Sample records for pv large systems

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schauder, C.

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems thatmore » interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.« less

  2. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  3. Detection and location of fouling on photovoltaic panels using a drone-mounted infrared thermography system

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Zhang, Lifu; Wu, Taixia; Zhang, Hongming; Sun, Xuejian

    2017-01-01

    Due to weathering and external forces, solar panels are subject to fouling and defects after a certain amount of time in service. These fouling and defects have direct adverse consequences such as low-power efficiency. Because solar power plants usually have large-scale photovoltaic (PV) panels, fast detection and location of fouling and defects across large PV areas are imperative. A drone-mounted infrared thermography system was designed and developed, and its ability to detect rapid fouling on large-scale PV panel systems was investigated. The infrared images were preprocessed using the K neighbor mean filter, and the single PV module on each image was recognized and extracted. Combining the local and global detection method, suspicious sites were located precisely. The results showed the flexible drone-mounted infrared thermography system to have a strong ability to detect the presence and determine the position of PV fouling. Drone-mounted infrared thermography also has good technical feasibility and practical value in the detection of PV fouling detection.

  4. Sub-synchronous resonance damping using high penetration PV plant

    NASA Astrophysics Data System (ADS)

    Khayyatzadeh, M.; Kazemzadeh, R.

    2017-02-01

    The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.

  5. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-05-18

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  6. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-05-19

    We use residential solar photovoltaic (PV) quote data to study the role of firm size in PV installer pricing. We find that large installers (those that installed more than 1,000 PV systems in any year from 2013 to 2015) quote higher prices for customer-owned systems, on average, than do other installers. The results suggest that low prices are not the primary value proposition of large installers.

  7. DOE and AID stand-alone photovoltaic activities

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Ratajczak, A. F.

    1983-01-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system activities sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, PV-powered medical refrigerators in six countries, PV system microprocessor control development activities and PV-hybrid system assessments. The AID project includes a large village system in Tunisia, a water pumping/grain grinding project in Upper Volta, five medical clinics in four countries, PV-powered remote earth station application. These PV activities and summarizes significant findings to data are reviewed.

  8. An Analysis of the Effects of Residential Photovoltaic Energy Systems on Home Sales Prices in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Cappers, Peter; Wiser, Ryan

    2011-04-19

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that estimates the marginal impacts of those PV systems on home sale prices. A clearer understanding of these possible impacts might influence the decisions of homeowners considering the installation of a PV system, homebuyers considering the purchase of a home with PV already installed, and new home builders considering including PV as an optional or standard product on their homes. This research analyzes a large dataset of California homes that sold from 2000 throughmore » mid-2009 with PV installed. It finds strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, on average, from roughly $4 to $5.5/watt across a large number of hedonic and repeat sales model specifications and robustness tests. When expressed as a ratio of the sales price premium of PV to estimated annual energy cost savings associated with PV, an average ratio of 14:1 to 19:1 can be calculated; these results are consistent with those of the more-extensive existing literature on the impact of energy efficiency on sales prices. When the data are split among new and existing homes, however, PV system premiums are markedly affected. New homes with PV show premiums of $2.3-2.6/watt, while existing homes with PV show premiums of more than $6/watt. Reasons for this discrepancy are suggested, yet further research is warranted. A number of other areas where future research would be useful are also highlighted.« less

  9. New Markets for Solar Photovoltaic Power Systems

    NASA Astrophysics Data System (ADS)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  10. Energy Storage Requirements for Achieving 50% Penetration of Solar Photovoltaic Energy in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Margolis, Robert

    2016-09-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less

  11. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less

  12. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Astrophysics Data System (ADS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  13. Status of DOE and AID stand-alone photovoltaic system field tests

    NASA Technical Reports Server (NTRS)

    Bifano, W. J.; Delombard, R.; Ratajczak, A. F.; Scudder, L. R.

    1984-01-01

    The NASA Lewis Research Center (LeRC) is managing stand-alone photovoltaic (PV) system projects sponsored by the U.S. Department of Energy (DOE) and the U.S. Agency for International Development (AID). The DOE project includes village PV power demonstration projects in Gabon (four sites) and the Marshall Islands, and PV-powered vaccine refrigerator systems in six countries. The AID project includes a large village power system, a farmhouse system and two water pumping-irrigation systems in Tunisia, a water pumping/grain grinding system in Upper Volta, five medical clinic systems in four countries, PV-powered vaccine refrigerator systems in 18 countries and a PV-powered remote earth station in Indonesia. This paper reviews these PV projects and summarizes significant findings to date.

  14. Active power control of solar PV generation for large interconnection frequency regulation and oscillation damping

    DOE PAGES

    Liu, Yong; Zhu, Lin; Zhan, Lingwei; ...

    2015-06-23

    Because of zero greenhouse gas emission and decreased manufacture cost, solar photovoltaic (PV) generation is expected to account for a significant portion of future power grid generation portfolio. Because it is indirectly connected to the power grid via power electronic devices, solar PV generation system is fully decoupled from the power grid, which will influence the interconnected power grid dynamic characteristics as a result. In this study, the impact of solar PV penetration on large interconnected power system frequency response and inter-area oscillation is evaluated, taking the United States Eastern Interconnection (EI) as an example. Furthermore, based on the constructedmore » solar PV electrical control model with additional active power control loops, the potential contributions of solar PV generation to power system frequency regulation and oscillation damping are examined. The advantages of solar PV frequency support over that of wind generator are also discussed. Finally, simulation results demonstrate that solar PV generations can effectively work as ‘actuators’ in alleviating the negative impacts they bring about.« less

  15. Photovoltaic-Thermal New Technology Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Jesse; McNutt, Peter; Lisell, Lars

    Photovoltaic-thermal (PV-T) hybrid solar systems offer increased electricity production by cooling the PV panel, and using the removed thermal energy to heat water - all in the same footprint as a standard PV system. GPG's assessment of the nation's first large-scale PV-T system installed at the Thomas P. O'Neill, Jr. Federal Building in Boston, MA, provided numerous lessons learned in system design, and identified a target market of locations with high utility costs and electric hot water backup.

  16. Using Residential Solar PV Quote Data to Analyze the Relationship Between Installer Pricing and Firm Size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Margolis, Robert

    2017-04-01

    The vast majority of U.S. residential solar PV installers are small local-scale companies, however the industry is relatively concentrated in a few large national-scale installers. We develop a novel approach using solar PV quote data to study the price behavior of large solar PV installers in the United States. Through a paired differences approach, we find that large installer quotes are about higher, on average, than non-large installer quotes made to the same customer. The difference is statistically significant and robust after controlling for factors such as system size, equipment quality, and time effects. The results suggest that low pricesmore » are not the primary value proposition of large installer systems. We explore several hypotheses for this finding, including that large installers are able to exercise some market power and/or earn returns from reputations.« less

  17. Research on Fault Characteristics and Line Protections Within a Large-scale Photovoltaic Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Gu, Chenjie; Liu, Bohan

    2017-05-01

    Centralized photovoltaic (PV) systems have different fault characteristics from distributed PV systems due to the different system structures and controls. This makes the fault analysis and protection methods used in distribution networks with distributed PV not suitable for a centralized PV power plant. Therefore, a consolidated expression for the fault current within a PV power plant under different controls was calculated considering the fault response of the PV array. Then, supported by the fault current analysis and the on-site testing data, the overcurrent relay (OCR) performance was evaluated in the collection system of an 850 MW PV power plant. It reveals that the OCRs at downstream side on overhead lines may malfunction. In this case, a new relay scheme was proposed using directional distance elements. In the PSCAD/EMTDC, a detailed PV system model was built and verified using the on-site testing data. Simulation results indicate that the proposed relay scheme could effectively solve the problems under variant fault scenarios and PV plant output levels.

  18. Derivation of WECC Distributed PV System Model Parameters from Quasi-Static Time-Series Distribution System Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry A; Boemer, Jens C.; Vittal, Eknath

    The response of low voltage networks with high penetration of PV systems to transmission network faults will, in the future, determine the overall power system performance during certain hours of the year. The WECC distributed PV system model (PVD1) is designed to represent small-scale distribution-connected systems. Although default values are provided by WECC for the model parameters, tuning of those parameters seems to become important in order to accurately estimate the partial loss of distributed PV systems for bulk system studies. The objective of this paper is to describe a new methodology to determine the WECC distributed PV system (PVD1)more » model parameters and to derive parameter sets obtained for six distribution circuits of a Californian investor-owned utility with large amounts of distributed PV systems. The results indicate that the parameters for the partial loss of distributed PV systems may differ significantly from the default values provided by WECC.« less

  19. Affordable remote-area power supply in the Philippines

    NASA Astrophysics Data System (ADS)

    Heruela, C. S.

    The feasibility of photovoltaic (PV) systems for electrifying remote areas of the Philippines is discussed. In particular, a technical description is given of those PV systems that are appropriate to the needs of remote, but populated, rural areas and have been developed as part of the Philippine-German Solar Energy Project. Details are provided of a financing scheme, piloted by the Project on an unelectrified island, to make PV systems affordable to rural users. An analysis is presented of the potential of large-scale applications of PV systems in developing countries such as the Philippines, and a description is provided of current efforts to promote the use of such technology. A storage battery is identified as an essential component of a PV system. As a consequence, the wide use of PV systems will have a very significant impact on the market for storage batteries in countries embarking on PV-utilization programmes. It is clear, therefore, that battery manufacturers should take an interest in future development in PV applications.

  20. Conjunction of Photovoltaic and Thermophotovoltaic Power Production in Spacecraft Power Systems

    DTIC Science & Technology

    2015-09-01

    photovoltaic ( PV ) arrays, which draw electrical energy from the most prominent power source in our solar system, the Sun. These arrays are large, and pose...freemaps/1000px/dni/SolarGIS- Solar -map-DNI-World- map-en.png By contrast, spacecraft PV power production systems are not so limited. With the...operating parameters for a given solar cell, and PMax is generally the described Pout from which the PV cell’s efficiency is calculated. A PV cell’s

  1. Results of the harmonics measurement program at the John F. Long photovoltaic house

    NASA Astrophysics Data System (ADS)

    Campen, G. L.

    1982-03-01

    Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.

  2. The value of residential photovoltaic systems: A comprehensive assessment

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1983-01-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  3. The value of residential photovoltaic systems: A comprehensive assessment

    NASA Astrophysics Data System (ADS)

    Borden, C. S.

    1983-09-01

    Utility-interactive photovoltaic (PV) arrays on residential rooftops appear to be a potentially attractive, large-scale application of PV technology. Results of a comprehensive assessment of the value (i.e., break-even cost) of utility-grid connected residential photovoltaic power systems under a variety of technological and economic assumptions are presented. A wide range of allowable PV system costs are calculated for small (4.34 kW (p) sub ac) residential PV systems in various locales across the United States. Primary factor in this variation are differences in local weather conditions, utility-specific electric generation capacity, fuel types, and customer-load profiles that effect purchase and sell-back rates, and non-uniform state tax considerations. Additional results from this analysis are: locations having the highest insolation values are not necessary the most economically attractive sites; residential PV systems connected in parallel to the utility demonstrate high percentages of energy sold back to the grid, and owner financial and tax assumptions cause large variations in break-even costs. Significant cost reduction and aggressive resolution of potential institutional impediments (e.g., liability, standards, metering, and technical integration) are required for a residential PV marker to become a major electric-grid-connected energy-generation source.

  4. PV system field experience and reliability

    NASA Astrophysics Data System (ADS)

    Durand, Steven; Rosenthal, Andrew; Thomas, Mike

    1997-02-01

    Hybrid power systems consisting of battery inverters coupled with diesel, propane, or gasoline engine-driven electrical generators, and photovoltaic arrays are being used in many remote locations. The potential cost advantages of hybrid systems over simple engine-driven generator systems are causing hybrid systems to be considered for numerous applications including single-family residential, communications, and village power. This paper discusses the various design constraints of such systems and presents one technique for reducing hybrid system losses. The Southwest Technology Development Institute under contract to the National Renewable Energy Laboratory and Sandia National Laboratories has been installing data acquisition systems (DAS) on a number of small and large hybrid PV systems. These systems range from small residential systems (1 kW PV - 7 kW generator), to medium sized systems (10 kW PV - 20 kW generator), to larger systems (100 kW PV - 200 kW generator). Even larger systems are being installed with hundreds of kilowatts of PV modules, multiple wind machines, and larger diesel generators.

  5. New Best-Practices Guide for Photovoltaic System Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fact sheet summarizing technical report TP-7A40-67553. As solar photovoltaic (PV) systems have continued their transition from niche applications into large, mature markets in the United States, their potential as financial investments has risen accordingly. Mainstream investors, however, need to feel confident about the risk and return of solar photovoltaic (PV) systems before committing funds. A major influence on risk and return for PV is operations and maintenance (O&M) - but O&M practices and costs vary widely across the United States, making these variables difficult for investors to predict. To address this barrier to continued PV investment, the PV O&M Workingmore » Group has developed a new best-practices guide for PV O&M.« less

  6. Determining the Impact of Steady-State PV Fault Current Injections on Distribution Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    This report investigates the fault current contribution from a single large PV system and the impact it has on existing distribution overcurrent protection devices. Assumptions are made about the modeling of the PV system under fault to perform exhaustive steady - state fault analyses throughout distribution feeder models. Each PV interconnection location is tested to determine how the size of the PV system affects the fault current measured by each protection device. This data is then searched for logical conditions that indicate whether a protection device has operated in a manner that will cause more customer outages due to themore » addition of the PV system. This is referred to as a protection issue , and there are four unique types of issues that have been identified in the study. The PV system size at which any issues occur are recorded to determine the feeder's PV hosting capacity limitations due to interference with protection settings. The analysis is carried out on six feeder models. The report concludes with a discussion of the prevalence and cause of each protection issue caused by PV system fault current.« less

  7. Do Photovoltaic Energy Systems Effect Residential Selling Prices? Results from a California Statewide Investigation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Cappers, Pete; Wiser, Ryan

    2011-04-12

    An increasing number of homes in the U.S. have sold with photovoltaic (PV) energy systems installed at the time of sale, yet relatively little research exists that provides estimates of the marginal impacts of those PV systems on home sale prices. This research analyzes a large dataset of California homes that sold from 2000 through mid-2009 with PV installed. We find strong evidence that homes with PV systems sold for a premium over comparable homes without PV systems during this time frame. Estimates for this premium expressed in dollars per watt of installed PV range, from roughly $4 to $6.4/wattmore » across the full dataset, to approximately $2.3/watt for new homes, to more than $6/watt for existing homes. A number of ideas for further research are suggested.« less

  8. Solar PV O&M Standards and Best Practices – Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  9. Solar PV O&M Standards and Best Practices - Existing Gaps and Improvement Efforts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John R.; Keating, T. J.

    2014-11-01

    As greater numbers of photovoltaic (PV) systems are being installed, operations & maintenance (O&M) activities will need to be performed to ensure the PV system is operating as designed over its useful lifetime. To mitigate risks to PV system availability and performance, standardized procedures for O&M activities are needed to ensure high reliability and long-term system bankability. Efforts are just getting underway to address the need for standard O&M procedures as PV gains a larger share of U.S. generation capacity. Due to the existing landscape of how and where PV is installed, including distributed generation from small and medium PVmore » systems, as well as large, centralized utility-scale PV, O&M activities will require different levels of expertise and reporting, making standards even more important. This report summarizes recent efforts made by solar industry stakeholders to identify the existing standards and best practices applied to solar PV O&M activities, and determine the gaps that have yet to be, or are currently being addressed by industry.« less

  10. A Modular PV System Using Chain-Link-Type Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Hatano, Nobuhiko; Ise, Toshifumi

    This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.

  11. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  12. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  13. Developing High PV Penetration Cases for Frequency Response Study of U.S. Western Interconnection: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; Veda, Santosh

    2017-04-11

    Recent large penetrations of solar photovoltaic (PV) generation and the inertial characteristics of inverter-based generation technologies have caught the attention of those in the electric power industry in the United States. This paper presents a systematic approach to developing test cases of high penetrations of PV for the Western Interconnection. First, to examine the accuracy of the base case model, the Western Electricity Coordinating Council (WECC) model is validated by using measurement data from synchronized phasor measurement units. Based on the 2022 Light Spring case, we developed four high PV penetration cases for the WECC system that are of interestmore » to the industry: 5% PV+15 % wind, 25% PV+15% wind, 45% PV+15% wind, 65% PV+15% wind). Additionally, a method to project PV is proposed that is based on collected, realistic PV distribution information, including the current and future PV power plant locations and penetrations in the WECC system. Both the utility-scale PV plant and residential rooftop PV are included in this study.« less

  14. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    PubMed

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).

  15. Mitigating Short-Term Variations of Photovoltaic Generation Using Energy Storage with VOLTTRON

    NASA Astrophysics Data System (ADS)

    Morrissey, Kevin

    A smart-building communications system performs smoothing on photovoltaic (PV) power generation using a battery energy storage system (BESS). The system runs using VOLTTRON(TM), a multi-agent python-based software platform dedicated to power systems. The VOLTTRON(TM) system designed for this project runs synergistically with the larger University of Washington VOLTTRON(TM) environment, which is designed to operate UW device communications and databases as well as to perform real-time operations for research. One such research algorithm that operates simultaneously with this PV Smoothing System is an energy cost optimization system which optimizes net demand and associated cost throughout a day using the BESS. The PV Smoothing System features an active low-pass filter with an adaptable time constant, as well as adjustable limitations on the output power and accumulated battery energy of the BESS contribution. The system was analyzed using 26 days of PV generation at 1-second resolution. PV smoothing was studied with unconstrained BESS contribution as well as under a broad range of BESS constraints analogous to variable-sized storage. It was determined that a large inverter output power was more important for PV smoothing than a large battery energy capacity. Two methods of selecting the time constant in real time, static and adaptive, are studied for their impact on system performance. It was found that both systems provide a high level of PV smoothing performance, within 8% of the ideal case where the best time constant is known ahead of time. The system was run in real time using VOLTTRON(TM) with BESS limitations of 5 kW/6.5 kWh and an adaptive update period of 7 days. The system behaved as expected given the BESS parameters and time constant selection methods, providing smoothing on the PV generation and updating the time constant periodically using the adaptive time constant selection method.

  16. Terrestrial photovoltaic collector technology trends

    NASA Technical Reports Server (NTRS)

    Shimada, K.; Costogue, E.

    1984-01-01

    Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.

  17. Design of energy storage system to improve inertial response for large scale PV generation

    DOE PAGES

    Wang, Xiaoyu; Yue, Meng

    2016-07-01

    With high-penetration levels of renewable generating sources being integrated into the existing electric power grid, conventional generators are being replaced and grid inertial response is deteriorating. This technical challenge is more severe with photovoltaic (PV) generation than with wind generation because PV generation systems cannot provide inertial response unless special countermeasures are adopted. To enhance the inertial response, this paper proposes to use battery energy storage systems (BESS) as the remediation approach to accommodate the degrading inertial response when high penetrations of PV generation are integrated into the existing power grid. A sample power system was adopted and simulated usingmore » PSS/E software. Here, impacts of different penetration levels of PV generation on the system inertial response were investigated and then BESS was incorporated to improve the frequency dynamics.« less

  18. Smoothing PV System’s Output by Tuning MPPT Control

    NASA Astrophysics Data System (ADS)

    Ina, Nobuhiko; Yanagawa, Shigeyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    A PV system’s output is not stable and fluctuates depending on a weather condition. Using a battery is one of the feasible ways to stabilize a PV system’s output, although it requires an additional cost and provides an additional waste of the used battery. In this paper, we propose tuning a characteristic of Maxiumum Power Point Tracking (MPPT) control for smoothing a short term change of PV system’s output during a sharp insolation fluctuation, as an approach without additional equipments. In our proposed method, when an insolation increases rapidly, the operation point of MPPT control changes to the new point where the maximum power is not generated with present insolation, so that the speed of PV system’s output increase is limited to a certain value, i. e. 1%/min. In order to evaluate the effect of our proposed method in terms of reducing the additional operation task of the electric power system, we evaluated the additional LFC capacity for a large-scale installation of PV systems. As a result, it was revealed that the additional LFC capacity is not required even if a PV system is installed by 5% of utility system, when our proposed method is applied to all PV systems.

  19. Why silicon is and will remain the dominant photovoltaic material

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra

    2009-07-01

    Rising demands of energy in emerging economies, coupled with the green house gas emissions related problems around the globe have provided a unique opportunity of exploiting the advantages offered by photovoltaic (PV) systems for green energy electricity generation. Similar to cell phones, power generated by PV systems can reach over two billion people worldwide who have no access to clean energy. Only silicon based PV devices meet the low-cost manufacturing criterion of clean energy conversion (abundance of raw material and no environmental health and safety issues). The use of larger size glass substrates and manufacturing techniques similar to the ones used by the liquid crystal display industry and the large scale manufacturing of amorphous silicon thin films based modules (~ GW per year manufacturing at a single location) can lead to installed PV system cost of $3/Wp. This will open a huge market for grid connected PV systems and related markets. With further research and development, this approach can provide $2/Wp installed PV system costs in the next few years. At this cost level, PV electricity generation is competitive with any other technology, and PV power generation can be a dominant electricity generation technology in the 21st century.

  20. Limits and Economic Effects of Distributed PV Generation in North and South Carolina

    NASA Astrophysics Data System (ADS)

    Holt, Kyra Moore

    The variability of renewable sources, such as wind and solar, when integrated into the electrical system must be compensated by traditional generation sources in-order to maintain the constant balance of supply and demand required for grid stability. The goal of this study is to analyze the effects of increasing large levels of solar Photovoltaic (PV) penetration (in terms of a percentage of annual energy production) on a test grid with similar characteristics to the Duke Energy Carolinas (DEC) and Progress Energy Carolinas (PEC) regions of North and South Carolina. PV production is modeled entering the system at the distribution level and regional PV capacity is based on household density. A gridded hourly global horizontal irradiance (GHI) dataset is used to capture the variable nature of PV generation. A unit commitment model (UCM) is then used determine the hourly dispatch of generators based on generator parameters and costs to supply generation to meet demand. Annual modeled results for six different scenarios are evaluated to determine technical, environmental and economic effects of varying levels of distributed PV penetration on the system. This study finds that the main limiting factor for PV integration in the DEC and PEC balancing authority regions is defined by the large generating capacity of base-load nuclear plants within the system. This threshold starts to affect system stability at integration levels of 5.7%. System errors, defined by imbalances caused by over or under generation with respect to demand, are identified in the model however the validity of these errors in real world context needs further examination due to the lack of high frequency irradiance data and modeling limitations. Operational system costs decreased as expected with PV integration although further research is needed to explore the impacts of the capital costs required to achieve the penetration levels found in this study. PV system generation was found to mainly displace coal generation creating a loss of revenue for generator owners. In all scenarios, CO 2 emissions were reduced with PV integration. This reduction could be used to meet impending EPA state-specific CO2 emissions targets.

  1. Energy Systems Integration News - November 2016 | Energy Systems

    Science.gov Websites

    visualization. NREL Study Finds Integrated Utility Control Can Improve Grid Voltage Regulation Beyond Advanced large solar photovoltaic (PV) system is connected to the electric grid, a centralized control system at more PV power is being fed into the line than is being used, leading to voltage control issues and

  2. A fault diagnosis system for PV power station based on global partitioned gradually approximation method

    NASA Astrophysics Data System (ADS)

    Wang, S.; Zhang, X. N.; Gao, D. D.; Liu, H. X.; Ye, J.; Li, L. R.

    2016-08-01

    As the solar photovoltaic (PV) power is applied extensively, more attentions are paid to the maintenance and fault diagnosis of PV power plants. Based on analysis of the structure of PV power station, the global partitioned gradually approximation method is proposed as a fault diagnosis algorithm to determine and locate the fault of PV panels. The PV array is divided into 16x16 blocks and numbered. On the basis of modularly processing of the PV array, the current values of each block are analyzed. The mean current value of each block is used for calculating the fault weigh factor. The fault threshold is defined to determine the fault, and the shade is considered to reduce the probability of misjudgments. A fault diagnosis system is designed and implemented with LabVIEW. And it has some functions including the data realtime display, online check, statistics, real-time prediction and fault diagnosis. Through the data from PV plants, the algorithm is verified. The results show that the fault diagnosis results are accurate, and the system works well. The validity and the possibility of the system are verified by the results as well. The developed system will be benefit for the maintenance and management of large scale PV array.

  3. Appraising into the Sun: Six-State Solar Home Paired-Sale Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence Berkeley National Laboratory

    Although residential solar photovoltaic (PV) installations have proliferated, PV systems on some U.S. homes still receive no value during an appraisal because comparable home sales are lacking. To value residential PV, some previous studies have employed paired-sales appraisal methods to analyze small PV home samples in depth, while others have used statistical methods to analyze large samples. Our first-of-its-kind study connects the two approaches. It uses appraisal methods to evaluate sales price premiums for owned PV systems on single-unit detached houses that were also evaluated in a large statistical study. Independent appraisers evaluated 43 recent home sales pairs in sixmore » states: California, Oregon, Florida, Maryland, North Carolina, and Pennsylvania. We compare these results with contributory-value estimates—based on income (using the PV Value® tool), gross cost, and net cost—as well as hedonic modeling results from the recent statistical study. The results provide strong, appraisal-based evidence of PV premiums in all states. More importantly, the results support the use of cost- and incomebased PV premium estimates when paired-sales analysis is impossible. PV premiums from the paired-sales analysis are most similar to net PV cost estimates. PV Value® income results generally track the appraised premiums, although conservatively. The appraised premiums are in agreement with the hedonic modeling results as well, which bolsters the suitability of both approaches for estimating PV home premiums. Therefore, these results will benefit valuation professionals and mortgage lenders who increasingly are encountering homes equipped with PV and need to understand the factors that can both contribute to and detract from market value.« less

  4. Solar Electricity

    NASA Technical Reports Server (NTRS)

    1988-01-01

    ARCO Solar manufactures PV Systems tailored to a broad variety of applications. PV arrays are routinely used at remote communications installations to operate large microwave repeaters, TV and radio repeaters rural telephone, and small telemetry systems that monitor environmental conditions. Also used to power agricultural water pumping systems, to provide electricity for isolated villages and medical clinics, for corrosion protection for pipelines and bridges, to power railroad signals, air/sea navigational aids, and for many types of military systems. ARCO is now moving into large scale generation for utilities.

  5. Practical design considerations for photovoltaic power station

    NASA Astrophysics Data System (ADS)

    Swanson, T. D.

    Aspects of photovoltaic (PV) technology are discussed along with generic PV design considerations, taking into account the resource sunlight, PV modules and their reliability, questions of PV system design, the support structure subsystem, and a power conditioning unit subsystem. A description is presented of two recent projects which demonstrate the translation of an idea into actual working PV systems. A privately financed project in Denton, Maryland, went on line in early December, 1982, and began providing power to the local utility grid. It represents the first intermediate size, grid-connected, privately financed power station in the U.S. Based on firm quotes, the actual cost of this system is about $13/W peak. The other project, called the PV Breeder, is an energy independent facility which utilizes solar power to make new solar cells. It is also the first large industrial structure completely powered by the sun.

  6. Generic solar photovoltaic system dynamic simulation model specification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intendedmore » to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.« less

  7. Solar electric state

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bumke, D.

    The booming sales of photovoltaic (PV) equipment in California is described. Three types of markets appear to exist. These are: (1) people who want to electrify a remote home and avoid the large expense of a utility hook-up; (2) suburban renegades who are reluctant to depend on the grid; and (3) the marijuana farmers of northern California who do not want public exposure. Several PV systems and homes are described and illustrated. Various options of electrical systems (ac generators versus electronic inverters) are discussed and the merits of each system are pointed out. Expenses involved in PV systems are describedmore » and various voltage and battery options (12, 24, 36, or 48 volts) are discussed. Specific use of ac or dc for particular appliances is considered in detail. It is estimated that in California more than 500 homes are being powered by over 130,000 watts of PV power. It is predicted that the use of PV's will double in the next year. Sources of information on PV's (catalogs and books) are given. (MJJ)« less

  8. To Own or Lease Solar: Understanding Commercial Retailers' Decisions to Use Alternative Financing Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, David; Margolis, Robert

    This report examines the tradeoffs among financing methods for businesses installing onsite photovoltaics (PV). We present case studies of PV financing strategies used by two large commercial retailers that have deployed substantial U.S. PV capacity: IKEA, which owns its PV, and Staples, which purchases power generated from onsite PV systems through power purchase agreements (PPAs). We also analyze the financial considerations that influence any company's choice of PV financing strategy. Our goal in this report is to clarify the financial and institutional costs and benefits of financing strategies and to inform other companies that are considering launching or expanding similarmore » PV programs.« less

  9. Design description report for a photovoltaic power system for a remote satellite earth terminal

    NASA Technical Reports Server (NTRS)

    Marshall, N. A.; Naff, G. J.

    1987-01-01

    A photovoltaic (PV) power system has been installed as an adjunct to an agricultural school at Wawatobi on the large northern island of the Republic of Indonesia. Its purpose is to provide power for a satellite earth station and a classroom. The renewable energy developed supports the video and audio teleconferencing systems as well as the facility at large. The ground station may later be used to provide telephone service. The installation was made in support of the Agency for International Development's Rural Satellite Program, whose purpose is to demonstrate the use of satellite communications for rural development assistance applications. The objective of this particular PV power system is to demonstrate the suitability of a hybrid PV engine-generator configuration for remote satellite earth stations.

  10. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  11. Advances in integration of photovoltaic power and energy production in practical systems

    NASA Astrophysics Data System (ADS)

    Fartaria, Tomas Oliveira

    This thesis presents advances in integration of photovoltaic (PV) power and energy in practical systems, such as existing power plants in buildings or directly integrated in the public electrical grid. It starts by providing an analyze of the current state of PV power and some of its limitations. The work done in this thesis begins by providing a model to compute mutual shading in large PV plants, and after provides a study of the integration of a PV plant in a biogas power plant. The remainder sections focus on the work done for project PVCROPS, which consisted on the construction and operation of two prototypes composed of a PV system and a novel battery connected to a building and to the public electrical grid. These prototypes were then used to test energy management strategies and validate the suitability of the two advanced batteries (a lithium-ion battery and a vanadium redox ow battery) for households (BIPV) and PV plants. This thesis is divided in 7 chapters: Chapter 1 provides an introduction to explain and develop the main research questions studied for this thesis; Chapter 2 presents the development of a ray-tracing model to compute shading in large PV elds (with or without trackers); Chapter 3 shows the simulation of hybridizing a biogas plant with a PV plant, using biogas as energy storage; Chapters 4 and 5 present the construction, programming, and initial operation of both prototypes (Chapter 4), EMS testing oriented to BIPV systems (Chapter 5). Finally, Chapters 6 provides some future lines of investigation that can follow this thesis, and Chapter 7 shows a synopsis of the main conclusions of this work.

