thomas; Binder, Elisabeth B.; Breuer, René; Castro, Victor M.; Churchill, Susanne E.; Coryell, William H.; Craddock, Nick; Craig, Ian W.; Czamara, Darina; De Geus, Eco J.; Degenhardt, Franziska; Farmer, Anne E.; Fava, Maurizio; Frank, Josef; Gainer, Vivian S.; Gallagher, Patience J.; Gordon, Scott D.; Goryachev, Sergey; Gross, Magdalena; Guipponi, Michel; Henders, Anjali K.; Herms, Stefan; Hickie, Ian B.; Hoefels, Susanne; Hoogendijk, Witte; Hottenga, Jouke Jan; Iosifescu, Dan V.; Ising, Marcus; Jones, Ian; Jones, Lisa; Jung-Ying, Tzeng; Knowles, James A.; Kohane, Isaac S.; Kohli, Martin A.; Korszun, Ania; Landen, Mikael; Lawson, William B.; Lewis, Glyn; MacIntyre, Donald; Maier, Wolfgang; Mattheisen, Manuel; McGrath, Patrick J.; McIntosh, Andrew; McLean, Alan; Middeldorp, Christel M.; Middleton, Lefkos; Montgomery, Grant M.; Murphy, Shawn N.; Nauck, Matthias; Nolen, Willem A.; Nyholt, Dale R.; O’Donovan, Michael; Oskarsson, Högni; Pedersen, Nancy; Scheftner, William A.; Schulz, Andrea; Schulze, Thomas G.; Shyn, Stanley I.; Sigurdsson, Engilbert; Slager, Susan L.; Smit, Johannes H.; Stefansson, Hreinn; Steffens, Michael; Thorgeirsson, Thorgeir; Tozzi, Federica; Treutlein, Jens; Uhr, Manfred; van den Oord, Edwin J.C.G.; Van Grootheest, Gerard; Völzke, Henry; Weilburg, Jeffrey B.; Willemsen, Gonneke; Zitman, Frans G.; Neale, Benjamin; Daly, Mark; Levinson, Douglas F.; Sullivan, Patrick F.; Ruepp, Andreas; Müller-Myhsok, Bertram; Hariri, Ahmad R.; Binder, Elisabeth B.
2015-01-01
Summary Depression risk is exacerbated by genetic factors and stress exposure; however, the biological mechanisms through which these factors interact to confer depression risk are poorly understood. One putative biological mechanism implicates variability in the ability of cortisol, released in response to stress, to trigger a cascade of adaptive genomic and non-genomic processes through glucocorticoid receptor (GR) activation. Here, we demonstrate that common genetic variants in long-range enhancer elements modulate the immediate transcriptional response to GR activation in human blood cells. These functional genetic variants increase risk for depression and co-heritable psychiatric disorders. Moreover, these risk variants are associated with inappropriate amygdala reactivity, a transdiagnostic psychiatric endophenotype and an important stress hormone response trigger. Network modeling and animal experiments suggest that these genetic differences in GR-induced transcriptional activation may mediate the risk for depression and other psychiatric disorders by altering a network of functionally related stress-sensitive genes in blood and brain. Video Abstract PMID:26050039
Knörr-Wittmann, Constanze; Hengstermann, Arnd; Gebel, Stephan; Alam, Jawed; Müller, Thomas
2005-12-01
Cigarette smoke (CS) is a complex chemical mixture estimated to be composed of up to 5000 different chemicals, many of which are prooxidant. Here we show that, at least in vitro, the cellular response designed to combat oxidative stress resulting from CS exposure is primarily controlled by the transcription factor Nrf2, a principal inducer of antioxidant and phase II-related genes. The prominent role of Nrf2 in the cellular response to CS is substantiated by the following observations: In NIH3T3 cells exposed to aqueous extracts of CS (i) Nrf2 is strongly stabilized and becomes detectable in nuclear extracts. (ii) Nuclear localization of Nrf2 coincides with increased DNA binding of a putative Nrf2/MafK heterodimer to its cognate cis-regulatory site, i.e., the antioxidant-responsive element (ARE). (iii) Studies on the regulatory elements of the oxidative stress-inducible gene heme oxygenase-1 (hmox1) using various hmox1 promoter/luciferase reporter constructs revealed that the strong CS-dependent expression of this gene is primarily governed by the distal enhancers 1 ("E1") and 2 ("E2"), which both contain three canonical ARE-like stress-responsive elements (StREs). Notably, depletion of Nrf2 levels caused by RNA interference significantly compromised CS-induced hmox1 promoter activation, based on the distinct Nrf2 sensitivity exhibited by E1 and E2. Finally, (iv) siRNA-dependent knock-down of Nrf2 completely abrogated CS-induced expression of phase II-related genes. Taken together, these results confirm the outstanding role of Nrf2 both in sensing (oxidant) stress and in orchestrating an efficient transcriptional response aimed at resolving the stressing conditions.
2013-01-01
Background Bacteria and archaea develop immunity against invading genomes by incorporating pieces of the invaders' sequences, called spacers, into a clustered regularly interspaced short palindromic repeats (CRISPR) locus between repeats, forming arrays of repeat-spacer units. When spacers are expressed, they direct CRISPR-associated (Cas) proteins to silence complementary invading DNA. In order to characterize the invaders of human microbiomes, we use spacers from CRISPR arrays that we had previously assembled from shotgun metagenomic datasets, and identify contigs that contain these spacers' targets. Results We discover 95,000 contigs that are putative invasive mobile genetic elements, some targeted by hundreds of CRISPR spacers. We find that oral sites in healthy human populations have a much greater variety of mobile genetic elements than stool samples. Mobile genetic elements carry genes encoding diverse functions: only 7% of the mobile genetic elements are similar to known phages or plasmids, although a much greater proportion contain phage- or plasmid-related genes. A small number of contigs share similarity with known integrative and conjugative elements, providing the first examples of CRISPR defenses against this class of element. We provide detailed analyses of a few large mobile genetic elements of various types, and a relative abundance analysis of mobile genetic elements and putative hosts, exploring the dynamic activities of mobile genetic elements in human microbiomes. A joint analysis of mobile genetic elements and CRISPRs shows that protospacer-adjacent motifs drive their interaction network; however, some CRISPR-Cas systems target mobile genetic elements lacking motifs. Conclusions We identify a large collection of invasive mobile genetic elements in human microbiomes, an important resource for further study of the interaction between the CRISPR-Cas immune system and invaders. PMID:23628424
Song, Jianbo; Mo, Xiaowei; Yang, Haiqi; Yue, Luming; Song, Jun; Mo, Beixin
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula.
Molecular Characterization of Macrophage-Biomaterial Interactions
Moore, Laura Beth; Kyriakides, Themis R.
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes. PMID:26306446
Molecular Characterization of Macrophage-Biomaterial Interactions.
Moore, Laura Beth; Kyriakides, Themis R
2015-01-01
Implantation of biomaterials in vascularized tissues elicits the sequential engagement of molecular and cellular elements that constitute the foreign body response. Initial events include the non-specific adsorption of proteins to the biomaterial surface that render it adhesive for cells such as neutrophils and macrophages. The latter undergo unique activation and in some cases undergo cell-cell fusion to form foreign body giant cells that contribute to implant damage and fibrotic encapsulation. In this review, we discuss the molecular events that contribute to macrophage activation and fusion with a focus on the role of the inflammasome, signaling pathways such as JAK/STAT and NF-κB, and the putative involvement of micro RNAs in the regulation of these processes.
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
Identification and characterization of the first active endogenous transposable element in soybean
USDA-ARS?s Scientific Manuscript database
In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...
van der Ploeg, Jan R.
2005-01-01
In Streptococcus mutans, competence for genetic transformation and biofilm formation are dependent on the two-component signal transduction system ComDE together with the inducer peptide pheromone competence-stimulating peptide (CSP) (encoded by comC). Here, it is shown that the same system is also required for expression of the nlmAB genes, which encode a two-peptide nonlantibiotic bacteriocin. Expression from a transcriptional nlmAB′-lacZ fusion was highest at high cell density and was increased up to 60-fold following addition of CSP, but it was abolished when the comDE genes were interrupted. Two more genes, encoding another putative bacteriocin and a putative bacteriocin immunity protein, were also regulated by this system. The regions upstream of these genes and of two further putative bacteriocin-encoding genes and a gene encoding a putative bacteriocin immunity protein contained a conserved 9-bp repeat element just upstream of the transcription start, which suggests that expression of these genes is also dependent on the ComCDE regulatory system. Mutations in the repeat element of the nlmAB promoter region led to a decrease in CSP-dependent expression of nlmAB′-lacZ. In agreement with these results, a comDE mutant and mutants unable to synthesize or export CSP did not produce bacteriocins. It is speculated that, at high cell density, bacteriocin production is induced to liberate DNA from competing streptococci. PMID:15937160
Yoodee, Sunisa; Kobayashi, Yohko; Songnuan, Wisuwat; Boonchird, Chuenchit; Thitamadee, Siripong; Kobayashi, Issei; Narangajavana, Jarunya
2018-01-01
Cassava bacterial blight (CBB) disease caused by Xanthomonas axonopodis pv. manihotis (Xam) is a severe disease in cassava worldwide. In addition to causing significant cassava yield loss, CBB disease has not been extensively studied, especially in terms of CBB resistance genes. The present research demonstrated the molecular mechanisms underlining the defense response during Xam infection in two cassava cultivars exhibiting different degrees of disease resistance, Huay Bong60 (HB60) and Hanatee (HN). Based on gene expression analysis, ten of twelve putative defense-related genes including, leucine-rich repeat receptor-like kinases (LRR-RLKs), resistance (R), WRKY and pathogenesis-related (PR) genes, were differentially expressed between these two cassava cultivars during Xam infection. The up-regulation of defense-related genes observed in HB60 may be the mechanism required for the reduction of disease severity in the resistant cultivar. Interestingly, priming with salicylic acid (SA) or methyl jasmonate (MeJA) for 24 h before Xam inoculation could enhance the defense response in both cassava cultivars. The disease severity was decreased 10% in the resistant cultivar (HB60) and was remarkably reduced 21% in the susceptible cultivar (HN) by SA/MeJA priming. Priming with Xam inoculation modulated cassava4.1_013417, cassava4.1_030866 and cassava4.1_020555 (highest similarity to MeWRKY59, MePR1 and AtPDF2.2, respectively) expression and led to enhanced resistance of the susceptible cultivar in the second infection. The putative cis-regulatory elements were predicted in an upstream region of these three defense-related genes. The different gene expression levels in these genes between the two cultivars were due to the differences in cis-regulatory elements in their promoter regions. Taken together, our study strongly suggested that the induction of defense-related genes correlated with defense resistance against Xam infection, and exogenous application of SA or MeJA could elevate the defense response in both cultivars of cassava. This finding should pave the way for management to reduce yield loss from disease and genetic improvement in cassava. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Hurtado, Cleofe A. R.; Rachubinski, Richard A.
1999-01-01
The yeast-to-hypha morphological transition (dimorphism) is typical of many pathogenic fungi. Dimorphism has been attributed to changes in temperature and nutritional status and is believed to constitute a mechanism of response to adverse conditions. We have isolated and characterized a gene, MHY1, whose transcription is dramatically increased during the yeast-to-hypha transition in Yarrowia lipolytica. Deletion of MHY1 is viable and has no effect on mating, but it does result in a complete inability of cells to undergo mycelial growth. MHY1 encodes a C2H2-type zinc finger protein, Mhy1p, which can bind putative cis-acting DNA stress response elements, suggesting that Mhy1p may act as a transcription factor. Interestingly, Mhy1p tagged with a hemagglutinin epitope was concentrated in the nuclei of actively growing cells found at the hyphal tip. PMID:10322005
Byun, Mi Young; Lee, Jungeun; Cui, Li Hua; Kang, Yoonjee; Oh, Tae Kyung; Park, Hyun; Lee, Hyoungseok; Kim, Woo Taek
2015-07-01
Deschampsia antarctica is an Antarctic hairgrass that grows on the west coast of the Antarctic peninsula. In this report, we have identified and characterized a transcription factor, D. antarctica C-repeat binding factor 7 (DaCBF7), that is a member of the monocot group V CBF homologs. The protein contains a single AP2 domain, a putative nuclear localization signal, and the typical CBF signature. DaCBF7, like other monocot group V homologs, contains a distinct polypeptide stretch composed of 43 amino acids in front of the AP2 motif. DaCBF7 was predominantly localized to nuclei and interacted with the C-repeat/dehydration responsive element (CRT/DRE) core sequence (ACCGAC) in vitro. DaCBF7 was induced by abiotic stresses, including drought, cold, and salinity. To investigate its possible cellular role in cold tolerance, a transgenic rice system was employed. DaCBF7-overexpressing transgenic rice plants (Ubi:DaCBF7) exhibited markedly increased tolerance to cold stress compared to wild-type plants without growth defects; however, overexpression of DaCBF7 exerted little effect on tolerance to drought or salt stress. Transcriptome analysis of a Ubi:DaCBF7 transgenic line revealed 13 genes that were up-regulated in DaCBF7-overexpressing plants compared to wild-type plants in the absence of cold stress and in short- or long-term cold stress. Five of these genes, dehydrin, remorin, Os03g63870, Os11g34790, and Os10g22630, contained putative CRT/DRE or low-temperature responsive elements in their promoter regions. These results suggest that overexpression of DaCBF7 directly and indirectly induces diverse genes in transgenic rice plants and confers enhanced tolerance to cold stress. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Feng, Jian Q; Xing, Lianping; Zhang, Jiang-Hong; Zhao, Ming; Horn, Diane; Chan, Jeannie; Boyce, Brendan F; Harris, Stephen E; Mundy, Gregory R; Chen, Di
2003-08-01
Bone morphogenetic protein-2 (BMP-2) regulates growth plate chondrogenesis during development and postnatal bone growth, but the control mechanisms of BMP-2 expression in growth plate chondrocytes are unknown. Here we have used both in vitro and in vivo approaches to demonstrate that transcription factor, NF-kappaB, regulates BMP-2 gene expression in chondrocytes. Two putative NF-kappaB response elements were found in the -2712/+165 region of the BMP-2 gene. Cotransfection of mutant I-kappaBalpha expression plasmids with BMP-2 promoter-luciferase reporters into TMC-23 chondrocyte cell line suppressed BMP-2 transcription. Mutations in NF-kappaB response elements in the BMP-2 gene lead to decreases in BMP-2 promoter activity. Electrophoretic mobility shift assay using nuclear extracts from TMC-23 chondrocytic cells revealed that the NF-kappaB subunits p50 and p65 bound to the NF-kappaB response elements of the BMP-2 gene. Thus, NF-kappaB may positively regulate BMP-2 gene transcription. Consistent with these findings, expression of BMP-2 mRNA was significantly reduced in growth plate chondrocytes in NF-kappaB p50/p52 dKO mice, which associated with decreased numbers of 5-bromo-2'-deoxyuridine (BrdUrd)-positive cells in the proliferating zone of growth plate in these mice. Therefore, in postnatal growth plate chondrocytes, expression of BMP-2 is regulated by NF-kappaB, which may play an important role in chondrogenesis.
X-chromosome-counting mechanisms that determine nematode sex.
Nicoll, M; Akerib, C C; Meyer, B J
1997-07-10
Sex is determined in Caenorhabditis elegans by an X-chromosome-counting mechanism that reliably distinguishes the twofold difference in X-chromosome dose between males (1X) and hermaphrodites (2X). This small quantitative difference is translated into the 'on/off' response of the target gene, xol-1, a switch that specifies the male fate when active and the hermaphrodite fate when inactive. Specific regions of X contain counted signal elements whose combined dose sets the activity of xol-1. Here we ascribe the dose effects of one region to a discrete, protein-encoding gene, fox-1. We demonstrate that the dose-sensitive signal elements on chromosome X control xol-1 through two different molecular mechanisms. One involves the transcriptional repression of xol-1 in XX animals. The other uses the putative RNA-binding protein encoded by fox-1 to reduce the level of xol-1 protein. These two mechanisms of repression act together to ensure the fidelity of the X-chromosome counting process.
Tabor, D E; Kim, J B; Spiegelman, B M; Edwards, P A
1999-07-16
We previously identified stearoyl-CoA desaturase 2 (SCD2) as a new member of the family of genes that are transcriptionally regulated in response to changing levels of nuclear sterol regulatory element binding proteins (SREBPs) or adipocyte determination and differentiation factor 1 (ADD1). A novel sterol regulatory element (SRE) (5'-AGCAGATTGTG-3') identified in the proximal promoter of the mouse SCD2 gene is required for induction of SCD2 promoter-reporter genes in response to cellular sterol depletion (Tabor, D. E., Kim, J. B., Spiegelman, B. M., and Edwards, P. A. (1998) J. Biol. Chem. 273, 22052-22058). In this report, we demonstrate that this novel SRE is both present in the promoter of the SCD1 gene and is critical for the sterol-dependent transcription of SCD1 promoter-reporter genes. Two conserved cis elements (5'-CCAAT-3') lie 5 and 48 base pairs 3' of the novel SREs in the promoters of both the SCD1 and SCD2 murine genes. Mutation of either of these putative NF-Y binding sites attenuates the transcriptional activation of SCD1 or SCD2 promoter-reporter genes in response to cellular sterol deprivation. Induction of both reporter genes is also attenuated when cells are cotransfected with dominant-negative forms of either NF-Y or SREBP. In addition, we demonstrate that the induction of SCD1 and SCD2 mRNAs that occurs during the differentiation of 3T3-L1 preadipocytes to adipocytes is paralleled by an increase in the levels of ADD1/SREBP-1c and that the SCD1 and SCD2 mRNAs are induced to even higher levels in response to ectopic expression of ADD1/SREBP-1c. We conclude that transcription of both SCD1 and SCD2 genes is responsive to cellular sterol levels and to the levels of nuclear SREBP/ADD1 and that transcriptional induction requires three spatially conserved cis elements, that bind SREBP and NF-Y. Additional studies demonstrate that maximal transcriptional repression of SCD2 reporter genes in response to an exogenous polyunsaturated fatty acid is dependent upon the SRE and the adjacent CCAAT motif.
White, Eleanor; Kamieniarz-Gdula, Kinga; Dye, Michael J.; Proudfoot, Nick J.
2013-01-01
RNA Polymerase II (Pol II) termination is dependent on RNA processing signals as well as specific terminator elements located downstream of the poly(A) site. One of the two major terminator classes described so far is the Co-Transcriptional Cleavage (CoTC) element. We show that homopolymer A/T tracts within the human β-globin CoTC-mediated terminator element play a critical role in Pol II termination. These short A/T tracts, dispersed within seemingly random sequences, are strong terminator elements, and bioinformatics analysis confirms the presence of such sequences in 70% of the putative terminator regions (PTRs) genome-wide. PMID:23258704
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, R. L., Hamaguchi, L., Busch, M. A., and Weigel, D.
2003-06-01
OAK-B135 In Arabidopsis thaliana, cis-regulatory sequences of the floral homeotic gene AGAMOUS (AG) are located in the second intron. This 3 kb intron contains binding sites for two direct activators of AG, LEAFY (LFY) and WUSCHEL (WUS), along with other putative regulatory elements. We have used phylogenetic footprinting and the related technique of phylogenetic shadowing to identify putative cis-regulatory elements in this intron. Among 29 Brassicaceae, several other motifs, but not the LFY and WUS binding sites previously identified, are largely invariant. Using reporter gene analyses, we tested six of these motifs and found that they are all functionally importantmore » for activity of AG regulatory sequences in A. thaliana. Although there is little obvious sequence similarity outside the Brassicaceae, the intron from cucumber AG has at least partial activity in A. thaliana. Our studies underscore the value of the comparative approach as a tool that complements gene-by-gene promoter dissection, but also highlight that sequence-based studies alone are insufficient for a complete identification of cis-regulatory sites.« less
Siderophile element constraints on the origin of the Moon
Walker, Richard J.
2014-01-01
Discovery of small enrichments in 182W/184W in some Archaean rocks, relative to modern mantle, suggests both exogeneous and endogenous modifications to highly siderophile element (HSE) and moderately siderophile element abundances in the terrestrial mantle. Collectively, these isotopic enrichments suggest the formation of chemically fractionated reservoirs in the terrestrial mantle that survived the putative Moon-forming giant impact, and also provide support for the late accretion hypothesis. The lunar mantle sources of volcanic glasses and basalts were depleted in HSEs relative to the terrestrial mantle by at least a factor of 20. The most likely explanations for the disparity between the Earth and Moon are either that the Moon received a disproportionately lower share of late accreted materials than the Earth, such as may have resulted from stochastic late accretion, or the major phase of late accretion occurred prior to the Moon-forming event, and the putative giant impact led to little drawdown of HSEs to the Earth's core. High precision determination of the 182W isotopic composition of the Moon can help to resolve this issue. PMID:25114313
Nieto, Alma; Pérez Ishiwara, David G; Orozco, Esther; Sánchez Monroy, Virginia; Gómez García, Consuelo
2017-01-01
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position -170 to -111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (-151 to -136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug.
Co-regulation analysis of co-expressed modules under cold and pathogen stress conditions in tomato.
Abedini, Davar; Rashidi Monfared, Sajad
2018-06-01
A primary mechanism for controlling the development of multicellular organisms is transcriptional regulation, which carried out by transcription factors (TFs) that recognize and bind to their binding sites on promoter region. The distance from translation start site, order, orientation, and spacing between cis elements are key factors in the concentration of active nuclear TFs and transcriptional regulation of target genes. In this study, overrepresented motifs in cold and pathogenesis responsive genes were scanned via Gibbs sampling method, this method is based on detection of overrepresented motifs by means of a stochastic optimization strategy that searches for all possible sets of short DNA segments. Then, identified motifs were checked by TRANSFAC, PLACE and Soft Berry databases in order to identify putative TFs which, interact to the motifs. Several cis/trans regulatory elements were found using these databases. Moreover, cross-talk between cold and pathogenesis responsive genes were confirmed. Statistical analysis was used to determine distribution of identified motifs on promoter region. In addition, co-regulation analysis results, illustrated genes in pathogenesis responsive module are divided into two main groups. Also, promoter region was crunched to six subareas in order to draw the pattern of distribution of motifs in promoter subareas. The result showed the majority of motifs are concentrated on 700 nucleotides upstream of the translational start site (ATG). In contrast, this result isn't true in another group. In other words, there was no difference between total and compartmentalized regions in cold responsive genes.
Yang, Haiqi; Yue, Luming; Song, Jun
2017-01-01
The ubiquitination pathway regulates growth, development, and stress responses in plants, and the U-box protein family of ubiquitin ligases has important roles in this pathway. Here, 64 putative U-box proteins were identified in the Medicago truncatula genome. In addition to the conserved U-box motif, other functional domains, such as the ARM, kinase, KAP, and WD40 domains, were also detected. Phylogenetic analysis of the M. truncatula U-box proteins grouped them into six subfamilies, and chromosomal mapping and synteny analyses indicated that tandem and segmental duplications may have contributed to the expansion and evolution of the U-box gene family in this species. Using RNA-seq data from M. truncatula seedlings subjected to three different abiotic stresses, we identified 33 stress-inducible plant U-box genes (MtPUBs). Specifically, 25 salinity-, 15 drought-, and 16 cold-regulated MtPUBs were detected. Among them, MtPUB10, MtPUB17, MtPUB18, MtPUB35, MtPUB42, and MtPUB44 responded to all three stress conditions. Expression profiling by qRT-PCR was consistent with the RNA-seq data, and stress-related elements were identified in the promoter regions. The present findings strongly indicate that U-box proteins play critical roles in abiotic stress response in M. truncatula. PMID:28771553
Shinzato, Naoya; Enoki, Miho; Sato, Hiroaki; Nakamura, Kohei; Matsui, Toru; Kamagata, Yoichi
2008-10-01
Two methyl coenzyme M reductases (MCRs) encoded by the mcr and mrt operons of the hydrogenotrophic methanogen Methanothermobacter thermautotrophicus DeltaH are expressed in response to H(2) availability. In the present study, cis elements and trans-acting factors responsible for the gene expression of MCRs were investigated by using electrophoretic mobility shift assay (EMSA) and affinity particle purification. A survey of their operator regions by EMSA with protein extracts from mrt-expressing cultures restricted them to 46- and 41-bp-long mcr and mrt upstream regions, respectively. Affinity particle purification of DNA-binding proteins conjugated with putative operator regions resulted in the retrieval of a protein attributed to IMP dehydrogenase-related protein VII (IMPDH VII). IMPDH VII is predicted to have a winged helix-turn-helix DNA-binding motif and two cystathionine beta-synthase domains, and it has been suspected to be an energy-sensing module. EMSA with oligonucleotide probes with unusual sequences showed that the binding site of IMPDH VII mostly overlaps the factor B-responsible element-TATA box of the mcr operon. The results presented here suggest that IMPDH VII encoded by MTH126 is a plausible candidate for the transcriptional regulator of the mcr operon in this methanogen.
[Genetic hypophosphatemia: recent advances in physiopathogenic concept].
Beraud, G; Perimenis, P; Velayoudom, Fr-L; Wemeau, J-L; Vantyghem, M-Chr
2005-04-01
Renal proximal tubular reabsorption of phosphate and intestinal absorption both regulate phosphate homeostasis. Brush-border membrane Npt2a cotransporter is the key element in proximal tubular P (i) reabsorption. Inactivating mutations of Npt2a cause bone demineralisation and urolithiasis. An excess of a phosphaturic factor, called "Phosphatonin", could modulate phosphate reabsorption by inhibition on Npt2a. Inactivating mutation of PHEX, an endopeptidase-membrane coding gene, is responsible for X-linked Hypophosphatemia (XLH), because of an impaired degradation of phosphatonine by PHEX product. Autosomic Dominant Hypophosphatemic Rickets (ADHR) is explained by a mutation preventing FGF23 (one of the best identified phosphatonines) from cleavage. According recent data, FGF23, MEPE (Matrix Extracellular Phosphoglycoprotein) et FRP4 (frizzled related protein-4) are 3 putative "phosphatonines".
Scallop DMT functions as a Ca2+ transporter.
Toyohara, Haruhiko; Yamamoto, Sayuri; Hosoi, Masatomi; Takagi, Masaya; Hayashi, Isao; Nakao, Kenji; Kaneko, Shuji
2005-05-09
We identified a DMT (divalent metal transporter) homologous protein that functions as a Ca(2+) transporter. Scallop DMT cDNA encodes a 539-amino-acid protein with 12 putative membrane-spanning domains and has a consensus transport motif in the fourth extracellular loop. Since its mRNA is significantly expressed in the gill and intestine, it is assumed that scallop DMT transports Ca(2+) from seawater by the gill and from food by the intestine. Scallop DMT lacks the iron-responsive element commonly found in iron-regulatory proteins, suggesting that it is free of the post-transcriptional regulation from intracellular Fe(2+) concentration. Scallop DMT distinctly functions as a Ca(2+) transporter unlike other DMTs, however, it also transports Fe(2+) and Cd(2+) similar to them.
Catteau, Aurélie; Rosewell, Ian; Solomon, Ellen; Taylor-Papadimitriou, Joyce
2004-07-01
The recently cloned gene PLU-1 shows restricted expression in adult tissues, with high expression being found in testis, and transiently in the pregnant mammary gland. However, both the gene and the protein product are specifically up-regulated in breast cancer. To investigate the control of expression of the PLU-1 gene, we have cloned and functionally characterised the 5' flanking region of the gene, which was found to contain another putative gene. Two transcription start sites of the PLU-1 gene were mapped by 5' RACE. A short proximal 249 bp region was defined using reporter gene assays, which encompasses the major transcription start site and exhibits a strong constitutive promoter activity in all cell lines tested. However, regions upstream of this sequence repress transcription more effectively in a non-malignant breast cell line as compared to breast cancer cell lines. The 249 bp region is GC-rich and includes consensus Sp1 sites, GC boxes, cAMP-responsive element (CRE) and other putative cis-elements. Mutational analysis showed that two intact conserved Sp1 binding sites (shown here to bind Sp1 and/or Sp3) are critical for constitutive promoter activity, while a negative role for a neighbouring GC box is indicated. The sequence of the core promoter is highly conserved in the mouse and Plu-1 expression in the mouse embryo has been documented. Using transgenesis, we therefore examined the ability of the 249 bp fragment to control expression of a reporter gene during embryogenesis. We found that not only is the core promoter sufficient to activate transcription in vivo, but that the expression of the reporter gene coincides both temporally and spatially with regions where endogenous Plu-1 is highly expressed. This suggests that tissue specific controlling elements are found within the short fragment and are functional in the embryonic environment.
Wang, Yijun; Deng, Dexiang; Shi, Yating; Miao, Nan; Bian, Yunlong; Yin, Zhitong
2012-03-01
Auxin response factors (ARFs), member of the plant-specific B3 DNA binding superfamily, target specifically to auxin response elements (AuxREs) in promoters of primary auxin-responsive genes and heterodimerize with Aux/IAA proteins in auxin signaling transduction cascade. In previous research, we have isolated and characterized maize Aux/IAA genes in whole-genome scale. Here, we report the comprehensive analysis of ARF genes in maize. A total of 36 ARF genes were identified and validated from the B73 maize genome through an iterative strategy. Thirty-six maize ARF genes are distributed in all maize chromosomes except chromosome 7. Maize ARF genes expansion is mainly due to recent segmental duplications. Maize ARF proteins share one B3 DNA binding domain which consists of seven-stranded β sheets and two short α helixes. Twelve maize ARFs with glutamine-rich middle regions could be as activators in modulating expression of auxin-responsive genes. Eleven maize ARF proteins are lack of homo- and heterodimerization domains. Putative cis-elements involved in phytohormones and light signaling responses, biotic and abiotic stress adaption locate in promoters of maize ARF genes. Expression patterns vary greatly between clades and sister pairs of maize ARF genes. The B3 DNA binding and auxin response factor domains of maize ARF proteins are primarily subjected to negative selection during selective sweep. The mixed selective forces drive the diversification and evolution of genomic regions outside of B3 and ARF domains. Additionally, the dicot-specific proliferation of ARF genes was detected. Comparative genomics analysis indicated that maize, sorghum and rice duplicate chromosomal blocks containing ARF homologs are highly syntenic. This study provides insights into the distribution, phylogeny and evolution of ARF gene family.
Mobile genetic elements and antibiotic resistance in mine soil amended with organic wastes.
Garbisu, Carlos; Garaiyurrebaso, Olatz; Lanzén, Anders; Álvarez-Rodríguez, Itxaso; Arana, Lide; Blanco, Fernando; Smalla, Kornelia; Grohmann, Elisabeth; Alkorta, Itziar
2018-04-15
Metal resistance has been associated with antibiotic resistance due to co- or cross-resistance mechanisms. Here, metal contaminated mine soil treated with organic wastes was screened for the presence of mobile genetic elements (MGEs). The occurrence of conjugative IncP-1 and mobilizable IncQ plasmids, as well as of class 1 integrons, was confirmed by PCR and Southern blot hybridization, suggesting that bacteria from these soils have gene-mobilizing capacity with implications for the dissemination of resistance factors. Moreover, exogenous isolation of MGEs from the soil bacterial community was attempted under antibiotic selection pressure by using Escherichia coli as recipient. Seventeen putative transconjugants were identified based on increased antibiotic resistance. Metabolic traits and metal resistance of putative transconjugants were investigated, and whole genome sequencing was carried out for two of them. Most putative transconjugants displayed a multi-resistant phenotype for a broad spectrum of antibiotics. They also displayed changes regarding the ability to metabolise different carbon sources, RNA: DNA ratio, growth rate and biofilm formation. Genome sequencing of putative transconjugants failed to detect genes acquired by horizontal gene transfer, but instead revealed a number of nonsense mutations, including in ubiH, whose inactivation was linked to the observed resistance to aminoglycosides. Our results confirm that mine soils contain MGEs encoding antibiotic resistance. Moreover, they point out the role of spontaneous mutations in achieving low-level antibiotic resistance in a short time, which was associated with a trade-off in the capability to metabolise specific carbon sources. Copyright © 2017. Published by Elsevier B.V.
Ramakrishnan, M.; Ceasar, S. Antony; Vinod, K. K.; Duraipandiyan, V.; Ajeesh Krishna, T. P.; Upadhyaya, Hari D.; Al-Dhabi, N. A.
2017-01-01
A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance. PMID:28820887
Ramakrishnan, M; Ceasar, S Antony; Vinod, K K; Duraipandiyan, V; Ajeesh Krishna, T P; Upadhyaya, Hari D; Al-Dhabi, N A; Ignacimuthu, S
2017-01-01
A germplasm assembly of 128 finger millet genotypes from 18 countries was evaluated for seedling-stage phosphorus (P) responses by growing them in P sufficient (Psuf) and P deficient (Pdef) treatments. Majority of the genotypes showed adaptive responses to low P condition. Based on phenotype behaviour using the best linear unbiased predictors for each trait, genotypes were classified into, P responsive, low P tolerant and P non-responsive types. Based on the overall phenotype performance under Pdef, 10 genotypes were identified as low P tolerants. The low P tolerant genotypes were characterised by increased shoot and root length and increased root hair induction with longer root hairs under Pdef, than under Psuf. Association mapping of P response traits using mixed linear models revealed four quantitative trait loci (QTLs). Two QTLs (qLRDW.1 and qLRDW.2) for low P response affecting root dry weight explained over 10% phenotypic variation. In silico synteny analysis across grass genomes for these QTLs identified putative candidate genes such as Ser-Thr kinase and transcription factors such as WRKY and basic helix-loop-helix (bHLH). The QTLs for response under Psuf were mapped for traits such as shoot dry weight (qHSDW.1) and root length (qHRL.1). Putative associations of these QTLs over the syntenous regions on the grass genomes revealed proximity to cytochrome P450, phosphate transporter and pectin methylesterase inhibitor (PMEI) genes. This is the first report of the extent of phenotypic variability for P response in finger millet genotypes during seedling-stage, along with the QTLs and putative candidate genes associated with P starvation tolerance.
Evaluation of the Biotoxicity of Tree Wood Ashes in Zebrafish Embryos.
Consigli, Veronica; Guarienti, Michela; Bilo, Fabjola; Benassi, Laura; Depero, Laura E; Bontempi, Elza; Presta, Marco
2016-10-01
Ashes derived from biomass combustion and used as soil fertilizers can generate negative environmental and human health risks, related to leaching of heavy metals and other putative toxic elements. Tree wood ash composition may vary depending on geographical location and surrounding industrial processes. In this study, we evaluated the biotoxicity of lixiviated tree wood ash samples from trees of the Ash (Fraxinus), Cherry (Pronus), Hazel (Corylus), and Black locust (Robinia) genus collected in an industrialized region in Northern Italy. Elemental chemical analysis of the samples was performed by total reflection X-ray fluorescence technique and their biotoxicity was assessed in zebrafish (Danio rerio) embryos. Ashes from Ash, Cherry, and Hazel trees, but not Black locust trees, had a high concentration of heavy metals and other putative toxic elements. Accordingly, a dose-dependent increase in mortality rate and morphological and teratogenic defects was observed in zebrafish embryos treated with lixiviated Ash, Cherry, and Hazel tree wood samples, whereas the toxicity of Black locust tree wood ashes was negligible. In conclusion, lixiviated wood ashes from different plants show a different content of toxic elements that correlate with their biotoxic effects on zebrafish embryos. Tree wood ashes derived from biomass combustion may represent a potential risk for the environment and human health.
Palazzo, Antonio; Lovero, Domenica; D'Addabbo, Pietro; Caizzi, Ruggiero; Marsano, René Massimiliano
2016-01-01
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon's co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon's evolutionary dynamics and increases our understanding on the Tc1-mariner elements' biology.
Yang, Zhirong; Patra, Barunava; Li, Runzhi; Pattanaik, Sitakanta; Yuan, Ling
2013-12-01
WRKY transcription factors (TFs) are emerging as an important group of regulators of plant secondary metabolism. However, the cis-regulatory elements associated with their regulation have not been well characterized. We have previously demonstrated that CrWRKY1, a member of subgroup III of the WRKY TF family, regulates biosynthesis of terpenoid indole alkaloids in the ornamental and medicinal plant, Catharanthus roseus. Here, we report the isolation and functional characterization of the CrWRKY1 promoter. In silico analysis of the promoter sequence reveals the presence of several potential TF binding motifs, indicating the involvement of additional TFs in the regulation of the TIA pathway. The CrWRKY1 promoter can drive the expression of a β-glucuronidase (GUS) reporter gene in native (C. roseus protoplasts and transgenic hairy roots) and heterologous (transgenic tobacco seedlings) systems. Analysis of 5'- or 3'-end deletions indicates that the sequence located between positions -140 to -93 bp and -3 to +113 bp, relative to the transcription start site, is critical for promoter activity. Mutation analysis shows that two overlapping as-1 elements and a CT-rich motif contribute significantly to promoter activity. The CrWRKY1 promoter is induced in response to methyl jasmonate (MJ) treatment and the promoter region between -230 and -93 bp contains a putative MJ-responsive element. The CrWRKY1 promoter can potentially be used as a tool to isolate novel TFs involved in the regulation of the TIA pathway.
Analysis of an osmotically regulated pathogenesis-related osmotin gene promoter.
Raghothama, K G; Liu, D; Nelson, D E; Hasegawa, P M; Bressan, R A
1993-12-01
Osmotin is a small (24 kDa), basic, pathogenesis-related protein, that accumulates during adaptation of tobacco (Nicotiana tabacum) cells to osmotic stress. There are more than 10 inducers that activate the osmotin gene in various plant tissues. The osmotin promoter contains several sequences bearing a high degree of similarity to ABRE, as-1 and E-8 cis element sequences. Gel retardation studies indicated the presence of at least two regions in the osmotin promoter that show specific interactions with nuclear factors isolated from cultured cells or leaves. The abundance of these binding factors increased in response to salt, ABA and ethylene. Nuclear factors protected a 35 bp sequence of the promoter from DNase I digestion. Different 5' deletions of the osmotin promoter cloned into a promoter-less GUSNOS plasmid (pBI 201) were used in transient expression studies with a Biolistic gun. The transient expression studies revealed the presence of three distinct regions in the osmotin promoter. The promoter sequence from -108 to -248 bp is absolutely required for reporter gene activity, followed by a long stretch (up to -1052) of enhancer-like sequence and then a sequence upstream of -1052, which appears to contain negative elements. The responses to ABA, ethylene, salt, desiccation and wounding appear to be associated with the -248 bp sequence of the promoter. This region also contains a putative ABRE (CACTGTG) core element. Activation of the osmotin gene by various inducers is discussed in view of antifungal activity of the osmotin protein.
Romero-Campero, Francisco J; Perez-Hurtado, Ignacio; Lucas-Reina, Eva; Romero, Jose M; Valverde, Federico
2016-03-12
Chlamydomonas reinhardtii is the model organism that serves as a reference for studies in algal genomics and physiology. It is of special interest in the study of the evolution of regulatory pathways from algae to higher plants. Additionally, it has recently gained attention as a potential source for bio-fuel and bio-hydrogen production. The genome of Chlamydomonas is available, facilitating the analysis of its transcriptome by RNA-seq data. This has produced a massive amount of data that remains fragmented making necessary the application of integrative approaches based on molecular systems biology. We constructed a gene co-expression network based on RNA-seq data and developed a web-based tool, ChlamyNET, for the exploration of the Chlamydomonas transcriptome. ChlamyNET exhibits a scale-free and small world topology. Applying clustering techniques, we identified nine gene clusters that capture the structure of the transcriptome under the analyzed conditions. One of the most central clusters was shown to be involved in carbon/nitrogen metabolism and signalling, whereas one of the most peripheral clusters was involved in DNA replication and cell cycle regulation. The transcription factors and regulators in the Chlamydomonas genome have been identified in ChlamyNET. The biological processes potentially regulated by them as well as their putative transcription factor binding sites were determined. The putative light regulated transcription factors and regulators in the Chlamydomonas genome were analyzed in order to provide a case study on the use of ChlamyNET. Finally, we used an independent data set to cross-validate the predictive power of ChlamyNET. The topological properties of ChlamyNET suggest that the Chlamydomonas transcriptome posseses important characteristics related to error tolerance, vulnerability and information propagation. The central part of ChlamyNET constitutes the core of the transcriptome where most authoritative hub genes are located interconnecting key biological processes such as light response with carbon and nitrogen metabolism. Our study reveals that key elements in the regulation of carbon and nitrogen metabolism, light response and cell cycle identified in higher plants were already established in Chlamydomonas. These conserved elements are not only limited to transcription factors, regulators and their targets, but also include the cis-regulatory elements recognized by them.
Glubb, Dylan M.; Johnatty, Sharon E.; Quinn, Michael C.J.; O’Mara, Tracy A.; Tyrer, Jonathan P.; Gao, Bo; Fasching, Peter A.; Beckmann, Matthias W.; Lambrechts, Diether; Vergote, Ignace; Velez Edwards, Digna R.; Beeghly-Fadiel, Alicia; Benitez, Javier; Garcia, Maria J.; Goodman, Marc T.; Thompson, Pamela J.; Dörk, Thilo; Dürst, Matthias; Modungo, Francesmary; Moysich, Kirsten; Heitz, Florian; du Bois, Andreas; Pfisterer, Jacobus; Hillemanns, Peter; Karlan, Beth Y.; Lester, Jenny; Goode, Ellen L.; Cunningham, Julie M.; Winham, Stacey J.; Larson, Melissa C.; McCauley, Bryan M.; Kjær, Susanne Krüger; Jensen, Allan; Schildkraut, Joellen M.; Berchuck, Andrew; Cramer, Daniel W.; Terry, Kathryn L.; Salvesen, Helga B.; Bjorge, Line; Webb, Penny M.; Grant, Peter; Pejovic, Tanja; Moffitt, Melissa; Hogdall, Claus K.; Hogdall, Estrid; Paul, James; Glasspool, Rosalind; Bernardini, Marcus; Tone, Alicia; Huntsman, David; Woo, Michelle; Group, AOCS; deFazio, Anna; Kennedy, Catherine J.; Pharoah, Paul D.P.; MacGregor, Stuart; Chenevix-Trench, Georgia
2017-01-01
We previously identified associations with ovarian cancer outcome at five genetic loci. To identify putatively causal genetic variants and target genes, we prioritized two ovarian outcome loci (1q22 and 19p12) for further study. Bioinformatic and functional genetic analyses indicated that MEF2D and ZNF100 are targets of candidate outcome variants at 1q22 and 19p12, respectively. At 19p12, the chromatin interaction of a putative regulatory element with the ZNF100 promoter region correlated with candidate outcome variants. At 1q22, putative regulatory elements enhanced MEF2D promoter activity and haplotypes containing candidate outcome variants modulated these effects. In a public dataset, MEF2D and ZNF100 expression were both associated with ovarian cancer progression-free or overall survival time. In an extended set of 6,162 epithelial ovarian cancer patients, we found that functional candidates at the 1q22 and 19p12 loci, as well as other regional variants, were nominally associated with patient outcome; however, no associations reached our threshold for statistical significance (p<1×10-5). Larger patient numbers will be needed to convincingly identify any true associations at these loci. PMID:29029385
Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats
NASA Astrophysics Data System (ADS)
Wong, Hon Lun; Smith, Daniela-Lee; Visscher, Pieter T.; Burns, Brendan P.
2015-10-01
Modern microbial mats can provide key insights into early Earth ecosystems, and Shark Bay, Australia, holds one of the best examples of these systems. Identifying the spatial distribution of microorganisms with mat depth facilitates a greater understanding of specific niches and potentially novel microbial interactions. High throughput sequencing coupled with elemental analyses and biogeochemical measurements of two distinct mat types (smooth and pustular) at a millimeter scale were undertaken in the present study. A total of 8,263,982 16S rRNA gene sequences were obtained, which were affiliated to 58 bacterial and candidate phyla. The surface of both mats were dominated by Cyanobacteria, accompanied with known or putative members of Alphaproteobacteria and Bacteroidetes. The deeper anoxic layers of smooth mats were dominated by Chloroflexi, while Alphaproteobacteria dominated the lower layers of pustular mats. In situ microelectrode measurements revealed smooth mats have a steeper profile of O2 and H2S concentrations, as well as higher oxygen production, consumption, and sulfate reduction rates. Specific elements (Mo, Mg, Mn, Fe, V, P) could be correlated with specific mat types and putative phylogenetic groups. Models are proposed for these systems suggesting putative surface anoxic niches, differential nitrogen fixing niches, and those coupled with methane metabolism.
Liu, Hai-Yan; Dai, Jin-Ran; Feng, Dong-Ru; Liu, Bing; Wang, Hong-Bin; Wang, Jin-Fa
2010-03-01
Asr (abscisic acid, stress, ripening induced) genes are typically upregulated by a wide range of factors, including drought, cold, salt, abscisic acid (ABA) and injury; in addition to plant responses to developmental and environmental signals. We isolated an Asr gene, MpAsr, from a suppression subtractive hybridization (SSH) cDNA library of cold induced plantain (Musa paradisiaca) leaves. MpAsr expression was upregulated in Fusarium oxysporum f. sp. cubense infected plantain leaves, peels and roots, suggesting that MpAsr plays a role in plantain pathogen response. In addition, a 581-bp putative promoter region of MpAsr was isolated via genome walking and cis-elements involved in abiotic stress and pathogen-related responses were detected in this same region. Furthermore, the MpAsr promoter demonstrated positive activity and inducibility in tobacco under F. oxysporum f. sp. cubense infection and ABA, cold, dehydration and high salt concentration treatments. Interestingly, transgenic Arabidopsis plants overexpressing MpAsr exhibited higher drought tolerance, but showed no significant decreased sensitivity to F. oxysporum f. sp. cubense. These results suggest that MpAsr might be involved in plant responses to both abiotic stress and pathogen attack.
Malviya, N; Gupta, S; Singh, V K; Yadav, M K; Bisht, N C; Sarangi, B K; Yadav, D
2015-02-01
The DNA binding with One Finger (Dof) protein is a plant specific transcription factor involved in the regulation of wide range of processes. The analysis of whole genome sequence of pigeonpea has identified 38 putative Dof genes (CcDof) distributed on 8 chromosomes. A total of 17 out of 38 CcDof genes were found to be intronless. A comprehensive in silico characterization of CcDof gene family including the gene structure, chromosome location, protein motif, phylogeny, gene duplication and functional divergence has been attempted. The phylogenetic analysis resulted in 3 major clusters with closely related members in phylogenetic tree revealed common motif distribution. The in silico cis-regulatory element analysis revealed functional diversity with predominance of light responsive and stress responsive elements indicating the possibility of these CcDof genes to be associated with photoperiodic control and biotic and abiotic stress. The duplication pattern showed that tandem duplication is predominant over segmental duplication events. The comparative phylogenetic analysis of these Dof proteins along with 78 soybean, 36 Arabidopsis and 30 rice Dof proteins revealed 7 major clusters. Several groups of orthologs and paralogs were identified based on phylogenetic tree constructed. Our study provides useful information for functional characterization of CcDof genes.
Brené, S; Messer, C; Okado, H; Hartley, M; Heinemann, S F; Nestler, E J
2000-05-01
The AMPA glutamate receptor subunit GluR2, which plays a critical role in regulation of AMPA channel function, shows altered levels of expression in vivo after several chronic perturbations. To evaluate the possibility that transcriptional mechanisms are involved, we studied a 1254-nucleotide fragment of the 5'-promoter region of the mouse GluR2 gene in neural-derived cell lines. We focused on regulation of GluR2 promoter activity by two neurotrophic factors, which are known to be altered in vivo in some of the same systems that show GluR2 regulation. Glial-cell line derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) both induced GluR2 promoter activity. This was associated with increased expression of endogenous GluR2 immunoreactivity in the cells as measured by Western blotting. The effect of GDNF and BDNF appeared to be mediated via a NRSE (neuron-restrictive silencer element) present within the GluR2 promoter. The response to these neurotrophic factors was lost upon mutating or deleting this site, but not several other putative response elements present within the promoter. Moreover, overexpression of REST (restrictive element silencer transcription factor; also referred to as NRSF or neuron restrictive silencer factor), which is known to act on NRSEs in other genes to repress gene expression, blocked the ability of GDNF to induce GluR2 promoter activity. However, GDNF did not alter endogenous levels of REST in the cells. Together, these findings suggest that GluR2 expression can be regulated by neurotrophic factors via an apparently novel mechanism involving the NRSE present within the GluR2 gene promoter.
Regulation of expression of transgenes in developing fish.
Moav, B; Liu, Z; Caldovic, L D; Gross, M L; Faras, A J; Hackett, P B
1993-05-01
The transcriptional regulatory elements of the beta-actin gene of carp (Cyprinus carpio) have been examined in zebrafish and goldfish harbouring transgenes. The high sequence conservation of the putative regulatory elements in the beta-actin genes of animals suggested that their function would be conserved, so that transgenic constructs with the same transcriptional control elements would promote similar levels of transgene expression in different species of transgenic animals. To test this assumption, we analysed the temporal expression of a reporter gene under the control of transcriptional control sequences from the carp beta-actin gene in zebrafish (Brachydanio rerio) and goldfish (Carrasius auratus). Our results indicated that, contrary to expectations, combinations of different transcriptional control elements affected the level, duration, and onset of gene expression differently in developing zebrafish and goldfish. The major differences in expression of beta-actin/CAT (chloramphenicol acetyltransferase) constructs in zebrafish and goldfish were: (1) overall expression was almost 100-fold higher in goldfish than in zebrafish embryos, (2) the first intron had an enhancing effect on gene expression in zebrafish but not in goldfish, and (3) the serum-responsive/CArG-containing regulatory element in the proximal promoter was not always required for maximal CAT activity in goldfish, but was required in zebrafish. These results suggest that in the zebrafish, but not in the goldfish, there may be interactions between motifs in the proximal promoter and the first intron which appear to be required for maximal enhancement of transcription.
Characterization and functional analysis of the Paralichthys olivaceus prdm1 gene promoter.
Li, Peizhen; Wang, Bo; Cao, Dandan; Liu, Yuezhong; Zhang, Quanqi; Wang, Xubo
2017-10-01
PR domain containing protein 1 (Prdm1) is a transcriptional repressor identified in various species and plays multiple important roles in immune response and embryonic development. However, little is known about the transcriptional regulation of the prdm1 gene. This study aims to characterize the promoter of Paralichthys olivaceus prdm1 (Po-prdm1) gene and determine the regulatory mechanism of Po-prdm1 expression. A 2000bp-long 5'-flanking region (translation initiation site designated as +1) of the Po-prdm1 gene was isolated and characterized. The regulatory elements in this fragment were then investigated and many putative transcription factor (TF) binding sites involved in immunity and multiple tissue development were identified. A 5'-deletion analysis was then conducted, and the ability of the deletion mutants to promote luciferase and green fluorescent protein (GFP) expression in a flounder gill cell line was examined. The results revealed that the minimal promoter is located in the region between -446 and -13bp, and the region between -1415 and -13bp enhanced the promoter activity. Site-directed mutation analysis was subsequently performed on the putative regulatory elements sites, and the results indicated that FOXP1, MSX and BCL6 binding sites play negative functional roles in the regulation of the Po-prdm1 expression in FG cells. In vivo analysis demonstrated that a GFP reporter gene containing 1.4kb-long promoter fragment (-1415/-13) was expressed in the head and trunk muscle fibres of transient transgenic zebrafish embryos. Our study provided the basic information for the exploration of Po-prdm1 regulation and expression. Copyright © 2017 Elsevier Inc. All rights reserved.
D’Addabbo, Pietro; Caizzi, Ruggiero
2016-01-01
Bari elements are members of the Tc1-mariner superfamily of DNA transposons, originally discovered in Drosophila melanogaster, and subsequently identified in silico in 11 sequenced Drosophila genomes and as experimentally isolated in four non-sequenced Drosophila species. Bari-like elements have been also studied for their mobility both in vivo and in vitro. We analyzed 23 Drosophila genomes and carried out a detailed characterization of the Bari elements identified, including those from the heterochromatic Bari1 cluster in D. melanogaster. We have annotated 401 copies of Bari elements classified either as putatively autonomous or inactive according to the structure of the terminal sequences and the presence of a complete transposase-coding region. Analyses of the integration sites revealed that Bari transposase prefers AT-rich sequences in which the TA target is cleaved and duplicated. Furthermore evaluation of transposon’s co-occurrence near the integration sites of Bari elements showed a non-random distribution of other transposable elements. We also unveil the existence of a putatively autonomous Bari1 variant characterized by two identical long Terminal Inverted Repeats, in D. rhopaloa. In addition, we detected MITEs related to Bari transposons in 9 species. Phylogenetic analyses based on transposase gene and the terminal sequences confirmed that Bari-like elements are distributed into three subfamilies. A few inconsistencies in Bari phylogenetic tree with respect to the Drosophila species tree could be explained by the occurrence of horizontal transfer events as also suggested by the results of dS analyses. This study further clarifies the Bari transposon’s evolutionary dynamics and increases our understanding on the Tc1-mariner elements’ biology. PMID:27213270
Chen, Lin; Yang, Yang; Liu, Can; Zheng, Yanyan; Xu, Mingshuang; Wu, Na; Sheng, Jiping; Shen, Lin
2015-08-28
WRKY transcription factors play an important role in cold defense of plants. However, little information is available about the cold-responsive WRKYs in tomato (Solanum lycopersicum). In the present study, a complete characterization of this gene family was described. Eighty WRKY genes in the tomato genome were identified. Almost all WRKY genes contain putative stress-responsive cis-elements in their promoter regions. Segmental duplications contributed significantly to the expansion of the SlWRKY gene family. Transcriptional analysis revealed notable differential expression in tomato tissues and expression patterns under cold stress, which indicated wide functional divergence in this family. Ten WRKYs in tomato were strongly induced more than 2-fold during cold stress. These genes represented candidate genes for future functional analysis of WRKYs involved in the cold-related signal pathways. Our data provide valuable information about tomato WRKY proteins and form a foundation for future studies of these proteins, especially for those that play an important role in response to cold stress. Copyright © 2015 Elsevier Inc. All rights reserved.
Functional Analysis of Promoter Region from Eel Cytochrome P450 1A1 Gene in Transgenic Medaka.
Ogino; Itakura; Kato; Aoki; Sato
1999-07-01
: Transcription of the CYP1A1 genes in mammals and fish is stimulated by polyaromatic hydrocarbons. DNA sequencing analysis revealed that CYP1A1 gene in eel (Anguilla japonica) contains two kinds of putative cis-acting regulatory elements, XRE (xenobiotic-responsive element) and ERE (estrogen-responsive element). XRE is known as the enhancer that is responsible for the inducibility of the genes of CYP1A1 and some other drug-metabolizing enzymes. In the eel CYP1A1 gene, XRE motifs are distributed as follows: five times in the region from -2136 to -1125 bp, XRE(-6) to (-2); once in the proximal basal promoter region, XRE(-1); and once in the first intron, XRE(+1). The region between XRE(-2) and XRE(-1) contains three ERE motifs. To investigate the function of the cis-acting regulatory elements in the eel CYP1A1 gene, recombinant plasmids prepared with its 5' upstream sequence and the structural gene for luciferase were microinjected into fertilized eggs of medaka at the one-cell stage. Hatched fry were treated with 3-methylcholanthrene, and the transcription efficiency was assayed using competitive polymerase chain reaction analysis. Deletion of the region containing the five XREs, XRE(-6) to XRE(-2), and the point mutation of XRE(-1) reduced the inducible expressions by 75% and 56%, respectively, showing apparent dependency of the drug induction on the XREs. Constitutive expression, however, was not significantly affected by deletion or disruption of the XREs. When the region between XRE(-2) and XRE(-1) containing no XREs but three ERE motifs was internally deleted, the inducible expression and the constitutive expression were reduced by 88% and 75%, respectively. Replacement of this region with a partial fragment of eel CYP1A1 complementary DNA, with slight alteration of the distance between the five XREs and XRE(-1), reduced the inducible expression and the constitutive expression by 91% and 60%, respectively. These results strongly suggest that not only XRE but also other regulatory elements, possibly ERE, play an important role in induced and constitutive expressions of the eel CYP1A1 gene.
NASA Technical Reports Server (NTRS)
Reuzeau, C.; Doolittle, K. W.; McNally, J. G.; Pickard, B. G.; Evans, M. L. (Principal Investigator)
1997-01-01
Covisualizations with wide-field computational optical-sectioning microscopy of living epidermal cells of the onion bulb scale have evidenced two major new cellular features. First, a sheath of cytoskeletal elements clads the endomembrane system. Similar elements clad the inner faces of punctate plasmalemmal sites interpreted as plasmalemmal control centers. One component of the endomembrane sheath and plasmalemmal control center cladding is anti-genicity-recognized by two injected antibodies against animal spectrin. Immunoblots of separated epidermal protein also showed bands recognized by these antibodies. Injected phalloidin identified F-actin with the same cellular distribution pattern, as did antibodies against intermediate-filament protein and other cytoskeletal elements known from animal cells. Injection of general protein stains demonstrated the abundance of endomembrane sheath protein. Second, the endomembrane system, like the plasmalemmal puncta, contains antigen recognized by an anti-beta 1 integrin injected into the cytoplasm. Previously, immunoblots of separated epidermal protein were shown to have a major band recognized both by this antibody prepared against a peptide representing the cytosolic region of beta 1 integrin and an antibody against the matrix region of beta 1 integrin. The latter antiboby also identified puncta at the external face of protoplasts. It is proposed that integrin and associated transmembrane proteins secure the endomembrane sheath and transmit signals between it and the lumen or matrix of the endoplasmic reticulum and organellar matrices. This function is comparable to that proposed for such transmembrane linkers in the plasmalemmal control centers, which also appear to bind cytoskeleton and a host of related molecules and transmit signals between them and the wall matrix. It is at the plasmalemmal control centers that the endoplasmic reticulum, a major component of the endomembrane system, attaches to the plasma membrane.
Eves-van den Akker, Sebastian; Laetsch, Dominik R; Thorpe, Peter; Lilley, Catherine J; Danchin, Etienne G J; Da Rocha, Martine; Rancurel, Corinne; Holroyd, Nancy E; Cotton, James A; Szitenberg, Amir; Grenier, Eric; Montarry, Josselin; Mimee, Benjamin; Duceppe, Marc-Olivier; Boyes, Ian; Marvin, Jessica M C; Jones, Laura M; Yusup, Hazijah B; Lafond-Lapalme, Joël; Esquibet, Magali; Sabeh, Michael; Rott, Michael; Overmars, Hein; Finkers-Tomczak, Anna; Smant, Geert; Koutsovoulos, Georgios; Blok, Vivian; Mantelin, Sophie; Cock, Peter J A; Phillips, Wendy; Henrissat, Bernard; Urwin, Peter E; Blaxter, Mark; Jones, John T
2016-06-10
The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative 'effector islands' in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Zheng; Jin, Bo; Jin, Yaqiong
Androgens (AR) play an important role in initiation and progression of prostate cancer. It has been shown that AR exert their effects mainly through the androgen-activated AR which binds to androgen response elements (AREs) in the regulatory regions of target genes to regulate the transcription of androgen-responsive genes, thus, identification of AR downstream target gene is critical to understand androgen function in prostate cancer. In this study, our results showed that androgen treatment of LNCaP cells induced PTTG1 expression, which was blocked by the androgen receptor antagonist, Casodex. Bioinformatics analysis and experiments using PTTG1 promoter deletion mutants showed that themore » PTTG1 promoter contains a putative androgen response element (ARE), which localizes in the −851 to −836 region of the promoter. Androgen activated androgen receptor (AR) binding to this ARE was confirmed by Chromatin immunoprecipitation (ChIP) assay. Furthermore, Knockdown of PTTG1 expression using short hairpin RNA significantly reduced androgen-induced LNCaP cell growth and invasion. In addition, we showed PTTG1 is highly expressed in metastasis prostate cancer tissue. These results suggest that PTTG1 is a novel downstream target gene of androgen receptor and take part in prostate cancer proliferation and metastasis. - Highlights: • Androgen treatment of LNCaP cells induced PTTG1 expression. • Knockdown of PTTG1 expression significantly reduced androgen-induced LNCaP cell growth and invasion. • PTTG1 is highly expressed in metastasis prostate cancer tissue. • PTTG1 is a novel downstream target gene of androgen receptor.« less
Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements
Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard
2008-01-01
The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling. PMID:19704459
Resolving Heart Regeneration by Replacement Histone Profiling.
Goldman, Joseph Aaron; Kuzu, Guray; Lee, Nutishia; Karasik, Jaclyn; Gemberling, Matthew; Foglia, Matthew J; Karra, Ravi; Dickson, Amy L; Sun, Fei; Tolstorukov, Michael Y; Poss, Kenneth D
2017-02-27
Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling. Copyright © 2017 Elsevier Inc. All rights reserved.
BPF-1, a pathogen-induced DNA-binding protein involved in the plant defense response.
da Costa e Silva, O; Klein, L; Schmelzer, E; Trezzini, G F; Hahlbrock, K
1993-07-01
The mechanisms by which plants restrict the growth of pathogens include transient activation of numerous defense-related genes. Box P is a putative cis-acting element of a distinct group of such genes, including those encoding the enzyme phenylalanine ammonialyase (PAL). A DNA-binding activity to Box P was identified in nuclear extracts from cultured parsley cells and a cDNA encoding the protein BPF-1 (Box P-binding Factor) partially characterized. BPF-1 binds to this element with specificity similar to that of the binding activity in nuclear extracts. BPF-1 mRNA accumulates rapidly in elicitor-treated parsley cells and around fungal infection sites on parsley leaves. This accumulation is, at least partly, due to a rapid and transient increase in the transcription rate of BPF-1. Moreover, tight correlation between the relative amounts of BPF-1 and PAL mRNAs was observed in different organs of a parsley plant. These results are consistent with the hypothesis that BPF-1 is involved in disease resistance by modulating plant defense gene expression.
Miller, Myrna M; Jarosinski, Keith W; Schat, Karel A
2008-12-01
Expression of enhanced green fluorescent protein (EGFP) under control of the promoter-enhancer of chicken infectious anemia virus (CAV) is increased in an oestrogen receptor-enhanced cell line when treated with oestrogen and the promoter-enhancer binds unidentified proteins that recognize a consensus oestrogen response element (ERE). Co-transfection assays with the CAV promoter and the nuclear receptor chicken ovalbumin upstream promoter transcription factor 1 (COUP-TF1) showed that expression of EGFP was decreased by 50 to 60 % in DF-1 and LMH cells. The CAV promoter that included sequences at and downstream of the transcription start point had less expression than a short promoter construct. Mutation of a putative E box at this site restored expression levels. Electromobility shift assays showed that the transcription regulator delta-EF1 (deltaEF1) binds to this E box region. These findings indicate that the CAV promoter activity can be affected directly or indirectly by COUP-TF1 and deltaEF1.
Dimerization and endocytosis of the sucrose transporter StSUT1 in mature sieve elements.
Liesche, Johannes; Schulz, Alexander; Krügel, Undine; Grimm, Bernhard; Kühn, Christina
2008-12-01
The sucrose transporter StSUT1 from Solanum tuberosum was shown to be regulated post-translationally by redox reagents. Its activity is increased at least 10-fold in the presence of oxidizing agents if expressed in yeast. Oxidation has also an effect on plasma membrane targeting and dimerization of the protein. In response to oxidizing agents, StSUT1 is targeted to lipid raft-like microdomains and SUT1 protein is detectable in the detergent resistant membrane fraction of plant plasma membranes. Interestingly, StSUT1 treated with brefeldin A seems to aggregate in endocytic compartments in mature sieve elements.1 Further analysis of SUT1 targeting will certainly provide more information about the putative involvement of lipid raft-like microdomains in endocytic events. We provide here additional information on the dimerization and endocytosis of the SUT1 protein. The oligomerization of overexpressed SoSUT1 from Spinacia oleracea in transgenic potato plants was analyzed by two-dimensional gel electrophoresis and endocytosis of the StSUT1 protein was confirmed by immunogold labeling.
Elemental Abundance Distributions in Basalt Clays and Meteorites: Is It a Biosignature?
NASA Technical Reports Server (NTRS)
Fisk, M. R.; Storrie-Lombardi, M. C.; Joseph, J.
2005-01-01
Volcanic glass altered by microorganisms exhibits distinctive textures differing significantly from abiotic alteration [1-4]. We have previously presented morphological evidence of bioweathering in sub-oceanic basalt glass [5] and olivine [6], and noted similar alterations in Nakhla [7]. We have also introduced an autonomous Bayesian probabilistic classification methodology to identify biotic and abiotic alteration in sub-oceanic basalts using elemental abundance data [8]. We now present data from multiple sub-oceanic sites addressing the more general question of utilizing elemental abundance distribution in clays as a valid biosignature for the exploration of putative clay alteration products in meteorites.