  12. ABLE project: Development of an advanced lead-acid storage system for autonomous PV installations

    NASA Astrophysics Data System (ADS)

    Lemaire-Potteau, Elisabeth; Vallvé, Xavier; Pavlov, Detchko; Papazov, G.; Borg, Nico Van der; Sarrau, Jean-François

    In the advanced battery for low-cost renewable energy (ABLE) project, the partners have developed an advanced storage system for small and medium-size PV systems. It is composed of an innovative valve-regulated lead-acid (VRLA) battery, optimised for reliability and manufacturing cost, and an integrated regulator, for optimal battery management and anti-fraudulent use. The ABLE battery performances are comparable to flooded tubular batteries, which are the reference in medium-size PV systems. The ABLE regulator has several innovative features regarding energy management and modular series/parallel association. The storage system has been validated by indoor, outdoor and field tests, and it is expected that this concept could be a major improvement for large-scale implementation of PV within the framework of national rural electrification schemes.

  13. Flat-plate solar array project of the US Department of Energy's National Photovoltaics Program: Ten years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The Flat-Plate Solar Array (FSA) Project, a Government-sponsored photovoltaics project, was initiated in January 1975 (previously named the Low-Cost Silicon Solar Array Project) to stimulate the development of PV systems for widespread use. Its goal then was to develop PV modules with 10% efficiency, a 20-year lifetime, and a selling price of $0.50 per peak watt of generating capacity (1975 dollars). It was recognized that cost reduction of PV solar-cell and module manufacturing was the key achievement needed if PV power systems were to be economically competitive for large-scale terrestrial use.

  14. Performance and economics of the PV hybrid power system at Dangling Rope Marina, Utah

    NASA Astrophysics Data System (ADS)

    Rosenthal, Andrew L.

    1999-03-01

    The National Park Service has operated a large photovoltaic (PV) hybrid power system at the Dangling Rope Marina since August 1996. Performance and economic analyses for this system based on its first year of operation have been published elsewhere [1,2]. Now, as the system enters its third year of operation, recent changes to the site electrical load and impending additions to the PV array raise new interest in this site as the subject of analysis and evaluation. In 1998, energy conservation measures reduced the site electrical load by 10-12%. At the same time, funding has been allocated to expand the PV array by 40% in 1999. This paper analyzes the effects that these changes will have on the site's fuel use and 20-year life cycle cost.

  15. Short-term PV/T module temperature prediction based on PCA-RBF neural network

    NASA Astrophysics Data System (ADS)

    Li, Jiyong; Zhao, Zhendong; Li, Yisheng; Xiao, Jing; Tang, Yunfeng

    2018-02-01

    Aiming at the non-linearity and large inertia of temperature control in PV/T system, short-term temperature prediction of PV/T module is proposed, to make the PV/T system controller run forward according to the short-term forecasting situation to optimize control effect. Based on the analysis of the correlation between PV/T module temperature and meteorological factors, and the temperature of adjacent time series, the principal component analysis (PCA) method is used to pre-process the original input sample data. Combined with the RBF neural network theory, the simulation results show that the PCA method makes the prediction accuracy of the network model higher and the generalization performance stronger than that of the RBF neural network without the main component extraction.

  16. Ten Years of Analyzing the Duck Chart: How an NREL Discovery in 2008 Is

    Science.gov Websites

    examined how to plan for future large-scale integration of solar photovoltaic (PV) generation on the result, PV was deployed more widely, and system operators became increasingly concerned about how solar emerging energy and environmental policy initiatives pushing for higher levels of solar PV deployment. As a

  17. A New Approach to Design of an optimized Grid Tied Smart Solar Photovoltaic (PV) System

    NASA Astrophysics Data System (ADS)

    Farhad, M. Mehedi; Ali, M. Mohammad; Iqbal, M. Asif; Islam, N. Nahar; Ashraf, N.

    2012-11-01

    Energy is the key element for the economical development of a country. With the increasing concern about the global demand for Renewable Energy (RE) energy, it is very much important to reduce the cost of the whole solar photovoltaic (PV) system. Still now most of the solar photovoltaic (PV) system is highly expensive. In this paper we have shown that grid tied solar system can be developed by omitting the energy storage device like large capacity battery bank. It will not only reduce the internallosses for charging and discharging of battery bank but also at the same time a large amount of cost of the battery will be reduced. So, the system maintenance cost will be reduced also. We have proposed a new approach to design a photovoltaic (PV) solar power system which can be operated by feeding the solar power to the national grid along with the residential load. Again if there is an extra power demand for residential load along with the solar power then this system can also provide an opportunity to consume the power from the national grid. The total system is controlled with the help of some the sensors and a microcontroller. As a whole a significant reduction in the system costs and efficient system performance can be realized.

  18. Analytical Assessment of the Relationship between 100MWp Large-scale Grid-connected Photovoltaic Plant Performance and Meteorological Parameters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zhu, Qiaoming; Cao, Shijie; You, Yang

    2017-05-01

    This paper helps in study of the relationship between the photovoltaic power generation of large scale “fishing and PV complementary” grid-tied photovoltaic system and meteorological parameters, with multi-time scale power data from the photovoltaic power station and meteorological data over the same period of a whole year. The result indicates that, the PV power generation has the most significant correlation with global solar irradiation, followed by diurnal temperature range, sunshine hours, daily maximum temperature and daily average temperature. In different months, the maximum monthly average power generation appears in August, which related to the more global solar irradiation and longer sunshine hours in this month. However, the maximum daily average power generation appears in October, this is due to the drop in temperature brings about the improvement of the efficiency of PV panels. Through the contrast of monthly average performance ratio (PR) and monthly average temperature, it is shown that, the larger values of monthly average PR appears in April and October, while it is smaller in summer with higher temperature. The results concluded that temperature has a great influence on the performance ratio of large scale grid-tied PV power system, and it is important to adopt effective measures to decrease the temperature of PV plant properly.

  19. On the Path to SunShot - Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palminitier, Bryan; Broderick, Robert; Mather, Barry

    2016-05-01

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV thatmore » can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and innovation are neede« less

  20. Residential Photovoltaic Energy Systems in California: The Effect on Home Sales Prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Wiser, Ryan; Thayer, Mark

    2012-04-15

    Relatively little research exists estimating the marginal impacts of photovoltaic (PV) energy systems on home sale prices. Using a large dataset of California homes that sold from 2000 through mid-2009, we find strong evidence, despite a variety of robustness checks, that existing homes with PV systems sold for a premium over comparable homes without PV systems, implying a near full return on investment. Premiums for new homes are found to be considerably lower than those for existing homes, implying, potentially, a tradeoff between price and sales velocity. The results have significant implications for homeowners, builders, appraisers, lenders, and policymakers.

  1. Energy Systems Integration Newsletter - January 2017 | Energy Systems

    Science.gov Websites

    ) project with PV manufacturer First Solar and NREL, First Solar designed an advanced plant-level controller relatively long history of interconnecting solar photovoltaic (PV) systems to its electric grid, with state Photo of a solar array. Tests Show Large Solar Plants Can Balance a Low-Carbon Grid In recent years

  2. Pharmacovigilance in resource-limited countries.

    PubMed

    Olsson, Sten; Pal, Shanthi N; Dodoo, Alex

    2015-01-01

    In the past 20 years, many low- and middle-income countries have created national pharmacovigilance (PV) systems and joined the WHO's global PV network. However, very few of them have fully functional systems. Scientific evidence on the local burden of medicine-related harm and their preventability is missing. Legislation and regulatory framework as well as financial support to build sustainable PV systems are needed. Public health programs need to integrate PV to monitor new vaccines and medicines introduced through these programs. Signal analysis should focus on high-burden preventable adverse drug problems. Increased involvement of healthcare professionals from public and private sectors, pharmaceutical companies, academic institutions and the public at large is necessary to assure a safe environment for drug therapy. WHO has a major role in supporting and coordinating these developments.

  3. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    NASA Astrophysics Data System (ADS)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on 1) The utilization of a large area factory assembled PV panel, and 2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District's Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems.

  4. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  5. A study on assimilating potential vorticity data

    NASA Astrophysics Data System (ADS)

    Li, Yong; Ménard, Richard; Riishøjgaard, Lars Peter; Cohn, Stephen E.; Rood, Richard B.

    1998-08-01

    The correlation that exists between the potential vorticity (PV) field and the distribution of chemical tracers such as ozone suggests the possibility of using tracer observations as proxy PV data in atmospheric data assimilation systems. Especially in the stratosphere, there are plentiful tracer observations but a general lack of reliable wind observations, and the correlation is most pronounced. The issue investigated in this study is how model dynamics would respond to the assimilation of PV data. First, numerical experiments of identical-twin type were conducted with a simple univariate nuding algorithm and a global shallow water model based on PV and divergence (PV-D model). All model fields are successfully reconstructed through the insertion of complete PV data alone if an appropriate value for the nudging coefficient is used. A simple linear analysis suggests that slow modes are recovered rapidly, at a rate nearly independent of spatial scale. In a more realistic experiment, appropriately scaled total ozone data from the NIMBUS-7 TOMS instrument were assimilated as proxy PV data into the PV-D model over a 10-day period. The resulting model PV field matches the observed total ozone field relatively well on large spatial scales, and the PV, geopotential and divergence fields are dynamically consistent. These results indicate the potential usefulness that tracer observations, as proxy PV data, may offer in a data assimilation system.

  6. The Photovoltaic Heat Island Effect: Larger solar power plants increase local temperatures

    PubMed Central

    Barron-Gafford, Greg A.; Minor, Rebecca L.; Allen, Nathan A.; Cronin, Alex D.; Brooks, Adria E.; Pavao-Zuckerman, Mitchell A.

    2016-01-01

    While photovoltaic (PV) renewable energy production has surged, concerns remain about whether or not PV power plants induce a “heat island” (PVHI) effect, much like the increase in ambient temperatures relative to wildlands generates an Urban Heat Island effect in cities. Transitions to PV plants alter the way that incoming energy is reflected back to the atmosphere or absorbed, stored, and reradiated because PV plants change the albedo, vegetation, and structure of the terrain. Prior work on the PVHI has been mostly theoretical or based upon simulated models. Furthermore, past empirical work has been limited in scope to a single biome. Because there are still large uncertainties surrounding the potential for a PHVI effect, we examined the PVHI empirically with experiments that spanned three biomes. We found temperatures over a PV plant were regularly 3–4 °C warmer than wildlands at night, which is in direct contrast to other studies based on models that suggested that PV systems should decrease ambient temperatures. Deducing the underlying cause and scale of the PVHI effect and identifying mitigation strategies are key in supporting decision-making regarding PV development, particularly in semiarid landscapes, which are among the most likely for large-scale PV installations. PMID:27733772

  7. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less

  8. Contribution of concentrator photovoltaic installations to grid stability and power quality

    NASA Astrophysics Data System (ADS)

    del Toro García, Xavier; Roncero-Sánchez, Pedro; Torres, Alfonso Parreño; Vázquez, Javier

    2012-10-01

    Large-scale integration of Photovoltaic (PV) generation systems, including Concentrator Photovoltaic (CPV) technologies, will require the contribution and support of these technologies to the management and stability of the grid. New regulations and grid codes for PV installations in countries such as Spain have recently included dynamic voltage control support during faults. The PV installation must stay connected to the grid during voltage dips and inject reactive power in order to enhance the stability of the system. The existing PV inverter technologies based on the Voltage-Source Converter (VSC) are in general well suited to provide advanced grid-support characteristics. Nevertheless, new advanced control schemes and monitoring techniques will be necessary to meet the most demanding requirements.

  9. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  10. Estimation of Curve Tracing Time in Supercapacitor based PV Characterization

    NASA Astrophysics Data System (ADS)

    Basu Pal, Sudipta; Das Bhattacharya, Konika; Mukherjee, Dipankar; Paul, Debkalyan

    2017-08-01

    Smooth and noise-free characterisation of photovoltaic (PV) generators have been revisited with renewed interest in view of large size PV arrays making inroads into the urban sector of major developing countries. Such practice has recently been observed to be confronted by the use of a suitable data acquisition system and also the lack of a supporting theoretical analysis to justify the accuracy of curve tracing. However, the use of a selected bank of supercapacitors can mitigate the said problems to a large extent. Assuming a piecewise linear analysis of the V-I characteristics of a PV generator, an accurate analysis of curve plotting time has been possible. The analysis has been extended to consider the effect of equivalent series resistance of the supercapacitor leading to increased accuracy (90-95%) of curve plotting times.

  11. Reconciling Consumer and Utility Objectives in the Residential Solar PV Market

    NASA Astrophysics Data System (ADS)

    Arnold, Michael R.

    Today's energy market is facing large-scale changes that will affect all market players. Near the top of that list is the rapid deployment of residential solar photovoltaic (PV) systems. Yet that growing trend will be influenced multiple competing interests between various stakeholders, namely the utility, consumers and technology provides. This study provides a series of analyses---utility-side, consumer-side, and combined analyses---to understand and evaluate the effect of increases in residential solar PV market penetration. Three urban regions have been selected as study locations---Chicago, Phoenix, Seattle---with simulated load data and solar insolation data at each locality. Various time-of-use pricing schedules are investigated, and the effect of net metering is evaluated to determine the optimal capacity of solar PV and battery storage in a typical residential home. The net residential load profile is scaled to assess system-wide technical and economic figures of merit for the utility with an emphasis on intraday load profiles, ramp rates and electricity sales with increasing solar PV penetration. The combined analysis evaluates the least-cost solar PV system for the consumer and models the associated system-wide effects on the electric grid. Utility revenue was found to drop by 1.2% for every percent PV penetration increase, net metering on a monthly or annual basis improved the cost-effectiveness of solar PV but not battery storage, the removal of net metering policy and usage of an improved the cost-effectiveness of battery storage and increases in solar PV penetration reduced the system load factor. As expected, Phoenix had the most favorable economic scenario for residential solar PV, primarily due to high solar insolation. The study location---solar insolation and load profile---was also found to affect the time of year at which the largest net negative system load was realized.

  12. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems),more » high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.« less

  13. The underestimated potential of solar energy to mitigate climate change

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Agoston, Peter; Goldschmidt, Jan Christoph; Luderer, Gunnar; Nemet, Gregory; Pietzcker, Robert C.

    2017-09-01

    The Intergovernmental Panel on Climate Change's fifth assessment report emphasizes the importance of bioenergy and carbon capture and storage for achieving climate goals, but it does not identify solar energy as a strategically important technology option. That is surprising given the strong growth, large resource, and low environmental footprint of photovoltaics (PV). Here we explore how models have consistently underestimated PV deployment and identify the reasons for underlying bias in models. Our analysis reveals that rapid technological learning and technology-specific policy support were crucial to PV deployment in the past, but that future success will depend on adequate financing instruments and the management of system integration. We propose that with coordinated advances in multiple components of the energy system, PV could supply 30-50% of electricity in competitive markets.

  14. Computer Drawing Method for Operating Characteristic Curve of PV Power Plant Array Unit

    NASA Astrophysics Data System (ADS)

    Tan, Jianbin

    2018-02-01

    According to the engineering design of large-scale grid-connected photovoltaic power stations and the research and development of many simulation and analysis systems, it is necessary to draw a good computer graphics of the operating characteristic curves of photovoltaic array elements and to propose a good segmentation non-linear interpolation algorithm. In the calculation method, Component performance parameters as the main design basis, the computer can get 5 PV module performances. At the same time, combined with the PV array series and parallel connection, the computer drawing of the performance curve of the PV array unit can be realized. At the same time, the specific data onto the module of PV development software can be calculated, and the good operation of PV array unit can be improved on practical application.

  15. Parallel Visualization Co-Processing of Overnight CFD Propulsion Applications

    NASA Technical Reports Server (NTRS)

    Edwards, David E.; Haimes, Robert

    1999-01-01

    An interactive visualization system pV3 is being developed for the investigation of advanced computational methodologies employing visualization and parallel processing for the extraction of information contained in large-scale transient engineering simulations. Visual techniques for extracting information from the data in terms of cutting planes, iso-surfaces, particle tracing and vector fields are included in this system. This paper discusses improvements to the pV3 system developed under NASA's Affordable High Performance Computing project.

  16. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.« less

  17. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives onmore » current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.« less

  18. On the Path to SunShot. The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhouse, Michael; Jones-Albertus, Rebecca; Feldman, David

    2016-05-01

    This report examines the remaining challenges to achieving the competitive photovoltaic (PV) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Solar-energy cost reductions can be realized through lower PV module and balance-of-system (BOS) costs as well as improved system efficiency and reliability. Numerous combinations of PV improvements could help achieve the levelized cost of electricity (LCOE) goals because of the tradeoffs among key metrics like module price, efficiency, and degradation rate as well as system price and lifetime. Using LCOE modeling based on bottom-up cost analysis, two specific pathways are mapped to exemplify the manymore » possible approaches to module cost reductions of 29%-38% between 2015 and 2020. BOS hardware and soft cost reductions, ranging from 54%-77% of total cost reductions, are also modeled. The residential sector's high supply-chain costs, labor requirements, and customer-acquisition costs give it the greatest BOS cost-reduction opportunities, followed by the commercial sector, although opportunities are available to the utility-scale sector as well. Finally, a future scenario is considered in which very high PV penetration requires additional costs to facilitate grid integration and increased power-system flexibility--which might necessitate even lower solar LCOEs. The analysis of a pathway to 3-5 cents/kWh PV systems underscores the importance of combining robust improvements in PV module and BOS costs as well as PV system efficiency and reliability if such aggressive long-term targets are to be achieved.« less

  19. Extreme Cost Reductions with Multi-Megawatt Centralized Inverter Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwabe, Ulrich; Fishman, Oleg

    2015-03-20

    The objective of this project was to fully develop, demonstrate, and commercialize a new type of utility scale PV system. Based on patented technology, this includes the development of a truly centralized inverter system with capacities up to 100MW, and a high voltage, distributed harvesting approach. This system promises to greatly impact both the energy yield from large scale PV systems by reducing losses and increasing yield from mismatched arrays, as well as reduce overall system costs through very cost effective conversion and BOS cost reductions enabled by higher voltage operation.

  20. One-power IC with MPPT design

    NASA Astrophysics Data System (ADS)

    Xu, Shengzhi; Chu, Ian; Zhao, Gengshen; Wang, Qingzhang

    2008-03-01

    When proceed photovoltaic power system design, engineer needs prepared model of PV cells to evaluate system response, capability performance, and stability, the DC model is not enough, but an accuracy AC model plays a big role. This paper talks first about the AC model of PV cells, and DC model is also introduced in simple. There is a PV controller example explaining the steps to do system simulation in this paper. Two equivalent circuit models are implemented with mixed-signal language verilog-a, one hardware language easy to use and having good speed and high accuracy. Both of two models include solar cell arrays, one buck switched mode DC-DC converter, and the maximum power point tracking algorithm. The difference between them is that Solar cell in one of two models is with ac small signal parameter, another is without. The simulation result is given in comparison. This paper's work shows that ac parameter plays large role in switch-mode PV power system, especially when the switch frequency is higher than 100kHz.

  1. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less

  2. Martian Polar Vortices: Comparison of Reanalyses

    NASA Technical Reports Server (NTRS)

    Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.

    2016-01-01

    The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.

  3. Martian polar vortices: Comparison of reanalyses

    NASA Astrophysics Data System (ADS)

    Waugh, D. W.; Toigo, A. D.; Guzewich, S. D.; Greybush, S. J.; Wilson, R. J.; Montabone, L.

    2016-09-01

    The structure and evolution of the Martian polar vortices is examined using two recently available reanalysis systems: version 1.0 of the Mars Analysis Correction Data Assimilation (MACDA) and a preliminary version of the Ensemble Mars Atmosphere Reanalysis System (EMARS). There is quantitative agreement between the reanalyses in the lower atmosphere, where Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) data are assimilated, but there are differences at higher altitudes reflecting differences in the free-running general circulation model simulations used in the two reanalyses. The reanalyses show similar potential vorticity (PV) structure of the vortices: There is near-uniform small PV equatorward of the core of the westerly jet, steep meridional PV gradients on the polar side of the jet core, and a maximum of PV located off of the pole. In maps of 30 sol mean PV, there is a near-continuous elliptical ring of high PV with roughly constant shape and longitudinal orientation from fall to spring. However, the shape and orientation of the vortex varies on daily time scales, and there is not a continuous ring of PV but rather a series of smaller scale coherent regions of high PV. The PV structure of the Martian polar vortices is, as has been reported before, very different from that of Earth's stratospheric polar vortices, but there are similarities with Earth's tropospheric vortices which also occur at the edge of the Hadley Cell, and have near-uniform small PV equatorward of the jet, and a large increase of PV poleward of the jet due to increased stratification.

  4. Characteristics of low-priced solar PV systems in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemet, Gregory F.; O’Shaughnessy, Eric; Wiser, Ryan

    Despite impressive declines in average prices, there is wide dispersion in the prices of U.S. solar photovoltaic (PV) systems; prices span more than a factor of four. What are the characteristics of the systems with low-prices? Using detailed characteristics of 42,611 small-scale (<15 kW) PV systems installed in 15 U.S. states during 2013, we identify the most important factors that make a system likely to be low-priced (LP). Comparing LP and non-LP systems, we find statistically significant differences in nearly all characteristics for which we have data. Logit and probit model results robustly indicate that LP systems are associated with:more » markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some states, such as Arizona, New Jersey, and New Mexico, and less likely in others, such as California. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California.« less

  5. Sustainable recycling technologies for Solar PV off-grid system

    NASA Astrophysics Data System (ADS)

    Uppal, Bhavesh; Tamboli, Adish; Wubhayavedantapuram, Nandan

    2017-11-01

    Policy makers throughout the world have accepted climate change as a repercussion of fossil fuel exploitation. This has led the governments to integrate renewable energy streams in their national energy mix. PV off-grid Systems have been at the forefront of this transition because of their permanently increasing efficiency and cost effectiveness. These systems are expected to produce large amount of different waste streams at the end of their lifetime. It is important that these waste streams should be recycled because of the lack of available resources. Our study found that separate researches have been carried out to increase the efficiencies of recycling of individual PV system components but there is a lack of a comprehensive methodical research which details efficient and sustainable recycling processes for the entire PV off-grid system. This paper reviews the current and future recycling technologies for PV off-grid systems and presents a scheme of the most sustainable recycling technologies which have the potential for adoption. Full Recovery End-of-Life Photovoltaic (FRELP) recycling technology can offer opportunities to sustainably recycle crystalline silicon PV modules. Electro-hydrometallurgical process & Vacuum technologies can be used for recovering lead from lead acid batteries with a high recovery rate. The metals in the WEEE can be recycled by using a combination of biometallurgical technology, vacuum metallurgical technology and other advanced metallurgical technologies (utrasonical, mechano-chemical technology) while the plastic components can be effectively recycled without separation by using compatibilizers. All these advanced technologies when used in combination with each other provide sustainable recycling options for growing PV off-grid systems waste. These promising technologies still need further improvement and require proper integration techniques before implementation.

  6. On the Path to SunShot. Emerging Opportunities and Challenges in U.S. Solar Manufacturing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Horowitz, Kelsey; Kurup, Parthiv

    This report provides insights into photovoltaic (PV) and concentrating solar power (CSP) manufacturing in the context of the U.S. Department of Energy's SunShot Initiative. Although global PV price reductions and deployment have been strong recently, PV manufacturing faces challenges. Slowing rates of manufacturing cost reductions, combined with the relatively low price of incumbent electricity generating sources in most large global PV markets, may constrain profit opportunities for firms and poses a potential challenge to the sustainable operation and growth of the global PV manufacturing base. In the United States, manufacturers also face a factors-of-production cost disadvantage compared with competing nations.more » However, the United States is one of the world's most competitive and innovative countries as well as one of the best locations for PV manufacturing. In conjunction with strong projected PV demand in the United States and across the Americas, these advantages could increase the share of PV technologies produced by U.S. manufacturers as the importance of innovation-driven PV cost reductions increases. Compared with PV, CSP systems are much more complex and require a much larger minimum effective scale, resulting in much higher total CAPEX requirements for system construction, lengthier development cycles, and ultimately higher costs of energy produced. The global lack of consistent CSP project development creates challenges for companies that manufacture specialty CSP components, and the potential lack of a near-term U.S. market could hinder domestic CSP manufacturers. However, global and U.S. CSP deployment is expected to expand beyond 2020, and U.S. CSP manufacturers could benefit from U.S. innovation advantages similar to those associated with PV. Expansion of PV and CSP manufacturing also presents U.S. job-growth opportunities.« less

  7. A Case Study of Wind-PV-Thermal-Bundled AC/DC Power Transmission from a Weak AC Network

    NASA Astrophysics Data System (ADS)

    Xiao, H. W.; Du, W. J.; Wang, H. F.; Song, Y. T.; Wang, Q.; Ding, J.; Chen, D. Z.; Wei, W.

    2017-05-01

    Wind power generation and photovoltaic (PV) power generation bundled with the support by conventional thermal generation enables the generation controllable and more suitable for being sent over to remote load centre which are beneficial for the stability of weak sending end systems. Meanwhile, HVDC for long-distance power transmission is of many significant technique advantages. Hence the effects of wind-PV-thermal-bundled power transmission by AC/DC on power system have become an actively pursued research subject recently. Firstly, this paper introduces the technical merits and difficulties of wind-photovoltaic-thermal bundled power transmission by AC/DC systems in terms of meeting the requirement of large-scale renewable power transmission. Secondly, a system model which contains a weak wind-PV-thermal-bundled sending end system and a receiving end system in together with a parallel AC/DC interconnection transmission system is established. Finally, the significant impacts of several factors which includes the power transmission ratio between the DC and AC line, the distance between the sending end system and receiving end system, the penetration rate of wind power and the sending end system structure on system stability are studied.

  8. Plasmodium vivax Tryptophan Rich Antigen PvTRAg36.6 Interacts with PvETRAMP and PvTRAg56.6 Interacts with PvMSP7 during Erythrocytic Stages of the Parasite

    PubMed Central

    Tyagi, Kriti; Hossain, Mohammad Enayet; Thakur, Vandana; Aggarwal, Praveen; Malhotra, Pawan; Mohmmed, Asif; Sharma, Yagya Dutta

    2016-01-01

    Plasmodium vivax is most wide spread and a neglected malaria parasite. There is a lack of information on parasite biology of this species. Genome of this parasite encodes for the largest number of tryptophan-rich proteins belonging to ‘Pv-fam-a’ family and some of them are potential drug/vaccine targets but their functional role(s) largely remains unexplored. Using bacterial and yeast two hybrid systems, we have identified the interacting partners for two of the P. vivax tryptophan-rich antigens called PvTRAg36.6 and PvTRAg56.2. The PvTRAg36.6 interacts with early transcribed membrane protein (ETRAMP) of P.vivax. It is apically localized in merozoites but in early stages it is seen in parasite periphery suggesting its likely involvement in parasitophorous vacuole membrane (PVM) development or maintenance. On the other hand, PvTRAg56.2 interacts with P.vivax merozoite surface protein7 (PvMSP7) and is localized on merozoite surface. Co-localization of PvTRAg56.2 with PvMSP1 and its molecular interaction with PvMSP7 probably suggest that, PvTRAg56.2 is part of MSP-complex, and might assist or stabilize the protein complex at the merozoite surface. In conclusion, the PvTRAg proteins have different sub cellular localizations and specific associated functions during intra-erythrocytic developmental cycle. PMID:26954579

  9. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Jeff; Murphy, Sean

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less

  10. Countermeasure for Surplus Electricity of PV using Replacement Battery of EVs

    NASA Astrophysics Data System (ADS)

    Takagi, Masaaki; Iwafune, Yumiko; Yamamoto, Hiromi; Yamaji, Kenji; Okano, Kunihiko; Hiwatari, Ryouji; Ikeya, Tomohiko

    In the power sector, the national government has set the goal that the introduction of PV reaches 53 million kW by 2030. However, large-scale introduction of PV will cause several problems in power systems such as surplus electricity. We need large capacity of pumped storages or batteries for the surplus electricity, but the construction costs of these plants are very high. On the other hand, in the transport sector, Electric Vehicle (EV) is being developed as an environmentally friendly vehicle. To promote the diffusion of EV, it is necessary to build infrastructures that can charge EV in a short time; a battery switch station is one of the solutions to this problem. At a station, the automated switch platform will replace the depleted battery with a fully-charged battery. The depleted battery is placed in a storage room and recharged to be available to other drivers. In this study, we propose the use of station's battery as a countermeasure for surplus electricity of PV and evaluate the economic value of the proposed system. We assumed that 53 million kW of PV is introduced in the nationwide power system and considered two countermeasures for surplus electricity: (1) Pumped storage; (2) Battery of station. The difference in total annual cost between Pumped case and Battery case results in 792.6 billion yen. Hence, if a utility leases the batteries from stations fewer than 792.6 billion yen, the utility will have the cost advantage in Battery case.

  11. Interconnecting PV on New York City's Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, K; Coddington, M; Burman, K

    2009-11-01

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in themore » five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to networks in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1PV Deployment Analysis for New York City we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2. A Briefing for Policy Makers on Connecting PV to a Network Grid presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3. Technical Review of Concerns and Solutions to PV Interconnection in New York City summarizes common concerns of utility engineers and network experts about interconnecting PV systems to secondary networks. This section also contains detailed descriptions of nine solutions, including advantages and disadvantages, potential impacts, and road maps for deployment. Section 4. Utility Application Process Reviewlooks at utility interconnection application processes across the country and identifies administrative best practices for efficient PV interconnection.« less

  12. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  13. Impacts of Valuing Resilience on Cost-Optimal PV and Storage Systems for Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laws, Nicholas D; Anderson, Katherine H; DiOrio, Nicholas A

    Decreasing electric grid reliability in the US, along with increasing severe weather events, have greatly increased interest in resilient energy systems. Few studies have included the value of resilience when sizing PV and Battery Energy Storage Systems (BESS), and none have included the cost to island a PV and BESS, grid-connected costs and benefits, and the value of resilience. This work presents a novel method for incorporating the value of resilience provided by a PV and BESS into a techno-economic optimization model. Including the value of resilience in the design of a cost-optimal PV and BESS generally increases the systemmore » capacities, and in some cases makes a system economical where it was not before. For example, for a large hotel in Anaheim, CA no system is economical without resilience valued; however, with a $5317/hr value of resilience a 363 kW and 60 kWh solar and BESS provides a net present value of $50,000. Lastly, we discuss the effect of the 'islandable premium', which must be balanced against the benefits from serving critical loads during outages. Case studies show that the islandable premium can vary widely, which highlights the necessity for case-by-case solutions in a rapidly developing market.« less

  14. Intermediate Photovoltaic System Application Experiment. Oklahoma Center for Science and Arts. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the key results of the Phase II efforts for the Intermediate PV System Applications Experiment at the Oklahoma Center for Science and Arts (OCSA). This phase of the project involved fabrication, installation and integration of a nominal 140 kW flat panel PV system made up of large, square polycrystalline-silicon solar cell modules, each nominally 61 cm x 122 cm in size. The output of the PV modules, supplied by Solarex Corporation, was augmented, 1.35 to 1 at peak, by a row of glass reflectors, appropriately tilted northward. The PV system interfaces with the Oklahoma Gas and Electricmore » Utility at the OCSA main switchgear. Any excess power generated by the system is fed into the utility under a one to one buyback arrangement. Except for a shortfall in the system output, presently suspected to be due to the poor performance of the modules, no serious problems were encountered. Certain value engineering changes implemented during construction and early operational failure events associated with the power conditioning system are also described. The system is currently undergoing extended testing and evaluation.« less

  15. Energetic performance analysis of a commercial water-based photovoltaic thermal system (PV/T) under summer conditions

    NASA Astrophysics Data System (ADS)

    Nardi, I.; Ambrosini, D.; de Rubeis, T.; Paoletti, D.; Muttillo, M.; Sfarra, S.

    2017-11-01

    In the last years, the importance of integrating the production of electricity with the production of sanitary hot water led to the development of new solutions, i.e. PV/T systems. It is well known that hybrid photovoltaic-thermal systems, able to produce electricity and thermal energy at the same time with better energetic performance in comparison with two separate systems, present many advantages for application in a residential building. A PV/T is constituted generally by a common PV panel with a metallic pipe, in which fluid flows. Pipe accomplishes two roles: it absorbs the heat from the PV panel, thus increasing, or at least maintaining its efficiency; furthermore, it stores the heat for sanitary uses. In this work, the thermal and electrical efficiencies of a commercial PV/T panel have been evaluated during the summer season in different days, to assess the effect of environmental conditions on the system total efficiency. Moreover, infrared thermographic diagnosis in real time has been effected during the operating mode in two conditions: with cooling and without cooling; cooling was obtained by natural flowing water. This analysis gave information about the impact of a non-uniform temperature distribution on the thermal and electrical performance. Furthermore, measurements have been performed in two different operating modes: 1) production of solely electrical energy and 2) simultaneous production of thermal and electrical energy. Finally, total efficiency is largely increased by using a simple solar concentrator nearby the panel.

  16. Distributed solar radiation fast dynamic measurement for PV cells

    NASA Astrophysics Data System (ADS)

    Wan, Xuefen; Yang, Yi; Cui, Jian; Du, Xingjing; Zheng, Tao; Sardar, Muhammad Sohail

    2017-10-01

    To study the operating characteristics about PV cells, attention must be given to the dynamic behavior of the solar radiation. The dynamic behaviors of annual, monthly, daily and hourly averages of solar radiation have been studied in detail. But faster dynamic behaviors of solar radiation need more researches. The solar radiation random fluctuations in minute-long or second-long range, which lead to alternating radiation and cool down/warm up PV cell frequently, decrease conversion efficiency. Fast dynamic processes of solar radiation are mainly relevant to stochastic moving of clouds. Even in clear sky condition, the solar irradiations show a certain degree of fast variation. To evaluate operating characteristics of PV cells under fast dynamic irradiation, a solar radiation measuring array (SRMA) based on large active area photodiode, LoRa spread spectrum communication and nanoWatt MCU is proposed. This cross photodiodes structure tracks fast stochastic moving of clouds. To compensate response time of pyranometer and reduce system cost, the terminal nodes with low-cost fast-responded large active area photodiode are placed besides positions of tested PV cells. A central node, consists with pyranometer, large active area photodiode, wind detector and host computer, is placed in the center of the central topologies coordinate to scale temporal envelope of solar irradiation and get calibration information between pyranometer and large active area photodiodes. In our SRMA system, the terminal nodes are designed based on Microchip's nanoWatt XLP PIC16F1947. FDS-100 is adopted for large active area photodiode in terminal nodes and host computer. The output current and voltage of each PV cell are monitored by I/V measurement. AS62-T27/SX1278 LoRa communication modules are used for communicating between terminal nodes and host computer. Because the LoRa LPWAN (Low Power Wide Area Network) specification provides seamless interoperability among Smart Things without the need of complex local installations, configuring of our SRMA system is very easy. Lora also provides SRMA a means to overcome the short communication distance and weather signal propagation decline such as in ZigBee and WiFi. The host computer in SRMA system uses the low power single-board PC EMB-3870 which was produced by NORCO. Wind direction sensor SM5386B and wind-force sensor SM5387B are installed to host computer through RS-485 bus for wind reference data collection. And Davis 6450 solar radiation sensor, which is a precision instrument that detects radiation at wavelengths of 300 to 1100 nanometers, allow host computer to follow real-time solar radiation. A LoRa polling scheme is adopt for the communication between host computer and terminal nodes in SRMA. An experimental SRMA has been established. This system was tested in Ganyu, Jiangshu province from May to August, 2016. In the test, the distances between the nodes and the host computer were between 100m and 1900m. At work, SRMA system showed higher reliability. Terminal nodes could follow the instructions from host computer and collect solar radiation data of distributed PV cells effectively. And the host computer managed the SRAM and achieves reference parameters well. Communications between the host computer and terminal nodes were almost unaffected by the weather. In conclusion, the testing results show that SRMA could be a capable method for fast dynamic measuring about solar radiation and related PV cell operating characteristics.

  17. Photovoltaic Subcontract Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Surek, Thomas; Catalano, Anthony

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT)more » project, PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less

  18. Innovative paths for providing green energy for sustainable global economic growth

    NASA Astrophysics Data System (ADS)

    Singh, Rajendra; Alapatt, G. F.

    2012-10-01

    According to United Nation, world population may reach 10.1 billion by the year 2100. The fossil fuel based global economy is not sustainable. For sustainable global green energy scenario we must consider free fuel based energy conversion, environmental concerns and conservation of water. Photovoltaics (PV) offers a unique opportunity to solve the 21st century's electricity generation because solar energy is essentially unlimited and PV systems provide electricity without any undesirable impact on the environment. Innovative paths for green energy conversion and storage are proposed in areas of R and D, manufacturing and system integration, energy policy and financing. With existing silicon PV system manufacturing, the implementation of new innovative energy policies and new innovative business model can provide immediately large capacity of electricity generation to developed, emerging and underdeveloped economies.

  19. Cascaded Microinverter PV System for Reduced Cost

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with anmore » embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.« less

  20. Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ying; Zhang, Yi-Chen; Xiao, Lan; Shen, Zu-Guo

    2018-07-01

    The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3 W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.

  1. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia

    PubMed Central

    Ma, S.; Goldstein, M.; Pitman, A. J.; Haghdadi, N.; MacGill, I.

    2017-01-01

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes. PMID:28262843

  2. Pricing the urban cooling benefits of solar panel deployment in Sydney, Australia.

    PubMed

    Ma, S; Goldstein, M; Pitman, A J; Haghdadi, N; MacGill, I

    2017-03-06

    Cities import energy, which in combination with their typically high solar absorption and low moisture availability generates the urban heat island effect (UHI). The UHI, combined with human-induced warming, makes our densely populated cities particularly vulnerable to climate change. We examine the utility of solar photovoltaic (PV) system deployment on urban rooftops to reduce the UHI, and we price one potential value of this impact. The installation of PV systems over Sydney, Australia reduces summer maximum temperatures by up to 1 °C because the need to import energy is offset by local generation. This offset has a direct environmental benefit, cooling local maximum temperatures, but also a direct economic value in the energy generated. The indirect benefit associated with the temperature changes is between net AUD$230,000 and $3,380,000 depending on the intensity of PV systems deployment. Therefore, even very large PV installations will not offset global warming, but could generate enough energy to negate the need to import energy, and thereby reduce air temperatures. The energy produced, and the benefits of cooling beyond local PV installation sites, would reduce the vulnerability of urban populations and infrastructure to temperature extremes.

  3. New pulmonary vein Doppler echocardiographic index predicts significant interatrial shunting in secundum atrial septal defect.

    PubMed

    Lam, Yat-Yin; Fang, Fang; Yip, Gabriel Wai-Kwok; Li, Zhi-An; Yang, Ya; Yu, Cheuk-Man

    2012-09-20

    The relation between pulmonary venous flow (PVF) pattern and degree of left-to-right interatrial shunting (IAS) in patients with secundum atrial septal defect (ASD) is unknown. Fifty consecutive ASD patients (14 males, 36 ± 17 years) received transthoracic echocardiography (TTE) before and 1 day after transcatheter closure and their results were compared to 40 controls. The ratio of pulmonary-to-systemic flows (Qp/Qs) was assessed by TTE and invasive oximetry. Pre-closure PV systolic (PVs), diastolic (PVd) velocities and velocity-time integral (PV-VTI) increased, time from onset of ECG Q-wave to the peak PV diastolic wave (Q-PVd) shortened and atrial reversal (PVar) velocity significantly decreased as compared to normals. These findings normalized after closure. Patients with large IAS (defined as invasive Qp/Qs ≥ 2) had higher PVs, PVd and PV-VTI, shorter Q-PVd but lower PVar (all p<0.01) than those with small IAS. Invasive Qp/Qs ratios correlated with PVs, PVd, PV-VTI, Q-PVd and TTE-derived Qp/Qs ratios, ASD sizes and RV end-diastolic dimensions (all p<0.05). PV-VTI (β=0.49) and ASD size (β=0.48) remained independent predictors of large IAS after multivariate analysis. The corresponding sensitivity, specificity and AUC were 89%, 82% and 0.90 respectively for a PV-VTI of 30 cm (p<0.001). ASD patients with significant IAS have distinguishable PVF features. Doppler evaluation of PV-VTI is a novel additional tool for assessing the magnitude of shunting in these patients non-invasively. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Prefrontal Parvalbumin Neurons in Control of Attention

    PubMed Central

    Kim, Hoseok; Ährlund-Richter, Sofie; Wang, Xinming; Deisseroth, Karl; Carlén, Marie

    2016-01-01

    Summary While signatures of attention have been extensively studied in sensory systems, the neural sources and computations responsible for top-down control of attention are largely unknown. Using chronic recordings in mice, we found that fast-spiking parvalbumin (FS-PV) interneurons in medial prefrontal cortex (mPFC) uniformly show increased and sustained firing during goal-driven attentional processing, correlating to the level of attention. Elevated activity of FS-PV neurons on the timescale of seconds predicted successful execution of behavior. Successful allocation of attention was characterized by strong synchronization of FS-PV neurons, increased gamma oscillations, and phase locking of pyramidal firing. Phase-locked pyramidal neurons showed gamma-phase-dependent rate modulation during successful attentional processing. Optogenetic silencing of FS-PV neurons deteriorated attentional processing, while optogenetic synchronization of FS-PV neurons at gamma frequencies had pro-cognitive effects and improved goal-directed behavior. FS-PV neurons thus act as a functional unit coordinating the activity in the local mPFC circuit during goal-driven attentional processing. PMID:26771492

  5. On the Path to SunShot - Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Clark, Kara; O'Connell, Matt

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As themore » deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.« less

  6. Complementing hydropower with PV and wind: optimal energy mix in a fully renewable Switzerland

    NASA Astrophysics Data System (ADS)

    Dujardin, Jérôme; Kahl, Annelen; Kruyt, Bert; Lehning, Michael

    2017-04-01

    Like several other countries, Switzerland plans to phase out its nuclear power production and will replace most or all of it by renewables. Switzerland has the chance to benefit from a large hydropower potential and has already exploited almost all of it. Currently about 60% of the Swiss electricity consumption is covered by hydropower, which will eventually leave a gap of about 40% to the other renewables mainly composed of photovoltaics (PV) and wind. With its high flexibility, storage hydropower will play a major role in the future energy mix, providing valuable power and energy balance. Our work focuses on the interplay between PV, wind and storage hydropower, to analyze the dynamics of this complex system and to identify the best PV-wind mixing ratio. Given the current electricity consumption and the currently installed pumping capacity of the storage hydropower plants, it appears that the Swiss hydropower system can completely alleviate the intermittency of PV and wind. However, some seasonal mismatch between production and demand will remain, but we show that oversizing the production from PV and wind or enlarging the reservoir capacity can be a solution to keep it to an acceptable level or even eliminate it. We found that PV, wind and hydropower performs the best together when the share of PV in the solar - wind mix is between 20 and 60%. These findings are quantitatively specific for Switzerland but qualitatively transferable to similar mountainous environments with abundant hydropower resources.

  7. Evolution of integrated panel structural design and interfaces for PV power plants

    NASA Technical Reports Server (NTRS)

    Arnett, J. C.; Anderson, A. J.; Robertson, R. E.

    1983-01-01

    The evolution of integrated photovoltaic (PV) panel design at ARCO Solar is discussed. Historically, framed PV modules of about 1 x 4-ft size were individually mounted in the field on fixed support structures and interconnected electrically with cables to build higher-power arrays. When ARCO Solar saw the opportunity in 1982 to marry its PV modules with state-of-the-art heliostat trackers developed by ARCO Power Systems, it became obvious that mounting individual modules was impractical. For this project, the framed modules were factory-assembled into panels and interconnected with cables before being mounted on the trackers. Since then, ARCO Solar made considerable progress and gained substantial experience in the design and fabrication of large PV panels. Constraints and criteria considered in these design activities included static and dynamic loads; assembly and transportation equipment and logistics, structural and electrical interfaces, and safety and grounding concerns.

  8. Revolution…Now The Future Arrives for Five Clean Energy Technologies – 2015 Update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    In 2013, the U.S. Department of Energy (DOE) released the Revolution Now report, highlighting four transformational technologies: land-based wind power, silicon photovoltaic (PV) solar modules, light-emitting diodes (LEDs), and electric vehicles (EVs). That study and its 2014 update showed how dramatic reductions in cost are driving a surge in consumer, industrial, and commercial adoption for these clean energy technologies—as well as yearly progress. In addition to presenting the continued progress made over the last year in these areas, this year’s update goes further. Two separate sections now cover large, central, utility-scale PV plants and smaller, rooftop, distributed PV systems tomore » highlight how both have achieved significant deployment nationwide, and have done so through different innovations, such as easier access to capital for utility-scale PV and reductions of non-hardware costs and third-party ownership for distributed PV. Along with these core technologies« less

  9. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation inmore » retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.« less

  10. Impact of Different Economic Performance Metrics on the Perceived Value of Solar Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Drury, E.; Denholm, P.; Margolis, R.

    2011-10-01

    Photovoltaic (PV) systems are installed by several types of market participants, ranging from residential customers to large-scale project developers and utilities. Each type of market participant frequently uses a different economic performance metric to characterize PV value because they are looking for different types of returns from a PV investment. This report finds that different economic performance metrics frequently show different price thresholds for when a PV investment becomes profitable or attractive. Several project parameters, such as financing terms, can have a significant impact on some metrics [e.g., internal rate of return (IRR), net present value (NPV), and benefit-to-cost (B/C)more » ratio] while having a minimal impact on other metrics (e.g., simple payback time). As such, the choice of economic performance metric by different customer types can significantly shape each customer's perception of PV investment value and ultimately their adoption decision.« less

  11. Photovoltaic Subcontract Program. Annual report, FY 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-03-01

    This report summarizes the fiscal year (FY) 1992 progress of the subcontracted photovoltaic (PV) research and development (R&D) performed under the Photovoltaic Advanced Research and Development Project at the National Renewable Energy Laboratory (NREL)-formerly the Solar Energy Research Institute (SERI). The mission of the national PV program is to develop PV technology for large-scale generation of economically competitive electric power in the United States. The technical sections of the report cover the main areas of the subcontract program: the Crystalline Materials and Advanced Concepts project, the Polycrystalline Thin Films project, Amorphous Silicon Research project, the Photovoltaic Manufacturing Technology (PVMaT) project,more » PV Module and System Performance and Engineering project, and the PV Analysis and Applications Development project. Technical summaries of each of the subcontracted programs provide a discussion of approaches, major accomplishments in FY 1992, and future research directions.« less

  12. Top Five Large-Scale Solar Myths | State, Local, and Tribal Governments |

    Science.gov Websites

    of large-scale photovoltaic (PV) facilities or solar farms tend to include a myriad of misperceptions technologies do use mirrors which can cause glare, most solar farms use PV modules to generate electricity. PV panels in order to convert solar energy into electricity. PV modules are generally less reflective than

  13. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less

  14. Improving Advanced Inverter Control Convergence in Distribution Power Flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Palmintier, Bryan; Ding, Fei

    Simulation of modern distribution system powerflow increasingly requires capturing the impact of advanced PV inverter voltage regulation on powerflow. With Volt/var control, the inverter adjusts its reactive power flow as a function of the point of common coupling (PCC) voltage. Similarly, Volt/watt control curtails active power production as a function of PCC voltage. However, with larger systems and higher penetrations of PV, this active/reactive power flow itself can cause significant changes to the PCC voltage potentially introducing oscillations that slow the convergence of system simulations. Improper treatment of these advanced inverter functions could potentially lead to incorrect results. This papermore » explores a simple approach to speed such convergence by blending in the previous iteration's reactive power estimate to dampen these oscillations. Results with a single large (5MW) PV system and with multiple 500kW advanced inverters show dramatic improvements using this approach.« less

  15. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less

  16. The possibility of developing hybrid PV/T solar system

    NASA Astrophysics Data System (ADS)

    Dobrnjac, M.; Zivkovic, P.; Babic, V.

    2017-05-01

    An alternative and cost-effective solution to developing integrated PV system is to use hybrid photovoltaic/thermal (PV/T) solar system. The temperature of PV modules increases due to the absorbed solar radiation that is not converted into electricity, causing a decrease in their efficiency. In hybrid PV/T solar systems the reduction of PV module temperature can be combined with a useful fluid heating. In this paper we present the possibility of developing a new hybrid PV/T solar system. Hybrid PV/T system can provide electrical and thermal energy, thus achieving a higher energy conversion rate of the absorbed solar radiation. We developed PV/T prototype consisted of commercial PV module and thermal panel with our original solution of aluminium absorber with special geometric shapes. The main advantages of our combined PV/T system are: removing of heat from the PV panel; extending the lifetime of photovoltaic cells; excess of the removing heat from PV part is used to heat the fluid in the thermal part of the panel; the possibility of using on the roof and facade constructions because less weight.

  17. Super short term forecasting of photovoltaic power generation output in micro grid

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  18. A Methodology to Analyze Photovoltaic Tracker Uptime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Ruth, Dan

    A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall,more » the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.« less

  19. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  20. Characteristics of Low-Priced Solar Photovoltaic Systems in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemet, Gregory F.; O'Shaughnessy, Eric; Wiser, Ryan H.

    2016-01-01

    Despite impressive recent cost reductions, there is wide dispersion in the prices of installed solar photovoltaic (PV) systems. We identify the most important factors that make a system likely to be low priced (LP). Our sample consists of detailed characteristics for 42,611 small-scale (< 15 kW) PV systems installed in 15 U.S. states during 2013. Using four definitions of LP systems, we compare LP and non-LP systems and find statistically significant differences in nearly all factors explored, including competition, installer scale, markets, demographics, ownership, policy, and system components. Logit and probit model results robustly indicate that LP systems are associatedmore » with markets with few active installers; experienced installers; customer ownership; large systems; retrofits; and thin-film, low-efficiency, and Chinese modules. We also find significant differences across states, with LP systems much more likely to occur in some than in others. Our focus on the left tail of the price distribution provides implications for policy that are distinct from recent studies of mean prices. While those studies find that PV subsidies increase mean prices, we find that subsidies also generate LP systems. PV subsidies appear to simultaneously shift and broaden the price distribution. Much of this broadening occurs in a particular location, northern California, which is worthy of further investigation with new data.« less

  1. Market assessment of photovoltaic power systems for agricultural applications in Colombia

    NASA Technical Reports Server (NTRS)

    Steigelmann, W.; Neyeloff, S.

    1981-01-01

    The market potential for photovoltaic systems in the agricultural sector of Colombia is assessed. Consideration was given to over twenty specific livestock production, crop production, and rural services applications requiring less than 15 kW of power without backup power. Analysis revealed that near-term potential exists for photovoltaic technology in applications in coffee depulging, cattle watering, rural domestic users, rural water supply and small irrigation, rural telephones, rural health posts, and vaccine refrigeration. Market size would be in the 1200 to 2500 kWp range in the 1981 to 86 timeframe. Positive factors influencing the market size include a lack of electrical services, potential for developing the Llanos Orientales Territory, high fuel costs in remote areas, balance of system availability, the presence of wealthy land owners, and a large government-sponsored contract for photovoltaic (PV)-powered rural telephone systems. The anticipated eligibility of photovoltaic equipment for loans would be a further positive factor in market potential. Important negative factors include relatively inexpensive energy in developed locations, reliance on hydropower, lack of familiarity with PV equipment, a lack of financing, and established foreign competition in PV technology. Recommendations to American PV manufacturers attempting to develop the Colombian market are given.

  2. Market assessment of photovoltaic power systems for agricultural applications in Colombia

    NASA Astrophysics Data System (ADS)

    Steigelmann, W.; Neyeloff, S.

    1981-11-01

    The market potential for photovoltaic systems in the agricultural sector of Colombia is assessed. Consideration was given to over twenty specific livestock production, crop production, and rural services applications requiring less than 15 kW of power without backup power. Analysis revealed that near-term potential exists for photovoltaic technology in applications in coffee depulging, cattle watering, rural domestic users, rural water supply and small irrigation, rural telephones, rural health posts, and vaccine refrigeration. Market size would be in the 1200 to 2500 kWp range in the 1981 to 86 timeframe. Positive factors influencing the market size include a lack of electrical services, potential for developing the Llanos Orientales Territory, high fuel costs in remote areas, balance of system availability, the presence of wealthy land owners, and a large government-sponsored contract for photovoltaic (PV)-powered rural telephone systems. The anticipated eligibility of photovoltaic equipment for loans would be a further positive factor in market potential. Important negative factors include relatively inexpensive energy in developed locations, reliance on hydropower, lack of familiarity with PV equipment, a lack of financing, and established foreign competition in PV technology. Recommendations to American PV manufacturers attempting to develop the Colombian market are given.

  3. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  4. Dual Stem Loops within the Poliovirus Internal Ribosomal Entry Site Control Neurovirulence

    PubMed Central

    Gromeier, Matthias; Bossert, Birgit; Arita, Mineo; Nomoto, Akio; Wimmer, Eckard

    1999-01-01

    In the human central nervous system, susceptibility to poliovirus (PV) infection is largely confined to a specific subpopulation of neuronal cells. PV tropism is likely to be determined by cell-external components such as the PV receptor CD155, as well as cell-internal constraints such as the availability of a suitable microenvironment for virus propagation. We reported previously that the exchange of the cognate internal ribosomal entry site (IRES) within the 5′ nontranslated region of PV with its counterpart from human rhinovirus type 2 (HRV2) can eliminate the neuropathogenic phenotype in a transgenic mouse model for poliomyelitis without diminishing the growth properties in HeLa cells. We now show that attenuation of neurovirulence of PV/HRV2 chimeras is not confined to CD155 transgenic mice but is evident also after intraspinal inoculation into Cynomolgus monkeys. We have dissected the PV and HRV2 IRES elements to determine those structures responsible for neurovirulence (or attenuation) of these chimeric viruses. We report that two adjacent stem loop structures within the IRES cooperatively determine neuropathogenicity. PMID:9882296

  5. Emerging photovoltaic technologies: Environmental and health issues update

    NASA Astrophysics Data System (ADS)

    Fthenakis, Vasilis M.; Moskowitz, Paul D.

    1997-02-01

    New photovoltaic (PV) technologies promise low-cost, reliable PV modules and have the potential for significant PV penetration into the energy market. These prospects for commercialization have attracted renewed interest in the advantageous environmental impact of using PV and also in the potential environmental, health and safety (EHS) burdens in PV manufacturing and decommissioning. In this paper, we highlight recent studies on EHS issues: a) An integrated energy-environmental-economic analysis which shows that large-scale use of PV can significantly contribute to alleviating the greenhouse effect; in the United States alone, it could displace 450 million tons of carbon emissions by the year 2030, b) Recycling of the spent modules and scarp is economically feasible; current research centers on improving the efficiency and economics of recycling CdTe and CIS modules, c) Toxicological studies conducted by the National Institute of Environmental Health Sciences (NIEHS) compared the acute toxicity of CdTe, CIS, and CGS; CdTe was the most toxic, and CGS the least toxic of the three. Additional studies are now comparing the systemic toxicity of these compounds with the toxicity of their precursors.

  6. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease

    PubMed Central

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H.; Pitot, Henry C.; Lambert, Paul F.

    2016-01-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans. PMID:27244228

  7. Role of Ultraviolet Radiation in Papillomavirus-Induced Disease.

    PubMed

    Uberoi, Aayushi; Yoshida, Satoshi; Frazer, Ian H; Pitot, Henry C; Lambert, Paul F

    2016-05-01

    Human papillomaviruses are causally associated with 5% of human cancers. The recent discovery of a papillomavirus (MmuPV1) that infects laboratory mice provides unique opportunities to study the life cycle and pathogenesis of papillomaviruses in the context of a genetically manipulatable host organism. To date, MmuPV1-induced disease has been found largely to be restricted to severely immunodeficient strains of mice. In this study, we report that ultraviolet radiation (UVR), specifically UVB spectra, causes wild-type strains of mice to become highly susceptible to MmuPV1-induced disease. MmuPV1-infected mice treated with UVB develop warts that progress to squamous cell carcinoma. Our studies further indicate that UVB induces systemic immunosuppression in mice that correlates with susceptibility to MmuPV1-associated disease. These findings provide new insight into how MmuPV1 can be used to study the life cycle of papillomaviruses and their role in carcinogenesis, the role of host immunity in controlling papillomavirus-associated pathogenesis, and a basis for understanding in part the role of UVR in promoting HPV infection in humans.

  8. Enhancement of real-time EPICS IOC PV management for the data archiving system

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ha

    2015-10-01

    The operation of a 100-MeV linear proton accelerator, the major driving values and experimental data need to be archived. According to the experimental conditions, different data are required. Functions that can add new data and delete data in real time need to be implemented. In an experimental physics and industrial control system (EPICS) input output controller (IOC), the value of process variables (PVs) are matched with the driving values and data. The PV values are archived in text file format by using the channel archiver. There is no need to create a database (DB) server, just a need for large hard disk. Through the web, the archived data can be loaded, and new PV values can be archived without stopping the archive engine. The details of the implementation of a data archiving system with channel archiver are presented, and some preliminary results are reported.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cory, K.; Coughlin, J.; Coggeshall, C.

    State and local governments have grown increasingly aware of the economic, environmental, and societal benefits of taking a lead role in U.S. implementation of renewable energy, particularly distributed photovoltaic (PV) installations. Recently, solar energy's cost premium has declined as a result of technology improvements and an increase in the cost of traditional energy generation. At the same time, a nationwide public policy focus on carbon-free, renewable energy has created a wide range of financial incentives to lower the costs of deploying PV even further. These changes have led to exponential increases in the availability of capital for solar projects, andmore » tremendous creativity in the development of third-party ownership structures. As significant users of electricity, state and local governments can be an excellent example for solar PV system deployment on a national scale. Many public entities are not only considering deployment on public building rooftops, but also large-scale applications on available public lands. The changing marketplace requires that state and local governments be financially sophisticated to capture as much of the economic potential of a PV system as possible. This report examines ways that state and local governments can optimize the financial structure of deploying solar PV for public uses.« less

  10. Experimental investigations of hybrid PV/Spiral flow thermal collector system performance using Al2O3/water nanofluid

    NASA Astrophysics Data System (ADS)

    Gangadevi, R.; Vinayagam, B. K.; Senthilraja, S.

    2017-05-01

    In this paper, the PV/T (Photovoltaic thermal unit) system is investigated experimentally to examine the thermal, electrical and overall efficiency by circulating Al2O3/water nanofluid of 1wt% and 2wt% with an optimum flow rate of 40L/H. The overall efficiency of PVT system is largely influenced by various factors such as heat due to photovoltaic action; energy radiated at the infrared wavelength of the solar spectrum, solar irradiance, mounting structure, tilt angle, wind speed direction, Ambient temperature and panel material composition. However, the major factor is considered in this study to extract the heat generated in the PV panel by using nanofluid as a coolant to increase the overall system efficiency. Therefore, the result shows that by using 2 wt% Al2O3/water nanofluid the electrical efficiency, thermal efficiency and overall efficiency of the PVT system enhanced by 13%, 45%, and 58% respectively compared with water.

  11. Photovoltaic power - An important new energy option

    NASA Technical Reports Server (NTRS)

    Ferber, R. R.

    1983-01-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  12. Photovoltaic power - An important new energy option

    NASA Astrophysics Data System (ADS)

    Ferber, R. R.

    1983-12-01

    A review of photovoltaic (PV) power technology is presented with an emphasis of PV as an economical and technically feasible alternative source of energy. The successful completion of the development and transfer of emerging low-cost technologies into a fully commercialized status are identified as the means to the realization of this option's full potential. The DOE National Photovoltaics Program, a significant sponsor of PV R&D, expects both flat-plate and concentrator collectors to meet established cost targets. Citing the DOE large flat-plate grid-connected system project of the Sacramento Municipal Utility District, current technology modules priced at near $5/Wp (1983 dollars) are steadily reducing costs. A recent DOE study suggests that PV-generated electricity produced at a 30-year levelized cost of 15 cents per kWh would represent a viable energy supply alternative for the nation.

  13. How PV system ownership can impact the market value of residential homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Johnson, Jamie L.