Li, Yang; Lv, Zhaohui; Zhu, Jie; Lin, Jing; Ding, Lihua; Ye, Qinong
2016-01-01
The DEK oncogene is overexpressed in various cancers and overexpression of DEK correlates with poor clinical outcome. Vascular endothelial growth factor (VEGF) is the most important regulator of tumor angiogenesis, a process essential for tumor growth and metastasis. However, whether DEK enhances tumor angiogenesis remains unclear. Here, we show that DEK is a key regulator of VEGF expression and tumor angiogenesis. Using chromatin immunoprecipitation assay, we found that DEK promoted VEGF transcription in breast cancer cells (MCF7, ZR75-1 and MDA-MB-231) by directly binding to putative DEK-responsive element (DRE) of the VEGF promoter and indirectly binding to hypoxia response element (HRE) upstream of the DRE through its interaction with the transcription factor hypoxia-inducible factor 1α (HIF-1α), a master regulator of tumor angiogenesis and growth. DEK is responsible for recruitment of HIF-1α and the histone acetyltransferase p300 to the VEGF promoter. DEK-enhanced VEGF increases vascular endothelial cell proliferation, migration and tube formation as well as angiogenesis in the chick chorioallantoic membrane. DEK promotes tumor angiogenesis and growth in nude mice in HIF-1α-dependent and -independent manners. Immunohistochemical staining showed that DEK expression positively correlates with the expression of VEGF and microvessel number in 58 breast cancer patients. Our data establish DEK as a sequence-specific binding transcription factor, a novel coactivator for HIF-1α in regulation of VEGF transcription and a novel promoter of angiogenesis. PMID:26988756
Song, Jian Bo; Wang, Yan Xiang; Li, Hai Bo; Li, Bo Wen; Zhou, Zhao Sheng; Gao, Shuai; Yang, Zhi Min
2015-07-01
F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.
Diversity and structure of PIF/Harbinger-like elements in the genome of Medicago truncatula
Grzebelus, Dariusz; Lasota, Slawomir; Gambin, Tomasz; Kucherov, Gregory; Gambin, Anna
2007-01-01
Background Transposable elements constitute a significant fraction of plant genomes. The PIF/Harbinger superfamily includes DNA transposons (class II elements) carrying terminal inverted repeats and producing a 3 bp target site duplication upon insertion. The presence of an ORF coding for the DDE/DDD transposase, required for transposition, is characteristic for the autonomous PIF/Harbinger-like elements. Based on the above features, PIF/Harbinger-like elements were identified in several plant genomes and divided into several evolutionary lineages. Availability of a significant portion of Medicago truncatula genomic sequence allowed for mining PIF/Harbinger-like elements, starting from a single previously described element MtMaster. Results Twenty two putative autonomous, i.e. carrying an ORF coding for TPase and complete terminal inverted repeats, and 67 non-autonomous PIF/Harbinger-like elements were found in the genome of M. truncatula. They were divided into five families, MtPH-A5, MtPH-A6, MtPH-D,MtPH-E, and MtPH-M, corresponding to three previously identified and two new lineages. The largest families, MtPH-A6 and MtPH-M were further divided into four and three subfamilies, respectively. Non-autonomous elements were usually direct deletion derivatives of the putative autonomous element, however other types of rearrangements, including inversions and nested insertions were also observed. An interesting structural characteristic – the presence of 60 bp tandem repeats – was observed in a group of elements of subfamily MtPH-A6-4. Some families could be related to miniature inverted repeat elements (MITEs). The presence of empty loci (RESites), paralogous to those flanking the identified transposable elements, both autonomous and non-autonomous, as well as the presence of transposon insertion related size polymorphisms, confirmed that some of the mined elements were capable for transposition. Conclusion The population of PIF/Harbinger-like elements in the genome of M. truncatula is diverse. A detailed intra-family comparison of the elements' structure proved that they proliferated in the genome generally following the model of abortive gap repair. However, the presence of tandem repeats facilitated more pronounced rearrangements of the element internal regions. The insertion polymorphism of the MtPH elements and related MITE families in different populations of M. truncatula, if further confirmed experimentally, could be used as a source of molecular markers complementary to other marker systems. PMID:17996080
The Soybean GmNARK Affects ABA and Salt Responses in Transgenic Arabidopsis thaliana
Cheng, Chunhong; Li, Changman; Wang, Diandong; Zhai, Lifeng; Cai, Zhaoming
2018-01-01
GmNARK (Glycine max nodule autoregulation receptor kinase) is the homolog of Arabidopsis thaliana CLAVATA1 (CLV1) and one of the most important regulators in the process of AON (Autoregulation of Nodulation), a process that restricts excessive nodule numbers in soybean. However, except for the function in AON, little is known about this gene. Here, we report that GmNARK plays important roles in process of plant response to abiotic stresses. Bioinformatic analysis and subcellular localization experiment results showed that GmNARK was a putative receptor like kinase and located at membrane. The promoter of GmNARK contains manifold cis regulatory elements that are responsive to hormone and stresses. Gene transcript expression pattern analysis in soybean revealed GmNARK was induced by ABA and NaCl treatment in both shoot and root. Overexpression of GmNARK in Arabidopsis resulted in higher sensitivity to ABA and salt treatment during seed germination and greening stages. We also checked the expression levels of some ABA response genes in the transgenic lines; the results showed that the transcript level of all the ABA response genes were much higher than that of wild type under ABA treatment. Our results revealed a novel role of GmNARK in response to abiotic stresses during plant growth and development. PMID:29720993
Fan, FangFei; Yang, Xian; Cheng, Yuan; Kang, Yunyan; Chai, Xirong
2017-01-01
The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS) and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76) were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain). Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis -elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67) CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper.
Fan, FangFei; Yang, Xian; Cheng, Yuan; Kang, Yunyan; Chai, Xirong
2017-01-01
The DnaJ proteins which function as molecular chaperone played critical roles in plant growth and development and response to heat stress (HS) and also called heat shock protein 40 based on molecular weight. However, little was reported on this gene family in pepper. Recently, the release of the whole pepper genome provided an opportunity for identifying putative DnaJ homologous. In this study, a total of 76 putative pepper DnaJ genes (CaDnaJ01 to CaDnaJ76) were identified using bioinformatics methods and classified into five groups by the presence of the complete three domains (J-domain, zinc finger domain, and C-terminal domain). Chromosome mapping suggested that segmental duplication and tandem duplication were occurred in evolution. The multiple stress-related cis-elements were found in the promoter region of these CaDnaJ genes, which indicated that the CaDnaJs might be involved in the process of responding to complex stress conditions. In addition, expression profiles based on RNA-seq showed that the 47 CaDnaJs were expressed in at least one tissue tested. The result implied that they could be involved in the process of pepper growth and development. qRT-PCR analysis found that 80.60% (54/67) CaDnaJs were induced by HS, indicated that they could participated in pepper response to high temperature treatments. In conclusion, all these results would provide a comprehensive basis for further analyzing the function of CaDnaJ members and be also significant for elucidating the evolutionary relationship in pepper. PMID:28507559
ElemeNT: a computational tool for detecting core promoter elements.
Sloutskin, Anna; Danino, Yehuda M; Orenstein, Yaron; Zehavi, Yonathan; Doniger, Tirza; Shamir, Ron; Juven-Gershon, Tamar
2015-01-01
Core promoter elements play a pivotal role in the transcriptional output, yet they are often detected manually within sequences of interest. Here, we present 2 contributions to the detection and curation of core promoter elements within given sequences. First, the Elements Navigation Tool (ElemeNT) is a user-friendly web-based, interactive tool for prediction and display of putative core promoter elements and their biologically-relevant combinations. Second, the CORE database summarizes ElemeNT-predicted core promoter elements near CAGE and RNA-seq-defined Drosophila melanogaster transcription start sites (TSSs). ElemeNT's predictions are based on biologically-functional core promoter elements, and can be used to infer core promoter compositions. ElemeNT does not assume prior knowledge of the actual TSS position, and can therefore assist in annotation of any given sequence. These resources, freely accessible at http://lifefaculty.biu.ac.il/gershon-tamar/index.php/resources, facilitate the identification of core promoter elements as active contributors to gene expression.
Transcriptional regulation by retinoic acid of interleukin-2 alpha receptors in human B cells.
Bhatti, L; Sidell, N
1994-01-01
In this study, we demonstrated that retinoic acid (RA) up-regulated interleukin-2 receptor-alpha (IL-2R alpha) expression on two human B-cell lines, IE8.6 and SKW6.4. Deleted forms of the human IL-2R alpha promoter linked to the bacterial chloramphenicol acetyltransferase reporter gene were transfected into IE8.6 cells in order to define RA-responsive regulatory domains. Experiments using the -1.6 kb construct, which contains all known regulatory regions in the IL-2R alpha promoter, indicated that RA could induce IL-2R alpha promoter activity. The basal activity of the -471 construct was initially low, but was markedly enhanced by the addition of RA. Deletion of promoter sequences between -471 and -317 resulted in a significant augmentation of basal promoter activity and abolished promoter induction by RA. This finding revealed a requirement for sequences 5' of base -317 for RA-induced promoter activation, raising the possibility of the presence of both a RA response element and a negative regulatory element (NRE) upstream of base -317. Transfection studies with internal deletion mutants with the putative NRE removed resulted in increases in basal promoter activity and unresponsiveness to RA similar to the -317 construct. In contrast, an internal deletion mutant with the NRE intact had low basal activity and was inducible by RA similar to the -471 construct. Taken together, our results suggested that RA-induced activation of the IL-2R alpha promoter was through changes in the function of a NRE present between bases -400 and -368. This 31-base pair element may interact with an adjacent RA-responsive regulatory site as well as being responsible for down-regulation of basal IL-2R alpha expression under certain conditions. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:8157276
Nieto, Alma; Pérez Ishiwara, David G.; Orozco, Esther; Sánchez Monroy, Virginia; Gómez García, Consuelo
2017-01-01
Transcriptional regulation of the multidrug resistance EhPgp5 gene in Entamoeba histolytica is induced by emetine stress. EhPgp5 overexpression alters the chloride-dependent currents that cause trophozoite swelling, diminishing induced programmed cell death (PCD) susceptibility. In contrast, antisense inhibition of P-glycoprotein (PGP) expression produces synchronous death of trophozoites and the enhancement of the biochemical and morphological characteristics of PCD induced by G418. Transcriptional gene regulation analysis identified a 59 bp region at position −170 to −111 bp promoter as putative emetine response elements (EREs). However, insights into transcription factors controlling EhPgp5 gene transcription are missing; to fill this knowledge gap, we used deletion studies and transient CAT activity assays. Our findings suggested an activating motif (−151 to −136 bp) that corresponds to a heat shock element (HSE). Gel-shift assays, UV-crosslinking, binding protein purification, and western blotting assays revealed proteins of 94, 66, 62, and 51 kDa binding to the EhPgp5 HSE that could be heat shock-like transcription factors that regulate the transcriptional activation of the EhPgp5 gene in the presence of emetine drug. PMID:29238701
Sequence variability of Campylobacter temperate bacteriophages
Clark, Clifford G; Ng, Lai-King
2008-01-01
Background Prophages integrated within the chromosomes of Campylobacter jejuni isolates have been demonstrated very recently. Prior work with Campylobacter temperate bacteriophages, as well as evidence from prophages in other enteric bacteria, suggests these prophages might have a role in the biology and virulence of the organism. However, very little is known about the genetic variability of Campylobacter prophages which, if present, could lead to differential phenotypes in isolates carrying the phages versus those that do not. As a first step in the characterization of C. jejuni prophages, we investigated the distribution of prophage DNA within a C. jejuni population assessed the DNA and protein sequence variability within a subset of the putative prophages found. Results Southern blotting of C. jejuni DNA using probes from genes within the three putative prophages of the C. jejuni sequenced strain RM 1221 demonstrated the presence of at least one prophage gene in a large proportion (27/35) of isolates tested. Of these, 15 were positive for 5 or more of the 7 Campylobacter Mu-like phage 1 (CMLP 1, also designated Campylobacter jejuni integrated element 1, or CJIE 1) genes tested. Twelve of these putative prophages were chosen for further analysis. DNA sequencing of a 9,000 to 11,000 nucleotide region of each prophage demonstrated a close homology with CMLP 1 in both gene order and nucleotide sequence. Structural and sequence variability, including short insertions, deletions, and allele replacements, were found within the prophage genomes, some of which would alter the protein products of the ORFs involved. No insertions of novel genes were detected within the sequenced regions. The 12 prophages and RM 1221 had a % G+C very similar to C. jejuni sequenced strains, as well as promoter regions characteristic of C. jejuni. None of the putative prophages were successfully induced and propagated, so it is not known if they were functional or if they represented remnant prophage DNA in the bacterial chromosomes. Conclusion These putative prophages form a family of phages with conserved sequences, and appear to be adapted to Campylobacter. There was evidence for recombination among groups of prophages, suggesting that the prophages had a mosaic structure. In many of these properties, the Mu-like CMLP 1 homologs characterized in this study resemble temperate bacteriophages of enteric bacteria that are responsible for contributions to virulence and host adaptation. PMID:18366706
Cao, Xueyuan; Costa, Liliana M; Biderre-Petit, Corinne; Kbhaya, Bouchab; Dey, Nrisingha; Perez, Pascual; McCarty, Donald R; Gutierrez-Marcos, Jose F; Becraft, Philip W
2007-02-01
Viviparous1 (Vp1) encodes a B3 domain-containing transcription factor that is a key regulator of seed maturation in maize (Zea mays). However, the mechanisms of Vp1 regulation are not well understood. To examine physiological factors that may regulate Vp1 expression, transcript levels were monitored in maturing embryos placed in culture under different conditions. Expression of Vp1 decreased after culture in hormone-free medium, but was induced by salinity or osmotic stress. Application of exogenous abscisic acid (ABA) also induced transcript levels within 1 h in a dose-dependent manner. The Vp1 promoter fused to beta-glucuronidase or green fluorescent protein reproduced the endogenous Vp1 expression patterns in transgenic maize plants and also revealed previously unknown expression domains of Vp1. The Vp1 promoter is active in the embryo and aleurone cells of developing seeds and, upon drought stress, was also found in phloem cells of vegetative tissues, including cobs, leaves, and stems. Sequence analysis of the Vp1 promoter identified a potential ABA-responsive complex, consisting of an ACGT-containing ABA response element (ABRE) and a coupling element 1-like motif. Electrophoretic mobility shift assay confirmed that the ABRE and putative coupling element 1 components specifically bound proteins in embryo nuclear protein extracts. Treatment of embryos in hormone-free Murashige and Skoog medium blocked the ABRE-protein interaction, whereas exogenous ABA or mannitol treatment restored this interaction. Our data support a model for a VP1-dependent positive feedback mechanism regulating Vp1 expression during seed maturation.
Stevens, Rebecca G.; Baldet, Pierre; Bouchet, Jean-Paul; Causse, Mathilde; Deborde, Catherine; Deschodt, Claire; Faurobert, Mireille; Garchery, Cécile; Garcia, Virginie; Gautier, Hélène; Gouble, Barbara; Maucourt, Mickaël; Moing, Annick; Page, David; Petit, Johann; Poëssel, Jean-Luc; Truffault, Vincent; Rothan, Christophe
2018-01-01
Changing the balance between ascorbate, monodehydroascorbate, and dehydroascorbate in plant cells by manipulating the activity of enzymes involved in ascorbate synthesis or recycling of oxidized and reduced forms leads to multiple phenotypes. A systems biology approach including network analysis of the transcriptome, proteome and metabolites of RNAi lines for ascorbate oxidase, monodehydroascorbate reductase and galactonolactone dehydrogenase has been carried out in orange fruit pericarp of tomato (Solanum lycopersicum). The transcriptome of the RNAi ascorbate oxidase lines is inversed compared to the monodehydroascorbate reductase and galactonolactone dehydrogenase lines. Differentially expressed genes are involved in ribosome biogenesis and translation. This transcriptome inversion is also seen in response to different stresses in Arabidopsis. The transcriptome response is not well correlated with the proteome which, with the metabolites, are correlated to the activity of the ascorbate redox enzymes—ascorbate oxidase and monodehydroascorbate reductase. Differentially accumulated proteins include metacaspase, protein disulphide isomerase, chaperone DnaK and carbonic anhydrase and the metabolites chlorogenic acid, dehydroascorbate and alanine. The hub genes identified from the network analysis are involved in signaling, the heat-shock response and ribosome biogenesis. The results from this study therefore reveal one or several putative signals from the ascorbate pool which modify the transcriptional response and elements downstream. PMID:29491875
Ceccarelli, A; Zhukovskaya, N; Kawata, T; Bozzaro, S; Williams, J
2000-12-01
The ecmB gene of Dictyostelium is expressed at culmination both in the prestalk cells that enter the stalk tube and in ancillary stalk cell structures such as the basal disc. Stalk tube-specific expression is regulated by sequence elements within the cap-site proximal part of the promoter, the stalk tube (ST) promoter region. Dd-STATa, a member of the STAT transcription factor family, binds to elements present in the ST promoter-region and represses transcription prior to entry into the stalk tube. We have characterised an activatory DNA sequence element, that lies distal to the repressor elements and that is both necessary and sufficient for expression within the stalk tube. We have mapped this activator to a 28 nucleotide region (the 28-mer) within which we have identified a GA-containing sequence element that is required for efficient gene transcription. The Dd-STATa protein binds to the 28-mer in an in vitro binding assay, and binding is dependent upon the GA-containing sequence. However, the ecmB gene is expressed in a Dd-STATa null mutant, therefore Dd-STATa cannot be responsible for activating the 28-mer in vivo. Instead, we identified a distinct 28-mer binding activity in nuclear extracts from the Dd-STATa null mutant, the activity of this GA binding activity being largely masked in wild type extracts by the high affinity binding of the Dd-STATa protein. We suggest, that in addition to the long range repression exerted by binding to the two known repressor sites, Dd-STATa inhibits transcription by direct competition with this putative activator for binding to the GA sequence.
Differentially expressed regulatory genes in honey bee caste development
NASA Astrophysics Data System (ADS)
Hepperle, C.; Hartfelder, K.
2001-03-01
In the honey bee, an eminently fertile queen with up to 200 ovarioles per ovary monopolizes colony level reproduction. In contrast, worker bees have only few ovarioles and are essentially sterile. This phenotype divergence is a result of caste-specifically modulated juvenile hormone and ecdysteroid titers in larval development. In this study we employed a differential-display reverse transcription (DDRT)-PCR protocol to detect ecdysteroid-regulated gene expression during a critical phase of caste development. We identified a Ftz-F1 homolog and a Cut-like transcript. Ftz-F1 could be a putative element of the metamorphic ecdysone response cascade of bees, whereas Cut-like proteins are described as transcription factors involved in maintaining cellular differentiation states. The downregulation of both factors can be interpreted as steps in the metamorphic degradation of ovarioles in worker-bee ovaries.
Halász, Júlia; Kodad, Ossama; Hegedűs, Attila
2014-07-01
Miniature inverted-repeat transposable elements (MITEs) are known to contribute to the evolution of plants, but only limited information is available for MITEs in the Prunus genome. We identified a MITE that has been named Falling Stones, FaSt. All structural features (349-bp size, 82-bp terminal inverted repeats and 9-bp target site duplications) are consistent with this MITE being a putative member of the Mutator transposase superfamily. FaSt showed a preferential accumulation in the short AT-rich segments of the euchromatin region of the peach genome. DNA sequencing and pollination experiments have been performed to confirm that the nested insertion of FaSt into the S-haplotype-specific F-box gene of apricot resulted in the breakdown of self-incompatibility (SI). A bioinformatics-based survey of the known Rosaceae and other genomes and a newly designed polymerase chain reaction (PCR) assay verified the Prunoideae-specific occurrence of FaSt elements. Phylogenetic analysis suggested a recent activity of FaSt in the Prunus genome. The occurrence of a nested insertion in the apricot genome further supports the recent activity of FaSt in response to abiotic stress conditions. This study reports on a presumably active non-autonomous Mutator element in Prunus that exhibits a major indirect genome shaping force through inducing loss-of-function mutation in the SI locus. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.
Curt-Varesano, Aurélie; Braun, Laurence; Ranquet, Caroline; Hakimi, Mohamed-Ali; Bougdour, Alexandre
2016-02-01
Toxoplasma gondii and Plasmodium species are obligatory intracellular parasites that export proteins into the infected cells in order to interfere with host-signalling pathways, acquire nutrients or evade host defense mechanisms. With regard to export mechanism, a wealth of information in Plasmodium spp. is available, while the mechanisms operating in T. gondii remain uncertain. The recent discovery of exported proteins in T. gondii, mainly represented by dense granule resident proteins, might explain this discrepancy and offers a unique opportunity to study the export mechanism in T. gondii. Here, we report that GRA16 export is mediated by two protein elements present in its N-terminal region. Because the first element contains a putative Plasmodium export element linear motif (RRLAE), we hypothesized that GRA16 export depended on a maturation process involving protein cleavage. Using both N- and C-terminal epitope tags, we provide evidence for protein proteolysis occurring in the N-terminus of GRA16. We show that TgASP5, the T. gondii homolog of Plasmodium plasmepsin V, is essential for GRA16 export and is directly responsible for its maturation in a Plasmodium export element-dependent manner. Interestingly, TgASP5 is also involved in GRA24 export, although the GRA24 maturation mechanism is TgASP5-independent. Our data reveal different modus operandi for protein export, in which TgASP5 should play multiple functions. © 2015 John Wiley & Sons Ltd.
Tanaka, Mizuki; Sakai, Yoshifumi; Yamada, Osamu; Shintani, Takahiro; Gomi, Katsuya
2011-01-01
To investigate 3′-end-processing signals in Aspergillus oryzae, we created a nucleotide sequence data set of the 3′-untranslated region (3′ UTR) plus 100 nucleotides (nt) sequence downstream of the poly(A) site using A. oryzae expressed sequence tags and genomic sequencing data. This data set comprised 1065 sequences derived from 1042 unique genes. The average 3′ UTR length in A. oryzae was 241 nt, which is greater than that in yeast but similar to that in plants. The 3′ UTR and 100 nt sequence downstream of the poly(A) site is notably U-rich, while the region located 15–30 nt upstream of the poly(A) site is markedly A-rich. The most frequently found hexanucleotide in this A-rich region is AAUGAA, although this sequence accounts for only 6% of all transcripts. These data suggested that A. oryzae has no highly conserved sequence element equivalent to AAUAAA, a mammalian polyadenylation signal. We identified that putative 3′-end-processing signals in A. oryzae, while less well conserved than those in mammals, comprised four sequence elements: the furthest upstream U-rich element, A-rich sequence, cleavage site, and downstream U-rich element flanking the cleavage site. Although these putative 3′-end-processing signals are similar to those in yeast and plants, some notable differences exist between them. PMID:21586533
Molecular Evolution of the Non-Coding Eosinophil Granule Ontogeny Transcript
Rose, Dominic; Stadler, Peter F.
2011-01-01
Eukaryotic genomes are pervasively transcribed. A large fraction of the transcriptional output consists of long, mRNA-like, non-protein-coding transcripts (mlncRNAs). The evolutionary history of mlncRNAs is still largely uncharted territory. In this contribution, we explore in detail the evolutionary traces of the eosinophil granule ontogeny transcript (EGOT), an experimentally confirmed representative of an abundant class of totally intronic non-coding transcripts (TINs). EGOT is located antisense to an intron of the ITPR1 gene. We computationally identify putative EGOT orthologs in the genomes of 32 different amniotes, including orthologs from primates, rodents, ungulates, carnivores, afrotherians, and xenarthrans, as well as putative candidates from basal amniotes, such as opossum or platypus. We investigate the EGOT gene phylogeny, analyze patterns of sequence conservation, and the evolutionary conservation of the EGOT gene structure. We show that EGO-B, the spliced isoform, may be present throughout the placental mammals, but most likely dates back even further. We demonstrate here for the first time that the whole EGOT locus is highly structured, containing several evolutionary conserved, and thermodynamic stable secondary structures. Our analyses allow us to postulate novel functional roles of a hitherto poorly understood region at the intron of EGO-B which is highly conserved at the sequence level. The region contains a novel ITPR1 exon and also conserved RNA secondary structures together with a conserved TATA-like element, which putatively acts as a promoter of an independent regulatory element. PMID:22303364
Collart, F R; Osipiuk, J; Trent, J; Olsen, G J; Huberman, E
1996-10-03
We have cloned and characterized the gene encoding inosine monophosphate dehydrogenase (IMPDH) from Pyrococcus furiosus (Pf), a hyperthermophillic archeon. Sequence analysis of the Pf gene indicated an open reading frame specifying a protein of 485 amino acids (aa) with a calculated M(r) of 52900. Canonical Archaea promoter elements, Box A and Box B, are located -49 and -17 nucleotides (nt), respectively, upstream of the putative start codon. The sequence of the putative active-site region conforms to the IMPDH signature motif and contains a putative active-site cysteine. Phylogenetic relationships derived by using all available IMPDH sequences are consistent with trees developed for other molecules; they do not precisely resolve the history of Pf IMPDH but indicate a close similarity to bacterial IMPDH proteins. The phylogenetic analysis indicates that a gene duplication occurred prior to the division between rodents and humans, accounting for the Type I and II isoforms identified in mice and humans.
Chompy: an infestation of MITE-like repetitive elements in the crocodilian genome.
Ray, David A; Hedges, Dale J; Herke, Scott W; Fowlkes, Justin D; Barnes, Erin W; LaVie, Daniel K; Goodwin, Lindsey M; Densmore, Llewellyn D; Batzer, Mark A
2005-12-05
Interspersed repeats are a major component of most eukaryotic genomes and have an impact on genome size and stability, but the repetitive element landscape of crocodilian genomes has not yet been fully investigated. In this report, we provide the first detailed characterization of an interspersed repeat element in any crocodilian genome. Chompy is a putative miniature inverted-repeat transposable element (MITE) family initially recovered from the genome of Alligator mississippiensis (American alligator) but also present in the genomes of Crocodylus moreletii (Morelet's crocodile) and Gavialis gangeticus (Indian gharial). The element has all of the hallmarks of MITEs including terminal inverted repeats, possible target site duplications, and a tendency to form secondary structures. We estimate the copy number in the alligator genome to be approximately 46,000 copies. As a result of their size and unique properties, Chompy elements may provide a useful source of genomic variation for crocodilian comparative genomics.
Hristova, Krassimira R; Schmidt, Radomir; Chakicherla, Anu Y; Legler, Tina C; Wu, Janice; Chain, Patrick S; Scow, Kate M; Kane, Staci R
2007-11-01
High-density whole-genome cDNA microarrays were used to investigate substrate-dependent gene expression of Methylibium petroleiphilum PM1, one of the best-characterized aerobic methyl tert-butyl ether (MTBE)-degrading bacteria. Differential gene expression profiling was conducted with PM1 grown on MTBE and ethanol as sole carbon sources. Based on microarray high scores and protein similarity analysis, an MTBE regulon located on the megaplasmid was identified for further investigation. Putative functions for enzymes encoded in this regulon are described with relevance to the predicted MTBE degradation pathway. A new unique dioxygenase enzyme system that carries out the hydroxylation of tert-butyl alcohol to 2-methyl-2-hydroxy-1-propanol in M. petroleiphilum PM1 was discovered. Hypotheses regarding the acquisition and evolution of MTBE genes as well as the involvement of IS elements in these complex processes were formulated. The pathways for toluene, phenol, and alkane oxidation via toluene monooxygenase, phenol hydroxylase, and propane monooxygenase, respectively, were upregulated in MTBE-grown cells compared to ethanol-grown cells. Four out of nine putative cyclohexanone monooxygenases were also upregulated in MTBE-grown cells. The expression data allowed prediction of several hitherto-unknown enzymes of the upper MTBE degradation pathway in M. petroleiphilum PM1 and aided our understanding of the regulation of metabolic processes that may occur in response to pollutant mixtures and perturbations in the environment.
Zhang, Feng-Lin; Shen, Guo-Min; Liu, Xiao-Ling; Wang, Fang; Zhao, Ying-Ze; Zhang, Jun-Wu
2012-01-01
Abstract Hypoxia-inducible factor promotes erythropoiesis through coordinated cell type–specific hypoxia responses. GATA1 is essential to normal erythropoiesis and plays a crucial role in erythroid differentiation. In this study, we show that hypoxia-induced GATA1 expression is mediated by HIF1 in erythroid cells. Under hypoxic conditions, significantly increased GATA1 mRNA and protein levels were detected in K562 cells and erythroid induction cultures of CD34+ haematopoietic stem/progenitor cells. Enforced HIF1α expression increased GATA1 expression, while HIF1α knockdown by RNA interference decreased GATA1 expression. In silico analysis revealed one potential hypoxia response element (HRE). The results from reporter gene and mutation analysis suggested that this element is necessary for hypoxic response. Chromatin immunoprecipitation (ChIP)-PCR showed that the putative HRE was recognized and bound by HIF1 in vivo. These results demonstrate that the up-regulation of GATA1 during hypoxia is directly mediated by HIF1.The mRNA expression of some erythroid differentiation markers was increased under hypoxic conditions, but decreased with RNA interference of HIF1α or GATA1. Flow cytometry analysis also indicated that hypoxia, desferrioxamine or CoCl2 induced expression of erythroid surface markers CD71 and CD235a, while expression repression of HIF1α or GATA1 by RNA interference led to a decreased expression of CD235a. These results suggested that HIF1-mediated GATA1 up-regulation promotes erythropoiesis in order to satisfy the needs of an organism under hypoxic conditions. PMID:22050843
The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss.
Galt, Nicholas J; Froehlich, Jacob Michael; Remily, Ethan A; Romero, Sinibaldo R; Biga, Peggy R
2014-09-01
Glucocorticoids (GCs) strongly regulate myostatin expression in mammals via glucocorticoid response elements (GREs), and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In silico promoter analyses of the three putative rainbow trout (Oncorhynchus mykiss) myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the effects on myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes. Copyright © 2014 Elsevier Inc. All rights reserved.
Alipanah, Leila; Winge, Per; Rohloff, Jens; Najafi, Javad; Brembu, Tore; Bones, Atle M
2018-01-01
Phosphorus, an essential element for all living organisms, is a limiting nutrient in many regions of the ocean due to its fast recycling. Changes in phosphate (Pi) availability in aquatic systems affect diatom growth and productivity. We investigated the early adaptive mechanisms in the marine diatom Phaeodactylum tricornutum to P deprivation using a combination of transcriptomics, metabolomics, physiological and biochemical experiments. Our analysis revealed strong induction of gene expression for proteins involved in phosphate acquisition and scavenging, and down-regulation of processes such as photosynthesis, nitrogen assimilation and nucleic acid and ribosome biosynthesis. P deprivation resulted in alterations of carbon allocation through the induction of the pentose phosphate pathway and cytosolic gluconeogenesis, along with repression of the Calvin cycle. Reorganization of cellular lipids was indicated by coordinated induced expression of phospholipases, sulfolipid biosynthesis enzymes and a putative betaine lipid biosynthesis enzyme. A comparative analysis of nitrogen- and phosphorus-deprived P. tricornutum revealed both common and distinct regulation patterns in response to phosphate and nitrate stress. Regulation of central carbon metabolism and amino acid metabolism was similar, whereas unique responses were found in nitrogen assimilation and phosphorus scavenging in nitrogen-deprived and phosphorus-deprived cells, respectively.
Tetranychus urticae mites do not mount an induced immune response against bacteria
Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E.; Zélé, Flore; Riga, Maria; Leitão, Alexandre B.; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara
2017-01-01
The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila. Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae. This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei. We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum. Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. PMID:28592670
Tetranychus urticae mites do not mount an induced immune response against bacteria.
Santos-Matos, Gonçalo; Wybouw, Nicky; Martins, Nelson E; Zélé, Flore; Riga, Maria; Leitão, Alexandre B; Vontas, John; Grbić, Miodrag; Van Leeuwen, Thomas; Magalhães, Sara; Sucena, Élio
2017-06-14
The genome of the spider mite Tetranychus urticae , a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae , infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei , a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response. © 2017 The Authors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Biaoyang; Nasir, J.; Kalchman, M.A.
1995-02-10
We have previously cloned and characterized the murine homologue of the Huntington disease (HD) gene and shown that it maps to mouse chromosome 5 within a region of conserved synteny with human chromosome 4p16.3. Here we present a detailed comparison of the sequence of the putative promoter and the organization of the 5{prime} genomic region of the murine (Hdh) and human HD genes encompassing the first five exons. We show that in this region these two genes share identical exon boundaries, but have different-size introns. Two dinucleotide (CT) and one trinucleotide intronic polymorphism in Hdh and an intronic CA polymorphismmore » in the HD gene were identified. Comparison of 940-bp sequence 5{prime} to the putative translation start site reveals a highly conserved region (78.8% nucleotide identity) between Hdh and the HD gene from nucleotide -56 to -206 (of Hdh). Neither Hdh nor the HD gene have typical TATA or CCAAT elements, but both show one putative AP2 binding site and numerous potential Sp1 binding sites. The high sequence identity between Hdh and the HD gene for approximately 200 bp 5{prime} to the putative translation start site indicates that these sequences may play a role in regulating expression of the Huntington disease gene. 30 refs., 4 figs., 2 tabs.« less
Gu, Tao; Zhou, Chaoyang; Sørensen, Sebastian R.; Zhang, Ji; He, Jian; Yu, Peiwen; Li, Shunpeng
2013-01-01
The environmental fate of phenylurea herbicides has received considerable attention in recent decades. The microbial metabolism of N,N-dimethyl-substituted phenylurea herbicides can generally be initiated by mono-N-demethylation. In this study, the molecular basis for this process was revealed. The pdmAB genes in Sphingobium sp. strain YBL2 were shown to be responsible for the initial mono-N-demethylation of commonly used N,N-dimethyl-substituted phenylurea herbicides. PdmAB is the oxygenase component of a bacterial Rieske non-heme iron oxygenase (RO) system. The genes pdmAB, encoding the α subunit PdmA and the β subunit PdmB, are organized in a transposable element flanked by two direct repeats of an insertion element resembling ISRh1. Furthermore, this transposable element is highly conserved among phenylurea herbicide-degrading sphingomonads originating from different areas of the world. However, there was no evidence of a gene for an electron carrier (a ferredoxin or a reductase) located in the immediate vicinity of pdmAB. Without its cognate electron transport components, expression of PdmAB in Escherichia coli, Pseudomonas putida, and other sphingomonads resulted in a functional enzyme. Moreover, coexpression of a putative [3Fe-4S]-type ferredoxin from Sphingomonas sp. strain RW1 greatly enhanced the catalytic activity of PdmAB in E. coli. These data suggested that PdmAB has a low specificity for electron transport components and that its optimal ferredoxin may be the [3Fe-4S] type. PdmA exhibited low homology to the α subunits of previously characterized ROs (less than 37% identity) and did not cluster with the RO group involved in O- or N-demethylation reactions, indicating that PdmAB is a distinct bacterial RO N-demethylase. PMID:24123738
Hamada, K; Gleason, S L; Levi, B Z; Hirschfeld, S; Appella, E; Ozato, K
1989-11-01
Transcription of major histocompatibility complex (MHC) class I genes is regulated by the conserved MHC class I regulatory element (CRE). The CRE has two factor-binding sites, region I and region II, both of which elicit enhancer function. By screening a mouse lambda gt 11 library with the CRE as a probe, we isolated a cDNA clone that encodes a protein capable of binding to region II of the CRE. This protein, H-2RIIBP (H-2 region II binding protein), bound to the native region II sequence, but not to other MHC cis-acting sequences or to mutant region II sequences, similar to the naturally occurring region II factor in mouse cells. The deduced amino acid sequence of H-2RIIBP revealed two putative zinc fingers homologous to the DNA-binding domain of steroid/thyroid hormone receptors. Although sequence similarity in other regions was minimal, H-2RIIBP has apparent modular domains characteristic of the nuclear hormone receptors. Further analyses showed that both H-2RIIBP and the natural region II factor bind to the estrogen response element (ERE) of the vitellogenin A2 gene. The ERE is composed of a palindrome, and half of this palindrome resembles the region II binding site of the MHC CRE. These results indicate that H-2RIIBP (i) is a member of the superfamily of nuclear hormone receptors and (ii) may regulate not only MHC class I genes but also genes containing the ERE and related sequences. Sequences homologous to the H-2RIIBP gene are widely conserved in the animal kingdom. H-2RIIBP mRNA is expressed in many mouse tissues, in agreement with the distribution of the natural region II factor.
Butter, Falk; Kappei, Dennis; Buchholz, Frank; Vermeulen, Michiel; Mann, Matthias
2010-04-01
Single-nucleotide polymorphisms (SNPs) in the regulatory regions of the genome can have a profound impact on phenotype. The G3072A polymorphism in intron 3 of insulin-like growth factor 2 (IGF2) is implicated in higher muscle content and reduced fat in European pigs and is bound by a putative repressor. Here, we identify this repressor--which we call muscle growth regulator (MGR)--by using a DNA protein interaction screen based on quantitative mass spectrometry. MGR has a bipartite nuclear localization signal, two BED-type zinc fingers and is highly conserved between placental mammals. Surprisingly, the gene is located in an intron and belongs to the hobo-Ac-Tam3 transposase superfamily, suggesting regulatory use of a formerly parasitic element. In transactivation assays, MGR differentially represses the expression of the two SNP variants. Knockdown of MGR in C2C12 myoblast cells upregulates Igf2 expression and mild overexpression retards growth. Thus, MGR is the repressor responsible for enhanced muscle growth in the IGF2 G3072A polymorphism in commercially bred pigs.
Genic control of honey bee dance language dialect.
Rinderer, T E; Beaman, L D
1995-10-01
Behavioural genetic analysis of honey bee dance language shows simple Mendelian genic control over certain dance dialect differences. Worker honey bees of one parent colony (yellow) changed from round to transition dances for foraging distances of 20 m and from transition to waggle dances at 40 m. Worker bees of the other parent colony (black) made these shifts at 30 m and 90 m, respectively. F1 colonies behaved identically to their yellow parent, suggesting dominance. Progeny of backcrossing between the F1 generation and the putative recessive black parent assorted to four classes, indicating that the dialect differences studied are regulated by genes at two unlinked loci, each having two alleles. Honey bee dance communication is complex and highly integrated behaviour. Nonetheless, analysis of a small element of this behaviour, variation in response to distance, suggests that dance communication is regulated by subsets consisting of simple genic systems.
Alternative Ways to Think about Cellular Internal Ribosome Entry*
Gilbert, Wendy V.
2010-01-01
Internal ribosome entry sites (IRESs) are specialized mRNA elements that allow recruitment of eukaryotic ribosomes to naturally uncapped mRNAs or to capped mRNAs under conditions in which cap-dependent translation is inhibited. Putative cellular IRESs have been proposed to play crucial roles in stress responses, development, apoptosis, cell cycle control, and neuronal function. However, most of the evidence for cellular IRES activity rests on bicistronic reporter assays, the reliability of which has been questioned. Here, the mechanisms underlying cap-independent translation of cellular mRNAs and the contributions of such translation to cellular protein synthesis are discussed. I suggest that the division of cellular mRNAs into mutually exclusive categories of “cap-dependent” and “IRES-dependent” should be reconsidered and that the implications of cellular IRES activity need to be incorporated into our models of cap-dependent initiation. PMID:20576611
Caudron, Fabrice; Barral, Yves
2013-12-05
Cellular behavior is frequently influenced by the cell's history, indicating that single cells may memorize past events. We report that budding yeast permanently escape pheromone-induced cell-cycle arrest when experiencing a deceptive mating attempt, i.e., not reaching their putative partner within reasonable time. This acquired behavior depends on super-assembly and inactivation of the G1/S inhibitor Whi3, which liberates the G1 cyclin Cln3 from translational inhibition. Super-assembly of Whi3 is a slow response to pheromone, driven by polyQ and polyN domains, counteracted by Hsp70, and stable over generations. Unlike prion aggregates, Whi3 super-assemblies are not inherited mitotically but segregate to the mother cell. We propose that such polyQ- and polyN-based elements, termed here mnemons, act as cellular memory devices to encode previous environmental conditions. Copyright © 2013 Elsevier Inc. All rights reserved.
Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K.; Fryszczyn, Bartlomiej G.; Fox, George E.; Tirumalai, Madhan R.; Liu, Yamei; Kim, Sun
2015-01-01
Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. PMID:25953173
2010-01-01
Background An important focus of genomic science is the discovery and characterization of all functional elements within genomes. In silico methods are used in genome studies to discover putative regulatory genomic elements (called words or motifs). Although a number of methods have been developed for motif discovery, most of them lack the scalability needed to analyze large genomic data sets. Methods This manuscript presents WordSeeker, an enumerative motif discovery toolkit that utilizes multi-core and distributed computational platforms to enable scalable analysis of genomic data. A controller task coordinates activities of worker nodes, each of which (1) enumerates a subset of the DNA word space and (2) scores words with a distributed Markov chain model. Results A comprehensive suite of performance tests was conducted to demonstrate the performance, speedup and efficiency of WordSeeker. The scalability of the toolkit enabled the analysis of the entire genome of Arabidopsis thaliana; the results of the analysis were integrated into The Arabidopsis Gene Regulatory Information Server (AGRIS). A public version of WordSeeker was deployed on the Glenn cluster at the Ohio Supercomputer Center. Conclusion WordSeeker effectively utilizes concurrent computing platforms to enable the identification of putative functional elements in genomic data sets. This capability facilitates the analysis of the large quantity of sequenced genomic data. PMID:21210985
Soluble and filamentous proteins in Arabidopsis sieve elements.
Batailler, Brigitte; Lemaître, Thomas; Vilaine, Françoise; Sanchez, Christian; Renard, Denis; Cayla, Thibaud; Beneteau, Julie; Dinant, Sylvie
2012-07-01
Phloem sieve elements are highly differentiated cells involved in the long-distance transport of photoassimilates. These cells contain both aggregated phloem-proteins (P-proteins) and soluble proteins, which are also translocated by mass flow. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS) to carry out a proteomic survey of the phloem exudate of Arabidopsis thaliana, collected by the ethylenediaminetetraacetic acid (EDTA)-facilitated method. We identified 287 proteins, a large proportion of which were enzymes involved in the metabolic precursor generation and amino acid synthesis, suggesting that sieve tubes display high levels of metabolic activity. RNA-binding proteins, defence proteins and lectins were also found. No putative P-proteins were detected in the EDTA-exudate fraction, indicating a lack of long-distance translocation of such proteins in Arabidopsis. In parallel, we investigated the organization of P-proteins, by high-resolution transmission electron microscopy, and the localization of the phloem lectin PP2, a putative P-protein component, by immunolocalization with antibodies against PP2-A1. Transmission electron microscopy observations of P-proteins revealed bundles of filaments resembling strings of beads. PP2-A1 was found weakly associated with these structures in the sieve elements and bound to plastids. These observations suggest that PP2-A1 is anchored to P-proteins and organelles rather than being a structural component of P-proteins. © 2012 Blackwell Publishing Ltd.
Ueyama, T; Zhu, C; Valenzuela, Y M; Suzow, J G; Stewart, A F
2000-06-09
Cardiac myocytes respond to alpha(1)-adrenergic receptor stimulation by a progressive hypertrophy accompanied by the activation of many fetal genes, including skeletal muscle alpha-actin. The skeletal muscle alpha-actin gene is activated by signaling through an MCAT element, the binding site of the transcription enhancer factor-1 (TEF-1) family of transcription factors. Previously, we showed that overexpression of the TEF-1-related factor (RTEF-1) increased the alpha(1)-adrenergic response of the skeletal muscle alpha-actin promoter, whereas TEF-1 overexpression did not. Here, we identified the functional domains and specific sequences in RTEF-1 that mediate the alpha(1)-adrenergic response. Chimeric TEF-1 and RTEF-1 expression constructs localized the region responsible for the alpha(1)-adrenergic response to the carboxyl-terminal domain of RTEF-1. Site-directed mutagenesis was used to inactivate eight serine residues of RTEF-1, not present in TEF-1, that are putative targets of alpha(1)-adrenergic-dependent kinases. Mutation of a single serine residue, Ser-322, reduced the alpha(1)-adrenergic activation of RTEF-1 by 70% without affecting protein stability, suggesting that phosphorylation at this serine residue accounts for most of the alpha(1)-adrenergic response. Thus, these results demonstrate that RTEF-1 is a direct target of alpha(1)-adrenergic signaling in hypertrophied cardiac myocytes.
Msn2p/Msn4p act as a key transcriptional activator of yeast cytoplasmic thiol peroxidase II.
Hong, Seung-Keun; Cha, Mee-Kyung; Choi, Yong-Soo; Kim, Won-Cheol; Kim, Il-Han
2002-04-05
We observed that the transcription of Saccharomyces cerevisiae cytoplasmic thiol peroxidase type II (cTPx II) (YDR453C) is regulated in response to various stresses (e.g. oxidative stress, carbon starvation, and heat-shock). It has been suggested that both transcription-activating proteins, Yap1p and Skn7p, regulate the transcription of cTPx II upon exposure to oxidative stress. However, a dramatic loss of transcriptional response to various stresses in yeast mutant strains lacking both Msn2p and Msn4p suggests that the transcription factors act as a principal transcriptional activator. In addition to two Yap1p response elements (YREs), TTACTAA and TTAGTAA, the presence of two stress response elements (STREs) (CCCCT) in the upstream sequence of cTPx II also suggests that Msn2p/Msn4p could control stress-induced expression of cTPx II. Analysis of the transcriptional activity of site-directed mutagenesis of the putative STREs (STRE1 and STRE2) and YREs (TRE1 and YRE2) in terms of the activity of a lacZ reporter gene under control of the cTPx II promoter indicates that STRE2 acts as a principal binding element essential for transactivation of the cTPx II promoter. The transcriptional activity of the cTPx II promoter was exponentially increased after postdiauxic growth. The transcriptional activity of the cTPx II promoter is greatly increased by rapamycin. Deletion of Tor1, Tor2, Ras1, and Ras2 resulted in a considerable induction when compared with their parent strains, suggesting that the transcription of cTPx II is under negative control of the Ras/cAMP and target of rapamycin signaling pathways. Taken together, these results suggest that cTPx II is a target of Msn2p/Msn4p transcription factors under negative control of the Ras-protein kinase A and target of rapamycin signaling pathways. Furthermore, the accumulation of cTPx II upon exposure to oxidative stress and during the postdiauxic shift suggests an important antioxidant role in stationary phase yeast cells.
Bröker, Daniel; Arenskötter, Matthias; Legatzki, Antje; Nies, Dietrich H.; Steinbüchel, Alexander
2004-01-01
The complete sequence of the circular 101,016-bp megaplasmid pKB1 from the cis-1,4-polyisoprene-degrading bacterium Gordonia westfalica Kb1, which represents the first described extrachromosomal DNA of a member of this genus, was determined. Plasmid pKB1 harbors 105 open reading frames. The predicted products of 46 of these are significantly related to proteins of known function. Plasmid pKB1 is organized into three functional regions that are flanked by insertion sequence (IS) elements: (i) a replication and putative partitioning region, (ii) a putative metabolic region, and (iii) a large putative conjugative transfer region, which is interrupted by an additional IS element. Southern hybridization experiments revealed the presence of another copy of this conjugational transfer region on the bacterial chromosome. The origin of replication (oriV) of pKB1 was identified and used for construction of Escherichia coli-Gordonia shuttle vectors, which was also suitable for several other Gordonia species and related genera. The metabolic region included the heavy-metal resistance gene cadA, encoding a P-type ATPase. Expression of cadA in E. coli mediated resistance to cadmium, but not to zinc, and decreased the cellular content of cadmium in this host. When G. westfalica strain Kb1 was cured of plasmid pKB1, the resulting derivative strains exhibited slightly decreased cadmium resistance. Furthermore, they had lost the ability to use isoprene rubber as a sole source of carbon and energy, suggesting that genes essential for rubber degradation are encoded by pKB1. PMID:14679241
Evolutionary Genomics of an Ancient Prophage of the Order Sphingomonadales
Viswanathan, Vandana; Narjala, Anushree; Ravichandran, Aravind; Jayaprasad, Suvratha
2017-01-01
The order Sphingomonadales, containing the families Erythrobacteraceae and Sphingomonadaceae, is a relatively less well-studied phylogenetic branch within the class Alphaproteobacteria. Prophage elements are present in most bacterial genomes and are important determinants of adaptive evolution. An “intact” prophage was predicted within the genome of Sphingomonas hengshuiensis strain WHSC-8 and was designated Prophage IWHSC-8. Loci homologous to the region containing the first 22 open reading frames (ORFs) of Prophage IWHSC-8 were discovered among the genomes of numerous Sphingomonadales. In 17 genomes, the homologous loci were co-located with an ORF encoding a putative superoxide dismutase. Several other lines of molecular evidence implied that these homologous loci represent an ancient temperate bacteriophage integration, and this horizontal transfer event pre-dated niche-based speciation within the order Sphingomonadales. The “stabilization” of prophages in the genomes of their hosts is an indicator of “fitness” conferred by these elements and natural selection. Among the various ORFs predicted within the conserved prophages, an ORF encoding a putative proline-rich outer membrane protein A was consistently present among the genomes of many Sphingomonadales. Furthermore, the conserved prophages in six Sphingomonas sp. contained an ORF encoding a putative spermidine synthase. It is possible that one or more of these ORFs bestow selective fitness, and thus the prophages continue to be vertically transferred within the host strains. Although conserved prophages have been identified previously among closely related genera and species, this is the first systematic and detailed description of orthologous prophages at the level of an order that contains two diverse families and many pigmented species. PMID:28201618
Mobile genetic elements, a key to microbial adaptation in extreme environments
NASA Astrophysics Data System (ADS)
van Houdt, Rob; Mijnendonckx, Kristel; Provoost, Ann; Monsieurs, Pieter; Mergeay, Max; Leys, Natalie
To ensure well-being of the crew during manned spaceflight, continuous monitoring of different microbial contaminants in air, in water and on surfaces in the spacecraft is vital. Next to microorganisms originating mainly from human activity, strains from the closely related gen-era Cupriavidus and Ralstonia have been identified and isolated during numerous monitoring campaigns from different space-related environments. These strains have been found in the air of the Mars Exploration Rover assembly room, on the surface of the Mars Odyssey Orbiter and in different water sources from the International Space Station, Shuttle and Mir space station. In previous studies, we investigated the response of the model bacterium Cupriavidus metallidurans CH34 when cultured in the international space station (ISS) and space gravity and radiation simulation facilities, to understand it's ways to adapt to space flight conditions. It was also demonstrated that genetic rearrangements due to the movement of IS (insertion sequence) elements, enabled CH34 to adapt to toxic zinc concentrations, in space flight and on ground. In this study, we screened the full genome sequence of C. metallidurans CH34 for the presence of mobile genetic elements (MGEs), with the purpose to identified their putative role in adaptation to the new environments. Eleven genomic islands (GI) were identified in chro-mosome 1, three on the native plasmid pMOL28 and two on the native plasmid pMOL30. On the plasmids pMOL28 and pMOL30, all genes involved in the response to metals were located within GIs. Three of the GIs on chromosome 1 contained genes involved in the response to metals. Three GIs (CMGI-2, -3 and -4) on chromosome 1 belonged to the Tn4371 family, with CMGI-2 containing at least 25 genes involved in the degradation of toluene corresponding to CH34's ability to grow at expense of toluene, benzene or xylene as sole carbon source. CMGI-3 sheltered accessory genes involved in CO2 fixation and hydrogenotrophy. Five transposons were identified in CH34. Two mercury transposons Tn4378 and Tn4380, respectively located on pMOL28 and pMOL30, were previously described. In addition, 3 novel transposons were identified. The large Tn6048 transposon contained 8 genes highly induced by zinc and lead. Transposon Tn6049 was found in twelve copies in the genome of strain CH34 and is seem-ingly often associated with genomic islands. Finally, Tn6050 was observed twice in the second chromosome with accessory genes not classically associated with transposons, namely a sulfate permease, a universal stress protein (UspA) and a DksA-like DnaK suppressor protein. The role of these genes is unclear but a functional association could be assumed. Finally, a set of 21 IS elements was found, counting in total for 57 copies dispersed over the genome. The number of copies ranged from 1 to 9 (IS1088 ) and 10 (ISRme3 ). The 21 IS elements could be divided into 10 different families. The elements ISRme5 and IS1071 were putatively involved in the recruitment of the genes for hydrogenotrophy and CO2 fixation, with mutants unable to grow on H2 and CO2 appeared to have lost these genes by IS1071 -mediated excision. These data clearly showed that the C. metallidurans CH34 model bacterium and some of it's Cupriavidus and Ralstonia relatives carry a multitude of tools that allowed them to genetically adapt to polluted and extreme soil environments, and that are a key in their success to adapt to the new anthropogenic spacecraft environments. Furthermore, these tools could be exploited to assess and measure genetic effects of spaceflight conditions. Acknowledgements This work was supported by the European Space Agency (ESA-PRODEX) and the Belgian Science Policy (Belspo) through the MISSEX and COMICS projects.
Foster, Nathan R; Qi, Yingwei; Shi, Qian; Krook, James E; Kugler, John W; Jett, James R; Molina, Julian R; Schild, Steven E; Adjei, Alex A; Mandrekar, Sumithra J
2011-03-15
The authors investigated the putative surrogate endpoints of best response, complete response (CR), confirmed response, and progression-free survival (PFS) for associations with overall survival (OS), and as possible surrogate endpoints for OS. Individual patient data from 870 untreated extensive stage small-cell lung cancer patients participating in 6 single-arm (274 patients) and 3 randomized trials (596 patients) were pooled. Patient-level associations between putative surrogate endpoints and OS were assessed by Cox models using landmark analyses. Trial-level surrogacy of putative surrogate endpoints were assessed by the association of treatment effects on OS and individual putative surrogate endpoints. Trial-level surrogacy measures included: R(2) from weighted least squares regression model, Spearman correlation coefficient, and R(2) from bivariate survival model (Copula R(2) ). Median OS and PFS were 9.6 (95% confidence interval [CI], 9.1-10.0) and 5.5 (95% CI, 5.2-5.9) months, respectively; best response, CR, and confirmed response rates were 44%, 22%, and 34%, respectively. Patient-level associations showed that PFS status at 4 months was a strong predictor of subsequent survival (hazard ratio [HR], 0.42; 95% CI, 0.35-0.51; concordance index 0.63; P < .01), with 6-month PFS being the strongest (HR, 0.41; 95% CI, 0.35-0.49; concordance index, 0.66, P < .01). At the trial level, PFS showed the highest level of surrogacy for OS (weighted least squares R(2) = 0.79; Copula R(2) = 0.80), explaining 79% of the variance in OS. Tumor response endpoints showed lower surrogacy levels (weighted least squares R(2) ≤0.48). PFS was strongly associated with OS at both the patient and trial levels. PFS also shows promise as a potential surrogate for OS, but further validation is needed using data from a larger number of randomized phase 3 trials. Copyright © 2010 American Cancer Society.
Rabot, Amélie; Portemer, Virginie; Péron, Thomas; Mortreau, Eric; Leduc, Nathalie; Hamama, Latifa; Coutos-Thévenot, Pierre; Atanassova, Rossitza; Sakr, Soulaiman; Le Gourrierec, José
2014-10-01
Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Yerrapragada, Shaila; Shukla, Animesh; Hallsworth-Pepin, Kymberlie; Choi, Kwangmin; Wollam, Aye; Clifton, Sandra; Qin, Xiang; Muzny, Donna; Raghuraman, Sriram; Ashki, Haleh; Uzman, Akif; Highlander, Sarah K; Fryszczyn, Bartlomiej G; Fox, George E; Tirumalai, Madhan R; Liu, Yamei; Kim, Sun; Kehoe, David M; Weinstock, George M
2015-05-07
Tolypothrix sp. PCC 7601 is a freshwater filamentous cyanobacterium with complex responses to environmental conditions. Here, we present its 9.96-Mbp draft genome sequence, containing 10,065 putative protein-coding sequences, including 305 predicted two-component system proteins and 27 putative phytochrome-class photoreceptors, the most such proteins in any sequenced genome. Copyright © 2015 Yerrapragada et al.
Whitney, LeAnn P.; Lins, Jeremy J.; Hughes, Margaret P.; Wells, Mark L.; Chappell, P. Dreux; Jenkins, Bethany D.
2011-01-01
Iron (Fe) availability restricts diatom growth and primary production in large areas of the oceans. It is a challenge to assess the bulk Fe nutritional health of natural diatom populations, since species can differ in their physiological and molecular responses to Fe limitation. We assayed expression of selected genes in diatoms from the Thalassiosira genus to assess their potential utility as species-specific molecular markers to indicate Fe status in natural diatom assemblages. In this study, we compared the expression of the photosynthetic genes encoding ferredoxin (a Fe-requiring protein) and flavodoxin (a Fe-free protein) in culture experiments with Fe replete and Fe stressed Thalassiosira pseudonana (CCMP 1335) isolated from coastal waters and Thalassiosira weissflogii (CCMP 1010) isolated from the open ocean. In T. pseudonana, expression of flavodoxin and ferredoxin genes were not sensitive to Fe status but were found to display diel periodicities. In T. weissflogii, expression of flavodoxin was highly responsive to iron levels and was only detectable when cultures were Fe limited. Flavodoxin genes have been duplicated in most diatoms with available genome data and we show that T. pseudonana has lost its copy related to the Fe-responsive copy in T. weissflogii. We also examined the expression of genes for a putative high affinity, copper (Cu)-dependent Fe uptake system in T. pseudonana. Our results indicate that genes encoding putative Cu transporters, a multi-Cu oxidase, and a Fe reductase are not linked to Fe status. The expression of a second putative Fe reductase increased in Fe limited cultures, but this gene was also highly expressed in Fe replete cultures, indicating it may not be a useful marker in the field. Our findings highlight that Fe metabolism may differ among diatoms even within a genus and show a need to validate responses in different species as part of the development pipeline for genetic markers of Fe status in field populations. PMID:22275908
De novo mutations in regulatory elements in neurodevelopmental disorders
Short, Patrick J.; McRae, Jeremy F.; Gallone, Giuseppe; Sifrim, Alejandro; Won, Hyejung; Geschwind, Daniel H.; Wright, Caroline F.; Firth, Helen V; FitzPatrick, David R.; Barrett, Jeffrey C.; Hurles, Matthew E.
2018-01-01
We previously estimated that 42% of patients with severe developmental disorders carry pathogenic de novo mutations in coding sequences. The role of de novo mutations in regulatory elements affecting genes associated with developmental disorders, or other genes, has been essentially unexplored. We identified de novo mutations in three classes of putative regulatory elements in almost 8,000 patients with developmental disorders. Here we show that de novo mutations in highly evolutionarily conserved fetal brain-active elements are significantly and specifically enriched in neurodevelopmental disorders. We identified a significant twofold enrichment of recurrently mutated elements. We estimate that, genome-wide, 1-3% of patients without a diagnostic coding variant carry pathogenic de novo mutations in fetal brain-active regulatory elements and that only 0.15% of all possible mutations within highly conserved fetal brain-active elements cause neurodevelopmental disorders with a dominant mechanism. Our findings represent a robust estimate of the contribution of de novo mutations in regulatory elements to this genetically heterogeneous set of disorders, and emphasize the importance of combining functional and evolutionary evidence to identify regulatory causes of genetic disorders. PMID:29562236
Bucsenez, M; Rüping, B; Behrens, S; Twyman, R M; Noll, G A; Prüfer, D
2012-09-01
The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.
Li, Xinxin; Zhao, Jing; Walk, Thomas C; Liao, Hong
2014-03-01
Expansins are plant cell wall-loosening proteins encoded by a superfamily of genes including α-expansin, β-expansin, expansin-like A, and expansin-like B proteins. They play a variety of biological roles during plant growth and development. Expansin genes have been reported in many plant species, and results primarily from graminaceous members indicate that β-expansins are more abundant in monocots than in dicots. Soybean [Glycine max (L.) Merr] is an important legume crop. This work identified nine β-expansin gene family members in soybean (GmEXPBs) that were divided into two distinct classes based on phylogeny and gene structure, with divergence between the two groups occurring more in introns than in exons. A total of 887 hormone-responsive and environmental stress-related putative cis-elements from 188 families were found in the 2-kb upstream region of GmEXPBs. Variations in number and type of cis-elements associated with each gene indicate that the function of these genes is differentially regulated by these signals. Expression analysis confirmed that the family members were ubiquitously, yet differentially expressed in soybean. Responsiveness to nutrient deficiency stresses and regulation by auxin (indole-3-acetic acid) and cytokinin (6-benzylaminopurine) varied among GmEXPBs. In addition, most β-expansin genes were associated with symbiosis of soybean inoculated with Rhizobium or abuscular mycorrhizal fungi (AMF). Taken together, these results systematically investigate the characteristics of the entire GmEXPB family in soybean and comprise the first report analyzing the relationship of GmEXPBs with rhizobial or AMF symbiosis. This information is a valuable step in the process of understanding the expansin protein functions in soybean and opens avenues for continued researches.
Wardle, Margaret C.; Sokoloff, Greta; Stephens, Matthew; de Wit, Harriet; Palmer, Abraham A.
2012-01-01
Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8th intron of cadherin 13 (CDH13; P = 4.58×10−8), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1st intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10−7), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses. PMID:22952603
Hart, Amy B; Engelhardt, Barbara E; Wardle, Margaret C; Sokoloff, Greta; Stephens, Matthew; de Wit, Harriet; Palmer, Abraham A
2012-01-01
Both the subjective response to d-amphetamine and the risk for amphetamine addiction are known to be heritable traits. Because subjective responses to drugs may predict drug addiction, identifying alleles that influence acute response may also provide insight into the genetic risk factors for drug abuse. We performed a Genome Wide Association Study (GWAS) for the subjective responses to amphetamine in 381 non-drug abusing healthy volunteers. Responses to amphetamine were measured using a double-blind, placebo-controlled, within-subjects design. We used sparse factor analysis to reduce the dimensionality of the data to ten factors. We identified several putative associations; the strongest was between a positive subjective drug-response factor and a SNP (rs3784943) in the 8(th) intron of cadherin 13 (CDH13; P = 4.58×10(-8)), a gene previously associated with a number of psychiatric traits including methamphetamine dependence. Additionally, we observed a putative association between a factor representing the degree of positive affect at baseline and a SNP (rs472402) in the 1(st) intron of steroid-5-alpha-reductase-α-polypeptide-1 (SRD5A1; P = 2.53×10(-7)), a gene whose protein product catalyzes the rate-limiting step in synthesis of the neurosteroid allopregnanolone. This SNP belongs to an LD-block that has been previously associated with the expression of SRD5A1 and differences in SRD5A1 enzymatic activity. The purpose of this study was to begin to explore the genetic basis of subjective responses to stimulant drugs using a GWAS approach in a modestly sized sample. Our approach provides a case study for analysis of high-dimensional intermediate pharmacogenomic phenotypes, which may be more tractable than clinical diagnoses.
Positional cloning of the sex-linked giant egg (Ge) locus in the silkworm, Bombyx mori.
Fujii, T; Abe, H; Kawamoto, M; Banno, Y; Shimada, T
2015-04-01
The giant egg (Ge) locus is a Z-linked mutation that leads to the production of large eggs. Cytological observations suggest that an unusual translocation of a large fragment of the W chromosome bearing a putative egg size-determining gene, Esd, gave rise to giant egg mutants. However, there is currently no molecular evidence confirming either a W-Z translocation or the presence of Esd on the W chromosome. To elucidate the origin of giant egg mutants, we performed positional cloning. We observed that the Bombyx mori. orthologue of the human Phytanoyl-CoA dioxygenase domain containing 1 gene (PHYHD1) is disrupted in giant egg mutants. PHYHD1 is highly conserved in eukaryotes and is predicted to be a Fe(II) and 2-oxoglutarate-dependent oxygenase. Exon skipping in one of the two available Ge mutants is probably caused by the insertion of a non-long terminal repeat transposon into intron 4 in the vicinity of the 5' splice site. Segmental duplication in Ge(2) , an independent allele, was caused by unequal recombination between short interspersed elements inserted into introns 3 and 5. Our results indicate that (1) Bombyx PHYHD1 is responsible for the Ge mutants and that (2) the Ge locus is unrelated to the W-linked putative Esd. To our knowledge, this is the first report describing the phenotypic defects caused by mutations in PHYHD1 orthologues. © 2014 The Royal Entomological Society.
Identification of an active endogenous transposon from the W4 locus in soybean
USDA-ARS?s Scientific Manuscript database
In soybean [Glycine max (L.) Merr.], W4 is one of the loci that control anthocyanin biosynthesis in flowers and hypocotyls. A putative transposable element was suggested to reside within or adjacent to this locus in the mutable T322 line resulting in the w4-m allele. We have shown that the W4 locu...