    2014-01-01

    There are multiple ways for a homeowner to obtain the electricity generating and savings benefits offered by a photovoltaic (PV) system. These include purchasing a PV system through various financing mechanisms, or by leasing the PV system from a third party with multiple options that may include purchase, lease renewal or PV system removal. The different ownership options available to homeowners presents a challenge to appraisal and real estate professionals during a home sale or refinance in terms of how to develop a value that is reflective of the PV systems operational characteristics, local market conditions, and lender and underwritermore » requirements. This paper presents these many PV system ownership options with a discussion of what considerations an appraiser must make when developing the contributory value of a PV system to a residential property.« less

  14. 2015 IECRE: PV System Certification Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    IECRE: PV System Certification Workshop 2015 IECRE: PV System Certification Workshop Thursday the guidelines for certifying PV systems. This workshop included an introduction of IECRE followed by discussions targeting the most critical or controversial items. This workshop gathered wide input from the PV

  15. Radiative Effects of Atmospheric Aerosols and Impacts on Solar Photovoltaic Electricity Generation

    NASA Astrophysics Data System (ADS)

    Lund, Cory Christopher

    Atmospheric aerosols, by scattering and absorbing radiation, perturbs the Earth's energy balance and reduces the amount of insolation reaching the surface. This dissertation first studies the radiative effects of aerosols by analyzing the internal mixing of various aerosol species. It then examines the aerosol impact on solar PV efficiency and the resulting influence on power systems, including both atmospheric aerosols and deposition of particulate matter (PM) on PV surfaces,. Chapter 2 studies the radiative effects of black carbon (BC), sulfate and organic carbon (OC) internal mixing using a simple radiative transfer model. I find that internal mixing may not result in a positive radiative forcing compared to external mixing, but blocks additional shortwave radiation from the surface, enhancing the surface dimming effect. Chapter 3 estimates the impact of atmospheric aerosol attenuation on solar PV resources in China using a PV performance model with satellite-derived long-term surface irradiance data. I find that, in Eastern China, annual average reductions of solar resources due to aerosols are more than 20%, with comparable impacts to clouds in winter. Improving air quality in China would increase efficiency of solar PV generation. As a positive feedback, increased PV efficiency and deployment would further reduce air pollutant emissions too. Chapter 4 further quantifies the total aerosol impact on PV efficiency globally, including both atmospheric aerosols and the deposition of PM on PV surfaces. I find that, if panels are uncleaned and soiling is only removed by precipitation, deposition of PM accounts for more than two-thirds of the total aerosol impact in most regions. Cleaning the panels, even every few months, would largely increase PV efficiency in resource-abundant regions. Chapter 5 takes a further step to evaluate the impact of PV generation reduction due to aerosols on a projected 2030 power system in China with 400GW of PV. I find that aerosols reduce PV generation by 22% and increase baseload power generation, with almost no additional capacity needed. Due to intermittency of solar generation, 160 GW of backup power is needed to maintain grid stability. However, storage provides an opportunity to reduce the backup power capacity by 66%.

  16. A sunny future: expert elicitation of China's solar photovoltaic technologies

    NASA Astrophysics Data System (ADS)

    Lam, Long T.; Branstetter, Lee; Azevedo, Inês L.

    2018-03-01

    China has emerged as the global manufacturing center for solar photovoltaic (PV) products. Chinese firms have entered all stages of the supply chain, producing most of the installed solar modules around the world. Meanwhile, production costs are at record lows. The decisions that Chinese solar producers make today will influence the path for the solar industry and its role towards de-carbonization of global energy systems in the years to come. However, to date, there have been no assessments of the future costs and efficiency of solar PV systems produced by the Chinese PV industry. We perform an expert elicitation to assess the technological and non-technological factors that led to the success of China’s silicon PV industry as well as likely future costs and performance. Experts evaluated key metrics such as efficiency, costs, and commercial viability of 17 silicon and non-silicon solar PV technologies by 2030. Silicon-based technologies will continue to be the mainstream product for large-scale electricity generation application in the near future, with module efficiency reaching as high as 23% and production cost as low as 0.24/W. The levelized cost of electricity for solar will be around 34/MWh, allowing solar PV to be competitive with traditional energy resources like coal. The industry’s future developments may be affected by overinvestment, overcapacity, and singular short-term focus.

  17. Simulation Tools and Techniques for Analyzing the Impacts of Photovoltaic System Integration

    NASA Astrophysics Data System (ADS)

    Hariri, Ali

    Solar photovoltaic (PV) energy integration in distribution networks is one of the fastest growing sectors of distributed energy integration. The growth in solar PV integration is incentivized by various clean power policies, global interest in solar energy, and reduction in manufacturing and installation costs of solar energy systems. The increase in solar PV integration has raised a number of concerns regarding the potential impacts that might arise as a result of high PV penetration. Some impacts have already been recorded in networks with high PV penetration such as in China, Germany, and USA (Hawaii and California). Therefore, network planning is becoming more intricate as new technologies are integrated into the existing electric grid. The integrated new technologies pose certain compatibility concerns regarding the existing electric grid infrastructure. Therefore, PV integration impact studies are becoming more essential in order to have a better understanding of how to advance the solar PV integration efforts without introducing adverse impacts into the network. PV impact studies are important for understanding the nature of the new introduced phenomena. Understanding the nature of the potential impacts is a key factor for mitigating and accommodating for said impacts. Traditionally, electric power utilities relied on phasor-based power flow simulations for planning their electric networks. However, the conventional, commercially available, phasor-based simulation tools do not provide proper visibility across a wide spectrum of electric phenomena. Moreover, different types of simulation approaches are suitable for specific types of studies. For instance, power flow software cannot be used for studying time varying phenomena. At the same time, it is not practical to use electromagnetic transient (EMT) tools to perform power flow solutions. Therefore, some electric phenomena caused by the variability of PV generation are not visible using the conventional utility simulation software. On the other hand, EMT simulation tools provide high accuracy and visibility over a wide bandwidth of frequencies at the expense of larger processing and memory requirements, limited network size, and long simulation time. Therefore, there is a gap in simulation tools and techniques that can efficiently and effectively identify potential PV impact. New planning simulation tools are needed in order to accommodate for the simulation requirements of new integrated technologies in the electric grid. The dissertation at hand starts by identifying some of the potential impacts that are caused by high PV penetration. A phasor-based quasi-static time series (QSTS) analysis tool is developed in order to study the slow dynamics that are caused by the variations in the PV generation that lead to voltage fluctuations. Moreover, some EMT simulations are performed in order to study the impacts of PV systems on the electric network harmonic levels. These studies provide insights into the type and duration of certain impacts, as well as the conditions that may lead to adverse phenomena. In addition these studies present an idea about the type of simulation tools that are sufficient for each type of study. After identifying some of the potential impacts, certain planning tools and techniques are proposed. The potential PV impacts may cause certain utilities to refrain from integrating PV systems into their networks. However, each electric network has a certain limit beyond which the impacts become substantial and may adversely interfere with the system operation and the equipment along the feeder; this limit is referred to as the hosting limit (or hosting capacity). Therefore, it is important for utilities to identify the PV hosting limit on a specific electric network in order to safely and confidently integrate the maximum possible PV systems. In the following dissertation, two approaches have been proposed for identifying the hosing limit: 1. Analytical approach: this is a theoretical mathematical approach that demonstrated the understanding of the fundamentals of electric power system operation. It provides an easy way to estimate the maximum amount of PV power that can be injected at each node in the network. This approach has been tested and validated. 2. Stochastic simulation software approach: this approach provides a comprehensive simulation software that can be used in order to identify the PV hosting limit. The software performs a large number of stochastic simulation while varying the PV system size and location. The collected data is then analyzed for violations in the voltage levels, voltage fluctuations and reverse power flow. (Abstract shortened by ProQuest.).

  18. Development and Testing of a Prototype Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed and tested a prototype 2 kW DC grid-tied photovoltaic (PV) power system at the Center. The PV system has generated in excess of 6700 kWh since operation commenced in July 2006. The PV system is providing power to the GRC grid for use by all. Operation of the prototype PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the prototype PV system, additional PV power system expansion at GRC is under consideration. The prototype grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  19. Energy balance of the global photovoltaic (PV) industry--is the PV industry a net electricity producer?

    PubMed

    Dale, Michael; Benson, Sally M

    2013-04-02

    A combination of declining costs and policy measures motivated by greenhouse gas (GHG) emissions reduction and energy security have driven rapid growth in the global installed capacity of solar photovoltaics (PV). This paper develops a number of unique data sets, namely the following: calculation of distribution of global capacity factor for PV deployment; meta-analysis of energy consumption in PV system manufacture and deployment; and documentation of reduction in energetic costs of PV system production. These data are used as input into a new net energy analysis of the global PV industry, as opposed to device level analysis. In addition, the paper introduces a new concept: a model tracking energetic costs of manufacturing and installing PV systems, including balance of system (BOS) components. The model is used to forecast electrical energy requirements to scale up the PV industry and determine the electricity balance of the global PV industry to 2020. Results suggest that the industry was a net consumer of electricity as recently as 2010. However, there is a >50% that in 2012 the PV industry is a net electricity provider and will "pay back" the electrical energy required for its early growth before 2020. Further reducing energetic costs of PV deployment will enable more rapid growth of the PV industry. There is also great potential to increase the capacity factor of PV deployment. These conclusions have a number of implications for R&D and deployment, including the following: monitoring of the energy embodied within PV systems; designing more efficient and durable systems; and deploying PV systems in locations that will achieve high capacity factors.

  20. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  1. Trans-oceanic Remote Power Hardware-in-the-Loop: Multi-site Hardware, Integrated Controller, and Electric Network Co-simulation

    DOE PAGES

    Lundstrom, Blake R.; Palmintier, Bryan S.; Rowe, Daniel; ...

    2017-07-24

    Electric system operators are increasingly concerned with the potential system-wide impacts of the large-scale integration of distributed energy resources (DERs) including voltage control, protection coordination, and equipment wear. This prompts a need for new simulation techniques that can simultaneously capture all the components of these large integrated smart grid systems. This paper describes a novel platform that combines three emerging research areas: power systems co-simulation, power hardware in the loop (PHIL) simulation, and lab-lab links. The platform is distributed, real-time capable, allows for easy internet-based connection from geographically-dispersed participants, and is software platform agnostic. We demonstrate its utility by studyingmore » real-time PHIL co-simulation of coordinated solar PV firming control of two inverters connected in multiple electric distribution network models, prototypical of U.S. and Australian systems. Here, the novel trans-pacific closed-loop system simulation was conducted in real-time using a power network simulator and physical PV/battery inverter at power at the National Renewable Energy Laboratory in Golden, CO, USA and a physical PV inverter at power at the Commonwealth Scientific and Industrial Research Organisation's Energy Centre in Newcastle, NSW, Australia. This capability enables smart grid researchers throughout the world to leverage their unique simulation capabilities for multi-site collaborations that can effectively simulate and validate emerging smart grid technology solutions.« less

  2. Photovoltaics as a terrestrial energy source. Volume 3: An overview

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Photovoltaic (PV) systems were evaluated in terms of their potential for terrestrial application A comprehensive overview of important issues which bear on photovoltaic (PV) systems development is presented. Studies of PV system costs, the societal implications of PV system development, and strategies in PV research and development in relationship to current energy policies are summarized.

  3. Prognostics and health management of photovoltaic systems

    DOEpatents

    Johnson, Jay; Riley, Daniel

    2018-04-10

    The various technologies presented herein relate to providing prognosis and health management (PHM) of a photovoltaic (PV) system. A PV PHM system can eliminate long-standing issues associated with detecting performance reduction in PV systems. The PV PHM system can utilize an ANN model with meteorological and power input data to facilitate alert generation in the event of a performance reduction without the need for information about the PV PHM system components and design. Comparisons between system data and the PHM model can provide scheduling of maintenance on an as-needed basis. The PHM can also provide an approach for monitoring system/component degradation over the lifetime of the PV system.

  4. Spatio-temporal Assessment Of The Land Use Implications Of Solar PV And Bioenergy Deployment In The UK TM Energy Model

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Z.; Konadu, D. D.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK TIMES model (UKTM) succeeds the UK MARKAL as the underlying model of the UK Department of Energy and Climate Change (DECC) for long term energy system planning and policy development. It generates energy system pathways which achieve the 80% greenhouse gas (GHG) emissions reduction target by 2050, stipulated in the UK Climate Change Act (2008), at the least possible cost. Some of these pathways prescribe large-scale deployment of solar PV and indigenously sourced bioenergy, which are land intensive and could result in significant land use transitions; but would this create competition and stress for UK land use? To answer the above question, this study uses an integrated spatio-temporal modelling approach, ForeseerTM, which characterises the interdependencies between the energy and land systems by evaluating the land required under each pathways for solar PV and bioenergy, based on scenarios of a range of PV conversion efficiencies, and energy crop yield projections. The outcome is compared with availability of suitable locations for solar PV and sustainable limits of agricultural land appropriation for bioenergy production to assess potential stresses and competition with other land use services. Preliminary results show UKTM pathways could pose significant impact on the UK land use system. Bioenergy deployment could potentially compete with other land services by taking up a significant part of the available UK agricultural land thus competing directly with food production, most notably livestock production. For pathways with significant solar PV deployment, direct competition would not be focussed on the high quality land used for food crop production but rather for land used for livestock production and other ecosystem services.

  5. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.

    PubMed

    Ravi, Sujith; Lobell, David B; Field, Christopher B

    2014-01-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce both electricity and liquid fuel. A life-cycle analysis of a hypothetical colocation indicated higher returns per m(3) of water used than either system alone. Water requirements for energy production were 0.22 L MJ(-1) (0.28-0.19) and 0.42 L MJ(-1) (0.52-0.35) for solar PV-agave (baseline yield) and solar PV-agave (high yield), respectively. Even though colocation may not be practical in all locations, in some water-limited areas, colocated solar PV-agave systems may provide attractive economic incentives in addition to efficient land and water use.

  6. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  7. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weckend, Stephanie; Wade, Andreas; Heath, Garvin

    Solar photovoltaic (PV) deployment has grown at unprecedented rates since the early 2000s. As the global PV market increases, so will the volume of decommissioned PV panels, and large amounts of annual waste are anticipated by the early 2030s. Growing PV panel waste presents a new environmental challenge, but also unprecedented opportunities to create value and pursue new economic avenues. This report, prepared jointly by the International Renewable Energy Agency (IRENA) and the International Energy Agency Photovoltaic Power Systems Programme (IEA-PVPS), is the first-ever projection of PV panel waste volumes to 2050. It highlights that recycling or repurposing solar PVmore » panels at the end of their roughly 30-year lifetime can unlock an estimated stock of 78 million tonnes of raw materials and other valuable components globally by 2050. If fully injected back into the economy, the value of the recovered material could exceed USD 15 billion by 2050. Sectors like PV recycling will be essential in the world's transition to a sustainable, economically viable and increasingly renewables-based energy future. To unlock the benefits of such PV end-of-life industries, the institutional groundwork must be laid in time to meet the expected surge in panel waste. Policy action is needed to address the challenges ahead, with enabling frameworks being adapted to the needs and circumstances of each region or country.« less

  9. Optimal design and operation of a photovoltaic-electrolyser system using particle swarm optimisation

    NASA Astrophysics Data System (ADS)

    Sayedin, Farid; Maroufmashat, Azadeh; Roshandel, Ramin; Khavas, Sourena Sattari

    2016-07-01

    In this study, hydrogen generation is maximised by optimising the size and the operating conditions of an electrolyser (EL) directly connected to a photovoltaic (PV) module at different irradiance. Due to the variations of maximum power points of the PV module during a year and the complexity of the system, a nonlinear approach is considered. A mathematical model has been developed to determine the performance of the PV/EL system. The optimisation methodology presented here is based on the particle swarm optimisation algorithm. By this method, for the given number of PV modules, the optimal sizeand operating condition of a PV/EL system areachieved. The approach can be applied for different sizes of PV systems, various ambient temperatures and different locations with various climaticconditions. The results show that for the given location and the PV system, the energy transfer efficiency of PV/EL system can reach up to 97.83%.

  10. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    NASA Astrophysics Data System (ADS)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  11. Breakeven Prices for Photovoltaics on Supermarkets in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, S.; Clark, N.; Denholm, P.

    The photovoltaic (PV) breakeven price is the PV system price at which the cost of PV-generated electricity equals the cost of electricity purchased from the grid. This point is also called 'grid parity' and can be expressed as dollars per watt ($/W) of installed PV system capacity. Achieving the PV breakeven price depends on many factors, including the solar resource, local electricity prices, customer load profile, PV incentives, and financing. In the United States, where these factors vary substantially across regions, breakeven prices vary substantially across regions as well. In this study, we estimate current and future breakeven prices formore » PV systems installed on supermarkets in the United States. We also evaluate key drivers of current and future commercial PV breakeven prices by region. The results suggest that breakeven prices for PV systems installed on supermarkets vary significantly across the United States. Non-technical factors -- including electricity rates, rate structures, incentives, and the availability of system financing -- drive break-even prices more than technical factors like solar resource or system orientation. In 2020 (where we assume higher electricity prices and lower PV incentives), under base-case assumptions, we estimate that about 17% of supermarkets will be in utility territories where breakeven conditions exist at a PV system price of $3/W; this increases to 79% at $1.25/W (the DOE SunShot Initiative's commercial PV price target for 2020). These percentages increase to 26% and 91%, respectively, when rate structures favorable to PV are used.« less

  12. Comparison of three different methods of perturbing the potential vorticity field in mesoscale forecasts of Mediterranean heavy precipitation events: PV-gradient, PV-adjoint and PV-satellite

    NASA Astrophysics Data System (ADS)

    Vich, M.; Romero, R.; Richard, E.; Arbogast, P.; Maynard, K.

    2010-09-01

    Heavy precipitation events occur regularly in the western Mediterranean region. These events often have a high impact on the society due to economic and personal losses. The improvement of the mesoscale numerical forecasts of these events can be used to prevent or minimize their impact on the society. In previous studies, two ensemble prediction systems (EPSs) based on perturbing the model initial and boundary conditions were developed and tested for a collection of high-impact MEDEX cyclonic episodes. These EPSs perturb the initial and boundary potential vorticity (PV) field through a PV inversion algorithm. This technique ensures modifications of all the meteorological fields without compromising the mass-wind balance. One EPS introduces the perturbations along the zones of the three-dimensional PV structure presenting the local most intense values and gradients of the field (a semi-objective choice, PV-gradient), while the other perturbs the PV field over the MM5 adjoint model calculated sensitivity zones (an objective method, PV-adjoint). The PV perturbations are set from a PV error climatology (PVEC) that characterizes typical PV errors in the ECMWF forecasts, both in intensity and displacement. This intensity and displacement perturbation of the PV field is chosen randomly, while its location is given by the perturbation zones defined in each ensemble generation method. Encouraged by the good results obtained by these two EPSs that perturb the PV field, a new approach based on a manual perturbation of the PV field has been tested and compared with the previous results. This technique uses the satellite water vapor (WV) observations to guide the correction of initial PV structures. The correction of the PV field intents to improve the match between the PV distribution and the WV image, taking advantage of the relation between dark and bright features of WV images and PV anomalies, under some assumptions. Afterwards, the PV inversion algorithm is applied to run a forecast with the corresponding perturbed initial state (PV-satellite). The non hydrostatic MM5 mesoscale model has been used to run all forecasts. The simulations are performed for a two-day period with a 22.5 km resolution domain (Domain 1 in http://mm5forecasts.uib.es) nested in the ECMWF large-scale forecast fields. The MEDEX cyclone of 10 June 2000, also known as the Montserrat Case, is a suitable testbed to compare the performance of each ensemble and the PV-satellite method. This case is characterized by an Atlantic upper-level trough and low-level cold front which generated a stationary mesoscale cyclone over the Spanish Mediterranean coast, advecting warm and moist air toward Catalonia from the Mediterranean Sea. The consequences of the resulting mesoscale convective system were 6-h accumulated rainfall amounts of 180 mm with estimated material losses to exceed 65 million euros by media. The performace of both ensemble forecasting systems and PV-satellite technique for our case study is evaluated through the verification of the rainfall field. Since the EPSs are probabilistic forecasts and the PV-satellite is deterministic, their comparison is done using the individual ensemble members. Therefore the verification procedure uses deterministic scores, like the ROC curve, the Taylor diagram or the Q-Q plot. These scores cover the different quality attributes of the forecast such as reliability, resolution, uncertainty and sharpness. The results show that the PV-satellite technique performance lies within the performance range obtained by both ensembles; it is even better than the non-perturbed ensemble member. Thus, perturbing randomly using the PV error climatology and introducing the perturbations in the zones given by each EPS captures the mismatch between PV and WV fields better than manual perturbations made by an expert forecaster, at least for this case study.

  13. Modelling and control of a microgrid including photovoltaic and wind generation

    NASA Astrophysics Data System (ADS)

    Hussain, Mohammed Touseef

    Extensive increase of distributed generation (DG) penetration and the existence of multiple DG units at distribution level have introduced the notion of micro-grid. This thesis develops a detailed non-linear and small-signal dynamic model of a microgrid that includes PV, wind and conventional small scale generation along with their power electronics interfaces and the filters. The models developed evaluate the amount of generation mix from various DGs for satisfactory steady state operation of the microgrid. In order to understand the interaction of the DGs on microgrid system initially two simpler configurations were considered. The first one consists of microalternator, PV and their electronics, and the second system consists of microalternator and wind system each connected to the power system grid. Nonlinear and linear state space model of each microgrid are developed. Small signal analysis showed that the large participation of PV/wind can drive the microgrid to the brink of unstable region without adequate control. Non-linear simulations are carried out to verify the results obtained through small-signal analysis. The role of the extent of generation mix of a composite microgrid consisting of wind, PV and conventional generation was investigated next. The findings of the smaller systems were verified through nonlinear and small signal modeling. A central supervisory capacitor energy storage controller interfaced through a STATCOM was proposed to monitor and enhance the microgrid operation. The potential of various control inputs to provide additional damping to the system has been evaluated through decomposition techniques. The signals identified to have damping contents were employed to design the supervisory control system. The controller gains were tuned through an optimal pole placement technique. Simulation studies demonstrate that the STATCOM voltage phase angle and PV inverter phase angle were the best inputs for enhanced stability boundaries.

  14. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  15. MUNI Ways and Structures Building Integrated Solar Membrane Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, Randall

    The initial goal of the MUNI Ways and Structures Building Integrated Solar Membrane Installation Project was for the City and County of San Francisco (CCSF) to gain experience using the integrated higher efficiency solar photovoltaic (PV) single-ply membrane product, as it differs from the conventional, low efficiency, thin-film PV products, to determine the feasibility of success of larger deployment. As several of CCSF’s municipal rooftops are constrained with respect to weight restrictions, staff of the Energy Generation Group of the San Francisco Public Utilities Commission (SFPUC) proposed to install a solar PV system using single-ply membrane The installation of themore » 100 kW (DC-STC) lightweight photo voltaic (PV) system at the MUNI Ways and Structures Center (700 Pennsylvania Ave., San Francisco) is a continuation of the commitment of the City and County of San Francisco (CCSF) to increase the pace of municipal solar development, and serve its municipal facilities with clean renewable energy. The fourteen (14) solar photovoltaic systems that have already been installed at CCSF municipal facilities are assisting in the reduction of fossil-fuel use, and reduction of greenhouse gases from fossil combustion. The MUNI Ways & Structures Center roof has a relatively low weight-bearing capacity (3.25 pounds per square foot) and use of traditional crystalline panels was therefore rejected. Consequently it was decided to use the best available highest efficiency Building-Integrated PV (BIPV) technology, with consideration for reliability and experience of the manufacturer which can meet the low weight-bearing capacity criteria. The original goal of the project was to provide an opportunity to monitor the results of the BIPV technology and compare these results to other City and County of San Francisco installed PV systems. The MUNI Ways and Structures Center was acquired from the Cookson Doors Company, which had run the Center for many decades. The building was renovated in 1998, but the existing roof had not been designed to carry a large load. Due to this fact, a complete roofing and structural analysis had to be performed to match the available roof loading to the existing and/or new solar PV technology, and BIPV was considered an excellent solution for this structure with the roof weight limitations. The solar BIPV system on the large roof area was estimated to provide about 25% of the total facility load with an average of 52,560 kWh per month. In order to accomplish the goals of the project, the following steps were performed: 1. SFPUC and consultants evaluated the structural capability of the facility roof, with recommendations for improvements necessary to accommodate the solar PV system and determine the suitable size of the system in kilowatts. The electrical room and switchgear were evaluated for any improvements necessary and to identify any constraints that might impede the installation of necessary inverters, transformers or meters. 2. Development of a design-build Request for Proposal (RFP) to identify the specifications for the solar PV system, and to include SFPUC technical specifications, equipment warranties and performance warranties. Due to potential labor issues in the local solar industry, SFPUC adjusted the terms of the RFP to more clearly define scope of work between electricians, roofers and laborers. 3. Design phase of project included electrical design drawings, calculations and other construction documents to support three submittals: 50% (preliminary design), 90% (detailed design) and 100% (Department of Building Inspection permit approved). 4. Installation of solar photovoltaic panels, completion of conduit and wiring work, connection of inverters, isolation switches, meters and Data Acquisition System by Contractor (Department of Public Works). 5. Commissioning of system, including all necessary tests to make the PV system fully functional and operational at its rated capacity of 100 kW (DC-STC). Following completion of these steps, the solar PV system was installed and fully integrated by late October 2013. The interconnection with PG&E utility grid was completed and the system began generating power on November 21, 2013. The projected annual energy generation for the system is estimated at 127,120 kWh/year.« less

  16. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less

  17. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.

  18. Performance test of a grid-tied PV system to power a split air conditioner system in Surabaya

    NASA Astrophysics Data System (ADS)

    Tarigan, E.

    2017-11-01

    Air conditioner for cooling air is one of the major needs for those who live in hot climate area such as Indonesia. This work presents the performance test of a grid-tied PV system to power air conditioner under a hot tropical climate in Surabaya, Indonesia. A 800 WP grid-tied photovoltaic (PV) system was used, and its performance was tested to power a 0.5 pk of split air conditioner system. It was found that about 3.5 kWh daily energy was consumed by the tested air conditioner system, and about 80% it could be supplied from the PV system. While the other 20% was supplied by the grid during periods of low solar irradiation, 440 Wh of energy was fed into the grid during operation out of office hours. By using the grid-tied PV system, the energy production by PV system did not need to match the consumption of the air conditioner. However, a larger capacity of PV system would mean that a higher percentage of the load would be covered by PV system.

  19. Simulation, measurement, and emulation of photovoltaic modules using high frequency and high power density power electronic circuits

    NASA Astrophysics Data System (ADS)

    Erkaya, Yunus

    The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition. The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV modules using a current-voltage (I-V) curve tracer allows the installer to know whether the PV modules are 100% operational. The installed modules can be properly matched to maximize performance. Once installed, the whole system needs to be characterized similarly to detect mismatches, partial shading, or installation damage before energizing the system. This will prevent any reliability issues from the onset and ensure the system efficiency will remain high. A capacitive load is implemented in making I-V curve measurements with the goal of minimizing the curve tracer volume and cost. Additionally, the increase of measurement resolution and accuracy is possible via the use of accurate voltage and current measurement methods and accurate PV models to translate the curves to standard testing conditions. A move from mechanical relays to solid-state MOSFETs improved system reliability while significantly reducing device volume and costs. Finally, emulating PV modules is necessary for testing electrical components of a PV system. PV emulation simplifies and standardizes the tests allowing for different irradiance, temperature and partial shading levels to be easily tested. Proper emulation of PV modules requires an accurate and mathematically simple PV model that incorporates all known system variables so that any PV module can be emulated as the design requires. A non-synchronous buck converter is proposed for the emulation of a single, high-power PV module using traditional silicon devices. With the proof-of-concept working and improvements in efficiency, power density and steady-state errors made, dynamic tests were performed using an inverter connected to the PV emulator. In order to improve the dynamic characteristics, a synchronous buck converter topology is proposed along with the use of advanced GaNFET devices which resulted in very high power efficiency and improved dynamic response characteristics when emulating PV modules.

  20. The development and performance of smud grid-connected photovoltaic projects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osborn, D.E.; Collier, D.E.

    1995-11-01

    The utility grid-connected market has been identified as a key market to be developed to accelerate the commercialization of photovoltaics. The Sacramento Municipal Utility District (SMUD) has completed the first two years of a continuing commercialization effort based on two years of a continuing commercialization effort based on the sustained, orderly development of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system and to stimulate the collaborative processes needed to accelerate the cost reductions necessary for PV to be cost-effective in these applications bymore » the year 2000. In the first two years, SMUD has installed over 240 residential and commercial building, grid-connected, rooftop, {open_quotes}PV Pioneer{close_quotes} systems totaling over 1MW of capacity and four substation sited, grid-support PV systems totaling 600 kW bringing the SMUD distributed PV power systems to over 3.7 MW. The 1995 SMUD PV Program will add another approximately 800 kW of PV systems to the District`s distributed PV power system. SMUD also established a partnership with its customers through the PV Pioneer {open_quotes}green pricing{close_quotes} program to advance PV commercialization.« less

  1. Market assessment of photovoltaic power systems for agricultural applications in Mexico

    NASA Technical Reports Server (NTRS)

    Steigelmann, W.; Asmon, I.

    1981-01-01

    The first year of cost-competitiveness, the market potential, and the environment in which PV systems would be marketed and employed were examined. Market elements specific to Mexico addressed include: (1) useful applications and estimates of the potential market for PV systems; (2) power requirements and load profiles for applications compatible with PV usage; (3) operating and cost characteristics of power systems that compete against PV; (4) national development goals in rural electrification and rural services, technology programs and government policies that influence the demand for PV in Mexico; (5) financing mechanisms and capital available for PV acquisition; (6) channels for distribution, installation and maintenance of PV systems; and (7) appropriate methods for conducting business in Mexico.

  2. Market assessment of photovoltaic power systems for agricultural applications in Mexico

    NASA Astrophysics Data System (ADS)

    Steigelmann, W.; Asmon, I.

    1981-07-01

    The first year of cost-competitiveness, the market potential, and the environment in which PV systems would be marketed and employed were examined. Market elements specific to Mexico addressed include: (1) useful applications and estimates of the potential market for PV systems; (2) power requirements and load profiles for applications compatible with PV usage; (3) operating and cost characteristics of power systems that compete against PV; (4) national development goals in rural electrification and rural services, technology programs and government policies that influence the demand for PV in Mexico; (5) financing mechanisms and capital available for PV acquisition; (6) channels for distribution, installation and maintenance of PV systems; and (7) appropriate methods for conducting business in Mexico.

  3. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    NASA Astrophysics Data System (ADS)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  4. LCP- LIFETIME COST AND PERFORMANCE MODEL FOR DISTRIBUTED PHOTOVOLTAIC SYSTEMS

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1994-01-01

    The Lifetime Cost and Performance (LCP) Model was developed to assist in the assessment of Photovoltaic (PV) system design options. LCP is a simulation of the performance, cost, and revenue streams associated with distributed PV power systems. LCP provides the user with substantial flexibility in specifying the technical and economic environment of the PV application. User-specified input parameters are available to describe PV system characteristics, site climatic conditions, utility purchase and sellback rate structures, discount and escalation rates, construction timing, and lifetime of the system. Such details as PV array orientation and tilt angle, PV module and balance-of-system performance attributes, and the mode of utility interconnection are user-specified. LCP assumes that the distributed PV system is utility grid interactive without dedicated electrical storage. In combination with a suitable economic model, LCP can provide an estimate of the expected net present worth of a PV system to the owner, as compared to electricity purchased from a utility grid. Similarly, LCP might be used to perform sensitivity analyses to identify those PV system parameters having significant impact on net worth. The user describes the PV system configuration to LCP via the basic electrical components. The module is the smallest entity in the PV system which is modeled. A PV module is defined in the simulation by its short circuit current, which varies over the system lifetime due to degradation and failure. Modules are wired in series to form a branch circuit. Bypass diodes are allowed between modules in the branch circuits. Branch circuits are then connected in parallel to form a bus. A collection of buses is connected in parallel to form an increment to capacity of the system. By choosing the appropriate series-parallel wiring design, the user can specify the current, voltage, and reliability characteristics of the system. LCP simulation of system performance is site-specific and follows a three-step procedure. First the hourly power produced by the PV system is computed using a selected year's insolation and temperature profile. For this step it is assumed that there are no module failures or degradation. Next, the monthly simulation is performed involving a month to month progression through the lifetime of the system. In this step, the effects of degradation, failure, dirt accumulation and operations/maintenance efforts on PV system performance over time are used to compute the monthly power capability fraction. The resulting monthly power capability fractions are applied to the hourly power matrix from the first step, giving the anticipated hourly energy output over the lifetime of the system. PV system energy output is compared with the PV system owner's electricity demand for each hour. The amount of energy to be purchased from or sold to the utility grid is then determined. Monthly expenditures on the PV system and the purchase of electricity from the utility grid are also calculated. LCP generates output reports pertaining to the performance of the PV system, and system costs and revenues. The LCP model, written in SIMSCRIPT 2.5 for batch execution on an IBM 370 series computer, was developed in 1981.

  5. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Speer, B.; Mendelsohn, M.; Cory, K.

    Insuring solar photovoltaic (PV) systems poses certain challenges. Insurance premiums, which can represent a significant part of overall costs for PV developers, can affect market competition. The market for certain types of insurance products is limited. Historical loss data is lacking, and test data for the long-term viability of PV products under real-life conditions is limited. Insurers' knowledge about PV systems and the PV industry is uneven even as the industry introduces innovative contractual structures and business models. Interviews conducted for this report with PV project developers, insurance brokers, and underwriters suggest government actions aimed at better testing, data collection,more » and communication could facilitate the development of a market for PV insurance products. This report identifies actions by governments, national laboratories, and other stakeholders that could accelerate the development of insurance products in support PV systems. Such actions include: increasing understanding of the solar PV industry among insurance professionals; expanding the availability of PV historical loss data; evaluating the expansion of renewable energy business classification; developing module and component testing capabilities and services offered by federal labs; and, advancing industry standards for PV system installers.« less

  7. Design of a Glenn Research Center Solar Field Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) designed, developed, and installed, a 37.5 kW DC photovoltaic (PV) Solar Field in the GRC West Area in the 1970s for the purpose of testing PV panels for various space and terrestrial applications. The PV panels are arranged to provide a nominal 120 VDC. The GRC Solar Field has been extremely successful in meeting its mission. The PV panels and the supporting electrical systems are all near their end of life. GRC has designed a 72 kW DC grid-tied PV power system to replace the existing GRC West Area Solar Field. The 72 kW DC grid-tied PV power system will provide DC solar power for GRC PV testing applications, and provide AC facility power for all times that research power is not required. A grid-tied system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility for use by all. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provide valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. The report concludes that the GRC West Area grid-tied PV power system design is viable for a reliable, maintenance free, long life power system that is of significant value to NASA and the community.

  8. A Fundamental Study on Spectrum Center Estimation of Solar Spectral Irradiation by the Statistical Pattern Recognition

    NASA Astrophysics Data System (ADS)

    Iijima, Aya; Suzuki, Kazumi; Wakao, Shinji; Kawasaki, Norihiro; Usami, Akira

    With a background of environmental problems and energy issues, it is expected that PV systems will be introduced rapidly and connected with power grids on a large scale in the future. For this reason, the concern to which PV power generation will affect supply and demand adjustment in electric power in the future arises and the technique of correctly grasping the PV power generation becomes increasingly important. The PV power generation depends on solar irradiance, temperature of a module and solar spectral irradiance. Solar spectral irradiance is distribution of the strength of the light for every wavelength. As the spectrum sensitivity of solar cell depends on kind of solar cell, it becomes important for exact grasp of PV power generation. Especially the preparation of solar spectral irradiance is, however, not easy because the observational instrument of solar spectral irradiance is expensive. With this background, in this paper, we propose a new method based on statistical pattern recognition for estimating the spectrum center which is representative index of solar spectral irradiance. Some numerical examples obtained by the proposed method are also presented.

  9. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  10. Effects of expiration of the Federal energy tax credit on the National Photovoltaics Program

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1984-01-01

    Projected 1986 sales are significantly reduced as a direct result of system price increases following from expiration of the Federal energy tax credits. There would be greatly reduced emphasis on domestic electric utility applications. Indirect effects arising from unrealized economies of scale and reduced private investment in PV research and development (R&D) and in production facilities could have a very large cumulative adverse impact on the U.S. PV industry. The industry forecasts as much as fourfold reduction in 1990 sales if tax credits expire, compared with what sales would be with the credits. Because the National Photovoltaics Program is explicitly structured as a government partnership, large changes in the motivation or funding of either partner can affect Program success profoundly. Reduced industry participation implies that such industry tasks as industrialization and new product development would slow or halt. Those research areas receiving heavy R&D support from private PV manufacturers would be adversely affected.

  11. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system--a human response study in hot and humid climate.

    PubMed

    Yang, B; Sekhar, S C; Melikov, A K

    2010-08-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5 degrees C and PV air temperatures of 26, 23.5, and 21 degrees C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.

  12. Heterogeneous collaborative sensor network for electrical management of an automated house with PV energy.

    PubMed

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.

  13. A MPPT Algorithm Based PV System Connected to Single Phase Voltage Controlled Grid

    NASA Astrophysics Data System (ADS)

    Sreekanth, G.; Narender Reddy, N.; Durga Prasad, A.; Nagendrababu, V.

    2012-10-01

    Future ancillary services provided by photovoltaic (PV) systems could facilitate their penetration in power systems. In addition, low-power PV systems can be designed to improve the power quality. This paper presents a single-phase PV systemthat provides grid voltage support and compensation of harmonic distortion at the point of common coupling thanks to a repetitive controller. The power provided by the PV panels is controlled by a Maximum Power Point Tracking algorithm based on the incremental conductance method specifically modified to control the phase of the PV inverter voltage. Simulation and experimental results validate the presented solution.

  14. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  15. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  16. U.S. Residential Photovoltaic (PV) System Prices, Q4 2013 Benchmarks: Cash Purchase, Fair Market Value, and Prepaid Lease Transaction Prices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, C.; James, T. L.; Margolis, R.

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has dropped precipitously in recent years, led by substantial reductions in global PV module prices. This report provides a Q4 2013 update for residential PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variation in business models, labor rates, and module choice. We estimate a weighted-average cash purchase price of $3.29/W for modeled standard-efficiency, polycrystalline-silicon residential PV systems installed in the United States. This is a 46% declinemore » from the 2013-dollar-adjusted price reported in the Q4 2010 benchmark report. In addition, this report frames the cash purchase price in the context of key price metrics relevant to the continually evolving landscape of third-party-owned PV systems by benchmarking the minimum sustainable lease price and the fair market value of residential PV systems.« less

  17. Development and Testing of the Glenn Research Center Visitor's Center Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2009-01-01

    The NASA Glenn Research Center (GRC) has developed, installed, and tested a 12 kW DC grid-tied photovoltaic (PV) power system at the GRC Visitor s Center. This system utilizes a unique ballast type roof mount for installing the photovoltaic panels on the roof of the Visitor s Center with no alterations or penetrations to the roof. The PV system has generated in excess of 15000 kWh since operation commenced in August 2008. The PV system is providing power to the GRC grid for use by all. Operation of the GRC Visitor s Center PV system has been completely trouble free. A grid-tied PV power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. The project transfers space technology to terrestrial use via nontraditional partners. GRC personnel glean valuable experience with PV power systems that are directly applicable to various space power systems, and provides valuable space program test data. PV power systems help to reduce harmful emissions and reduce the Nation s dependence on fossil fuels. Power generated by the PV system reduces the GRC utility demand, and the surplus power aids the community. Present global energy concerns reinforce the need for the development of alternative energy systems. Modern PV panels are readily available, reliable, efficient, and economical with a life expectancy of at least 25 years. Modern electronics has been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy of at least 25 years. Based upon the success of the GRC Visitor s Center PV system, additional PV power system expansion at GRC is under consideration. The GRC Visitor s Center grid-tied PV power system was successfully designed and developed which served to validate the basic principles described, and the theoretical work that was performed. The report concludes that grid-tied photovoltaic power systems are reliable, maintenance free, long life power systems, and are of significant value to NASA and the community.

  18. Three junction holographic micro-scale PV system

    NASA Astrophysics Data System (ADS)

    Wu, Yuechen; Vorndran, Shelby; Ayala Pelaez, Silvana; Kostuk, Raymond K.

    2016-09-01

    In this work a spectrum splitting micro-scale concentrating PV system is evaluated to increase the conversion efficiency of flat panel PV systems. In this approach, the dispersed spectrum splitting concentration systems is scaled down to a small size and structured in an array. The spectrum splitting configuration allows the use of separate single bandgap PV cells that increase spectral overlap with the incident solar spectrum. This results in an overall increase in the spectral conversion efficiency of the resulting system. In addition other benefits of the micro-scale PV system are retained such reduced PV cell material requirements, more versatile interconnect configurations, and lower heat rejection requirements that can lead to a lower cost system. The system proposed in this work consists of two cascaded off-axis holograms in combination with a micro lens array, and three types of PV cells. An aspherical lens design is made to minimize the dispersion so that higher concentration ratios can be achieved for a three-junction system. An analysis methodology is also developed to determine the optical efficiency of the resulting system, the characteristics of the dispersed spectrum, and the overall system conversion efficiency for a combination of three types of PV cells.

  19. Influence of temperature on the optical system with large diameter off-axis parabolic lenses

    NASA Astrophysics Data System (ADS)

    Su, Yaru; Ruan, Hao; Liu, Jie

    2016-10-01

    In this work, an optical system with large diameter off-axis parabolic lenses was adopted to achieve diffraction gratings by laser interference exposure. The diffraction wavefront aberration caused by temperature variations was simulated using ZEMAX. Through theoretical analysis and optical simulation, it is proved that the diffraction wavefront aberration of holographic grating caused by the pinhole's location errors (it is assumed that when the displacement of pinhole exists along one axis, the locations of the pinhole along the other two orthogonal axes are in a state of precise adjustment ) is much larger when the displacement occurs along z axis than along the other two axes, and the diffraction wavefront aberration is the smallest when the displacement occurs along x axis. If the ambient temperature changes by 1 degree, the PV value is 0.0631λ when the location of the pinhole changes by 0.121mm along z axis, 0.0034λor 0.0672λ when the location of the pinhole changes by 0.002mm along x axis or 0.03mm along y axis. To reach the diffraction limit (that means the PV value is 0.25λ), the decentering value of the pinhole along z axis should be less than 0.0341mm. In conclusion, the position error along z axis is an important factor to influence the PV value of diffraction grating, and the effect of temperature on the PV value of diffraction grating can be neglected.

  20. Solar San Diego: The Impact of Binomial Rate Structures on Real PV Systems; Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanGeet, O.; Brown, E.; Blair, T.

    2008-05-01

    There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rate structures is presented. The data revealed that actual demand and energy use benefits of binomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007.« less

  1. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less

  2. On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehos, Mark; Turchi, Craig; Jorgenson, Jennie

    2016-05-01

    This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessmentmore » of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.« less

  3. Energetic contribution potential of building-integrated photovoltaics on airports in warm climates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruether, Ricardo; LABSOLAR - Laboratorio de Energia Solar, UFSC - Universidade Federal de Santa Catarina, Caixa Postal 476, Florianopolis, SC 88040-900; Braun, Priscila

    2009-10-15

    Especially in warm climates, a considerable fraction of the electricity demand in commercial buildings is due to the intensive use of air-conditioning systems. Airport buildings in sunny and warm regions present a perfect match between energy demand and solar resource availability. Airport buildings are also typically large and horizontal, isolated and free of shading, and have a great potential for the integration of solar photovoltaic (PV) systems. In this work, we assess the potential impact in energy demand reduction at the Florianopolis International Airport in Brazil (27 S, 48 W) with the use of building-integrated photovoltaic (BIPV) systems. We analysemore » the building's hourly energy consumption and solar irradiation data, to assess the match between energy demand and potential generation, and we estimate the PV power necessary to supply both the total amount and fractions of the annual energy demand. Our results show that the integration of PV systems on airport buildings in warm climates can supply the entire electric power consumption of an airport complex, in line with the general concept of a zero-energy building (ZEB). (author)« less

  4. Solar receiver with integrated optics

    NASA Astrophysics Data System (ADS)

    Jiang, Lun; Winston, Roland

    2012-10-01

    The current challenge for PV/Thermal (PV/T) systems is the reduction of radiation heat loss. Compared to solar thermal selective coating, the solar cells cannot be used as an efficient thermal absorber due to their large emissivity of the encapsulation material. Many commercial PV/T products therefore require a high concentration (more than 10x) to reach an acceptable thermal efficiency for their receivers. Such a concentration system inevitably has to track or semi-track, which induces additional cost and collects only the direct radiation from the sun. We propose a new PV/T design using a vacuum encapsulated thin film cell to solve this problem. The proposed design also collects the diffuse sun light efficiently by using an external compound parabolic concentrator (XCPC). Since the transparent electrode (TCO) of thin film cell is inherently transparent in visible light and reflective beyond infrared, this design uses this layer instead of the conventional solar cell encapsulation as the outmost heat loss surface. By integrating such a vacuum design with a tube shaped absorber, we reduce the complexity of conducting the heat energy and electricity out of the device. A low concentration standalone non-tracking solar collector is proposed in this paper. We also analyzed the thermosyphon system configuration using heat transfer and ray tracing models. The economics of such a receiver are presented.

  5. MATLAB Simulation of Photovoltaic and Photovoltaic/Thermal Systems Performance

    NASA Astrophysics Data System (ADS)

    Nasir, Farah H. M.; Husaini, Yusnira

    2018-03-01

    The efficiency of the photovoltaic reduces when the photovoltaic cell temperature increased due to solar irradiance. One solution is come up with the cooling system photovoltaic system. This combination is forming the photovoltaic-thermal (PV/T) system. Not only will it generate electricity also heat at the same time. The aim of this research is to focus on the modeling and simulation of photovoltaic (PV) and photovoltaic-thermal (PV/T) electrical performance by using single-diode equivalent circuit model. Both PV and PV/T models are developed in Matlab/Simulink. By providing the cooling system in PV/T, the efficiency of the system can be increased by decreasing the PV cell temperature. The maximum thermal, electrical and total efficiency values of PV/T in the present research are 35.18%, 15.56% and 50.74% at solar irradiance of 400 W/m2, mass flow rate of 0.05kgs-1 and inlet temperature of 25 °C respectively has been obtained. The photovoltaic-thermal shows that the higher efficiency performance compared to the photovoltaic system.

  6. Photovoltaic battery & charge controller market & applications survey. An evaluation of the photovoltaic system market for 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, R.L.; Turpin, J.F.; Corey, G.P.

    1996-12-01

    Under the sponsorship of the Department of Energy, Office of Utility Technologies, the Battery Analysis and Evaluation Department and the Photovoltaic System Assistance Center of Sandia National Laboratories (SNL) initiated a U.S. industry-wide PV Energy Storage System Survey. Arizona State University (ASU) was contracted by SNL in June 1995 to conduct the survey. The survey included three separate segments tailored to: (a) PV system integrators, (b) battery manufacturers, and (c) PV charge controller manufacturers. The overall purpose of the survey was to: (a) quantify the market for batteries shipped with (or for) PV systems in 1995, (b) quantify the PVmore » market segments by battery type and application for PV batteries, (c) characterize and quantify the charge controllers used in PV systems, (d) characterize the operating environment for energy storage components in PV systems, and (e) estimate the PV battery market for the year 2000. All three segments of the survey were mailed in January 1996. This report discusses the purpose, methodology, results, and conclusions of the survey.« less

  7. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    NASA Astrophysics Data System (ADS)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  8. Charting the Emergence of Corporate Procurement of Utility-Scale PV |

    Science.gov Websites

    Jeffrey J. Cook Though most large-scale solar photovoltaic (PV) deployment has been driven by utility corporate interest in renewables as more companies are recognizing that solar PV can provide clean United States highlighting states with utility-scale solar PV purchasing options Figure 2. States with

  9. Comparison of evolving photovoltaic and nuclear power systems for earth orbital applications

    NASA Technical Reports Server (NTRS)

    Rockey, D. E.; Jones, R. M.; Schulman, I.

    1982-01-01

    Photovoltaic and fission reactor orbital power systems are compared in terms of the end-to-end system power-to-mass ratios. Three PV systems are examined, i.e., a solid substrate with a cell array and a NiCd battery, a modified SEP array and an NiH2 battery, and a 62-micron Si cell array and a fuel cell. All arrays were modeled to be 13.5% efficient and to produce 25 kW dc. The SP-100 reactor consists of the heat source, radiation shield, heat pipes to transfer thermal energy from the reactor to thermoelectric elements, and a waste heat radiator. Consideration is given to system applications in orbits ranging from LEO to GEO, and to mission durations of 1, 5, and 10 yr. PV systems are concluded to be flight-proven, useful out of radiation belts, and best for low to moderate power levels. Limitations exist for operations where atmospheric drag may become a factor and due to the size of a large PV power supply. Space nuclear reactors will continue under development and uses at high power levels and in low altitude orbits are foreseen.

  10. PV water pumping: NEOS Corporation recent PV water pumping activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lane, C.

    1995-11-01

    NEOS Corporation has been very active in PV-powered water pumping, particularly with respect to electric utilities. Most of the recent activity has been through the Photovoltaic Services Network (PSN). The PSN is an independent, not-for-profit organization comprised of all types of electric utilities: rural electric coops, public power districts, investor-owned utilities, and power marketing agencies. The PSN`s mission is to work pro-actively to promote utility involvement in PV through education and training. PV information is distributed by the PSN in three primary forms: (1) consultation with PSN technical service representatives: (2) literature generated by the PSN; and (3) literature publishedmore » by other organizations. The PSN can also provide assistance to members in developing PV customer service programs. The PSN`s product support activities include consolidation of information on existing packaged PV systems and facilitation of the development of new PV product packages that meet utility-defined specifications for cost performance, and reliability. The PSN`s initial product support efforts will be focused on commercially available packaged PV systems for a variety of off-grid applications. In parallel with this effort, if no products exist that meet the PSN`s functional specifications, the PSN will initiate the second phase of product development support process by encouraging the development of new packaged systems. Through these services and product support activities, the PSN anticipates engaging all segments for the PV industry, thus providing benefits to PV systems suppliers as well as local PV service contractors.This paper describes field testing of pv power systems for water pumping.« less

  11. Uncertainties in the Value of Bill Savings from Behind-the-Meter, Residential Photovoltaic Systems: The Roles of Electricity Market Conditions, Retail Rate Design, and Net Metering

    NASA Astrophysics Data System (ADS)

    Darghouth, Naim Richard

    Net metering has become a widespread policy mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), allowing customers with PV systems to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption. Although net metering is one of the principal drivers for the residential PV market in the U.S., the academic literature on this policy has been sparse and this dissertation contributes to this emerging body of literature. This dissertation explores the linkages between the availability of net metering, wholesale electricity market conditions, retail rates, and the residential bill savings from behind-the-meter PV systems. First, I examine the value of the bill savings that customers receive under net metering and alternatives to net metering, and the associated role of retail rate design, based on current rates and a sample of approximately two hundred residential customers of California's two largest electric utilities. I find that the bill savings per kWh of PV electricity generated varies greatly, largely attributable to the increasing block structure of the California utilities' residential retail rates. I also find that net metering provides significantly greater bill savings than alternative compensation mechanisms based on avoided costs. However, retail electricity rates may shift as wholesale electricity market conditions change. I then investigate a potential change in market conditions -- increased solar PV penetrations -- on wholesale prices in the short-term based on the merit-order effect. This demonstrates the potential price effects of changes in market conditions, but also points to a number of methodological shortcomings of this method, motivating my usage of a long-term capacity investment and economic dispatch model to examine wholesale price effects of various wholesale market scenarios in the subsequent analysis. By developing three types of retail rates (a flat rate, a time-of-use rate, and real-time pricing) from these wholesale price profiles, I examine bill savings from PV generation for the ten wholesale market scenarios under net metering and an alternative to net metering where hourly excess PV generation is compensated at the wholesale price. Most generally, I challenge the common assertion that PV compensation is likely to stay constant (or rise) due to constant (or rising) retail rates, and find that future electricity market scenarios can drive substantial changes in residential retail rates and that these changes, in concert with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  12. Method of manufacturing a large-area segmented photovoltaic module

    DOEpatents

    Lenox, Carl

    2013-11-05

    One embodiment of the invention relates to a segmented photovoltaic (PV) module which is manufactured from laminate segments. The segmented PV module includes rectangular-shaped laminate segments formed from rectangular-shaped PV laminates and further includes non-rectangular-shaped laminate segments formed from rectangular-shaped and approximately-triangular-shaped PV laminates. The laminate segments are mechanically joined and electrically interconnected to form the segmented module. Another embodiment relates to a method of manufacturing a large-area segmented photovoltaic module from laminate segments of various shapes. Other embodiments relate to processes for providing a photovoltaic array for installation at a site. Other embodiments and features are also disclosed.

  13. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer

    Sengupta, M.; Andreas, A.

    2010-03-16

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  14. NREL, California Independent System Operator, and First Solar | Energy

    Science.gov Websites

    Solar NREL, California Independent System Operator, and First Solar Demonstrate Essential Reliability Services with Utility-Scale Solar NREL, the California Independent System Operator (CAISO), and First Solar conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to

  15. On-line monitoring system of PV array based on internet of things technology

    NASA Astrophysics Data System (ADS)

    Li, Y. F.; Lin, P. J.; Zhou, H. F.; Chen, Z. C.; Wu, L. J.; Cheng, S. Y.; Su, F. P.

    2017-11-01

    The Internet of Things (IoT) Technology is used to inspect photovoltaic (PV) array which can greatly improve the monitoring, performance and maintenance of the PV array. In order to efficiently realize the remote monitoring of PV operating environment, an on-line monitoring system of PV array based on IoT is designed in this paper. The system includes data acquisition, data gateway and PV monitoring centre (PVMC) website. Firstly, the DSP-TMS320F28335 is applied to collect indicators of PV array using sensors, then the data are transmitted to data gateway through ZigBee network. Secondly, the data gateway receives the data from data acquisition part, obtains geographic information via GPS module, and captures the scenes around PV array via USB camera, then uploads them to PVMC website. Finally, the PVMC website based on Laravel framework receives all data from data gateway and displays them with abundant charts. Moreover, a fault diagnosis approach for PV array based on Extreme Learning Machine (ELM) is applied in PVMC. Once fault occurs, a user alert can be sent via E-mail. The designed system enables users to browse the operating conditions of PV array on PVMC website, including electrical, environmental parameters and video. Experimental results show that the presented monitoring system can efficiently real-time monitor the PV array, and the fault diagnosis approach reaches a high accuracy of 97.5%.

  16. An Evaluation Method for PV Systems by using Limited Data Item

    NASA Astrophysics Data System (ADS)

    Oozeki, Takashi; Izawa, Toshiyasu; Otani, Kenji; Tsuzuku, Ken; Koike, Hisafumi; Kurokawa, Kosuke

    Beside photovoltaic (PV) systems are recently expected to introduce around Japan, almost all of them have not been taken care after established since PV systems are called maintenance free. In fact, there are few troubles about PV operations behind owners of PV systems because characteristics of them cannot be identified completely such as the ideal output energy. Therefore, it is very important to evaluate the characteristics of them. For evaluating them, equipments of measuring are required, and they, especially Pyrheliometer, are expensive as much as owners of the PV system cannot equip usually. Consequently, An evaluation method which can reveal the performance of operation such as the performance ratio with a very few kinds of data is necessary. In this paper, proposed method can evaluate performance ratio, shading losses, inverter efficiency losses by using only system output data items. The adequacies of the method are indicated by comparing with actual data and field survey results. As a result, the method is intended to be checking tool of PV system performance.

  17. Photovoltaic power generation; Proceedings of the EC Contractors' Meeting, Hamburg, West Germany, July 12, 13, 1983

    NASA Astrophysics Data System (ADS)

    Palz, W.

    Several operational examples of photovoltaic (PV) power generation systems in Europe are described. The systems include: a 300 kW power plant in Pellworm, West Germany; the Tremiti desalination plant in Tremiti, Italy; and the Kythnos PV power plant in Kythnos, Greece. Consideration is also given to a PV-powered swimming pool heating system in Chevretogne, Belgium; a rural electrification program using PV power plants in French Guyana; a solar-wind project on Terschelling Island, the Netherlands; and a PV power plant for hydrogen production and water pumping in Hoboken, Belgium. A 30-kW power station in Marchwood, England and the Nice airport survey and control system are also cited as examples of successful PV power generation systems.

  18. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    NASA Technical Reports Server (NTRS)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  19. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  20. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic

    PubMed Central

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A.

    2017-01-01

    ABSTRACT Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. PMID:28246364

  1. Photovoltaic Reliability Group activities in USA and Brazil (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.; Cruz, Leila R. O.

    2015-09-01

    Recently prices of photovoltaic (PV) systems have been reduced considerably and may continue to be reduced making them attractive. If these systems provide electricity over the stipulated warranty period, it would be possible attain socket parity within the next few years. Current photovoltaic module qualifications tests help in minimizing infant mortality but do not guarantee useful lifetime over the warranty period. The PV Module Quality Assurance Task Force (PVQAT) is trying to formulate accelerated tests that will be useful towards achieving the ultimate goal of assuring useful lifetime over the warranty period as well as to assure manufacturing quality. Unfortunately, assuring the manufacturing quality may require 24/7 presence. Alternatively, collecting data on the performance of fielded systems would assist in assuring manufacturing quality. Here PV systems installed by home-owners and small businesses can constitute as an important untapped source of data. The volunteer group, PV - Reliable, Safe and Sustainable Quality! (PVRessQ!) is providing valuable service to small PV system owners. Photovoltaic Reliability Group (PVRG) is initiating activities in USA and Brazil to assist home owners and small businesses in monitoring photovoltaic (PV) module performance and enforcing warranty. It will work in collaboration with small PV system owners, consumer protection agencies. Brazil is endowed with excellent solar irradiance making it attractive for installation of PV systems. Participating owners of small PV systems would instruct inverter manufacturers to copy the daily e-mails to PVRG and as necessary, will authorize the PVRG to carry out review of PV systems. The presentation will consist of overall activities of PVRG in USA and Brazil.

  2. Heterogeneous Collaborative Sensor Network for Electrical Management of an Automated House with PV Energy

    PubMed Central

    Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Álvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier

    2011-01-01

    In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the “Smart Grid” which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency. PMID:22247680

  3. Highlights of recent balance of system research and evaluation

    NASA Astrophysics Data System (ADS)

    Thomas, M. G.; Stevens, J. W.

    The cost of most photovoltaic (PV) systems is more a function of the balance of system (BOS) components than the collectors. The exception to this rule is the grid-tied system whose cost is related more directly to the collectors, and secondarily to the inverter/controls. In fact, recent procurements throughout the country document that collector costs for roof-mounted, utility-tied systems (Russell, PV Systems Workshop, 7/94) represent 60% to 70% of the system cost. This contrasts with the current market for packaged stand-alone all PV or PV-hybrid systems where collectors represent only 25% to 35% of the total. Not only are the BOS components the cost drivers in the current cost-effective PV system market place, they are also the least reliable components. This paper discusses the impact that BOS issues have on component performance, system performance, and system cost and reliability. We will also look at recent recommended changes in system design based upon performance evaluations of fielded PV systems.

  4. Progress of the PV Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment total nearly $ 1.3 billion.« less

  5. Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems

    DOE PAGES

    Marion, Bill; Smith, Benjamin

    2017-03-27

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less

  6. Photovoltaic system derived data for determining the solar resource and for modeling the performance of other photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; Smith, Benjamin

    Using performance data from some of the millions of installed photovoltaic (PV) modules with micro-inverters may afford the opportunity to provide ground-based solar resource data critical for developing PV projects. Here, a method was developed to back-solve for the direct normal irradiance (DNI) and the diffuse horizontal irradiance (DHI) from the measured ac power of south-facing PV module/micro-inverter systems. The method was validated using one year of irradiance and PV performance measurements for five PV systems, each with a different tilt/azimuth orientation, and located in Golden, Colorado. Compared to using a measured global horizontal irradiance for PV performance model input,more » using the back-solved values of DNI and DHI only increased the range of mean bias deviations from measured values by 0.6% for the modeled annual averages of the global tilt irradiance and ac power for the five PV systems. Correcting for angle-of-incidence effects is an important feature of the method to prevent underestimating the solar resource and for modeling the performance of PV systems with more dissimilar PV module orientations. The results for the method were also shown more favorable than the results when using an existing power projection method for estimating the ac power.« less

  7. Simulation study of air and water cooled photovoltaic panel using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  8. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections 2015 Edition

    DOE Data Explorer

    Feldman, David; Barbose, Galen; Margolis, Robert; Bolinger, Mark; Chung, Donald; Fu, Ran; Seel, Joachim; Davidson, Carolyn; Wiser, Ryan

    2016-05-13

    This is the fourth edition in an annual briefing prepared jointly by LBNL and NREL intended to provide a high-level overview of historical, recent, and projected near-term PV system pricing trends in the United States. The briefing draws on several ongoing research activities at the two labs, including LBNL's annual Tracking the Sun report series, NREL's bottom-up PV cost modeling, and NREL's synthesis of PV market data and projections. The briefing examines progress in PV price reductions to help DOE and other PV stakeholders manage the transition to a market-driven PV industry, and integrates different perspectives and methodologies for characterizing PV system pricing, in order to provide a broader perspective on underlying trends within the industry.

  9. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.

  10. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographicmore » variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  11. Rooftop Solar Photovoltaic Technical Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- andmore » populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  12. Zinc Bromide Flow Battery Installation for Islanding and Backup Power

    DTIC Science & Technology

    2016-09-18

    ability to control the generation has become more difficult with the increase of renewable energy systems such as solar photovoltaics ( PV ) and wind... PV and Inverter Room Building 6311 Rooftop Solar PV 30kW 232kW STC PV Array B5-PS2T33 Pad Switchboard ZnBr Energy Storage System (ESS) PowerBoxEnergy...Agreement • 1.5 MW of Photovoltaic • PV Parking lot lights • 24 Solar Thermal systems including the Combat Training Tank (Pool) Energy/Water Efficiency

  13. Impact of High PV Penetration on the Inter-Area Oscillations in the U.S. Eastern Interconnection

    DOE PAGES

    You, Shutang; Kou, Gefei; Liu, Yong; ...