Transcriptional regulation of podoplanin expression by Prox1 in lymphatic endothelial cells.
Pan, Yanfang; Wang, Wen-di; Yago, Tadayuki
2014-07-01
Transcription factor prospero homeobox 1 (Prox-1) and podoplanin (PDPN), mucin-type transmembane protein, are both constantly expressed in lymphatic endothelial cells (LECs) and appear to function in an LEC-autonomous manner. Mice globally lacking PDPN (Pdpn(-/-)) develop abnormal and blood-filled lymphatic vessels that highly resemble those in inducible mice lacking Prox-1 (Prox1(-/-)). Prox1 has also been reported to induce PDPN expression in cultured ECs. Thus, we hypothesize that PDPN functions downstream of Prox1 and that its expression is regulated by Prox1 in LECs at the transcriptional level. We first identified four putative binding elements for Prox1 in the 5' upstream regulatory region of Pdpn gene and found that Prox1 directly binds to the 5' regulatory sequence of Pdpn gene in LECs by chromatin immunoprecipitation assay. DNA pull down assay confirmed that Prox1 binds to the putative binding element. In addition, luciferase reporter assay indicated that Prox1 binding to the 5' regulatory sequence of Pdpn regulates Pdpn gene expression. We are therefore the first to experimentally demonstrate that Prox1 regulates PDPN expression at the transcriptional level in the lymphatic vascular system. Copyright © 2014 Elsevier Inc. All rights reserved.
Adamczuk, Marcin; Dziewit, Lukasz
2017-01-01
The draft genome of multidrug-resistant Aeromonas sp. ARM81 isolated from a wastewater treatment plant in Warsaw (Poland) was obtained. Sequence analysis revealed multiple genes conferring resistance to aminoglycosides, β-lactams or tetracycline. Three different β-lactamase genes were identified, including an extended-spectrum β-lactamase gene bla PER-1 . The antibiotic susceptibility was experimentally tested. Genome sequencing also allowed us to investigate the plasmidome and transposable mobilome of ARM81. Four plasmids, of which two carry phenotypic modules (i.e., genes encoding a zinc transporter ZitB and a putative glucosyltransferase), and 28 putative transposase genes were identified. The mobility of three insertion sequences (isoforms of previously identified elements ISAs12, ISKpn9 and ISAs26) was confirmed using trap plasmids.
Identification of Genetic Elements Associated with EPSPS Gene Amplification
Gaines, Todd A.; Wright, Alice A.; Molin, William T.; Lorentz, Lothar; Riggins, Chance W.; Tranel, Patrick J.; Beffa, Roland; Westra, Philip; Powles, Stephen B.
2013-01-01
Weed populations can have high genetic plasticity and rapid responses to environmental selection pressures. For example, 100-fold amplification of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene evolved in the weed species Amaranthus palmeri to confer resistance to glyphosate, the world’s most important herbicide. However, the gene amplification mechanism is unknown. We sequenced the EPSPS gene and genomic regions flanking EPSPS loci in A. palmeri, and searched for mobile genetic elements or repetitive sequences. The EPSPS gene was 10,229 bp, containing 8 exons and 7 introns. The gene amplification likely proceeded through a DNA-mediated mechanism, as introns exist in the amplified gene copies and the entire amplified sequence is at least 30 kb in length. Our data support the presence of two EPSPS loci in susceptible (S) A. palmeri, and that only one of these was amplified in glyphosate-resistant (R) A. palmeri. The EPSPS gene amplification event likely occurred recently, as no sequence polymorphisms were found within introns of amplified EPSPS copies from R individuals. Sequences with homology to miniature inverted-repeat transposable elements (MITEs) were identified next to EPSPS gene copies only in R individuals. Additionally, a putative Activator (Ac) transposase and a repetitive sequence region were associated with amplified EPSPS genes. The mechanism controlling this DNA-mediated amplification remains unknown. Further investigation is necessary to determine if the gene amplification may have proceeded via DNA transposon-mediated replication, and/or unequal recombination between different genomic regions resulting in replication of the EPSPS gene. PMID:23762434
Mleczko-Sanecka, Katarzyna; Roche, Franziska; Rita da Silva, Ana; Call, Debora; D’Alessio, Flavia; Ragab, Anan; Lapinski, Philip E.; Ummanni, Ramesh; Korf, Ulrike; Oakes, Christopher; Damm, Georg; D’Alessandro, Lorenza A.; Klingmüller, Ursula; King, Philip D.; Boutros, Michael; Hentze, Matthias W.
2014-01-01
The hepatic hormone hepcidin is a key regulator of systemic iron metabolism. Its expression is largely regulated by 2 signaling pathways: the “iron-regulated” bone morphogenetic protein (BMP) and the inflammatory JAK-STAT pathways. To obtain broader insights into cellular processes that modulate hepcidin transcription and to provide a resource to identify novel genetic modifiers of systemic iron homeostasis, we designed an RNA interference (RNAi) screen that monitors hepcidin promoter activity after the knockdown of 19 599 genes in hepatocarcinoma cells. Interestingly, many of the putative hepcidin activators play roles in signal transduction, inflammation, or transcription, and affect hepcidin transcription through BMP-responsive elements. Furthermore, our work sheds light on new components of the transcriptional machinery that maintain steady-state levels of hepcidin expression and its responses to the BMP- and interleukin-6–triggered signals. Notably, we discover hepcidin suppression mediated via components of Ras/RAF MAPK and mTOR signaling, linking hepcidin transcriptional control to the pathways that respond to mitogen stimulation and nutrient status. Thus using a combination of RNAi screening, reverse phase protein arrays, and small molecules testing, we identify links between the control of systemic iron homeostasis and critical liver processes such as regeneration, response to injury, carcinogenesis, and nutrient metabolism. PMID:24385536
Juraniec, Michal; Lequeux, Hélène; Hermans, Christian; Willems, Glenda; Nordborg, Magnus; Schneeberger, Korbinian; Salis, Pietrino; Vromant, Maud; Lutts, Stanley; Verbruggen, Nathalie
2014-02-01
The exposure of plants to high concentrations of trace metallic elements such as copper involves a remodeling of the root system, characterized by a primary root growth inhibition and an increase in the lateral root density. These characteristics constitute easy and suitable markers for screening mutants altered in their response to copper excess. A forward genetic approach was undertaken in order to discover novel genetic factors involved in the response to copper excess. A Cu(2+) -sensitive mutant named copper modified resistance1 (cmr1) was isolated and a causative mutation in the CMR1 gene was identified by using positional cloning and next-generation sequencing. CMR1 encodes a plant-specific protein of unknown function. The analysis of the cmr1 mutant indicates that the CMR1 protein is required for optimal growth under normal conditions and has an essential role in the stress response. Impairment of the CMR1 activity alters root growth through aberrant activity of the root meristem, and modifies potassium concentration and hormonal balance (ethylene production and auxin accumulation). Our data support a putative role for CMR1 in cell division regulation and meristem maintenance. Research on the role of CMR1 will contribute to the understanding of the plasticity of plants in response to changing environments. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.
Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor.
Ressler, Kerry J; Mercer, Kristina B; Bradley, Bekh; Jovanovic, Tanja; Mahan, Amy; Kerley, Kimberly; Norrholm, Seth D; Kilaru, Varun; Smith, Alicia K; Myers, Amanda J; Ramirez, Manuel; Engel, Anzhelika; Hammack, Sayamwong E; Toufexis, Donna; Braas, Karen M; Binder, Elisabeth B; May, Victor
2011-02-24
Pituitary adenylate cyclase-activating polypeptide (PACAP) is known to broadly regulate the cellular stress response. In contrast, it is unclear if the PACAP-PAC1 receptor pathway has a role in human psychological stress responses, such as post-traumatic stress disorder (PTSD). Here we find, in heavily traumatized subjects, a sex-specific association of PACAP blood levels with fear physiology, PTSD diagnosis and symptoms in females. We examined 44 single nucleotide polymorphisms (SNPs) spanning the PACAP (encoded by ADCYAP1) and PAC1 (encoded by ADCYAP1R1) genes, demonstrating a sex-specific association with PTSD. A single SNP in a putative oestrogen response element within ADCYAP1R1, rs2267735, predicts PTSD diagnosis and symptoms in females only. This SNP also associates with fear discrimination and with ADCYAP1R1 messenger RNA expression in human brain. Methylation of ADCYAP1R1 in peripheral blood is also associated with PTSD. Complementing these human data, ADCYAP1R1 mRNA is induced with fear conditioning or oestrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1 pathway are involved in abnormal stress responses underlying PTSD. These sex-specific effects may occur via oestrogen regulation of ADCYAP1R1. PACAP levels and ADCYAP1R1 SNPs may serve as useful biomarkers to further our mechanistic understanding of PTSD.
Molin, William T; Wright, Alice A; Lawton-Rauh, Amy; Saski, Christopher A
2017-01-17
The expanding number and global distributions of herbicide resistant weedy species threaten food, fuel, fiber and bioproduct sustainability and agroecosystem longevity. Amongst the most competitive weeds, Amaranthus palmeri S. Wats has rapidly evolved resistance to glyphosate primarily through massive amplification and insertion of the 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene across the genome. Increased EPSPS gene copy numbers results in higher titers of the EPSPS enzyme, the target of glyphosate, and confers resistance to glyphosate treatment. To understand the genomic unit and mechanism of EPSPS gene copy number proliferation, we developed and used a bacterial artificial chromosome (BAC) library from a highly resistant biotype to sequence the local genomic landscape flanking the EPSPS gene. By sequencing overlapping BACs, a 297 kb sequence was generated, hereafter referred to as the "EPSPS cassette." This region included several putative genes, dense clusters of tandem and inverted repeats, putative helitron and autonomous replication sequences, and regulatory elements. Whole genome shotgun sequencing (WGS) of two biotypes exhibiting high and no resistance to glyphosate was performed to compare genomic representation across the EPSPS cassette. Mapping of sequences for both biotypes to the reference EPSPS cassette revealed significant differences in upstream and downstream sequences relative to EPSPS with regard to both repetitive units and coding content between these biotypes. The differences in sequence may have resulted from a compounded-building mechanism such as repetitive transpositional events. The association of putative helitron sequences with the cassette suggests a possible amplification and distribution mechanism. Flow cytometry revealed that the EPSPS cassette added measurable genomic content. The adoption of glyphosate resistant cropping systems in major crops such as corn, soybean, cotton and canola coupled with excessive use of glyphosate herbicide has led to evolved glyphosate resistance in several important weeds. In Amaranthus palmeri, the amplification of the EPSPS cassette, characterized by a complex array of repetitive elements and putative helitron sequences, suggests an adaptive structural genomic mechanism that drives amplification and distribution around the genome. The added genomic content not found in glyphosate sensitive plants may be driving evolution through genome expansion.
Badr, Eman; ElHefnawi, Mahmoud; Heath, Lenwood S
2016-01-01
Alternative splicing is a vital process for regulating gene expression and promoting proteomic diversity. It plays a key role in tissue-specific expressed genes. This specificity is mainly regulated by splicing factors that bind to specific sequences called splicing regulatory elements (SREs). Here, we report a genome-wide analysis to study alternative splicing on multiple tissues, including brain, heart, liver, and muscle. We propose a pipeline to identify differential exons across tissues and hence tissue-specific SREs. In our pipeline, we utilize the DEXSeq package along with our previously reported algorithms. Utilizing the publicly available RNA-Seq data set from the Human BodyMap project, we identified 28,100 differentially used exons across the four tissues. We identified tissue-specific exonic splicing enhancers that overlap with various previously published experimental and computational databases. A complicated exonic enhancer regulatory network was revealed, where multiple exonic enhancers were found across multiple tissues while some were found only in specific tissues. Putative combinatorial exonic enhancers and silencers were discovered as well, which may be responsible for exon inclusion or exclusion across tissues. Some of the exonic enhancers are found to be co-occurring with multiple exonic silencers and vice versa, which demonstrates a complicated relationship between tissue-specific exonic enhancers and silencers.
NASA Technical Reports Server (NTRS)
Storrie-Lombardi, Michael C.; Hoover, Richard B.
2005-01-01
Last year we presented techniques for the detection of fossils during robotic missions to Mars using both structural and chemical signatures[Storrie-Lombardi and Hoover, 2004]. Analyses included lossless compression of photographic images to estimate the relative complexity of a putative fossil compared to the rock matrix [Corsetti and Storrie-Lombardi, 2003] and elemental abundance distributions to provide mineralogical classification of the rock matrix [Storrie-Lombardi and Fisk, 2004]. We presented a classification strategy employing two exploratory classification algorithms (Principal Component Analysis and Hierarchical Cluster Analysis) and non-linear stochastic neural network to produce a Bayesian estimate of classification accuracy. We now present an extension of our previous experiments exploring putative fossil forms morphologically resembling cyanobacteria discovered in the Orgueil meteorite. Elemental abundances (C6, N7, O8, Na11, Mg12, Ai13, Si14, P15, S16, Cl17, K19, Ca20, Fe26) obtained for both extant cyanobacteria and fossil trilobites produce signatures readily distinguishing them from meteorite targets. When compared to elemental abundance signatures for extant cyanobacteria Orgueil structures exhibit decreased abundances for C6, N7, Na11, All3, P15, Cl17, K19, Ca20 and increases in Mg12, S16, Fe26. Diatoms and silicified portions of cyanobacterial sheaths exhibiting high levels of silicon and correspondingly low levels of carbon cluster more closely with terrestrial fossils than with extant cyanobacteria. Compression indices verify that variations in random and redundant textural patterns between perceived forms and the background matrix contribute significantly to morphological visual identification. The results provide a quantitative probabilistic methodology for discriminating putatitive fossils from the surrounding rock matrix and &om extant organisms using both structural and chemical information. The techniques described appear applicable to the geobiological analysis of meteoritic samples or in situ exploration of the Mars regolith. Keywords: cyanobacteria, microfossils, Mars, elemental abundances, complexity analysis, multifactor analysis, principal component analysis, hierarchical cluster analysis, artificial neural networks, paleo-biosignatures
Saga, Yukika; Inamura, Tomoka; Shimada, Nao; Kawata, Takefumi
2016-05-01
STATa, a Dictyostelium homologue of metazoan signal transducer and activator of transcription, is important for the organizer function in the tip region of the migrating Dictyostelium slug. We previously showed that ecmF gene expression depends on STATa in prestalk A (pstA) cells, where STATa is activated. Deletion and site-directed mutagenesis analysis of the ecmF/lacZ fusion gene in wild-type and STATa null strains identified an imperfect inverted repeat sequence, ACAAATANTATTTGT, as a STATa-responsive element. An upstream sequence element was required for efficient expression in the rear region of pstA zone; an element downstream of the inverted repeat was necessary for sufficient prestalk expression during culmination. Band shift analyses using purified STATa protein detected no sequence-specific binding to those ecmF elements. The only verified upregulated target gene of STATa is cudA gene; CudA directly activates expL7 gene expression in prestalk cells. However, ecmF gene expression was almost unaffected in a cudA null mutant. Several previously reported putative STATa target genes were also expressed in cudA null mutant but were downregulated in STATa null mutant. Moreover, mybC, which encodes another transcription factor, belonged to this category, and ecmF expression was downregulated in a mybC null mutant. These findings demonstrate the existence of a genetic hierarchy for pstA-specific genes, which can be classified into two distinct STATa downstream pathways, CudA dependent and independent. The ecmF expression is indirectly upregulated by STATa in a CudA-independent activation manner but dependent on MybC, whose expression is positively regulated by STATa. © 2016 Japanese Society of Developmental Biologists.
Paes, Jéssica A; Virginio, Veridiana G; Cancela, Martín; Leal, Fernanda M A; Borges, Thiago J; Jaeger, Natália; Bonorino, Cristina; Schrank, Irene S; Ferreira, Henrique B
2017-03-01
Mycoplasma hyopneumoniae is an economically significant swine pathogen that causes porcine enzootic pneumonia (PEP). Important processes for swine infection by M. hyopneumoniae depend on cell surface proteins, many of which are secreted by secretion pathways not completely elucidated so far. A putative type I signal peptidase (SPase I), a possible component of a putative Sec-dependent pathway, was annotated as a product of the sipS gene in the pathogenic M. hyopneumoniae 7448 genome. This M. hyopneumoniae putative SPase I (MhSPase I) displays only 14% and 23% of sequence identity/similarity to Escherichia coli bona fide SPase I, and, in complementation assays performed with a conditional E. coli SPase I mutant, only a partial restoration of growth was achieved with the heterologous expression of a recombinant MhSPase I (rMhSPase I). Considering the putative surface location of MhSPase I and its previously demonstrated capacity to induce a strong humoral response, we then assessed its potential to elicit a cellular and possible immunomodulatory response. In assays for immunogenicity assessment, rMhSPase I unexpectedly showed a cytotoxic effect on murine splenocytes. This cytotoxic effect was further confirmed using the swine epithelial PK(15) cell line in MTT and annexin V-flow cytometry assays, which showed that rMhSPase I induces apoptosis in a dose dependent-way. It was also demonstrated that this pro-apoptotic effect of rMhSPase I involves activation of a caspase-3 cascade. The potential relevance of the rMhSPase I pro-apoptotic effect for M. hyopneumoniae-host interactions in the context of PEP is discussed. Copyright © 2017 Elsevier B.V. All rights reserved.
Samad, Abdul Fatah A; Nazaruddin, Nazaruddin; Murad, Abdul Munir Abdul; Jani, Jaeyres; Zainal, Zamri; Ismail, Ismanizan
2018-03-01
In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor ( P . minor ) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P . minor may develop and update the current public miRNA database.
The rendez-vous of mobile sieve-element and abundant companion-cell proteins.
De Marco, Federica; Le Hir, Rozenn; Dinant, Sylvie
2018-06-01
Thousands of sieve tube exudate proteins (STEP) have now been identified and predicted to fulfill a diversity of functions. However, most STEPs should be considered putative, since methods to collect sieve tube exudates have many technical drawbacks, and advanced functional characterization will be required to distinguish contaminant from bonafide proteins, and determine the latter's location and activity in sieve elements (SE). One major challenge is to develop new approaches to elucidate the function of these SE proteins, which in turn, is expected to shed light on intriguing aspects of SE cell biology. Copyright © 2018 Elsevier Ltd. All rights reserved.
Ramikie, Teniel S; Ressler, Kerry J
2016-12-01
Trauma-related disorders, such as posttraumatic stress disorder (PTSD) are remarkably common and debilitating, and are often characterized by dysregulated threat responses. Across numerous epidemiological studies, females have been found to have an approximately twofold increased risk for PTSD and other stress-related disorders. Understanding the biological mechanisms of this differential risk is of critical importance. Recent data suggest that the pituitary adenylate cyclase-activating polypeptide (PACAP) pathway is a critical regulator of the stress response across species. Moreover, increasing evidence suggests that this pathway is regulated by both stress and estrogen modulation and may provide an important window into understanding mechanisms of sex differences in the stress response. We have recently shown that PACAP and its receptor (PAC1R) are critical mediators of abnormal processes after psychological trauma. Notably, in heavily traumatized human subjects, there appears to be a robust sex-specific association of PACAP blood levels and PAC1R gene variants with fear physiology, PTSD diagnosis, and symptoms, specifically in females. The sex-specific association occurs within a single-nucleotide polymorphism (rs2267735) that resides in a putative estrogen response element involved in PAC1R gene regulation. Complementing these human data, the PAC1R messenger RNA is induced with fear conditioning or estrogen replacement in rodent models. These data suggest that perturbations in the PACAP-PAC1R pathway are regulated by estrogen and are involved in abnormal fear responses underlying PTSD.
Analysis of soybean root proteins affected by gibberellic acid treatment under flooding stress.
Oh, Myeong Won; Nanjo, Yohei; Komatsu, Setsuko
2014-01-01
Flooding is a serious abiotic stress for soybean because it restricts growth and reduces grain yields. To investigate the effect of gibberellic acid (GA) on soybean under flooding stress, root proteins were analyzed using a gel-free proteomic technique. Proteins were extracted from the roots of 4-days-old soybean seedlings exposed to flooding stress in the presence and absence of exogenous GA3 for 2 days. A total of 307, 324, and 250 proteins were identified from untreated, and flooding-treated soybean seedlings without or with GA3, respectively. Secondary metabolism- and cell-related proteins, and proteins involved in protein degradation/synthesis were decreased by flooding stress; however, the levels of these proteins were restored by GA3 supplementation under flooding. Fermentation- and cell wall-related proteins were not affected by GA3 supplementation. Furthermore, putative GA-responsive proteins, which were identified by the presence of a GA-responsive element in the promoter region, were less abundant by flooding stress; however, these proteins were more abundant by GA3 supplementation under flooding. Taken together, these results suggest that GA3 affects the abundance of proteins involved in secondary metabolism, cell cycle, and protein degradation/synthesis in soybeans under flooding stress.
Resistance of Malus domestica fruit to Botrytis cinerea depends on endogenous ethylene biosynthesis.
Akagi, Aya; Dandekar, Abhaya M; Stotz, Henrik U
2011-11-01
The plant hormone ethylene regulates fruit ripening, other developmental processes, and a subset of defense responses. Here, we show that 1-aminocyclopropane-1-carboxylic acid synthase (ACS)-silenced apple (Malus domestica) fruit that express a sense construct of ACS were more susceptible to Botrytis cinerea than untransformed apple, demonstrating that ethylene strengthens fruit resistance to B. cinerea infection. Because ethylene response factors (ERFs) are known to contribute to resistance against B. cinerea via the ethylene-signaling pathway, we cloned four ERF cDNAs from fruit of M. domestica: MdERF3, -4, -5, and -6. Expression of all four MdERF mRNAs was ethylene dependent and induced by wounding or by B. cinerea infection. B. cinerea infection suppressed rapid induction of wound-related MdERF expression. MdERF3 was the only mRNA induced by wounding and B. cinerea infection in ACS-suppressed apple fruit, although its induction was reduced compared with wild-type apple. Promoter regions of all four MdERF genes were cloned and putative cis-elements were identified in each promoter. Transient expression of MdERF3 in tobacco increased expression of the GCC-box containing gene chitinase 48.
Background: A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and to identifying N-responsive gen...
Practical uses for ecdysteroids in mammals including humans: an update
Lafont, R.; Dinan, L.
2003-01-01
Ecdysteroids are widely used as inducers for gene-switch systems based on insect ecdysteroid receptors and genes of interest placed under the control of ecdysteroid-response elements. We review here these systems, which are currently mainly used in vitro with cultured cells in order to analyse the role of a wide array of genes, but which are expected to represent the basis for future gene therapy strategies. Such developments raise several questions, which are addressed in detail. First, the metabolic fate of ecdysteroids in mammals, including humans, is only poorly known, and the rapid catabolism of ecdysteroids may impede their use as in vivo inducers. A second set of questions arose in fact much earlier with the pioneering “heterophylic” studies of Burdette in the early sixties on the pharmacological effects of ecdysteroids on mammals. These and subsequent studies showed a wide range of effects, most of them being beneficial for the organism (e.g. hypoglycaemic, hypocholesterolaemic, anabolic). These effects are reviewed and critically analysed, and some hypotheses are proposed to explain the putative mechanisms involved. All of these pharmacological effects have led to the development of a wide array of ecdysteroid-containing preparations, which are primarily used for their anabolic and/or “adaptogenic” properties on humans (or horses or dogs). In the same way, increasing numbers of patents have been deposited concerning various beneficial effects of ecdysteroids in many medical or cosmetic domains, which make ecdysteroids very attractive candidates for several practical uses. It may be questioned whether all these pharmacological actions are compatible with the development of ecdysteroid-inducible gene switches for gene therapy, and also if ecdysteroids should be classified among doping substances. Abbreviation: 20E 20-hydroxyecdysone 2d20E 2-deoxy-20-hydroxyecdysone 2dE 2-deoxyecdysone BAH bisacylhydrazine BmEcR Bombyx mori EcR CfEcR Choristoneura fumiferana EcR CfUSP Choristoneura fumiferana USP CHO Chinese hamster ovary CMV cytomegalovirus DBD DNA-binding domain DmEcR Drosophila melanogaster EcR AbbE ecdysone EcR ecdysteroid receptor EcRE ecdysteroid response element EHT effective half-time ERE oestrogen response element GR glucocorticoid receptor GRE glucocorticoid response element HEK human embryonic kidney HvEcR Heliothis virescens EcR LBD ligand binding domain murA muristerone A PKA protein kinase A polB polypodine B ponA ponasterone A PPAR peroxisome proliferator-activated receptor RAR retinoic acid receptor RXR retinoid X receptor TR thyroid receptor USP ultraspiracle VDR vitamin D receptor VEGF vascular endothelial growth factor PMID:15844229
Integrated Post-GWAS Analysis Sheds New Light on the Disease Mechanisms of Schizophrenia
Lin, Jhih-Rong; Cai, Ying; Zhang, Quanwei; Zhang, Wen; Nogales-Cadenas, Rubén; Zhang, Zhengdong D.
2016-01-01
Schizophrenia is a severe mental disorder with a large genetic component. Recent genome-wide association studies (GWAS) have identified many schizophrenia-associated common variants. For most of the reported associations, however, the underlying biological mechanisms are not clear. The critical first step for their elucidation is to identify the most likely disease genes as the source of the association signals. Here, we describe a general computational framework of post-GWAS analysis for complex disease gene prioritization. We identify 132 putative schizophrenia risk genes in 76 risk regions spanning 120 schizophrenia-associated common variants, 78 of which have not been recognized as schizophrenia disease genes by previous GWAS. Even more significantly, 29 of them are outside the risk regions, likely under regulation of transcriptional regulatory elements contained therein. These putative schizophrenia risk genes are transcriptionally active in both brain and the immune system, and highly enriched among cellular pathways, consistent with leading pathophysiological hypotheses about the pathogenesis of schizophrenia. With their involvement in distinct biological processes, these putative schizophrenia risk genes, with different association strengths, show distinctive temporal expression patterns, and play specific biological roles during brain development. PMID:27754856
Karreth, Florian A.; Tay, Yvonne; Perna, Daniele; Ala, Ugo; Tan, Shen Mynn; Rust, Alistair G.; DeNicola, Gina; Webster, Kaitlyn A.; Weiss, Dror; Perez-Mancera, Pedro A.; Krauthammer, Michael; Halaban, Ruth; Provero, Paolo; Adams, David J.; Tuveson, David A.; Pandolfi, Pier Paolo
2011-01-01
Summary We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAFV600E to promote melanomagenesis. PMID:22000016
The effects of exogenous cortisol on myostatin transcription in rainbow trout, Oncorhynchus mykiss
Galt, Nicholas J.; Froehlich, Jacob Michael; Remily, Ethan A.; Romero, Sinibaldo R.; Biga, Peggy R.
2014-01-01
Glucocorticoids (GCs) strongly regulate myostatin transcript levels in mammals via glucocorticoid response elements (GREs) in the myostatin promoter, and bioinformatics methods suggest that this regulatory mechanism is conserved among many vertebrates. However, the multiple myostatin genes found in some fishes may be an exception. In rainbow trout (Oncorhynchus mykiss), two genome duplication events have produced three putatively functional myostatin genes, myostatin-1a, -1b and -2a, which are ubiquitously and differentially expressed. In addition, in silico promoter analyses of the rainbow trout myostatin promoters have failed to identify putative GREs, suggesting a divergence in myostatin function. Therefore, we hypothesized that myostatin mRNA expression is not regulated by glucocorticoids in rainbow trout. In this study, both juvenile rainbow trout and primary trout myoblasts were treated with cortisol to examine the relationship between this glucocorticoid and myostatin mRNA expression. Results suggest that exogenous cortisol does not regulate myostatin-1a and -1b expression in vivo, as myostatin mRNA levels were not significantly affected by cortisol treatment in either red or white muscle tissue. In red muscle, myostatin-2a levels were significantly elevated in the cortisol treatment group relative to the control, but not the vehicle control, at both 12 h and 24 h post-injection. As such, it is unclear if cortisol was acting alone or in combination with the vehicle. Cortisol increased myostatin-1b expression in a dose-dependent manner in vitro. Further work is needed to determine if this response is the direct result of cortisol acting on the myostatin-1b promoter or through an alternative mechanism. These results suggest that regulation of myostatin by cortisol may not be as highly conserved as previously thought and support previous work that describes potential functional divergence of the multiple myostatin genes in fishes. PMID:24875565
Zhang, Yong; Liu, Yun; Huang, Xigui; Liu, Xiaochun; Jiao, Baowei; Meng, Zining; Zhu, Pei; Li, Shuisheng; Lin, Haoran; Cheng, Christopher H K
2008-12-01
Two GPR39 transcripts, designated as sbGPR39-1a and sbGPR39-1b, were identified in black seabream (Acanthopagrus schlegeli). The deduced amino acid (aa) sequence of sbGPR39-1a contains 423 residues with seven putative transmembrane (TM) domains. On the other hand, sbGPR39-1b contains 284 aa residues with only five putative TM domains. Northern blot analysis confirmed the presence of two GPR39 transcripts in the seabream intestine, stomach, and liver. Apart from seabream, the presence of two GPR39 transcripts was also found to exist in a number of teleosts (zebrafish and pufferfish) and mammals (human and mouse). Analysis of the GPR39 gene structure in different species suggests that the two GPR39 transcripts are generated by alternative splicing. When the seabream receptors were expressed in cultured HEK293 cells, Zn(2)(+) could trigger sbGPR39-1a signaling through the serum response element pathway, but no such functionality could be detected for the sbGPR39-1b receptor. The two receptors were found to be differentially expressed in seabream tissues. sbGPR39-1a is predominantly expressed in the gastrointestinal tract. On the other hand, sbGPR39-1b is widely expressed in most central and peripheral tissues except muscle and ovary. The expression of sbGPR39-1a in the intestine and the expression of sbGPR39-1b in the hypothalamus were decreased significantly during food deprivation in seabream. On the contrary, the expression of the GH secretagogue receptors (sbGHSR-1a and sbGHSR-1b) was significantly increased in the hypothalamus of the food-deprived seabream. The reciprocal regulatory patterns of expression of these two genes suggest that both of them are involved in controlling the physiological response of the organism during starvation.
Marcus, N; Green, M
1997-09-01
The accumulation of incompletely assembled immunoglobulin mu heavy chain in transfected COS cells stimulates the cellular response to protein traffic that results in the increased transcription and elevated synthesis of several ER chaperones, including ERP72, a member of the protein disulfide isomerase family of molecular chaperones. The ERp72 promoter contains an 82 bp ER protein traffic response element (ERPTRE) that is sufficient to mediate this response. Previously, it had been shown that the alteration of a putative AP-2 site and a CCAAT and inverted CCAAT site within the ERPTRE significantly decreased the response of ERp72 promoter to mu chain accumulation. We have extended these findings by demonstrating a role for NF-Y and a potentially novel DNA-binding protein in the regulation of transcription from the ERp72 promoter. The fact that NF-Y binding to the ERPTRE is observed in extracts from both control cells and cells in which the response to protein traffic has been activated indicates that the binding of NF-Y, while necessary, is not sufficient to account for the response. Each of the two CCAAT sites in the ERPTRE can bind NF-Y independently, but both sites must be intact for full ERPTRE function. A second protein can bind to the ERPTRE independently of NF-Y and at a site overlapping or close to the 3' end of the reverse CCAAT site. It is possible that interactions between NF-Y, this protein and perhaps other factors are responsible for the regulation of the protein traffic response.
A Specific Two-pore Domain Potassium Channel Blocker Defines the Structure of the TASK-1 Open Pore*
Streit, Anne K.; Netter, Michael F.; Kempf, Franca; Walecki, Magdalena; Rinné, Susanne; Bollepalli, Murali K.; Preisig-Müller, Regina; Renigunta, Vijay; Daut, Jürgen; Baukrowitz, Thomas; Sansom, Mark S. P.; Stansfeld, Phillip J.; Decher, Niels
2011-01-01
Two-pore domain potassium (K2P) channels play a key role in setting the membrane potential of excitable cells. Despite their role as putative targets for drugs and general anesthetics, little is known about the structure and the drug binding site of K2P channels. We describe A1899 as a potent and highly selective blocker of the K2P channel TASK-1. As A1899 acts as an open-channel blocker and binds to residues forming the wall of the central cavity, the drug was used to further our understanding of the channel pore. Using alanine mutagenesis screens, we have identified residues in both pore loops, the M2 and M4 segments, and the halothane response element to form the drug binding site of TASK-1. Our experimental data were used to validate a K2P open-pore homology model of TASK-1, providing structural insights for future rational design of drugs targeting K2P channels. PMID:21362619
A proposed model for the flowering signaling pathway of sugarcane under photoperiodic control.
Coelho, C P; Costa Netto, A P; Colasanti, J; Chalfun-Júnior, A
2013-04-25
Molecular analysis of floral induction in Arabidopsis has identified several flowering time genes related to 4 response networks defined by the autonomous, gibberellin, photoperiod, and vernalization pathways. Although grass flowering processes include ancestral functions shared by both mono- and dicots, they have developed their own mechanisms to transmit floral induction signals. Despite its high production capacity and its important role in biofuel production, almost no information is available about the flowering process in sugarcane. We searched the Sugarcane Expressed Sequence Tags database to look for elements of the flowering signaling pathway under photoperiodic control. Sequences showing significant similarity to flowering time genes of other species were clustered, annotated, and analyzed for conserved domains. Multiple alignments comparing the sequences found in the sugarcane database and those from other species were performed and their phylogenetic relationship assessed using the MEGA 4.0 software. Electronic Northerns were run with Cluster and TreeView programs, allowing us to identify putative members of the photoperiod-controlled flowering pathway of sugarcane.
PXR-dependent induction of human CYP3A4 gene expression by organochlorine pesticides.
Coumoul, Xavier; Diry, Monique; Barouki, Robert
2002-11-15
OCP are xenobiotics which display various toxic effects on animal and human health. One of their effects is to bind and activate estrogen receptor alpha (ERalpha). We have previously studied the down-regulation of induced CYP1A1 (cytochrome P450) expression by this class of molecules in mammary carcinoma cells and shown the importance of ERalpha in this process. However, an alternative mechanism was suggested by those experiments in hepatoma cells. In this study, we have performed Northern blot and transient transfection assays in various cell lines and shown that OCP activate human pregnane X receptor (PXR) and subsequent CYP3A4 mRNA expression. This effect is mediated by the distal xenobiotic responsive element modulator of the promoter. The induction of CYP3A4 by OCP was dose-dependent within the 1-10 microM range. The data suggest that chronic exposure to OCP could alter a major metabolite pathway in human liver and putatively modify the pharmacokinetics of drugs and pollutants.
Dostálová, Anna; Votýpka, Jan; Favreau, Amanda J; Barbian, Kent D; Volf, Petr; Valenzuela, Jesus G; Jochim, Ryan C
2011-05-10
Parasite-vector interactions are fundamental in the transmission of vector-borne diseases such as leishmaniasis. Leishmania development in the vector sand fly is confined to the digestive tract, where sand fly midgut molecules interact with the parasites. In this work we sequenced and analyzed two midgut-specific cDNA libraries from sugar fed and blood fed female Phlebotomus perniciosus and compared the transcript expression profiles. A total of 4111 high quality sequences were obtained from the two libraries and assembled into 370 contigs and 1085 singletons. Molecules with putative roles in blood meal digestion, peritrophic matrix formation, immunity and response to oxidative stress were identified, including proteins that were not previously reported in sand flies. These molecules were evaluated relative to other published sand fly transcripts. Comparative analysis of the two libraries revealed transcripts differentially expressed in response to blood feeding. Molecules up regulated by blood feeding include a putative peritrophin (PperPer1), two chymotrypsin-like proteins (PperChym1 and PperChym2), a putative trypsin (PperTryp3) and four putative microvillar proteins (PperMVP1, 2, 4 and 5). Additionally, several transcripts were more abundant in the sugar fed midgut, such as two putative trypsins (PperTryp1 and PperTryp2), a chymotrypsin (PperChym3) and a microvillar protein (PperMVP3). We performed a detailed temporal expression profile analysis of the putative trypsin transcripts using qPCR and confirmed the expression of blood-induced and blood-repressed trypsins. Trypsin expression was measured in Leishmania infantum-infected and uninfected sand flies, which identified the L. infantum-induced down regulation of PperTryp3 at 24 hours post-blood meal. This midgut tissue-specific transcriptome provides insight into the molecules expressed in the midgut of P. perniciosus, an important vector of visceral leishmaniasis in the Old World. Through the comparative analysis of the libraries we identified molecules differentially expressed during blood meal digestion. Additionally, this study provides a detailed comparison to transcripts of other sand flies. Moreover, our analysis of putative trypsins demonstrated that L. infantum infection can reduce the transcript abundance of trypsin PperTryp3 in the midgut of P. perniciosus.
Cellulose as an extracellular matrix component present in Enterobacter sakazakii biofilms.
Grimm, Maya; Stephan, Roger; Iversen, Carol; Manzardo, Giuseppe G G; Rattei, Thomas; Riedel, Kathrin; Ruepp, Andreas; Frishman, Dmitrij; Lehner, Angelika
2008-01-01
Cellulose was identified and characterized as an extracellular matrix component present in the biofilm of an Enterobacter sakazakii clinical isolate grown in nutrient-deficient (M9) medium. Using a bacterial artificial cloning approach in Escherichia coli and subsequent screening of transformants for fluorescence on calcofluor plates, nine genes organized in two operons were identified as putatively responsible for the biosynthesis of cellulose. In addition to the genes already described for cellulose production, two more genes were identified, putatively transcribed together with the genes from the first operon. Putative cellulose in E. sakazakii ES5 biofilm grown on glass coverslips was visualized by calcofluor staining and confocal fluorescence laser scanning microscopy. For the first time, the presence of cellulose in biofilms produced by E. sakazakii was confirmed by methylation analysis.
Resources for Biological Annotation of the Drosophila Genome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerald M. Rubin
2005-08-08
This project supported seed money for the development of cDNA and genetic resources to support studies of the Drosophila melanogaster genome. Key publications supported by this work that provide additional detail: (1) ''The Drosophila gene collection: identification of putative full-length cDNAs for 70% of D. melanogaster genes''; and (2) ''The Berkeley Drosophila Genome Project gene disruption project: Single P-element insertions mutating 25% of vital Drosophila genes''.
[Divergence of paralogous growth-hormone-encoding genes and their promoters in Salmonidae].
Kamenskaya, D N; Pankova, M V; Atopkin, D M; Brykov, V A
2017-01-01
In many fish species, including salmonids, the growth-hormone is encoded by two duplicated paralogous genes, gh1 and gh2. Both genes were already in place at the time of divergence of species in this group. A comparison of the entire sequence of these genes of salmonids has shown that their conserved regions are associated with exons, while their most variable regions correspond to introns. Introns C and D include putative regulatory elements (sites Pit-1, CRE, and ERE), that are also conserved. In chars, the degree of polymorphism of gh2 gene is 2-3 times as large as that in gh1 gene. However, a comparison across all Salmonidae species would not extent this observation to other species. In both these chars' genes, the promoters are conserved mainly because they correspond to putative regulatory sequences (TATA box, binding sites for the pituitary transcription factor Pit-1 (F1-F4), CRE, GRE and RAR/RXR elements). The promoter of gh2 gene has a greater degree of polymorphism compared with gh1 gene promoter in all investigated species of salmonids. The observed differences in the rates of accumulation of changes in growth hormone encoding paralogs could be explained by differences in the intensity of selection.
Hwang, Sun-Goo; Kim, Dong Sub; Kim, Jin-Baek; Hwang, Jung Eun; Park, Hyun Mi; Kim, Jin Hyuk; Jang, Cheol Seong
2016-08-01
Gamma rays (GR) induce significant changes in the structure and expression of genes involved in the regulation of diverse biochemical and physiological processes. Arabidopsis plants exhibit different growth and development patterns in response to exposure to GR. The effects on gene expression of different radiation doses of GR (100 and 800 Gy) administered to Arabidopsis plants were examined at the reproductive stage. We irradiated 26-day-old plants with three replications [developmental stages 5.1-6.0, according to Boyes et al. ( 2001 )] using a GR irradiator (60 Co, ca. 150 TBq capacity, Atomic Energy of Canada Limited, Ontario, Canada) at the Korea Atomic Energy Research Institute. Plants were treated with 100, 200, 300, 400, 800, 1200, 1600, or 2000 Gy, and the doses were made from varying the distance to the source. We conducted a high-throughput screening analysis and detected 883 GR-responsive genes that showed significant changes; these were involved in several putative metabolic pathways related to biotic stress. Additionally, five overrepresented cis-regulatory elements were identified in the 1-kb upstream regions of GR-responsive genes by using motif enrichment analysis. We also detected three GR-responsive genes associated with stamen development and confirmed their co-regulation with functionally interacting genes. This finding suggests that a network-based analysis is a viable approach to identify significant GR-responsive genes associated with the reproductive stage of Arabidopsis. Our results provide further insights into the complex biological systems involved in the response to different doses of GR in plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Dyk, Schuyler D.; De Mink, Selma E.; Zapartas, Emmanouil
Core-collapse supernovae (SNe), which mark the deaths of massive stars, are among the most powerful explosions in the universe and are responsible, e.g., for a predominant synthesis of chemical elements in their host galaxies. The majority of massive stars are thought to be born in close binary systems. To date, putative binary companions to the progenitors of SNe may have been detected in only two cases, SNe 1993J and 2011dh. We report on the search for a companion of the progenitor of the Type Ic SN 1994I, long considered to have been the result of binary interaction. Twenty years aftermore » explosion, we used the Hubble Space Telescope to observe the SN site in the ultraviolet (F275W and F336W bands), resulting in deep upper limits on the expected companion: F275W > 26.1 mag and F336W > 24.7 mag. These allow us to exclude the presence of a main sequence companion with a mass ≳10 M{sub ⊙}. Through comparison with theoretical simulations of possible progenitor populations, we show that the upper limits to a companion detection exclude interacting binaries with semi-conservative (late Case A or early Case B) mass transfer. These limits tend to favor systems with non-conservative, late Case B mass transfer with intermediate initial orbital periods and mass ratios. The most likely mass range for a putative main sequence companion would be ∼5–12 M{sub ⊙}, the upper end of which corresponds to the inferred upper detection limit.« less
Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe
2012-01-01
Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.
Lv, Geng-Yin; Guo, Xiao-Guang; Xie, Li-Ping; Xie, Chang-Gen; Zhang, Xiao-Hong; Yang, Yuan; Xiao, Lei; Tang, Yu-Ying; Pan, Xing-Lai; Guo, Ai-Guang; Xu, Hong
2017-01-01
Fructose-1, 6-bisphosphate aldolase (FBA) is a key plant enzyme that is involved in glycolysis, gluconeogenesis, and the Calvin cycle. It plays significant roles in biotic and abiotic stress responses, as well as in regulating growth and development processes. In the present paper, 21 genes encoding TaFBA isoenzymes were identified, characterized, and categorized into three groups: class I chloroplast/plastid FBA (CpFBA), class I cytosol FBA (cFBA), and class II chloroplast/plastid FBA. By using a prediction online database and genomic PCR analysis of Chinese Spring nulli-tetrasomic lines, we have confirmed the chromosomal location of these genes in 12 chromosomes of four homologous groups. Sequence and genomic structure analysis revealed the high identity of the allelic TaFBA genes and the origin of different TaFBA genes. Numerous putative environment stimulus-responsive cis-elements have been identified in 1,500-bp regions of TaFBA gene promoters, of which the most abundant are the light-regulated elements (LREs). Phylogenetic reconstruction using the deduced protein sequence of 245 FBA genes indicated an independent evolutionary pathway for the class I and class II groups. Although, earlier studies have indicated that class II FBA only occurs in prokaryote and fungi, our results have demonstrated that a few class II CpFBAs exist in wheat and other closely related species. Class I TaFBA was predicted to be tetramers and class II to be dimers. Gene expression analysis based on microarray and transcriptome databases suggested the distinct role of TaFBAs in different tissues and developmental stages. The TaFBA 4–9 genes were highly expressed in leaves and might play important roles in wheat development. The differential expression patterns of the TaFBA genes in light/dark and a few abiotic stress conditions were also analyzed. The results suggested that LRE cis-elements of TaFBA gene promoters were not directly related to light responses. Most TaFBA genes had higher expression levels in the roots than in the shoots when under various stresses. Class I cytosol TaFBA genes, particularly TaFBA10/12/18 and TaFBA13/16, and three class II TaFBA genes are involved in responses to various abiotic stresses. Class I CpFBA genes in wheat are apparently sensitive to different stress conditions. PMID:28659962
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements.
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-12-01
The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be. Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
BLSSpeller: exhaustive comparative discovery of conserved cis-regulatory elements
De Witte, Dieter; Van de Velde, Jan; Decap, Dries; Van Bel, Michiel; Audenaert, Pieter; Demeester, Piet; Dhoedt, Bart; Vandepoele, Klaas; Fostier, Jan
2015-01-01
Motivation: The accurate discovery and annotation of regulatory elements remains a challenging problem. The growing number of sequenced genomes creates new opportunities for comparative approaches to motif discovery. Putative binding sites are then considered to be functional if they are conserved in orthologous promoter sequences of multiple related species. Existing methods for comparative motif discovery usually rely on pregenerated multiple sequence alignments, which are difficult to obtain for more diverged species such as plants. As a consequence, misaligned regulatory elements often remain undetected. Results: We present a novel algorithm that supports both alignment-free and alignment-based motif discovery in the promoter sequences of related species. Putative motifs are exhaustively enumerated as words over the IUPAC alphabet and screened for conservation using the branch length score. Additionally, a confidence score is established in a genome-wide fashion. In order to take advantage of a cloud computing infrastructure, the MapReduce programming model is adopted. The method is applied to four monocotyledon plant species and it is shown that high-scoring motifs are significantly enriched for open chromatin regions in Oryza sativa and for transcription factor binding sites inferred through protein-binding microarrays in O.sativa and Zea mays. Furthermore, the method is shown to recover experimentally profiled ga2ox1-like KN1 binding sites in Z.mays. Availability and implementation: BLSSpeller was written in Java. Source code and manual are available at http://bioinformatics.intec.ugent.be/blsspeller Contact: Klaas.Vandepoele@psb.vib-ugent.be or jan.fostier@intec.ugent.be Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26254488
Lecca, Salvatore; Melis, Miriam; Luchicchi, Antonio; Ennas, Maria Grazia; Castelli, Maria Paola; Muntoni, Anna Lisa; Pistis, Marco
2011-02-01
Recent findings have underlined the rostromedial tegmental nucleus (RMTg), a structure located caudally to the ventral tegmental area, as an important site involved in the mechanisms of aversion. RMTg contains γ-aminobutyric acid neurons responding to noxious stimuli, densely innervated by the lateral habenula and providing a major inhibitory projection to reward-encoding midbrain dopamine (DA) neurons. One of the key features of drug addiction is the perseverance of drug seeking in spite of negative and unpleasant consequences, likely mediated by response suppression within neural pathways mediating aversion. To investigate whether the RMTg has a function in the mechanisms of addicting drugs, we studied acute effects of morphine, cocaine, the cannabinoid agonist WIN55212-2 (WIN), and nicotine on putative RMTg neurons. We utilized single unit extracellular recordings in anesthetized rats and whole-cell patch-clamp recordings in brain slices to identify and characterize putative RMTg neurons and their responses to drugs of abuse. Morphine and WIN inhibited both firing rate in vivo and excitatory postsynaptic currents (EPSCs) evoked by stimulation of rostral afferents in vitro, whereas cocaine inhibited discharge activity without affecting EPSC amplitude. Conversely, nicotine robustly excited putative RMTg neurons and enhanced EPSCs, an effect mediated by α7-containing nicotinic acetylcholine receptors. Our results suggest that activity of RMTg neurons is profoundly influenced by drugs of abuse and, as important inhibitory afferents to midbrain DA neurons, they might take place in the complex interplay between the neural circuits mediating aversion and reward.
Short interspersed DNA elements and miRNAs: a novel hidden gene regulation layer in zebrafish?
Scarpato, Margherita; Angelini, Claudia; Cocca, Ennio; Pallotta, Maria M; Morescalchi, Maria A; Capriglione, Teresa
2015-09-01
In this study, we investigated by in silico analysis the possible correlation between microRNAs (miRNAs) and Anamnia V-SINEs (a superfamily of short interspersed nuclear elements), which belong to those retroposon families that have been preserved in vertebrate genomes for millions of years and are actively transcribed because they are embedded in the 3' untranslated region (UTR) of several genes. We report the results of the analysis of the genomic distribution of these mobile elements in zebrafish (Danio rerio) and discuss their involvement in generating miRNA gene loci. The computational study showed that the genes predicted to bear V-SINEs can be targeted by miRNAs with a very high hybridization E-value. Gene ontology analysis indicates that these genes are mainly involved in metabolic, membrane, and cytoplasmic signaling pathways. Nearly all the miRNAs that were predicted to target the V-SINEs of these genes, i.e., miR-338, miR-9, miR-181, miR-724, miR-735, and miR-204, have been validated in similar regulatory roles in mammals. The large number of genes bearing a V-SINE involved in metabolic and cellular processes suggests that V-SINEs may play a role in modulating cell responses to different stimuli and in preserving the metabolic balance during cell proliferation and differentiation. Although they need experimental validation, these preliminary results suggest that in the genome of D. rerio, as in other TE families in vertebrates, the preservation of V-SINE retroposons may also have been favored by their putative role in gene network modulation.
DeFranco, D; Yamamoto, K R
1986-01-01
The expression of genes fused downstream of the Moloney murine sarcoma virus (MoMSV) long terminal repeat is stimulated by glucocorticoids. We mapped the glucocorticoid response element that conferred this hormonal regulation and found that it is a hormone-dependent transcriptional enhancer, designated Sg; it resides within DNA fragments that also carry a previously described enhancer element (B. Levinson, G. Khoury, G. Vande Woude, and P. Gruss, Nature [London] 295:568-572, 1982), here termed Sa, whose activity is independent of the hormone. Nuclease footprinting revealed that purified glucocorticoid receptor bound at multiple discrete sites within and at the borders of the tandemly repeated sequence motif that defines Sa. The Sa and Sg activities stimulated the apparent efficiency of cognate or heterologous promoter utilization, individually providing modest enhancement and in concert yielding higher levels of activity. A deletion mutant lacking most of the tandem repeat but retaining a single receptor footprint sequence lost Sa activity but still conferred Sg activity. The two enhancer components could also be distinguished physiologically: both were operative within cultured rat fibroblasts, but only Sg activity was detectable in rat exocrine pancreas cells. Therefore, the sequence determinants of Sa and Sg activity may be interdigitated, and when both components are active, the receptor and a putative Sa factor can apparently bind and act simultaneously. We concluded that MoMSV enhancer activity is effected by at least two distinct binding factors, suggesting that combinatorial regulation of promoter function can be mediated even from a single genetic element. Images PMID:3023887
Tabatabai, Reza; Baptista, Sheryl; Tiozzo, Caterina; Carraro, Gianni; Wheeler, Matthew; Barreto, Guillermo; Braun, Thomas; Li, Xiaokun; Hajihosseini, Mohammad K.; Bellusci, Saverio
2013-01-01
The vertebrate limbs develop through coordinated series of inductive, growth and patterning events. Fibroblast Growth Factor receptor 2b (FGFR2b) signaling controls the induction of the Apical Ectodermal Ridge (AER) but its putative roles in limb outgrowth and patterning, as well as in AER morphology and cell behavior have remained unclear. We have investigated these roles through graded and reversible expression of soluble dominant-negative FGFR2b molecules at various times during mouse limb development, using a doxycycline/transactivator/tet(O)-responsive system. Transient attenuation (≤24 hours) of FGFR2b-ligands signaling at E8.5, prior to limb bud induction, leads mostly to the loss or truncation of proximal skeletal elements with less severe impact on distal elements. Attenuation from E9.5 onwards, however, has an irreversible effect on the stability of the AER, resulting in a progressive loss of distal limb skeletal elements. The primary consequences of FGFR2b-ligands attenuation is a transient loss of cell adhesion and down-regulation of P63, β1-integrin and E-cadherin, and a permanent loss of cellular β-catenin organization and WNT signaling within the AER. Combined, these effects lead to the progressive transformation of the AER cells from pluristratified to squamous epithelial-like cells within 24 hours of doxycycline administration. These findings show that FGFR2b-ligands signaling has critical stage-specific roles in maintaining the AER during limb development. PMID:24167544
GFP tagging of sieve element occlusion (SEO) proteins results in green fluorescent forisomes.
Pélissier, Hélène C; Peters, Winfried S; Collier, Ray; van Bel, Aart J E; Knoblauch, Michael
2008-11-01
Forisomes are Ca(2+)-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as 'FOR' proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca(2+) and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that 'FOR'-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca(2+) binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism.
GFP Tagging of Sieve Element Occlusion (SEO) Proteins Results in Green Fluorescent Forisomes
Pélissier, Hélène C.; Peters, Winfried S.; Collier, Ray; van Bel, Aart J. E.; Knoblauch, Michael
2008-01-01
Forisomes are Ca2+-driven, ATP-independent contractile protein bodies that reversibly occlude sieve elements in faboid legumes. They apparently consist of at least three proteins; potential candidates have been described previously as ‘FOR’ proteins. We isolated three genes from Medicago truncatula that correspond to the putative forisome proteins and expressed their green fluorescent protein (GFP) fusion products in Vicia faba and Glycine max using the composite plant methodology. In both species, expression of any of the constructs resulted in homogenously fluorescent forisomes that formed sieve tube plugs upon stimulation; no GFP fluorescence occurred elsewhere. Isolated fluorescent forisomes reacted to Ca2+ and chelators by contraction and expansion, respectively, and did not lose fluorescence in the process. Wild-type forisomes showed no affinity for free GFP in vitro. The three proteins shared numerous conserved motifs between themselves and with hypothetical proteins derived from the genomes of M. truncatula, Vitis vinifera and Arabidopsis thaliana. However, they showed neither significant similarities to proteins of known function nor canonical metal-binding motifs. We conclude that ‘FOR’-like proteins are components of forisomes that are encoded by a well-defined gene family with relatives in taxa that lack forisomes. Since the mnemonic FOR is already registered and in use for unrelated genes, we suggest the acronym SEO (sieve element occlusion) for this family. The absence of binding sites for divalent cations suggests that the Ca2+ binding responsible for forisome contraction is achieved either by as yet unidentified additional proteins, or by SEO proteins through a novel, uncharacterized mechanism. PMID:18784195
Tian, Yunhong; Tian, Yunming; Luo, Xiaojun; Zhou, Tao; Huang, Zuoping; Liu, Ying; Qiu, Yihan; Hou, Bing; Sun, Dan; Deng, Hongyu; Qian, Shen; Yao, Kaitai
2014-09-03
MicroRNAs (miRNAs) are a new class of endogenous regulators of a broad range of physiological processes, which act by regulating gene expression post-transcriptionally. The brassica vegetable, broccoli (Brassica oleracea var. italica), is very popular with a wide range of consumers, but environmental stresses such as salinity are a problem worldwide in restricting its growth and yield. Little is known about the role of miRNAs in the response of broccoli to salt stress. In this study, broccoli subjected to salt stress and broccoli grown under control conditions were analyzed by high-throughput sequencing. Differential miRNA expression was confirmed by real-time reverse transcription polymerase chain reaction (RT-PCR). The prediction of miRNA targets was undertaken using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology (KO) database and Gene Ontology (GO)-enrichment analyses. Two libraries of small (or short) RNAs (sRNAs) were constructed and sequenced by high-throughput Solexa sequencing. A total of 24,511,963 and 21,034,728 clean reads, representing 9,861,236 (40.23%) and 8,574,665 (40.76%) unique reads, were obtained for control and salt-stressed broccoli, respectively. Furthermore, 42 putative known and 39 putative candidate miRNAs that were differentially expressed between control and salt-stressed broccoli were revealed by their read counts and confirmed by the use of stem-loop real-time RT-PCR. Amongst these, the putative conserved miRNAs, miR393 and miR855, and two putative candidate miRNAs, miR3 and miR34, were the most strongly down-regulated when broccoli was salt-stressed, whereas the putative conserved miRNA, miR396a, and the putative candidate miRNA, miR37, were the most up-regulated. Finally, analysis of the predicted gene targets of miRNAs using the GO and KO databases indicated that a range of metabolic and other cellular functions known to be associated with salt stress were up-regulated in broccoli treated with salt. A comprehensive study of broccoli miRNA in relation to salt stress has been performed. We report significant data on the miRNA profile of broccoli that will underpin further studies on stress responses in broccoli and related species. The differential regulation of miRNAs between control and salt-stressed broccoli indicates that miRNAs play an integral role in the regulation of responses to salt stress.
Ma, Yue; Wang, Qiyao; Gao, Xiating; Zhang, Yuanxing
2017-01-01
Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.
Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos
2016-06-01
Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. Copyright © 2016 Elsevier B.V. All rights reserved.
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses. PMID:25606855
Ali, Shawkat; Magne, Maxime; Chen, Shiyan; Côté, Olivier; Stare, Barbara Gerič; Obradovic, Natasa; Jamshaid, Lubna; Wang, Xiaohong; Bélair, Guy; Moffett, Peter
2015-01-01
The potato cyst nematode, Globodera rostochiensis, is an important pest of potato. Like other pathogens, plant parasitic nematodes are presumed to employ effector proteins, secreted into the apoplast as well as the host cytoplasm, to alter plant cellular functions and successfully infect their hosts. We have generated a library of ORFs encoding putative G. rostochiensis putative apoplastic effectors in vectors for expression in planta. These clones were assessed for morphological and developmental effects on plants as well as their ability to induce or suppress plant defenses. Several CLAVATA3/ESR-like proteins induced developmental phenotypes, whereas predicted cell wall-modifying proteins induced necrosis and chlorosis, consistent with roles in cell fate alteration and tissue invasion, respectively. When directed to the apoplast with a signal peptide, two effectors, an ubiquitin extension protein (GrUBCEP12) and an expansin-like protein (GrEXPB2), suppressed defense responses including NB-LRR signaling induced in the cytoplasm. GrEXPB2 also elicited defense response in species- and sequence-specific manner. Our results are consistent with the scenario whereby potato cyst nematodes secrete effectors that modulate host cell fate and metabolism as well as modifying host cell walls. Furthermore, we show a novel role for an apoplastic expansin-like protein in suppressing intra-cellular defense responses.
Sand, Olivier; Thomas-Chollier, Morgane; Vervisch, Eric; van Helden, Jacques
2008-01-01
This protocol shows how to access the Regulatory Sequence Analysis Tools (RSAT) via a programmatic interface in order to automate the analysis of multiple data sets. We describe the steps for writing a Perl client that connects to the RSAT Web services and implements a workflow to discover putative cis-acting elements in promoters of gene clusters. In the presented example, we apply this workflow to lists of transcription factor target genes resulting from ChIP-chip experiments. For each factor, the protocol predicts the binding motifs by detecting significantly overrepresented hexanucleotides in the target promoters and generates a feature map that displays the positions of putative binding sites along the promoter sequences. This protocol is addressed to bioinformaticians and biologists with programming skills (notions of Perl). Running time is approximately 6 min on the example data set.
Carbon and nitrogen nutrient balance signaling in plants.
Zheng, Zhi-Liang
2009-07-01
Cellular carbon (C) and nitrogen (N) metabolism must be tightly coordinated to sustain optimal growth and development for plants and other cellular organisms. Furthermore, C/N balance is also critical for the ecosystem response to elevated atmospheric CO(2). Despite numerous physiological and molecular studies in C/N balance or ratio response, very few genes have been shown to play important roles in C/N balance signaling. During recent five years, exciting progress was made through genetic and genomic studies. Several DNA microarray studies have shown that more than half of the transcriptome is regulated by C, N and the C-N combination. Three genetic studies involving distinct bioassays have demonstrated that a putative nitrate transporter (NTR2.1), a putative glutamate receptor (GLR1.1) and a putative methyltransferase (OSU1) have important functions in the C/N balance response. OSU1 is identical to QUA2/TSD2 which has been implicated to act in cell wall biogenesis, indicating a link between cell wall property and the C/N balance signaling. Given that many investigations are only focused on C alone or N alone, the C/N balance bioassays and gene expression patterns are discussed to assist phenotypic characterization of C/N balance signaling. Further, re-examination of those previously reported sugar or nitrogen responsive genes in C/N balance response may be necessary to dissect the C/N signaling pathways. In addition, key components involved in C-N interactions in bacterial, yeast and animal systems and whether they are functionally conserved in plants are discussed. These rapid advances have provided the first important step towards the construction of the complex yet elegant C/N balance signaling networks in plants.
Zhang, Zhongbao; Zhang, Jiewei; Chen, Yajuan; Li, Ruifen; Wang, Hongzhi; Ding, Liping; Wei, Jianhua
2014-09-01
Hexokinases (HXKs, EC 2.7.1.1) play important roles in metabolism, glucose (Glc) signaling, and phosphorylation of Glc and fructose and are ubiquitous in all organisms. Despite their physiological importance, the maize HXK (ZmHXK) genes have not been analyzed systematically. We isolated and characterized nine members of the ZmHXK gene family which were distributed on 3 of the 10 maize chromosomes. A multiple sequence alignment and motif analysis revealed that the maize ZmHXK proteins share three conserved domains. Phylogenetic analysis revealed that the ZmHXK family can be divided into four subfamilies. We identified putative cis-elements in the ZmHXK promoter sequences potentially involved in phytohormone and abiotic stress responses, sugar repression, light and circadian rhythm regulation, Ca(2+) responses, seed development and germination, and CO2-responsive transcriptional activation. To study the functions of maize HXK isoforms, we characterized the expression of the ZmHXK5 and ZmHXK6 genes, which are evolutionarily related to the OsHXK5 and OsHXK6 genes from rice. Analysis of tissue-specific expression patterns using quantitative real time-PCR showed that ZmHXK5 was highly expressed in tassels, while ZmHXK6 was expressed in both tassels and leaves. ZmHXK5 and ZmHXK6 expression levels were upregulated by phytohormones and by abiotic stress.
Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur.
Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A
2014-11-01
The response of Acidithiobacillus ferrooxidans ATCC 23270 to copper was analyzed in sulfur-grown cells by using quantitative proteomics. Forty-seven proteins showed altered levels in cells grown in the presence of 50 mM copper sulfate. Of these proteins, 24 were up-regulated and 23 down-regulated. As seen before in ferrous iron-grown cells, there was a notorious up-regulation of RND-type Cus systems and different RND-type efflux pumps, indicating that these proteins are very important in copper resistance. Copper also triggered the down-regulation of the major outer membrane porin of A. ferrooxidans in sulfur-grown bacteria, suggesting they respond to the metal by decreasing the influx of cations into the cell. On the contrary, copper in sulfur-grown cells caused an overexpression of putative TadA and TadB proteins known to be essential for biofilm formation in bacteria. Surprisingly, sulfur-grown microorganisms showed increased levels of proteins related with energy generation (rus and petII operons) in the presence of copper. Although rus operon is overexpressed mainly in cells grown in ferrous iron, the up-regulation of rusticyanin in sulfur indicates a possible role for this protein in copper resistance as well. Finally, copper response in A. ferrooxidans appears to be influenced by the substrate being oxidized by the microorganism. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Subramanian, Devika; Natarajan, Jeyakumar
2015-12-10
Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Velikova, Nadya; Fulle, Simone; Manso, Ana Sousa; Mechkarska, Milena; Finn, Paul; Conlon, J. Michael; Oggioni, Marco Rinaldo; Wells, Jerry M.; Marina, Alberto
2016-05-01
Novel antibacterials are urgently needed to address the growing problem of bacterial resistance to conventional antibiotics. Two-component systems (TCS) are widely used by bacteria to regulate gene expression in response to various environmental stimuli and physiological stress and have been previously proposed as promising antibacterial targets. TCS consist of a sensor histidine kinase (HK) and an effector response regulator. The HK component contains a highly conserved ATP-binding site that is considered to be a promising target for broad-spectrum antibacterial drugs. Here, we describe the identification of putative HK autophosphorylation inhibitors following two independent experimental approaches: in vitro fragment-based screen via differential scanning fluorimetry and in silico structure-based screening, each followed up by the exploration of analogue compounds as identified by ligand-based similarity searches. Nine of the tested compounds showed antibacterial effect against multi-drug resistant clinical isolates of bacterial pathogens and include three novel scaffolds, which have not been explored so far in other antibacterial compounds. Overall, putative HK autophosphorylation inhibitors were found that together provide a promising starting point for further optimization as antibacterials.
Todeschi, Maria R; El Backly, Rania M; Varghese, Oommen P; Hilborn, Jöns; Cancedda, Ranieri; Mastrogiacomo, Maddalena
2017-07-01
This study aimed to identify host cell recruitment patterns in a mouse model in response to rhBMP-2 releasing hyaluronic acid hydrogels and influence of added nano-hydroxyapatite particles on rhBMP-2 release and pattern of bone formation. Implanted gels were retrieved after implantation and cells were enzymatically dissociated for flow cytometric analysis. Percentages of macrophages, progenitor endothelial cells and putative mesenchymal stem cells were measured. Implants were evaluated for BMP-2 release by ELISA and by histology to monitor tissue formation. Hyaluronic acid+BMP-2 gels influenced the inflammatory response in the bone healing microenvironment. Host-derived putative mesenchymal stem cells were major contributors. Addition of hydroxyapatite nanoparticles modified the release pattern of rhBMP-2, resulting in enhanced bone formation.
Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells
Freire-Pritchett, Paula; Schoenfelder, Stefan; Várnai, Csilla; Wingett, Steven W; Cairns, Jonathan; Collier, Amanda J; García-Vílchez, Raquel; Furlan-Magaril, Mayra; Osborne, Cameron S; Fraser, Peter; Rugg-Gunn, Peter J; Spivakov, Mikhail
2017-01-01
Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells. DOI: http://dx.doi.org/10.7554/eLife.21926.001 PMID:28332981
Functional elements in the minimal promoter of the human proton-coupled folate transporter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Michal; Gonen, Nitzan; Assaraf, Yehuda G., E-mail: assaraf@tx.technion.ac.il
2009-10-09
The proton-coupled folate transporter (PCFT) is the dominant intestinal folate transporter, however, its promoter has yet to be revealed. Hence, we here cloned a 3.1 kb fragment upstream to the first ATG of the human PCFT gene and generated sequential deletion constructs evaluated in luciferase reporter assay. This analysis mapped the minimal promoter to 157 bp upstream to the first ATG. Crucial GC-box sites were identified within the minimal promoter and in its close vicinity which substantially contribute to promoter activity, as their disruption resulted in 94% loss of luciferase activity. We also identified upstream enhancer elements including YY1 andmore » AP1 which, although distantly located, prominently transactivated the minimal promoter, as their inactivation resulted in 50% decrease in reporter activity. This is the first functional identification of the minimal PCFT promoter harboring crucial GC-box elements that markedly contribute to its transcriptional activation via putative interaction with distal YY1 and AP1 enhancer elements.« less
An, P; Rice, T; Pérusse, L; Borecki, I B; Gagnon, J; Leon, A S; Skinner, J S; Wilmore, J H; Bouchard, C; Rao, D C
2000-05-01
Complex segregation analysis of baseline resting blood pressure (BP) and heart rate (HR) and their responses to training (post-training minus baseline) were performed in a sample of 482 individuals from 99 white families who participated in the HERITAGE Family Study. Resting BP and HR were measured at baseline and after a 20-week training program. Baseline resting BP and HR were age-adjusted and age-BMI-adjusted, and the responses to training were age-adjusted and age-baseline-adjusted, within four gender-by-generation groups. This study also analyzed the responses to training in two subsets of families: (1) the so-called "high" subsample, 45 families (216 individuals) with at least one member whose baseline resting BP is in the high end of the normal BP range (the upper 95th percentile: systolic BP [SBP] > or = 135 or diastolic BP [DBP] > or = 80 mm Hg); and (2) the so-called "nonhigh" subsample, the 54 remaining families (266 individuals). Baseline resting SBP was influenced by a multifactorial component (23%), which was independent of body mass index (BMI). Baseline resting DBP was influenced by a putative recessive locus, which accounted for 31% of the variance. In addition to the major gene effect, which may impact BMI as well, baseline resting DBP was also influenced by a multifactorial component (29%). Baseline resting HR was influenced by a putative dominant locus independent of BMI, which accounted for 31% of the variance. For the responses to training, no familiality was found in the whole sample or in the nonhigh subsample. However, in the high subsample, resting SBP response to training was influenced by a putative recessive locus, which accounted for 44% of the variance. No familiality was found for resting DBP response to training. Resting HR response to training was influenced by a major effect (accounting for 35% of the variance), with an ambiguous transmission from parents to offspring.
Control Aspects of Highly Constrained Guidance Techniques
1978-02-01
cycle. The advantages of this approach are (1) it requires only one time- consuming computation of the platform-to-body transformation matrix from...of steering gain corresponding to the three autopilot configurations, Kchange is KFCS change 2 0.0006 5 0.00156 8 0.00256 2.7 Terminal Steering As...a time- consuming process that it is desirable to consider ways of reducing the com- putation time by approximating the elements of B and/or updating
Viellard, Juliette; Baldo, Marcus Vinicius C; Canteras, Newton Sabino
2016-12-15
Previous studies from our group have shown that risk assessment behaviors are the primary contextual fear responses to predatory and social threats, whereas freezing is the main contextual fear response to physically harmful events. To test contextual fear responses to a predator or aggressive conspecific threat, we developed a model that involves placing the animal in an apparatus where it can avoid the threat-associated environment. Conversely, in studies that use shock-based fear conditioning, the animals are usually confined inside the conditioning chamber during the contextual fear test. In the present study, we tested shock-based contextual fear responses using two different behavioral testing conditions: confining the animal in the conditioning chamber or placing the animal in an apparatus with free access to the conditioning compartment. Our results showed that during the contextual fear test, the animals confined to the shock chamber exhibited significantly more freezing. In contrast, the animals that could avoid the conditioning compartment displayed almost no freezing and exhibited risk assessment responses (i.e., crouch-sniff and stretch postures) and burying behavior. In addition, the animals that were able to avoid the shock chamber had increased Fos expression in the juxtadorsomedial lateral hypothalamic area, the dorsomedial part of the dorsal premammillary nucleus and the lateral and dorsomedial parts of the periaqueductal gray, which are elements of a septo/hippocampal-hypothalamic-brainstem circuit that is putatively involved in mediating contextual avoidance. Overall, the present findings show that testing conditions significantly influence both behavioral responses and the activation of circuits involved in contextual avoidance. Copyright © 2016 Elsevier B.V. All rights reserved.
Population Coding of Forelimb Joint Kinematics by Peripheral Afferents in Monkeys
Umeda, Tatsuya; Seki, Kazuhiko; Sato, Masa-aki; Nishimura, Yukio; Kawato, Mitsuo; Isa, Tadashi
2012-01-01
Various peripheral receptors provide information concerning position and movement to the central nervous system to achieve complex and dexterous movements of forelimbs in primates. The response properties of single afferent receptors to movements at a single joint have been examined in detail, but the population coding of peripheral afferents remains poorly defined. In this study, we obtained multichannel recordings from dorsal root ganglion (DRG) neurons in cervical segments of monkeys. We applied the sparse linear regression (SLiR) algorithm to the recordings, which selects useful input signals to reconstruct movement kinematics. Multichannel recordings of peripheral afferents were performed by inserting multi-electrode arrays into the DRGs of lower cervical segments in two anesthetized monkeys. A total of 112 and 92 units were responsive to the passive joint movements or the skin stimulation with a painting brush in Monkey 1 and Monkey 2, respectively. Using the SLiR algorithm, we reconstructed the temporal changes of joint angle, angular velocity, and acceleration at the elbow, wrist, and finger joints from temporal firing patterns of the DRG neurons. By automatically selecting a subset of recorded units, the SLiR achieved superior generalization performance compared with a regularized linear regression algorithm. The SLiR selected not only putative muscle units that were responsive to only the passive movements, but also a number of putative cutaneous units responsive to the skin stimulation. These results suggested that an ensemble of peripheral primary afferents that contains both putative muscle and cutaneous units encode forelimb joint kinematics of non-human primates. PMID:23112841
Liu, Lijun; Ramsay, Trevor; Zinkgraf, Matthew; Sundell, David; Street, Nathaniel Robert; Filkov, Vladimir; Groover, Andrew
2015-06-01
Identifying transcription factor target genes is essential for modeling the transcriptional networks underlying developmental processes. Here we report a chromatin immunoprecipitation sequencing (ChIP-seq) resource consisting of genome-wide binding regions and associated putative target genes for four Populus homeodomain transcription factors expressed during secondary growth and wood formation. Software code (programs and scripts) for processing the Populus ChIP-seq data are provided within a publically available iPlant image, including tools for ChIP-seq data quality control and evaluation adapted from the human Encyclopedia of DNA Elements (ENCODE) project. Basic information for each transcription factor (including members of Class I KNOX, Class III HD ZIP, BEL1-like families) binding are summarized, including the number and location of binding regions, distribution of binding regions relative to gene features, associated putative target genes, and enriched functional categories of putative target genes. These ChIP-seq data have been integrated within the Populus Genome Integrative Explorer (PopGenIE) where they can be analyzed using a variety of web-based tools. We present an example analysis that shows preferential binding of transcription factor ARBORKNOX1 to the nearest neighbor genes in a pre-calculated co-expression network module, and enrichment for meristem-related genes within this module including multiple orthologs of Arabidopsis KNOTTED-like Arabidopsis 2/6. © 2015 Society for Experimental Biology and John Wiley & Sons Ltd This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Swathy, Babu; Banerjee, Moinak
2017-01-01
Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects.
Swathy, Babu
2017-01-01
Introduction Haloperidol has been extensively used in various psychiatric conditions. It has also been reported to induce severe side effects. We aimed to evaluate whether haloperidol can influence host methylome, and if so what are the possible mechanisms for it in neuronal cells. Impact on host methylome and miRNAs can have wide spread alterations in gene expression, which might possibly help in understanding how haloperidol may impact treatment response or induce side effects. Methods SK-N-SH, a neuroblasoma cell line was treated with haloperidol at 10μm concentration for 24 hours and global DNA methylation was evaluated. Methylation at global level is maintained by methylation maintenance machinery and certain miRNAs. Therefore, the expression of methylation maintenance genes and their putative miRNA expression profiles were assessed. These global methylation alterations could result in gene expression changes. Therefore genes expressions for neurotransmitter receptors, regulators, ion channels and transporters were determined. Subsequently, we were also keen to identify a strong candidate miRNA based on biological and in-silico approach which can reflect on the pharmacoepigenetic trait of haloperidol and can also target the altered neuroscience panel of genes used in the study. Results Haloperidol induced increase in global DNA methylation which was found to be associated with corresponding increase in expression of various epigenetic modifiers that include DNMT1, DNMT3A, DNMT3B and MBD2. The expression of miR-29b that is known to putatively regulate the global methylation by modulating the expression of epigenetic modifiers was observed to be down regulated by haloperidol. In addition to miR-29b, miR-22 was also found to be downregulated by haloperidol treatment. Both these miRNA are known to putatively target several genes associated with various epigenetic modifiers, pharmacogenes and neurotransmission. Interestingly some of these putative target genes involved in neurotransmission were observed to be upregulated while CHRM2 gene expression was down regulated. Conclusions Haloperidol can influence methylation traits thereby inducing a pharmacoepigenomic response, which seems to be regulated by DNMTs and their putative miRNA expression. Increased methylation seems to influence CHRM2 gene expression while microRNA could influence neurotransmission, pharmacogene expression and methylation events. Altered expression of various therapeutically relevant genes and miRNA expression, could account for their role in therapeutic response or side effects. PMID:28886082
NASA Astrophysics Data System (ADS)
Huang, Wen; Xu, Fei; Qu, Tao; Li, Li; Que, Huayong; Zhang, Guofan
2015-07-01
Iodothyronine deiodinase catalyzes the initiation and termination of thyroid hormones (THs) effects, and plays a central role in the regulation of thyroid hormone level in vertebrates. In non-chordate invertebrates, only one deiodinase has been identified in the scallop Chlamys farreri. Here, two deiodinases were cloned in the Pacific oyster Crassostrea gigas ( CgDx and CgDy). The characteristic in-frame TGA codons and selenocysteine insertion sequence elements in the oyster deiodinase cDNAs supported the activity of them. Furthermore, seven orthologs of deiodinases were found by a tblastn search in the mollusk Lottia gigantea and the annelid Capitella teleta. A phylogenetic analysis revealed that the deiodinase gene originated from an common ancestor and a clade-specific gene duplication occurred independently during the differentiation of the mollusk, annelid, and vertebrate lineages. The distinct spatiotemporal expression patterns implied functional divergence of the two deiodinases. The expression of CgDx and CgDy was influenced by L-thyroxine T4, and putative thyroid hormone responsive elements were found in their promoters, which suggested that the oyster deiodinases were feedback regulated by TH. Epinephrine stimulated the expression level of CgDx and CgDy, suggesting an interaction effect between different hormones. This study provides the first evidence for the existence of a conserved TH feedback regulation mechanism in mollusks, providing insights into TH evolution.
Bis is Induced by Oxidative Stress via Activation of HSF1
Yoo, Hyung Jae; Im, Chang-Nim; Youn, Dong-Ye; Yun, Hye Hyeon
2014-01-01
The Bis protein is known to be involved in a variety of cellular processes including apoptosis, migration, autophagy as well as protein quality control. Bis expression is induced in response to a number of types of stress, such as heat shock or a proteasome inhibitor via the activation of heat shock factor (HSF)1. We report herein that Bis expression is increased at the transcriptional level in HK-2 kidney tubular cells and A172 glioma cells by exposure to oxidative stress such as H2O2 treatment and oxygen-glucose deprivation, respectively. The pretreatment of HK-2 cells with N-acetyl cysteine, suppressed Bis induction. Furthermore, HSF1 silencing attenuated Bis expression that was induced by H2O2, accompaniedby increase in reactive oxygen species (ROS) accumulation. Using a series of deletion constructs of the bis gene promoter, two putative heat shock elements located in the proximal region of the bis gene promoter were found to be essential for the constitutive expression is as well as the inducible expression of Bis. Taken together, our results indicate that oxidative stress induces Bis expression at the transcriptional levels via activation of HSF1, which might confer an expansion of antioxidant capacity against pro-oxidant milieu. However, the possible role of the other cis-element in the induction of Bis remains to be determined. PMID:25352760
Qi, Jie; Liu, Xudong; Liu, Jinxiang; Yu, Haiyang; Wang, Wenji; Wang, Zhigang; Zhang, Quanqi
2014-08-01
Ambient temperature is one of the major abiotic environmental factors determining the main parameters of fish vital activity. HSP70 plays an essential role in heat response. In this investigation, the promoter and structure of Paralichthys olivaceus hsp70 (Pohsp70) gene was cloned and predicted. 2558 bp upstream regulatory region of Pohsp70 was annotated with four potential promoter elements and four putative binding sites of transcription factors heat shock elements (HSE, nGAAn) in the upstream of the transcription start site. In addition, one intron with 454 bp in the 5'-noncoding region was found. Quantitative Real Time PCR analysis indicated that the transcript level of Pohsp70 was raised markedly after 1 h by heat shocked. Furthermore, 25 SNPs were identified in Pohsp70 by resequencing, seven of which was associated with heat resistance. In addition, two of the seven SNPs, namely SNP14 and SNP16, were observed in strong linkage disequilibrium. The haplotype with association analysis showed TAGGAG haplotype was more represented in heat susceptible group while (DEL/T) GAATA haplotype was more frequent in heat resistant group. The heat resistant SNPs and haplotype could be candidate markers potentially serving for selective breeding programs of Japanese flounder aimed at improving anti-stress and production. Copyright © 2014 Elsevier Ltd. All rights reserved.
Type II Toxin–Antitoxin Systems in the Unicellular Cyanobacterium Synechocystis sp. PCC 6803
Kopfmann, Stefan; Roesch, Stefanie K.; Hess, Wolfgang R.
2016-01-01
Bacterial toxin–antitoxin (TA) systems are genetic elements, which are encoded by plasmid as well as chromosomal loci. They mediate plasmid and genomic island maintenance through post-segregational killing mechanisms but may also have milder effects, acting as mobile stress response systems that help certain cells of a population in persisting adverse growth conditions. Very few cyanobacterial TA system have been characterized thus far. In this work, we focus on the cyanobacterium Synechocystis 6803, a widely used model organism. We expand the number of putative Type II TA systems from 36 to 69 plus seven stand-alone components. Forty-seven TA pairs are located on the chromosome and 22 are plasmid-located. Different types of toxins are associated with various antitoxins in a mix and match principle. According to protein domains and experimental data, 81% of all toxins in Synechocystis 6803 likely exhibit RNase activity, suggesting extensive potential for toxicity-related RNA degradation and toxin-mediated transcriptome remodeling. Of particular interest is the Ssr8013–Slr8014 system encoded on plasmid pSYSG, which is part of a larger defense island or the pSYSX system Slr6056–Slr6057, which is linked to a bacterial ubiquitin-like system. Consequently, Synechocystis 6803 is one of the most prolific sources of new information about these genetic elements. PMID:27455323
Modular structural elements in the replication origin region of Tetrahymena rDNA.
Du, C; Sanzgiri, R P; Shaiu, W L; Choi, J K; Hou, Z; Benbow, R M; Dobbs, D L
1995-01-01
Computer analyses of the DNA replication origin region in the amplified rRNA genes of Tetrahymena thermophila identified a potential initiation zone in the 5'NTS [Dobbs, Shaiu and Benbow (1994), Nucleic Acids Res. 22, 2479-2489]. This region consists of a putative DNA unwinding element (DUE) aligned with predicted bent DNA segments, nuclear matrix or scaffold associated region (MAR/SAR) consensus sequences, and other common modular sequence elements previously shown to be clustered in eukaryotic chromosomal origin regions. In this study, two mung bean nuclease-hypersensitive sites in super-coiled plasmid DNA were localized within the major DUE-like element predicted by thermodynamic analyses. Three restriction fragments of the 5'NTS region predicted to contain bent DNA segments exhibited anomalous migration characteristic of bent DNA during electrophoresis on polyacrylamide gels. Restriction fragments containing the 5'NTS region bound Tetrahymena nuclear matrices in an in vitro binding assay, consistent with an association of the replication origin region with the nuclear matrix in vivo. The direct demonstration in a protozoan origin region of elements previously identified in Drosophila, chick and mammalian origin regions suggests that clusters of modular structural elements may be a conserved feature of eukaryotic chromosomal origins of replication. Images PMID:7784181
Warren, Ian A; Naville, Magali; Chalopin, Domitille; Levin, Perrine; Berger, Chloé Suzanne; Galiana, Delphine; Volff, Jean-Nicolas
2015-09-01
Since their discovery, a growing body of evidence has emerged demonstrating that transposable elements are important drivers of species diversity. These mobile elements exhibit a great variety in structure, size and mechanisms of transposition, making them important putative actors in organism evolution. The vertebrates represent a highly diverse and successful lineage that has adapted to a wide range of different environments. These animals also possess a rich repertoire of transposable elements, with highly diverse content between lineages and even between species. Here, we review how transposable elements are driving genomic diversity and lineage-specific innovation within vertebrates. We discuss the large differences in TE content between different vertebrate groups and then go on to look at how they affect organisms at a variety of levels: from the structure of chromosomes to their involvement in the regulation of gene expression, as well as in the formation and evolution of non-coding RNAs and protein-coding genes. In the process of doing this, we highlight how transposable elements have been involved in the evolution of some of the key innovations observed within the vertebrate lineage, driving the group's diversity and success.
TEC protein tyrosine kinase is involved in the Erk signaling pathway induced by HGF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Feifei; Jiang, Yinan; Zheng, Qiping
Research highlights: {yields} TEC is rapidly tyrosine-phosphorylated and activated by HGF-stimulation in vivo or after partial hepatectomy in mice. {yields} TEC enhances the activity of Elk and serum response element (SRE) in HGF signaling pathway in hepatocyte. {yields} TEC promotes hepatocyte proliferation through the Erk-MAPK pathway. -- Abstract: Background/aims: TEC, a member of the TEC family of non-receptor type protein tyrosine kinases, has recently been suggested to play a role in hepatocyte proliferation and liver regeneration. This study aims to investigate the putative mechanisms of TEC kinase regulation of hepatocyte differentiation, i.e. to explore which signaling pathway TEC is involvedmore » in, and how TEC is activated in hepatocyte after hepatectomy and hepatocyte growth factor (HGF) stimulation. Methods: We performed immunoprecipitation (IP) and immunoblotting (IB) to examine TEC tyrosine phosphorylation after partial hepatectomy in mice and HGF stimulation in WB F-344 hepatic cells. The TEC kinase activity was determined by in vitro kinase assay. Reporter gene assay, antisense oligonucleotide and TEC dominant negative mutant (TEC{sup KM}) were used to examine the possible signaling pathways in which TEC is involved. The cell proliferation rate was evaluated by {sup 3}H-TdR incorporation. Results: TEC phosphorylation and kinase activity were increased in 1 h after hepatectomy or HGF treatment. TEC enhanced the activity of Elk and serum response element (SRE). Inhibition of MEK1 suppressed TEC phosphorylation. Blocking TEC activity dramatically decreased the activation of Erk. Reduced TEC kinase activity also suppressed the proliferation of WB F-344 cells. These results suggest TEC is involved in the Ras-MAPK pathway and acts between MEK1 and Erk. Conclusions: TEC promotes hepatocyte proliferation and regeneration and is involved in HGF-induced Erk signaling pathway.« less
Ser, Ping Han; Omi, Sanae; Shimizu-Furusawa, Hana; Yasutake, Akira; Sakamoto, Mineshi; Hachiya, Noriyuki; Konishi, Shoko; Nakamura, Masaaki; Watanabe, Chiho
2017-02-05
Putative protective effects of selenium (Se) against methylmercury (MeHg) toxicity have been examined but no conclusion has been reached. We recently reported the lack of serious neurological symptoms in a Japanese fish-eating population with high intakes of MeHg and suggested a potential protective role for Se. Here, relationships between levels of Hg and Se in the blood and plasma samples, with a quantitative evaluation of Se-containing proteins, obtained from this population were examined. While levels of the whole-blood Hg (WB-Hg) and plasma Se (P-Se) showed a positive correlation, stratified analysis revealed that they correlated only in samples with higher (greater than the median) levels of MeHg. A food frequency questionnaire showed that consumption of fish/whales correlated with WB-Hg, but not with P-Se, suggesting that the positive correlation between WB-Hg and P-Se might not be the result of co-intake of these elements from seafood. Speciation of plasma Se revealed the differences in the responses of two plasma selenoproteins, glutathione peroxidase (GPx) and selenoprotein P (SePP), in relation to Hg exposure. In the high-Hg group, SePP showed a positive correlation with WB-Hg, but GPx did not. In the low-Hg group, neither SePP nor GPx showed any correlation with WB-Hg. These observations suggest that the increase in P-Se in the high-Hg group might be associated with an increase in SePP, which may, in turn, suggest an increased demand for one or more selenoproteins in various organs, for which SePP supplies the element. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Liseron-Monfils, Christophe; Bi, Yong-Mei; Downs, Gregory S; Wu, Wenqing; Signorelli, Tara; Lu, Guangwen; Chen, Xi; Bondo, Eddie; Zhu, Tong; Lukens, Lewis N; Colasanti, Joseph; Rothstein, Steven J; Raizada, Manish N
2013-10-01
Nitrogen is considered the most limiting nutrient for maize (Zea mays L.), but there is limited understanding of the regulation of nitrogen-related genes during maize development. An Affymetrix 82K maize array was used to analyze the expression of ≤ 46 unique nitrogen uptake and assimilation probes in 50 maize tissues from seedling emergence to 31 d after pollination. Four nitrogen-related expression clusters were identified in roots and shoots corresponding to, or overlapping, juvenile, adult, and reproductive phases of development. Quantitative real time PCR data was consistent with the existence of these distinct expression clusters. Promoters corresponding to each cluster were screened for over-represented cis-acting elements. The 8-bp distal motif of the Arabidopsis 43-bp nitrogen response element (NRE) was over-represented in nitrogen-related maize gene promoters. This conserved motif, referred to here as NRE43-d8, was previously shown to be critical for nitrate-activated transcription of nitrate reductase (NIA1) and nitrite reductase (NIR1) by the NIN-LIKE PROTEIN 6 (NLP6) in Arabidopsis. Here, NRE43-d8 was over-represented in the promoters of maize nitrate and ammonium transporter genes, specifically those that showed peak expression during early-stage vegetative development. This result predicts an expansion of the NRE-NLP6 regulon and suggests that it may have a developmental component in maize. We also report leaf expression of putative orthologs of nitrite transporters (NiTR1), a transporter not previously reported in maize. We conclude by discussing how each of the four transcriptional modules may be responsible for the different nitrogen uptake and assimilation requirements of leaves and roots at different stages of maize development.
Argimón, Silvia; Caufield, Page W.
2011-01-01
Streptococcus mutans, a member of the human oral flora, is a widely recognized etiological agent of dental caries. The cariogenic potential of S. mutans is related to its ability to metabolize a wide variety of sugars, form a robust biofilm, produce copious amounts of lactic acid, and thrive in the acid environment that it generates. The remarkable genetic variability present within the species is reflected at the phenotypic level, notably in the differences in the cariogenic potential between strains. However, the genetic basis of these differences is yet to be elucidated. In this study, we surveyed by PCR and DNA hybridization the distribution of putative virulence genes, genomic islands, and insertion sequences across a collection of 33 strains isolated from either children with severe early childhood caries (S-ECC) or those who were caries free (CF). We found this genetically diverse group of isolates to be remarkably homogeneous with regard to the distribution of the putative virulence genes and genetic elements analyzed. Our findings point to the role of other factors in the pathogenesis of S-ECC, such as uncharacterized virulence genes, differences in gene expression and/or enzymatic activity, cooperation between S. mutans strains or with other members of the oral biota, and host factors. PMID:21209168
Miguel, Célia; Simões, Marta; Oliveira, Maria Margarida; Rocheta, Margarida
2008-11-01
Retroviruses differ from retrotransposons due to their infective capacity, which depends critically on the encoded envelope. Some plant retroelements contain domains reminiscent of the env of animal retroviruses but the number of such elements described to date is restricted to angiosperms. We show here the first evidence of the presence of putative env-like gene sequences in a gymnosperm species, Pinus pinaster (maritime pine). Using a degenerate primer approach for conserved domains of RNaseH gene, three clones from putative envelope-like retrotransposons (PpRT2, PpRT3, and PpRT4) were identified. The env-like sequences of P. pinaster clones are predicted to encode proteins with transmembrane domains. These sequences showed identity scores of up to 30% with env-like sequences belonging to different organisms. A phylogenetic analysis based on protein alignment of deduced aminoacid sequences revealed that these clones clustered with env-containing plant retrotransposons, as well as with retrotransposons from invertebrate organisms. The differences found among the sequences of maritime pine clones isolated here suggest the existence of different putative classes of env-like retroelements. The identification for the first time of env-like genes in a gymnosperm species may support the ancestrality of retroviruses among plants shedding light on their role in plant evolution.
Niskanen, Einari A; Hytönen, Vesa P; Grapputo, Alessandro; Nordlund, Henri R; Kulomaa, Markku S; Laitinen, Olli H
2005-01-01
Background A chicken egg contains several biotin-binding proteins (BBPs), whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins. PMID:15777476
Schübbe, Sabrina; Kube, Michael; Scheffel, André; Wawer, Cathrin; Heyen, Udo; Meyerdierks, Anke; Madkour, Mohamed H.; Mayer, Frank; Reinhardt, Richard; Schüler, Dirk
2003-01-01
Frequent spontaneous loss of the magnetic phenotype was observed in stationary-phase cultures of the magnetotactic bacterium Magnetospirillum gryphiswaldense MSR-1. A nonmagnetic mutant, designated strain MSR-1B, was isolated and characterized. The mutant lacked any structures resembling magnetosome crystals as well as internal membrane vesicles. The growth of strain MSR-1B was impaired under all growth conditions tested, and the uptake and accumulation of iron were drastically reduced under iron-replete conditions. A large chromosomal deletion of approximately 80 kb was identified in strain MSR-1B, which comprised both the entire mamAB and mamDC clusters as well as further putative operons encoding a number of magnetosome-associated proteins. A bacterial artificial chromosome clone partially covering the deleted region was isolated from the genomic library of wild-type M. gryphiswaldense. Sequence analysis of this fragment revealed that all previously identified mam genes were closely linked with genes encoding other magnetosome-associated proteins within less than 35 kb. In addition, this region was remarkably rich in insertion elements and harbored a considerable number of unknown gene families which appeared to be specific for magnetotactic bacteria. Overall, these findings suggest the existence of a putative large magnetosome island in M. gryphiswaldense and other magnetotactic bacteria. PMID:13129949
Budachetri, Khemraj; Crispell, Gary; Karim, Shahid
2017-09-01
Selenium, a vital trace element, is incorporated into selenoproteins to produce selenocysteine. Our previous studies have revealed an adaptive co-evolutionary process that has enabled the spotted fever-causing tick-borne pathogen Rickettsia parkeri to survive by manipulating an antioxidant defense system associated with selenium, which includes a full set of selenoproteins and other antioxidants in ticks. Here, we conducted a systemic investigation of SECIS binding protein 2 (SBP2) and putative selenoprotein P (SELENOP) by transcript silencing in adult female Gulf-coast ticks (Amblyomma maculatum). Knockdown of the SBP2 and SELENOP genes depleted the respective transcript levels of these tick selenogenes, and caused differential regulation of other antioxidants. Importantly, the selenium level in the immature and mature tick stages increased significantly after a blood meal, but the selenium level decreased in ticks after the SBP2 and SELENOP knockdowns. Moreover, the SBP2 knockdown significantly impaired both transovarial transmission of R. parkeri to tick eggs and egg hatching. Overall, our data offer new insight into the relationship between the SBP2 selenoprotein synthesis gene and the putative tick SELENOP gene. It also augments our understanding of selenoprotein synthesis, selenium maintenance and utilization, and bacterial colonization of a tick vector. Copyright © 2017 Elsevier Ltd. All rights reserved.
Intrinsic and extrinsic approaches for detecting genes in a bacterial genome.
Borodovsky, M; Rudd, K E; Koonin, E V
1994-01-01
The unannotated regions of the Escherichia coli genome DNA sequence from the EcoSeq6 database, totaling 1,278 'intergenic' sequences of the combined length of 359,279 basepairs, were analyzed using computer-assisted methods with the aim of identifying putative unknown genes. The proposed strategy for finding new genes includes two key elements: i) prediction of expressed open reading frames (ORFs) using the GeneMark method based on Markov chain models for coding and non-coding regions of Escherichia coli DNA, and ii) search for protein sequence similarities using programs based on the BLAST algorithm and programs for motif identification. A total of 354 putative expressed ORFs were predicted by GeneMark. Using the BLASTX and TBLASTN programs, it was shown that 208 ORFs located in the unannotated regions of the E. coli chromosome are significantly similar to other protein sequences. Identification of 182 ORFs as probable genes was supported by GeneMark and BLAST, comprising 51.4% of the GeneMark 'hits' and 87.5% of the BLAST 'hits'. 73 putative new genes, comprising 20.6% of the GeneMark predictions, belong to ancient conserved protein families that include both eubacterial and eukaryotic members. This value is close to the overall proportion of highly conserved sequences among eubacterial proteins, indicating that the majority of the putative expressed ORFs that are predicted by GeneMark, but have no significant BLAST hits, nevertheless are likely to be real genes. The majority of the putative genes identified by BLAST search have been described since the release of the EcoSeq6 database, but about 70 genes have not been detected so far. Among these new identifications are genes encoding proteins with a variety of predicted functions including dehydrogenases, kinases, several other metabolic enzymes, ATPases, rRNA methyltransferases, membrane proteins, and different types of regulatory proteins. Images PMID:7984428
Tissue-Specific Enrichment of Lymphoma Risk Loci in Regulatory Elements
Hayes, James E.; Trynka, Gosia; Vijai, Joseph; Offit, Kenneth; Raychaudhuri, Soumya; Klein, Robert J.
2015-01-01
Though numerous polymorphisms have been associated with risk of developing lymphoma, how these variants function to promote tumorigenesis is poorly understood. Here, we report that lymphoma risk SNPs, especially in the non-Hodgkin’s lymphoma subtype chronic lymphocytic leukemia, are significantly enriched for co-localization with epigenetic marks of active gene regulation. These enrichments were seen in a lymphoid-specific manner for numerous ENCODE datasets, including DNase-hypersensitivity as well as multiple segmentation-defined enhancer regions. Furthermore, we identify putatively functional SNPs that are both in regulatory elements in lymphocytes and are associated with gene expression changes in blood. We developed an algorithm, UES, that uses a Monte Carlo simulation approach to calculate the enrichment of previously identified risk SNPs in various functional elements. This multiscale approach integrating multiple datasets helps disentangle the underlying biology of lymphoma, and more broadly, is generally applicable to GWAS results from other diseases as well. PMID:26422229
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu
Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less
Scarpari, Leandra M; Lambais, Marcio R; Silva, Denise S; Carraro, Dirce M; Carrer, Helaine
2003-05-16
Xylella fastidiosa is the causal agent of economically important plant diseases, including citrus variegated chlorosis and Pierce's disease. Hitherto, there has been no information on the molecular mechanisms controlling X. fastidiosa-plant interactions. To determine whether predicted open reading frames (ORFs) encoding putative pathogenicity-related factors were expressed by X. fastidiosa 9a5c cells grown at low (LCD) and high cell density (HCD) conditions in liquid modified PW medium, reverse Northern blot hybridization and reverse transcription-polymerase chain reaction (RT-PCR) experiments were performed. Our results indicated that ORFs XF2344, XF2369, XF1851 and XF0125, encoding putative Fur, GumC, a serine-protease and RsmA, respectively, were significantly suppressed at HCD conditions. In contrast, ORF XF1115, encoding putative RpfF, was significantly induced at HCD conditions. Expressions of ORFs XF2367, XF2362 and XF0290, encoding putative GumD, GumJ and RpfA, respectively, were detected only at HCD conditions, whereas expression of ORF XF0287, encoding putative RpfB was detected only at LCD conditions. Bioassays with an Agrobacterium traG::lacZ reporter system indicated that X. fastidiosa does not synthesize N-acyl-homoserine lactones, whereas bioassays with a diffusible signal factor (DSF)-responsive Xanthomonas campestris pv. campestris mutant indicate that X. fastidiosa synthesizes a molecule similar to DSF in modified PW medium. Our data also suggest that the synthesis of the DSF-like molecule and fastidian gum by X. fastidiosa is affected by cell density in vitro.
TLR4, NOD1 and NOD2 mediate immune recognition of putative newly identified periodontal pathogens.
Marchesan, Julie; Jiao, Yizu; Schaff, Riley A; Hao, Jie; Morelli, Thiago; Kinney, Janet S; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J; Inohara, Naohiro; Giannobile, William V
2016-06-01
Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. Although the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, six being classical pathogens and four putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone-marrow-derived macrophages (BMDM) from wild-type (WT) and Toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. Campylobacter concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2 stimulatory activity. These studies allowed us to provide important evidence on newly identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
TLR4, NOD1 and NOD2 Mediate Immune Recognition of Putative Newly-Identified Periodontal Pathogens
Schaff, Riley A.; Hao, Jie; Morelli, Thiago; Kinney, Janet S.; Gerow, Elizabeth; Sheridan, Rachel; Rodrigues, Vinicius; Paster, Bruce J.; Inohara, Naohiro; Giannobile, William V.
2015-01-01
SUMMARY Periodontitis is a polymicrobial inflammatory disease that results from the interaction between the oral microbiota and the host immunity. While the innate immune response is important for disease initiation and progression, the innate immune receptors that recognize both classical and putative periodontal pathogens that elicit an immune response have not been elucidated. By using the Human Oral Microbe Identification Microarray (HOMIM), we identified multiple predominant oral bacterial species in human plaque biofilm that strongly associate with severe periodontitis. Ten of the identified species were evaluated in greater depth, 6 being classical pathogens and 4 putative novel pathogens. Using human peripheral blood monocytes (HPBM) and murine bone marrow–derived macrophages (BMDM) from wild-type (WT) and toll-like receptor (TLR)-specific and MyD88 knockouts (KOs), we demonstrated that heat-killed Campylobacter concisus, Campylobacter rectus, Selenomonas infelix, Porphyromonas endodontalis, Porphyromonas gingivalis, and Tannerella forsythia mediate high immunostimulatory activity. C. concisus, C. rectus, and S. infelix exhibited robust TLR4 stimulatory activity. Studies using mesothelial cells from WT and NOD1-specific KOs and NOD2-expressing human embryonic kidney (HEK) cells demonstrated that Eubacterium saphenum, Eubacterium nodatum and Filifactor alocis exhibit robust NOD1 stimulatory activity, and that Porphyromonas endodontalis and Parvimonas micra have the highest NOD2-stimulatory activity. These studies allowed us to provide important evidence on newly-identified putative pathogens in periodontal disease pathogenesis showing that these bacteria exhibit different immunostimulatory activity via TLR4, NOD1, and NOD2 (Clinicaltrials.gov NCT01154855). PMID:26177212
ERIC Educational Resources Information Center
Cicchese, Joseph J.; Darling, Ryan D.; Berry, Stephen D.
2015-01-01
Eyeblink conditioning given in the explicit presence of hippocampal ? results in accelerated learning and enhanced multiple-unit responses, with slower learning and suppression of unit activity under non-? conditions. Recordings from putative pyramidal cells during ?-contingent training show that pretrial ?-state is linked to the probability of…
Roy, Sushmita
2017-01-01
Arbuscular mycorrhizal (AM) associations enhance the phosphorous and nitrogen nutrition of host plants, but little is known about their role in potassium (K+) nutrition. Medicago truncatula plants were cocultured with the AM fungus Rhizophagus irregularis under high and low K+ regimes for 6 weeks. We determined how K+ deprivation affects plant development and mineral acquisition and how these negative effects are tempered by the AM colonization. The transcriptional response of AM roots under K+ deficiency was analyzed by whole-genome RNA sequencing. K+ deprivation decreased root biomass and external K+ uptake and modulated oxidative stress gene expression in M. truncatula roots. AM colonization induced specific transcriptional responses to K+ deprivation that seem to temper these negative effects. A gene network analysis revealed putative key regulators of these responses. This study confirmed that AM associations provide some tolerance to K+ deprivation to host plants, revealed that AM symbiosis modulates the expression of specific root genes to cope with this nutrient stress, and identified putative regulators participating in these tolerance mechanisms. PMID:28159827
Hay, Elizabeth Anne; Khalaf, Abdulla Razak; Marini, Pietro; Brown, Andrew; Heath, Karyn; Sheppard, Darrin; MacKenzie, Alasdair
2017-08-01
We have successfully used comparative genomics to identify putative regulatory elements within the human genome that contribute to the tissue specific expression of neuropeptides such as galanin and receptors such as CB1. However, a previous inability to rapidly delete these elements from the mouse genome has prevented optimal assessment of their function in-vivo. This has been solved using CAS9/CRISPR genome editing technology which uses a bacterial endonuclease called CAS9 that, in combination with specifically designed guide RNA (gRNA) molecules, cuts specific regions of the mouse genome. However, reports of "off target" effects, whereby the CAS9 endonuclease is able to cut sites other than those targeted, limits the appeal of this technology. We used cytoplasmic microinjection of gRNA and CAS9 mRNA into 1-cell mouse embryos to rapidly generate enhancer knockout mouse lines. The current study describes our analysis of the genomes of these enhancer knockout lines to detect possible off-target effects. Bioinformatic analysis was used to identify the most likely putative off-target sites and to design PCR primers that would amplify these sequences from genomic DNA of founder enhancer deletion mouse lines. Amplified DNA was then sequenced and blasted against the mouse genome sequence to detect off-target effects. Using this approach we were unable to detect any evidence of off-target effects in the genomes of three founder lines using any of the four gRNAs used in the analysis. This study suggests that the problem of off-target effects in transgenic mice have been exaggerated and that CAS9/CRISPR represents a highly effective and accurate method of deleting putative neuropeptide gene enhancer sequences from the mouse genome. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Osborne, Peter W; Benoit, Gérard; Laudet, Vincent; Schubert, Michael; Ferrier, David E K
2009-03-01
The ParaHox cluster is the evolutionary sister to the Hox cluster. Like the Hox cluster, the ParaHox cluster displays spatial and temporal regulation of the component genes along the anterior/posterior axis in a manner that correlates with the gene positions within the cluster (a feature called collinearity). The ParaHox cluster is however a simpler system to study because it is composed of only three genes. We provide a detailed analysis of the amphioxus ParaHox cluster and, for the first time in a single species, examine the regulation of the cluster in response to a single developmental signalling molecule, retinoic acid (RA). Embryos treated with either RA or RA antagonist display altered ParaHox gene expression: AmphiGsx expression shifts in the neural tube, and the endodermal boundary between AmphiXlox and AmphiCdx shifts its anterior/posterior position. We identified several putative retinoic acid response elements and in vitro assays suggest some may participate in RA regulation of the ParaHox genes. By comparison to vertebrate ParaHox gene regulation we explore the evolutionary implications. This work highlights how insights into the regulation and evolution of more complex vertebrate arrangements can be obtained through studies of a simpler, unduplicated amphioxus gene cluster.
Stritih, Natasa
2009-10-20
Vibratory interneurons were investigated in a primitive nonhearing ensiferan (orthopteran) species (Troglophilus neglectus, Rhaphidophoridae), using intracellular recording and staining technique. The study included 26 morphologically and/or physiologically distinct types of neurons from the prothoracic ganglion responding to vibration of the front legs. Most of these neurons are tuned to frequencies below 400 Hz. The morphology, anatomical position in the ganglion, and physiological responses are described in particular for a set of these low-frequency-tuned elements, including one local neuron, two T-shaped fibers, and five descending neurons, for which no putative homologues are known from the hearing Orthoptera. Their lowest thresholds are between about 0.01 and 0.4 m/second(2) at frequencies of 50-400 Hz, and the shortest latencies between 10 and 16 msec, suggesting that they are first- or second-order interneurons. Six interneurons have dendritic arborizations in the neuropile region that contains projections of tibial organ vibratory receptors, but their sensitivity suggests predominating inputs from vibrational sensilla of another origin. Responses of most neurons are composed of frequency-specific excitatory and inhibitory synaptic potentials, most of the latter being received in the high-frequency range. The function of these neurons in predator detection and intraspecific communication is discussed.
Stress and transcriptional regulation of tick ferritin HC.
Mulenga, A; Simser, J A; Macaluso, K R; Azad, A F
2004-08-01
We previously identified a partial Dermacentor variabilis cDNA encoding ferritin HC (HC) subunit homolog (DVFER) that was differentially upregulated in Rickettsia montanensis infected ticks (Mulenga et al., 2003a). We have used rapid amplification of cDNA ends to clone full-length DVFER cDNA and its apparent ortholog from the wood tick, D. andersoni (DAFER), both of which show high sequence similarity to vertebrate than insect ferritin. Both DVFER and DAFER contain the stem-loop structure of a putative iron responsive element in the 5' untranslated region (nucleotide positions, 16-42) and the feroxidase centre loop typical for vertebrate ferritin HC subunits. Quantitative Western and Northern blotting analyses of protein and RNA from unfed and partially fed whole tick as well as dissected tick tissues demonstrated that DVFER is constitutively and ubiquitously expressed. Based on densitometric analysis of detected protein and mRNA bands, DVFER is predominantly expressed in the midgut, and to a lesser extent in the salivary glands, ovary and fatbody. Sham treatment (mechanical injury) and Escherichia coli challenge of D. variabilis ticks stimulated statistically significant (approximately 1.5- and approximately 3.0-fold, respectively) increases in DVFER mRNA abundance over time point matched naive control ticks. These data suggest that DVFER mRNA is nonspecifically up regulated in response to mechanical injury or bacterial infection induced stress.
Cardinal, Marie-Josée; Kaur, Rajvinder; Singh, Jaswinder
2016-10-01
Domestication and intensive selective breeding of plants has triggered erosion of genetic diversity of important stress-related alleles. Researchers highlight the potential of using wild accessions as a gene source for improvement of cereals such as barley, which has major economic and social importance worldwide. Previously, we have successfully introduced the maize Ac/Ds transposon system for gene identification in cultivated barley. The objective of current research was to investigate the response of Hordeum vulgare ssp. spontaneum wild barley accessions in tissue culture to standardize parameters for introduction of Ac/Ds transposons through genetic transformation. We investigated the response of ten wild barley genotypes for callus induction, regenerative green callus induction and regeneration of fertile plants. The activity of exogenous Ac/Ds elements was observed through a transient assay on immature wild barley embryos/callus whereby transformed embryos/calli were identified by the expression of GUS. Transient Ds expression bombardment experiments were performed on 352 pieces of callus (3-5 mm each) or immature embryos in 4 genotypes of wild barley. The transformation frequency of putative transgenic callus lines based on transient GUS expression ranged between 72 and100 % in wild barley genotypes. This is the first report of a transformation system in H. vulgare ssp. spontaneum.
Dynamic regulation of VEGF-inducible genes by an ERK/ERG/p300 transcriptional network.
Fish, Jason E; Cantu Gutierrez, Manuel; Dang, Lan T; Khyzha, Nadiya; Chen, Zhiqi; Veitch, Shawn; Cheng, Henry S; Khor, Melvin; Antounians, Lina; Njock, Makon-Sébastien; Boudreau, Emilie; Herman, Alexander M; Rhyner, Alexander M; Ruiz, Oscar E; Eisenhoffer, George T; Medina-Rivera, Alejandra; Wilson, Michael D; Wythe, Joshua D
2017-07-01
The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis. © 2017. Published by The Company of Biologists Ltd.
Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W.; Almeida-Souza, Hebréia O.; Tu, Aye; Rao, Basuthkar J.; Feldstein, Paul A.; Bruening, George; Goulart, Luiz R.; Dandekar, Abhaya M.
2016-01-01
Pierce’s disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms. PMID:26753904
Nascimento, Rafael; Gouran, Hossein; Chakraborty, Sandeep; Gillespie, Hyrum W; Almeida-Souza, Hebréia O; Tu, Aye; Rao, Basuthkar J; Feldstein, Paul A; Bruening, George; Goulart, Luiz R; Dandekar, Abhaya M
2016-01-12
Pierce's disease (PD) of grapevines is caused by Xylella fastidiosa (Xf), a xylem-limited gamma-proteobacterium that is responsible for several economically important crop diseases. The occlusion of xylem elements and interference with water transport by Xf and its associated biofilm have been posited as the main cause of PD symptom development; however, Xf virulence mechanisms have not been described. Analysis of the Xf secretome revealed a putative lipase/esterase (LesA) that was abundantly secreted in bacterial culture supernatant and was characterized as a protein ortholog of the cell wall-degrading enzyme LipA of Xanthomonas strains. LesA was secreted by Xf and associated with a biofilm filamentous network. Additional proteomic analysis revealed its abundant presence in outer membrane vesicles (OMVs). Accumulation of LesA in leaf regions associated positively with PD symptoms and inversely with bacterial titer. The lipase/esterase also elicited a hypersensitive response in grapevine. Xf lesA mutants were significantly deficient for virulence when mechanically inoculated into grapevines. We propose that Xf pathogenesis is caused by LesA secretion mediated by OMV cargos and that its release and accumulation in leaf margins leads to early stages of observed PD symptoms.
Pineau, Christophe; Loubet, Stéphanie; Lefoulon, Cécile; Chalies, Claude; Fizames, Cécile; Lacombe, Benoit; Ferrand, Marina; Loudet, Olivier; Berthomieu, Pierre; Richard, Odile
2012-01-01
Zinc (Zn) is essential for the optimal growth of plants but is toxic if present in excess, so Zn homeostasis needs to be finely tuned. Understanding Zn homeostasis mechanisms in plants will help in the development of innovative approaches for the phytoremediation of Zn-contaminated sites. In this study, Zn tolerance quantitative trait loci (QTL) were identified by analyzing differences in the Bay-0 and Shahdara accessions of Arabidopsis thaliana. Fine-scale mapping showed that a variant of the Fe homeostasis-related FERRIC REDUCTASE DEFECTIVE3 (FRD3) gene, which encodes a multidrug and toxin efflux (MATE) transporter, is responsible for reduced Zn tolerance in A. thaliana. Allelic variation in FRD3 revealed which amino acids are necessary for FRD3 function. In addition, the results of allele-specific expression assays in F1 individuals provide evidence for the existence of at least one putative metal-responsive cis-regulatory element. Our results suggest that FRD3 works as a multimer and is involved in loading Zn into xylem. Cross-homeostasis between Fe and Zn therefore appears to be important for Zn tolerance in A. thaliana with FRD3 acting as an essential regulator. PMID:23236296
Dallery, Jean-Félix; Lapalu, Nicolas; Zampounis, Antonios; Pigné, Sandrine; Luyten, Isabelle; Amselem, Joëlle; Wittenberg, Alexander H J; Zhou, Shiguo; de Queiroz, Marisa V; Robin, Guillaume P; Auger, Annie; Hainaut, Matthieu; Henrissat, Bernard; Kim, Ki-Tae; Lee, Yong-Hwan; Lespinet, Olivier; Schwartz, David C; Thon, Michael R; O'Connell, Richard J
2017-08-29
The ascomycete fungus Colletotrichum higginsianum causes anthracnose disease of brassica crops and the model plant Arabidopsis thaliana. Previous versions of the genome sequence were highly fragmented, causing errors in the prediction of protein-coding genes and preventing the analysis of repetitive sequences and genome architecture. Here, we re-sequenced the genome using single-molecule real-time (SMRT) sequencing technology and, in combination with optical map data, this provided a gapless assembly of all twelve chromosomes except for the ribosomal DNA repeat cluster on chromosome 7. The more accurate gene annotation made possible by this new assembly revealed a large repertoire of secondary metabolism (SM) key genes (89) and putative biosynthetic pathways (77 SM gene clusters). The two mini-chromosomes differed from the ten core chromosomes in being repeat- and AT-rich and gene-poor but were significantly enriched with genes encoding putative secreted effector proteins. Transposable elements (TEs) were found to occupy 7% of the genome by length. Certain TE families showed a statistically significant association with effector genes and SM cluster genes and were transcriptionally active at particular stages of fungal development. All 24 subtelomeres were found to contain one of three highly-conserved repeat elements which, by providing sites for homologous recombination, were probably instrumental in four segmental duplications. The gapless genome of C. higginsianum provides access to repeat-rich regions that were previously poorly assembled, notably the mini-chromosomes and subtelomeres, and allowed prediction of the complete SM gene repertoire. It also provides insights into the potential role of TEs in gene and genome evolution and host adaptation in this asexual pathogen.
Expression of Putative Immune Response Genes during Early Ontogeny in the Coral Acropora millepora
Puill-Stephan, Eneour; Seneca, François O.; Miller, David J.; van Oppen, Madeleine J. H.; Willis, Bette L.
2012-01-01
Background Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Methodology/Principal Findings Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A.millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Conclusions/Significance Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals. PMID:22792163
Expression of putative immune response genes during early ontogeny in the coral Acropora millepora.
Puill-Stephan, Eneour; Seneca, François O; Miller, David J; van Oppen, Madeleine J H; Willis, Bette L
2012-01-01
Corals, like many other marine invertebrates, lack a mature allorecognition system in early life history stages. Indeed, in early ontogeny, when corals acquire and establish associations with various surface microbiota and dinoflagellate endosymbionts, they do not efficiently distinguish between closely and distantly related individuals from the same population. However, very little is known about the molecular components that underpin allorecognition and immunity responses or how they change through early ontogeny in corals. Patterns in the expression of four putative immune response genes (apextrin, complement C3, and two CELIII type lectin genes) were examined in juvenile colonies of Acropora millepora throughout a six-month post-settlement period using quantitative real-time PCR (qPCR). Expression of a CELIII type lectin gene peaked in the fourth month for most of the coral juveniles sampled and was significantly higher at this time than at any other sampling time during the six months following settlement. The timing of this increase in expression levels of putative immune response genes may be linked to allorecognition maturation which occurs around this time in A. millepora. Alternatively, the increase may represent a response to immune challenges, such as would be involved in the recognition of symbionts (such as Symbiodinium spp. or bacteria) during winnowing processes as symbioses are fine-tuned. Our data, although preliminary, are consistent with the hypothesis that lectins may play an important role in the maturation of allorecognition responses in corals. The co-expression of lectins with apextrin during development of coral juveniles also raises the possibility that these proteins, which are components of innate immunity in other invertebrates, may influence the innate immune systems of corals through a common pathway or system. However, further studies investigating the expression of these genes in alloimmune-challenged corals are needed to further clarify emerging evidence of a complex innate immunity system in corals.
Mars, Ruben A T; Nicolas, Pierre; Denham, Emma L; van Dijl, Jan Maarten
2016-12-01
Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5' untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5' ends of mRNA molecules. These can include 5' secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.
2016-01-01
SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798
NASA Astrophysics Data System (ADS)
Bamber, S. D.; Naylor, E.
1997-02-01
Pre-moult female Carcinus maenasurine was confirmed as a source of putative sex pheromone. The sexual and temporal specificity of bioactivity in pre-moult female urine was demonstrated when urine samples taken from inter-moult and pre-moult male crabs, and inter-moult females, failed to generate a sexual response from receptive males. Detection sensitivity of male crabs to pre-moult female urine was established at a dilution factor of 1 μl of urine in 10 ml of seawater. Experimental blockage of the site of urine release (the antennal gland opercula) failed to diminish the chemical attractiveness of pre-moult female crabs to test males, implicating at least one further site of putative pheromone release. Observations of female sexual behaviour demonstrated an active role by pre-moult and post-moult female crabs when introduced to male crabs whose locomotor movement had been temporarily restricted.
Xu, Shou Ling; Shen, Si Shi; Xu, Zhi Hong; Xue, Hong Wei
2002-12-01
Abscisic acid (ABA) was critical in plant seed development and response to environmental factors such as stress situations. To study the possible ABA related signaling transduction pathways, we tried to isolate the ABA-regulated genes through fluorescent differential display PCR (FDD-PCR) technology using rice seedling as materials (treated with ABA for 2, 4, 8 and 12h). In the 17 fragments isolated, 14 and 3 clones were up-and down-regulated respectively. Sequence analyses revealed that the encoded proteins were involved in photosynthesis (7 fragments), signal transduction (1 fragments), transcription (2 fragments), metabolism and resistance (6 fragments), and unknown protein (1 fragments). 3 clones, encoding putative alpha/beta hydrolase fold, putative vacuolar H+ -ATPase B subunit, putative tyrosine phosphatase, were confirmed to be regulated under ABA treatment by RT-PCR and northern blot analysis. FDD-PCR and possible functional mechanisms of ABA were discussed.
Nomiyama, Takashi; Zhao, Yue; Gizard, Florence; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Conneely, Orla M.; Bruemmer, Dennis
2009-01-01
Background The neuron-derived orphan receptor-1 (NOR1) belongs to the evolutionary highly conserved and most ancient NR4A subfamily of the nuclear hormone receptor superfamily. Members of this subfamily function as early response genes regulating key cellular processes including proliferation, differentiation, and survival. Although NOR1 has previously been demonstrated to be required for smooth muscle cell (SMC) proliferation in vitro, the role of this nuclear receptor for the proliferative response underlying neointima formation and target genes trans-activated by NOR1 remain to be defined. Methods and Results Using a model of guide wire-induced arterial injury, we demonstrate decreased neointima formation in NOR1-/- mice compared to wildtype mice. In vitro, NOR1-deficient SMC exhibit decreased proliferation due to a G1→S phase arrest of the cell cycle and increased apoptosis in response to serum deprivation. NOR1-deficiency alters phosphorylation of the retinoblastoma protein by preventing mitogen-induced cyclin D1 and D2 expression. Conversely, overexpression of NOR1 induces cyclin D1 expression and the transcriptional activity of the cyclin D1 promoter in transient reporter assays. Gel shift and chromatin immunoprecipitation assays identified a putative response element for NR4A receptors in the cyclin D1 promoter, to which NOR1 is recruited in response to mitogenic stimulation. Finally, we provide evidence that these observations are applicable in vivo by demonstrating decreased cyclin D1 expression during neointima formation in NOR1-deficient mice. Conclusions These experiments characterize cyclin D1 as a NOR1-regulated target gene in SMC and demonstrate that NOR1 deficiency decreases neointima formation in response to vascular injury. PMID:19153266
Damsud, Thanakorn; Grace, Mary H; Adisakwattana, Sirichai; Phuwapraisirisan, Preecha
2014-05-01
An infusion of Orthosiphon aristatus has long been used for diabetes therapy; however, the active principles remained unknown. Herein, we report the identification of the putative agents responsible for this antidiabetic activity using an a-glucosidase-guided isolation. Four flavonoids named sinensetin (1), salvigenin (2), tetramethylscutellarein (3) and 3,7,4'-tri-O-methylkaempferol (4), together with a diterpenoid named orthosiphol A (5), were characterized, based on analysis of their spectroscopic data. Flavonoids 3 and 4 inhibited yeast a-glucosidase with IC,o values of 6.34 and 0.75 mM, respectively, whereas orthosiphol A (5) selectively inhibited intestinal maltase with an IC5o, value of 6.54 mM. A kinetic investigation of 5 indicated that it retarded maltase function in a noncompetitive manner.
Valenzuela-Miranda, Diego; Nuñez-Acuña, Gustavo; Valenzuela-Muñoz, Valentina; Asgari, Sassan; Gallardo-Escárate, Cristian
2015-01-25
Despite the increasing evidence of the importance of microRNAs (miRNAs) in the regulation of multiple biological processes, the molecular bases supporting this regulation are still barely understood in crustaceans. Therefore, the molecular characterization and transcriptome modulation of the miRNA biogenesis pathway were evaluated in the salmon louse Caligus rogercresseyi, an ectoparasite that constitutes one of the biggest concerns for salmonid aquaculture industry. Hence, RNA-Seq analysis was conducted from six different developmental stages, and also after bioassays with delousing drugs Deltamethrin and Azamethiphos using adult individuals. In silico analysis evidenced 24 putative genes involved in the miRNA pathway such as biogenesis, transport, maturation and miRNA-target interaction. Moreover, 243 putative single nucleotide polymorphisms (SNPs) were identified, 15 of which showed non-synonym mutations. RNA-Seq analysis revealed that CCR4-Not complex subunit 3 (CNOT3) was upregulated at earlier developmental stages (nauplius I-II and copepodid), and also after the exposure to Azamethiphos, but not to Deltamethrin. In contrast, the subunit 7 (CNOT7) showed an inverse expression pattern. Different Argonaute transcripts were associated to chalimus and adult stages, revealing specific expression patterns in response to antiparasitic drugs. Our results suggest novel insights into the regulatory network of the post-transcriptional gene regulation in C. rogercresseyi mediated by miRNAs, evidencing a putative role during the ontogeny and drug response. Copyright © 2014 Elsevier B.V. All rights reserved.
Song, Aiping; Li, Peiling; Xin, Jingjing; Chen, Sumei; Zhao, Kunkun; Wu, Dan; Fan, Qingqing; Gao, Tianwei; Chen, Fadi; Guan, Zhiyong
2016-01-01
The homeodomain-leucine zipper (HD-Zip) transcription factor family is a key transcription factor family and unique to the plant kingdom. It consists of a homeodomain and a leucine zipper that serve in combination as a dimerization motif. The family can be classified into four subfamilies, and these subfamilies participate in the development of hormones and mediation of hormone action and are involved in plant responses to environmental conditions. However, limited information on this gene family is available for the important chrysanthemum ornamental species (Chrysanthemum morifolium). Here, we characterized 17 chrysanthemum HD-Zip genes based on transcriptome sequences. Phylogenetic analyses revealed that 17 CmHB genes were distributed in the HD-Zip subfamilies I and II and identified two pairs of putative orthologous proteins in Arabidopsis and chrysanthemum and four pairs of paralogous proteins in chrysanthemum. The software MEME was used to identify 7 putative motifs with E values less than 1e-3 in the chrysanthemum HD-Zip factors, and they can be clearly classified into two groups based on the composition of the motifs. A bioinformatics analysis predicted that 8 CmHB genes could be targeted by 10 miRNA families, and the expression of these 17 genes in response to phytohormone treatments and abiotic stresses was characterized. The results presented here will promote research on the various functions of the HD-Zip gene family members in plant hormones and stress responses. PMID:27196930
Meillère, Alizée; Brischoux, François; Bustamante, Paco; Michaud, Bruno; Parenteau, Charline; Marciau, Coline; Angelier, Frédéric
2016-10-01
In a rapidly urbanizing world, trace element pollution may represent a threat to human health and wildlife, and it is therefore crucial to assess both exposition levels and associated effects of trace element contamination on urban vertebrates. In this study, we investigated the impact of urbanization on trace element contamination and stress physiology in a wild bird species, the common blackbird (Turdus merula), along an urbanization gradient (from rural to moderately urbanized areas). Specifically, we described the contamination levels of blackbirds by 4 non-essential (Ag, Cd, Hg, Pb) and 9 essential trace elements (As, Co, Cr, Cu, Fe, Mn, Ni, Se, Zn), and explored the putative disrupting effects of the non-essential element contamination on corticosterone levels (a hormonal proxy for environmental challenges). We found that non-essential trace element burden (Cd and Pb specifically) increased with increasing urbanization, indicating a significant trace element contamination even in medium sized cities and suburban areas. Interestingly, the increased feather non-essential trace element concentrations were also associated with elevated feather corticosterone levels, suggesting that urbanization probably constrains birds and that this effect may be mediated by trace element contamination. Future experimental studies are now required to disentangle the influence of multiple urban-related constraints on corticosterone levels and to specifically test the influence of each of these trace elements on corticosterone secretion. Copyright © 2016 Elsevier B.V. All rights reserved.
2013-01-01
Background Polycomb Repressive Complex 2 (PRC2) is an essential regulator of gene expression that maintains genes in a repressed state by marking chromatin with trimethylated Histone H3 lysine 27 (H3K27me3). In Arabidopsis, loss of PRC2 function leads to pleiotropic effects on growth and development thought to be due to ectopic expression of seed and embryo-specific genes. While there is some understanding of the mechanisms by which specific genes are targeted by PRC2 in animal systems, it is still not clear how PRC2 is recruited to specific regions of plant genomes. Results We used ChIP-seq to determine the genome-wide distribution of hemagglutinin (HA)-tagged FERTLIZATION INDEPENDENT ENDOSPERM (FIE-HA), the Extra Sex Combs homolog protein present in all Arabidopsis PRC2 complexes. We found that the FIE-HA binding sites co-locate with a subset of the H3K27me3 sites in the genome and that the associated genes were more likely to be de-repressed in mutants of PRC2 components. The FIE-HA binding sites are enriched for three sequence motifs including a putative GAGA factor binding site that is also found in Drosophila Polycomb Response Elements (PREs). Conclusions Our results suggest that PRC2 binding sites in plant genomes share some sequence features with Drosophila PREs. However, unlike Drosophila PREs which are located in promoters and devoid of H3K27me3, Arabidopsis FIE binding sites tend to be in gene coding regions and co-localize with H3K27me3. PMID:24001316
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-01-01
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (−1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (−2898, −2164, and −691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the−2164 and −691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. PMID:28154180
Ellestad, Laura E.
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5′-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5′-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland. PMID:23161868
Ellestad, Laura E; Porter, Tom E
2013-01-01
Glucocorticoids play a role in functional differentiation of pituitary somatotrophs and lactotrophs during embryogenesis. Ras-dva was identified as a gene regulated by anterior neural fold protein-1/homeobox expressed in embryonic stem cells-1, a transcription factor known to be critical in pituitary development, and has an expression profile in the chicken embryonic pituitary gland that is consistent with in vivo regulation by glucocorticoids. The objective of this study was to characterize expression and regulation of ras-dva mRNA in the developing chicken anterior pituitary. Pituitary ras-dva mRNA levels increased during embryogenesis to a maximum on embryonic day (e) 18 and then decreased and remained low or undetectable after hatch. Ras-dva expression was highly enriched in the pituitary gland on e18 relative to other tissues examined. Glucocorticoid treatment of pituitary cells from mid- and late-stage embryos rapidly increased ras-dva mRNA, suggesting it may be a direct transcriptional target of glucocorticoids. A reporter construct driven by 4 kb of the chicken ras-dva 5'-flanking region, containing six putative pituitary-specific transcription factor-1 (Pit-1) binding sites and two potential glucocorticoid receptor (GR) binding sites, was highly activated in embryonic pituitary cells and up-regulated by corticosterone. Mutagenesis of the most proximal Pit-1 site decreased promoter activity in chicken e11 pituitary cells, indicating regulation of ras-dva by Pit-1. However, mutating putative GR binding sites did not substantially reduce induction of ras-dva promoter activity by corticosterone, suggesting additional DNA elements within the 5'-flanking region are responsible for glucocorticoid regulation. We have identified ras-dva as a glucocorticoid-regulated gene that is likely expressed in cells of the Pit-1 lineage within the developing anterior pituitary gland.