    2017-03-31

    Our study explores the impact of high-photovoltaic (PV) penetration on the inter-area oscillation modes of large-scale power grids. A series of dynamic models with various PV penetration levels are developed based on a detailed model representing the U.S. Eastern Interconnection (EI). Transient simulations are performed to investigate the change of inter-area oscillation modes with PV penetration. The impact of PV control strategies and parameter settings on inter-area oscillations is studied. This paper finds that as PV increases, the damping of the dominant oscillation mode decreases monotonically. We also observed that the mode shape varies with the PV control strategy andmore » new oscillation modes may emerge under inappropriate parameter settings in PV plant controls.« less

  14. Integrated application of combined cooling, heating and power poly-generation PV radiant panel system of zero energy buildings

    NASA Astrophysics Data System (ADS)

    Yin, Baoquan

    2018-02-01

    A new type of combined cooling, heating and power of photovoltaic radiant panel (PV/R) module was proposed, and applied in the zero energy buildings in this paper. The energy system of this building is composed of PV/R module, low temperature difference terminal, energy storage, multi-source heat pump, energy balance control system. Radiant panel is attached on the backside of the PV module for cooling the PV, which is called PV/R module. During the daytime, the PV module was cooled down with the radiant panel, as the temperature coefficient influence, the power efficiency was increased by 8% to 14%, the radiant panel solar heat collecting efficiency was about 45%. Through the nocturnal radiant cooling, the PV/R cooling capacity could be 50 W/m2. For the multifunction energy device, the system shows the versatility during the heating, cooling and power used of building utilization all year round.

  15. Optimal Solar PV Arrays Integration for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less

  16. Solar San Diego: The Impact of Binomial Rate Structures on Real PV-Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, O.; Brown, E.; Blair, T.

    2008-01-01

    There is confusion in the marketplace regarding the impact of solar photovoltaics (PV) on the user's actual electricity bill under California Net Energy Metering, particularly with binomial tariffs (those that include both demand and energy charges) and time-of-use (TOU) rate structures. The City of San Diego has extensive real-time electrical metering on most of its buildings and PV systems, with interval data for overall consumption and PV electrical production available for multiple years. This paper uses 2007 PV-system data from two city facilities to illustrate the impacts of binomial rate designs. The analysis will determine the energy and demand savingsmore » that the PV systems are achieving relative to the absence of systems. A financial analysis of PV-system performance under various rates structures is presented. The data revealed that actual demand and energy use benefits of bionomial tariffs increase in summer months, when solar resources allow for maximized electricity production. In a binomial tariff system, varying on- and semi-peak times can result in approximately $1,100 change in demand charges per month over not having a PV system in place, an approximate 30% cost savings. The PV systems are also shown to have a 30%-50% reduction in facility energy charges in 2007. Future work will include combining demand and electricity charges and increasing the breadth of rate structures tested, including the impacts of non-coincident demand charges.« less

  17. Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters

    DOE PAGES

    Doubleday, Kate; Choi, Beomseok; Maksimovic, Dragan; ...

    2016-06-17

    Large commercial photovoltaic (PV) systems can experience regular and predictable energy loss due to both inter-row shading and reduced diffuse irradiance in tightly spaced arrays. This article investigates the advantages of replacing bypass diodes with submodule-integrated DC-DC converters (subMICs) to mitigate these losses. Yearly simulations of commercial-scale PV systems were conducted considering a range of row-to-row pitches. In the limit case of array spacing (unity ground coverage), subMICs can confer a 7% increase in annual energy output and peak energy density (kW h/m 2). Simulation results are based on efficiency assumptions experimentally confirmed by prototype submodule differential power-processing converters.

  18. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  19. Solar Energy for Rural Egypt

    NASA Astrophysics Data System (ADS)

    Abdelsalam, Tarek I.; Darwish, Ziad; Hatem, Tarek M.

    Egypt is currently experiencing the symptoms of an energy crisis, such as electricity outage and high deficit, due to increasing rates of fossil fuels consumption. Conversely, Egypt has a high solar availability of more than 18.5 MJ daily. Additionally, Egypt has large uninhabited deserts on both sides of the Nile valley and Sinai Peninsula, which both represent more than 96.5 % of the nation's total land area. Therefore, solar energy is one of the promising solutions for the energy shortage in Egypt. Furthermore, these vast lands are advantageous for commissioning large-scaled solar power projects, not only in terms of space availability, but also of availability of high quality silicon (sand) required for manufacturing silicon wafers used in photovoltaic (PV) modules. Also, rural Egypt is considered market a gap for investors, due to low local competition, and numerous remote areas that are not connected to the national electricity grid. Nevertheless, there are some obstacles that hinder the progress of solar energy in Egypt; for instance, the lack of local manufacturing capabilities, security, and turbulent market in addition to other challenges. This paper exhibits an experience of the authors designing and installing decentralized PV solar systems, with a total rated power of about 11 kW, installed at two rural villages in at the suburbs of Fayoum city, in addition to a conceptual design of a utility scale, 2 MW, PV power plant to be installed in Kuraymat. The outcomes of this experience asserted that solar PV systems can be a more technically and economically feasible solution for the energy problem in rural villages.

  20. NATIONAL ASSESSMENT OF EMISSIONS REDUCTION IMPACT FROM ROOFTOP PV

    EPA Science Inventory

    This effort will determine the emissions impacts to the U.S. PV generated electricity when PV systems are installed on building rooftops and employed as demand-side power supplies. The national assessment will be based on data provided by existing rooftop PV systems that have be...

  1. A Sensitivity Study of the Impact of Installation Parameters and System Configuration on the Performance of Bifacial PV Arrays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, William F; Deline, Christopher A; Asgharzadeh, Amir

    In this paper, we present the effect of installation parameters (tilt angle, height above ground, and albedo) on the bifacial gain and energy yield of three south-facing photovoltaic (PV) system configurations: a single module, a row of five modules, and five rows of five modules utilizing RADIANCE-based ray tracing model. We show that height and albedo have a direct impact on the performance of bifacial systems. However, the impact of the tilt angle is more complicated. Seasonal optimum tilt angles are dependent on parameters such as height, albedo, size of the system, weather conditions, and time of the year. Formore » a single bifacial module installed in Albuquerque, NM, USA (35 degrees N) with a reasonable clearance (~1 m) from the ground, the seasonal optimum tilt angle is lowest (~5 degrees) for the summer solstice and highest (~65 degrees) for the winter solstice. For larger systems, seasonal optimum tilt angles are usually higher and can be up to 20 degrees greater than that for a single module system. Annual simulations also indicate that for larger fixed-tilt systems installed on a highly reflective ground (such as snow or a white roofing material with an albedo of ~81%), the optimum tilt angle is higher than the optimum angle of the smaller size systems. We also show that modules in larger scale systems generate lower energy due to horizon blocking and large shadowing area cast by the modules on the ground. For albedo of 21%, the center module in a large array generates up to 7% less energy than a single bifacial module. To validate our model, we utilize measured data from Sandia National Laboratories' fixed-tilt bifacial PV testbed and compare it with our simulations.« less

  2. The Tucson Electric Power Solar Test Yard

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Orsburn, Sean; Salhab, Anas; Kopp, Emily; Brooks, Adria; Jayadevan, Vijai; Greenberg, James; St. Germaine, Michael; Allen, Nate; Jones, Sarah; Hardesty, Garrett; Cronin, Alex

    2011-10-01

    In collaboration with Tucson Electric Power we studied the performance of twenty different grid-tied photovoltaic systems, consisting of over 600 PV modules in all. We added data acquisition hardware to monitor DC power from the modules, AC power from the inverters, PV module temperatures, and meteorological data such as the irradiance incident on the PV systems. We report measurements of PV system yields and efficiencies over periods of minutes, days, and years. We also report temperature and irradiance coefficients of efficiency and measurements of long-term degradation. We also use our data to validate models that predict the output from PV systems.

  3. Grid-Tied Photovoltaic Power System

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2011-01-01

    A grid-tied photovoltaic (PV) power system is connected directly to the utility distribution grid. Facility power can be obtained from the utility system as normal. The PV system is synchronized with the utility system to provide power for the facility, and excess power is provided to the utility. Operating costs of a PV power system are low compared to conventional power technologies. This method can displace the highest-cost electricity during times of peak demand in most climatic regions, and thus reduce grid loading. Net metering is often used, in which independent power producers such as PV power systems are connected to the utility grid via the customers main service panels and meters. When the PV power system is generating more power than required at that location, the excess power is provided to the utility grid. The customer pays the net of the power purchased when the on-site power demand is greater than the onsite power production, and the excess power is returned to the utility grid. Power generated by the PV system reduces utility demand, and the surplus power aids the community. Modern PV panels are readily available, reliable, efficient, and economical, with a life expectancy of at least 25 years. Modern electronics have been the enabling technology behind grid-tied power systems, making them safe, reliable, efficient, and economical with a life expectancy equal to the modern PV panels. The grid-tied PV power system was successfully designed and developed, and this served to validate the basic principles developed, and the theoretical work that was performed. Grid-tied PV power systems are reliable, maintenance- free, long-life power systems, and are of significant value to NASA and the community. Of particular value are the analytical tools and capabilities that have been successfully developed. Performance predictions can be made confidently for grid-tied PV systems of various scales. The work was done under the NASA Hybrid Power Management (HPM) Program, which is the integration of diverse power devices in an optimal configuration for space and terrestrial applications.

  4. Decentralized Optimal Dispatch of Photovoltaic Inverters in Residential Distribution Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Johnson, Brian B.

    Summary form only given. Decentralized methods for computing optimal real and reactive power setpoints for residential photovoltaic (PV) inverters are developed in this paper. It is known that conventional PV inverter controllers, which are designed to extract maximum power at unity power factor, cannot address secondary performance objectives such as voltage regulation and network loss minimization. Optimal power flow techniques can be utilized to select which inverters will provide ancillary services, and to compute their optimal real and reactive power setpoints according to well-defined performance criteria and economic objectives. Leveraging advances in sparsity-promoting regularization techniques and semidefinite relaxation, this papermore » shows how such problems can be solved with reduced computational burden and optimality guarantees. To enable large-scale implementation, a novel algorithmic framework is introduced - based on the so-called alternating direction method of multipliers - by which optimal power flow-type problems in this setting can be systematically decomposed into sub-problems that can be solved in a decentralized fashion by the utility and customer-owned PV systems with limited exchanges of information. Since the computational burden is shared among multiple devices and the requirement of all-to-all communication can be circumvented, the proposed optimization approach scales favorably to large distribution networks.« less

  5. Photovoltaic electricity generation: Value for residential and commercial sectors

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ujjwal

    The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that enables estimation of the PV contribution towards the peak load reduction for a given high building load. Results indicate a significant cost saving (15% to 40%) with application of the model. This will encourage commercial entities (building owners) to adopt PV as a distributed energy source. The tool would be useful for energy modelers and green building architects as it will enable them to estimate cost savings due to PV deployment in commercial buildings. Moreover, the model tested for three different commercial buildings indicates that school buildings show the best promise for PV deployment followed, respectively, by office buildings and manufacturing facilities. This will help PV incentive programs in the country to use resources effectively to enhance the diffusion of PV in the commercial sector.

  6. Using the Spatial Distribution of Installers to Define Solar Photovoltaic Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naim

    2016-09-01

    Solar PV market research to date has largely relied on arbitrary jurisdictional boundaries, such as counties, to study solar PV market dynamics. This paper seeks to improve solar PV market research by developing a methodology to define solar PV markets. The methodology is based on the spatial distribution of solar PV installers. An algorithm is developed and applied to a rich dataset of solar PV installations to study the outcomes of the installer-based market definitions. The installer-based approach exhibits several desirable properties. Specifically, the higher market granularity of the installer-based approach will allow future PV market research to study themore » relationship between market dynamics and pricing with more precision.« less

  7. Integrating PV in Distributed Grids: Solutions and Technologies Workshop |

    Science.gov Websites

    Energy Systems Integration Facility | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015 (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from

  8. Photovoltaic Lifetime Project | Photovoltaic Research | NREL

    Science.gov Websites

    PV & Solar Resource Testing Accelerated Testing & Analysis Systems Engineering Project Sandia National Laboratories' PV Performance Modeling Collaborative website. Jinko Solar. PV systems mounted on the ground. Jinko Solar PV Lifetime installation at NREL. need-alt Light-induced degradation

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    In the U.S., the increasing financial support for customer-sited photovoltaic (PV) systems provided through publicly-funded incentive programs has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in addressing PV system performance. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouragingmore » PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address factors that affect performance, and describe key implementation details. Based on this review, we then offer recommendations for how PV incentive programs can be effectively designed to mitigate potential performance issues.« less

  10. A GUI Based Software for Sizing Stand Alone AC Coupled Hybrid PV-Diesel Power System under Malaysia Climate

    NASA Astrophysics Data System (ADS)

    Syafiqah Syahirah Mohamed, Nor; Amalina Banu Mohamat Adek, Noor; Hamid, Nurul Farhana Abd

    2018-03-01

    This paper presents the development of Graphical User Interface (GUI) software for sizing main component in AC coupled photovoltaic (PV) hybrid power system based on Malaysia climate. This software provides guideline for PV system integrator to design effectively the size of components and system configuration to match the system and load requirement with geographical condition. The concept of the proposed software is balancing the annual average renewable energy generation and load demand. In this study, the PV to diesel generator (DG) ratio is introduced by considering the hybrid system energy contribution. The GUI software is able to size the main components in the PV hybrid system to meet with the set target of energy contribution ratio. The rated powers of the components to be defined are PV array, grid-tie inverter, bi-directional inverter, battery storage and DG. GUI is used to perform all the system sizing procedures to make it user friendly interface as a sizing tool for AC coupled PV hybrid system. The GUI will be done by using Visual Studio 2015 based on the real data under Malaysia Climate.

  11. Grid-connected PV systems - How and where they fit

    NASA Astrophysics Data System (ADS)

    Thomas, M. G.; Jones, G. J.

    The use of grid-connected photovoltaic systems requires substantial improvements in system economics. By integrating anticipated improvements in economics with consumer needs and perceptions, the various potential applications have been order-ranked. Third-party ownership of large systems appears to have the largest potential, residential has a modest potential, and the intermediate dedicated-load application potential appears to be small.

  12. PVMaT 1998 overview

    NASA Astrophysics Data System (ADS)

    Mittchell, Richard L.; Symko-Davies, Martha; Thomas, Holly P.; Witt, C. Edwin

    1999-03-01

    The Photovoltaic Manufacturing Technology (PVMaT) Project is a government/industry research and development (R&D) partnership between the U.S. federal government (through the U.S. Department of Energy [DOE]) and members of the U.S. PV industry. The goals of PVMaT are to assist the U.S. PV industry improve module manufacturing processes and equipment; accelerate manufacturing cost reductions for PV modules, balance-of-systems components, and integrated systems; increase commercial product performance and reliability; and enhance investment opportunities for substantial scale-ups of U.S.-based PV manufacturing plant capacities. The approach for PVMaT has been to cost-share the R&D risk as industry explores new manufacturing options and ideas for improved PV modules and components, advances system and product integration, and develops new system designs. These activities will lead to overall reduced system life-cycle costs for reliable PV end-products. The 1994 PVMaT Product-Driven BOS and Systems activities, as well as Product-Driven Module Manufacturing R&D activities, are just being completed. Fourteen new subcontracts have just been awarded in the areas of PV System and Component Technology and Module Manufacturing Technology. Government funding, subcontractor cost-sharing, and a comparison of the relative efforts by PV technology throughout the PVMaT project are also discussed.

  13. Integrated energy system for a high performance building

    NASA Astrophysics Data System (ADS)

    Jaczko, Kristen

    Integrated energy systems have the potential to reduce of the energy consumption of residential buildings in Canada. These systems incorporate components to meet the building heating, cooling and domestic hot water load into a single system in order to reduce energy losses. An integrated energy system, consisting of a variable speed heat pump, cold and hot thermal storage tanks, a photovoltaic/thermal (PV/T) collector array and a battery bank, was designed for the Queen's Solar Design Team's (QSDT) test house. The system uses a radiant floor to provide space- heating and sensible cooling and a dedicated outdoor air system provides ventilation and dehumidifies the incoming fresh air. The test house, the Queen's Solar Education Centre (QSEC), and the integrated energy system were both modelled in TRNSYS. Additionally, a new TRNSYS Type was developed to model the PV/T collectors, enabling the modeling of the collection of energy from the ambient air. A parametric study was carried out in TRNSYS to investigate the effect of various parameters on the overall energy performance of the system. These parameters included the PV/T array size and the slope of the collectors, the heat pump source and load-side inlet temperature setpoints, the compressor speed control and the size of the thermal storage tanks and the battery bank. The controls of the heat pump were found to have a large impact on the performance of the integrated energy system. For example, a low evaporator setpoint improved the overall free energy ratio (FER) of the system but the heat pump performance was lowered. Reducing the heat loss of the PV/T panels was not found to have a large effect on the system performance however, as the heat pump is able to lower the inlet collector fluid temperature, thus reducing thermal losses. From the results of the sensitivity study, a recommended system model was created and this system had a predicted FER of 77.9% in Kingston, Ontario, neglecting the energy consumption of circulation pumps and fans. Simulations of the recommended integrated energy system were also performed in several other Canadian cities and the predicted FER was above 60% in all except for the most northern city investigated, Yellowknife. Thus, the integrated energy system has the potential of reducing the energy consumption of residential buildings in Canada.

  14. Intelligent control of PV system on the basis of the fuzzy recurrent neuronet*

    NASA Astrophysics Data System (ADS)

    Engel, E. A.; Kovalev, I. V.; Engel, N. E.

    2016-04-01

    This paper presents the fuzzy recurrent neuronet for PV system’s control. Based on the PV system’s state, the fuzzy recurrent neural net tracks the maximum power point under random perturbations. The validity and advantages of the proposed intelligent control of PV system are demonstrated by numerical simulations. The simulation results show that the proposed intelligent control of PV system achieves real-time control speed and competitive performance, as compared to a classical control scheme on the basis of the perturbation & observation algorithm.

  15. PV_LIB Toolbox v. 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  16. Autoantibody Signaling in Pemphigus Vulgaris: Development of an Integrated Model

    PubMed Central

    Sajda, Thomas; Sinha, Animesh A.

    2018-01-01

    Pemphigus vulgaris (PV) is an autoimmune skin blistering disease effecting both cutaneous and mucosal epithelia. Blister formation in PV is known to result from the binding of autoantibodies (autoAbs) to keratinocyte antigens. The primary antigenic targets of pathogenic autoAbs are known to be desmoglein 3, and to a lesser extent, desmoglein 1, cadherin family proteins that partially comprise the desmosome, a protein structure responsible for maintaining cell adhesion, although additional autoAbs, whose role in blister formation is still unclear, are also known to be present in PV patients. Nevertheless, there remain large gaps in knowledge concerning the precise mechanisms through which autoAb binding induces blister formation. Consequently, the primary therapeutic interventions for PV focus on systemic immunosuppression, whose side effects represent a significant health risk to patients. In an effort to identify novel, disease-specific therapeutic targets, a multitude of studies attempting to elucidate the pathogenic mechanisms downstream of autoAb binding, have led to significant advancements in the understanding of autoAb-mediated blister formation. Despite this enhanced characterization of disease processes, a satisfactory explanation of autoAb-induced acantholysis still does not exist. Here, we carefully review the literature investigating the pathogenic disease mechanisms in PV and, taking into account the full scope of results from these studies, provide a novel, comprehensive theory of blister formation in PV. PMID:29755451

  17. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  18. Advanced Photonic Processes for Photovoltaic and Energy Storage Systems.

    PubMed

    Sygletou, Maria; Petridis, Constantinos; Kymakis, Emmanuel; Stratakis, Emmanuel

    2017-10-01

    Solar-energy harvesting through photovoltaic (PV) conversion is the most promising technology for long-term renewable energy production. At the same time, significant progress has been made in the development of energy-storage (ES) systems, which are essential components within the cycle of energy generation, transmission, and usage. Toward commercial applications, the enhancement of the performance and competitiveness of PV and ES systems requires the adoption of precise, but simple and low-cost manufacturing solutions, compatible with large-scale and high-throughput production lines. Photonic processes enable cost-efficient, noncontact, highly precise, and selective engineering of materials via photothermal, photochemical, or photophysical routes. Laser-based processes, in particular, provide access to a plethora of processing parameters that can be tuned with a remarkably high degree of precision to enable innovative processing routes that cannot be attained by conventional approaches. The focus here is on the application of advanced light-driven approaches for the fabrication, as well as the synthesis, of materials and components relevant to PV and ES systems. Besides presenting recent advances on recent achievements, the existing limitations are outlined and future possibilities and emerging prospects discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Electric power - Photovoltaic or solar dynamic?

    NASA Technical Reports Server (NTRS)

    Thomas, R. L.; Hallinan, G. J.; Hieatt, J. L.

    1985-01-01

    The design of the power system for supplying the Space Station with insolation-generated electricity is the main Phase B task at NASA-Lewis Center. The advantages and limitations of two types of power systems, the photovoltaic arrays (PV) and the solar dynamic system (SD), are discussed from the points of view of cost, overall systems integration, and growth. Subsystems of each of these options are described, and a sketch of a projected SD system is shown. The PV technology is well developed and proven, but its low efficiency calls for solar arrays of large areas, which affect station dynamics, control, and drag compensation. The SD systems would be less costly to operate than VP, and are more efficient, needing less deployed area. The major drawback of the SD is its infancy. The conservative and forgiving designs for some of its components must still be created and tested, and the development risks assessed.

  20. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  1. The Profitability of an Investment in Photovoltaics in South Carolina

    NASA Astrophysics Data System (ADS)

    Welsh, Thomas McClain

    As renewable energy becomes more prevalent across the United States and the world, solar energy investment has also grown. There have been many studies done on photovoltaic (PV) systems in terms of energy payback and efficiency, but little research done to understand a PV system as a financial investment specific to South Carolina. This study aims to understand the return on investment that a PV system can achieve. More specifically whether PV systems in areas of South Carolina that uses Duke Energy achieve a favorable return on investment and what affects the profitability. This study uses the PVwatts calculator provided by NREL as well as an investment simulation to calculate the Internal Rate of Return (IRR) and Net Present Value on 1024 simulated 5kW PV arrays and evaluates their profitability. It then uses this information to apply it to real case studies for houses in South Carolina. This study found that shade has a significant impact on profitability of investment. At 30% shading, profitability drops near 0% IRR or below. Orientation impacts profitability significantly as well. Panels that are facing south, southeast, and southwest yielded the best return. While north, northeast and northwest orientations yielded very low or negative IRR. East and west facing panels can yield positive financial return, but this return is lower than panels orientated to the south. PV systems oriented towards the east or west must have optimal conditions to remain efficient. This study found that tilt had minimal impact on financially return. Incentives also significantly impacted profitability of investment. For a PV system to be profitable, federal, state, and Duke Energy incentives needed to be applied to the investment. When homes with PV systems are sold also has a great impact on profitability. Research has shown that there is a housing premium for homes with PV systems (Adomatis, 2015). This premium is highest when first installed and declines as the PV systems age. People also associate premiums with houses with PV systems even if the system is not adding much value to the home. This study has also found that the price of the PV system impacts investment. Premium grade panels had significantly less return compared to standard grade panels because prices per watt were higher.

  2. Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agamy, Mohammed

    The “Module Embedded Micro-inverter Smart Grid Ready Residential Solar Electric System” program is focused on developing innovative concepts for residential photovoltaic (PV) systems with the following objectives: to create an Innovative micro-inverter topology that reduces the cost from the best in class micro-inverter and provides high efficiency (>96% CEC - California Energy Commission), and 25+ year warranty, as well as reactive power support; integrate micro-inverter and PV module to reduce system price by at least $0.25/W through a) accentuating dual use of the module metal frame as a large area heat spreader reducing operating temperature, and b) eliminating redundant wiringmore » and connectors; and create micro-inverter controller handles smart grid and safety functions to simplify implementation and reduce cost.« less

  3. NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation

    Science.gov Websites

    Study | Energy Systems Integration Facility | NREL NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study NREL Partners With General Electric, Duke Energy on Grid Voltage Regulation Study When a large solar photovoltaic (PV) system is connected to the electric grid, a utility's

  4. Photovoltaic roofing tile systems

    NASA Astrophysics Data System (ADS)

    Melchior, B.

    The integration of photovoltaic (PV) systems in architecture is discussed. A PV-solar roofing tile system with polymer concrete base; PV-roofing tile with elastomer frame profiles and aluminum profile frames; contact technique; and solar cell modules measuring technique are described. Field tests at several places were conducted on the solar generator, electric current behavior, battery station, electric installation, power conditioner, solar measuring system with magnetic bubble memory technique, data transmission via telephone modems, and data processing system. The very favorable response to the PV-compact system proves the commercial possibilities of photovoltaic integration in architecture.

  5. Design and fabrication of a prototype system for a photovoltaic residence in the Northeast

    NASA Astrophysics Data System (ADS)

    1982-08-01

    This project consisted of the design, fabrication, and testing of a photovoltaic residence which is suitable for construction in the Northeast. A full size residence was designed which included energy conserving and passive features, and the energy performance of the residence was completed for a 5 kW PV array in a standoff configuration. Actual construction consisted of the roof structure and a building enclosure large enough to contain the PCU, test equipment, and load simulation equipment. The PV array consists of 78 modules along with a line tie inverter.

  6. The impact of a large penetration of intermittent sources on the power system operation and planning

    NASA Astrophysics Data System (ADS)

    Ausin, Juan Carlos

    This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the conventional rotating machines the aggregate fluctuation starts to become an important factor, and should be taken into account for the calculation of the balancing requirements. Additional balancing requirements would increase the total balancing cost and this could stop the future development of the intermittent sources.

  7. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  8. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  9. Performance Analysis and Discussion on the Thermoelectric Element Footprint for PV-TE Maximum Power Generation

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Zhao, Xudong; Jin, Yi; Chen, Xiao; Ji, Jie; Shittu, Samson

    2018-06-01

    Geometrical optimisation is a valuable way to improve the efficiency of a thermoelectric element (TE). In a hybrid photovoltaic-thermoelectric (PV-TE) system, the photovoltaic (PV) and thermoelectric (TE) components have a relatively complex relationship; their individual effects mean that geometrical optimisation of the TE element alone may not be sufficient to optimize the entire PV-TE hybrid system. In this paper, we introduce a parametric optimisation of the geometry of the thermoelectric element footprint for a PV-TE system. A uni-couple TE model was built for the PV-TE using the finite element method and temperature-dependent thermoelectric material properties. Two types of PV cells were investigated in this paper and the performance of PV-TE with different lengths of TE elements and different footprint areas was analysed. The outcome showed that no matter the TE element's length and the footprint areas, the maximum power output occurs when A n /A p = 1. This finding is useful, as it provides a reference whenever PV-TE optimisation is investigated.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    Increasing levels of financial support for customer-sited photovoltaic (PV) systems, provided through publicly-funded incentive programs, has heightened concerns about the long-term performance of these systems. Given the barriers that customers face to ensuring that their PV systems perform well, and the responsibility that PV incentive programs bear to ensure that public funds are prudently spent, these programs should, and often do, play a critical role in ensuring that PV systems receiving incentives perform well. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approachesmore » to encouraging PV system performance used by 32 prominent PV incentive programs in the U.S. We identify eight general strategies or groups of related strategies that these programs have used to address performance issues, and highlight important differences in the implementation of these strategies among programs.« less

  11. PV systems photoelectric parameters determining for field conditions and real operation conditions

    NASA Astrophysics Data System (ADS)

    Shepovalova, Olga V.

    2018-05-01

    In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.

  12. Photovoltaic central station step and touch potential considerations in grounding system design

    NASA Technical Reports Server (NTRS)

    Engmann, G.

    1983-01-01

    The probability of hazardous step and touch potentials is an important consideration in central station grounding system design. Steam turbine generating station grounding system design is based on accepted industry practices and there is extensive in-service experience with these grounding systems. A photovoltaic (PV) central station is a relatively new concept and there is limited experience with PV station grounding systems. The operation and physical configuration of a PV central station is very different from a steam electric station. A PV station bears some similarity to a substation and the PV station step and touch potentials might be addressed as they are in substation design. However, the PV central station is a generating station and it is appropriate to examine the effect that the differences and similarities of the two types of generating stations have on step and touch potential considerations.

  13. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    EPA Science Inventory

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  14. PV System Component Fault and Failure Compilation and Analysis.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Lavrova, Olga; Gooding, Renee Lynne

    This report describes data collection and analysis of solar photovoltaic (PV) equipment events, which consist of faults and fa ilures that occur during the normal operation of a distributed PV system or PV power plant. We present summary statistics from locations w here maintenance data is being collected at various intervals, as well as reliability statistics gathered from that da ta, consisting of fault/failure distributions and repair distributions for a wide range of PV equipment types.

  15. Electricity from photovoltaic solar cells. Flat-Plate Solar Array Project of the US Department of Energy's National Photovoltaics Program: 10 years of progress

    NASA Technical Reports Server (NTRS)

    Christensen, Elmer

    1985-01-01

    The objectives were to develop the flat-plate photovoltaic (PV) array technologies required for large-scale terrestrial use late in the 1980s and in the 1990s; advance crystalline silicon PV technologies; develop the technologies required to convert thin-film PV research results into viable module and array technology; and to stimulate transfer of knowledge of advanced PV materials, solar cells, modules, and arrays to the PV community. Progress reached on attaining these goals, along with future recommendations are discussed.

  16. Comparison and selection of off-grid PV systems

    NASA Astrophysics Data System (ADS)

    Izmailov, Andrey Yu.; Lobachevsky, Yakov P.; Shepovalova, Olga V.

    2018-05-01

    This work deals with comparison, evaluation and selection of PV systems of the same type based on their technical parameters either indicated in their technical specifications or calculated ones. Stand-alone and grid backed up photoelectric systems have been considered. General requirements for photoelectric system selection and evaluation have been presented that ensure system operability and required efficiency in operation conditions. Generic principles and definition of photoelectric systems characteristics have been considered. The described method is mainly targeted at PV engineering personnel and private customers purchasing PV systems. It can be also applied in the course of project contests, tenders, etc.

  17. NREL Photovoltaic Program FY 1995 annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-06-01

    This report summarizes the in-house and subcontracted R&D activities from Oct. 1994 through Sept. 1995; their objectives are to conduct basic, applied, and engineering research, manage subcontracted R&D projects, perform research complementary to subcontracted work, develop and maintain state-of-the-art measurement and device capabilities, develop PV manufacturing technology and modules, transfer results to industry, and evolve viable partnerships for PV systems and market development. The research activities are grouped into 5 sections: crystalline Si and advanced devices, thin-film PV, PV manufacturing, PV module and system performance and engineering, and PV applications and market development.

  18. Photovoltaic (PV) Systems Comparison at Fort Hood

    DTIC Science & Technology

    2010-06-01

    Monocrystalline PV panels • Energy Photovoltaics, EPV-42 Solar Modules: Thin film PV panels • OutBack Flexware PV Advanced Photovoltaic Combiner...energy for an administrative building – Compare the performance between two different PV technologies: thin film and crystalline PV panels • Demo Team...Center for Energy and Environment PV Technology • Monocrystalline silicon1 • Thin film2 1 “About Solar,” DBK Corporation, http://www.dbksolar.com

  19. Advanced, Cost-Based Indices for Forecasting the Generation of Photovoltaic Power

    NASA Astrophysics Data System (ADS)

    Bracale, Antonio; Carpinelli, Guido; Di Fazio, Annarita; Khormali, Shahab

    2014-01-01

    Distribution systems are undergoing significant changes as they evolve toward the grids of the future, which are known as smart grids (SGs). The perspective of SGs is to facilitate large-scale penetration of distributed generation using renewable energy sources (RESs), encourage the efficient use of energy, reduce systems' losses, and improve the quality of power. Photovoltaic (PV) systems have become one of the most promising RESs due to the expected cost reduction and the increased efficiency of PV panels and interfacing converters. The ability to forecast power-production information accurately and reliably is of primary importance for the appropriate management of an SG and for making decisions relative to the energy market. Several forecasting methods have been proposed, and many indices have been used to quantify the accuracy of the forecasts of PV power production. Unfortunately, the indices that have been used have deficiencies and usually do not directly account for the economic consequences of forecasting errors in the framework of liberalized electricity markets. In this paper, advanced, more accurate indices are proposed that account directly for the economic consequences of forecasting errors. The proposed indices also were compared to the most frequently used indices in order to demonstrate their different, improved capability. The comparisons were based on the results obtained using a forecasting method based on an artificial neural network. This method was chosen because it was deemed to be one of the most promising methods available due to its capability for forecasting PV power. Numerical applications also are presented that considered an actual PV plant to provide evidence of the forecasting performances of all of the indices that were considered.

  20. An overview of photovoltaic applications in space

    NASA Technical Reports Server (NTRS)

    Wasel, Robert A.

    1987-01-01

    An overview is given of the uses of photovoltaic (PV) power in space. The contribution of PV systems on unmanned, low Earth orbit and inner planetary missions is noted. The development of PV technology along the two paths of high efficiency and high power is discussed. The importance of increasing the service life of PV systems is covered.

  1. Researchers at NREL Find Fewer Failures of PV Panels and Different

    Science.gov Websites

    10, 2017 Overall failure rates for photovoltaic (PV) solar panels have fallen dramatically when Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 Researchers at NREL Find Fewer Failures of PV Panels and Different Degradation Modes in Systems Installed after 2000 April

  2. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants: Report Summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  3. Evaluating the Technical and Economic Performance of PV Plus Storage Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul L.; Margolis, Robert M.; Eichman, Joshua D.

    The decreasing costs of both PV and energy storage technologies have raised interest in the creation of combined PV plus storage systems to provide dispatchable energy and reliable capacity. In this study, we examine the tradeoffs among various PV plus storage configurations and quantify the impact of configuration on system net value.

  4. Photovoltaic performance models - A report card

    NASA Technical Reports Server (NTRS)

    Smith, J. H.; Reiter, L. R.

    1985-01-01

    Models for the analysis of photovoltaic (PV) systems' designs, implementation policies, and economic performance, have proliferated while keeping pace with rapid changes in basic PV technology and extensive empirical data compiled for such systems' performance. Attention is presently given to the results of a comparative assessment of ten well documented and widely used models, which range in complexity from first-order approximations of PV system performance to in-depth, circuit-level characterizations. The comparisons were made on the basis of the performance of their subsystem, as well as system, elements. The models fall into three categories in light of their degree of aggregation into subsystems: (1) simplified models for first-order calculation of system performance, with easily met input requirements but limited capability to address more than a small variety of design considerations; (2) models simulating PV systems in greater detail, encompassing types primarily intended for either concentrator-incorporating or flat plate collector PV systems; and (3) models not specifically designed for PV system performance modeling, but applicable to aspects of electrical system design. Models ignoring subsystem failure or degradation are noted to exclude operating and maintenance characteristics as well.

  5. Enhanced power quality based single phase photovoltaic distributed generation system

    NASA Astrophysics Data System (ADS)

    Panda, Aurobinda; Pathak, M. K.; Srivastava, S. P.

    2016-08-01

    This article presents a novel control strategy for a 1-ϕ 2-level grid-tie photovoltaic (PV) inverter to enhance the power quality (PQ) of a PV distributed generation (PVDG) system. The objective is to obtain the maximum benefits from the grid-tie PV inverter by introducing current harmonics as well as reactive power compensation schemes in its control strategy, thereby controlling the PV inverter to achieve multiple functions in the PVDG system such as: (1) active power flow control between the PV inverter and the grid, (2) reactive power compensation, and (3) grid current harmonics compensation. A PQ enhancement controller (PQEC) has been designed to achieve the aforementioned objectives. The issue of underutilisation of the PV inverter in nighttime has also been addressed in this article and for the optimal use of the system; the PV inverter is used as a shunt active power filter in nighttime. A prototype model of the proposed system is developed in the laboratory, to validate the effectiveness of the control scheme, and is tested with the help of the dSPACE DS1104 platform.

  6. An Operating Method Using Prediction of Photovoltaic Power for a Photovoltaic-Diesel Hybrid Power Generation System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shigehiro; Sumi, Kazuyoshi; Nishikawa, Eiichi; Hashimoto, Takeshi

    This paper describes a novel operating method using prediction of photovoltaic (PV) power for a photovoltaic-diesel hybrid power generation system. The system is composed of a PV array, a storage battery, a bi-directional inverter and a diesel engine generator (DG). The proposed method enables the system to save fuel consumption by using PV energy effectively, reducing charge and discharge energy of the storage battery, and avoiding low-load operation of the DG. The PV power is simply predicted from a theoretical equation of solar radiation and the observed PV energy for a constant time before the prediction. The amount of fuel consumption of the proposed method is compared with that of other methods by a simulation based on measurement data of the PV power at an actual PV generation system for one year. The simulation results indicate that the amount of fuel consumption of the proposed method is smaller than that of any other methods, and is close to that of the ideal operation of the DG.

  7. MONITOR THE PHOTOVOLTAIC (PV) SYSTEM ON THE NCC ROOFTOP

    EPA Science Inventory

    This study will investigate the pollution emission reduction and demand-side management potential of a
    100 kW PV system located on the roof of the National Computer Center (NCC). Standardized instrumentation to measure meteorological and PV system performance variables will b...

  8. Photovoltaic performance and reliability workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, B

    1996-10-01

    This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less

  9. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts containedmore » in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.« less

  10. 75 FR 61509 - Notice of Issuance of Final Determination Concerning Solar Photovoltaic Panel Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-05

    ... solar photovoltaic (``PV'') panel systems contain both U.S. and foreign-origin raw materials and... of origin of the solar PV panel system described above for the purposes of U.S. government... transformation has occurred; however, no one factor is determinative. In this case, the solar PV systems are...

  11. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    NASA Astrophysics Data System (ADS)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  12. Bimanual motor coordination controlled by cooperative interactions in intrinsic and extrinsic coordinates.

    PubMed

    Sakurada, Takeshi; Ito, Koji; Gomi, Hiroaki

    2016-01-01

    Although strong motor coordination in intrinsic muscle coordinates has frequently been reported for bimanual movements, coordination in extrinsic visual coordinates is also crucial in various bimanual tasks. To explore the bimanual coordination mechanisms in terms of the frame of reference, here we characterized implicit bilateral interactions in visuomotor tasks. Visual perturbations (finger-cursor gain change) were applied while participants performed a rhythmic tracking task with both index fingers under an in-phase or anti-phase relationship in extrinsic coordinates. When they corrected the right finger's amplitude, the left finger's amplitude unintentionally also changed [motor interference (MI)], despite the instruction to keep its amplitude constant. Notably, we observed two specificities: one was large MI and low relative-phase variability (PV) under the intrinsic in-phase condition, and the other was large MI and high PV under the extrinsic in-phase condition. Additionally, using a multiple-interaction model, we successfully decomposed MI into intrinsic components caused by motor correction and extrinsic components caused by visual-cursor mismatch of the right finger's movements. This analysis revealed that the central nervous system facilitates MI by combining intrinsic and extrinsic components in the condition with in-phases in both intrinsic and extrinsic coordinates, and that under-additivity of the effects is explained by the brain's preference for the intrinsic interaction over extrinsic interaction. In contrast, the PV was significantly correlated with the intrinsic component, suggesting that the intrinsic interaction dominantly contributed to bimanual movement stabilization. The inconsistent features of MI and PV suggest that the central nervous system regulates multiple levels of bilateral interactions for various bimanual tasks. © 2015 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  13. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-06-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  14. Single-Phase Single-Stage Grid Tied Solar PV System with Active Power Filtering Using Power Balance Theory

    NASA Astrophysics Data System (ADS)

    Singh, Yashi; Hussain, Ikhlaq; Singh, Bhim; Mishra, Sukumar

    2018-03-01

    In this paper, power quality features such as harmonics mitigation, power factor correction with active power filtering are addressed in a single-stage, single-phase solar photovoltaic (PV) grid tied system. The Power Balance Theory (PBT) with perturb and observe based maximum power point tracking algorithm is proposed for the mitigation of power quality problems in a solar PV grid tied system. The solar PV array is interfaced to a single phase AC grid through a Voltage Source Converter (VSC), which provides active power flow from a solar PV array to the grid as well as to the load and it performs harmonics mitigation using PBT based control. The solar PV array power varies with sunlight and due to this, the solar PV grid tied VSC works only 8-10 h per day. At night, when PV power is zero, the VSC works as an active power filter for power quality improvement, and the load active power is delivered by the grid to the load connected at the point of common coupling. This increases the effective utilization of a VSC. The system is modelled and simulated using MATLAB and simulated responses of the system at nonlinear loads and varying environmental conditions are also validated experimentally on a prototype developed in the laboratory.

  15. The identification of conduction gaps after pulmonary vein isolation using a new electroanatomic mapping system.

    PubMed

    Masuda, Masaharu; Fujita, Masashi; Iida, Osamu; Okamoto, Shin; Ishihara, Takayuki; Nanto, Kiyonori; Kanda, Takashi; Tsujimura, Takuya; Matsuda, Yasuhiro; Okuno, Shota; Ohashi, Takuya; Tsuji, Aki; Mano, Toshiaki

    2017-11-01

    The reconnection of left atrial-pulmonary vein (LA-PV) conduction after the initial procedure of pulmonary vein (PV) isolation is not rare, and is one of the main cause of atrial fibrillation (AF) recurrence after PV isolation. We investigated feasibility of a new ultrahigh-resolution mapping system using a 64-pole small basket catheter for the identification of LA-PV conduction gaps. This prospective study included 31 consecutive patients (20 with persistent AF) undergoing a second ablation after a PV isolation procedure with LA-PV reconnected conduction at any of the 4 PVs. An LA-PV map was created using the mapping system, and ablation was performed at the estimated gap location. The propagation map identified 54 gaps from 39 ipsilateral PV pairs, requiring manual electrogram reannotation for 23 gaps (43%). Gaps at the anterior and carinal regions of left and right ipsilateral PVs required manual electrogram reannotation more frequently than the other regions. The voltage map could identify the gap only in 19 instances (35%). Electrophysiological properties of the gaps (multiple gaps in the same ipsilateral PVs, conduction time, velocity, width, and length) did not differ between those needing and not needing manual electrogram reannotation. During the gap ablation, either the activation sequence alteration or elimination of PV potentials was observed using a circular catheter placed in the PV, suggesting that all the identified gaps were correct. This new electroanatomic mapping system visualized all the LA-PV gaps in patients undergoing a second AF ablation. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  16. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.« less

  17. Lactate - Arterial and Venous Agreement in Sepsis: a prospective observational study.

    PubMed

    Datta, Deepankar; Grahamslaw, Julia; Gray, Alasdair J; Graham, Catriona; Walker, Craig A

    2018-04-01

    Sepsis is a common condition in the emergency department (ED). Lactate measurement is an important part of management: arterial lactate (A-LACT) measurement is the gold standard. There is increasing use of peripheral venous lactate (PV-LACT); however, there is little research supporting the interchangeability of the two measures.If PV-LACT has good agreement with A-LACT, it would significantly reduce patient discomfort and the risks of arterial sampling for a large group of acutely unwell patients, while allowing faster and wider screening, with potential reduced costs to the healthcare system. The aim of this study is to determine the agreement between PV-LACT and A-LACT in septic patients attending the ED. We carried out a prospective observational cohort study of 304 consented patients presenting with sepsis to a single UK NHS ED (110 000 adult attendances annually) taking paired PV-LACT and A-LACT. Bland-Altman analysis was carried out to determine agreement. Receiver operating characteristic curves and 2×2 tables were constructed to explore the predictive value of PV-LACT for A-LACT. The mean difference (PV-LACT-A-LACT) is 0.4 mmol/l [95% confidence interval (CI): 0.37-0.45], with 95% limits of agreement from -0.4 (95% CI: -0.45 to -0.32) to 1.2 (95% CI: 1.14-1.27). A PV-LACT of at least 2 mmol/l predicts an A-LACT of at least 2 with 100% sensitivity (95% CI: 89-100%) and 83% specificity (95% CI: 77-87%). This study is the largest comparing the two measurements, and shows good clinical agreement. We recommend using PV-LACT in the routine screening of septic patients. A PV-LACT less than 2 mmol/l is predictive of an A-LACT less than 2 mmol/l.

  18. Multi-state residential transaction estimates of solar photovoltaic system premiums

    DOE PAGES

    Hoen, Ben; Adomatis, Sandra; Jackson, Thomas; ...

    2017-07-10

    We report that as of the second quarter of 2016 more than 1.1 million solar photovoltaic (PV) homes exist in the US. Capturing the value these PV systems add to home sales is therefore important. Our study enhances the PV-home-valuation literature by analyzing 22,822 home sales, of which 3951 have PV, and which span eight states during 2002–2013. We also, for the first time, compare premiums with contributory value estimates derived from the present value of saved energy costs (income approach) and, separately, the replacement cost of systems at the time of sale (cost approach) to examine market signals. Wemore » find home buyers are consistently willing to pay PV home premiums across various states, housing and PV markets, and home types; average premiums equate to approximately $4/W or $15,000 for an average-sized 3.6-kW PV system. We find that a replacement cost net of state and federal incentives is a better proxy for premiums than gross installed costs, and that the income approach is a good signal if it accounts for tiered volumetric retail rates. Finally, other results include detailed premium analyses for PV home sub-populations.« less

  19. Multi-state residential transaction estimates of solar photovoltaic system premiums

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Adomatis, Sandra; Jackson, Thomas

    We report that as of the second quarter of 2016 more than 1.1 million solar photovoltaic (PV) homes exist in the US. Capturing the value these PV systems add to home sales is therefore important. Our study enhances the PV-home-valuation literature by analyzing 22,822 home sales, of which 3951 have PV, and which span eight states during 2002–2013. We also, for the first time, compare premiums with contributory value estimates derived from the present value of saved energy costs (income approach) and, separately, the replacement cost of systems at the time of sale (cost approach) to examine market signals. Wemore » find home buyers are consistently willing to pay PV home premiums across various states, housing and PV markets, and home types; average premiums equate to approximately $4/W or $15,000 for an average-sized 3.6-kW PV system. We find that a replacement cost net of state and federal incentives is a better proxy for premiums than gross installed costs, and that the income approach is a good signal if it accounts for tiered volumetric retail rates. Finally, other results include detailed premium analyses for PV home sub-populations.« less

  20. Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry; Ainsworth, Nathan

    A 15% PV penetration threshold is commonly used by utilities to define photovoltaic (PV) screening methods where PV penetration is defined as the ratio of total solar PV capacity on a line section to peak load. However, this method doesn't take into account PV locational impact or feeder characteristics that could strongly change the feeder's capability to host PVs. This paper investigates the impact of PV location and phase connection type on PV hosting capacity, and then proposes a fast-track PV screening approach that leverages various PV hosting capacity metric responding to different PV locations and types. The proposed studymore » could help utilities to evaluate PV interconnection requests and also help increase the PV hosting capacity of distribution feeders without adverse impacts on system voltages.« less

  1. Performance analysis of ‘Perturb and Observe’ and ‘Incremental Conductance’ MPPT algorithms for PV system

    NASA Astrophysics Data System (ADS)

    Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda

    2017-07-01

    Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.

  2. The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system

    NASA Astrophysics Data System (ADS)

    Bjørk, R.; Nielsen, K. K.

    2015-10-01

    The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.

  3. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  4. Stabilized PV system

    DOEpatents

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  5. Feasibility Study of Residential Grid-Connected Solar Photovoltaic Systems in the State of Indiana

    NASA Astrophysics Data System (ADS)

    Al-Odeh, Mahmoud

    This study aims to measure the financial viability of installing and using a residential grid-connected PV system in the State of Indiana while predicting its performance in eighteen geographical locations within the state over the system's expected lifetime. The null hypothesis of the study is that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. Using a systematic approach consisting of six steps, data regarding the use of renewable energy in the State of Indiana was collected from the website of the US Department of Energy to perform feasibility analysis of the installation and use of a standard-sized residential PV system. The researcher was not able to reject the null hypothesis that installing a PV system for a single family residence in the State of Indiana will not pay for itself within 25 years. This study found that the standard PV system does not produce a positive project balance and does not pay for itself within 25 years (the life time of the system) assuming the average cost of a system. The government incentive programs are not enough to offset the cost of installing the system against the cost of the electricity that would not be purchased from the utility company. It can be concluded that the cost of solar PV is higher than the market valuation of the power it produces; thus, solar PV did not compete on the cost basis with the traditional competitive energy sources. Reducing the capital cost will make the standard PV system economically viable in Indiana. The study found that the capital cost for the system should be reduced by 15% - 56%.

  6. Development of an Efficient Entire-Capsid-Coding-Region Amplification Method for Direct Detection of Poliovirus from Stool Extracts

    PubMed Central

    Kilpatrick, David R.; Nakamura, Tomofumi; Burns, Cara C.; Bukbuk, David; Oderinde, Soji B.; Oberste, M. Steven; Kew, Olen M.; Pallansch, Mark A.; Shimizu, Hiroyuki

    2014-01-01

    Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. PMID:25339406

  7. Final Technical Report: Increasing Prediction Accuracy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, Bruce Hardison; Hansen, Clifford; Stein, Joshua

    2015-12-01

    PV performance models are used to quantify the value of PV plants in a given location. They combine the performance characteristics of the system, the measured or predicted irradiance and weather at a site, and the system configuration and design into a prediction of the amount of energy that will be produced by a PV system. These predictions must be as accurate as possible in order for finance charges to be minimized. Higher accuracy equals lower project risk. The Increasing Prediction Accuracy project at Sandia focuses on quantifying and reducing uncertainties in PV system performance models.

  8. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Technical Reports Server (NTRS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-01-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  9. Market assessment of photovoltaic power systems for agricultural applications in the Philippines

    NASA Astrophysics Data System (ADS)

    Cabraal, R. A.; Delasanta, D.; Burrill, G.

    1981-04-01

    The market potential in the Philippines for stand alone photovoltaic (P/V) systems in agriculture was assessed. Applications include: irrigation, postharvest operation, food and fiber processing and storage, and livestock and fisheries operations. Power and energy use profiles for many applications as well as assessments of business, government and financial climate for P/V sales are described. Many characteristics of the Philippine agriculture and energy sector favorably influence the use of P/V systems. However, serious and significant barriers prevent achieving the technically feasible, cost competitive market for P/V systems in the agricultural sector. The reason for the small market is the limited availability capital for financing P/V systems. It is suggested that innovative financing schemes and promotional campaigns should be devised.

  10. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment.

    PubMed

    Shakouri, Mahmoud; Lee, Hyun Woo

    2016-03-01

    The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in . The application of these files can be generalized to variety of communities interested in investing on PV systems.

  11. Progress of the Photovoltaic Technology Incubator Project Towards an Enhanced U.S. Manufacturing Base: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ullal, H.; Mitchell, R.; Keyes, B.

    In this paper, we report on the major accomplishments of the U.S. Department of Energy's (DOE) Solar Energy Technologies Program (SETP) Photovoltaic (PV) Technology Incubator project. The Incubator project facilitates a company's transition from developing a solar cell or PV module prototype to pilot- and large-scale U.S. manufacturing. The project targets small businesses that have demonstrated proof-of-concept devices or processes in the laboratory. Their success supports U.S. Secretary of Energy Steven Chu's SunShot Initiative, which seeks to achieve PV technologies that are cost-competitive without subsidies at large scale with fossil-based energy sources by the end of this decade. The Incubatormore » Project has enhanced U.S. PV manufacturing capacity and created more than 1200 clean energy jobs, resulting in an increase in American economic competitiveness. The investment raised to date by these PV Incubator companies as a result of DOE's $ 59 million investment totals nearly $ 1.3 billion.« less

  12. NREL Photovoltaic Program. FY 1994 annual report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-06-01

    This report summarizes the in-house and subcontracted research and development activities under the National renewable Energy Laboratory (NREL) Photovoltaics (PV) program for fiscal year 1994. Research is organized under the following areas; PV program management; crystalline silicon and advanced devices; thin-film PV technologies; PV manufacturing; PV module and system performance and engineering; and PV applications and markets.

  13. Photovoltaic performance models: an evaluation with actual field data

    NASA Astrophysics Data System (ADS)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  14. Estimation of PV energy production based on satellite data

    NASA Astrophysics Data System (ADS)

    Mazurek, G.

    2015-09-01

    Photovoltaic (PV) technology is an attractive source of power for systems without connection to power grid. Because of seasonal variations of solar radiation, design of such a power system requires careful analysis in order to provide required reliability. In this paper we present results of three-year measurements of experimental PV system located in Poland and based on polycrystalline silicon module. Irradiation values calculated from results of ground measurements have been compared with data from solar radiation databases employ calculations from of satellite observations. Good convergence level of both data sources has been shown, especially during summer. When satellite data from the same time period is available, yearly and monthly production of PV energy can be calculated with 2% and 5% accuracy, respectively. However, monthly production during winter seems to be overestimated, especially in January. Results of this work may be helpful in forecasting performance of similar PV systems in Central Europe and allow to make more precise forecasts of PV system performance than based only on tables with long time averaged values.

  15. Georgetown University Photovoltaic Higher Education National Exemplar Facility (PHENEF)

    NASA Technical Reports Server (NTRS)

    Marshall, N.

    1984-01-01

    Several photographs of this facility using photovoltaic (PV) cells are shown. An outline is given of the systems requirements, system design and wiring topology, a simplified block design, module electrical characteristics, PV module and PV module matching.

  16. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wohlgemuth, J.; Kurtz, S.

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests aremore » being developed for each of the selected climate zones.« less

  17. Performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Irwanto, M.; Leow, W. Z.; Amelia, A. R.

    2017-09-01

    A research has been conducted to find the optimum combination for DC fan air cooling system of photovoltaic (PV) panel. During normal operation of PV panel, it is estimated that only 15 % of solar radiation is converted into electrical energy. Meanwhile, the rest of the solar radiation is converted into heat energy which affects the performance of the PV panel. Therefore, the aim of this research is to investigate the performance power evaluation of DC fan cooling system for PV panel by using ANSYS CFX. The effect of airflow configuration of DC fan has been investigated. This is to analyze whether the airflow circulation of DC fan cause a change towards the maximum temperature of PV panel. Besides, the impact of varying number of DC fans attached at the back of PV panel is evaluated. The result of airflow circulation of DC fan has been discussed. Meanwhile, with the increment number of DC fans, the PV panel temperature drops significantly. As a conclusion, the optimum number of DC fans is two with the combination of inlet airflow.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grocholski, Brent; Catalli, Krystle; Shim, Sang-Heon

    The discovery of a phase transition in Mg-silicate perovskite (Pv) to postperovskite (pPv) at lowermost mantle pressure-temperature (P - T) conditions may provide an explanation for the discontinuous increase in shear wave velocity found in some regions at a depth range of 200 to 400 km above the core-mantle boundary, hereafter the D{double_prime} discontinuity. However, recent studies on binary and ternary systems showed that reasonable contents of Fe{sup 2+} and Al for pyrolite increase the thickness (width of the mixed phase region) of the Pv - pPv boundary (400-600 km) to much larger than the D{double_prime} discontinuity ({le} 70 km).more » These results challenge the assignment of the D{double_prime} discontinuity to the Pv - pPv boundary in pyrolite (homogenized mantle composition). Furthermore, the mineralogy and composition of rocks that can host a detectable Pv {yields} pPv boundary are still unknown. Here we report in situ measurements of the depths and thicknesses of the Pv {yields} pPv transition in multiphase systems (San Carlos olivine, pyrolitic, and midocean ridge basaltic compositions) at the P - T conditions of the lowermost mantle, searching for candidate rocks with a sharp Pv - pPv discontinuity. Whereas the pyrolitic mantle may not have a seismologically detectable Pv {yields} pPv transition due to the effect of Al, harzburgitic compositions have detectable transitions due to low Al content. In contrast, Al-rich basaltic compositions may have a detectable Pv - pPv boundary due to their distinct mineralogy. Therefore, the observation of the D{prime} discontinuity may be related to the Pv {yields} pPv transition in the differentiated oceanic lithosphere materials transported to the lowermost mantle by subducting slabs.« less

  19. Plug and Play PV Systems for American Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoepfner, Christian

    2016-12-22

    The core objectives of the Plug & Play PV Systems Project were to develop a PV system that can be installed on a residential rooftop for less than $1.50/W in 2020, and in less than 10 hours (from point of purchase to commissioning). The Fraunhofer CSE team’s approach to this challenge involved a holistic approach to system design – hardware and software – that make Plug & Play PV systems: • Quick, easy, and safe to install • Easy to demonstrate as code compliant • Permitted, inspected, and interconnected via an electronic process Throughout the three years of work duringmore » this Department of Energy SunShot funded project, the team engaged in a substantive way with inspectional services departments and utilities, manufacturers, installers, and distributors. We received iterative feedback on the system design and on ideas for how such systems can be commercialized. This ultimately led us to conceiving of Plug & Play PV Systems as a framework, with a variety of components compatible with the Plug & Play PV approach, including string or microinverters, conventional modules or emerging lightweight modules. The framework enables a broad group of manufacturers to participate in taking Plug & Play PV Systems to market, and increases the market size for such systems. Key aspects of the development effort centered on the system hardware and associated engineering work, the development of a Plug & Play PV Server to enable the electronic permitting, inspection and interconnection process, understanding the details of code compliance and, on occasion, supporting applications for modifications to the code to allow lightweight modules, for example. We have published a number of papers on our testing and assessment of novel technologies (e.g., adhered lightweight modules) and on the electronic architecture.« less

  20. 2014 NREL Photovoltaic Reliability Workshops | Photovoltaic Research | NREL

    Science.gov Websites

    Curves and Visual Inspection of PV Modules Deployed at TEP Solar Test Yard-Peter McNutt, NREL Data Determining PV System's Degradation Rate and the Impact of Data Filters-Wilson Zexu Zhang, REC Solar Pte. Ltd " Test in Qualifying Solar PV Inverters-Dutch Uselton, Lennox IND System Reliability for Utility PV

  1. PV Module Reliability Workshop | Photovoltaic Research | NREL

    Science.gov Websites

    -year old PV system in Quebec, Canada-Alex Bradley, Tanya Dhir, Yves Poissant Solar panel design factors PV Module Reliability Workshop PV Module Reliability Workshop Tuesday, February 24, 2015 Chair : Michael Kempe The 2015 PV Module Reliability Workshop (PVMRW) continued in the tradition of this annual

  2. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  3. Control Strategies for the DAB Based PV Interface System

    PubMed Central

    El-Helw, Hadi M.; Al-Hasheem, Mohamed; Marei, Mostafa I.

    2016-01-01

    This paper presents an interface system based on the Dual Active Bridge (DAB) converter for Photovoltaic (PV) arrays. Two control strategies are proposed for the DAB converter to harvest the maximum power from the PV array. The first strategy is based on a simple PI controller to regulate the terminal PV voltage through the phase shift angle of the DAB converter. The Perturb and Observe (P&O) Maximum Power Point Tracking (MPPT) technique is utilized to set the reference of the PV terminal voltage. The second strategy presented in this paper employs the Artificial Neural Network (ANN) to directly set the phase shift angle of the DAB converter that results in harvesting maximum power. This feed-forward strategy overcomes the stability issues of the feedback strategy. The proposed PV interface systems are modeled and simulated using MATLAB/SIMULINK and the EMTDC/PSCAD software packages. The simulation results reveal accurate and fast response of the proposed systems. The dynamic performance of the proposed feed-forward strategy outdoes that of the feedback strategy in terms of accuracy and response time. Moreover, an experimental prototype is built to test and validate the proposed PV interface system. PMID:27560138

  4. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  5. On the Reliability of Photovoltaic Short-Circuit Current Temperature Coefficient Measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osterwald, Carl R.; Campanelli, Mark; Kelly, George J.