Single-cell-based system to monitor carrier driven cellular auxin homeostasis
2013-01-01
Background Abundance and distribution of the plant hormone auxin play important roles in plant development. Besides other metabolic processes, various auxin carriers control the cellular level of active auxin and, hence, are major regulators of cellular auxin homeostasis. Despite the developmental importance of auxin transporters, a simple medium-to-high throughput approach to assess carrier activities is still missing. Here we show that carrier driven depletion of cellular auxin correlates with reduced nuclear auxin signaling in tobacco Bright Yellow-2 (BY-2) cell cultures. Results We developed an easy to use transient single-cell-based system to detect carrier activity. We use the relative changes in signaling output of the auxin responsive promoter element DR5 to indirectly visualize auxin carrier activity. The feasibility of the transient approach was demonstrated by pharmacological and genetic interference with auxin signaling and transport. As a proof of concept, we provide visual evidence that the prominent auxin transport proteins PIN-FORMED (PIN)2 and PIN5 regulate cellular auxin homeostasis at the plasma membrane and endoplasmic reticulum (ER), respectively. Our data suggest that PIN2 and PIN5 have different sensitivities to the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Also the putative PIN-LIKES (PILS) auxin carrier activity at the ER is insensitive to NPA in our system, indicating that NPA blocks intercellular, but not intracellular auxin transport. Conclusions This single-cell-based system is a useful tool by which the activity of putative auxin carriers, such as PINs, PILS and WALLS ARE THIN1 (WAT1), can be indirectly visualized in a medium-to-high throughput manner. Moreover, our single cell system might be useful to investigate also other hormonal signaling pathways, such as cytokinin. PMID:23379388
Bu, Pengli; Le, Yuan; Zhang, Yue; Zhang, Youcai; Cheng, Xingguo
2017-03-17
Sodium-taurocholate co-transporting polypeptide (Ntcp/NTCP) is the major uptake transporter of bile salts in mouse and human livers. In certain diseases, including endotoxemia, cholestasis, diabetes, and hepatocarcinoma, Ntcp/NTCP expression is markedly reduced, which interferes with enterohepatic circulation of bile salts, impairing the absorption of lipophilic compounds. Therefore, normal Ntcp/NTCP expression in the liver is physiologically important. Berberine is an herbal medicine used historically to improve liver function and has recently been shown to repress STAT signaling. However, berberine effects on Ntcp/NTCP expression are unknown, prompting use to investigate this possible connection. Our results showed that berberine dose-dependently increased Ntcp expression in male mouse liver and decreased taurocholic acid levels in serum but increased them in the liver. In mouse and human hepatoma cells, berberine induced Ntcp/NTCP mRNA and protein expression and increased cellular uptake of [3H] taurocholate. Mechanistically, berberine decreased nuclear protein levels of phospho-JAK2 and phospho-STAT5, thus disrupting the JAK2-STAT5 signaling. Moreover, berberine stimulated luciferase reporter expression from the mouse Ntcp promoter when one putative STAT5 response element (RE) (-1137 bp) was deleted and from the human NTCP promoter when three putative STAT5REs (-2898, -2164, and -691 bp) were deleted. Chromatin immunoprecipitation demonstrated that berberine decreased binding of phospho-STAT5 protein to the-2164 and -691 bp STAT5REs in the human NTCP promoter. In summary, berberine-disrupted STAT5 signaling promoted mouse and human Ntcp/NTCP expression, resulting in enhanced bile acid uptake. Therefore, berberine may be a therapeutic candidate compound for maintaining bile acid homeostasis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Li, Huiying; Hu, Tao; Amombo, Erick; Fu, Jinmin
2017-06-01
MicroRNAs (miRNAs) play vital roles in the adaptive response of plants to various abiotic and biotic stresses. Tall fescue (Festuca arundinacea Schreb.) is a major cool-season forage and turf grass species which is severely influenced by heat stress. To unravel possible heat stress-responsive miRNAs, high-throughput sequencing was employed for heat-tolerant PI578718 and heat-sensitive PI234881 genotypes growing in presence and absence of heat stress (40°C for 36h). By searching against the miRBase database, among 1421 reference monocotyledon miRNAs, more than 850 were identified in all samples. Among these miRNAs, 1.46% and 2.29% were differentially expressed in PI234881 and PI578718 under heat stress, respectively, and most of them were down-regulated. In addition, a total of 170 novel miRNAs belonging to 145 miRNA families were identified. Furthermore, putative targets of differentially expressed miRNAs were predicted. The regulation of selected miRNAs by heat stress was revalidated through quantitative reverse transcription PCR (qRT-PCR) analysis. Most of these miRNAs shared similar expression patterns; however, some showed distinct expression patterns under heat stress, with their putative targets displaying different transcription levels. This is the first genome-wide miRNA identification in tall fescue. miRNAs specific to PI578718, or those that exhibited differential expression profiles between the two genotypes under high temperature, were probably associated with the variation in thermotolerance of tall fescue. The differentially expressed miRNAs between these two tall fescue genotypes and their putative targeted genes will provide essential information for further study on miRNAs mediating heat response and facilitate to improve turf grass breeding. Copyright © 2017. Published by Elsevier GmbH.
NASA Astrophysics Data System (ADS)
Tian, Z. H.; Jiao, C. Z.
2017-07-01
RIG-I like receptors (RLRs) play key roles in sensing non-self nucleic acids in cytoplasm and trigger antiviral innate immune response in vertebrates and human body. Here we carried out in silico analysis to identify and investigate the putative RLRs encoded in the genome of marine mollusk, Crassostrea gigas (cgRLRs), an invertebrate species. We found the unusual duplication and varieties on domain architecture of putative cgRLRs encoded in the genome of C. gigas. Three putative cgRLRs (accessions numbers are EKC24603, EKC31344.1 and EKC38304.1 on GenBank), have the similar domain architecture with that of human RIG-I or MDA5, and one protein (EKC34573.1) with that of human LGP2; The fifth putative cgRLRs (EKC38303.1) is somewhat similar with human RIG-I/MDA5 except that it has only one caspase activation and recruitment domain (CARD) in its N-terminal. Other nine proteins were identified to be partialy similar with RLRs while with the incomplete sequences, which maybe reflect the events of partial duplication of cgRLRs genes occurred in the oyster genome.
ABSTRACT
The acute phase response (APR) functions to reset metabolic homeostasis following infectious, toxic or traumatic insult. TNF- , a putative mediator of the APR, has been associated with fetal death in rodents and preterm labor and delivery in humans. We hypothesized...
USDA-ARS?s Scientific Manuscript database
Ozone is a pollutant widely known to cause decrease in productivity in many plant species, including soybean. While cultivated soybean response to ozone has been studied, less work has been done to identify sources of resistance from wild relatives. This study presents a putative SNP marker on Chrom...
Pluripotent and Multipotent Stem Cells Display Distinct Hypoxic miRNA Expression Profiles
Agrawal, Rahul; Dale, Tina P.; Al-Zubaidi, Mohammed A.; Benny Malgulwar, Prit; Forsyth, Nicholas R.; Kulshreshtha, Ritu
2016-01-01
MicroRNAs are reported to have a crucial role in the regulation of self-renewal and differentiation of stem cells. Hypoxia has been identified as a key biophysical element of the stem cell culture milieu however, the link between hypoxia and miRNA expression in stem cells remains poorly understood. We therefore explored miRNA expression in hypoxic human embryonic and mesenchymal stem cells (hESCs and hMSCs). A total of 50 and 76 miRNAs were differentially regulated by hypoxia (2% O2) in hESCs and hMSCs, respectively, with a negligible overlap of only three miRNAs. We found coordinate regulation of precursor and mature miRNAs under hypoxia suggesting their regulation mainly at transcriptional level. Hypoxia response elements were located upstream of 97% of upregulated hypoxia regulated miRNAs (HRMs) suggesting hypoxia-inducible-factor (HIF) driven transcription. HIF binding to the candidate cis-elements of specific miRNAs under hypoxia was confirmed by Chromatin immunoprecipitation coupled with qPCR. Role analysis of a subset of upregulated HRMs identified linkage to reported inhibition of differentiation while a downregulated subset of HRMs had a putative role in the promotion of differentiation. MiRNA-target prediction correlation with published hypoxic hESC and hMSC gene expression profiles revealed HRM target genes enriched in the cytokine:cytokine receptor, HIF signalling and pathways in cancer. Overall, our study reveals, novel and distinct hypoxia-driven miRNA signatures in hESCs and hMSCs with the potential for application in optimised culture and differentiation models for both therapeutic application and improved understanding of stem cell biology. PMID:27783707
Molecular elements of pheromone detection in the female moth, Heliothis virescens.
Zielonka, Monika; Breer, Heinz; Krieger, Jürgen
2018-06-01
Pheromones play pivotal roles in the reproductive behavior of moths, most prominently for the mate finding of male moths. Accordingly, the molecular basis for the detection of female-released pheromones by male moths has been studied in great detail. In contrast, little is known about how females can detect pheromone components released by themselves or by conspecifics. In this study, we assessed the antenna of female Heliothis virescens for elements of pheromone detection. In accordance with previous findings that female antennae respond to the sex pheromone component (Z)-9-tetradecenal, we identified olfactory sensory neurons that express its cognate receptor, the receptor type HR6. All HR6 cells coexpressed the "sensory neuron membrane protein 1" (SNMP1) and were associated with supporting cells expressing the pheromone-binding proteins PBP1 and PBP2. These features are reminiscent to male antennae and point to congruent mechanisms for pheromone detection in the two sexes. Further analysis of the SNMP1-expressing cells revealed a higher number in females compared to males. Moreover, in females, the SNMP1 neurons were arranged in clusters, which project their dendrites into a common sensillum, whereas in males there were only solitary SNMP1-neurons and only 1 per sensillum. Not all SNMP1 positive cells in female antennae expressed HR6 but instead the putative pheromone receptors HR11 and HR18, respectively. Neurons expressing 1 of the 3 receptor types were assigned to different sensilla. Together the data indicate that on the antenna of females, sensory neurons in a subset of sensilla trichodea are equipped with molecular elements, which render them responsive to pheromones. © 2016 Institute of Zoology, Chinese Academy of Sciences.
Li, Jin-Xue; Hou, Xiao-Jin; Zhu, Jiao; Zhou, Jing-Jing; Huang, Hua-Bin; Yue, Jian-Qiang; Gao, Jun-Yan; Du, Yu-Xia; Hu, Cheng-Xiao; Hu, Chun-Gen; Zhang, Jin-Zhi
2017-01-01
Water deficit is a key factor to induce flowering in many woody plants, but reports on the molecular mechanisms of floral induction and flowering by water deficit are scarce. Here, we analyzed the morphology, cytology, and different hormone levels of lemon buds during floral inductive water deficits. Higher levels of ABA were observed, and the initiation of floral bud differentiation was examined by paraffin sections analysis. A total of 1638 differentially expressed genes (DEGs) were identified by RNA sequencing. DEGs were related to flowering, hormone biosynthesis, or metabolism. The expression of some DEGs was associated with floral induction by real-time PCR analysis. However, some DEGs may not have anything to do with flowering induction/flower development; they may be involved in general stress/drought response. Four genes from the phosphatidylethanolamine-binding protein family were further investigated. Ectopic expression of these genes in Arabidopsis changed the flowering time of transgenic plants. Furthermore, the 5′ flanking region of these genes was also isolated and sequence analysis revealed the presence of several putative cis-regulatory elements, including basic elements and hormone regulation elements. The spatial and temporal expression patterns of these promoters were investigated under water deficit treatment. Based on these findings, we propose a model for citrus flowering under water deficit conditions, which will enable us to further understand the molecular mechanism of water deficit-regulated flowering in citrus. Highlight: Based on gene activity during floral inductive water deficits identified by RNA sequencing and genes associated with lemon floral transition, a model for citrus flowering under water deficit conditions is proposed. PMID:28659956
He, Chunmei; Zeng, Songjun; Teixeira da Silva, Jaime A; Yu, Zhenming; Tan, Jianwen; Duan, Jun
2017-07-01
Phosphomannomutase (PMM, EC 5.4.2.8) catalyzes the interconversion of mannose-6-phosphate to mannose-1-phosphate, the precursor for the synthesis of GDP-mannose. In this study, the complementary DNA (cDNA) of the Phosphomannomutase (PMM) gene was initially cloned from Dendrobium officinale by RACE method. Transient transform result showed that the DoPMM protein was localized in the cytoplasm. The DoPMM gene was highly expressed in the stems of D. officinale both in vegetative and reproductive developmental stages. The putative promoter was cloned by TAIL-PCR and used for searched cis-elements. Stress-related cis-elements like ABRE, TCA-element, and MBS were found in the promoter regions. The DoPMM gene was up-regulated after treatment with abscisic acid, salicylic acid, cold, polyethylene glycol, and NaCl. The total ascorbic acid (AsA) and polysaccharide content in all of the 35S::DoPMM Arabidopsis thaliana transgenic lines #1, #2, and #5 showed a 40, 39, and 31% increase in AsA and a 77, 22, and 39% increase in polysaccharides, respectively more than wild-type (WT) levels. All three 35S::DoPMM transgenic lines exhibited a higher germination percentage than WT plants when seeded on half-strength MS medium supplemented with 150 mM NaCl or 300 mM mannitol. These results provide genetic evidence for the involvement of PMM genes in the biosynthesis of AsA and polysaccharides and the mediation of PMM genes in abiotic stress tolerance during seed germination in A. thaliana.
Wang, Yafei; Peng, Wei; Zhou, Xu; Huang, Fei; Shao, Lingyun; Luo, Meizhong
2014-09-01
Agrobacterium exports at least five virulence proteins (VirE2, VirE3, VirF, VirD2, VirD5) into host cells and hijacks some host plant factors to facilitate its transformation process. Random DNA binding selection assays (RDSAs), electrophoretic mobility shift assays (EMSAs) and yeast one-hybrid systems were used to identify protein-bound DNA elements. Bimolecular fluorescence complementation, glutathione S-transferase pull-down and yeast two-hybrid assays were used to detect protein interactions. Protoplast transformation, coprecipitation, competitive binding and cell-free degradation assays were used to analyze the relationships among proteins. We found that Agrobacterium VirD5 exhibits transcriptional activation activity in yeast, is located in the plant cell nucleus, and forms homodimers. A specific VirD5-bound DNA element designated D5RE (VirD5 response element) was identified. VirD5 interacted directly with Arabidopsis VirE2 Interacting Protein 1 (AtVIP1). However, the ternary complex of VirD5-AtVIP1-VirE2 could be detected, whereas that of VirD5-AtVIP1-VBF (AtVIP1 Binding F-box protein) could not. We demonstrated that VirD5 competes with VBF for binding to AtVIP1 and stabilizes AtVIP1 and VirE2 in the cell-free degradation system. Our results indicated that VirD5 may act as both a transcriptional activator-like effector to regulate host gene expression and a protector preventing the coat proteins of the T-complex from being quickly degraded by the host's ubiquitin proteasome system (UPS). © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.
Enticott, Peter G; Kennedy, Hayley A; Rinehart, Nicole J; Bradshaw, John L; Tonge, Bruce J; Daskalakis, Zafiris J; Fitzgerald, Paul B
2013-01-01
The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD.
2013-01-01
Background Drug resistance to anti-malarial compounds remains a serious problem, with resistance to newer pharmaceuticals developing at an alarming rate. The development of new anti-malarials remains a priority, and the rational selection of putative targets is a key element of this process. Discovery-2 is an update of the original Discovery in silico resource for the rational selection of putative drug target proteins, enabling researchers to obtain information for a protein which may be useful for the selection of putative drug targets, and to perform advanced filtering of proteins encoded by the malaria genome based on a series of molecular properties. Methods An updated in silico resource has been developed where researchers are able to mine information on malaria proteins and predicted ligands, as well as perform comparisons to the human and mosquito host characteristics. Protein properties used include: domains, motifs, EC numbers, GO terms, orthologs, protein-protein interactions, protein-ligand interactions. Newly added features include drugability measures from ChEMBL, automated literature relations and links to clinical trial information. Searching by chemical structure is also available. Results The updated functionality of the Discovery-2 resource is presented, together with a detailed case study of the Plasmodium falciparum S-adenosyl-L-homocysteine hydrolase (PfSAHH) protein. A short example of a chemical search with pyrimethamine is also illustrated. Conclusion The updated Discovery-2 resource allows researchers to obtain detailed properties of proteins from the malaria genome, which may be of interest in the target selection process, and to perform advanced filtering and selection of proteins based on a relevant range of molecular characteristics. PMID:23537208
Rabbit Neonates and Human Adults Perceive a Blending 6-Component Odor Mixture in a Comparable Manner
Sinding, Charlotte; Thomas-Danguin, Thierry; Chambault, Adeline; Béno, Noelle; Dosne, Thibaut; Chabanet, Claire; Schaal, Benoist; Coureaud, Gérard
2013-01-01
Young and adult mammals are constantly exposed to chemically complex stimuli. The olfactory system allows for a dual processing of relevant information from the environment either as single odorants in mixtures (elemental perception) or as mixtures of odorants as a whole (configural perception). However, it seems that human adults have certain limits in elemental perception of odor mixtures, as suggested by their inability to identify each odorant in mixtures of more than 4 components. Here, we explored some of these limits by evaluating the perception of three 6-odorant mixtures in human adults and newborn rabbits. Using free-sorting tasks in humans, we investigated the configural or elemental perception of these mixtures, or of 5-component sub-mixtures, or of the 6-odorant mixtures with modified odorants' proportion. In rabbit pups, the perception of the same mixtures was evaluated by measuring the orocephalic sucking response to the mixtures or their components after conditioning to one of these stimuli. The results revealed that one mixture, previously shown to carry the specific odor of red cordial in humans, was indeed configurally processed in humans and in rabbits while the two other 6-component mixtures were not. Moreover, in both species, such configural perception was specific not only to the 6 odorants included in the mixture but also to their respective proportion. Interestingly, rabbit neonates also responded to each odorant after conditioning to the red cordial mixture, which demonstrates their ability to perceive elements in addition to configuration in this complex mixture. Taken together, the results provide new insights related to the processing of relatively complex odor mixtures in mammals and the inter-species conservation of certain perceptual mechanisms; the results also revealed some differences in the expression of these capacities between species putatively linked to developmental and ecological constraints. PMID:23341948
Lobier, Muriel A.; Peyrin, Carole; Pichat, Cédric; Le Bas, Jean-François; Valdois, Sylviane
2014-01-01
The visual attention (VA) span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT) in dyslexia have yet to be explored. Using functional magnetic resonance imaging, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric), similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL) activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined regions of interest, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity was related to vOT activity in each group. In the left hemisphere, SPL activity covaried with vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity covaried with vOT activity only for dyslexic readers. These results bring critical support to the VA interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia. PMID:25071509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mangelsen, Elke; Kilian, Joachim; Berendzen, Kenneth W.
2008-02-01
WRKY proteins belong to the WRKY-GCM1 superfamily of zinc finger transcription factors that have been subject to a large plant-specific diversification. For the cereal crop barley (Hordeum vulgare), three different WRKY proteins have been characterized so far, as regulators in sucrose signaling, in pathogen defense, and in response to cold and drought, respectively. However, their phylogenetic relationship remained unresolved. In this study, we used the available sequence information to identify a minimum number of 45 barley WRKY transcription factor (HvWRKY) genes. According to their structural features the HvWRKY factors were classified into the previously defined polyphyletic WRKY subgroups 1 tomore » 3. Furthermore, we could assign putative orthologs of the HvWRKY proteins in Arabidopsis and rice. While in most cases clades of orthologous proteins were formed within each group or subgroup, other clades were composed of paralogous proteins for the grasses and Arabidopsis only, which is indicative of specific gene radiation events. To gain insight into their putative functions, we examined expression profiles of WRKY genes from publicly available microarray data resources and found group specific expression patterns. While putative orthologs of the HvWRKY transcription factors have been inferred from phylogenetic sequence analysis, we performed a comparative expression analysis of WRKY genes in Arabidopsis and barley. Indeed, highly correlative expression profiles were found between some of the putative orthologs. HvWRKY genes have not only undergone radiation in monocot or dicot species, but exhibit evolutionary traits specific to grasses. HvWRKY proteins exhibited not only sequence similarities between orthologs with Arabidopsis, but also relatedness in their expression patterns. This correlative expression is indicative for a putative conserved function of related WRKY proteins in mono- and dicot species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lo, Raymond; Celius, Trine; Forgacs, Agnes L.
2011-11-15
Genome-wide, promoter-focused ChIP-chip analysis of hepatic aryl hydrocarbon receptor (AHR) binding sites was conducted in 8-week old female C57BL/6 treated with 30 {mu}g/kg/body weight 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) for 2 h and 24 h. These studies identified 1642 and 508 AHR-bound regions at 2 h and 24 h, respectively. A total of 430 AHR-bound regions were common between the two time points, corresponding to 403 unique genes. Comparison with previous AHR ChIP-chip studies in mouse hepatoma cells revealed that only 62 of the putative target genes overlapped with the 2 h AHR-bound regions in vivo. Transcription factor binding site analysis revealed anmore » over-representation of aryl hydrocarbon response elements (AHREs) in AHR-bound regions with 53% (2 h) and 68% (24 h) of them containing at least one AHRE. In addition to AHREs, E2f-Myc activator motifs previously implicated in AHR function, as well as a number of other motifs, including Sp1, nuclear receptor subfamily 2 factor, and early growth response factor motifs were also identified. Expression microarray studies identified 133 unique genes differentially regulated after 4 h treatment with TCDD. Of which, 39 were identified as AHR-bound genes at 2 h. Ingenuity Pathway Analysis on the 39 AHR-bound TCDD responsive genes identified potential perturbation in biological processes such as lipid metabolism, drug metabolism, and endocrine system development as a result of TCDD-mediated AHR activation. Our findings identify direct AHR target genes in vivo, highlight in vitro and in vivo differences in AHR signaling and show that AHR recruitment does not necessarily result in changes in target gene expression. -- Highlights: Black-Right-Pointing-Pointer ChIP-chip analysis of hepatic AHR binding after 2 h and 24 h of TCDD. Black-Right-Pointing-Pointer We identified 1642 and 508 AHR-bound regions at 2 h and 24 h. Black-Right-Pointing-Pointer 430 regions were common to both time points and highly enriched with AHREs. Black-Right-Pointing-Pointer Only 62 putative target regions overlapped AHR-bound regions in hepatoma cells. Black-Right-Pointing-Pointer Microarrays identified 133 TCDD-regulated genes; of which 39 were also bound by AHR.« less
Effects of TCDD on the Expression of Nuclear Encoded Mitochondrial Genes
Forgacs, Agnes L.; Burgoon, Lyle D.; Lynn, Scott G.; LaPres, John J.; Zacharewski, Timothy
2014-01-01
Generation of mitochondrial reactive oxygen species (ROS) can be perturbed following exposure to environmental chemicals such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Reports indicate that the aryl hydrocarbon receptor (AhR) mediates TCDD-induced sustained hepatic oxidative stress by decreasing hepatic ATP levels and through hyperpolarization of the inner mitochondrial membrane. To further elucidate the effects of TCDD on the mitochondria, high-throughput quantitative real-time PCR (HTP-QRTPCR) was used to evaluate the expression of 90 genes encoding mitochondrial proteins involved in electron transport, oxidative phosphorylation, uncoupling, and associated chaperones. HTP-QRTPCR analysis of time course (30 μg/kg TCDD at 2, 4, 8, 12, 18, 24, 72, and 168 hrs) liver samples obtained from orally gavaged immature, ovariectomized C57BL/6 mice identified 54 differentially expressed genes (|fold change|>1.5 and P-value <0.1). Of these, 8 exhibited a dose response (0.03 to 300 μg/kg TCDD) at 4, 24 or 72 hrs. Dose responsive genes encoded proteins associated with electron transport chain (ETC) complex I (NADH dehydrogenase), III (cytochrome c reductase), IV (cytochrome c oxidase), and V (ATP synthase) and could be generally categorized as having proton gradient, ATP synthesis, and chaperone activities. In contrast, transcript levels of ETC complex II, succinate dehydrogenase, remained unchanged. Putative dioxin response elements were computationally found in the promoter regions of the 8 dose-responsive genes. This high-throughput approach suggests that TCDD alters the expression of genes associated with mitochondrial function which may contribute to TCDD-elicited mitochondrial toxicity. PMID:20399798
Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho
2016-01-01
A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato (Lycopersicon esculentum) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders. PMID:27792185
Bae, Jung-Soo; Han, Mira; Shin, Hee Soon; Shon, Dong-Hwa; Lee, Soon-Tae; Shin, Chang-Yup; Lee, Yuri; Lee, Dong Hun; Chung, Jin Ho
2016-10-26
A decrease in adult neurogenesis is associated with the aging process, and this decrease is closely related to memory impairment. Tomato ( Lycopersicon esculentum ) is a fruit with diverse bioactive nutrients that is consumed worldwide. In this study, we investigated the cognition-enhancing effect of tomato ethanolic extracts (TEE) in aged mice. Six weeks of oral TEE administration in 12-month-old aged mice significantly increased their exploration time of novel objects when compared to vehicle-treated mice. The TEE supplement increased doublecortin (DCX)-positive cells and postsynaptic density-95 (PSD95) expression in mice hippocampus. Moreover, we found an increased expression of brain-derived neurotrophic factor (BDNF) and subsequently-activated extracellular-signal-regulated kinase (ERK)/cAMP response element binding (CREB) signaling pathway in the TEE-supplemented mice hippocampus. In conclusion, the oral administration of TEE exhibits a cognition-enhancing effect, and the putative underlying mechanism is the induction of BDNF signaling-mediated proliferation and synapse formation in the hippocampus. These findings indicate that TEE could be a candidate for treatment of age-related memory impairment and neurodegenerative disorders.
Vastano, Valeria; Perrone, Filomena; Marasco, Rosangela; Sacco, Margherita; Muscariello, Lidia
2016-04-01
Exopolysaccharides (EPS) from lactic acid bacteria contribute to specific rheology and texture of fermented milk products and find applications also in non-dairy foods and in therapeutics. Recently, four clusters of genes (cps) associated with surface polysaccharide production have been identified in Lactobacillus plantarum WCFS1, a probiotic and food-associated lactobacillus. These clusters are involved in cell surface architecture and probably in release and/or exposure of immunomodulating bacterial molecules. Here we show a transcriptional analysis of these clusters. Indeed, RT-PCR experiments revealed that the cps loci are organized in five operons. Moreover, by reverse transcription-qPCR analysis performed on L. plantarum WCFS1 (wild type) and WCFS1-2 (ΔccpA), we demonstrated that expression of three cps clusters is under the control of the global regulator CcpA. These results, together with the identification of putative CcpA target sequences (catabolite responsive element CRE) in the regulatory region of four out of five transcriptional units, strongly suggest for the first time a role of the master regulator CcpA in EPS gene transcription among lactobacilli.
Julien-Gau, Ingrid; Schmidt, Marion; Kurz, C Léopold
2014-02-01
Host defense mechanisms are multi-layered and involve constitutive as well as inducible components. The dissection of these complex processes can be greatly facilitated using a reporter gene strategy with a transparent animal. In this study, we use Caenorhabditis elegans as a model host and introduce a new pathogen-inducible fluorescent reporter involving the promoter of f57f4.4, a gene encoding a putative component of the glycocalyx. We show that this reporter construct does not respond to heavy metal or hypertonic environments, but is specifically and locally induced in the intestine upon Photorhabus luminescens and Pseudomonas aeruginosa infections. We further demonstrate that its upregulation requires live pathogens as well as elements of the nematode p38 MAP kinase and TGF-beta pathways. In addition to introducing a new tool for the study of the interactions between C. elegans and a pathogen, our results suggest a role for the glycocalyx in gut immunity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mobile units of DNA in phytoplasma genomes.
Dickinson, Matt
2010-09-01
Phytoplasmas are obligate symbionts of plants and insects that are responsible for significant yield losses in diverse crops. Genome sequencing has revealed that many phytoplasma genomes appear to contain repeated genes organized in units of approximately 20 kb. These 'potential mobile units' (PMUs) resemble composite replicative transposons. PMUs contain several genes for recombination and some also contain putative 'virulence genes'. Genome alignments suggest that PMUs are involved in phytoplasma genome instability and recombination. In this edition of Molecular Microbiology, Hogenhout and colleagues report that one PMU from the aster yellows phytoplasma strain Witches' Broom (AY-WB) can exist as both a linear PMU within the chromosome and as an extrachromosomal circular form. The copy number of the circular form is much higher in the insect vector compared with the plant, and expression levels of genes present on the PMU are also higher in the insect. These observations suggest not only that this PMU could be a mobile element, but that it could also be involved in a phase-variation mechanism that allows the phytoplasma to adapt to its different hosts.
Nakajima, S
2000-03-14
Pigeons were trained with the A+, AB-, ABC+, AD- and ADE+ task where each of stimulus A and stimulus compounds ABC and ADE signalled food (positive trials), and each of stimulus compounds AB and AD signalled no food (negative trials). Stimuli A, B, C and E were small visual figures localised on a response key, and stimulus D was a white noise. Stimulus B was more effective than D as an inhibitor of responding to A during the training. After the birds learned to respond exclusively on the positive trials, effects of B and D on responding to C and E, respectively, were tested by comparing C, BC, E and DE trials. Stimulus B continuously facilitated responding to C on the BC test trials, but D's facilitative effect was observed only on the first DE test trial. Stimulus B also facilitated responding to E on BE test trials. Implications for the Rescorla-Wagner elemental model and the Pearce configural model of Pavlovian conditioning were discussed.
Quas, Jodi A; Stolzenberg, Stacia N; Lyon, Thomas D
2018-02-01
This study examined the utility of two interview instructions designed to overcome children's reluctance to disclose transgressions: eliciting a promise from children to tell the truth and the putative confession (telling children that a suspect "told me everything that happened and wants you to tell the truth"). The key questions were whether the instructions increased disclosure in response to recall questions and in response to recognition questions that were less or more explicit about transgressions and whether instructions were differentially effective with age. A total sample of 217 4- to 9-year-old maltreated and comparable non-maltreated children and a stranger played with a set of toys. For half of the children within each group, two of the toys appeared to break while they were playing. The stranger admonished secrecy. Shortly thereafter, children were questioned about what happened in one of three interview conditions. Some children were asked to promise to tell the truth. Others were given the putative confession, and still others received no interview instructions. When coupled with recall questions, the promise was effective at increasing disclosures only among older children, whereas the putative confession was effective regardless of age. Across interview instruction conditions, recognition questions that did not suggest wrongdoing elicited few additional transgression disclosures, whereas recognition questions that explicitly mentioned wrongdoing elicited some true reports but also some false alarms. No differences in disclosure emerged between maltreated and non-maltreated children. Results highlight the potential benefits and limitations of different interviewing approaches when questioning reluctant children. Copyright © 2017 Elsevier Inc. All rights reserved.
Vaishnav, A; Kumari, S; Jain, S; Varma, A; Choudhary, D K
2015-08-01
Plant root-associated rhizobacteria elicit plant immunity referred to as induced systemic tolerance (IST) against multiple abiotic stresses. Among multibacterial determinants involved in IST, the induction of IST and promotion of growth by putative bacterial volatile compounds (VOCs) is reported in the present study. To characterize plant proteins induced by putative bacterial VOCs, proteomic analysis was performed by MALDI-MS/MS after exposure of soybean seedlings to a new strain of plant growth promoting rhizobacteria (PGPR) Pseudomonas simiae strain AU. Furthermore, expression analysis by Western blotting confirmed that the vegetative storage protein (VSP), gamma-glutamyl hydrolase (GGH) and RuBisCo large chain proteins were significantly up-regulated by the exposure to AU strain and played a major role in IST. VSP has preponderant roles in N accumulation and mobilization, acid phosphatase activity and Na(+) homeostasis to sustain plant growth under stress condition. More interestingly, plant exposure to the bacterial strain significantly reduced Na(+) and enhanced K(+) and P content in root of soybean seedlings under salt stress. In addition, high accumulation of proline and chlorophyll content also provided evidence of protection against osmotic stress during the elicitation of IST by bacterial exposure. The present study reported for the first time that Ps. simiae produces a putative volatile blend that can enhance soybean seedling growth and elicit IST against 100 mmol l(-1) NaCl stress condition. The identification of such differentially expressed proteins provide new targets for future studies that will allow assessment of their physiological roles and significance in the response of glycophytes to stresses. Further work should uncover more about the chemical side of VOC compounds and a detailed study about their molecular mechanism responsible for plant growth. © 2015 The Society for Applied Microbiology.
Biodegradation of the Organic Disulfide 4,4′-Dithiodibutyric Acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik
2015-01-01
Four Rhodococcus spp. exhibited the ability to use 4,4′-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). PMID:26407888
Fu, Shulin; Zhang, Minmin; Xu, Juan; Ou, Jiwen; Wang, Yan; Liu, Huazhen; Liu, Jinlin; Chen, Huanchun; Bei, Weicheng
2013-01-02
Haemophilus parasuis (H. parasuis), the causative agent of swine polyserositis, polyarthritis, and meningitis, is one of the most important bacterial diseases of pigs worldwide. Little vaccines currently exist that have a significant effect on infections with all pathogenic serovars of H. parasuis. H. parasuis putative outer membrane proteins (OMPs) are potentially essential components of more effective vaccines. Recently, the genomic sequence of H. parasuis serovar 5 strain SH0165 was completed in our laboratory, which allow us to target OMPs for the development of recombinant vaccines. In this study, we focused on 10 putative OMPs and all the putative OMPs were cloned, expressed and purified as HIS fusion proteins. Primary screening for immunoprotective potential was performed in mice challenged with an LD50 challenge. Out of these 10 OMPs three fusion proteins rGAPDH, rOapA, and rHPS-0675 were found to be protective in a mouse model of H. parasuis infection. We further evaluated the immune responses and protective efficacy of rGAPDH, rOapA, and rHPS-0675 in pig models. All three proteins elicited humoral antibody responses and conferred different levels of protection against challenge with a lethal dose of H. parasuis SH0165 in pig models. In addition, the antisera against the three individual proteins and the synergistic protein efficiently inhibited bacterial growth in a whole blood assay. The data demonstrated that the three proteins showed high value individually and the combination of rGAPDH, rOapA, and rHPS-0675 offered the best protection. Our results indicate that rGAPDH, rOapA, and rHPS-0675 induced protection against H. parasuis SH0165 infection, which may facilitate the development of a multi-component vaccine. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pahil, Sapna; Taneja, Neelam; Ansari, Hifzur Rahman; Raghava, G P S
2017-01-01
Shigellosis or bacillary dysentery is an important cause of diarrhea, with the majority of the cases occurring in developing countries. Considering the high disease burden, increasing antibiotic resistance, serotype-specific immunity and the post-infectious sequelae associated with shigellosis, there is a pressing need of an effective vaccine against multiple serotypes of the pathogen. In the present study, we used bio-informatics approach to identify antigens shared among multiple serotypes of Shigella spp. This approach led to the identification of many immunogenic peptides. The five most promising peptides based on MHC binding efficiency were a putative lipoprotein (EL PGI I), a putative heat shock protein (EL PGI II), Spa32 (EL PGI III), IcsB (EL PGI IV) and a hypothetical protein (EL PGI V). These peptides were synthesized and the immunogenicity was evaluated in BALB/c mice by ELISA and cytokine assays. The putative heat shock protein (HSP) and the hypothetical protein elicited good humoral response, whereas putative lipoprotein, Spa32 and IcsB elicited good T-cell response as revealed by increased IFN-γ and TNF-α cytokine levels. The patient sera from confirmed cases of shigellosis were also evaluated for the presence of peptide specific antibodies with significant IgG and IgA antibodies against the HSP and the hypothetical protein, bestowing them as potential future vaccine candidates. The antigens reported in this study are novel and have not been tested as vaccine candidates against Shigella. This study offers time and cost-effective way of identifying unprecedented immunogenic antigens to be used as potential vaccine candidates. Moreover, this approach should easily be extendable to find new potential vaccine candidates for other pathogenic bacteria.
Luchetti, Andrea; Mantovani, Barbara
2009-12-01
Studies on transposable elements in termites are of interest because their genome is in a permanent condition of inbreeding. In this situation, an increase in transposon copy number should be mainly due to a Muller's ratchet effect, with selection against deleterious insertions playing a major role. Short INterspersed Elements (SINEs) are non-autonomous retrotransposons, known to be stable components of eukaryotic genomes. The SINE Talua, first isolated from Reticulitermes lucifugus (Rhinotermitidae), is the only mobile element described so far in termites. In the present survey, Talua has been found widespread in the Isoptera order. In comparison with other non-termite SINEs, Talua diversity and distribution in the Reticulitermes genome demonstrate that Talua is an ancient component of termite genome and that it is significantly associated with other repeats. In particular, the element is found to be involved with microsatellite motifs either as their generator or because inserted in their nearby. Further, two new SINEs and a putative retrotranscriptase-like sequence were found linked to Talua. Talua's genomic distribution is discussed in the light of the available models on transposable element dynamics within inbred genomes, also taking into account SINE role as drivers of genetic diversity in counteracting inbreeding depression.
Alu-derived cis-element regulates tumorigenesis-dependent gastric expression of GASDERMIN B (GSDMB).
Komiyama, Hiromitsu; Aoki, Aya; Tanaka, Shigekazu; Maekawa, Hiroshi; Kato, Yoriko; Wada, Ryo; Maekawa, Takeo; Tamura, Masaru; Shiroishi, Toshihiko
2010-02-01
GASDERMIN B (GSDMB) belongs to the novel gene family GASDERMIN (GSDM). All GSDM family members are located in amplicons, genomic regions often amplified during cancer development. Given that GSDMB is highly expressed in cancerous cells and the locus resides in an amplicon, GSDMB may be involved in cancer development and/or progression. However, only limited information is available on GSDMB expression in tissues, normal and cancerous, from cancer patients. Furthermore, the molecular mechanisms that regulate GSDMB expression in gastric tissues are poorly understood. We investigated the spatiotemporal expression patterns of GSDMB in gastric cancer patients and the 5' regulatory sequences upstream of GSDMB. GSDMB was not expressed in the majority of normal gastric-tissue samples, and the expression level was very low in the few normal samples with GSDMB expression. Most pre-cancer samples showed moderate GSDMB expression, and most cancerous samples showed augmented GSDMB expression. Analysis of genome sequences revealed that an Alu element resides in the 5' region upstream of GSDMB. Reporter assays using intact, deleted, and mutated Alu elements clearly showed that this Alu element positively regulates GSDMB expression and that a putative IKZF binding motif in this element is crucial to upregulate GSDMB expression.
Endogenous avian leukosis viral loci in the Red Jungle Fowl genome assembly.
Benkel, Bernhard; Rutherford, Katherine
2014-12-01
The current build (galGal4) of the genome of the ancestor of the modern chicken, the Red Jungle Fowl, contains a single endogenous avian leukosis viral element (ALVE) on chromosome 1 (designated RSV-LTR; family ERVK). The assembly shows the ALVE provirus juxtaposed with a member of a second family of avian endogenous retroviruses (designated GGERV20; family ERVL); however, the status of the 3' end of the ALVE element as well as its flanking region remain unclear due to a gap in the reference genome sequence. In this study, we filled the gap in the assembly using a combination of long-range PCR (LR-PCR) and a short contig present in the unassembled portion of the reference genome database. Our results demonstrate that the ALVE element (ALVE-JFevB) is inserted into the putative envelope region of a GGERV20 element, roughly 1 kbp from its 3' end, and that ALVE-JFevB is complete, and depending on its expression status, potentially capable of directing the production of virus. Moreover, the unassembled portion of the genome database contains junction fragments for a second, previously characterized endogenous proviral element, ALVE-6. ©2014 Poultry Science Association Inc.
Phosphatidate Phosphatase Plays Role in Zinc-mediated Regulation of Phospholipid Synthesis in Yeast*
Soto-Cardalda, Aníbal; Fakas, Stylianos; Pascual, Florencia; Choi, Hyeon-Son; Carman, George M.
2012-01-01
In the yeast Saccharomyces cerevisiae, the synthesis of phospholipids is coordinately regulated by mechanisms that control the homeostasis of the essential mineral zinc (Carman, G.M., and Han, G. S. (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim. Biophys. Acta 1771, 322–330; Eide, D. J. (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569). The synthesis of phosphatidylcholine is balanced by the repression of CDP-diacylglycerol pathway enzymes and the induction of Kennedy pathway enzymes. PAH1-encoded phosphatidate phosphatase catalyzes the penultimate step in triacylglycerol synthesis, and the diacylglycerol generated in the reaction may also be used for phosphatidylcholine synthesis via the Kennedy pathway. In this work, we showed that the expression of PAH1-encoded phosphatidate phosphatase was induced by zinc deficiency through a mechanism that involved interaction of the Zap1p zinc-responsive transcription factor with putative upstream activating sequence zinc-responsive elements in the PAH1 promoter. The pah1Δ mutation resulted in the derepression of the CHO1-encoded phosphatidylserine synthase (CDP-diacylglycerol pathway enzyme) and loss of the zinc-mediated regulation of the enzyme. Loss of phosphatidate phosphatase also resulted in the derepression of the CKI1-encoded choline kinase (Kennedy pathway enzyme) but decreased the synthesis of phosphatidylcholine when cells were deficient of zinc. This result confirmed the role phosphatidate phosphatase plays in phosphatidylcholine synthesis via the Kennedy pathway. PMID:22128164
He, Chunmei; Yu, Zhenming; Teixeira da Silva, Jaime A.; Zhang, Jianxia; Liu, Xuncheng; Wang, Xiaojuan; Zhang, Xinhua; Zeng, Songjun; Wu, Kunlin; Tan, Jianwen; Ma, Guohua; Luo, Jianping; Duan, Jun
2017-01-01
GDP-mannose pyrophosphorylase (GMP) catalyzed the formation of GDP-mannose, which serves as a donor for the biosynthesis of mannose-containing polysaccharides. In this study, three GMP genes from Dendrobium officinale (i.e., DoGMPs) were cloned and analyzed. The putative 1000 bp upstream regulatory region of these DoGMPs was isolated and cis-elements were identified, which indicates their possible role in responses to abiotic stresses. The DoGMP1 protein was shown to be localized in the cytoplasm. To further study the function of the DoGMP1 gene, 35S:DoGMP1 transgenic A. thaliana plants with an enhanced expression level of DoGMP1 were generated. Transgenic plants were indistinguishable from wild-type (WT) plants in tissue culture or in soil. However, the mannose content of the extracted water-soluble polysaccharides increased 67%, 96% and 92% in transgenic lines #1, #2 and #3, respectively more than WT levels. Germination percentage of seeds from transgenic lines was higher than WT seeds and the growth of seedlings from transgenic lines was better than WT seedlings under salinity stress (150 mM NaCl). Our results provide genetic evidence for the involvement of GMP genes in the biosynthesis of mannose-containing polysaccharides and the mediation of GMP genes in the response to salt stress during seed germination and seedling growth. PMID:28176760
Otaki, Joji M; Ogasawara, Tsuyoshi; Yamamoto, Haruhiko
2005-06-01
Systemic injections of sodium tungstate, a protein-tyrosine phosphatase (PTPase) inhibitor, to pupae immediately after pupation have been shown to efficiently produce characteristic color-pattern modifications on the wings of many species of butterflies. Here we demonstrated that the tungstate-induced modification pattern was entirely different from other chemically-induced ones in a species of nymphalid butterfly Junonia (Precis) orithya. In this species, the systemic injections of tungstate produced characteristic expansion of black area and shrinkage of white area together with the move of parafocal elements toward the wing base. Overall, pattern boundaries became obscure. In contrast, an entirely different modification pattern, overall darkening of wings, was observed by the injections of stress-inducing chemicals, thapsigargin, ionomycin, or geldanamycin, to pupae under the rearing conditions for the adult summer form. On the ventral wings, this darkening was due to an increase of the proportion of peppered dark scales, which was reminiscent of the natural fall form of this species. Under the same rearing conditions, the injections of ecdysteroid, which is a well-known hormone being responsible for the seasonal polyphenism of nymphalid butterflies, yielded overall expansion of orange area especially around eyespots. Taken together, we conclude that the tungstate-induced modifications are clearly distinguishable from those of stress response and ecdysteroid effect. This conclusion then suggests that the putative PTPase signaling pathway that is sensitive to tungstate uniquely contributes to the wing-wide color-pattern development in butterflies.
AGCVIII Kinases: at the crossroads of cellular signaling
USDA-ARS?s Scientific Manuscript database
AGCVIII kinases regulate diverse developmental and cellular processes in plants. As putative mediators of secondary messengers, AGCVIII kinases potentially integrate developmental and environmental cues into specific cellular responses through substrate phosphorylation. Here we discuss the functiona...
Kim, K H; Hemenway, C
1997-05-26
The putative subgenomic RNA (sgRNA) promoter regions upstream of the potato virus X (PVX) triple block and coat protein (CP) genes contain sequences common to other potexviruses. The importance of these sequences to PVX sgRNA accumulation was determined by inoculation of Nicotiana tabacum NT1 cell suspension protoplasts with transcripts derived from wild-type and modified PVX cDNA clones. Analyses of RNA accumulation by S1 nuclease digestion and primer extension indicated that a conserved octanucleotide sequence element and the spacing between this element and the start-site for sgRNA synthesis are critical for accumulation of the two major sgRNA species. The impact of mutations on CP sgRNA levels was also reflected in the accumulation of CP. In contrast, genomic minus- and plus-strand RNA accumulation were not significantly affected by mutations in these regions. Studies involving inoculation of tobacco plants with the modified transcripts suggested that the conserved octanucleotide element functions in sgRNA accumulation and some other aspect of the infection process.
Cartault, François; Munier, Patrick; Benko, Edgar; Desguerre, Isabelle; Hanein, Sylvain; Boddaert, Nathalie; Bandiera, Simonetta; Vellayoudom, Jeanine; Krejbich-Trotot, Pascale; Bintner, Marc; Hoarau, Jean-Jacques; Girard, Muriel; Génin, Emmanuelle; de Lonlay, Pascale; Fourmaintraux, Alain; Naville, Magali; Rodriguez, Diana; Feingold, Josué; Renouil, Michel; Munnich, Arnold; Westhof, Eric; Fähling, Michael; Lyonnet, Stanislas; Henrion-Caude, Alexandra
2012-01-01
The human genome is densely populated with transposons and transposon-like repetitive elements. Although the impact of these transposons and elements on human genome evolution is recognized, the significance of subtle variations in their sequence remains mostly unexplored. Here we report homozygosity mapping of an infantile neurodegenerative disease locus in a genetic isolate. Complete DNA sequencing of the 400-kb linkage locus revealed a point mutation in a primate-specific retrotransposon that was transcribed as part of a unique noncoding RNA, which was expressed in the brain. In vitro knockdown of this RNA increased neuronal apoptosis, consistent with the inappropriate dosage of this RNA in vivo and with the phenotype. Moreover, structural analysis of the sequence revealed a small RNA-like hairpin that was consistent with the putative gain of a functional site when mutated. We show here that a mutation in a unique transposable element-containing RNA is associated with lethal encephalopathy, and we suggest that RNAs that harbor evolutionarily recent repetitive elements may play important roles in human brain development. PMID:22411793
History and update on host defense against vaginal candidiasis.
Fidel, Paul L
2007-01-01
Vulvovaginal candidiasis (VVC), caused by Candida albicans, remains a significant problem in women of childbearing age. While cell-mediated immunity is considered the predominant host defense mechanism against mucosal candidal infections, two decades of research from animal models and clinical studies have revealed a lack of a protective role for adaptive immunity against VVC caused by putative immunoregulatory mechanisms. Moreover, natural protective mechanisms and factors associated with susceptibility to infection have remained elusive. That is until recently, when through a live challenge model in humans, it was revealed that protection against vaginitis coincides with a non-inflammatory innate presence, whereas symptomatic infection correlates with a neutrophil infiltrate in the vaginal lumen and elevated fungal burden. Thus, instead of VVC being caused by a putative deficient adaptive immune response, it is now being considered that symptomatic vaginitis is caused by an aggressive innate response.
GATA-1 directly regulates Nanog in mouse embryonic stem cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wen-Zhong; Ai, Zhi-Ying; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A&F University, Yangling 712100
2015-09-25
Nanog safeguards pluripotency in mouse embryonic stem cells (mESCs). Insight into the regulation of Nanog is important for a better understanding of the molecular mechanisms that control pluripotency of mESCs. In a silico analysis, we identify four GATA-1 putative binding sites in Nanog proximal promoter. The Nanog promoter activity can be significantly repressed by ectopic expression of GATA-1 evidenced by a promoter reporter assay. Mutation studies reveal that one of the four putative binding sites counts for GATA-1 repressing Nanog promoter activity. Direct binding of GATA-1 on Nanog proximal promoter is confirmed by electrophoretic mobility shift assay and chromatin immunoprecipitation.more » Our data provide new insights into the expanded regulatory circuitry that coordinates Nanog expression. - Highlights: • The Nanog proximal promoter conceives functional element for GATA-1. • GATA-1 occupies the Nanog proximal promoter in vitro and in vivo. • GATA-1 transcriptionally suppresses Nanog.« less
Glucosensing capacity of rainbow trout telencephalon.
Otero-Rodiño, C; Rocha, A; Álvarez-Otero, R; Ceinos, R M; López-Patiño, M A; Míguez, J M; Cerdá-Reverter, J M; Soengas, J L
2018-03-01
To assess the hypothesis of glucosensing systems present in fish telencephalon, we first demonstrated in rainbow trout, by in situ hybridisation, the presence of glucokinase (GK). Then, we assessed the response of glucosensing markers in rainbow trout telencephalon 6 hours after i.c.v. treatment with glucose or 2-deoxyglucose (inducing glucoprivation). We evaluated the response of parameters related to the mechanisms dependent on GK, liver X receptor (LXR), mitochondrial activity, sweet taste receptor and sodium-glucose linked transporter 1 (SGLT-1). We also assessed mRNA abundance of neuropeptides involved in the metabolic control of food intake (agouti-related protein, neuropeptide Y, pro-opiomelanocortin, and cocaine- and amphetamine-related transcript), as well as the abundance and phosphorylation status of proteins possibly involved in linking glucosensing with neuropeptide expression, such as protein kinase B (AkT), AMP-activated protein kinase (AMPK), mechanistic target of rapamycin and cAMP response element-binding protein (CREB). The responses obtained support the presence in the telencephalon of a glucosensing mechanism based on GK and maybe one based on LXR, although they do not support the presence of mechanisms dependent on mitochondrial activity and SGLT-1. The mechanism based on sweet taste receptor responded to glucose but in a converse way to that characterised previously in the hypothalamus. In general, systems responded only to glucose but not to glucoprivation. Neuropeptides did not respond to glucose or glucoprivation. By contrast, the presence of glucose activates Akt and inhibits AMPK, CREB and forkhead box01. This is the first study in any vertebrate species in which the response to glucose of putative glucosensing mechanisms is demonstrated in the telencephalon. Their role might relate to processes other than homeostatic control of food intake, such as the hedonic and reward system. © 2018 British Society for Neuroendocrinology.
He, Guan-Hua; Xu, Ji-Yuan; Wang, Yan-Xia; Liu, Jia-Ming; Li, Pan-Song; Chen, Ming; Ma, You-Zhi; Xu, Zhao-Shi
2016-05-23
Drought stress is one of the major causes of crop loss. WRKY transcription factors, as one of the largest transcription factor families, play important roles in regulation of many plant processes, including drought stress response. However, far less information is available on drought-responsive WRKY genes in wheat (Triticum aestivum L.), one of the three staple food crops. Forty eight putative drought-induced WRKY genes were identified from a comparison between de novo transcriptome sequencing data of wheat without or with drought treatment. TaWRKY1 and TaWRKY33 from WRKY Groups III and II, respectively, were selected for further investigation. Subcellular localization assays revealed that TaWRKY1 and TaWRKY33 were localized in the nuclei in wheat mesophyll protoplasts. Various abiotic stress-related cis-acting elements were observed in the promoters of TaWRKY1 and TaWRKY33. Quantitative real-time PCR (qRT-PCR) analysis showed that TaWRKY1 was slightly up-regulated by high-temperature and abscisic acid (ABA), and down-regulated by low-temperature. TaWRKY33 was involved in high responses to high-temperature, low-temperature, ABA and jasmonic acid methylester (MeJA). Overexpression of TaWRKY1 and TaWRKY33 activated several stress-related downstream genes, increased germination rates, and promoted root growth in Arabidopsis under various stresses. TaWRKY33 transgenic Arabidopsis lines showed lower rates of water loss than TaWRKY1 transgenic Arabidopsis lines and wild type plants during dehydration. Most importantly, TaWRKY33 transgenic lines exhibited enhanced tolerance to heat stress. The functional roles highlight the importance of WRKYs in stress response.
Coba de la Peña, Teodoro; Cárcamo, Claudia B; Díaz, María I; Brokordt, Katherina B; Winkler, Federico M
2016-08-01
Ferritin is involved in several iron homoeostasis processes in molluscs. We characterized two ferritin homologues and their expression patterns in association with early development, growth rate and immune response in the scallop Argopecten purpuratus, a species of economic importance for Chile and Peru. Two ferritin subunits (Apfer1 and Apfer2) were cloned. Apfer1 cDNA is a 792bp clone containing a 516bp open reading frame (ORF) that corresponds to a novel ferritin subunit in A. purpuratus. Apfer2 cDNA is a 681bp clone containing a 522bp ORF that corresponds to a previously sequenced EST. A putative iron responsive element (IRE) was identified in the 5'-untranslated region of both genes. The deduced protein sequences of both cDNAs possessed the motifs and domains characteristic of functional ferritin subunits. Both genes showed differential expression patterns at tissue-specific and early development stage levels. Apfer1 expression level increased 40-fold along larval developmental stages, decreasing markedly after larval settlement. Apfer1 expression in mantle tissue was 2.8-fold higher in fast-growing than in slow-growing scallops. Apfer1 increased 8-fold in haemocytes 24h post-challenge with the bacterium Vibrio splendidus. Apfer2 expression did not differ between fast- and slow-growing scallops or in response to bacterial challenge. These results suggest that Apfer1 and Apfer2 may be involved in iron storage, larval development and shell formation. Apfer1 expression may additionally be involved in immune response against bacterial infections and also in growth; and thus would be a potential marker for immune capacity and for fast growth in A. purpuratus. Copyright © 2016 Elsevier Inc. All rights reserved.
Lata, Charu; Bhutty, Sarita; Bahadur, Ranjit Prasad; Majee, Manoj; Prasad, Manoj
2011-06-01
The DREB genes code for important plant transcription factors involved in the abiotic stress response and signal transduction. Characterization of DREB genes and development of functional markers for effective alleles is important for marker-assisted selection in foxtail millet. Here the characterization of a cDNA (SiDREB2) encoding a putative dehydration-responsive element-binding protein 2 from foxtail millet and the development of an allele-specific marker (ASM) for dehydration tolerance is reported. A cDNA clone (GenBank accession no. GT090998) coding for a putative DREB2 protein was isolated as a differentially expressed gene from a 6 h dehydration stress SSH library. A 5' RACE (rapid amplification of cDNA ends) was carried out to obtain the full-length cDNA, and sequence analysis showed that SiDREB2 encoded a polypeptide of 234 amino acids with a predicted mol. wt of 25.72 kDa and a theoretical pI of 5.14. A theoretical model of the tertiary structure shows that it has a highly conserved GCC-box-binding N-terminal domain, and an acidic C-terminus that acts as an activation domain for transcription. Based on its similarity to AP2 domains, SiDREB2 was classified into the A-2 subgroup of the DREB subfamily. Quantitative real-time PCR analysis showed significant up-regulation of SiDREB2 by dehydration (polyethylene glycol) and salinity (NaCl), while its expression was less affected by other stresses. A synonymous single nucleotide polymorphism (SNP) associated with dehydration tolerance was detected at the 558th base pair (an A/G transition) in the SiDREB2 gene in a core set of 45 foxtail millet accessions used. Based on the identified SNP, three primers were designed to develop an ASM for dehydration tolerance. The ASM produced a 261 bp fragment in all the tolerant accessions and produced no amplification in the sensitive accessions. The use of this ASM might be faster, cheaper, and more reproducible than other SNP genotyping methods, and thus will enable marker-aided breeding of foxtail millet for dehydration tolerance.
Structure and regulation of KGD1, the structural gene for yeast alpha-ketoglutarate dehydrogenase.
Repetto, B; Tzagoloff, A
1989-06-01
Nuclear respiratory-defective mutants of Saccharomyces cerevisiae have been screened for lesions in the mitochondrial alpha-ketoglutarate dehydrogenase complex. Strains assigned to complementation group G70 were ascertained to be deficient in enzyme activity due to mutations in the KGD1 gene coding for the alpha-ketoglutarate dehydrogenase component of the complex. The KGD1 gene has been cloned by transformation of a representative kgd1 mutant, C225/U1, with a recombinant plasmid library of wild-type yeast nuclear DNA. Transformants containing the gene on a multicopy plasmid had three- to four-times-higher alpha-ketoglutarate dehydrogenase activity than did wild-type S. cerevisiae. Substitution of the chromosomal copy of KGD1 with a disrupted allele (kgd1::URA3) induced a deficiency in alpha-ketoglutarate dehydrogenase. The sequence of the cloned region of DNA which complements kgd1 mutants was found to have an open reading frame of 3,042 nucleotides capable of coding for a protein of Mw 114,470. The encoded protein had 38% identical residues with the reported sequence of alpha-ketoglutarate dehydrogenase from Escherichia coli. Two lines of evidence indicated that transcription of KGD1 is catabolite repressed. Higher steady-state levels of KGD1 mRNA were detected in wild-type yeast grown on the nonrepressible sugar galactose than in yeast grown on high glucose. Regulation of KGD1 was also studied by fusing different 5'-flanking regions of KGD1 to the lacZ gene of E. coli and measuring the expression of beta-galactosidase in yeast. Transformants harboring a fusion of 693 nucleotides of the 5'-flanking sequence expressed 10 times more beta-galactosidase activity when grown under derepressed conditions. The response to the carbon source was reduced dramatically when the same lacZ fusion was present in a hap2 or hap3 mutant. The promoter element(s) responsible for the regulated expression of KGD1 has been mapped to the -354 to -143 region. This region contained several putative activation sites with sequences matching the core element proposed to be essential for binding of the HAP2 and HAP3 regulatory proteins.
Viswanathan, Pooja; Nieder, Andreas
2017-12-01
The concept of receptive field (RF) describes the responsiveness of neurons to sensory space. Neurons in the primate association cortices have long been known to be spatially selective but a detailed characterisation and direct comparison of RFs between frontal and parietal association cortices are missing. We sampled the RFs of a large number of neurons from two interconnected areas of the frontal and parietal lobes, the dorsolateral prefrontal cortex (dlPFC) and ventral intraparietal area (VIP), of rhesus monkeys by systematically presenting a moving bar during passive fixation. We found that more than half of neurons in both areas showed spatial selectivity. Single neurons in both areas could be assigned to five classes according to the spatial response patterns: few non-uniform RFs with multiple discrete response maxima could be dissociated from the vast majority of uniform RFs showing a single maximum; the latter were further classified into full-field and confined foveal, contralateral and ipsilateral RFs. Neurons in dlPFC showed a preference for the contralateral visual space and collectively encoded the contralateral visual hemi-field. In contrast, VIP neurons preferred central locations, predominantly covering the foveal visual space. Putative pyramidal cells with broad-spiking waveforms in PFC had smaller RFs than putative interneurons showing narrow-spiking waveforms, but distributed similarly across the visual field. In VIP, however, both putative pyramidal cells and interneurons had similar RFs at similar eccentricities. We provide a first, thorough characterisation of visual RFs in two reciprocally connected areas of a fronto-parietal cortical network. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Fournier, René; Afzal-Hussain, Sabeen
2013-02-01
We report the results of density functional theory for 39 clusters AxBy (x + y = 10 or 12) where A and B are metals from group 1, 2, 11, 12, 13, or 14 of the periodic table. The chemical compositions were chosen to satisfy an electronic shell closing criterion. We performed an unbiased search for the global minimum (GM) by taboo search in descriptor space in each case. Eight of the 39 putative GM are cages even though none of the clusters contains gold, a metal with a well known propensity to form cages. These cages are large enough to accommodate a dopant atom with an atomic radius varying between 0.7 Å and 1.2 Å. The chemical compositions most likely to produce cages have an element of group 11 alloyed with an element of group 2, 12, or 13.
Genetic dissection of the α-globin super-enhancer in vivo
Hay, Deborah; Hughes, Jim R.; Rode, Christina; Li, Pik-Shan; Pennacchio, Len A.; Sloane-Stanley, Jacqueline A.; Ayyub, Helena; Butler, Sue; Sauka-Spengler, Tatjana; Gibbons, Richard J.; Smith, Andrew J.H.; Wood, William G.; Higgs, Douglas R.
2016-01-01
Many genes determining cell identity are regulated by clusters of mediator-bound enhancer elements collectively referred to as super-enhancers. These have been proposed to manifest higher-order properties important in development and disease. Here, we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer singly and in informative combinations, we demonstrate that each constituent enhancer appears to act independently and in an additive fashion with respect to hematologic phenotype, gene expression, chromatin structure and chromosome conformation, without clear evidence of synergistic or higher-order effects. Our study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation. PMID:27376235
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Moradi Marjaneh, Mahdi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; Dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-Chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-04-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER(+) or ER(-)) and human ERBB2 (HER2(+) or HER2(-)) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER(-) tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression.
Dunning, Alison M; Michailidou, Kyriaki; Kuchenbaecker, Karoline B; Thompson, Deborah; French, Juliet D; Beesley, Jonathan; Healey, Catherine S; Kar, Siddhartha; Pooley, Karen A; Lopez-Knowles, Elena; Dicks, Ed; Barrowdale, Daniel; Sinnott-Armstrong, Nicholas A; Sallari, Richard C; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; Marjaneh, Mahdi Moradi; Lee, Jason S; Hills, Margaret; Jarosz, Monika; Drury, Suzie; Canisius, Sander; Bolla, Manjeet K; Dennis, Joe; Wang, Qin; Hopper, John L; Southey, Melissa C; Broeks, Annegien; Schmidt, Marjanka K; Lophatananon, Artitaya; Muir, Kenneth; Beckmann, Matthias W; Fasching, Peter A; dos-Santos-Silva, Isabel; Peto, Julian; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Flyger, Henrik; González-Neira, Anna; Perez, Jose I A; Anton-Culver, Hoda; Eunjung, Lee; Arndt, Volker; Brenner, Hermann; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Hamann, Ute; Aittomäki, Kristiina; Blomqvist, Carl; Ito, Hidemi; Matsuo, Keitaro; Bogdanova, Natasha; Dörk, Thilo; Lindblom, Annika; Margolin, Sara; Kosma, Veli-Matti; Mannermaa, Arto; Tseng, Chiu-chen; Wu, Anna H; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Peterlongo, Paolo; Radice, Paolo; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Goldberg, Mark S; Teo, Soo H; Yip, Cheng Har; Nord, Silje; Borresen-Dale, Anne-Lise; Kristensen, Vessela; Long, Jirong; Zheng, Wei; Pylkäs, Katri; Winqvist, Robert; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; Figueroa, Jonine; Sherman, Mark E; Czene, Kamila; Darabi, Hatef; Hollestelle, Antoinette; van den Ouweland, Ans M W; Humphreys, Keith; Gao, Yu-Tang; Shu, Xiao-Ou; Cox, Angela; Cross, Simon S; Blot, William; Cai, Qiuyin; Ghoussaini, Maya; Perkins, Barbara J; Shah, Mitul; Choi, Ji-Yeob; Kang, Daehee; Lee, Soo Chin; Hartman, Mikael; Kabisch, Maria; Torres, Diana; Jakubowska, Anna; Lubinski, Jan; Brennan, Paul; Sangrajrang, Suleeporn; Ambrosone, Christine B; Toland, Amanda E; Shen, Chen-Yang; Wu, Pei-Ei; Orr, Nick; Swerdlow, Anthony; McGuffog, Lesley; Healey, Sue; Lee, Andrew; Kapuscinski, Miroslav; John, Esther M; Terry, Mary Beth; Daly, Mary B; Goldgar, David E; Buys, Saundra S; Janavicius, Ramunas; Tihomirova, Laima; Tung, Nadine; Dorfling, Cecilia M; van Rensburg, Elizabeth J; Neuhausen, Susan L; Ejlertsen, Bent; Hansen, Thomas V O; Osorio, Ana; Benitez, Javier; Rando, Rachel; Weitzel, Jeffrey N; Bonanni, Bernardo; Peissel, Bernard; Manoukian, Siranoush; Papi, Laura; Ottini, Laura; Konstantopoulou, Irene; Apostolou, Paraskevi; Garber, Judy; Rashid, Muhammad Usman; Frost, Debra; Izatt, Louise; Ellis, Steve; Godwin, Andrew K; Arnold, Norbert; Niederacher, Dieter; Rhiem, Kerstin; Bogdanova-Markov, Nadja; Sagne, Charlotte; Stoppa-Lyonnet, Dominique; Damiola, Francesca; Sinilnikova, Olga M; Mazoyer, Sylvie; Isaacs, Claudine; Claes, Kathleen B M; De Leeneer, Kim; de la Hoya, Miguel; Caldes, Trinidad; Nevanlinna, Heli; Khan, Sofia; Mensenkamp, Arjen R; Hooning, Maartje J; Rookus, Matti A; Kwong, Ava; Olah, Edith; Diez, Orland; Brunet, Joan; Pujana, Miquel Angel; Gronwald, Jacek; Huzarski, Tomasz; Barkardottir, Rosa B; Laframboise, Rachel; Soucy, Penny; Montagna, Marco; Agata, Simona; Teixeira, Manuel R; Park, Sue Kyung; Lindor, Noralane; Couch, Fergus J; Tischkowitz, Marc; Foretova, Lenka; Vijai, Joseph; Offit, Kenneth; Singer, Christian F; Rappaport, Christine; Phelan, Catherine M; Greene, Mark H; Mai, Phuong L; Rennert, Gad; Imyanitov, Evgeny N; Hulick, Peter J; Phillips, Kelly-Anne; Piedmonte, Marion; Mulligan, Anna Marie; Glendon, Gord; Bojesen, Anders; Thomassen, Mads; Caligo, Maria A; Yoon, Sook-Yee; Friedman, Eitan; Laitman, Yael; Borg, Ake; von Wachenfeldt, Anna; Ehrencrona, Hans; Rantala, Johanna; Olopade, Olufunmilayo I; Ganz, Patricia A; Nussbaum, Robert L; Gayther, Simon A; Nathanson, Katherine L; Domchek, Susan M; Arun, Banu K; Mitchell, Gillian; Karlan, Beth Y; Lester, Jenny; Maskarinec, Gertraud; Woolcott, Christy; Scott, Christopher; Stone, Jennifer; Apicella, Carmel; Tamimi, Rulla; Luben, Robert; Khaw, Kay-Tee; Helland, Åslaug; Haakensen, Vilde; Dowsett, Mitch; Pharoah, Paul D P; Simard, Jacques; Hall, Per; García-Closas, Montserrat; Vachon, Celine; Chenevix-Trench, Georgia; Antoniou, Antonis C; Easton, Douglas F; Edwards, Stacey L
2016-01-01
We analyzed 3,872 common genetic variants across the ESR1 locus (encoding estrogen receptor α) in 118,816 subjects from three international consortia. We found evidence for at least five independent causal variants, each associated with different phenotype sets, including estrogen receptor (ER+ or ER−) and human ERBB2 (HER2+ or HER2−) tumor subtypes, mammographic density and tumor grade. The best candidate causal variants for ER− tumors lie in four separate enhancer elements, and their risk alleles reduce expression of ESR1, RMND1 and CCDC170, whereas the risk alleles of the strongest candidates for the remaining independent causal variant disrupt a silencer element and putatively increase ESR1 and RMND1 expression. PMID:26928228
Gupta, Radha; Bhatty, Minny; Swiatlo, Edwin; Nanduri, Bindu
2013-01-01
Iron is a critical cofactor for many enzymes and is known to regulate gene expression in many bacterial pathogens. Streptococcus pneumoniae normally inhabits the upper respiratory mucosa but can also invade and replicate in lungs and blood. These anatomic sites vary considerably in both the quantity and form of available iron. The genome of serotype 4 pneumococcal strain TIGR4 encodes a putative iron-dependent transcriptional regulator (IDTR). A mutant deleted at idtr (Δidtr) exhibited growth kinetics similar to parent strain TIGR4 in vitro and in mouse blood for up to 48 hours following infection. However, Δidtr was significantly attenuated in a murine model of sepsis. IDTR down-regulates the expression of ten characterized and putative virulence genes in nasopharyngeal colonization and pneumonia. The host cytokine response was significantly suppressed in sepsis with Δidtr. Since an exaggerated inflammatory response is associated with a poor prognosis in sepsis, the decreased inflammatory response could explain the increased survival with Δidtr. Our results suggest that IDTR, which is dispensable for pneumococcal growth in vitro, is associated with regulation of pneumococcal virulence in specific host environments. Additionally, IDTR ultimately modulates the host cytokine response and systemic inflammation that contributes to morbidity and mortality of invasive pneumococcal disease. PMID:23437050
Deficient cortical face-sensitive N170 responses and basic visual processing in schizophrenia.
Maher, S; Mashhoon, Y; Ekstrom, T; Lukas, S; Chen, Y
2016-01-01
Face detection, an ability to identify a visual stimulus as a face, is impaired in patients with schizophrenia. It is unclear whether impaired face processing in this psychiatric disorder results from face-specific domains or stems from more basic visual domains. In this study, we examined cortical face-sensitive N170 response in schizophrenia, taking into account deficient basic visual contrast processing. We equalized visual contrast signals among patients (n=20) and controls (n=20) and between face and tree images, based on their individual perceptual capacities (determined using psychophysical methods). We measured N170, a putative temporal marker of face processing, during face detection and tree detection. In controls, N170 amplitudes were significantly greater for faces than trees across all three visual contrast levels tested (perceptual threshold, two times perceptual threshold and 100%). In patients, however, N170 amplitudes did not differ between faces and trees, indicating diminished face selectivity (indexed by the differential responses to face vs. tree). These results indicate a lack of face-selectivity in temporal responses of brain machinery putatively responsible for face processing in schizophrenia. This neuroimaging finding suggests that face-specific processing is compromised in this psychiatric disorder. Copyright © 2015 Elsevier B.V. All rights reserved.
Yoshiyama, Kaoru; Conklin, Phillip A.; Huefner, Neil D.; Britt, Anne B.
2009-01-01
The Arabidopsis sog1-1 (suppressor of gamma response) mutant was originally isolated as a second-site suppressor of the radiosensitive phenotype of seeds defective in the repair endonuclease XPF. Here, we report that SOG1 encodes a putative transcription factor. This gene is a member of the NAC domain [petunia NAM (no apical meristem) and Arabidopsis ATAF1, 2 and CUC2] family (a family of proteins unique to land plants). Hundreds of genes are normally up-regulated in Arabidopsis within an hour of treatment with ionizing radiation; the induction of these genes requires the damage response protein kinase ATM, but not the related kinase ATR. Here, we find that SOG1 is also required for this transcriptional up-regulation. In contrast, the SOG1-dependent checkpoint response observed in xpf mutant seeds requires ATR, but does not require ATM. Thus, phenotype of the sog1-1 mutant mimics aspects of the phenotypes of both atr and atm mutants in Arabidopsis, suggesting that SOG1 participates in pathways governed by both of these sensor kinases. We propose that, in plants, signals related to genomic stress are processed through a single, central transcription factor, SOG1. PMID:19549833
Lohbeck, Kai T.; Riebesell, Ulf; Reusch, Thorsten B. H.
2014-01-01
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. PMID:24827439
Picossi, Silvia; Flores, Enrique; Herrero, Antonia
2015-09-01
Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Chemical studies of H chondrites. 4: New data and comparison of Antarctic suites
NASA Astrophysics Data System (ADS)
Wolf, Stephen F.; Lipschutz, Michael E.
1995-02-01
We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Ti, and In (ordered by putative volatility during nebular condensation and accretion) determined by neutron activation analysis in 13 H5 chondrites from Victoria Land and 20 H4-6 chondrites from Queen Maud Land, Antarctica. These and earlier results provide Antarctic sample suites of 34 chondrites from Victoria Land and 25 from Queen Maud Land. Treatment of data for the most volatile 10 elements (Rb to In) in these studies by multivariate statistical techniques more robust, as well as more conservative, than conventional linear discriminant analysis and logistic regression demonstrates that compositions differ at marginally significant levels. This difference cannot be explained by trivial (terrestrial) causes and becomes more significant, despite the smaller size of the database, when comparisons are limited to data from a single analyst and when all upper limits are eliminated from consideration. The Victoria Land and Queen Maud Land suites have different mean terrestrial ages (approximately 300 kyr and approximately 100 kyr, respectively) and age distributions, suggesting that a time-dependent variation of chondritic sources with different thermal histories is responsible. As a result, these two Antarctic suites are, on average, chemically distinguishable from each other. Since H chondrites serve as a paradigm for other meteorite classes, these results indicate that the near-Earth populations of planetary materials varied with time on the 105-year timescale.
Chemical studies of H chondrites. 4: New data and comparison of Antarctic suites
NASA Technical Reports Server (NTRS)
Wolf, Stephen F.; Lipschutz, Michael E.
1995-01-01
We report data for the trace elements Au, Co, Sb, Ga, Rb, Ag, Se, Cs, Te, Zn, Cd, Bi, Ti, and In (ordered by putative volatility during nebular condensation and accretion) determined by neutron activation analysis in 13 H5 chondrites from Victoria Land and 20 H4-6 chondrites from Queen Maud Land, Antarctica. These and earlier results provide Antarctic sample suites of 34 chondrites from Victoria Land and 25 from Queen Maud Land. Treatment of data for the most volatile 10 elements (Rb to In) in these studies by multivariate statistical techniques more robust, as well as more conservative, than conventional linear discriminant analysis and logistic regression demonstrates that compositions differ at marginally significant levels. This difference cannot be explained by trivial (terrestrial) causes and becomes more significant, despite the smaller size of the database, when comparisons are limited to data from a single analyst and when all upper limits are eliminated from consideration. The Victoria Land and Queen Maud Land suites have different mean terrestrial ages (approximately 300 kyr and approximately 100 kyr, respectively) and age distributions, suggesting that a time-dependent variation of chondritic sources with different thermal histories is responsible. As a result, these two Antarctic suites are, on average, chemically distinguishable from each other. Since H chondrites serve as a paradigm for other meteorite classes, these results indicate that the near-Earth populations of planetary materials varied with time on the 10(exp 5)-year timescale.
Traffic pollution exposure is associated with altered brain connectivity in school children.
Pujol, Jesus; Martínez-Vilavella, Gerard; Macià, Dídac; Fenoll, Raquel; Alvarez-Pedrerol, Mar; Rivas, Ioar; Forns, Joan; Blanco-Hinojo, Laura; Capellades, Jaume; Querol, Xavier; Deus, Joan; Sunyer, Jordi
2016-04-01
Children are more vulnerable to the effects of environmental elements due to their active developmental processes. Exposure to urban air pollution has been associated with poorer cognitive performance, which is thought to be a result of direct interference with brain maturation. We aimed to assess the extent of such potential effects of urban pollution on child brain maturation using general indicators of vehicle exhaust measured in the school environment and a comprehensive imaging evaluation. A group of 263 children, aged 8 to 12 years, underwent MRI to quantify regional brain volumes, tissue composition, myelination, cortical thickness, neural tract architecture, membrane metabolites, functional connectivity in major neural networks and activation/deactivation dynamics during a sensory task. A combined measurement of elemental carbon and NO2 was used as a putative marker of vehicle exhaust. Air pollution exposure was associated with brain changes of a functional nature, with no evident effect on brain anatomy, structure or membrane metabolites. Specifically, a higher content of pollutants was associated with lower functional integration and segregation in key brain networks relevant to both inner mental processes (the default mode network) and stimulus-driven mental operations. Age and performance (motor response speed) both showed the opposite effect to that of pollution, thus indicating that higher exposure is associated with slower brain maturation. In conclusion, urban air pollution appears to adversely affect brain maturation in a critical age with changes specifically concerning the functional domain. Copyright © 2016 Elsevier Inc. All rights reserved.
Long-term neuroendocrine and behavioural effects of a single exposure to stress in adult animals.
Armario, Antonio; Escorihuela, Rosa M; Nadal, Roser
2008-08-01
There is now considerable evidence for long-lasting sequels of stress. A single exposure to high intensity predominantly emotional stressors such as immobilisation in wooden-boards (IMO) induces long-term (days to weeks) desensitization of the hypothalamic-pituitary-adrenal (HPA) response to the same (homotypic) stressor, whereas the response to novel (heterotypic) stressors was enhanced. In addition, long-lasting changes in behaviour have been described after a single exposure to brief or more prolonged sessions of shocks, predator, predator odour, underwater stress or a combination of three stressors on 1 day. The most consistent changes are reduced entries into the open arms of the elevated plus-maze and enhanced acoustic startle response, both reflecting enhanced anxiety. However, it is unclear whether there is any relationship between the intensity of the stressors, as evaluated by the main physiological indexes of stress (e.g. HPA axis), the putative traumatic experience they represent and their long-term behavioural consequences. This is particularly critical when trying to model post-traumatic stress disorders (PTSD), which demands a great effort to validate such putative models.
Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis
Barnett, James P.; Millard, Andrew; Ksibe, Amira Z.; Scanlan, David J.; Schmid, Ralf; Blindauer, Claudia Andrea
2012-01-01
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs). PMID:22514551
Complete Genomic Structure of the Bloom-forming Toxic Cyanobacterium Microcystis aeruginosa NIES-843
Kaneko, Takakazu; Nakajima, Nobuyoshi; Okamoto, Shinobu; Suzuki, Iwane; Tanabe, Yuuhiko; Tamaoki, Masanori; Nakamura, Yasukazu; Kasai, Fumie; Watanabe, Akiko; Kawashima, Kumiko; Kishida, Yoshie; Ono, Akiko; Shimizu, Yoshimi; Takahashi, Chika; Minami, Chiharu; Fujishiro, Tsunakazu; Kohara, Mitsuyo; Katoh, Midori; Nakazaki, Naomi; Nakayama, Shinobu; Yamada, Manabu; Tabata, Satoshi; Watanabe, Makoto M.
2007-01-01
Abstract The nucleotide sequence of the complete genome of a cyanobacterium, Microcystis aeruginosa NIES-843, was determined. The genome of M. aeruginosa is a single, circular chromosome of 5 842 795 base pairs (bp) in length, with an average GC content of 42.3%. The chromosome comprises 6312 putative protein-encoding genes, two sets of rRNA genes, 42 tRNA genes representing 41 tRNA species, and genes for tmRNA, the B subunit of RNase P, SRP RNA, and 6Sa RNA. Forty-five percent of the putative protein-encoding sequences showed sequence similarity to genes of known function, 32% were similar to hypothetical genes, and the remaining 23% had no apparent similarity to reported genes. A total of 688 kb of the genome, equivalent to 11.8% of the entire genome, were composed of both insertion sequences and miniature inverted-repeat transposable elements. This is indicative of a plasticity of the M. aeruginosa genome, through a mechanism that involves homologous recombination mediated by repetitive DNA elements. In addition to known gene clusters related to the synthesis of microcystin and cyanopeptolin, novel gene clusters that may be involved in the synthesis and modification of toxic small polypeptides were identified. Compared with other cyanobacteria, a relatively small number of genes for two component systems and a large number of genes for restriction-modification systems were notable characteristics of the M. aeruginosa genome. PMID:18192279
Tumour suppressor protein p53 regulates the stress activated bilirubin oxidase cytochrome P450 2A6
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Hao, E-mail: hao.hu1@uqconnect.edu.au; Yu, Ting, E-mail: t.yu2@uq.edu.au; Arpiainen, Satu, E-mail: Satu.Juhila@orion.fi
2015-11-15
Human cytochrome P450 (CYP) 2A6 enzyme has been proposed to play a role in cellular defence against chemical-induced oxidative stress. The encoding gene is regulated by various stress activated transcription factors. This paper demonstrates that p53 is a novel transcriptional regulator of the gene. Sequence analysis of the CYP2A6 promoter revealed six putative p53 binding sites in a 3 kb proximate promoter region. The site closest to transcription start site (TSS) is highly homologous with the p53 consensus sequence. Transfection with various stepwise deletions of CYP2A6-5′-Luc constructs – down to − 160 bp from the TSS – showed p53 responsivenessmore » in p53 overexpressed C3A cells. However, a further deletion from − 160 to − 74 bp, including the putative p53 binding site, totally abolished the p53 responsiveness. Electrophoretic mobility shift assay with a probe containing the putative binding site showed specific binding of p53. A point mutation at the binding site abolished both the binding and responsiveness of the recombinant gene to p53. Up-regulation of the endogenous p53 with benzo[α]pyrene – a well-known p53 activator – increased the expression of the p53 responsive positive control and the CYP2A6-5′-Luc construct containing the intact p53 binding site but not the mutated CYP2A6-5′-Luc construct. Finally, inducibility of the native CYP2A6 gene by benzo[α]pyrene was demonstrated by dose-dependent increases in CYP2A6 mRNA and protein levels along with increased p53 levels in the nucleus. Collectively, the results indicate that p53 protein is a regulator of the CYP2A6 gene in C3A cells and further support the putative cytoprotective role of CYP2A6. - Highlights: • CYP2A6 is an immediate target gene of p53. • Six putative p53REs located on 3 kb proximate CYP2A6 promoter region. • The region − 160 bp from TSS is highly homologous with the p53 consensus sequence. • P53 specifically bind to the p53RE on the − 160 bp region. • HNF4α may interact with p53 in regulating CYP2A6 expression.« less
PSD-95 is required to sustain the molecular organization of the postsynaptic density
Chen, Xiaobing; Nelson, Christopher D; Li, Xiang; Winters, Christine A.; Azzam, Rita; Sousa, Alioscka A.; Leapman, Richard D.; Gainer, Harold; Sheng, Morgan; Reese, Thomas S.
2011-01-01
PSD-95, a membrane-associated guanylate kinase (MAGUK), is the major scaffolding protein in the excitatory postsynaptic density (PSD) and a potent regulator of synaptic strength. Here we show that PSD-95 is in an extended configuration and positioned into regular arrays of vertical filaments that contact both glutamate receptors and orthogonal horizontal elements layered deep inside the PSD in rat hippocampal spine synapses. RNAi knockdown of PSD-95 leads to loss of entire patches of PSD material, and EM tomography shows that the patchy loss correlates with loss of PSD-95-containing vertical filaments, horizontal elements associated with the vertical filaments, and putative AMPA, but not NMDA receptor type structures. These observations show that the orthogonal molecular scaffold constructed from PSD-95-containing vertical filaments and their associated horizontal elements is essential for sustaining the three dimensional molecular organization of the PSD. Our findings provide a structural basis for understanding the functional role of PSD-95 at the PSD. PMID:21525273
Cytokine-induced killer cells eradicate bone and soft-tissue sarcomas.
Sangiolo, Dario; Mesiano, Giulia; Gammaitoni, Loretta; Leuci, Valeria; Todorovic, Maja; Giraudo, Lidia; Cammarata, Cristina; Dell'Aglio, Carmine; D'Ambrosio, Lorenzo; Pisacane, Alberto; Sarotto, Ivana; Miano, Sara; Ferrero, Ivana; Carnevale-Schianca, Fabrizio; Pignochino, Ymera; Sassi, Francesco; Bertotti, Andrea; Piacibello, Wanda; Fagioli, Franca; Aglietta, Massimo; Grignani, Giovanni
2014-01-01
Unresectable metastatic bone sarcoma and soft-tissue sarcomas (STS) are incurable due to the inability to eradicate chemoresistant cancer stem-like cells (sCSC) that are likely responsible for relapses and drug resistance. In this study, we investigated the preclinical activity of patient-derived cytokine-induced killer (CIK) cells against autologous bone sarcoma and STS, including against putative sCSCs. Tumor killing was evaluated both in vitro and within an immunodeficient mouse model of autologous sarcoma. To identify putative sCSCs, autologous bone sarcoma and STS cells were engineered with a CSC detector vector encoding eGFP under the control of the human promoter for OCT4, a stem cell gene activated in putative sCSCs. Using CIK cells expanded from 21 patients, we found that CIK cells efficiently killed allogeneic and autologous sarcoma cells in vitro. Intravenous infusion of CIK cells delayed autologous tumor growth in immunodeficient mice. Further in vivo analyses established that CIK cells could infiltrate tumors and that tumor growth inhibition occurred without an enrichment of sCSCs relative to control-treated animals. These results provide preclinical proof-of-concept for an effective strategy to attack autologous sarcomas, including putative sCSCs, supporting the clinical development of CIK cells as a novel class of immunotherapy for use in settings of untreatable metastatic disease.
Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica; ...
2016-04-28
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. Furthermore, it points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbaglia, Allison M.; Tamot, Banita; Greve, Veronica
Global climate changes inversely affect our ability to grow the food required for an increasing world population. To combat future crop loss due to abiotic stress, we need to understand the signals responsible for changes in plant development and the resulting adaptations, especially the signaling molecules traveling long-distance through the plant phloem. Using a proteomics approach, we had identified several putative lipid-binding proteins in the phloem exudates. Simultaneously, we identified several complex lipids as well as jasmonates. These findings prompted us to propose that phloem (phospho-) lipids could act as long-distance developmental signals in response to abiotic stress, and thatmore » they are released, sensed, and moved by phloem lipid-binding proteins (Benning et al., 2012). Indeed, the proteins we identified include lipases that could release a signaling lipid into the phloem, putative receptor components, and proteins that could mediate lipid-movement. To test this possible protein-based lipid-signaling pathway, three of the proteins, which could potentially act in a relay, are characterized here: (I) a putative GDSL-motif lipase (II) a PIG-P-like protein, with a possible receptor-like function; (III) and PLAFP (phloem lipid-associated family protein), a predicted lipid-binding protein of unknown function. Here we show that all three proteins bind lipids, in particular phosphatidic acid (PtdOH), which is known to participate in intracellular stress signaling. Genes encoding these proteins are expressed in the vasculature, a prerequisite for phloem transport. Cellular localization studies show that the proteins are not retained in the endoplasmic reticulum but surround the cell in a spotted pattern that has been previously observed with receptors and plasmodesmatal proteins. Abiotic signals that induce the production of PtdOH also regulate the expression of GDSL-lipase and PLAFP, albeit in opposite patterns. Our findings suggest that while all three proteins are indeed lipid-binding and act in the vasculature possibly in a function related to long-distance signaling, the three proteins do not act in the same but rather in distinct pathways. Furthermore, it points toward PLAFP as a prime candidate to investigate long-distance lipid signaling in the plant drought response.« less
The clc Element of Pseudomonas sp. Strain B13, a Genomic Island with Various Catabolic Properties
Gaillard, Muriel; Vallaeys, Tatiana; Vorhölter, Frank Jörg; Minoia, Marco; Werlen, Christoph; Sentchilo, Vladimir; Pühler, Alfred; van der Meer, Jan Roelof
2006-01-01
Pseudomonas sp. strain B13 is a bacterium known to degrade chloroaromatic compounds. The properties to use 3- and 4-chlorocatechol are determined by a self-transferable DNA element, the clc element, which normally resides at two locations in the cell's chromosome. Here we report the complete nucleotide sequence of the clc element, demonstrating the unique catabolic properties while showing its relatedness to genomic islands and integrative and conjugative elements rather than to other known catabolic plasmids. As far as catabolic functions, the clc element harbored, in addition to the genes for chlorocatechol degradation, a complete functional operon for 2-aminophenol degradation and genes for a putative aromatic compound transport protein and for a multicomponent aromatic ring dioxygenase similar to anthranilate hydroxylase. The genes for catabolic functions were inducible under various conditions, suggesting a network of catabolic pathway induction. For about half of the open reading frames (ORFs) on the clc element, no clear functional prediction could be given, although some indications were found for functions that were similar to plasmid conjugation. The region in which these ORFs were situated displayed a high overall conservation of nucleotide sequence and gene order to genomic regions in other recently completed bacterial genomes or to other genomic islands. Most notably, except for two discrete regions, the clc element was almost 100% identical over the whole length to a chromosomal region in Burkholderia xenovorans LB400. This indicates the dynamic evolution of this type of element and the continued transition between elements with a more pathogenic character and those with catabolic properties. PMID:16484212
Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters.
Yamaguchi-Shinozaki, Kazuko; Shinozaki, Kazuo
2005-02-01
cis-Acting regulatory elements are important molecular switches involved in the transcriptional regulation of a dynamic network of gene activities controlling various biological processes, including abiotic stress responses, hormone responses and developmental processes. In particular, understanding regulatory gene networks in stress response cascades depends on successful functional analyses of cis-acting elements. The ever-improving accuracy of transcriptome expression profiling has led to the identification of various combinations of cis-acting elements in the promoter regions of stress-inducible genes involved in stress and hormone responses. Here we discuss major cis-acting elements, such as the ABA-responsive element (ABRE) and the dehydration-responsive element/C-repeat (DRE/CRT), that are a vital part of ABA-dependent and ABA-independent gene expression in osmotic and cold stress responses.
Enticott, Peter G.; Kennedy, Hayley A.; Rinehart, Nicole J.; Bradshaw, John L.; Tonge, Bruce J.; Daskalakis, Zafiris J.; Fitzgerald, Paul B.
2013-01-01
The mirror neuron hypothesis of autism is highly controversial, in part because there are conflicting reports as to whether putative indices of mirror system activity are actually deficient in autism spectrum disorder (ASD). Recent evidence suggests that a typical putative mirror system response may be seen in people with an ASD when there is a degree of social relevance to the visual stimuli used to elicit that response. Individuals with ASD (n = 32) and matched neurotypical controls (n = 32) completed a transcranial magnetic stimulation (TMS) experiment in which the left primary motor cortex (M1) was stimulated during the observation of static hands, individual (i.e., one person) hand actions, and interactive (i.e., two person) hand actions. Motor-evoked potentials (MEP) were recorded from the contralateral first dorsal interosseous, and used to generate an index of interpersonal motor resonance (IMR; a putative measure of mirror system activity) during action observation. There was no difference between ASD and NT groups in the level of IMR during the observation of these actions. These findings provide evidence against a global mirror system deficit in ASD, and this evidence appears to extend beyond stimuli that have social relevance. Attentional and visual processing influences may be important for understanding the apparent role of IMR in the pathophysiology of ASD. PMID:23734121
Frasson, Amanda Piccoli; Dos Santos, Odelta; Meirelles, Lúcia Collares; Macedo, Alexandre José; Tasca, Tiana
2016-01-01
Trichomonas vaginalis is a protozoan that parasitizes the human urogenital tract causing trichomoniasis, the most common non-viral sexually transmitted disease. The parasite has unique genomic characteristics such as a large genome size and expanded gene families. Ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) is an enzyme responsible for hydrolyzing nucleoside tri- and diphosphates and has already been biochemically characterized in T. vaginalis. Considering the important role of this enzyme in the production of extracellular adenosine for parasite uptake, we evaluated the gene expression of five putative NTPDases in T. vaginalis. We showed that all five putative TvNTPDase genes (TvNTPDase1-5) were expressed by both fresh clinical and long-term grown isolates. The amino acid alignment predicted the presence of the five crucial apyrase conserved regions, transmembrane domains, signal peptides, phosphorylation and catalytic sites. Moreover, a phylogenetic analysis showed that TvNTPDase sequences make up a clade with NTPDases intracellularly located. Biochemical NTPDase activity (ATP and ADP hydrolysis) is responsive to the serum-restrictive conditions and the gene expression of TvNTPDases was mostly increased, mainly TvNTPDase2 and TvNTPDase4, although there was not a clear pattern of expression among them. In summary, the present report demonstrates the gene expression patterns of predicted NTPDases in T. vaginalis. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Choe, Se-In; Gravelat, Fabrice N.; Al Abdallah, Qusai; Lee, Mark J.; Gibbs, Bernard F.
2012-01-01
Arsenic contamination of groundwater sources is a major issue worldwide, since exposure to high levels of arsenic has been linked to a variety of health problems. Effective methods of detection are thus greatly needed as preventive measures. In an effort to develop a fungal biosensor for arsenic, we first identified seven putative arsenic metabolism and transport genes in Aspergillus niger, a widely used industrial organism that is generally regarded as safe (GRAS). Among the genes tested for RNA expression in response to arsenate, acrA, encoding a putative plasma membrane arsenite efflux pump, displayed an over 200-fold increase in gene expression in response to arsenate. We characterized the function of this A. niger protein in arsenic efflux by gene knockout and confirmed that AcrA was located at the cell membrane using an enhanced green fluorescent protein (eGFP) fusion construct. Based on our observations, we developed a putative biosensor strain containing a construct of the native promoter of acrA fused with egfp. We analyzed the fluorescence of this biosensor strain in the presence of arsenic using confocal microscopy and spectrofluorimetry. The biosensor strain reliably detected both arsenite and arsenate in the range of 1.8 to 180 μg/liter, which encompasses the threshold concentrations for drinking water set by the World Health Organization (10 and 50 μg/liter). PMID:22467499
Lu, You; Hatsugai, Noriyuki; Katagiri, Fumiaki; Ishimaru, Carol A; Glazebrook, Jane
2015-11-01
Clavibacter michiganensis subspp. michiganensis and sepedonicus cause diseases on solanaceous crops. The genomes of both subspecies encode members of the pat-1 family of putative serine proteases known to function in virulence on host plants and induction of hypersensitive responses (HR) on nonhosts. One gene of this family in C. michiganensis subsp. sepedonicus, chp-7, is required for triggering HR in Nicotiana tabacum. Here, further investigation revealed that mutation of the putative catalytic serine residue at position 232 to threonine abolished the HR induction activity of Chp-7, suggesting that enzymatic activity is required. Purified Chp-7 triggered an HR in N. tabacum leaves in the absence of the pathogen, indicating Chp-7 itself is the HR elicitor from C. michiganensis subsp. sepedonicus. Ectopic expression of chp-7 constructs in N. tabacum leaves revealed that Chp-7 targeted to the apoplast triggered an HR while cytoplasmic Chp-7 did not, indicating that Chp-7 induces the HR in the apoplast of N. tabacum leaves. Chp-7 also induced HR in N. sylvestris, a progenitor of N. tabacum, but not in other Nicotiana species tested. ChpG, a related protein from C. michiganensis subsp. michiganensis, also triggered HR in N. tabacum and N. sylvestris. Unlike Chp-7, ChpG triggered HR in N. clevelandii and N. glutinosa.
Guzina, Jelena
2016-01-01
ABSTRACT Extracytoplasmic function (ECF) σ factors are the largest and the most diverse group of alternative σ factors, but their mechanisms of transcription are poorly studied. This subfamily is considered to exhibit a rigid promoter structure and an absence of mixing and matching; both −35 and −10 elements are considered necessary for initiating transcription. This paradigm, however, is based on very limited data, which bias the analysis of diverse ECF σ subgroups. Here we investigate DNA and protein recognition motifs involved in ECF σ factor transcription by a computational analysis of canonical ECF subfamily members, much less studied ECF σ subgroups, and the group outliers, obtained from recently sequenced bacteriophages. The analysis identifies an extended −10 element in promoters for phage ECF σ factors; a comparison with bacterial σ factors points to a putative 6-amino-acid motif just C-terminal of domain σ2, which is responsible for the interaction with the identified extension of the −10 element. Interestingly, a similar protein motif is found C-terminal of domain σ2 in canonical ECF σ factors, at a position where it is expected to interact with a conserved motif further upstream of the −10 element. Moreover, the phiEco32 ECF σ factor lacks a recognizable −35 element and σ4 domain, which we identify in a homologous phage, 7-11, indicating that the extended −10 element can compensate for the lack of −35 element interactions. Overall, the results reveal greater flexibility in promoter recognition by ECF σ factors than previously recognized and raise the possibility that mixing and matching also apply to this group, a notion that remains to be biochemically tested. IMPORTANCE ECF σ factors are the most numerous group of alternative σ factors but have been little studied. Their promoter recognition mechanisms are obscured by the large diversity within the ECF σ factor group and the limited similarity with the well-studied housekeeping σ factors. Here we extensively compare bacterial and bacteriophage ECF σ factors and their promoters in order to infer DNA and protein recognition motifs involved in transcription initiation. We predict a more flexible promoter structure than is recognized by the current paradigm, which assumes rigidness, and propose that ECF σ promoter elements may complement (mix and match with) each other's strengths. These results warrant the refocusing of research efforts from the well-studied housekeeping σ factors toward the physiologically highly important, but insufficiently understood, alternative σ factors. PMID:27137497
Graw, J; Liebstein, A; Pietrowski, D; Schmitt-John, T; Werner, T
1993-12-22
The murine genes, gamma B-cry and gamma C-cry, encoding the gamma B- and gamma C-crystallins, were isolated from a genomic DNA library. The complete nucleotide (nt) sequences of both genes were determined from 661 and 711 bp, respectively, upstream from the first exon to the corresponding polyadenylation sites, comprising more than 2650 and 2890 bp, respectively. The new sequences were compared to the partial cDNA sequences available for the murine gamma B-cry and gamma C-cry, as well as to the corresponding genomic sequences from rat and man, at both the nt and predicted amino acid (aa) sequence levels. In the gamma B-cry promoter region, a canonical CCAAT-box, a TATA-box, putative NF-I and C/EBP sites were detected. An R-repeat is inserted 366 bp upstream from the transcription start point. In contrast, the gamma C-cry promoter does not contain a CCAAT-box, but some other putative binding sites for transcription factors (AP-2, UBP-1, LBP-1) were located by computer analysis. The promoter regions of all six gamma-cry from mouse, rat and human, except human psi gamma F-cry, were analyzed for common sequence elements. A complex sequence element of about 70-80 bp was found in the proximal promoter, which contains a gamma-cry-specific and almost invariant sequence (crygpel) of 14 nt, and ends with the also invariant TATA-box. Within the complex sequence element, a minimum of three further features specific for the gamma A-, gamma B- and gamma D/E/F-cry genes can be defined, at least two of which were recently shown to be functional. In addition to these four sequence elements, a subtype-specific structure of inverted repeats with different-sized spacers can be deduced from the multiple sequence alignment. A phylogenetic analysis based on the promoter region, as well as the complete exon 3 of all gamma-cry from mouse, rat and man, suggests separation of only five gamma-cry subtypes (gamma A-, gamma B-, gamma C-, gamma D- and gamma E/F-cry) prior to species separation.
Weyman, Philip D.; Pan, Zhiqiang; Feng, Qin; Gilchrist, David G.; Bostock, Richard M.
2006-01-01
A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, α-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells. PMID:16361525
Computational identification of microRNAs and their targets in cassava (Manihot esculenta Crantz.).
Patanun, Onsaya; Lertpanyasampatha, Manassawe; Sojikul, Punchapat; Viboonjun, Unchera; Narangajavana, Jarunya
2013-03-01
MicroRNAs (miRNAs) are a newly discovered class of noncoding endogenous small RNAs involved in plant growth and development as well as response to environmental stresses. miRNAs have been extensively studied in various plant species, however, only few information are available in cassava, which serves as one of the staple food crops, a biofuel crop, animal feed and industrial raw materials. In this study, the 169 potential cassava miRNAs belonging to 34 miRNA families were identified by computational approach. Interestingly, mes-miR319b was represented as the first putative mirtron demonstrated in cassava. A total of 15 miRNA clusters involving 7 miRNA families, and 12 pairs of sense and antisense strand cassava miRNAs belonging to six different miRNA families were discovered. Prediction of potential miRNA target genes revealed their functions involved in various important plant biological processes. The cis-regulatory elements relevant to drought stress and plant hormone response were identified in the promoter regions of those miRNA genes. The results provided a foundation for further investigation of the functional role of known transcription factors in the regulation of cassava miRNAs. The better understandings of the complexity of miRNA-mediated genes network in cassava would unravel cassava complex biology in storage root development and in coping with environmental stresses, thus providing more insights for future exploitation in cassava improvement.
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes.
Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle
2016-01-01
Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation.
Mounier, Julie; Camus, Arantxa; Mitteau, Isabelle; Vaysse, Pierre-Joseph; Goulas, Philippe; Grimaud, Régis; Sivadon, Pierre
2014-12-01
Hydrophobic organic compounds (mainly lipids and hydrocarbons) represent a significant part of the organic matter in marine waters, and their degradation has an important impact in the carbon fluxes within oceans. However, because they are nearly insoluble in the water phase, their degradation by microorganisms occurs at the interface with water and thus requires specific adaptations such as biofilm formation. We show that Marinobacter hydrocarbonoclasticus SP17 develops biofilms, referred to as oleolytic biofilms, on a large variety of hydrophobic substrates, including hydrocarbons, fatty alcohols, fatty acids, triglycerides, and wax esters. Microarray analysis revealed that biofilm growth on n-hexadecane or triolein involved distinct genetic responses, together with a core of common genes that might concern general mechanisms of biofilm formation. Biofilm growth on triolein modulated the expression of hundreds of genes in comparison with n-hexadecane. The processes related to primary metabolism and genetic information processing were downregulated. Most of the genes that were overexpressed on triolein had unknown functions. Surprisingly, their genome localization was restricted to a few regions identified as putative genomic islands or mobile elements. These results are discussed with regard to the adaptive responses triggered by M. hydrocarbonoclasticus SP17 to occupy a specific niche in marine ecosystems. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
Feng, X; Happ, G M
1996-11-14
The cDNA for Sp23, a structural protein of the spermatophore of Tenebrio molitor, had been previously cloned and characterized (Paesen, G.C., Schwartz, M.B., Peferoen, M., Weyda, F. and Happ, G.M. (1992a) Amino acid sequence of Sp23, a structure protein of the spermatophore of the mealworm beetle, Tenebrio molitor. J. Biol. Chem. 257, 18852-18857). Using the labeled cDNA for Sp23 as a probe to screen a library of genomic DNA from Tenebrio molitor, we isolated a genomic clone for Sp23. A 5373-base pair (bp) restriction fragment containing the Sp23 gene was sequenced. The coding region is separated by a 55-bp intron which is located close to the translation start site. Three putative ecdysone response elements (EcRE) are identified in the 5' flanking region of the Sp23 gene. Comparison of the flanking regions of the Sp23 gene with those of the D-protein gene expressed in the accessory glands of Tenebrio reveals similar sequences present in the flanking regions of the two genes. The genomic organization of the coding region of the Sp23 gene shares similarities with that of the D-protein gene, three Drosophila accessory gland genes and two Drosophila 20-OH ecdysone-responsive genes.
2012-01-01
Background The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Results Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. Conclusions The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system. PMID:22943411
Busche, Tobias; Silar, Radoslav; Pičmanová, Martina; Pátek, Miroslav; Kalinowski, Jörn
2012-09-03
The expression of genes in Corynebacterium glutamicum, a Gram-positive non-pathogenic bacterium used mainly for the industrial production of amino acids, is regulated by seven different sigma factors of RNA polymerase, including the stress-responsive ECF-sigma factor SigH. The sigH gene is located in a gene cluster together with the rshA gene, putatively encoding an anti-sigma factor. The aim of this study was to analyze the transcriptional regulation of the sigH and rshA gene cluster and the effects of RshA on the SigH regulon, in order to refine the model describing the role of SigH and RshA during stress response. Transcription analyses revealed that the sigH gene and rshA gene are cotranscribed from four sigH housekeeping promoters in C. glutamicum. In addition, a SigH-controlled rshA promoter was found to only drive the transcription of the rshA gene. To test the role of the putative anti-sigma factor gene rshA under normal growth conditions, a C. glutamicum rshA deletion strain was constructed and used for genome-wide transcription profiling with DNA microarrays. In total, 83 genes organized in 61 putative transcriptional units, including those previously detected using sigH mutant strains, exhibited increased transcript levels in the rshA deletion mutant compared to its parental strain. The genes encoding proteins related to disulphide stress response, heat stress proteins, components of the SOS-response to DNA damage and proteasome components were the most markedly upregulated gene groups. Altogether six SigH-dependent promoters upstream of the identified genes were determined by primer extension and a refined consensus promoter consisting of 45 original promoter sequences was constructed. The rshA gene codes for an anti-sigma factor controlling the function of the stress-responsive sigma factor SigH in C. glutamicum. Transcription of rshA from a SigH-dependent promoter may serve to quickly shutdown the SigH-dependent stress response after the cells have overcome the stress condition. Here we propose a model of the regulation of oxidative and heat stress response including redox homeostasis by SigH, RshA and the thioredoxin system.
Oostendorp, Jaap; Preitner, Frédéric; Moffatt, James; Jimenez, Maria; Giacobino, Jean Paul; Molenaar, Peter; Kaumann, Alberto Julio
2000-01-01
The smooth muscle relaxant responses to the mixed β3-, putative β4-adrenoceptor agonist, (−)-CGP 12177 in rat colon are partially resistant to blockade by the β3-adrenoceptor antagonist SR59230A suggesting involvement of β3- and putative β4-adrenoceptors. We now investigated the function of the putative β4-adrenoceptor and other β-adrenoceptor subtypes in the colon, oesophagus and ureter of wildtype (WT) and β3-adrenoceptor knockout (β3KO) mice.(−)-Noradrenaline and (−)-adrenaline relaxed KCl (30 mM)-precontracted colon mostly through β1-and β3-adrenoceptors to a similar extent and to a minor extent through β2-adrenoceptors. In colon from β3KO mice, (−)-noradrenaline was as potent as in WT mice but the effects were mediated entirely through β1-adrenoceptors. (−)-CGP 12177 relaxed colon from β3KO mice with 2 fold greater potency than in WT mice. The maintenance of potency for (−)-noradrenaline and increase for (−)-CGP 12177 indicate compensatory increases in β1- and putative β4-adrenoceptor function in β3KO mice.In oesophagi precontracted with 1 μM carbachol, (−)-noradrenaline caused relaxation mainly through β1-and β3-adrenoceptors. (−)-CGP 12177 (2 μM) relaxed oesophagi from WT by 61.4±5.1% and β3KO by 67.3±10.1% of the (−)-isoprenaline-evoked relaxation, consistent with mediation through putative β4-adrenoceptors.In ureter, (−)-CGP 12177 (2 μM) reduced pacemaker activity by 31.1±2.3% in WT and 31.3±7.5% in β3KO, consistent with mediation through putative β4-adrenoceptors.Relaxation of mouse colon and oesophagus by catecholamines are mediated through β1- and β3-adrenoceptors in WT. The putative β4-adrenoceptor, which presumably is an atypical state of the β1-adrenoceptor, mediates the effects of (−)-CGP 12177 in colon, oesophagus and ureter. PMID:10864880
Wang, Jing; Tergel, Tergel; Chen, Jianhua; Yang, Ju; Kang, Yan; Qi, Zhi
2015-02-01
Ecological evidence indicates a worldwide trend of dramatically decreased soil Ca(2+) levels caused by increased acid deposition and massive timber harvesting. Little is known about the genetic and cellular mechanism of plants' responses to Ca(2+) depletion. In this study, transcriptional profiling analysis helped identify multiple extracellular Ca(2+) ([Ca(2+) ]ext ) depletion-responsive genes in Arabidopsis thaliana L., many of which are involved in response to other environmental stresses. Interestingly, a group of genes encoding putative cytosolic Ca(2+) ([Ca(2+) ]cyt ) sensors were significantly upregulated, implying that [Ca(2+) ]cyt has a role in sensing [Ca(2+) ]ext depletion. Consistent with this observation, [Ca(2+) ]ext depletion stimulated a transient rise in [Ca(2+) ]cyt that was negatively influenced by [K(+) ]ext , suggesting the involvement of a membrane potential-sensitive component. The [Ca(2+) ]cyt response to [Ca(2+) ]ext depletion was significantly desensitized after the initial treatment, which is typical of a receptor-mediated signaling event. The response was insensitive to an animal Ca(2+) sensor antagonist, but was suppressed by neomycin, an inhibitor of phospholipase C. Gd(3+) , an inhibitor of Ca(2+) channels, suppressed the [Ca(2+) ]ext -triggered rise in [Ca(2+) ]cyt and downstream changes in gene expression. Taken together, this study demonstrates that [Ca(2+) ]cyt plays an important role in the putative receptor-mediated cellular and transcriptional response to [Ca(2+) ]ext depletion of plant cells. © 2014 Institute of Botany, Chinese Academy of Sciences.
Seilkop, Steven K.; Campen, Matthew J.; Lund, Amie K.; McDonald, Jacob D.; Mauderly, Joe L.
2012-01-01
Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/−) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE−/− mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated “downwind” coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical–chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation. PMID:22486345
Seilkop, Steven K; Campen, Matthew J; Lund, Amie K; McDonald, Jacob D; Mauderly, Joe L
2012-04-01
Combustion emissions cause pro-atherosclerotic responses in apolipoprotein E-deficient (ApoE/⁻) mice, but the causal components of these complex mixtures are unresolved. In studies previously reported, ApoE⁻/⁻ mice were exposed by inhalation 6 h/day for 50 consecutive days to multiple dilutions of diesel or gasoline exhaust, wood smoke, or simulated "downwind" coal emissions. In this study, the analysis of the combined four-study database using the Multiple Additive Regression Trees (MART) data mining approach to determine putative causal exposure components regardless of combustion source is reported. Over 700 physical-chemical components were grouped into 45 predictor variables. Response variables measured in aorta included endothelin-1, vascular endothelin growth factor, three matrix metalloproteinases (3, 7, 9), metalloproteinase inhibitor 2, heme-oxygenase-1, and thiobarbituric acid reactive substances. Two or three predictors typically explained most of the variation in response among the experimental groups. Overall, sulfur dioxide, ammonia, nitrogen oxides, and carbon monoxide were most highly predictive of responses, although their rankings differed among the responses. Consistent with the earlier finding that filtration of particles had little effect on responses, particulate components ranked third to seventh in predictive importance for the eight response variables. MART proved useful for identifying putative causal components, although the small number of pollution mixtures (4) can provide only suggestive evidence of causality. The potential independent causal contributions of these gases to the vascular responses, as well as possible interactions among them and other components of complex pollutant mixtures, warrant further evaluation.
Aging of human short-wave cone pathways
Shinomori, Keizo; Werner, John S.
2012-01-01
The retinal image is sampled concurrently, and largely independently, by three physiologically and anatomically distinct pathways, each with separate ON and OFF subdivisions. The retinal circuitry giving rise to an ON pathway receiving input from the short-wave-sensitive (S) cones is well understood, but the S-cone OFF circuitry is more controversial. Here, we characterize the temporal properties of putative S-cone ON and OFF pathways in younger and older observers by measuring thresholds for stimuli that produce increases or decreases in S-cone stimulation, while the middle- and long-wave-sensitive cones are unmodulated. We characterize the data in terms of an impulse response function, the theoretical response to a flash of infinitely short duration, from which the response to any temporally varying stimulus may be predicted. Results show that the S-cone response to increments is faster than to decrements, but this difference is significantly greater for older individuals. The impulse response function amplitudes for increment and decrement responses are highly correlated across individuals, whereas the timing is not. This strongly suggests that the amplitude is controlled by neural circuitry that is common to S-cone ON and OFF responses (photoreceptors), whereas the timing is controlled by separate postreceptoral pathways. The slower response of the putative OFF pathway is ascribed to different retinal circuitry, possibly attributable to a sign-inverting amacrine cell not present in the ON pathway. It is significant that this pathway is affected selectively in the elderly by becoming slower, whereas the temporal properties of the S-cone ON response are stable across the life span of an individual. PMID:22847416
DOE Office of Scientific and Technical Information (OSTI.GOV)
Köberl, Martina; White, Richard A.; Erschen, Sabine
Streptomyces sp. strain Wb2n-11, isolated from native desert soil, exhibited broad-spectrum antagonism against plant pathogenic fungi, bacteria and nematodes. The 8.2 Mb draft genome reveals genes putatively responsible for its promising biocontrol activity and genes which enable the soil bacterium to directly interact beneficially with plants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koeberl, Martina; White, Richard A.; Erschen, Sabine
The genome sequence of Bacillus amyloliquefaciens strain Co1-6, a plant growth-promoting rhizobacterium (PGPR) with broad-spectrum antagonistic activities against plant pathogenic fungi, bacteria and nematodes, consists of a single 3.9 Mb circular chromosome. The genome reveals genes putatively responsible for its promising biocontrol and PGP properties.
Targeting the Mevalonate Pathway to Reduce Mortality from Ovarian Cancer
2017-12-01
at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR /Cas9- mediated ablation of a putative Meis1 enhancer carrying...Tables S4 and S5. 10 Cancer Cell 30, 1–16, July 11, 2016the CRISPR /Cas9-based genomic editing technology. Cas9 and a pair of single guide RNAs (sgRNA... CRISPR /Cas9-mediated deletio sgMeis1, a pair of sgRNAs that target the DMR boundaries. (N) Sequencing of the genomic PCR products from F2/R2 primers shows
Extrachromosomal genetic elements in Micrococcus.
Dib, Julián Rafael; Liebl, Wolfgang; Wagenknecht, Martin; Farías, María Eugenia; Meinhardt, Friedhelm
2013-01-01
Micrococci are Gram-positive G + C-rich, nonmotile, nonspore-forming actinomycetous bacteria. Micrococcus comprises ten members, with Micrococcus luteus being the type species. Representatives of the genus play important roles in the biodegradation of xenobiotics, bioremediation processes, production of biotechnologically important enzymes or bioactive compounds, as test strains in biological assays for lysozyme and antibiotics, and as infective agents in immunocompromised humans. The first description of plasmids dates back approximately 28 years, when several extrachromosomal elements ranging in size from 1.5 to 30.2 kb were found in Micrococcus luteus. Up to the present, a number of circular plasmids conferring antibiotic resistance, the ability to degrade aromatic compounds, and osmotolerance are known, as well as cryptic elements with unidentified functions. Here, we review the Micrococcus extrachromosomal traits reported thus far including phages and the only quite recently described large linear extrachromosomal genetic elements, termed linear plasmids, which range in size from 75 kb (pJD12) to 110 kb (pLMA1) and which confer putative advantageous capabilities, such as antibiotic or heavy metal resistances (inferred from sequence analyses and curing experiments). The role of the extrachromosomal elements for the frequently proven ecological and biotechnological versatility of the genus will be addressed as well as their potential for the development and use as genetic tools.
2014-01-01
Background Auxin signaling has a vital function in the regulation of plant growth and development, both which are known to be mediated by auxin-responsive genes. So far, significant progress has been made toward the identification and characterization of auxin-response genes in several model plants, while no systematic analysis for these families was reported in cucumber (Cucumis sativus L.), a reference species for Cucurbitaceae crops. The comprehensive analyses will help design experiments for functional validation of their precise roles in plant development and stress responses. Results A genome-wide search for auxin-response gene homologues identified 16 auxin-response factors (ARFs), 27 auxin/indole acetic acids (Aux/IAAs), 10 Gretchen Hagen 3 (GH3s), 61 small auxin-up mRNAs (SAURs), and 39 lateral organ boundaries (LBDs) in cucumber. Sequence analysis together with the organization of putative motifs indicated the potential diverse functions of these five auxin-related family members. The distribution and density of auxin response-related genes on chromosomes were not uniform. Evolutionary analysis showed that the chromosomal segment duplications mainly contributed to the expansion of the CsARF, CsIAA, CsGH3, and CsLBD gene families. Quantitative real-time RT-PCR analysis demonstrated that many ARFs, AUX/IAAs, GH3s, SAURs, and LBD genes were expressed in diverse patterns within different organs/tissues and during different development stages. They were also implicated in IAA, methyl jasmonic acid, or salicylic acid response, which is consistent with the finding that a great number of diverse cis-elements are present in their promoter regions involving a variety of signaling transduction pathways. Conclusion Genome-wide comparative analysis of auxin response-related family genes and their expression analysis provide new evidence for the potential role of auxin in development and hormone response of plants. Our data imply that the auxin response genes may be involved in various vegetative and reproductive developmental processes. Furthermore, they will be involved in different signal pathways and may mediate the crosstalk between various hormone responses. PMID:24708619
Effects of selenium biofortification on crop nutritional quality.
Malagoli, Mario; Schiavon, Michela; dall'Acqua, Stefano; Pilon-Smits, Elizabeth A H
2015-01-01
Selenium (Se) at very low doses has crucial functions in humans and animals. Since plants represent the main dietary source of this element, Se-containing crops may be used as a means to deliver Se to consumers (biofortification). Several strategies have been exploited to increase plant Se content. Selenium assimilation in plants affects both sulfur (S) and nitrogen (N) metabolic pathways, which is why recent research has also focused on the effect of Se fertilization on the production of S- and N- secondary metabolites with putative health benefits. In this review we discuss the function of Se in plant and human nutrition and the progress in the genetic engineering of Se metabolism to increase the levels and bioavailability of this element in food crops. Particular attention is paid to Se biofortification and the synthesis of compounds with beneficial effects on health.
Genetic dissection of the α-globin super-enhancer in vivo
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hay, Deborah; Hughes, Jim R.; Babbs, Christian
Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less
Genetic dissection of the α-globin super-enhancer in vivo
Hay, Deborah; Hughes, Jim R.; Babbs, Christian; ...
2016-07-04
Many genes determining cell identity are regulated by clusters of Mediator-bound enhancer elements collectively referred to as super-enhancers. Furthermore, these super-enhancers have been proposed to manifest higher-order properties important in development and disease. Here we report a comprehensive functional dissection of one of the strongest putative super-enhancers in erythroid cells. By generating a series of mouse models, deleting each of the five regulatory elements of the α-globin super-enhancer individually and in informative combinations, we demonstrate that each constituent enhancer seems to act independently and in an additive fashion with respect to hematological phenotype, gene expression, chromatin structure and chromosome conformation,more » without clear evidence of synergistic or higher-order effects. This study highlights the importance of functional genetic analyses for the identification of new concepts in transcriptional regulation.« less
Shekhawat, Upendra K Singh; Ganapathi, Thumballi R; Srinivas, Lingam
2011-08-01
WRKY transcription factor proteins play significant roles in plant stress responses. Here, we report the cloning and characterization of a novel WRKY gene, MusaWRKY71 isolated from an edible banana cultivar Musa spp. Karibale Monthan (ABB group). MusaWRKY71, initially identified using in silico approaches from an abiotic stress-related EST library, was later extended towards the 3' end using rapid amplification of cDNA ends technique. The 1299-bp long cDNA of MusaWRKY71 encodes a protein with 280 amino acids and contains a characteristic WRKY domain in the C-terminal half. Although MusaWRKY71 shares good similarity with other monocot WRKY proteins the substantial size difference makes it a unique member of the WRKY family in higher plants. The 918-bp long 5' proximal region determined using thermal asymmetric interlaced-polymerase chain reaction has many putative cis-acting elements and transcription factor binding motifs. Subcellular localization assay of MusaWRKY71 performed using a GFP-fusion platform confirmed its nuclear targeting in transformed banana suspension cells. Importantly, MusaWRKY71 expression in banana plantlets was up-regulated manifold by cold, dehydration, salt, ABA, H2O2, ethylene, salicylic acid and methyl jasmonate treatment indicating its involvement in response to a variety of stress conditions in banana. Further, transient overexpression of MusaWRKY71 in transformed banana cells led to the induction of several genes, homologues of which have been proven to be involved in diverse stress responses in other important plants. The present study is the first report on characterization of a banana stress-related transcription factor using transformed banana cells.
Isolation, structural analysis, and expression characteristics of the maize TIFY gene family.
Zhang, Zhongbao; Li, Xianglong; Yu, Rong; Han, Meng; Wu, Zhongyi
2015-10-01
TIFY, previously known as ZIM, comprises a plant-specific family annotated as transcription factors that might play important roles in stress response. Despite TIFY proteins have been reported in Arabidopsis and rice, a comprehensive and systematic survey of ZmTIFY genes has not yet been conducted. To investigate the functions of ZmTIFY genes in this family, we isolated and characterized 30 ZmTIFY (1 TIFY, 3 ZML, and 26 JAZ) genes in an analysis of the maize (Zea mays L.) genome in this study. The 30 ZmTIFY genes were distributed over eight chromosomes. Multiple alignment and motif display results indicated that all ZmTIFY proteins share two conserved TIFY and Jas domains. Phylogenetic analysis revealed that the ZmTIFY family could be divided into two groups. Putative cis-elements, involved in abiotic stress response, phytohormones, pollen grain, and seed development, were detected in the promoters of maize TIFY genes. Microarray data showed that the ZmTIFY genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results indicated that ZmTIFY4, 5, 8, 26, and 28 were induced, while ZmTIFY16, 13, 24, 27, 18, and 30 were suppressed, by drought stress in the maize inbred lines Han21 and Ye478. ZmTIFY1, 19, and 28 were upregulated after infection by three pathogens, whereas ZmTIFY4, 13, 21, 23, 24, and 26 were suppressed. These results indicate that the ZmTIFY family may have vital roles in response to abiotic and biotic stresses. The data presented in this work provide vital clues for further investigating the functions of the genes in the ZmTIFY family.
McKendry, J E; Milsom, W K; Perry, S F
2001-04-01
Adult Pacific spiny dogfish (Squalus acanthias) were exposed to acute (approximately 20 min) hypercarbia while we monitored arterial blood pressure, systemic vascular resistance (R(S)), cardiac output (V(b)) and frequency (fh) as well as ventilatory amplitude (V(AMP)) and frequency (f(V)). Separate series of experiments were conducted on control, atropinized (100 nmol kg(-1)) and branchially denervated fish to investigate putative CO(2)-chemoreceptive sites on the gills and their link to the autonomic nervous system and cardiorespiratory reflexes.In untreated fish, moderate hypercarbia (water CO(2 )partial pressure; Pw(CO2)=6.4+/-0.1 mmHg) (1 mmHg=0.133 kPa) elicited significant increases in V(AMP) (of approximately 92 %) and f(V) (of approximately 18 %) as well as decreases in fh (of approximately 64 %), V.(b) (approximately 29 %) and arterial blood pressure (of approximately 11 %); R(S) did not change significantly. Denervation of the branchial branches of cranial nerves IX and X to the pseudobranch and each gill arch eliminated all cardiorespiratory responses to hypercarbia. Prior administration of the muscarinic receptor antagonist atropine also abolished the hypercarbia-induced ventilatory responses and virtually eliminated all CO(2)-elicited cardiovascular adjustments. Although the atropinized dogfish displayed a hypercarbic bradycardia, the magnitude of the response was significantly attenuated (36+/-6 % decrease in fh in controls versus 9+/-2 % decrease in atropinized fish; means +/- s.e.m.).Thus, the results of the present study reveal the presence of gill CO(2) chemoreceptors in dogfish that are linked to numerous cardiorespiratory reflexes. In addition, because all cardiorespiratory responses to hypercarbia were abolished or attenuated by atropine, the CO(2) chemoreception process and/or one or more downstream elements probably involve cholinergic (muscarinic) neurotransmission.
Magal, Ari; Mintz, Matti
2014-11-01
The amygdala and the cerebellum serve two distinctively different functions. The amygdala plays a role in the expression of emotional information, whereas the cerebellum is involved in the timing of discrete motor responses. Interaction between these two systems is the basis of the two-stage theory of learning, according to which an encounter with a challenging event triggers fast classical conditioning of fear-conditioned responses in the amygdala and slow conditioning of motor-conditioned responses in the cerebellum. A third stage was hypothesised when an apparent interaction between amygdala and cerebellar associative plasticity was observed: an adaptive rate of cerebellum-dependent motor-conditioned responses was associated with a decrease in amygdala-dependent fear-conditioned responses, and was interpreted as extinction of amygdala-related fear-conditioned responses by the cerebellar output. To explore this hypothesis, we mimicked some components of classical eyeblink conditioning in anesthetised rats by applying an aversive periorbital pulse as an unconditioned stimulus and a train of pulses to the cerebellar output nuclei as a cerebellar neuronal-conditioned response. The central amygdala multiple unit response to the periorbital pulse was measured with or without a preceding train to the cerebellar output nuclei. The results showed that activation of the cerebellar output nuclei prior to periorbital stimulation produced diverse patterns of inhibition of the amygdala response to the periorbital aversive stimulus, depending upon the nucleus stimulated, the laterality of the nucleus stimulated, and the stimulus interval used. These results provide a putative extinction mechanism of learned fear behavior, and could have implications for the treatment of pathologies involving abnormal fear responses by using motor training as therapy. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Feng, Chunliang; Deshpande, Gopikrishna; Liu, Chao; Gu, Ruolei; Luo, Yue-Jia; Krueger, Frank
2016-02-01
Humans altruistically punish violators of social norms to enforce cooperation and pro-social behaviors. However, such altruistic behaviors diminish when others are present, due to a diffusion of responsibility. We investigated the neural signatures underlying the modulations of diffusion of responsibility on altruistic punishment, conjoining a third-party punishment task with event-related functional magnetic resonance imaging and multivariate Granger causality mapping. In our study, participants acted as impartial third-party decision-makers and decided how to punish norm violations under two different social contexts: alone (i.e., full responsibility) or in the presence of putative other third-party decision makers (i.e., diffused responsibility). Our behavioral results demonstrated that the diffusion of responsibility served as a mediator of context-dependent punishment. In the presence of putative others, participants who felt less responsible also punished less severely in response to norm violations. Our neural results revealed that underlying this behavioral effect was a network of interconnected brain regions. For unfair relative to fair splits, the presence of others led to attenuated responses in brain regions implicated in signaling norm violations (e.g., AI) and to increased responses in brain regions implicated in calculating values of norm violations (e.g., vmPFC, precuneus) and mentalizing about others (dmPFC). The dmPFC acted as the driver of the punishment network, modulating target regions, such as AI, vmPFC, and precuneus, to adjust altruistic punishment behavior. Our results uncovered the neural basis of the influence of diffusion of responsibility on altruistic punishment and highlighted the role of the mentalizing network in this important phenomenon. Hum Brain Mapp 37:663-677, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Kumar, Ranjeet R; Goswami, Suneha; Singh, Khushboo; Dubey, Kavita; Rai, Gyanendra K; Singh, Bhupinder; Singh, Shivdhar; Grover, Monendra; Mishra, Dwijesh; Kumar, Sanjeev; Bakshi, Suman; Rai, Anil; Pathak, Himanshu; Chinnusamy, Viswanathan; Praveen, Shelly
2018-08-10
Heat stress has an adverse effect on the quality and quantity of agriculturally important crops, especially wheat. The tolerance mechanism has not been explored much in wheat and very few genes/ TFs responsive to heat stress is available on public domain. Here, we identified, cloned and characterized a putative TaHSFA6e TF gene of 1.3 kb from wheat cv. HD2985. We observed an ORF of 368 aa with Hsf DNA binding signature domain in the amino acid sequence. Single copy number of TaHSFA6e was observed integrated in the genome of wheat. Expression analysis of TaHSFA6e under differential HS showed maximum transcripts in wheat cv. Halna (thermotolerant) in response to 38 °C for 2 h during pollination and grain-filling stages, as compared to PBW343, HD2329 and HD2985. Putative target genes of TaHSFA6e (HSP17, HSP70 and HSP90) showed upregulation in response to differential HS (30 & 38 °C, 2 h) during pollination and grain-filling stages. Small HSP17 was observed most triggered in Halna under HS. We observed increase in the catalase, guaiacol peroxidase, total antioxidant capacity (TAC), and decrease in the lipid peroxidation in thermotolerant cvs. (Halna, HD2985), as compared to thermosusceptible (PBW343, HD2329) under differential HS. Multiple stresses (heat - 38 °C, 2 h, and drought - 100 mL of 20% polyethylene Glycol 6000) during seedling stage of wheat showed positive correlation between the expression of TaHSFA6e, putative targets (HSP70, HSP90, HSP17) and TAC. Halna (thermotolerant) performed better, as compared to other contrasting cvs. TaHSFA6e TF can be used as promising candidate gene for manipulating the heat stress-tolerance network. Copyright © 2018 Elsevier B.V. All rights reserved.
Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede
2012-01-01
Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene.
Thiel, Johannes; Hollmann, Julien; Rutten, Twan; Weber, Hans; Scholz, Uwe; Weschke, Winfriede
2012-01-01
Background Cell specification and differentiation in the endosperm of cereals starts at the maternal-filial boundary and generates the endosperm transfer cells (ETCs). Besides the importance in assimilate transfer, ETCs are proposed to play an essential role in the regulation of endosperm differentiation by affecting development of proximate endosperm tissues. We attempted to identify signalling elements involved in early endosperm differentiation by using a combination of laser-assisted microdissection and 454 transcriptome sequencing. Principal Findings 454 sequencing of the differentiating ETC region from the syncytial state until functionality in transfer processes captured a high proportion of novel transcripts which are not available in existing barley EST databases. Intriguingly, the ETC-transcriptome showed a high abundance of elements of the two-component signalling (TCS) system suggesting an outstanding role in ETC differentiation. All components and subfamilies of the TCS, including distinct kinds of membrane-bound receptors, have been identified to be expressed in ETCs. The TCS system represents an ancient signal transduction system firstly discovered in bacteria and has previously been shown to be co-opted by eukaryotes, like fungi and plants, whereas in animals and humans this signalling route does not exist. Transcript profiling of TCS elements by qRT-PCR suggested pivotal roles for specific phosphorelays activated in a coordinated time flow during ETC cellularization and differentiation. ETC-specificity of transcriptionally activated TCS phosphorelays was assessed for early differentiation and cellularization contrasting to an extension of expression to other grain tissues at the beginning of ETC maturation. Features of candidate genes of distinct phosphorelays and transcriptional activation of genes putatively implicated in hormone signalling pathways hint at a crosstalk of hormonal influences, putatively ABA and ethylene, and TCS signalling. Significance Our findings suggest an integral function for the TCS in ETC differentiation possibly coupled to sequent hormonal regulation by ABA and ethylene. PMID:22848641
Inostroza-Blancheteau, Claudio; Aquea, Felipe; Reyes-Díaz, Marjorie; Alberdi, Miren; Arce-Johnson, Patricio
2011-09-01
To investigate the molecular mechanisms of Al(3+)-stress in blueberry, a cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was employed to identify Al-regulated genes in roots of contrasting genotypes of highbush blueberry (Brigitta, Al(3+)-resistant and Bluegold, Al(3+)-sensitive). Plants grown in hydroponic culture were treated with 0 and 100 μM Al(3+) and collected at different times over 48 h. Seventy transcript-derived fragments (TDFs) were identified as being Al(3+) responsive, 31 of which showed significant homology to genes with known or putative functions. Twelve TDFs were homologous to uncharacterized genes and 27 did not have significant matches. The expression pattern of several of the genes with known functions in other species was confirmed by quantitative relative real-time RT-PCR. Twelve genes of known or putative function were related to cellular metabolism, nine associated to stress responses and other transcription and transport facilitation processes. Genes involved in signal transduction, photosynthetic and energy processes were also identified, suggesting that a multitude of processes are implicated in the Al(3+)-stress response as reported previously for other species. The Al(3+)-stress response genes identified in this study could be involved in Al(3+)-resistance in woody plants.
Differential Expression of Two Novel Members of the Tomato Ethylene-Receptor Family
Tieman, Denise M.; Klee, Harry J.
1999-01-01
The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development. PMID:10318694
Lohbeck, Kai T; Riebesell, Ulf; Reusch, Thorsten B H
2014-07-07
Coccolithophores are unicellular marine algae that produce biogenic calcite scales and substantially contribute to marine primary production and carbon export to the deep ocean. Ongoing ocean acidification particularly impairs calcifying organisms, mostly resulting in decreased growth and calcification. Recent studies revealed that the immediate physiological response in the coccolithophore Emiliania huxleyi to ocean acidification may be partially compensated by evolutionary adaptation, yet the underlying molecular mechanisms are currently unknown. Here, we report on the expression levels of 10 candidate genes putatively relevant to pH regulation, carbon transport, calcification and photosynthesis in E. huxleyi populations short-term exposed to ocean acidification conditions after acclimation (physiological response) and after 500 generations of high CO2 adaptation (adaptive response). The physiological response revealed downregulation of candidate genes, well reflecting the concomitant decrease of growth and calcification. In the adaptive response, putative pH regulation and carbon transport genes were up-regulated, matching partial restoration of growth and calcification in high CO2-adapted populations. Adaptation to ocean acidification in E. huxleyi likely involved improved cellular pH regulation, presumably indirectly affecting calcification. Adaptive evolution may thus have the potential to partially restore cellular pH regulatory capacity and thereby mitigate adverse effects of ocean acidification. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Prenatal Maternal Stress Programs Infant Stress Regulation
ERIC Educational Resources Information Center
Davis, Elysia Poggi; Glynn, Laura M.; Waffarn, Feizal; Sandman, Curt A.
2011-01-01
Objective: Prenatal exposure to inappropriate levels of glucocorticoids (GCs) and maternal stress are putative mechanisms for the fetal programming of later health outcomes. The current investigation examined the influence of prenatal maternal cortisol and maternal psychosocial stress on infant physiological and behavioral responses to stress.…
Magnitude Of Stimulation Dictates The Cannabinoid-Mediated Differential T Cell Response To HIVgp120
Cannabinoids have immunosuppressive properties, but it is unknown whether cannabinoids further impair the immune status of immunocompromised HIV patients, as approximately 25% of HIV patients smoke marijuana for its putative therapeutic benefit. A surrogate mouse model to induce ...
Ying, Shibo; Dünnebier, Thomas; Si, Jing; Hamann, Ute
2013-01-01
UBC9 encodes a protein that conjugates small ubiquitin-related modifier (SUMO) to target proteins thereby changing their functions. Recently, it was noted that UBC9 expression and activity play a role in breast tumorigenesis and response to anticancer drugs. However, the underlying mechanism is poorly understood. To investigate the transcriptional regulation of the UBC9 gene, we identified and characterized its promoter and cis-elements. Promoter activity was tested using luciferase reporter assays. The binding of transcription factors to the promoter was detected by chromatin immunoprecipitation (ChIP), and their functional role was confirmed by siRNA knockdown. UBC9 mRNA and protein levels were measured by quantitative reverse transcription PCR and Western blot analysis, respectively. An increased expression of UBC9 mRNA and protein was found in MCF-7 breast cancer cells treated with 17β-estradiol (E2). Analysis of various deletion mutants revealed a 137 bp fragment upstream of the transcription initiation site to be sufficient for reporter gene transcription. Mutations of putative estrogen receptor α (ER-α) (one imperfect estrogen response element, ERE) and/or nuclear factor Y (NF-Y) binding sites (two CCAAT boxes) markedly reduced promoter activity. Similar results were obtained in ER-negative MDA-MB-231 cells except that the ERE mutation did not affect promoter activity. Additionally, promoter activity was stimulated upon E2 treatment and overexpression of ER-α or NF-YA in MCF-7 cells. ChIP confirmed direct binding of both transcription factors to the UBC9 promoter in vivo. Furthermore, UBC9 expression was diminished by ER-α and NF-Y siRNAs on the mRNA and protein levels. In conclusion, we identified the proximal UBC9 promoter and provided evidence that ER-α and NF-Y regulate UBC9 expression on the transcriptional level in response to E2 in MCF-7 cells. These findings may contribute to a better understanding of the regulation of UBC9 in ER-positive breast cancer and be useful for the development of cancer therapies targeting UBC9.
Ashton, Kevin J.; Tupicoff, Amanda; Williams-Pritchard, Grant; Kiessling, Can J.; See Hoe, Louise E.; Headrick, John P.; Peart, Jason N.
2013-01-01
Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated determinants of cellular resistance to oxidant (Mgst3,Gstm1,Gstm2) and other forms of stress (Xirp1,Ankrd1,Clu), and repression of stress-response genes (Hspa1a,Hspd1,Hsp90aa,Hsph1,Serpinh1) and Txnip. Conclusions Protection via SLP is associated with transcriptional repression of inflammation/immunity, up-regulation of sarcomeric elements and natriuretic peptides, and modulation of cell stress, growth and development, while conventional protective molecules are unaltered. PMID:23991079
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, Arzu; Kang, Hyuk; Timmermans, A. M.
2009-06-01
Tamoxifen-resistance is a major cause of death in patients with recurrent breast cancer. Current clinical factors can correctly predict therapy response in only half of the treated patients. Identification of proteins that associate with tamoxifen-resistance is a first step towards better response prediction and tailored treatment of patients. In the present study we intended to identify putative protein biomarkers indicative of tamoxifen therapy-resistance in breast cancer, using nanoLC coupled with FTICR MS. Comparative proteome analysis was performed on ~5,500 pooled tumor cells (corresponding to ~550 ng protein lysate/analysis) obtained through laser capture microdissection (LCM) from two independently processed data setsmore » (n=24 and n=27) containing both tamoxifen therapy-sensitive and therapy-resistant tumors. Peptides and proteins were identified by matching mass and elution time of newly acquired LC-MS features to information in previously generated accurate mass and time tag (AMT) reference databases.« less
Phage phenomics: Physiological approaches to characterize novel viral proteins
Sanchez, Savannah E. [San Diego State Univ., San Diego, CA (United States); Cuevas, Daniel A. [San Diego State Univ., San Diego, CA (United States); Rostron, Jason E. [San Diego State Univ., San Diego, CA (United States); Liang, Tiffany Y. [San Diego State Univ., San Diego, CA (United States); Pivaroff, Cullen G. [San Diego State Univ., San Diego, CA (United States); Haynes, Matthew R. [San Diego State Univ., San Diego, CA (United States); Nulton, Jim [San Diego State Univ., San Diego, CA (United States); Felts, Ben [San Diego State Univ., San Diego, CA (United States); Bailey, Barbara A. [San Diego State Univ., San Diego, CA (United States); Salamon, Peter [San Diego State Univ., San Diego, CA (United States); Edwards, Robert A. [San Diego State Univ., San Diego, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Burgin, Alex B. [Broad Institute, Cambridge, MA (United States); Segall, Anca M. [San Diego State Univ., San Diego, CA (United States); Rohwer, Forest [San Diego State Univ., San Diego, CA (United States)
2018-06-21
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysis by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.
Egan, Sharon A.; Ward, Philip N.; Watson, Michael; Field, Terence R.
2012-01-01
The regulation and control of gene expression in response to differing environmental stimuli is crucial for successful pathogen adaptation and persistence. The regulatory gene vru of Streptococcus uberis encodes a stand-alone response regulator with similarity to the Mga of group A Streptococcus. Mga controls expression of a number of important virulence determinants. Experimental intramammary challenge of dairy cattle with a mutant of S. uberis carrying an inactivating lesion in vru showed reduced ability to colonize the mammary gland and an inability to induce clinical signs of mastitis compared with the wild-type strain. Analysis of transcriptional differences of gene expression in the mutant, determined by microarray analysis, identified a number of coding sequences with altered expression in the absence of Vru. These consisted of known and putative virulence determinants, including Lbp (Sub0145), SclB (Sub1095), PauA (Sub1785) and hasA (Sub1696). PMID:22383474
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sanchez, Savannah E.; Cuevas, Daniel A.; Rostron, Jason E.
Current investigations into phage-host interactions are dependent on extrapolating knowledge from (meta)genomes. Interestingly, 60 - 95% of all phage sequences share no homology to current annotated proteins. As a result, a large proportion of phage genes are annotated as hypothetical. This reality heavily affects the annotation of both structural and auxiliary metabolic genes. Here we present phenomic methods designed to capture the physiological response(s) of a selected host during expression of one of these unknown phage genes. Multi-phenotype Assay Plates (MAPs) are used to monitor the diversity of host substrate utilization and subsequent biomass formation, while metabolomics provides bi-product analysismore » by monitoring metabolite abundance and diversity. Both tools are used simultaneously to provide a phenotypic profile associated with expression of a single putative phage open reading frame (ORF). Thus, representative results for both methods are compared, highlighting the phenotypic profile differences of a host carrying either putative structural or metabolic phage genes. In addition, the visualization techniques and high throughput computational pipelines that facilitated experimental analysis are presented.« less
Global gene expression analysis of the heat shock response in the phytopathogen Xylella fastidiosa.
Koide, Tie; Vêncio, Ricardo Z N; Gomes, Suely L
2006-08-01
Xylella fastidiosa is a phytopathogenic bacterium that is responsible for diseases in many economically important crops. Although different strains have been studied, little is known about X. fastidiosa stress responses. One of the better characterized stress responses in bacteria is the heat shock response, which induces the expression of specific genes to prevent protein misfolding and aggregation and to promote degradation of the irreversibly denatured polypeptides. To investigate X. fastidiosa genes involved in the heat shock response, we performed a whole-genome microarray analysis in a time course experiment. Globally, 261 genes were induced (9.7%) and 222 genes were repressed (8.3%). The expression profiles of the differentially expressed genes were grouped, and their expression patterns were validated by quantitative reverse transcription-PCR experiments. We determined the transcription start sites of six heat shock-inducible genes and analyzed their promoter regions, which allowed us to propose a putative consensus for sigma(32) promoters in Xylella and to suggest additional genes as putative members of this regulon. Besides the induction of classical heat shock protein genes, we observed the up-regulation of virulence-associated genes such as vapD and of genes for hemagglutinins, hemolysin, and xylan-degrading enzymes, which may indicate the importance of heat stress to bacterial pathogenesis. In addition, we observed the repression of genes related to fimbriae, aerobic respiration, and protein biosynthesis and the induction of genes related to the extracytoplasmic stress response and some phage-related genes, revealing the complex network of genes that work together in response to heat shock.
Filip'echeva, Yulia; Shelud'ko, Andrei; Prilipov, Alexei; Telesheva, Elizaveta; Mokeev, Dmitry; Burov, Andrei; Petrova, Lilia; Katsy, Elena
2018-03-01
Azospirillum brasilense has the ability of swimming and swarming motility owing to the work of a constitutive polar flagellum and inducible lateral flagella, respectively. The interplay between these flagellar systems is poorly understood. One of the key elements of the flagellar export apparatus is the protein FlhB. Two predicted flhB genes are present in the genome of A. brasilense Sp245 (accession nos. HE577327-HE577333). Experimental evidence obtained here indicates that the chromosomal coding sequence (CDS) AZOBR_150177 (flhB1) of Sp245 is essential for the production of both types of flagella. In an flhB1:: Omegon-Km mutant, Sp245.1063, defects in polar and lateral flagellar assembly and motility were complemented by expressing the wild-type flhB1 gene from plasmid pRK415. It was found that Sp245.1063 lost the capacity for slight but statistically significant decrease in mean cell length in response to transfer from solid to liquid media, and vice versa; in the complemented mutant, this capacity was restored. It was also shown that after the acquisition of the pRK415-harbored downstream CDS AZOBR_150176, cells of Sp245 and Sp245.1063 ceased to elongate on solid media. These initial data suggest that the AZOBR_150176-encoded putative multisensory hybrid sensor histidine kinase-response regulator, in concert with FlhB1, plays a role in morphological response of azospirilla to changes in the hardness of a milieu.
Mga2 Transcription Factor Regulates an Oxygen-responsive Lipid Homeostasis Pathway in Fission Yeast*
Burr, Risa; Stewart, Emerson V.; Shao, Wei; Zhao, Shan; Hannibal-Bach, Hans Kristian; Ejsing, Christer S.; Espenshade, Peter J.
2016-01-01
Eukaryotic lipid synthesis is oxygen-dependent with cholesterol synthesis requiring 11 oxygen molecules and fatty acid desaturation requiring 1 oxygen molecule per double bond. Accordingly, organisms evaluate oxygen availability to control lipid homeostasis. The sterol regulatory element-binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis in response to changing sterol and oxygen levels. However, notably missing is an SREBP-1 analog that regulates triacylglycerol and glycerophospholipid homeostasis in response to low oxygen. Consistent with this, studies have shown that the Sre1 transcription factor regulates only a fraction of all genes up-regulated under low oxygen. To identify new regulators of low oxygen adaptation, we screened the S. pombe nonessential haploid deletion collection and identified 27 gene deletions sensitive to both low oxygen and cobalt chloride, a hypoxia mimetic. One of these genes, mga2, is a putative transcriptional activator. In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid saturation. Indeed, addition of exogenous oleic acid to mga2Δ cells rescued the observed growth defects. Together, these results establish Mga2 as a transcriptional regulator of triacylglycerol and glycerophospholipid homeostasis in S. pombe, analogous to mammalian SREBP-1. PMID:27053105
Ogah, Danlami Moses; Iannaccone, Marco; Erhardt, Georg; Di Stasio, Liliana; Cosenza, Gianfranco
2018-01-01
Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3’UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits. PMID:29608621
RNA Sequencing of the Exercise Transcriptome in Equine Athletes
Verini-Supplizi, Andrea; Barcaccia, Gianni; Albiero, Alessandro; D'Angelo, Michela; Campagna, Davide; Valle, Giorgio; Felicetti, Michela; Silvestrelli, Maurizio; Cappelli, Katia
2013-01-01
The horse is an optimal model organism for studying the genomic response to exercise-induced stress, due to its natural aptitude for athletic performance and the relative homogeneity of its genetic and environmental backgrounds. Here, we applied RNA-sequencing analysis through the use of SOLiD technology in an experimental framework centered on exercise-induced stress during endurance races in equine athletes. We monitored the transcriptional landscape by comparing gene expression levels between animals at rest and after competition. Overall, we observed a shift from coding to non-coding regions, suggesting that the stress response involves the differential expression of not annotated regions. Notably, we observed significant post-race increases of reads that correspond to repeats, especially the intergenic and intronic L1 and L2 transposable elements. We also observed increased expression of the antisense strands compared to the sense strands in intronic and regulatory regions (1 kb up- and downstream) of the genes, suggesting that antisense transcription could be one of the main mechanisms for transposon regulation in the horse under stress conditions. We identified a large number of transcripts corresponding to intergenic and intronic regions putatively associated with new transcriptional elements. Gene expression and pathway analysis allowed us to identify several biological processes and molecular functions that may be involved with exercise-induced stress. Ontology clustering reflected mechanisms that are already known to be stress activated (e.g., chemokine-type cytokines, Toll-like receptors, and kinases), as well as “nucleic acid binding” and “signal transduction activity” functions. There was also a general and transient decrease in the global rates of protein synthesis, which would be expected after strenuous global stress. In sum, our network analysis points toward the involvement of specific gene clusters in equine exercise-induced stress, including those involved in inflammation, cell signaling, and immune interactions. PMID:24391776
Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan
2013-01-01
On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266
Pauciullo, Alfredo; Ogah, Danlami Moses; Iannaccone, Marco; Erhardt, Georg; Di Stasio, Liliana; Cosenza, Gianfranco
2018-01-01
Oxytocin is a neurohypophysial peptide linked to a wide range of biological functions, including milk ejection, temperament and reproduction. Aims of the present study were a) the characterization of the OXT (Oxytocin-neurophysin I) gene and its regulatory regions in Old and New world camelids; b) the investigation of the genetic diversity and the discovery of markers potentially affecting the gene regulation. On average, the gene extends over 814 bp, ranging between 825 bp in dromedary, 811 bp in Bactrian and 810 bp in llama and alpaca. Such difference in size is due to a duplication event of 21 bp in dromedary. The main regulatory elements, including the composite hormone response elements (CHREs), were identified in the promoter, whereas the presence of mature microRNAs binding sequences in the 3'UTR improves the knowledge on the factors putatively involved in the OXT gene regulation, although their specific biological effect needs to be still elucidated. The sequencing of genomic DNA allowed the identification of 17 intraspecific polymorphisms and 69 nucleotide differences among the four species. One of these (MF464535:g.622C>G) is responsible, in alpaca, for the loss of a consensus sequence for the transcription factor SP1. Furthermore, the same SNP falls within a CpG island and it creates a new methylation site, thus opening future possibilities of investigation to verify the influence of the novel allelic variant in the OXT gene regulation. A PCR-RFLP method was setup for the genotyping and the frequency of the allele C was 0.93 in a population of 71 alpacas. The obtained data clarify the structure of OXT gene in domestic camelids and add knowledge to the genetic variability of a genomic region, which has received little investigation so far. These findings open the opportunity for new investigations, including association studies with productive and reproductive traits.
Amiour, Nardjis; Imbaud, Sandrine; Clément, Gilles; Agier, Nicolas; Zivy, Michel; Valot, Benoît; Balliau, Thierry; Quilleré, Isabelle; Tercé-Laforgue, Thérèse; Dargel-Graffin, Céline; Hirel, Bertrand
2014-11-20
To identify the key elements controlling grain production in maize, it is essential to have an integrated view of the responses to alterations in the main steps of nitrogen assimilation by modification of gene expression. Two maize mutant lines (gln1.3 and gln1.4), deficient in two genes encoding cytosolic glutamine synthetase, a key enzyme involved in nitrogen assimilation, were previously characterized by a reduction of kernel size in the gln1.4 mutant and by a reduction of kernel number in the gln1.3 mutant. In this work, the differences in leaf gene transcripts, proteins and metabolite accumulation in gln1.3 and gln1.4 mutants were studied at two key stages of plant development, in order to identify putative candidate genes, proteins and metabolic pathways contributing on one hand to the control of plant development and on the other to grain production. The most interesting finding in this study is that a number of key plant processes were altered in the gln1.3 and gln1.4 mutants, including a number of major biological processes such as carbon metabolism and transport, cell wall metabolism, and several metabolic pathways and stress responsive and regulatory elements. We also found that the two mutants share common or specific characteristics across at least two or even three of the "omics" considered at the vegetative stage of plant development, or during the grain filling period. This is the first comprehensive molecular and physiological characterization of two cytosolic glutamine synthetase maize mutants using a combined transcriptomic, proteomic and metabolomic approach. We find that the integration of the three "omics" procedures is not straight forward, since developmental and mutant-specific levels of regulation seem to occur from gene expression to metabolite accumulation. However, their potential use is discussed with a view to improving our understanding of nitrogen assimilation and partitioning and its impact on grain production.
Human tRNA genes function as chromatin insulators
Raab, Jesse R; Chiu, Jonathan; Zhu, Jingchun; Katzman, Sol; Kurukuti, Sreenivasulu; Wade, Paul A; Haussler, David; Kamakaka, Rohinton T
2012-01-01
Insulators help separate active chromatin domains from silenced ones. In yeast, gene promoters act as insulators to block the spread of Sir and HP1 mediated silencing while in metazoans most insulators are multipartite autonomous entities. tDNAs are repetitive sequences dispersed throughout the human genome and we now show that some of these tDNAs can function as insulators in human cells. Using computational methods, we identified putative human tDNA insulators. Using silencer blocking, transgene protection and repressor blocking assays we show that some of these tDNA-containing fragments can function as barrier insulators in human cells. We find that these elements also have the ability to block enhancers from activating RNA pol II transcribed promoters. Characterization of a putative tDNA insulator in human cells reveals that the site possesses chromatin signatures similar to those observed at other better-characterized eukaryotic insulators. Enhanced 4C analysis demonstrates that the tDNA insulator makes long-range chromatin contacts with other tDNAs and ETC sites but not with intervening or flanking RNA pol II transcribed genes. PMID:22085927
Shell alterations in limpets as putative biomarkers for multi-impacted coastal areas.
Begliomini, Felipe Nincao; Maciel, Daniele Claudino; de Almeida, Sérgio Mendonça; Abessa, Denis Moledo; Maranho, Luciane Alves; Pereira, Camilo Seabra; Yogui, Gilvan Takeshi; Zanardi-Lamardo, Eliete; Castro, Ítalo Braga
2017-07-01
During the last years, shell alterations in gastropods have been proposed as tools to be used in monitoring programs. However, no studies were so far performed investigating the relationships among shell parameters and classical biomarkers of damage. The relationship between shell alterations (biometrics, shape and elemental composition) and biomarkers (LPO and DNA strand break) was evaluated in the limpet L. subrugosa sampled along a contamination gradient in a multi-impacted coastal zone from southeastern Brazil. Statistically significant differences were detected among sites under different pollution levels. The occurrence of shell malformations was consistent with environmental levels of several hazardous substances reported for the studied area and related to lipid peroxidation and DNA damage. In addition, considering the low mobility, wide geographic distribution, ease of collection and abundance of limpets in coastal zones, this putative tool may be a cost-effective alternative to traditional biomarkers. Thus, shell alterations in limpets seem to be good proxies for assessing biological adverse effects in multi-impacted coastal zones. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sensing charges of the Ciona intestinalis voltage-sensing phosphatase.
Villalba-Galea, Carlos A; Frezza, Ludivine; Sandtner, Walter; Bezanilla, Francisco
2013-11-01
Voltage control over enzymatic activity in voltage-sensitive phosphatases (VSPs) is conferred by a voltage-sensing domain (VSD) located in the N terminus. These VSDs are constituted by four putative transmembrane segments (S1 to S4) resembling those found in voltage-gated ion channels. The putative fourth segment (S4) of the VSD contains positive residues that likely function as voltage-sensing elements. To study in detail how these residues sense the plasma membrane potential, we have focused on five arginines in the S4 segment of the Ciona intestinalis VSP (Ci-VSP). After implementing a histidine scan, here we show that four arginine-to-histidine mutants, namely R223H to R232H, mediate voltage-dependent proton translocation across the membrane, indicating that these residues transit through the hydrophobic core of Ci-VSP as a function of the membrane potential. These observations indicate that the charges carried by these residues are sensing charges. Furthermore, our results also show that the electrical field in VSPs is focused in a narrow hydrophobic region that separates the extracellular and intracellular space and constitutes the energy barrier for charge crossing.
Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.
Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo
2013-12-01
Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.
Scolari, Francesca; Gomulski, Ludvik M.; Ribeiro, José M. C.; Siciliano, Paolo; Meraldi, Alice; Falchetto, Marco; Bonomi, Angelica; Manni, Mosè; Gabrieli, Paolo; Malovini, Alberto; Bellazzi, Riccardo; Aksoy, Serap; Gasperi, Giuliano; Malacrida, Anna R.
2012-01-01
Background Insect seminal fluid is a complex mixture of proteins, carbohydrates and lipids, produced in the male reproductive tract. This seminal fluid is transferred together with the spermatozoa during mating and induces post-mating changes in the female. Molecular characterization of seminal fluid proteins in the Mediterranean fruit fly, Ceratitis capitata, is limited, although studies suggest that some of these proteins are biologically active. Methodology/Principal Findings We report on the functional annotation of 5914 high quality expressed sequence tags (ESTs) from the testes and male accessory glands, to identify transcripts encoding putative secreted peptides that might elicit post-mating responses in females. The ESTs were assembled into 3344 contigs, of which over 33% produced no hits against the nr database, and thus may represent novel or rapidly evolving sequences. Extraction of the coding sequences resulted in a total of 3371 putative peptides. The annotated dataset is available as a hyperlinked spreadsheet. Four hundred peptides were identified with putative secretory activity, including odorant binding proteins, protease inhibitor domain-containing peptides, antigen 5 proteins, mucins, and immunity-related sequences. Quantitative RT-PCR-based analyses of a subset of putative secretory protein-encoding transcripts from accessory glands indicated changes in their abundance after one or more copulations when compared to virgin males of the same age. These changes in abundance, particularly evident after the third mating, may be related to the requirement to replenish proteins to be transferred to the female. Conclusions/Significance We have developed the first large-scale dataset for novel studies on functions and processes associated with the reproductive biology of Ceratitis capitata. The identified genes may help study genome evolution, in light of the high adaptive potential of the medfly. In addition, studies of male recovery dynamics in terms of accessory gland gene expression profiles and correlated remating inhibition mechanisms may permit the improvement of pest management approaches. PMID:23071645
Gikonyo, Nicholas K; Hassanali, Ahmed; Njagi, Peter G N; Saini, Rajinder K
2003-10-01
In a previous study, comparison of the behavior of teneral Glossina morsitans morsitans on waterbuck, Kobus defassa (a refractory host), and on two preferred hosts, buffalo, Syncerus caffer, and ox, Bos indicus, suggested the presence of allomones in the waterbuck odor. Examination of the volatile odors by coupled gas chromatography-electroantennographic detection showed that the antennal receptors of the flies detected constituents common to the three bovids (phenols and aldehydes), as well as a series of compounds specific to waterbuck, including C8-C13 methyl ketones, delta-octalactone, and phenols. In this study, behavioral respones of teneral G. m. morsitans to different blends of these compounds were evaluated in a choice wind tunnel. The flies' responses to known or putative attractant blends (the latter comprising EAG-active constituents common to all three animals and those common to buffalo and ox, excluding the known tseste attractants, 4-methylphenol and 3-n-propylphenol), and to putative repellent (the blend of EAG-active compounds specific to the waterbuck volatiles), were different. A major difference related to their initial and final behaviors. When a choice of attractant blends (known or putative) and clean air was presented, flies initially responded by flying upwind toward the odor source, but later moved downwind and rested on either side of the tunnel, with some preference for the side with the odor treatments. However, when presented with a choice of waterbuck-specific blend (putative repellent) and clean air, the flies' initial reaction appeared random; flies flew upwind on either side, but eventually settled down on the odorless side of the tunnel. Flies that flew up the odor plume showed an aversion behavior to the blend. The results lend further support to previous indications for the existence of a tsetse repellent blend in waterbuck body odor and additional attractive constituents in buffalo and ox body odors.
Li, Fu-Gui; Chen, Jie; Jiang, Xia-Yun; Zou, Shu-Ming
2015-01-01
The blunt snout bream (Megalobrama amblycephala) is an important freshwater aquaculture species, but it is sensitive to hypoxia. No transcriptome data related to growth and hypoxia response are available for this species. In this study, we performed de novo transcriptome sequencing for the liver and gills of the fast-growth family and slow-growth family derived from ‘Pujiang No.1’ F10 blunt snout bream that were under hypoxic stress and normoxia, respectively. The fish were divided into the following 4 groups: fast-growth family under hypoxic stress, FH; slow-growth family under hypoxic stress, SH; fast-growth family under normoxia, FN; and slow-growth family under normoxia, SN. A total of 185 million high-quality reads were obtained from the normalized cDNA of the pooled samples, which were assembled into 465,582 contigs and 237,172 transcripts. A total of 31,338 transcripts from the same locus (unigenes) were annotated and assigned to 104 functional groups, and 23,103 unigenes were classified into seven main categories, including 45 secondary KEGG pathways. A total of 22,255 (71%) known putative unigenes were found to be shared across the genomes of five model fish species and mammals, and a substantial number (9.4%) of potentially novel genes were identified. When 6,639 unigenes were used in the analysis of differential expression (DE) genes, the number of putative DE genes related to growth pathways in FH, SH, SN and FN was 159, 118, 92 and 65 in both the liver and gills, respectively, and the number of DE genes related to hypoxic response was 57, 33, 23 and 21 in FH, FN, SH and SN, respectively. Our results suggest that growth performance of the fast-growth family should be due to complex mutual gene regulatory mechanisms of these putative DE genes between growth and hypoxia. PMID:26554582
Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.
Khairy, Heba; Wübbeler, Jan Hendrik; Steinbüchel, Alexander
2015-12-01
Four Rhodococcus spp. exhibited the ability to use 4,4'-dithiodibutyric acid (DTDB) as a sole carbon source for growth. The most important step for the production of a novel polythioester (PTE) using DTDB as a precursor substrate is the initial cleavage of DTDB. Thus, identification of the enzyme responsible for this step was mandatory. Because Rhodococcus erythropolis strain MI2 serves as a model organism for elucidation of the biodegradation of DTDB, it was used to identify the genes encoding the enzymes involved in DTDB utilization. To identify these genes, transposon mutagenesis of R. erythropolis MI2 was carried out using transposon pTNR-TA. Among 3,261 mutants screened, 8 showed no growth with DTDB as the sole carbon source. In five mutants, the insertion locus was mapped either within a gene coding for a polysaccharide deacetyltransferase, a putative ATPase, or an acetyl coenzyme A transferase, 1 bp upstream of a gene coding for a putative methylase, or 176 bp downstream of a gene coding for a putative kinase. In another mutant, the insertion was localized between genes encoding a putative transcriptional regulator of the TetR family (noxR) and an NADH:flavin oxidoreductase (nox). Moreover, in two other mutants, the insertion loci were mapped within a gene encoding a hypothetical protein in the vicinity of noxR and nox. The interruption mutant generated, R. erythropolis MI2 noxΩtsr, was unable to grow with DTDB as the sole carbon source. Subsequently, nox was overexpressed and purified, and its activity with DTDB was measured. The specific enzyme activity of Nox amounted to 1.2 ± 0.15 U/mg. Therefore, we propose that Nox is responsible for the initial cleavage of DTDB into 2 molecules of 4-mercaptobutyric acid (4MB). Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Scheff, N N; Yilmaz, E; Gold, M S
2014-01-01
The Na+–Ca2+ exchanger (NCX) appears to play an important role in the regulation of the high K+-evoked Ca2+ transient in putative nociceptive dorsal root ganglion (DRG) neurons. The purpose of the present study was to (1) characterize the properties of NCX activity in subpopulations of DRG neurons, (2) identify the isoform(s) underlying NCX activity, and (3) begin to assess the function of the isoform(s) in vivo. In retrogradely labelled neurons from the glabrous skin of adult male Sprague–Dawley rats, NCX activity, as assessed with fura-2-based microfluorimetry, was only detected in putative nociceptive IB4+ neurons. There were two modes of NCX activity: one was evoked in response to relatively large and long lasting (∼325 nm for >12 s) increases in the concentration of intracellular Ca2+ ([Ca2+]i), and a second was active at resting [Ca2+]i > ∼150 nm. There also were two modes of evoked activity: one that decayed relatively rapidly (<5 min) and a second that persisted (>10 min). Whereas mRNA encoding all three NCX isoforms (NCX1–3) was detected in putative nociceptive cutaneous neurons with single cell PCR, pharmacological analysis and small interfering RNA (siRNA) knockdown of each isoform in vivo suggested that NCX2 and 3 were responsible for NCX activity. Western blot analyses suggested that NCX isoforms were differentially distributed within sensory neurons. Functional assays of excitability, action potential propagation, and nociceptive behaviour suggest NCX activity has little influence on excitability per se, but instead influences axonal conduction velocity, resting membrane potential, and nociceptive threshold. Together these results indicate that the function of NCX in the regulation of [Ca2+]i in putative nociceptive neurons may be unique relative to other cells in which these exchanger isoforms have been characterized and it has the potential to influence sensory neuron properties at multiple levels. PMID:25239455
Carotti, Simone; Vespasiani-Gentilucci, Umberto; Perrone, Giuseppe; Picardi, Antonio; Morini, Sergio
2015-11-01
We investigated whether portal tract inflammation observed in non-alcoholic fatty liver disease (NAFLD) is associated with hepatic progenitor cell compartment activation, as thoroughly evaluated with different markers of the staminal lineage. Fifty-two patients with NAFLD were studied. NAFLD activity score, fibrosis and portal inflammation were histologically evaluated. Putative hepatic progenitor cells, intermediate hepatobiliary cells and bile ductules/interlobular bile ducts were evaluated by immunohistochemistry for cytokeratin (CK)-7, CK-19 and epithelial cell adhesion molecule (EpCAM), and a hepatic progenitor cell compartment score was derived. Hepatic stellate cell and myofibroblast activity was determined by immunohistochemistry for α-smooth muscle actin. Portal inflammation was absent in a minority of patients, mild in 40% of cases and more than mild in about half of patients, showing a strong correlation with fibrosis (r=0.76, p<0.001). Portal inflammation correlated with CK-7-counted putative hepatic progenitor cells (r=0.48, p<0.001), intermediate hepatobiliary cells (r=0.6, p<0.001) and bile ductules/interlobular bile ducts (r=0.6, p<0.001), and with the activity of myofibroblasts (r=0.5, p<0.001). Correlations were confirmed when elements were counted by immunostaining for CK-19 and EpCAM. Lobular inflammation, ballooning, myofibroblast activity and hepatic progenitor cell compartment activation were associated with portal inflammation by univariate analysis. In the multivariate model, the only variable independently associated with portal inflammation was hepatic progenitor cell compartment activation (OR 3.7, 95% CI 1.1 to 12.6). Portal inflammation is frequent during NAFLD and strongly associated with activation of putative hepatic progenitor cells since the first steps of their differentiation, portal myofibroblast activity and fibrosis. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Torres, AnnMarie; Luke, Joanna D; Kullas, Amy L; Kapilashrami, Kanishk; Botbol, Yair; Koller, Antonius; Tonge, Peter J; Chen, Emily I; Macian, Fernando; van der Velden, Adrianus W M
2016-02-01
Salmonellae are pathogenic bacteria that induce immunosuppression by mechanisms that remain largely unknown. Previously, we showed that a putative type II l-asparaginase produced by Salmonella Typhimurium inhibits T cell responses and mediates virulence in a murine model of infection. Here, we report that this putative L-asparaginase exhibits L-asparagine hydrolase activity required for Salmonella Typhimurium to inhibit T cells. We show that L-asparagine is a nutrient important for T cell activation and that L-asparagine deprivation, such as that mediated by the Salmonella Typhimurium L-asparaginase, causes suppression of activation-induced mammalian target of rapamycin signaling, autophagy, Myc expression, and L-lactate secretion. We also show that L-asparagine deprivation mediated by the Salmonella Typhimurium L-asparaginase causes suppression of cellular processes and pathways involved in protein synthesis, metabolism, and immune response. Our results advance knowledge of a mechanism used by Salmonella Typhimurium to inhibit T cell responses and mediate virulence, and provide new insights into the prerequisites of T cell activation. We propose a model in which l-asparagine deprivation inhibits T cell exit from quiescence by causing suppression of activation-induced metabolic reprogramming. © Society for Leukocyte Biology.
Dong, Zhaobin; Jiang, Chuan; Chen, Xiaoyang; Zhang, Tao; Ding, Lian; Song, Weibin; Luo, Hongbing; Lai, Jinsheng; Chen, Huabang; Liu, Renyi; Zhang, Xiaolan; Jin, Weiwei
2013-11-01
Auxin is a plant hormone that plays key roles in both shoot gravitropism and inflorescence development. However, these two processes appear to be parallel and to be regulated by distinct players. Here, we report that the maize (Zea mays) prostrate stem1 mutant, which is allelic to the classic mutant lazy plant1 (la1), displays prostrate growth with reduced shoot gravitropism and defective inflorescence development. Map-based cloning identified maize ZmLA1 as the functional ortholog of LAZY1 in rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana). It has a unique role in inflorescence development and displays enriched expression in reproductive organs such as tassels and ears. Transcription of ZmLA1 responds to auxin and is repressed by light. Furthermore, ZmLA1 physically interacts with a putative auxin transport regulator in the plasma membrane and a putative auxin signaling protein in the nucleus. RNA-SEQ data showed that dozens of auxin transport, auxin response, and light signaling genes were differentially expressed in la1 mutant stems. Therefore, ZmLA1 might mediate the cross talk between shoot gravitropism and inflorescence development by regulating auxin transport, auxin signaling, and probably light response in maize.
Radiation, Inflammation, and Immune Responses in Cancer
Multhoff, Gabriele; Radons, Jürgen
2012-01-01
Chronic inflammation has emerged as one of the hallmarks of cancer. Inflammation also plays a pivotal role in modulating radiation responsiveness of tumors. As discussed in this review, ionizing radiation (IR) leads to activation of several transcription factors modulating the expression of numerous mediators in tumor cells and cells of the microenvironment promoting cancer development. Novel therapeutic approaches thus aim to interfere with the activity or expression of these factors, either in single-agent or combinatorial treatment or as supplements of the existing therapeutic concepts. Among them, NF-κB, STAT-3, and HIF-1 play a crucial role in radiation-induced inflammatory responses embedded in a complex inflammatory network. A great variety of classical or novel drugs including nutraceuticals such as plant phytochemicals have the capacity to interfere with the inflammatory network in cancer and are considered as putative radiosensitizers. Thus, targeting the inflammatory signaling pathways induced by IR offers the opportunity to improve the clinical outcome of radiation therapy by enhancing radiosensitivity and decreasing putative metabolic effects. Since inflammation and sex steroids also impact tumorigenesis, a therapeutic approach targeting glucocorticoid receptors and radiation-induced production of tumorigenic factors might be effective in sensitizing certain tumors to IR. PMID:22675673
A Mobile Element in mutS Drives Hypermutation in a Marine Vibrio
Chu, Nathaniel D.; Clarke, Sean A.; Timberlake, Sonia; Polz, Martin F.; Grossman, Alan D.
2017-01-01
ABSTRACT Bacteria face a trade-off between genetic fidelity, which reduces deleterious mistakes in the genome, and genetic innovation, which allows organisms to adapt. Evidence suggests that many bacteria balance this trade-off by modulating their mutation rates, but few mechanisms have been described for such modulation. Following experimental evolution and whole-genome resequencing of the marine bacterium Vibrio splendidus 12B01, we discovered one such mechanism, which allows this bacterium to switch to an elevated mutation rate. This switch is driven by the excision of a mobile element residing in mutS, which encodes a DNA mismatch repair protein. When integrated within the bacterial genome, the mobile element provides independent promoter and translation start sequences for mutS—different from the bacterium’s original mutS promoter region—which allow the bacterium to make a functional mutS gene product. Excision of this mobile element rejoins the mutS gene with host promoter and translation start sequences but leaves a 2-bp deletion in the mutS sequence, resulting in a frameshift and a hypermutator phenotype. We further identified hundreds of clinical and environmental bacteria across Betaproteobacteria and Gammaproteobacteria that possess putative mobile elements within the same amino acid motif in mutS. In a subset of these bacteria, we detected excision of the element but not a frameshift mutation; the mobile elements leave an intact mutS coding sequence after excision. Our findings reveal a novel mechanism by which one bacterium alters its mutation rate and hint at a possible evolutionary role for mobile elements within mutS in other bacteria. PMID:28174306
Huang, Lin; Li, Guiyang; Mo, Zhaolan; Xiao, Peng; Li, Jie; Huang, Jie
2015-01-01
Background Japanese flounder (Paralichthys olivaceus) is an economically important marine fish in Asia and has suffered from disease outbreaks caused by various pathogens, which requires more information for immune relevant genes on genome background. However, genomic and transcriptomic data for Japanese flounder remain scarce, which limits studies on the immune system of this species. In this study, we characterized the Japanese flounder spleen transcriptome using an Illumina paired-end sequencing platform to identify putative genes involved in immunity. Methodology/Principal Findings A cDNA library from the spleen of P. olivaceus was constructed and randomly sequenced using an Illumina technique. The removal of low quality reads generated 12,196,968 trimmed reads, which assembled into 96,627 unigenes. A total of 21,391 unigenes (22.14%) were annotated in the NCBI Nr database, and only 1.1% of the BLASTx top-hits matched P. olivaceus protein sequences. Approximately 12,503 (58.45%) unigenes were categorized into three Gene Ontology groups, 19,547 (91.38%) were classified into 26 Cluster of Orthologous Groups, and 10,649 (49.78%) were assigned to six Kyoto Encyclopedia of Genes and Genomes pathways. Furthermore, 40,928 putative simple sequence repeats and 47, 362 putative single nucleotide polymorphisms were identified. Importantly, we identified 1,563 putative immune-associated unigenes that mapped to 15 immune signaling pathways. Conclusions/Significance The P. olivaceus transciptome data provides a rich source to discover and identify new genes, and the immune-relevant sequences identified here will facilitate our understanding of the mechanisms involved in the immune response. Furthermore, the plentiful potential SSRs and SNPs found in this study are important resources with respect to future development of a linkage map or marker assisted breeding programs for the flounder. PMID:25723398
Comparative analyses of putative toxin gene homologs from an Old World viper, Daboia russelii
Krishnan, Neeraja M.
2017-01-01
Availability of snake genome sequences has opened up exciting areas of research on comparative genomics and gene diversity. One of the challenges in studying snake genomes is the acquisition of biological material from live animals, especially from the venomous ones, making the process cumbersome and time-consuming. Here, we report comparative sequence analyses of putative toxin gene homologs from Russell’s viper (Daboia russelii) using whole-genome sequencing data obtained from shed skin. When compared with the major venom proteins in Russell’s viper studied previously, we found 45–100% sequence similarity between the venom proteins and their putative homologs in the skin. Additionally, comparative analyses of 20 putative toxin gene family homologs provided evidence of unique sequence motifs in nerve growth factor (NGF), platelet derived growth factor (PDGF), Kunitz/Bovine pancreatic trypsin inhibitor (Kunitz BPTI), cysteine-rich secretory proteins, antigen 5, andpathogenesis-related1 proteins (CAP) and cysteine-rich secretory protein (CRISP). In those derived proteins, we identified V11 and T35 in the NGF domain; F23 and A29 in the PDGF domain; N69, K2 and A5 in the CAP domain; and Q17 in the CRISP domain to be responsible for differences in the largest pockets across the protein domain structures in crotalines, viperines and elapids from the in silico structure-based analysis. Similarly, residues F10, Y11 and E20 appear to play an important role in the protein structures across the kunitz protein domain of viperids and elapids. Our study highlights the usefulness of shed skin in obtaining good quality high-molecular weight DNA for comparative genomic studies, and provides evidence towards the unique features and evolution of putative venom gene homologs in vipers. PMID:29230357
Yu, Guohua; Zhang, Yanqiong; Ren, Weiqiong; Dong, Ling; Li, Junfang; Geng, Ya; Zhang, Yi; Li, Defeng; Xu, Haiyu; Yang, Hongjun
2017-01-01
For decades in China, the Yin-Huang-Qing-Fei capsule (YHQFC) has been widely used in the treatment of chronic bronchitis, with good curative effects. Owing to the complexity of traditional Chinese herbal formulas, the pharmacological mechanism of YHQFC remains unclear. To address this problem, a network pharmacology-based strategy was proposed in this study. At first, the putative target profile of YHQFC was predicted using MedChem Studio, based on structural and functional similarities of all available YHQFC components to the known drugs obtained from the DrugBank database. Then, an interaction network was constructed using links between putative YHQFC targets and known therapeutic targets of chronic bronchitis. Following the calculation of four topological features (degree, betweenness, closeness, and coreness) of each node in the network, 475 major putative targets of YHQFC and their topological importance were identified. In addition, a pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes pathway database indicated that the major putative targets of YHQFC are significantly associated with various pathways involved in anti-inflammation processes, immune responses, and pathological changes caused by asthma. More interestingly, eight major putative targets of YHQFC (interleukin [IL]-3, IL-4, IL-5, IL-10, IL-13, FCER1G, CCL11, and EPX) were demonstrated to be associated with the inflammatory process that occurs during the progression of asthma. Finally, a molecular docking simulation was performed and the results exhibited that 17 pairs of chemical components and candidate YHQFC targets involved in asthma pathway had strong binding efficiencies. In conclusion, this network pharmacology-based investigation revealed that YHQFC may attenuate the inflammatory reaction of chronic bronchitis by regulating its candidate targets, which may be implicated in the major pathological processes of the asthma pathway.
Yu, Guohua; Zhang, Yanqiong; Ren, Weiqiong; Dong, Ling; Li, Junfang; Geng, Ya; Zhang, Yi; Li, Defeng; Xu, Haiyu; Yang, Hongjun
2017-01-01
For decades in China, the Yin–Huang–Qing–Fei capsule (YHQFC) has been widely used in the treatment of chronic bronchitis, with good curative effects. Owing to the complexity of traditional Chinese herbal formulas, the pharmacological mechanism of YHQFC remains unclear. To address this problem, a network pharmacology-based strategy was proposed in this study. At first, the putative target profile of YHQFC was predicted using MedChem Studio, based on structural and functional similarities of all available YHQFC components to the known drugs obtained from the DrugBank database. Then, an interaction network was constructed using links between putative YHQFC targets and known therapeutic targets of chronic bronchitis. Following the calculation of four topological features (degree, betweenness, closeness, and coreness) of each node in the network, 475 major putative targets of YHQFC and their topological importance were identified. In addition, a pathway enrichment analysis based on the Kyoto Encyclopedia of Genes and Genomes pathway database indicated that the major putative targets of YHQFC are significantly associated with various pathways involved in anti-inflammation processes, immune responses, and pathological changes caused by asthma. More interestingly, eight major putative targets of YHQFC (interleukin [IL]-3, IL-4, IL-5, IL-10, IL-13, FCER1G, CCL11, and EPX) were demonstrated to be associated with the inflammatory process that occurs during the progression of asthma. Finally, a molecular docking simulation was performed and the results exhibited that 17 pairs of chemical components and candidate YHQFC targets involved in asthma pathway had strong binding efficiencies. In conclusion, this network pharmacology-based investigation revealed that YHQFC may attenuate the inflammatory reaction of chronic bronchitis by regulating its candidate targets, which may be implicated in the major pathological processes of the asthma pathway. PMID:28053519
Allelic Analysis of Sheath Blight Resistance with Association Mapping in Rice
Jia, Limeng; Yan, Wengui; Zhu, Chengsong; Agrama, Hesham A.; Jackson, Aaron; Yeater, Kathleen; Li, Xiaobai; Huang, Bihu; Hu, Biaolin; McClung, Anna; Wu, Dianxing
2012-01-01
Sheath blight (ShB) caused by the soil-borne pathogen Rhizoctonia solani is one of the most devastating diseases in rice world-wide. Global attention has focused on examining individual mapping populations for quantitative trait loci (QTLs) for ShB resistance, but to date no study has taken advantage of association mapping to examine hundreds of lines for potentially novel QTLs. Our objective was to identify ShB QTLs via association mapping in rice using 217 sub-core entries from the USDA rice core collection, which were phenotyped with a micro-chamber screening method and genotyped with 155 genome-wide markers. Structure analysis divided the mapping panel into five groups, and model comparison revealed that PCA5 with genomic control was the best model for association mapping of ShB. Ten marker loci on seven chromosomes were significantly associated with response to the ShB pathogen. Among multiple alleles in each identified loci, the allele contributing the greatest effect to ShB resistance was named the putative resistant allele. Among 217 entries, entry GSOR 310389 contained the most putative resistant alleles, eight out of ten. The number of putative resistant alleles presented in an entry was highly and significantly correlated with the decrease of ShB rating (r = −0.535) or the increase of ShB resistance. Majority of the resistant entries that contained a large number of the putative resistant alleles belonged to indica, which is consistent with a general observation that most ShB resistant accessions are of indica origin. These findings demonstrate the potential to improve breeding efficiency by using marker-assisted selection to pyramid putative resistant alleles from various loci in a cultivar for enhanced ShB resistance in rice. PMID:22427867
2011-01-01
Background Laribacter hongkongensis is associated with community-acquired gastroenteritis and traveler's diarrhea. In this study, we performed an in-depth annotation of the genes in its genome related to the various steps in the infective process, drug resistance and mobile genetic elements. Results For acid and bile resistance, L. hongkongensis possessed a urease gene cassette, two arc gene clusters and bile salt efflux systems. For intestinal colonization, it possessed a putative adhesin of the autotransporter family homologous to those of diffusely adherent Escherichia coli (E. coli) and enterotoxigenic E. coli. To evade from host defense, it possessed superoxide dismutase and catalases. For lipopolysaccharide biosynthesis, it possessed the same set of genes that encode enzymes for synthesizing lipid A, two Kdo units and heptose units as E. coli, but different genes for its symmetrical acylation pattern, and nine genes for polysaccharide side chains biosynthesis. It contained a number of CDSs that encode putative cell surface acting (RTX toxin and hemolysins) and intracellular cytotoxins (patatin-like proteins) and enzymes for invasion (outer membrane phospholipase A). It contained a broad variety of antibiotic resistance-related genes, including genes related to β-lactam (n = 10) and multidrug efflux (n = 54). It also contained eight prophages, 17 other phage-related CDSs and 26 CDSs for transposases. Conclusions The L. hongkongensis genome possessed genes for acid and bile resistance, intestinal mucosa colonization, evasion of host defense and cytotoxicity and invasion. A broad variety of antibiotic resistance or multidrug resistance genes, a high number of prophages, other phage-related CDSs and CDSs for transposases, were also identified. PMID:21711902
Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu
2017-01-01
It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor. PMID:29040311
Müller, Werner E. G.; Wang, Xiaohong; Grebenjuk, Vlad A.; Korzhev, Michael; Wiens, Matthias; Schloßmacher, Ute; Schröder, Heinz C.
2012-01-01
Calcium-based matrices serve predominantly as inorganic, hard skeletal systems in Metazoa from calcareous sponges [phylum Porifera; class Calcarea] to proto- and deuterostomian multicellular animals. The calcareous sponges form their skeletal elements, the spicules, from amorphous calcium carbonate (ACC). Treatment of spicules from Sycon raphanus with sodium hypochlorite (NaOCl) results in the disintegration of the ACC in those skeletal elements. Until now a distinct protein/enzyme involved in ACC metabolism could not been identified in those animals. We applied the technique of phage display combinatorial libraries to identify oligopeptides that bind to NaOCl-treated spicules: those oligopeptides allowed us to detect proteins that bind to those spicules. Two molecules have been identified, the (putative) enzyme carbonic anhydrase and the (putative) osteoclast-stimulating factor (OSTF), that are involved in the catabolism of ACC. The complete cDNAs were isolated and the recombinant proteins were prepared to raise antibodies. In turn, immunofluorescence staining of tissue slices and qPCR analyses have been performed. The data show that sponges, cultivated under standard condition (10 mM CaCl2) show low levels of transcripts/proteins for carbonic anhydrase or OSTF, compared to those animals that had been cultivated under Ca2+-depletion condition (1 mM CaCl2). Our data identify with the carbonic anhydrase and the OSTF the first two molecules which remain conserved in cells, potentially involved in Ca-based skeletal dissolution, from sponges (sclerocytes) to human (osteoclast). PMID:22506035
Kondoh, Tatsunari; Manzoor, Rashid; Nao, Naganori; Maruyama, Junki; Furuyama, Wakako; Miyamoto, Hiroko; Shigeno, Asako; Kuroda, Makoto; Matsuno, Keita; Fujikura, Daisuke; Kajihara, Masahiro; Yoshida, Reiko; Igarashi, Manabu; Takada, Ayato
2017-01-01
It has been proposed that some non-retroviral RNA virus genes are integrated into vertebrate genomes. Endogenous filovirus-like elements (EFLs) have been discovered in some mammalian genomes. However, their potential roles in ebolavirus infection are unclear. A filovirus VP35-like element (mlEFL35) is found in the little brown bat (Myotis lucifugus) genome. Putative mlEFL35-derived protein (mlEFL35p) contains nearly full-length amino acid sequences corresponding to ebolavirus VP35. Ebola virus VP35 has been shown to bind double-stranded RNA, leading to inhibition of type I interferon (IFN) production, and is also known as a viral polymerase cofactor that is essential for viral RNA transcription/replication. In this study, we transiently expressed mlEFL35p in human kidney cells and investigated its biological functions. We first found that mlEFL35p was coimmunoprecipitated with itself and ebolavirus VP35s but not with the viral nucleoprotein. Then the biological functions of mlEFL35p were analyzed by comparing it to ebolavirus VP35s. We found that the expression of mlEFL35p significantly inhibited human IFN-β promoter activity as well as VP35s. By contrast, expression of mlEFL35p did not support viral RNA transcription/replication and indeed slightly decrease the reporter gene expression in a minigenome assay. These results suggest that mlEFL35p potentially acts as an IFN antagonist but not a polymerase cofactor.
Goudenège, David; Labreuche, Yannick; Krin, Evelyne; Ansquer, Dominique; Mangenot, Sophie; Calteau, Alexandra; Médigue, Claudine; Mazel, Didier; Polz, Martin F; Le Roux, Frédérique
2013-01-01
Vibrio nigripulchritudo is an emerging pathogen of farmed shrimp in New Caledonia and other regions in the Indo-Pacific. The molecular determinants of V. nigripulchritudo pathogenicity are unknown; however, molecular epidemiological studies have suggested that pathogenicity is linked to particular lineages. Here, we performed high-throughput sequencing-based comparative genome analysis of 16 V. nigripulchritudo strains to explore the genomic diversity and evolutionary history of pathogen-containing lineages and to identify pathogen-specific genetic elements. Our phylogenetic analysis revealed three pathogen-containing V. nigripulchritudo clades, including two clades previously identified from New Caledonia and one novel clade comprising putatively pathogenic isolates from septicemic shrimp in Madagascar. The similar genetic distance between the three clades indicates that they have diverged from an ancestral population roughly at the same time and recombination analysis indicates that these genomes have, in the past, shared a common gene pool and exchanged genes. As each contemporary lineage is comprised of nearly identical strains, comparative genomics allowed differentiation of genetic elements specific to shrimp pathogenesis of varying severity. Notably, only a large plasmid present in all highly pathogenic (HP) strains encodes a toxin. Although less/non-pathogenic strains contain related plasmids, these are differentiated by a putative toxin locus. Expression of this gene by a non-pathogenic V. nigripulchritudo strain resulted in production of toxic culture supernatant, normally an exclusive feature of HP strains. Thus, this protein, here termed ‘nigritoxin', is implicated to an extent that remains to be precisely determined in the toxicity of V. nigripulchritudo. PMID:23739050
Behavioral assay on Asian citrus psyllid attraction to orange jasmine
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid (ACP) is an important pest because it transmits a bacterium putatively responsible for huanglongbing, a devastating citrus disease. Research on ACP chemical ecology is of interest with respect to identifying attractants and repellents for managing the psyllid. We report on a...
Civilising Recalcitrant Boys' Bodies: Pursuing Social Fitness through the Anti-Obesity Offensive
ERIC Educational Resources Information Center
Monaghan, Lee F.
2014-01-01
Obesity discourse provides a commonly recycled rationale for multiple, ostensibly well-intended, interventions. Formal educational settings sometimes operate as sites for these biopedagogies which putatively promote "good health" among young people as they transition to "responsible" adulthood. Yet, regulation and control, or…
Response of butternut selections to inoculation with Sirococcus clavigignenti-juglandacearum
M.E. Ostry; M. Moore
2008-01-01
Butternut trees (Juglans cinerea) clonally propagated via grafting from source trees with putative resistance to butternut canker were inoculated monthly with two isolates of Sirococcus clavigignenti-juglandacearum in a field planting in Minnesota. Significant differences in resulting canker length were found among (i) month of...
Ashraf, Naeem Mahmood; Bilal, Muhammad; Mahmood, Malik Siddique; Hussain, Aadil; Mehboob, Muhammad Zubair
2016-09-01
Mounting burden of HCV-infected individuals and soaring cost of treatment is a serious source of unease for developing countries. Numbers of various approaches have been anticipated to develop a vaccine against HCV but the majority of them proved ineffective. Development of vaccine by considering geographical distribution of HCV genotypes and host genetics shows potential. In this research article, we have tried to predict most putative HCV epitopes which are efficiently restricted by most common HLA alleles in Pakistani population through different computational algorithms. Thirteen selected, experimentally identified epitopes sequences were used to derived consensus sequences in all genotypes of HCV. Obtained consensus sequences were used to predict their binding affinities with most prevalent HLA alleles in Pakistani population. Two Class-I epitopes from NS4B region, one from Class-I epitope from NS5A and one Class-II epitope from NS3 region showed effective binding and proved to be highly putative to boost immune response. A cocktail of these four have been checked for population coverage and they gave 75.53% for Pakistani Asian and 70.77% for Pakistani Mixed populations with no allergenic response. Computational algorithms are robust way to shortlist potential candidate epitopes for vaccine development but further, in vivo and in-vitro studies are required to confirm their immunogenic properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Casieri, Leonardo; Gallardo, Karine; Wipf, Daniel
2012-06-01
Sulphur is an essential macronutrient for plant growth, development and response to various abiotic and biotic stresses due to its key role in the biosynthesis of many S-containing compounds. Sulphate represents a very small portion of soil S pull and it is the only form that plant roots can uptake and mobilize through H(+)-dependent co-transport processes implying sulphate transporters. Unlike the other organically bound forms of S, sulphate is normally leached from soils due to its solubility in water, thus reducing its availability to plants. Although our knowledge of plant sulphate transporters has been growing significantly in the past decades, little is still known about the effect of the arbuscular mycorrhiza interaction on sulphur uptake. Carbon, nitrogen and sulphur measurements in plant parts and expression analysis of genes encoding putative Medicago sulphate transporters (MtSULTRs) were performed to better understand the beneficial effects of mycorrhizal interaction on Medicago truncatula plants colonized by Glomus intraradices at different sulphate concentrations. Mycorrhization significantly promoted plant growth and sulphur content, suggesting increased sulphate absorption. In silico analyses allowed identifying eight putative MtSULTRs phylogenetically distributed over the four sulphate transporter groups. Some putative MtSULTRs were transcribed differentially in roots and leaves and affected by sulphate concentration, while others were more constitutively transcribed. Mycorrhizal-inducible and -repressed MtSULTRs transcripts were identified allowing to shed light on the role of mycorrhizal interaction in sulphate uptake.
Kudo, Fumitaka; Matsuura, Yasunori; Hayashi, Takaaki; Fukushima, Masayuki; Eguchi, Tadashi
2016-07-01
Sordarin is a glycoside antibiotic with a unique tetracyclic diterpene aglycone structure called sordaricin. To understand its intriguing biosynthetic pathway that may include a Diels-Alder-type [4+2]cycloaddition, genome mining of the gene cluster from the draft genome sequence of the producer strain, Sordaria araneosa Cain ATCC 36386, was carried out. A contiguous 67 kb gene cluster consisting of 20 open reading frames encoding a putative diterpene cyclase, a glycosyltransferase, a type I polyketide synthase, and six cytochrome P450 monooxygenases were identified. In vitro enzymatic analysis of the putative diterpene cyclase SdnA showed that it catalyzes the transformation of geranylgeranyl diphosphate to cycloaraneosene, a known biosynthetic intermediate of sordarin. Furthermore, a putative glycosyltransferase SdnJ was found to catalyze the glycosylation of sordaricin in the presence of GDP-6-deoxy-d-altrose to give 4'-O-demethylsordarin. These results suggest that the identified sdn gene cluster is responsible for the biosynthesis of sordarin. Based on the isolated potential biosynthetic intermediates and bioinformatics analysis, a plausible biosynthetic pathway for sordarin is proposed.
Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W.
Martínez-Cuenca, Mary-Rus; Martínez-Alcántara, Belén; Quiñones, Ana; Ruiz, Marta; Iglesias, Domingo J; Primo-Millo, Eduardo; Forner-Giner, M Ángeles
2015-01-01
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured "in vitro" in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation.
Physiological and Molecular Responses to Excess Boron in Citrus macrophylla W
Martínez-Cuenca, Mary-Rus; Martínez-Alcántara, Belén; Quiñones, Ana; Ruiz, Marta; Iglesias, Domingo J.; Primo-Millo, Eduardo; Forner-Giner, M. Ángeles
2015-01-01
This work provides insight into several mechanisms involved in boron (B) regulation pathway in response to high B conditions in Citrus. The study was carried out in Citrus macrophylla W. (Cm) seedlings cultured “in vitro” in media with 50 or 400 μM H3BO3 (control, Ct, and B-excess, +B, plants, respectively). Growth parameters, B concentration, leaf chlorophyll (Chl) concentration, the expression of the main putative genes involved in B transport and distribution, and leaf and root proline and malonaldehyde (MDA) concentrations, were assessed. Excess B led to high B concentration in +B plants (3.8- and 1.4-fold in leaves and roots, respectively) when compared with Ct ones. However, a minor effect was recorded in the plant (incipient visual symptoms, less than 27% reduction in root growth and 26% decrease in Chl b concentration). B toxicity down-regulated by half the expression level of putative B transporter genes NIP5 and PIP1. CmBOR1 gene was not repressed in +B plants and B accumulated in the shoots. High B level increased the transcripts of putative gene TIP5, involved in B transport across the tonoplast, by 3.3- and 2.4-fold in leaves and roots, respectively. The activity of V-PPiase proton pump, related with the electrochemical gradient in the vacuole, was also enhanced in +B organs. B toxicity up-regulated putative BOR4 gene (2.1- and 2.7-fold in roots and leaves, respectively), which codifies for an active efflux B transporter. Accordingly, B was located in +B plants preferently in an insoluble form on cell walls. Finally, excess B caused a significant rise in proline concentration (51% and 34% in roots and leaves, respectively), while the MDA level did not exceed 20%. In conclusion, Cm tolerance to a high B level is likely based on the synergism of several specific mechanisms against B toxicity, including: 1/ down-regulation of NIP5 and PIP1 boron transporters; 2/ activation of B efflux from cells due to the up-regulation of putative BOR4 gene; 3/ compartmentation of B in the vacuole through TIP5 transporter activation and the acidification of the organelle; 4/ insolubilisation of B and deposition in cell walls preventing from cytoplasm damage; and, 5/ induction of an efficient antioxidant system through proline accumulation. PMID:26225859
Identification and characterization of an alternative promoter of the human PGC-1{alpha} gene
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshioka, Toyo; Inagaki, Kenjiro; Noguchi, Tetsuya, E-mail: noguchi@med.kobe-u.ac.jp
2009-04-17
The transcriptional regulator peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) controls mitochondrial biogenesis and energy homeostasis. Although physical exercise induces PGC-1{alpha} expression in muscle, the underlying mechanism of this effect has remained incompletely understood. We recently identified a novel muscle-enriched isoform of PGC-1{alpha} transcript (designated PGC-1{alpha}-b) that is derived from a previously unidentified first exon. We have now cloned and characterized the human PGC-1{alpha}-b promoter. The muscle-specific transcription factors MyoD and MRF4 transactivated this promoter through interaction with a proximal E-box motif. Furthermore, either forced expression of Ca{sup 2+}- and calmodulin-dependent protein kinase IV (CaMKIV), calcineurin A, or the p38 mitogen-activated proteinmore » kinase (p38 MAPK) kinase MKK6 or the intracellular accumulation of cAMP activated the PGC-1{alpha}-b promoter in cultured myoblasts through recruitment of cAMP response element (CRE)-binding protein (CREB) to a putative CRE located downstream of the E-box. Our results thus reveal a potential molecular basis for isoform-specific regulation of PGC-1{alpha} expression in contracting muscle.« less
Liu, Shuo; Zhang, Cun; Zhang, Kuo; Gao, Yuan; Wang, Zhaowei; Li, Xiaoju; Cheng, Guang; Wang, Shuning; Xue, Xiaochang; Li, Weina; Zhang, Wei; Zhang, Yingqi; Xing, Xianghui; Li, Meng; Hao, Qiang
2017-07-04
Colon cancer stem cell (cCSC) is considered as the seed cell of colon cancer initiation and metastasis. Cyclooxygenase-2 (COX2), a downstream target of NFκB, is found to be essential in promoting cancer stem cell renewal. However, how COX2 is dysregulated in cCSCs is largely unknown. In this study, we found that the expression of transcription factor FOXP3 was much lower in the spheroids than that in the parental tumor cells. Overexpression of FOXP3 significantly decreased the numbers of spheres, reduced the side population. Accordingly, FOXP3 expression decreased the tumor size and weight in the xenograft model. The tumor inhibitory effects of FOXP3 were rarely seen when COX2 was additionally knocked down. Mechanically, FOXP3 transcriptionally repressed COX2 expression via interacting with and thus inhibiting p65 activity on the putative NFκB response elements in COX2 promoter. Taken together, we here revealed possible involvement of FOXP3 in regulating cCSC self-renewal via tuning COX2 expression, and thus providing a new target for the eradication of colon cancer stem cells.
Brains in the City: Neurobiological effects of urbanization
Lambert, Kelly G.; Nelson, Randy J.; Jovanovic, Tanja; Cerdá, Magdalena
2016-01-01
With a majority of humans now living in cities, strategic research is necessary to elucidate the impact of this evolutionarily unfamiliar habitat on neural functions and well-being. In this review, both rodent and human models are considered in the evaluation of the changing physical and social landscapes associated with urban dwellings. Animal models assessing increased exposure to artificial physical elements characteristic of urban settings, as well as exposure to unnatural sources of light for extended durations, are reviewed. In both cases, increased biomarkers of mental illnesses such as major depression have been observed. Additionally, applied human research emphasizing the emotional impact of environmental threats associated with urban habitats is considered. Subjects evaluated in an inner-city hospital reveal the impact of combined specific genetic vulnerabilities and heightened stress responses in the expression of posttraumatic stress disorder. Finally, algorithm-based models of cities have been developed utilizing population-level analyses to identify risk factors for psychiatric illness. Although complex, the use of multiple research approaches, as described herein, results in an enhanced understanding of urbanization and its far-reaching effects--confirming the importance of continued research directed toward the identification of putative risk factors associated with psychiatric illness in urban settings. PMID:25936504
Liao, Chunyan; Gock, Andrew; Michie, Michelle; Morton, Bethany; Anderson, Alisha; Trowell, Stephen
2010-01-01
Background Automated standoff detection and classification of explosives based on their characteristic vapours would be highly desirable. Biologically derived odorant receptors have potential as the explosive recognition element in novel biosensors. Caenorhabditis elegans' genome contains over 1,000 uncharacterised candidate chemosensory receptors. It was not known whether any of these respond to volatile chemicals derived from or associated with explosives. Methodology/Principal Findings We assayed C. elegans for chemotactic responses to chemical vapours of explosives and compounds associated with explosives. C. elegans failed to respond to many of the explosive materials themselves but showed strong chemotaxis with a number of compounds associated with commercial or homemade explosives. Genetic mutant strains were used to identify the likely neuronal location of a putative receptor responding to cyclohexanone, which is a contaminant of some compounded explosives, and to identify the specific transduction pathway involved. Upper limits on the sensitivity of the nematode were calculated. A sensory adaptation protocol was used to estimate the receptive range of the receptor. Conclusions/Significance: The results suggest that C. elegans may be a convenient source of highly sensitive, narrowly tuned receptors to detect a range of explosive-associated volatiles. PMID:20830309
Kim, Hyo Jung; Kim, Il Soon; Dong, Yin; Lee, Ik-Soo; Kim, Jin Sook; Kim, Jong-Sang; Woo, Je-Tae; Cha, Byung-Yoon
2015-04-20
The melanin-inducing properties of cirsimaritin were investigated in murine B16F10 cells. Cirsimaritin is an active flavone with methoxy groups, which is isolated from the branches of Lithocarpus dealbatus. Tyrosinase activity and melanin content in murine B16F10 melanoma cells were increased by cirsimaritin in a dose-dependent manner. Western blot analysis revealed that tyrosinase, tyrosinase-related protein (TRP) 1, TRP2 protein levels were enhanced after treatment with cirsimaritin for 48 h. Cirsimaritin also upregulated the expression of microphthalmia-associated transcription factor (MITF) after 24 h of treatment. Furthermore, cirsimaritin induced phosphorylation of cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB) in a dose-dependent manner after treatment for 15 min. The cirsimaritin-mediated increase of tyrosinase activity was significantly attenuated by H89, a cAMP-dependent protein kinase A inhibitor. These findings indicate that cirsimaritin stimulates melanogenesis in B16F10 cells by activation of CREB as well as upregulation of MITF and tyrosinase expression, which was activated by cAMP signaling. Finally, the melanogenic effect of cirsimaritin was confirmed in human epidermal melanocytes. These results support the putative application of cirsimaritin in ultraviolet photoprotection and hair coloration treatments.
Transgenic analysis of the medaka mesp-b enhancer in somitogenesis.
Terasaki, Harumi; Murakami, Ryohei; Yasuhiko, Yukuto; Shin-I, Tadasu; Kohara, Yuji; Saga, Yumiko; Takeda, Hiroyuki
2006-04-01
Somitogenesis is a critical step during the formation of metameric structures in vertebrates. Recent studies in mouse, chick, zebrafish and Xenopus have revealed that several factors, such as T-box genes, Notch/Delta, Wnt, retinoic acid and FGF signaling, are involved in the specification of nascent somites. By interacting with these pathways, the Mesp2-like bHLH transcription factors are transiently expressed in the anterior presomitic mesoderm and play a crucial role in somite formation. The regulatory mechanisms of Mesp2 and its related genes during somitogenesis have been studied in mouse and Xenopus. However, the precise mechanism that regulates the transcriptional activity of Mesp2 has yet to be determined. In our current report, we identify the essential enhancer element of medaka mesp-b, an orthologue of mouse Mesp2, using transgenic techniques and embryo manipulation. Our results demonstrate that a region of approximately 2.8 kb, upstream of the mesp-b gene, is responsible for both the initiation and anterior localization of mesp-b transcription within a somite primordium. Furthermore, putative motifs for both T-box transcription factors and Notch/Delta signaling are present in this enhancer region and are essential for activity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.
Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolarmore » transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Finally, disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chu, Heng-Hsuan; Car, Suzana; Socha, Amanda L.
Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value. We have uncovered unique patterns of micronutrient localization in seeds using synchrotron X-ray fluorescence (SXRF). Although all four members of the Arabidopsis thaliana Mn-CDF family can transport Mn, here we show that only mtp8-2 has an altered Mn distribution pattern in seeds. In an mtp8-2 mutant, Mn no longer accumulates in hypocotyl cortex cells and sub-epidermal cells of the embryonic cotyledons, but rather accumulates with Fe in the cells surrounding the vasculature, a pattern previously shown to be determined by the vacuolarmore » transporter VIT1. We also show that MTP8, unlike the other three Mn-CDF family members, can transport Fe and is responsible for localization of Fe to the same cells that store Mn. When both the VIT1 and MTP8 transporters are non-functional, there is no accumulation of Fe or Mn in specific cell types; rather these elements are distributed amongst all cell types in the seed. Disruption of the putative Fe binding sites in MTP8 resulted in loss of ability to transport Fe but did not affect the ability to transport Mn.« less
Control of the exercise hyperpnoea in humans: a modeling perspective.
Ward, S A
2000-09-01
Models of the exercise hyperpnoea have classically incorporated elements of proportional feedback (carotid and medullary chemosensory) and feedforward (central and/or peripheral neurogenic) control. However, the precise details of the control process remain unresolved, reflecting in part both technical and interpretational limitations inherent in isolating putative control mechanisms in the intact human, and also the challenges to linear control theory presented by multiple-input integration, especially with regard to the ventilatory and gas-exchange complexities encountered at work rates which engender a metabolic acidosis. While some combination of neurogenic, chemoreflex and circulatory-coupled processes are likely to contribute to the control, the system appears to evidence considerable redundancy. This, coupled with the lack of appreciable error signals in the mean levels of arterial blood gas tensions and pH over a wide range of work rates, has motivated the formulation of innovative control models that reflect not only spatial interactions but also temporal interactions (i.e. memory). The challenge is to discriminate between robust competing control models that: (a) integrate such processes within plausible physiological equivalents; and (b) account for both the dynamic and steady-state system response over a range of exercise intensities. Such models are not yet available.
Alderwick, Luke J.; Molle, Virginie; Kremer, Laurent; Cozzone, Alain J.; Dafforn, Timothy R.; Besra, Gurdyal S.; Fütterer, Klaus
2006-01-01
Ser/Thr phosphorylation has emerged as a critical regulatory mechanism in a number of bacteria, including Mycobacterium tuberculosis. This problematic pathogen encodes 11 eukaryotic-like Ser/Thr kinases, yet few substrates or signaling targets have been characterized. Here, we report the structure of EmbR (2.0 Å), a putative transcriptional regulator of key arabinosyltransferases (EmbC, -A, and -B), and an endogenous substrate of the Ser/Thr-kinase PknH. EmbR presents a unique domain architecture: the N-terminal winged-helix DNA-binding domain forms an extensive interface with the all-helical central bacterial transcriptional activation domain and is positioned adjacent to the regulatory C-terminal forkhead-associated (FHA) domain, which mediates binding to a Thr-phosphorylated site in PknH. The structure in complex with a phospho-peptide (1.9 Å) reveals a conserved mode of phospho-threonine recognition by the FHA domain and evidence for specific recognition of the cognate kinase. The present structures suggest hypotheses as to how EmbR might propagate the phospho-relay signal from its cognate kinase, while serving as a template for the structurally uncharacterized Streptomyces antibiotic regulatory protein family of transcription factors. PMID:16477027
Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.
Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less
Girlich, Delphine; Bonnin, Rémy A; Bogaerts, Pierre; De Laveleye, Morgane; Huang, Daniel T; Dortet, Laurent; Glaser, Philippe; Glupczynski, Youri; Naas, Thierry
2017-02-01
Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of bla OXA-58 class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a bla AmpC -like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology. Copyright © 2017 American Society for Microbiology.
Girlich, Delphine; Bogaerts, Pierre; De Laveleye, Morgane; Huang, Daniel T.; Glupczynski, Youri
2016-01-01
ABSTRACT Horizontal gene transfer may occur between distantly related bacteria, thus leading to genetic plasticity and in some cases to acquisition of novel resistance traits. Proteus mirabilis is an enterobacterial species responsible for human infections that may express various acquired β-lactam resistance genes, including different classes of carbapenemase genes. Here we report a Proteus mirabilis clinical isolate (strain 1091) displaying resistance to penicillin, including temocillin, together with reduced susceptibility to carbapenems and susceptibility to expanded-spectrum cephalosporins. Using biochemical tests, significant carbapenem hydrolysis was detected in P. mirabilis 1091. Since PCR failed to detect acquired carbapenemase genes commonly found in Enterobacteriaceae, we used a whole-genome sequencing approach that revealed the presence of blaOXA-58 class D carbapenemase gene, so far identified only in Acinetobacter species. This gene was located on a 3.1-kb element coharboring a blaAmpC-like gene. Remarkably, these two genes were bracketed by putative XerC-XerD binding sites and inserted at a XerC-XerD site located between the terminase-like small- and large-subunit genes of a bacteriophage. Increased expression of the two bla genes resulted from a 6-time tandem amplification of the element as revealed by Southern blotting. This is the first isolation of a clinical P. mirabilis strain producing OXA-58, a class D carbapenemase, and the first description of a XerC-XerD-dependent insertion of antibiotic resistance genes within a bacteriophage. This study revealed a new role for the XerC-XerD recombinase in bacteriophage biology. PMID:27855079
Sost, independent of the non-coding enhancer ECR5, is required for bone mechanoadaptation
Robling, Alexander G.; Kang, Kyung Shin; Bullock, Whitney A.; ...
2016-09-04
Here, sclerostin ( Sost) is a negative regulator of bone formation that acts upon the Wnt signaling pathway. Sost is mechanically regulated at both mRNA and protein level such that loading represses and unloading enhances Sost expression, in osteocytes and in circulation. The non-coding evolutionarily conserved enhancer ECR5 has been previously reported as a transcriptional regulatory element required for modulating Sost expression in osteocytes. Here we explored the mechanisms by which ECR5, or several other putative transcriptional enhancers regulate Sost expression, in response to mechanical stimulation. We found that in vivo ulna loading is equally osteoanabolic in wildtype and Sostmore » –/– mice, although Sost is required for proper distribution of load-induced bone formation to regions of high strain. Using Luciferase reporters carrying the ECR5 non-coding enhancer and heterologous or homologous h SOST promoters, we found that ECR5 is mechanosensitive in vitro and that ECR5-driven Luciferase activity decreases in osteoblasts exposed to oscillatory fluid flow. Yet, ECR5–/– mice showed similar magnitude of load-induced bone formation and similar periosteal distribution of bone formation to high-strain regions compared to wildtype mice. Further, we found that in contrast to Sost–/– mice, which are resistant to disuse-induced bone loss, ECR5–/– mice lose bone upon unloading to a degree similar to wildtype control mice. ECR5 deletion did not abrogate positive effects of unloading on Sost, suggesting that additional transcriptional regulators and regulatory elements contribute to load-induced regulation of Sost.« less
Kappa-Opioid Antagonists for Psychiatric Disorders: From Bench to Clinical Trials.
Carlezon, William A; Krystal, Andrew D
2016-10-01
Kappa-opioid receptor (KOR) antagonists are currently being considered for the treatment of a variety of neuropsychiatric conditions, including depressive, anxiety, and substance abuse disorders. A general ability to mitigate the effects of stress, which can trigger or exacerbate these conditions, may explain their putative efficacy across such a broad array of conditions. The discovery of their potentially therapeutic effects evolved from preclinical research designed to characterize the molecular mechanisms by which experience causes neuroadaptations in the nucleus accumbens (NAc), a key element of brain reward circuitry. This research established that exposure to drugs of abuse or stress increases the activity of the transcription factor CREB (cAMP response element binding protein) in the NAc, which leads to elevated expression of the opioid peptide dynorphin that in turn causes core signs of depressive- and anxiety-related disorders. Disruption of KORs-the endogenous receptors for dynorphin-produces antidepressant- and anxiolytic-like actions in screening procedures that identify standard drugs of these classes, and reduces stress effects in tests used to study addiction and stress-related disorders. Although interest in this target is high, prototypical KOR antagonists have extraordinarily persistent pharmacodynamic effects that complicate clinical trials. The development of shorter acting KOR antagonists together with more rapid designs for clinical trials may soon provide insight on whether these drugs are efficacious as would be predicted by preclinical work. If successful, KOR antagonists would represent a unique example in psychiatry where the therapeutic mechanism of a drug class is understood before it is shown to be efficacious in humans. © 2016 Wiley Periodicals, Inc.
Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard; Schoch, Conrad L.; Horwitz, Benjamin A.; Barry, Kerrie W.; Condon, Bradford J.; Copeland, Alex C.; Dhillon, Braham; Glaser, Fabian; Hesse, Cedar N.; Kosti, Idit; LaButti, Kurt; Lindquist, Erika A.; Lucas, Susan; Salamov, Asaf A.; Bradshaw, Rosie E.; Ciuffetti, Lynda; Hamelin, Richard C.; Kema, Gert H. J.; Lawrence, Christopher; Scott, James A.; Spatafora, Joseph W.; Turgeon, B. Gillian; de Wit, Pierre J. G. M.; Zhong, Shaobin; Goodwin, Stephen B.; Grigoriev, Igor V.
2012-01-01
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appears to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress. PMID:23236275
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohm, Robin A.; Feau, Nicolas; Henrissat, Bernard
The class Dothideomycetes is one of the largest groups of fungi with a high level of ecological diversity including many plant pathogens infecting a broad range of hosts. Here, we compare genome features of 18 members of this class, including 6 necrotrophs, 9 (hemi)biotrophs and 3 saprotrophs, to analyze genome structure, evolution, and the diverse strategies of pathogenesis. The Dothideomycetes most likely evolved from a common ancestor more than 280 million years ago. The 18 genome sequences differ dramatically in size due to variation in repetitive content, but show much less variation in number of (core) genes. Gene order appearsmore » to have been rearranged mostly within chromosomal boundaries by multiple inversions, in extant genomes frequently demarcated by adjacent simple repeats. Several Dothideomycetes contain one or more gene-poor, transposable element (TE)-rich putatively dispensable chromosomes of unknown function. The 18 Dothideomycetes offer an extensive catalogue of genes involved in cellulose degradation, proteolysis, secondary metabolism, and cysteine-rich small secreted proteins. Ancestors of the two major orders of plant pathogens in the Dothideomycetes, the Capnodiales and Pleosporales, may have had different modes of pathogenesis, with the former having fewer of these genes than the latter. Many of these genes are enriched in proximity to transposable elements, suggesting faster evolution because of the effects of repeat induced point (RIP) mutations. A syntenic block of genes, including oxidoreductases, is conserved in most Dothideomycetes and upregulated during infection in L. maculans, suggesting a possible function in response to oxidative stress.« less
The groESL Chaperone Operon of Lactobacillus johnsonii†
Walker, D. Carey; Girgis, Hany S.; Klaenhammer, Todd R.
1999-01-01
The Lactobacillus johnsonii VPI 11088 groESL operon was localized on the chromosome near the insertion element IS1223. The operon was initially cloned as a series of three overlapping PCR fragments, which were sequenced and used to design primers to amplify the entire operon. The amplified fragment was used as a probe to recover the chromosomal copy of the groESL operon from a partial library of L. johnsonii VPI 11088 (NCK88) DNA, cloned in the shuttle vector pTRKH2. The 2,253-bp groESL fragment contained three putative open reading frames, two of which encoded the ubiquitous GroES and GroEL chaperone proteins. Analysis of the groESL promoter region revealed three transcription initiation sites, as well as three sets of inverted repeats (IR) positioned between the transcription and translation start sites. Two of the three IR sets bore significant homology to the CIRCE elements, implicated in negative regulation of the heat shock response in many bacteria. Northern analysis and primer extension revealed that multiple temperature-sensitive promoters preceded the groESL chaperone operon, suggesting that stress protein production in L. johnsonii is strongly regulated. Maximum groESL transcription activity was observed following a shift to 55°C, and a 15 to 30-min exposure of log-phase cells to this temperature increased the recovery of freeze-thawed L. johnsonii VPI 11088. These results suggest that a brief, preconditioning heat shock can be used to trigger increased chaperone production and provide significant cross-protection from the stresses imposed during the production of frozen culture concentrates. PMID:10388700
Type I Interferon Controls Propagation of Long Interspersed Element-1*
Yu, Qiujing; Carbone, Christopher J.; Katlinskaya, Yuliya V.; Zheng, Hui; Zheng, Ke; Luo, Mengcheng; Wang, P. Jeremy; Greenberg, Roger A.; Fuchs, Serge Y.
2015-01-01
Type I interferons (IFN) including IFNα and IFNβ are critical for the cellular defense against viruses. Here we report that increased levels of IFNβ were found in testes from mice deficient in MOV10L1, a germ cell-specific RNA helicase that plays a key role in limiting the propagation of retrotransposons including Long Interspersed Element-1 (LINE-1). Additional experiments revealed that activation of LINE-1 retrotransposons increases the expression of IFNβ and of IFN-stimulated genes. Conversely, pretreatment of cells with IFN suppressed the replication of LINE-1. Furthermore, the efficacy of LINE-1 replication was increased in isogenic cell lines harboring inactivating mutations in diverse elements of the IFN signaling pathway. Knockdown of the IFN receptor chain IFNAR1 also stimulated LINE-1 propagation in vitro. Finally, a greater accumulation of LINE-1 was found in mice that lack IFNAR1 compared with wild type mice. We propose that LINE-1-induced IFN plays an important role in restricting LINE-1 propagation and discuss the putative role of IFN in preserving the genome stability. PMID:25716322
Simulating correction of adjustable optics for an x-ray telescope
NASA Astrophysics Data System (ADS)
Aldcroft, Thomas L.; Schwartz, Daniel A.; Reid, Paul B.; Cotroneo, Vincenzo; Davis, William N.
2012-10-01
The next generation of large X-ray telescopes with sub-arcsecond resolution will require very thin, highly nested grazing incidence optics. To correct the low order figure errors resulting from initial manufacture, the mounting process, and the effects of going from 1 g during ground alignment to zero g on-orbit, we plan to adjust the shapes via piezoelectric "cells" deposited on the backs of the reflecting surfaces. This presentation investigates how well the corrections might be made. We take a benchmark conical glass element, 410×205 mm, with a 20×20 array of piezoelectric cells 19×9 mm in size. We use finite element analysis to calculate the influence function of each cell. We then simulate the correction via pseudo matrix inversion to calculate the stress to be applied by each cell, considering distortion due to gravity as calculated by finite element analysis, and by putative low order manufacturing distortions described by Legendre polynomials. We describe our algorithm and its performance, and the implications for the sensitivity of the resulting slope errors to the optimization strategy.
What does a compound letter tell the psychologist's mind?
Navon, David
2003-11-01
The paradigm based on using compound stimuli for studying global and local processing is revisited. Noting that not all researchers employ compound stimuli for the same purpose, the issue of its purpose is discussed. It is argued that the paradigm is pertinent for examining at least three notions--formation preference, global addressability, and within-object global precedence. It is suggested that findings in the paradigm are accommodated well by a disjunction of those three perceptual dispositions. A number of further issues associated with the interpretation of findings obtained with it are examined as well. An experimental study is reported that is meant to examine one such issue--a possible artifact putatively introduced by the special attribute of element homogeneity characteristic of compound stimuli. Seven experiments were used to examine to what extent, if at all, global advantage observed in compound stimulus paradigms depends on element heterogeneity. Across those experiments, heterogeneity did not have any effect that could be interpreted as suggesting that the paradigm is biased in favor of the global structure due to element homogeneity.
2013-01-01
Background Olive cDNA libraries to isolate candidate genes that can help enlightening the molecular mechanism of periodicity and / or fruit production were constructed and analyzed. For this purpose, cDNA libraries from the leaves of trees in “on year” and in “off year” in July (when fruits start to appear) and in November (harvest time) were constructed. Randomly selected 100 positive clones from each library were analyzed with respect to sequence and size. A fruit-flesh cDNA library was also constructed and characterized to confirm the reliability of each library’s temporal and spatial properties. Results Quantitative real-time RT-PCR (qRT-PCR) analyses of the cDNA libraries confirmed cDNA molecules that are associated with different developmental stages (e. g. “on year” leaves in July, “off year” leaves in July, leaves in November) and fruits. Hence, a number of candidate cDNAs associated with “on year” and “off year” were isolated. Comparison of the detected cDNAs to the current EST database of GenBank along with other non - redundant databases of NCBI revealed homologs of previously described genes along with several unknown cDNAs. Of around 500 screened cDNAs, 48 cDNA elements were obtained after eliminating ribosomal RNA sequences. These independent transcripts were analyzed using BLAST searches (cutoff E-value of 1.0E-5) against the KEGG and GenBank nucleotide databases and 37 putative transcripts corresponding to known gene functions were annotated with gene names and Gene Ontology (GO) terms. Transcripts in the biological process were found to be related with metabolic process (27%), cellular process (23%), response to stimulus (17%), localization process (8.5%), multicellular organismal process (6.25%), developmental process (6.25%) and reproduction (4.2%). Conclusions A putative P450 monooxigenase expressed fivefold more in the “on year” than that of “off year” leaves in July. Two putative dehydrins expressed significantly more in “on year” leaves than that of “off year” leaves in November. Homologs of UDP – glucose epimerase, acyl - CoA binding protein, triose phosphate isomerase and a putative nuclear core anchor protein were significant in fruits only, while a homolog of an embryo binding protein / small GTPase regulator was detected in “on year” leaves only. One of the two unknown cDNAs was specific to leaves in July while the other was detected in all of the libraries except fruits. KEGG pathway analyses for the obtained sequences correlated with essential metabolisms such as galactose metabolism, amino sugar and nucleotide sugar metabolisms and photosynthesis. Detailed analysis of the results presents candidate cDNAs that can be used to dissect further the genetic basis of fruit production and / or alternate bearing which causes significant economical loss for olive growers. PMID:23552171
USDA-ARS?s Scientific Manuscript database
SUMMARY Comparative analysis of 207 genomes representing 159 species of the fungus Fusarium detected 9403 known and putative secondary metabolite (SM) biosynthetic gene clusters. The clusters included those responsible for synthesis of mycotoxins, plant hormones and pigments, and varied in distribut...
USDA-ARS?s Scientific Manuscript database
The Asian citrus psyllid, Diaphorina citri Kuwayama, is the primary vector of the phloem-inhabiting bacterium Candidatus Liberibacter asiaticus putatively responsible for citrus greening (huanglongbing), a devastating citrus disease. Infestations of Diaphorina citri frequently develop on Citrus and ...
Identification of mechanisms responsible for adverse developmental effects is the first step in creating predictive toxicity models. Identification of putative mechanisms was performed by co-analyzing three datasets for the effects of ToxCast phase Ia and II chemicals: 1.In vitro...
Context-Specific Freezing and Associated Physiological Reactivity as a Dysregulated Fear Response
ERIC Educational Resources Information Center
Buss, Kristin A.; Davidson, Richard J.; Kalin, Ned H.; Goldsmith, H. Hill
2004-01-01
The putative association between fear-related behaviors and peripheral sympathetic and neuroendocrine reactivity has not been replicated consistently. This inconsistency was addressed in a reexamination of the characterization of children with extreme fearful reactions by focusing on the match between distress behaviors and the eliciting context.…
Gut transcription in Helicoverpa zea is dynamically altered in response to baculovirus infection
USDA-ARS?s Scientific Manuscript database
The Helicoverpa zea transcriptome was analyzed 24 hours after H. zea larvae fed on artificial diet laced with Helicoverpa zea single nucleopolyhedrovirus (HzSNPV). Significant differential regulation of 1,139 putative genes (P<0.05 T-test with Benjamini and Hochberg False Discovery Rate) was detect...
USDA-ARS?s Scientific Manuscript database
The temperature-dependent alteration of flagellar motility gene expression is critical for the foodborne pathogen Listeria monocytogenes to respond to a changing environment. In this study, a genetic determinant, L. monocytogenes f2365_0220 (lmof2365_0220), encoding a putative protein that is struct...
Turatsinze, Jean-Valery; Thomas-Chollier, Morgane; Defrance, Matthieu; van Helden, Jacques
2008-01-01
This protocol shows how to detect putative cis-regulatory elements and regions enriched in such elements with the regulatory sequence analysis tools (RSAT) web server (http://rsat.ulb.ac.be/rsat/). The approach applies to known transcription factors, whose binding specificity is represented by position-specific scoring matrices, using the program matrix-scan. The detection of individual binding sites is known to return many false predictions. However, results can be strongly improved by estimating P value, and by searching for combinations of sites (homotypic and heterotypic models). We illustrate the detection of sites and enriched regions with a study case, the upstream sequence of the Drosophila melanogaster gene even-skipped. This protocol is also tested on random control sequences to evaluate the reliability of the predictions. Each task requires a few minutes of computation time on the server. The complete protocol can be executed in about one hour.
A Novel Collection of snRNA-Like Promoters with Tissue-Specific Transcription Properties
Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2012-01-01
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III. PMID:23109855
A novel collection of snRNA-like promoters with tissue-specific transcription properties.
Garritano, Sonia; Gigoni, Arianna; Costa, Delfina; Malatesta, Paolo; Florio, Tullio; Cancedda, Ranieri; Pagano, Aldo
2012-01-01
We recently identified a novel dataset of snRNA-like trascriptional units in the human genome. The investigation of a subset of these elements showed that they play relevant roles in physiology and/or pathology. In this work we expand our collection of small RNAs taking advantage of a newly developed algorithm able to identify genome sequence stretches with RNA polymerase (pol) III type 3 promoter features thus constituting putative pol III binding sites. The bioinformatic analysis of a subset of these elements that map in introns of protein-coding genes in antisense configuration suggest their association with alternative splicing, similarly to other recently characterized small RNAs. Interestingly, the analysis of the transcriptional activity of these novel promoters shows that they are active in a cell-type specific manner, in accordance with the emerging body of evidence of a tissue/cell-specific activity of pol III.
Yang, Ching; Wan, Min-Tao; Lauderdale, Tsai-Ling; Yeh, Kuang-Sheng; Chen, Charles; Hsiao, Yun-Hsia; Chou, Chin-Cheng
2017-06-01
This study aimed to investigate the presence of arginine catabolic mobile element (ACME) and its associated molecular characteristics in methicillin-resistant Staphylococcus pseudintermedius (MRSP). Among the 72 S. pseudintermedius recovered from various infection sites of dogs and cats, 52 (72.2%) were MRSP. ACME-arcA was detected commonly (69.2%) in these MRSP isolates, and was more frequently detected in those from the skin than from other body sites (P=0.047). There was a wide genetic diversity among the ACME-arcA-positive MRSP isolates, which comprised three SCCmec types (II-III, III and V) and 15 dru types with two predominant clusters (9a and 11a). Most MRSP isolates were multidrug-resistant. Since S. pseudintermedius could serve as a reservoir of ACME, further research on this putative virulence factor is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits.
Wu, Yang; Zeng, Jian; Zhang, Futao; Zhu, Zhihong; Qi, Ting; Zheng, Zhili; Lloyd-Jones, Luke R; Marioni, Riccardo E; Martin, Nicholas G; Montgomery, Grant W; Deary, Ian J; Wray, Naomi R; Visscher, Peter M; McRae, Allan F; Yang, Jian
2018-03-02
The identification of genes and regulatory elements underlying the associations discovered by GWAS is essential to understanding the aetiology of complex traits (including diseases). Here, we demonstrate an analytical paradigm of prioritizing genes and regulatory elements at GWAS loci for follow-up functional studies. We perform an integrative analysis that uses summary-level SNP data from multi-omics studies to detect DNA methylation (DNAm) sites associated with gene expression and phenotype through shared genetic effects (i.e., pleiotropy). We identify pleiotropic associations between 7858 DNAm sites and 2733 genes. These DNAm sites are enriched in enhancers and promoters, and >40% of them are mapped to distal genes. Further pleiotropic association analyses, which link both the methylome and transcriptome to 12 complex traits, identify 149 DNAm sites and 66 genes, indicating a plausible mechanism whereby the effect of a genetic variant on phenotype is mediated by genetic regulation of transcription through DNAm.
Determination of the core promoter regions of the Saccharomyces cerevisiae RPS3 gene.
Joo, Yoo Jin; Kim, Jin-Ha; Baek, Joung Hee; Seong, Ki Moon; Lee, Jae Yung; Kim, Joon
2009-01-01
Ribosomal protein genes (RPG), which are scattered throughout the genomes of all eukaryotes, are subjected to coordinated expression. In yeast, the expression of RPGs is highly regulated, mainly at the transcriptional level. Recent research has found that many ribosomal proteins (RPs) function in multiple processes in addition to protein synthesis. Therefore, detailed knowledge of promoter architecture as well as gene regulation is important in understanding the multiple cellular processes mediated by RPGs. In this study, we investigated the functional architecture of the yeast RPS3 promoter and identified many putative cis-elements. Using beta-galactosidase reporter analysis and EMSA, the core promoter of RPS3 containing UASrpg and T-rich regions was corroborated. Moreover, the promoter occupancy of RPS3 by three transcription factors was confirmed. Taken together, our results further the current understanding of the promoter architecture and trans-elements of the Saccharomyces cerevisiae RPS3 gene.
Mobile genetic elements of Staphylococcus aureus.
Malachowa, Natalia; DeLeo, Frank R
2010-09-01
Bacteria such as Staphylococcus aureus are successful as commensal organisms or pathogens in part because they adapt rapidly to selective pressures imparted by the human host. Mobile genetic elements (MGEs) play a central role in this adaptation process and are a means to transfer genetic information (DNA) among and within bacterial species. Importantly, MGEs encode putative virulence factors and molecules that confer resistance to antibiotics, including the gene that confers resistance to beta-lactam antibiotics in methicillin-resistant S. aureus (MRSA). Inasmuch as MRSA infections are a significant problem worldwide and continue to emerge in epidemic waves, there has been significant effort to improve diagnostic assays and to develop new antimicrobial agents for treatment of disease. Our understanding of S. aureus MGEs and the molecules they encode has played an important role toward these ends and has provided detailed insight into the evolution of antimicrobial resistance mechanisms and virulence.
Johnsen, P. J.; Østerhus, J. I.; Sletvold, H.; Sørum, M.; Kruse, H.; Nielsen, K.; Simonsen, G. S.; Sundsfjord, A.
2005-01-01
The evolutionary processes responsible for the long-term persistence of glycopeptide-resistant Enterococcus faecium (GREF) in nonselective environments were addressed by genetic analyses of E. faecium populations in animals and humans on two Norwegian poultry farms that were previously exposed to avoparcin. A total of 222 fecal GREF (n = 136) and glycopeptide-susceptible (n = 86) E. faecium (GSEF) isolates were obtained from farmers and poultry on three separate occasions in 1998 and 1999. Pulsed-field gel electrophoresis (PFGE) and plasmid DNA analyses discerned 22 GREF and 32 GSEF PFGE types within shifting polyclonal animal and human E. faecium populations and indicated the presence of transferable plasmid-mediated vanA resistance, respectively. Examples of dominant, persistent GREF PFGE types supported the notion that environmentally well-adapted GREF types may counteract the reversal of resistance. PFGE analyses, sequencing of the purK housekeeping gene, and partial typing of vanA-containing Tn1546 suggested a common animal and human reservoir of glycopeptide resistance. Inverse PCR amplification and sequence analyses targeting the right end of the Tn1546-plasmid junction fragment strongly indicated the presence of a common single Tn1546-plasmid-mediated element in 20 of 22 GREF PFGE types. This observation was further strengthened by vanY-vanZ hybridization analyses of plasmid DNAs as well as the finding of a physical linkage between Tn1546 and a putative postsegregation killing system for seven GREF PFGE types. In conclusion, our observations suggest that the molecular unit of persistence of glycopeptide resistance is a common mobile plasmid-mediated vanA-containing element within a polyclonal GREF population that changes over time. In addition, we propose that “plasmid addiction systems” may contribute to the persistence of GREF in nonselective environments. PMID:15640183
2017-10-01
at cis-regulatory elements such as enhancers to facilitate gene transcription. CRISPR /Cas9- mediated ablation of a putative Meis1 enhancer carrying...Tables S4 and S5. 10 Cancer Cell 30, 1–16, July 11, 2016the CRISPR /Cas9-based genomic editing technology. Cas9 and a pair of single guide RNAs (sgRNA... CRISPR /Cas9-mediated deletio sgMeis1, a pair of sgRNAs that target the DMR boundaries. (N) Sequencing of the genomic PCR products from F2/R2 primers shows
Olichney, John M.; Taylor, Jason R.; Chan, Shiaohui; Yang, Jin-Chen; Stringfellow, Andrew; Hillert, Dieter G.; Simmons, Amanda L.; Salmon, David P.; Iragui-Madoz, Vicente; Kutas, Marta
2010-01-01
Background We adapted an event-related brain potential word repetition paradigm, sensitive to early Alzheimer’s disease (AD), for functional MRI (fMRI). We hypothesized that AD would be associated with reduced differential response to new/old congruous words. Methods Fifteen mild AD patients (mean age = 72.9) and 15 normal elderly underwent 1.5T fMRI during a semantic category decision task. Results We found robust between-groups differences in BOLD response to congruous words. In controls, the New > Old contrast demonstrated larger responses in much of the left-hemisphere (including putative P600 generators: parahippocampal, cingulate, fusiform, perirhinal, middle temporal (MTG) and inferior frontal gyri (IFG)); the Old > New contrast showed modest activation, mainly in right parietal and prefrontal cortex. By contrast, there were relatively few regions of significant New > Old responses in AD patients, mainly in the right-hemisphere, and their Old > New contrast did not demonstrate a right-hemisphere predominance. Across subjects, the spatial extent of New > Old responses in left medial temporal lobe (MTL) correlated with subsequent recall and recognition (r’s ≥ 0.60). In controls, the magnitude of New - Old response in left MTL, fusiform, IFG, MTG, superior temporal and cingulate gyrus correlated with subsequent cued recall and/or recognition (0.51 ≤ r’s ≤ 0.78). Conclusions A distributed network of mostly left-hemisphere structures, which are putative P600 generators, appears important for successful verbal encoding (with New > Old responses to congruous words in normal elderly). This network appears dysfunctional in mild AD patients, as reflected in decreased word repetition effects particularly in left association cortex, paralimbic and MTL structures. PMID:20433856
Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers
2012-01-01
Background Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Results Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. Conclusions This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion. PMID:22541534
Orangutan Alu quiescence reveals possible source element: support for ancient backseat drivers.
Walker, Jerilyn A; Konkel, Miriam K; Ullmer, Brygg; Monceaux, Christopher P; Ryder, Oliver A; Hubley, Robert; Smit, Arian Fa; Batzer, Mark A
2012-04-30
Sequence analysis of the orangutan genome revealed that recent proliferative activity of Alu elements has been uncharacteristically quiescent in the Pongo (orangutan) lineage, compared with all previously studied primate genomes. With relatively few young polymorphic insertions, the genomic landscape of the orangutan seemed like the ideal place to search for a driver, or source element, of Alu retrotransposition. Here we report the identification of a nearly pristine insertion possessing all the known putative hallmarks of a retrotranspositionally competent Alu element. It is located in an intronic sequence of the DGKB gene on chromosome 7 and is highly conserved in Hominidae (the great apes), but absent from Hylobatidae (gibbon and siamang). We provide evidence for the evolution of a lineage-specific subfamily of this shared Alu insertion in orangutans and possibly the lineage leading to humans. In the orangutan genome, this insertion contains three orangutan-specific diagnostic mutations which are characteristic of the youngest polymorphic Alu subfamily, AluYe5b5_Pongo. In the Homininae lineage (human, chimpanzee and gorilla), this insertion has acquired three different mutations which are also found in a single human-specific Alu insertion. This seemingly stealth-like amplification, ongoing at a very low rate over millions of years of evolution, suggests that this shared insertion may represent an ancient backseat driver of Alu element expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.M.; Garrison, J.C.
1986-05-01
EGF has been demonstrated to increase free intracellular Ca/sup 2 +/ levels in isolated hepatocytes putatively by generation of the second messenger inositol trisphosphate (IP/sub 3/). Pretreatment of cells with phorbol 12-myristate 13-acetate (PMA) inhibited the EGF (66 nM) stimulated Ca/sup 2 +/ response as measured by quin2. Inhibition by PMA was maximal within 3 min and was concentration dependent (IC/sub 50/ = 13.5 nM). Four other active phorbol ester analogues blocked the Ca/sup 2 +/ response while inactive analogues did not. EGF was unable to increase intracellular Ca/sup 2 +/ levels in hepatocytes isolated from rats treated with pertussismore » toxin for 72 hrs. Neither PMA nor toxin pretreatment was able to inhibit the Ca/sup 2 +/ response to angiotensin II (Ang II). In hepatocytes isolated 24 hrs after partial hepatectomy, the Ca/sup 2 +/ response to EGF (as measured by phosphorylase activity, EC/sub 50/ = 5 nM) was completely abolished and remained attenuated for 7 days post-hepatectomy. The Ca/sup 2 +/ response to Ang II in this model system was also blunted but required 3 days for development of the full effect and within 7 days full activity is nearly restored. The results suggest that fundamental differences exist in the transduction mechanisms used by these two Ca/sup 2 +/-linked hormones to mobilize intracellular Ca/sup 2 +/ (and putatively increase IP/sub 3/ formation).« less
Seal, Alexa N; Haig, Terry; Pratley, James E
2004-08-01
In previous studies, 15 putative allelopathic compounds detected in rice root exudates were quantified by GC/MS/MS. In this study, multiple regression analysis on these compounds determined that five selected phenolics, namely caffeic, p-hydroxybenzoic, vanillic, syringic, and p-coumaric acids, from rice exudates were best correlated with the observed allelopathic effect on arrowhead (Sagittaria montevidensis) root growth. Despite this positive association, determination of the phenolic acid dose-response curve established that the amount quantified in the exudates was much lower than the required threshold concentration for arrowhead inhibition. A similar dose-response curve resulted from a combination of all 15 quantified compounds. Significant differences between the amounts of trans-ferulic acid, abietic acid, and an indole also existed between allelopathic and non-allelopathic rice cultivars. The potential roles of these three compounds in rice allelopathy were examined by chemoassay. Overall, neither the addition of trans-ferulic acid nor 5-hydroxyindole-3-acetic acid to the phenolic mix significantly contributed to phytotoxicity, although at higher concentrations, trans-ferulic acid appeared to act antagonistically to the phytotoxic effects of the phenolic mix. The addition of abietic acid also decreased the inhibitory effect of the phenolic mix. These studies indicate that the compounds quantified are not directly responsible for the observed allelopathic response. It is possible that the amount of phenolic acids may be indirectly related to the chemicals finally responsible for the observed allelopathic effect.
Xia, Yixun; Zhong, Fang; O'Mahony, Michael
2016-09-01
One form of paired preference test protocol requires consumers to assess 2 pairs of products. One is the target pair under consideration, while the other is a putatively identical pair named the "placebo pair" which is also presented as a control. Counterintuitively, the majority of consumers report preferences when presented with the placebo pair. Their response frequencies are hypothesized to be those of consumers having "no preference" and are compared with the response frequencies elicited by a target pair, to determine whether the target pair elicits significant preferences. The primary goal of this paper was to study the robustness of 2 new so called disruptive protocols that reduced the proportion of consumers, who reported preferences when assessing a putatively identical pair of products. For this task, the tests were performed in a different language, in a different country, using different products from before. The results showed that the proportion of consumers reporting preferences for the placebo pair was reduced, confirming earlier work. Also, comparison of d' values showed a lack of significant overall differences between the placebo and target pairs, while chi-squared analyses indicated significant differences in the response frequencies. This indicated that the sample was segmented into 2 balanced groups with opposing preferences. © 2016 Institute of Food Technologists®
Murphy, Andrew R. J.; Scanlan, David J.; Bending, Gary D.; Jones, Alexandra M. E.; Moore, Jonathan D.; Goodall, Andrew; Hammond, John P.; Wellington, Elizabeth M. H.
2016-01-01
Summary Bacteria that inhabit the rhizosphere of agricultural crops can have a beneficial effect on crop growth. One such mechanism is the microbial‐driven solubilization and remineralization of complex forms of phosphorus (P). It is known that bacteria secrete various phosphatases in response to low P conditions. However, our understanding of their global proteomic response to P stress is limited. Here, exoproteomic analysis of Pseudomonas putida BIRD‐1 (BIRD‐1), Pseudomonas fluorescens SBW25 and Pseudomonas stutzeri DSM4166 was performed in unison with whole‐cell proteomic analysis of BIRD‐1 grown under phosphate (Pi) replete and Pi deplete conditions. Comparative exoproteomics revealed marked heterogeneity in the exoproteomes of each Pseudomonas strain in response to Pi depletion. In addition to well‐characterized members of the PHO regulon such as alkaline phosphatases, several proteins, previously not associated with the response to Pi depletion, were also identified. These included putative nucleases, phosphotriesterases, putative phosphonate transporters and outer membrane proteins. Moreover, in BIRD‐1, mutagenesis of the master regulator, phoBR, led us to confirm the addition of several novel PHO‐dependent proteins. Our data expands knowledge of the Pseudomonas PHO regulon, including species that are frequently used as bioinoculants, opening up the potential for more efficient and complete use of soil complexed P. PMID:27233093
Whisson, Stephen C; Avrova, Anna O; Lavrova, Olga; Pritchard, Leighton
2005-04-01
The first known families of tRNA-related short interspersed elements (SINEs) in the oomycetes were identified by exploiting the genomic DNA sequence resources for the potato late blight pathogen, Phytophthora infestans. Fifteen families of tRNA-related SINEs, as well as predicted tRNAs, and other possible RNA polymerase III-transcribed sequences were identified. The size of individual elements ranges from 101 to 392 bp, representing sequences present from low (1) to highly abundant (over 2000) copy number in the P. infestans genome, based on quantitative PCR analysis. Putative short direct repeat sequences (6-14 bp) flanking the elements were also identified for eight of the SINEs. Predicted SINEs were named in a series prefixed infSINE (for infestans-SINE). Two SINEs were apparently present as multimers of tRNA-related units; four copies of a related unit for infSINEr, and two unrelated units for infSINEz. Two SINEs, infSINEh and infSINEi, were typically located within 400 bp of each other. These were also the only two elements identified as being actively transcribed in the mycelial stage of P. infestans by RT-PCR. It is possible that infSINEh and infSINEi represent active retrotransposons in P. infestans. Based on the quantitative PCR estimates of copy number for all of the elements identified, tRNA-related SINEs were estimated to comprise 0.3% of the 250 Mb P. infestans genome. InfSINE-related sequences were found to occur in species throughout the genus Phytophthora. However, seven elements were shown to be exclusive to P. infestans.
Mauricio-Castillo, J A; Torres-Herrera, S I; Cárdenas-Conejo, Y; Pastor-Palacios, G; Méndez-Lozano, J; Argüello-Astorga, G R
2014-09-01
A novel begomovirus isolated from a Sida rhombifolia plant collected in Sinaloa, Mexico, was characterized. The genomic components of sida mosaic Sinaloa virus (SiMSinV) shared highest sequence identity with DNA-A and DNA-B components of chino del tomate virus (CdTV), suggesting a vertical evolutionary relationship between these viruses. However, recombination analysis indicated that a short segment of SiMSinV DNA-A encompassing the plus-strand replication origin and the 5´-proximal 43 codons of the Rep gene was derived from tomato mottle Taino virus (ToMoTV). Accordingly, the putative cis- and trans-acting replication specificity determinants of SiMSinV were identical to those of ToMoTV but differed from those of CdTV. Modeling of the SiMSinV and CdTV Rep proteins revealed significant differences in the region comprising the small β1/β5 sheet element, where five putative DNA-binding specificity determinants (SPDs) of Rep (i.e., amino acid residues 5, 8, 10, 69 and 71) were previously identified. Computer-assisted searches of public databases led to identification of 33 begomoviruses from three continents encoding proteins with SPDs identical to those of the Rep encoded by SiMSinV. Sequence analysis of the replication origins demonstrated that all 33 begomoviruses harbor potential Rep-binding sites identical to those of SiMSinV. These data support the hypothesis that the Rep β1/β5 sheet region determines specificity of this protein for DNA replication origin sequences.
2011-01-01
Background Mounting evidence suggests a major role for epigenetic feedback in Plasmodium falciparum transcriptional regulation. Long non-coding RNAs (lncRNAs) have recently emerged as a new paradigm in epigenetic remodeling. We therefore set out to investigate putative roles for lncRNAs in P. falciparum transcriptional regulation. Results We used a high-resolution DNA tiling microarray to survey transcriptional activity across 22.6% of the P. falciparum strain 3D7 genome. We identified 872 protein-coding genes and 60 putative P. falciparum lncRNAs under developmental regulation during the parasite's pathogenic human blood stage. Further characterization of lncRNA candidates led to the discovery of an intriguing family of lncRNA telomere-associated repetitive element transcripts, termed lncRNA-TARE. We have quantified lncRNA-TARE expression at 15 distinct chromosome ends and mapped putative transcriptional start and termination sites of lncRNA-TARE loci. Remarkably, we observed coordinated and stage-specific expression of lncRNA-TARE on all chromosome ends tested, and two dominant transcripts of approximately 1.5 kb and 3.1 kb transcribed towards the telomere. Conclusions We have characterized a family of 22 telomere-associated lncRNAs in P. falciparum. Homologous lncRNA-TARE loci are coordinately expressed after parasite DNA replication, and are poised to play an important role in P. falciparum telomere maintenance, virulence gene regulation, and potentially other processes of parasite chromosome end biology. Further study of lncRNA-TARE and other promising lncRNA candidates may provide mechanistic insight into P. falciparum transcriptional regulation. PMID:21689454
Komatsu, Ken; Hirata, Hisae; Fukagawa, Takako; Yamaji, Yasuyuki; Okano, Yukari; Ishikawa, Kazuya; Adachi, Tatsushi; Maejima, Kensaku; Hashimoto, Masayoshi; Namba, Shigetou
2012-07-01
The first open-reading frame (ORF) of apple stem grooving virus (ASGV), of the genus Capillovirus, encodes an apparently chimeric polyprotein containing conserved regions for replicase (Rep) and coat protein (CP). However, our previous study revealed that ASGV mutants with distinct and discontinuous Rep- and CP-coding regions successfully infect plants, indicating that CP expressed via a subgenomic RNA (sgRNA) is sufficient for viability of the virus. Here we identified a transcription start site of the CP sgRNA and revealed that CP translated from the sgRNA is essential for ASGV infection. We mapped the transcription start sites of both the CP and the movement protein (MP) sgRNAs of ASGV and found a hexanucleotide motif, UUAGGU, conserved upstream from both sgRNA transcription start sites. Mutational analysis of the putative CP initiation codon and of the UUAGGU sequence upstream from the transcription start site of CP sgRNA demonstrated their importance for ASGV accumulation. Our results also demonstrated that potato virus T (PVT), an unassigned species closely related to ASGV, produces two sgRNAs putatively deployed for the CP and MP expression and that the same hexanucleotide motif as found in ASGV is located upstream from the transcription start sites of both sgRNAs. This motif, which constituted putative core elements of the sgRNA promoter, is broadly conserved among viruses in the families Alphaflexiviridae and Betaflexiviridae, suggesting that the gene expression strategy of the viruses in both families has been conserved throughout evolution. Copyright © 2012 Elsevier B.V. All rights reserved.
French, Juliet D; Johnatty, Sharon E; Lu, Yi; Beesley, Jonathan; Gao, Bo; Kalimutho, Murugan; Henderson, Michelle J; Russell, Amanda J; Kar, Siddhartha; Chen, Xiaoqing; Hillman, Kristine M; Kaufmann, Susanne; Sivakumaran, Haran; O'Reilly, Martin; Wang, Chen; Korbie, Darren J; Lambrechts, Diether; Despierre, Evelyn; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter A; Beckmann, Matthias W; Ekici, Arif B; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Pisterer, Jacobus; Hillemanns, Peter; Nakanishi, Toru; Yatabe, Yasushi; Goodman, Marc T; Lurie, Galina; Matsuno, Rayna K; Thompson, Pamela J; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susanne K; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James M; Metcalf, Michelle D; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen M; Iversen, Ed; Weber, Rachel Palmieri; Brennan, Donal; Berchuck, Andrew; Pharoah, Paul; Harnett, Paul; Norris, Murray D; Haber, Michelle; Goode, Ellen L; Lee, Jason S; Khanna, Kum Kum; Meyer, Kerstin B; Chenevix-Trench, Georgia; deFazio, Anna; Edwards, Stacey L; MacGregor, Stuart
2016-02-09
Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7x10-5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression.
Stein, Rebecca A.; Gaillard, Stéphanie; McDonnell, Donald P.
2009-01-01
Estrogen-related receptor alpha (ERRα) is an orphan member of the nuclear receptor family of transcription factors. In addition to its function as a metabolic regulator, ERRα has been implicated in the growth and progression of several malignancies. In the setting of breast cancer, not only is ERRα a putative negative prognostic factor, but we have recently found that knockdown of its expression retards tumor growth in a xenograft model of this disease. The specific aspects of ERRα function that are responsible for its actions in breast cancer, however, remain unclear. Using the coactivator PGC-1α as a protein ligand to regulate ERRα activity, we analyzed the effects of this receptor on gene expression in the ERα-positive MCF-7 cell line. This analysis led to the identification of a large number of potential ERRα target genes, many of which were subsequently validated in other breast cancer cell lines. Importantly, we demonstrate in this study that activation of ERRα in several different breast cancer cell lines leads to a significant increase in VEGF mRNA expression, an activity that translates into an increase in VEGF protein secretion. The induction of VEGF results from the interaction of ERRα with specific ERR-responsive elements within the VEGF promoter. These findings suggest that ERRα-dependent induction of VEGF may contribute to the overall negative phenotype observed in tumors in which ERRα is expressed and provide validation for its use as a therapeutic target in cancer. PMID:19429439
French, Juliet D.; Johnatty, Sharon E.; Lu, Yi; Beesley, Jonathan; Gao, Bo; Kalimutho, Murugan; Henderson, Michelle J.; Russell, Amanda J.; Kar, Siddhartha; Chen, Xiaoqing; Hillman, Kristine M.; Kaufmann, Susanne; Sivakumaran, Haran; O'Reilly, Martin; Wang, Chen; Korbie, Darren J.; Lambrechts, Diether; Despierre, Evelyn; Van Nieuwenhuysen, Els; Lambrechts, Sandrina; Vergote, Ignace; Karlan, Beth; Lester, Jenny; Orsulic, Sandra; Walsh, Christine; Fasching, Peter A.; Beckmann, Matthias W.; Ekici, Arif B.; Hein, Alexander; Matsuo, Keitaro; Hosono, Satoyo; Pisterer, Jacobus; Hillemanns, Peter; Nakanishi, Toru; Yatabe, Yasushi; Goodman, Marc T.; Lurie, Galina; Matsuno, Rayna K.; Thompson, Pamela J.; Pejovic, Tanja; Bean, Yukie; Heitz, Florian; Harter, Philipp; du Bois, Andreas; Schwaab, Ira; Hogdall, Estrid; Kjaer, Susanne K.; Jensen, Allan; Hogdall, Claus; Lundvall, Lene; Engelholm, Svend Aage; Brown, Bob; Flanagan, James M.; Metcalf, Michelle D.; Siddiqui, Nadeem; Sellers, Thomas; Fridley, Brooke; Cunningham, Julie; Schildkraut, Joellen M.; Iversen, Ed; Weber, Rachel Palmieri; Brennan, Donal; Berchuck, Andrew; Pharoah, Paul; Harnett, Paul; Norris, Murray D.; Haber, Michelle; Goode, Ellen L.; Lee, Jason S.; Khanna, Kum Kum; Meyer, Kerstin B.; Chenevix-Trench, Georgia; deFazio, Anna; Edwards, Stacey L.; MacGregor, Stuart
2016-01-01
Women with epithelial ovarian cancer (EOC) are usually treated with platinum/taxane therapy after cytoreductive surgery but there is considerable inter-individual variation in response. To identify germline single-nucleotide polymorphisms (SNPs) that contribute to variations in individual responses to chemotherapy, we carried out a multi-phase genome-wide association study (GWAS) in 1,244 women diagnosed with serous EOC who were treated with the same first-line chemotherapy, carboplatin and paclitaxel. We identified two SNPs (rs7874043 and rs72700653) in TTC39B (best P=7×10−5, HR=1.90, for rs7874043) associated with progression-free survival (PFS). Functional analyses show that both SNPs lie in a putative regulatory element (PRE) that physically interacts with the promoters of PSIP1, CCDC171 and an alternative promoter of TTC39B. The C allele of rs7874043 is associated with poor PFS and showed increased binding of the Sp1 transcription factor, which is critical for chromatin interactions with PSIP1. Silencing of PSIP1 significantly impaired DNA damage-induced Rad51 nuclear foci and reduced cell viability in ovarian cancer lines. PSIP1 (PC4 and SFRS1 Interacting Protein 1) is known to protect cells from stress-induced apoptosis, and high expression is associated with poor PFS in EOC patients. We therefore suggest that the minor allele of rs7874043 confers poor PFS by increasing PSIP1 expression. PMID:26840454
RNA sequencing uncovers antisense RNAs and novel small RNAs in Streptococcus pyogenes
Le Rhun, Anaïs; Beer, Yan Yan; Reimegård, Johan; Chylinski, Krzysztof; Charpentier, Emmanuelle
2016-01-01
ABSTRACT Streptococcus pyogenes is a human pathogen responsible for a wide spectrum of diseases ranging from mild to life-threatening infections. During the infectious process, the temporal and spatial expression of pathogenicity factors is tightly controlled by a complex network of protein and RNA regulators acting in response to various environmental signals. Here, we focus on the class of small RNA regulators (sRNAs) and present the first complete analysis of sRNA sequencing data in S. pyogenes. In the SF370 clinical isolate (M1 serotype), we identified 197 and 428 putative regulatory RNAs by visual inspection and bioinformatics screening of the sequencing data, respectively. Only 35 from the 197 candidates identified by visual screening were assigned a predicted function (T-boxes, ribosomal protein leaders, characterized riboswitches or sRNAs), indicating how little is known about sRNA regulation in S. pyogenes. By comparing our list of predicted sRNAs with previous S. pyogenes sRNA screens using bioinformatics or microarrays, 92 novel sRNAs were revealed, including antisense RNAs that are for the first time shown to be expressed in this pathogen. We experimentally validated the expression of 30 novel sRNAs and antisense RNAs. We show that the expression profile of 9 sRNAs including 2 predicted regulatory elements is affected by the endoribonucleases RNase III and/or RNase Y, highlighting the critical role of these enzymes in sRNA regulation. PMID:26580233
Giarola, Valentino; Krey, Stephanie; von den Driesch, Barbara; Bartels, Dorothea
2016-04-01
Craterostigma plantagineum tolerates extreme desiccation. Leaves of this plant shrink and extensively fold during dehydration and expand again during rehydration, preserving their structural integrity. Genes were analysed that may participate in the reversible folding mechanism. Analysis of transcripts abundantly expressed in desiccated leaves identified a gene putatively coding for an apoplastic glycine-rich protein (CpGRP1). We studied the expression, regulation and subcellular localization of CpGRP1 and its ability to interact with a cell wall-associated protein kinase (CpWAK1) to understand the role of CpGRP1 in the cell wall during dehydration. The CpGRP1 protein accumulates in the apoplast of desiccated leaves. Analysis of the promoter revealed that the gene expression is mainly regulated at the transcriptional level, is independent of abscisic acid (ABA) and involves a drought-responsive cis-element (DRE). CpGRP1 interacts with CpWAK1 which is down-regulated in response to dehydration. Our data suggest a role of the CpGRP1-CpWAK1 complex in dehydration-induced morphological changes in the cell wall during dehydration in C. plantagineum. Cell wall pectins and dehydration-induced pectin modifications are predicted to be involved in the activity of the CpGRP1-CpWAK1 complex. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Treviño, Marcela B.; Connell, Mary A. O'
1998-01-01
Genomic clones of two nonspecific lipid-transfer protein genes from a drought-tolerant wild species of tomato (Lycopersicon pennellii Corr.) were isolated using as a probe a drought- and abscisic acid (ABA)-induced cDNA clone (pLE16) from cultivated tomato (Lycopersicon esculentum Mill.). Both genes (LpLtp1 and LpLtp2) were sequenced and their corresponding mRNAs were characterized; they are both interrupted by a single intron at identical positions and predict basic proteins of 114 amino acid residues. Genomic Southern data indicated that these genes are members of a small gene family in Lycopersicon spp. The 3′-untranslated regions from LpLtp1 and LpLtp2, as well as a polymerase chain reaction-amplified 3′-untranslated region from pLE16 (cross-hybridizing to a third gene in L. pennellii, namely LpLtp3), were used as gene-specific probes to describe expression in L. pennellii through northern-blot analyses. All LpLtp genes were exclusively expressed in the aerial tissues of the plant and all were drought and ABA inducible. Each gene had a different pattern of expression in fruit, and LpLtp1 and LpLtp2, unlike LpLtp3, were both primarily developmentally regulated in leaf tissue. Putative ABA-responsive elements were found in the proximal promoter regions of LpLtp1 and LpLtp2. PMID:9536064
Zhai, Zhengyuan; An, Haoran; Wang, Guohong; Luo, Yunbo; Hao, Yanling
2015-01-01
Lactobacillus delbrueckii subsp. bulgaricus develops acid tolerance response when subjected to acid stress conditions, such as the induction of enzymes associated with carbohydrate metabolism. In this study, pyk gene encoding pyruvate kinase was over-expressed in heterologous host Lactococcus lactis NZ9000, and SDS-PAGE analysis revealed the successful expression of this gene in NZ9000. The survival rate of Pyk-overproducing strain was 45-fold higher than the control under acid stress condition (pH 4.0). In order to determine the transcription factor (TF) which regulates the expression of pyk by bacterial one-hybrid, we constructed a TF library including 65 TFs of L. bulgaricus. Western blotting indicated that TFs in this library could be successfully expressed in host strains. Subsequently, the promoter of pfk-pyk operon in L. bulgaricus was identified by 5′-RACE PCR. The bait plasmid pH3U3-p01 carrying the deletion fragment of pfk-pyk promoter captured catabolite control protein A (CcpA) which could regulate the expression of pyk by binding to a putative catabolite-responsive element (5′-TGTAAGCCCTAACA-3′) upstream the -35 region. Real-time qPCR analysis revealed the transcription of pyk was positively regulated by CcpA. This is the first report about identifying the TF of pyk in L. bulgaricus, which will provide new insight into the regulatory network. PMID:26581248
Jiang, Yuanzhong; Duan, Yanjiao; Yin, Jia; Ye, Shenglong; Zhu, Jingru; Zhang, Faqi; Lu, Wanxiang; Fan, Di; Luo, Keming
2014-01-01
WRKY proteins are a large family of regulators involved in various developmental and physiological processes, especially in coping with diverse biotic and abiotic stresses. In this study, 100 putative PtrWRKY genes encoded the proteins contained in the complete WRKY domain in Populus. Phylogenetic analysis revealed that the members of this superfamily among poplar, Arabidopsis, and other species were divided into three groups with several subgroups based on the structures of the WRKY protein sequences. Various cis-acting elements related to stress and defence responses were found in the promoter regions of PtrWRKY genes by promoter analysis. High-throughput transcriptomic analyses identified that 61 of the PtrWRKY genes were induced by biotic and abiotic treatments, such as Marssonina brunnea, salicylic acid (SA), methyl jasmonate (MeJA), wounding, cold, and salinity. Among these PtrWRKY genes, transcripts of 46 selected genes were observed in different tissues, including roots, stems, and leaves. Quantitative RT-PCR analysis further confirmed the induced expression of 18 PtrWRKY genes by one or more stress treatments. The overexpression of an SA-inducible gene, PtrWRKY89, accelerated expression of PR protein genes and improved resistance to pathogens in transgenic poplar, suggesting that PtrWRKY89 is a regulator of an SA-dependent defence-signalling pathway in poplar. Taken together, our results provided significant information for improving the resistance and stress tolerance of woody plants. PMID:25249073
The membrane trafficking and functionality of the K+-Cl- co-transporter KCC2 is regulated by TGF-β2.
Roussa, Eleni; Speer, Jan Manuel; Chudotvorova, Ilona; Khakipoor, Shokoufeh; Smirnov, Sergei; Rivera, Claudio; Krieglstein, Kerstin
2016-09-15
Functional activation of the neuronal K(+)-Cl(-) co-transporter KCC2 (also known as SLC12A5) is a prerequisite for shifting GABAA responses from depolarizing to hyperpolarizing during development. Here, we introduce transforming growth factor β2 (TGF-β2) as a new regulator of KCC2 membrane trafficking and functional activation. TGF-β2 controls membrane trafficking, surface expression and activity of KCC2 in developing and mature mouse primary hippocampal neurons, as determined by immunoblotting, immunofluorescence, biotinylation of surface proteins and KCC2-mediated Cl(-) extrusion. We also identify the signaling pathway from TGF-β2 to cAMP-response-element-binding protein (CREB) and Ras-associated binding protein 11b (Rab11b) as the underlying mechanism for TGF-β2-mediated KCC2 trafficking and functional activation. TGF-β2 increases colocalization and interaction of KCC2 with Rab11b, as determined by 3D stimulated emission depletion (STED) microscopy and co-immunoprecipitation, respectively, induces CREB phosphorylation, and enhances Rab11b gene expression. Loss of function of either CREB1 or Rab11b suppressed TGF-β2-dependent KCC2 trafficking, surface expression and functionality. Thus, TGF-β2 is a new regulatory factor for KCC2 functional activation and membrane trafficking, and a putative indispensable molecular determinant for the developmental shift of GABAergic transmission. © 2016. Published by The Company of Biologists Ltd.