    2015-06-14

    The changes in short-circuit current of photovoltaic (PV) cells and modules with temperature are routinely modeled through a single parameter, the temperature coefficient (TC). This parameter is vital for the translation equations used in system sizing, yet in practice is very difficult to measure. In this paper, we discuss these inherent problems and demonstrate how they can introduce unacceptably large errors in PV ratings. A method for quantifying the spectral dependence of TCs is derived, and then used to demonstrate that databases of module parameters commonly contain values that are physically unreasonable. Possible ways to reduce measurement errors are alsomore » discussed.« less

  6. The Evolving Market Structure of the U.S. Residential Solar PV Installation

    Science.gov Websites

    Solar PV Installation Industry, 2000-2016 The Evolving Market Structure of the U.S. Residential Solar PV residential solar photovoltaic (PV) system and that the residential PV installation industry has become more concentrated over time. From 2000 to 2016, the U.S. residential solar photovoltaic (PV) installation industry

  7. ENVI-PV: An Interactive Web Client for Multi-Criteria Life Cycle Assessment of Photovoltaic Systems Worldwide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Lopez, Paula; Gschwind, Benoit; Blanc, Philippe

    Solar photovoltaics (PV) is the second largest source of new capacity among renewable energies. The worldwide capacity encompassed 135 GW in 2013 and is estimated to increase to 1721 GW in 2030 and 4674 GW in 2050, according to a prospective high-renewable scenario. To achieve this production level while minimizing environmental impacts, decision makers must have access to environmental performance data that reflect their high spatial variability accurately. We propose ENVI-PV (http://viewer.webservice-energy.org/project_iea), a new interactive tool that provides maps and screening level data, based on weighted average supply chains, for the environmental performance of common PV technologies. Environmental impacts ofmore » PV systems are evaluated according to a life cycle assessment approach. ENVI-PV was developed using a state-of-the-art interoperable and open standard Web Service framework from the Open Geospatial Consortium (OGC). It combines the latest life cycle inventories, published in 2015 by the International Energy Agency (IEA) under the Photovoltaic Power Systems Program (PVPS) Task 12, and some inventories previously published from Ecoinvent v2.2 database with solar irradiation estimates computed from the worldwide NASA SSE database. ENVI-PV is the first tool to propose a worldwide coverage of environmental performance of PV systems using a multi-criteria assessment. The user can compare the PV environmental performance to the environmental footprint of country electricity mixes. ENVI-PV is designed as an environmental interactive tool to generate PV technological options and evaluate their performance in different spatial and techno-economic contexts. Its potential applications are illustrated in this paper with several examples.« less

  8. Lossless hybridization between photovoltaic and thermoelectric devices.

    PubMed

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  9. Lossless hybridization between photovoltaic and thermoelectric devices

    PubMed Central

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S.; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device). PMID:23820973

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample ofmore » 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deline, Chris; Dann, Geoff

    Recent increases in photovoltaic (PV) systems on Department of the Navy (DON) land and potential siting near airfields prompted Commander, Naval Installations Command to fund the Naval Facilities Engineering Command to evaluate the impact of electromagnetic interference (EMI) from PV systems on airfield electronic equipment. Naval Facilities Engineering and Expeditionary Warfare Center tasked Department of Energy National Renewable Energy laboratory (NREL) to conduct the assessment. PV systems often include high-speed switching semiconductor circuits to convert the voltage produced by the PV arrays to the voltage needed by the end user. Switching circuits inherently produce electromagnetic radiation at harmonics of themore » switching frequency. In this report, existing literature is summarized and tests to measure emissions and mitigation methods are discussed. The literature shows that the emissions from typical PV systems are low strength and unlikely to cause interference to most airfield electronic systems. With diligent procurement and siting of PV systems, including specifications for FCC Part 15 Class A compliant equipment and a 250-foot setback from communication equipment, NREL anticipates little to no EMI impact on nearby communications or telemetry equipment.« less

  12. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine M.; Ryberg, David Severin

    2017-08-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a variety of system designs and locations. Many independent snow coverage models have been developed over the last 15 years; however, there has been very little effort verifying these models beyond the system designs and locations on which they were based. Moreover, major PV modeling software products have not yet incorporated any of these models into their workflows. In response to this deficiency, we have integrated the methodologymore » of the snow model developed in the paper by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM and we discuss our demonstration of the model's effectiveness at reducing error in annual estimations for three PV arrays. Next, we use this new functionality in conjunction with a long term historical data set to estimate average snow losses across the United States for two typical PV system designs. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nationwide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  13. Recent advances in the PV-CSP hybrid solar power technology

    NASA Astrophysics Data System (ADS)

    Ju, Xing; Xu, Chao; Han, Xue; Zhang, Hui; Wei, Gaosheng; Chen, Lin

    2017-06-01

    Photovoltaic - Concentrated Solar Power (PV-CSP) hybrid technology is considered to be an important future research trend in solar energy engineering. The development of the PV-CSP hybrid technology accelerates in recent years with the rapid maturation of photovoltaics (PV) and concentrated solar power (CSP). This paper presents the recent advances on PV-CSP technology, including different technologies based on new dispatch strategies, Organic Rankine Cycles, spectral beam filters and so on. The research status and the hybrid system performance of the recent researches are summarized, aimed to provide an extended recognition on the PV-CSP hybrid technology. The advantages and limitations of the hybrid system are concluded according to the researches reviewed.

  14. Life cycle cost analysis of a stand-alone PV system in rural Kenya

    NASA Astrophysics Data System (ADS)

    Daly, Emma

    The purpose of this quantitative research study was to determine the economic feasibility of a stand-alone PV system to electrify a rural area in Kenya. The research conducted involved a comprehensive review of all the relevant literature associated with the study. Methodologies were extrapolated from this extensive literature to develop a model for the complete design and economic analysis of a stand-alone PV system. A women's center in rural Kenya was used as a worked example to demonstrate the workings of the model. The results suggest that electrifying the center using a stand-alone PV system is an economically viable option which is encouraging for the surrounding area. This model can be used as a business model to determine the economic feasibility of a stand-alone PV system in alternative sites in Kenya.

  15. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    PubMed Central

    Shakouri, Mahmoud; Lee, Hyun Woo

    2016-01-01

    The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. PMID:26937458

  16. Photovoltaic Performance and Reliability Workshop summary

    NASA Astrophysics Data System (ADS)

    Kroposki, Benjamin

    1997-02-01

    The objective of the Photovoltaic Performance and Reliability Workshop was to provide a forum where the entire photovoltaic (PV) community (manufacturers, researchers, system designers, and customers) could get together and discuss technical issues relating to PV. The workshop included presentations from twenty-five speakers and had more than one hundred attendees. This workshop also included several open sessions in which the audience and speakers could discuss technical subjects in depth. Several major topics were discussed including: PV characterization and measurements, service lifetimes for PV devices, degradation and failure mechanisms for PV devices, standardization of testing procedures, AC module performance and reliability testing, inverter performance and reliability testing, standardization of utility interconnect requirements, experience from field deployed systems, and system certification.

  17. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  18. Research on comprehensive decision-making of PV power station connecting system

    NASA Astrophysics Data System (ADS)

    Zhou, Erxiong; Xin, Chaoshan; Ma, Botao; Cheng, Kai

    2018-04-01

    In allusion to the incomplete indexes system and not making decision on the subjectivity and objectivity of PV power station connecting system, based on the combination of improved Analytic Hierarchy Process (AHP), Criteria Importance Through Intercriteria Correlation (CRITIC) as well as grey correlation degree analysis (GCDA) is comprehensively proposed to select the appropriate system connecting scheme of PV power station. Firstly, indexes of PV power station connecting system are divided the recursion order hierarchy and calculated subjective weight by the improved AHP. Then, CRITIC is adopted to determine the objective weight of each index through the comparison intensity and conflict between indexes. The last the improved GCDA is applied to screen the optimal scheme, so as to, from the subjective and objective angle, select the connecting system. Comprehensive decision of Xinjiang PV power station is conducted and reasonable analysis results are attained. The research results might provide scientific basis for investment decision.

  19. A Framework for Evaluating Economic Impacts of Rooftop PV Systems with or without Energy Storage on Thai Distribution Utilities and Ratepayers

    NASA Astrophysics Data System (ADS)

    Chaianong, A.; Bangviwat, A.; Menke, C.

    2017-07-01

    Driven by decreasing PV and energy storage prices, increasing electricity costs and policy supports from Thai government (self-consumption era), rooftop PV and energy storage systems are going to be deployed in the country rapidly that may disrupt existing business models structure of Thai distribution utilities due to revenue erosion and lost earnings opportunities. The retail rates that directly affect ratepayers (non-solar customers) are expected to increase. This paper focuses on a framework for evaluating impacts of PV with and without energy storage systems on Thai distribution utilities and ratepayers by using cost-benefit analysis (CBA). Prior to calculation of cost/benefit components, changes in energy sales need to be addressed. Government policies for the support of PV generation will also help in accelerating the rooftop PV installation. Benefit components include avoided costs due to transmission losses and deferring distribution capacity with appropriate PV penetration level, while cost components consist of losses in revenue, program costs, integration costs and unrecovered fixed costs. It is necessary for Thailand to compare total costs and total benefits of rooftop PV and energy storage systems in order to adopt policy supports and mitigation approaches, such as business model innovation and regulatory reform, effectively.

  20. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    NASA Astrophysics Data System (ADS)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  1. Development of an efficient entire-capsid-coding-region amplification method for direct detection of poliovirus from stool extracts.

    PubMed

    Arita, Minetaro; Kilpatrick, David R; Nakamura, Tomofumi; Burns, Cara C; Bukbuk, David; Oderinde, Soji B; Oberste, M Steven; Kew, Olen M; Pallansch, Mark A; Shimizu, Hiroyuki

    2015-01-01

    Laboratory diagnosis has played a critical role in the Global Polio Eradication Initiative since 1988, by isolating and identifying poliovirus (PV) from stool specimens by using cell culture as a highly sensitive system to detect PV. In the present study, we aimed to develop a molecular method to detect PV directly from stool extracts, with a high efficiency comparable to that of cell culture. We developed a method to efficiently amplify the entire capsid coding region of human enteroviruses (EVs) including PV. cDNAs of the entire capsid coding region (3.9 kb) were obtained from as few as 50 copies of PV genomes. PV was detected from the cDNAs with an improved PV-specific real-time reverse transcription-PCR system and nucleotide sequence analysis of the VP1 coding region. For assay validation, we analyzed 84 stool extracts that were positive for PV in cell culture and detected PV genomes from 100% of the extracts (84/84 samples) with this method in combination with a PV-specific extraction method. PV could be detected in 2/4 stool extract samples that were negative for PV in cell culture. In PV-positive samples, EV species C viruses were also detected with high frequency (27% [23/86 samples]). This method would be useful for direct detection of PV from stool extracts without using cell culture. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  2. State - Level Regulation's Effectiveness in Addressing Global Climate Change and Promoting Solar Energy Deployment

    NASA Astrophysics Data System (ADS)

    Peterman, Carla Joy

    Paper 1, Local Solutions to Global Problems: Climate Change Policies and Regulatory Jurisdiction, considers the efficacy of various types of environmental regulations when they are applied locally to pollutants whose damages extend beyond the jurisdiction of the local regulators. Local regulations of a global pollutant may be ineffective if producers and consumers can avoid them by transacting outside the reach of the local regulator. In many cases, this may involve the physical relocation of the economic activity, a problem often referred to as "leakage." This paper highlights another way in which local policies can be circumvented: through the shuffling of who buys from whom. The paper maintains that the problems of reshuffling are exacerbated when the options for compliance with the regulations are more flexible. Numerical analyses is presented demonstrating that several proposed policies to limit greenhouse gas emissions from the California electricity sector may have very little effect on carbon emissions if they are applied only within that state. Paper 1 concludes that although local subsidies for energy efficiency, renewable electricity, and transportation biofuels constitute attempts to pick technology winners, they may be the only mechanisms that local jurisdictions, acting alone, have at their disposal to address climate change. Paper 2, Pass-Through of Solar PV Incentives to Consumers: The Early Years of California's Solar PV Incentives, examines the pass through of incentives to California solar PV system owners. The full post-subsidy price consumers pay for solar power is a key metric of the success of solar PV incentive programs and of overall PV market performance. This study examines the early years of California's most recent wave of distributed solar PV incentives (2000-2008) to determine the pass-through of incentives. Examination of this period is both intellectually and pragmatically important due to the high level of incentives provided and subsequent high cost to ratepayers; policymakers' expectations that price declines accrue to consumers; and market structure characteristics that might contribute to incomplete pass-through. This analysis shows that incentive passthrough in the California residential solar PV programs was incomplete. Consumer prices declined 54 cents for every additional dollar of incentive received. A large share of the incentive is captured by the solar PV contractor or other actors in the solar PV supply chain. The finding of incomplete pass-through is persistent across specifications. The analysis also identifies a lower degree of incentive pass-through for consumers in the highest income zip codes. Whether expectations of incentives' pass-through align with reality is critically important in the beginning years of emerging clean energy technology programs since this can affect the likelihood of future government investments and public support. Given the often-held policy assumption that consumer prices are declining in response to incentives, it is useful for policymakers to understand the circumstances under which such an assumption may not hold. Paper 3, Testing the Boundaries of the Solar Photovoltaic Learning System, tests how the choice of experience curves' geographic and technology assumptions affect solar PV experience curve results. Historically, solar PV experience curves have assumed one experience curve represents both module and non-module learning and that this learning happens at a global scale. These assumptions may be inaccurate for solar PV since the learning system, and technology and geographic boundaries, are likely different between PV modules and non-module components. Using 2004 to 2008 PV system price data from 13 states, and a longer time series of PV price data for California, some evidence is found that cumulative capacity at the state level is a better predictor of non-module costs than U.S. or global capacity. This paper explores, but is unable to significantly determine, how knowledge spillovers from neighboring states can influence a state's non-module costs. Given data limitations, and limitations to the two-factor experience model methodology itself, it is not possible to conclusively determine the correct geographic boundary for the non-module learning system. Throughout the paper ways in which the experience curve model and data can be augmented to achieve a better estimation are discussed. 2.

  3. Motivating California organic farmers to go solar: Economics may trump philosophy in deciding to adopt photovoltaics

    NASA Astrophysics Data System (ADS)

    Fata, Johnathon A.

    Organic farmers who have adopted solar photovoltaic (PV) systems to generate electricity are leaders in agricultural energy sustainability, yet research on their culture and motivations is largely incomplete. These farmers share economic and logistical constraints, but they may differ in their underlying worldviews. To better understand what motivates San Francisco Bay Area organic farmers to install solar PV systems, 14 in-depth interviews and short surveys were conducted and included a "frontier mentality" rubric. Additionally, nine online surveys were administered. In this study's sample, financial concerns turned out to provide the greatest motivation for farmers to adopt solar PV. Concern for the environment followed closely. Among farms that did not have solar, the overwhelming prohibiting factor was upfront cost. Climate change was not cited directly as a driving force for adoption of solar PV by any of the participants. A wide range of differences among organic farmers existed in environmental attitudes. This reflected the diversity of views held by organic farmers in California today. For example, certified organic farmers had less strongly held environmental values than did those that eschew third-party certification in favor of a trust-based connection to the consumer. Understanding this group of highly involved environmental players provides insight into environmental behavior of other farmers as well as broader categories of consumers and businesses.

  4. Coordination of International Standards with Implementation of the IECRE Conformity Assessment System to Provide Multiple Certification Offerings for PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kelly, George; Haring, Adrian; Spooner, Ted

    To help address the industry's needs for assuring the value and reducing the risk of investments in PV power plants; the International Electrotechnical Commission (IEC) has established a new conformity assessment system for renewable energy (IECRE). There are presently important efforts underway to define the requirements for various types of PV system certificates, and publication of the international standards upon which these certifications will be based. This paper presents a detailed analysis of the interrelationship of these activities and the timing for initiation of IECRE PV system certifications.

  5. Optimization of a stand-alone Solar PV-Wind-DG Hybrid System for Distributed Power Generation at Sagar Island

    NASA Astrophysics Data System (ADS)

    Roy, P. C.; Majumder, A.; Chakraborty, N.

    2010-10-01

    An estimation of a stand-alone solar PV and wind hybrid system for distributed power generation has been made based on the resources available at Sagar island, a remote area distant to grid operation. Optimization and sensitivity analysis has been made to evaluate the feasibility and size of the power generation unit. A comparison of the different modes of hybrid system has been studied. It has been estimated that Solar PV-Wind-DG hybrid system provides lesser per unit electricity cost. Capital investment is observed to be lesser when the system run with Wind-DG compared to Solar PV-DG.

  6. Distribution and Intrinsic Membrane Properties of Basal Forebrain GABAergic and Parvalbumin Neurons in the Mouse

    PubMed Central

    McKenna, James T.; Yang, Chun; Franciosi, Serena; Winston, Stuart; Abarr, Kathleen K.; Rigby, Matthew S.; Yanagawa, Yuchio; McCarley, Robert W.; Brown, Ritchie E.

    2013-01-01

    The basal forebrain (BF) strongly regulates cortical activation, sleep homeostasis, and attention. Many BF neurons involved in these processes are GABAergic, including a subpopulation of projection neurons containing the calcium-binding protein, parvalbumin (PV). However, technical difficulties in identification have prevented a precise mapping of the distribution of GABAergic and GABA/PV+ neurons in the mouse or a determination of their intrinsic membrane properties. Here we used mice expressing fluorescent proteins in GABAergic (GAD67-GFP knock-in mice) or PV+ neurons (PV-Tomato mice) to study these neurons. Immunohistochemical staining for GABA in GAD67-GFP mice confirmed that GFP selectively labeled BF GABAergic neurons. GFP+ neurons and fibers were distributed throughout the BF, with the highest density in the magnocellular preoptic area (MCPO). Immunohistochemistry for PV indicated that the majority of PV+ neurons in the BF were large (>20 μm) or medium-sized (15–20 μm) GFP+ neurons. Most medium and large-sized BF GFP+ neurons, including those retrogradely labeled from the neocortex, were fast-firing and spontaneously active in vitro. They exhibited prominent hyperpolarization-activated inward currents and subthreshold “spikelets,” suggestive of electrical coupling. PV+ neurons recorded in PV-Tomato mice had similar properties but had significantly narrower action potentials and a higher maximal firing frequency. Another population of smaller GFP+ neurons had properties similar to striatal projection neurons. The fast firing and electrical coupling of BF GABA/PV+ neurons, together with their projections to cortical interneurons and the thalamic reticular nucleus, suggest a strong and synchronous control of the neocortical fast rhythms typical of wakefulness and REM sleep. PMID:23254904

  7. Photovoltaics on Landfills in Puerto Rico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Commonwealth of Puerto Rico for a feasibility study of m0treAlables on several brownfield sites. The EPA defines a brownfield as 'a property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant.' All of the brownfields in this study are landfill sites. Citizens of Puerto Rico, city planners, and site managers are interested in redevelopment uses for landfills in Puerto Rico, which are particularly well suited for solar photovoltaic (PV) installation.more » The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed-tilt), crystalline silicon (single-axis tracking), and thin film (fixed-tilt). Each option represents a standalone system that can be sized to use an entire available site area. In addition, the report outlines financing options that could assist in the implementation of a system. The feasibility of PV systems installed on landfills is highly impacted by the available area for an array, solar resource, operating status, landfill cap status, distance to transmission lines, and distance to major roads. All of the landfills in Puerto Rico were screened according to these criteria in order to determine the sites with the greatest potential. Eight landfills were chosen for site visits based on the screening criteria and location. Because of time constraints and the fact that Puerto Rico is a relatively large island, the eight landfills for this visit were all located in the eastern half of the island. The findings from this report can be applied to landfills in the western half of the island. The economics of a potential PV system on landfills in Puerto Rico depend greatly on the cost of electricity. Currently, PREPA has an average electric rate of $0.119/kWh. Based on past electric rate increases in Puerto Rico and other islands in the Caribbean, this rate could increase to $0.15/kWh or higher in a relatively short amount of time. In the coming years, increasing electrical rates and increased necessity for clean power will continue to improve the feasibility of implementing solar PV systems at these sites.« less

  8. Systems Engineering | Photovoltaic Research | NREL

    Science.gov Websites

    Research Other Reliability & Engineering pages: Real-Time PV & Solar Resource Testing Accelerated community toward developing comprehensive PV standards. Each year, NREL researchers, along with solar Engineering Systems Engineering We provide engineering testing and evaluation of photovoltaic (PV

  9. Solar photovoltaic charging of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gibson, Thomas L.; Kelly, Nelson A.

    Solar photovoltaic (PV) charging of batteries was tested by using high efficiency crystalline and amorphous silicon PV modules to recharge lithium-ion battery modules. This testing was performed as a proof of concept for solar PV charging of batteries for electrically powered vehicles. The iron phosphate type lithium-ion batteries were safely charged to their maximum capacity and the thermal hazards associated with overcharging were avoided by the self-regulating design of the solar charging system. The solar energy to battery charge conversion efficiency reached 14.5%, including a PV system efficiency of nearly 15%, and a battery charging efficiency of approximately 100%. This high system efficiency was achieved by directly charging the battery from the PV system with no intervening electronics, and matching the PV maximum power point voltage to the battery charging voltage at the desired maximum state of charge for the battery. It is envisioned that individual homeowners could charge electric and extended-range electric vehicles from residential, roof-mounted solar arrays, and thus power their daily commuting with clean, renewable solar energy.

  10. Driving Solar Innovations from Laboratory to Marketplace - Continuum

    Science.gov Websites

    . military-funded core technologies would someday lead to the internet. Or that a solar photovoltaics (PV more than a dozen start-up thin-film PV companies. This ultimately led to the creation of First Solar build a large-scale solar PV module plant in Colorado. As it has matured, CdTe technology has achieved

  11. Effects of Solar Photovoltaic Panels on Roof Heat Transfer

    NASA Technical Reports Server (NTRS)

    Dominguez, A.; Klessl, J.; Samady, M.; Luvall, J. C.

    2010-01-01

    Building Heating, Ventilation and Air Conditioning (HVAC) is a major contributor to urban energy use. In single story buildings with large surface area such as warehouses most of the heat enters through the roof. A rooftop modification that has not been examined experimentally is solar photovoltaic (PV) arrays. In California alone, several GW in residential and commercial rooftop PV are approved or in the planning stages. With the PV solar conversion efficiency ranging from 5-20% and a typical installed PV solar reflectance of 16-27%, 53-79% of the solar energy heats the panel. Most of this heat is then either transferred to the atmosphere or the building underneath. Consequently solar PV has indirect effects on roof heat transfer. The effect of rooftop PV systems on the building roof and indoor energy balance as well as their economic impacts on building HVAC costs have not been investigated. Roof calculator models currently do not account for rooftop modifications such as PV arrays. In this study, we report extensive measurements of a building containing a flush mount and a tilted solar PV array as well as exposed reference roof. Exterior air and surface temperature, wind speed, and solar radiation were measured and thermal infrared (TIR) images of the interior ceiling were taken. We found that in daytime the ceiling surface temperature under the PV arrays was significantly cooler than under the exposed roof. The maximum difference of 2.5 C was observed at around 1800h, close to typical time of peak energy demand. Conversely at night, the ceiling temperature under the PV arrays was warmer, especially for the array mounted flat onto the roof. A one dimensional conductive heat flux model was used to calculate the temperature profile through the roof. The heat flux into the bottom layer was used as an estimate of the heat flux into the building. The mean daytime heat flux (1200-2000 PST) under the exposed roof in the model was 14.0 Watts per square meter larger than under the tilted PV array. The maximum downward heat flux was 18.7 Watts per square meters for the exposed roof and 7.0 Watts per square meters under the tilted PV array, a 63% reduction due to the PV array. This study is unique as the impact of tilted and flush PV arrays could be compared against a typical exposed roof at the same roof for a commercial uninhabited building with exposed ceiling and consisting only of the building envelope. Our results indicate a more comfortable indoor environment in PV covered buildings without HVAC both in hotter and cooler seasons.

  12. Experimental grid connected PV system power analysis

    NASA Astrophysics Data System (ADS)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  13. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how themore » reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Module-level power electronics, such as DC power optimizers, microinverters, and those found in AC modules, are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software. This paper extends the work completed at NREL that provided recommendations to model the performance of distributed power electronics in NREL’s popular PVWatts calculator [1], to provide similar guidelines for modeling these technologies in NREL's more complex System Advisor Model (SAM). Module-level power electronics - such asmore » DC power optimizers, microinverters, and those found in AC modules-- are increasing in popularity in smaller-scale photovoltaic (PV) systems as their prices continue to decline. Therefore, it is important to provide PV modelers with guidelines about how to model these distributed power electronics appropriately in PV modeling software.« less

  15. Validation of PV-RPM Code in the System Advisor Model.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Lavrova, Olga; Freeman, Janine

    2017-04-01

    This paper describes efforts made by Sandia National Laboratories (SNL) and the National Renewable Energy Laboratory (NREL) to validate the SNL developed PV Reliability Performance Model (PV - RPM) algorithm as implemented in the NREL System Advisor Model (SAM). The PV - RPM model is a library of functions that estimates component failure and repair in a photovoltaic system over a desired simulation period. The failure and repair distributions in this paper are probabilistic representations of component failure and repair based on data collected by SNL for a PV power plant operating in Arizona. The validation effort focuses on whethermore » the failure and repair dist ributions used in the SAM implementation result in estimated failures that match the expected failures developed in the proof - of - concept implementation. Results indicate that the SAM implementation of PV - RPM provides the same results as the proof - of - concep t implementation, indicating the algorithms were reproduced successfully.« less

  16. Cost-Reduction Roadmap for Residential Solar Photovoltaics (PV), 2017-2030

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Jeffrey J.; Ardani, Kristen B.; Margolis, Robert M.

    The installed cost of solar photovoltaics (PV) has fallen rapidly in recent years and is expected to continue declining in the future. In this report, we focus on the potential for continued PV cost reductions in the residential market. From 2010 to 2017, the levelized cost of energy (LCOE) for residential PV declined from 52 cents per kilowatt-hour (cents/kWh) to 16 cents/kWh (Fu et al. 2017). The U.S. Department of Energy's (DOE's) Solar Energy Technologies Office (SETO) recently set new LCOE targets for 2030, including a target of 5 cents/kWh for residential PV. We present a roadmap for achieving themore » SETO 2030 residential PV target. Because the 2030 target likely will not be achieved under business-as-usual trends (NREL 2017), we examine two key market segments that demonstrate significant opportunities for cost savings and market growth: installing PV at the time of roof replacement and installing PV as part of the new home construction process. Within both market segments, we identify four key cost-reduction opportunities: market maturation, business model integration, product innovation, and economies of scale. To assess the potential impact of these cost reductions, we compare modeled residential PV system prices in 2030 to the National Renewable Energy Laboratory's (NREL's) quarter one 2017 (Q1 2017) residential PV system price benchmark (Fu et al. 2017). We use a bottom-up accounting framework to model all component and project-development costs incurred when installing a PV system. The result is a granular accounting for 11 direct and indirect costs associated with installing a residential PV system in 2030. All four modeled pathways demonstrate significant installed-system price savings over the Q1 2017 benchmark, with the visionary pathways yielding the greatest price benefits. The largest modeled cost savings are in the supply chain, sales and marketing, overhead, and installation labor cost categories. When we translate these installed-system costs into LCOE, we find that the less-aggressive pathways achieve significant cost reductions, but may not achieve the 2030 LCOE target. On the other hand, both visionary pathways could get very close to (for roof replacement) or achieve (for new construction) the 2030 target. Our analysis has two key implications. First, because installed-system soft cost reductions account for about 65 percent of the LCOE reductions in 2030 for both visionary pathways, residential PV stakeholders may need to emphasize these soft cost reductions to achieve the 2030 target. Second, capturing these savings will likely require considerable innovation in the technologies and business practices employed by the PV industry.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen L.; Darghouth, Naïm R.; Millstein, Dev

    Now in its eighth edition, Lawrence Berkeley National Laboratory (LBNL)’s Tracking the Sun report series is dedicated to summarizing trends in the installed price of grid-connected solar photovoltaic (PV) systems in the United States. The present report focuses on residential and nonresidential systems installed through year-end 2014, with preliminary trends for the first half of 2015. As noted in the text box below, this year’s report incorporates a number of important changes and enhancements. Among those changes, this year's report focuses solely on residential and nonresidential PV systems; data on utility-scale PV are reported in LBNL’s companion Utility-Scale Solar reportmore » series. Installed pricing trends presented within this report derive primarily from project-level data reported to state agencies and utilities that administer PV incentive programs, solar renewable energy credit (SREC) registration systems, or interconnection processes. In total, data were collected for roughly 400,000 individual PV systems, representing 81% of all U.S. residential and non-residential PV capacity installed through 2014 and 62% of capacity installed in 2014, though a smaller subset of this data were used in analysis.« less

  18. Leasing Into the Sun: A Mixed Method Analysis of Transactions of Homes with Third Party Owned Solar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoen, Ben; Rand, Joseph; Adomatis, Sandra

    This analysis is the first to examine if homes with third-party owned (TPO) PV systems are unique in the marketplace as compared to non-PV or non-TPO PV homes. This is of growing importance as the number of homes with TPO systems is nearly a half of a million in the US currently and is growing. A hedonic pricing model analysis of 20,106 homes that sold in California between 2011 and 2013 is conducted, as well as a paired sales analysis of 18 pairs of TPO PV and non-PV homes in San Diego spanning 2012 and 2013. The hedonic model examinedmore » 2,914 non-TPO PV home sales and 113 TPO PV sales and fails to uncover statistically significant premiums for TPO PV homes nor for those with pre-paid leases as compared to non-PV homes. Similarly, the paired sales analysis does not find evidence of an impact to value for the TPO homes when comparing to non-PV homes. Analyses of non-TPO PV sales both here and previously have found larger and statistically significant premiums. Collection of a larger dataset that covers the present period is recommended for future analyses so that smaller, more nuanced and recent effects can be discovered.« less

  19. Electricity Bill Savings from Residential Photovoltaic Systems: Sensitivities to Changes in Future Electricity Market Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2013-01-09

    Customer-sited photovoltaic (PV) systems in the United States are often compensated at the customer’s underlying retail electricity rate through net metering. Calculations of the customer economics of PV, meanwhile, often assume that retail rate structures and PV compensation mechanisms will not change and that retail electricity prices will increase (or remain constant) over time, thereby also increasing (or keeping constant) the value of bill savings from PV. Given the multitude of potential changes to retail rates and PV compensation mechanisms in the future, however, understanding how such changes might impact the value of bill savings from PV is critical formore » policymakers, regulators, utilities, the solar industry, and potential PV owners, i.e., any stakeholder interested in understanding uncertainties in and potential changes to the long-term customer economics of PV. This scoping study investigates the impact of, and interactions among, three key sources of uncertainty in the future value of bill savings from customer-sited PV, focusing in particular on residential customers. These three sources of uncertainty are: changes to electricity market conditions that would affect retail electricity prices, changes to the types of retail rate structures available to residential customers with PV, and shifts away from standard net-metering toward other compensation mechanisms for residential PV.« less

  20. Effective information channels for reducing costs of environmentally- friendly technologies: evidence from residential PV markets

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Robinson, Scott A.

    2013-03-01

    Realizing the environmental benefits of solar photovoltaics (PV) will require reducing costs associated with perception, informational gaps and technological uncertainties. To identify opportunities to decrease costs associated with residential PV adoption, in this letter we use multivariate regression models to analyze a unique, household-level dataset of PV adopters in Texas (USA) to systematically quantify the effect of different information channels on aspiring PV adopters’ decision-making. We find that the length of the decision period depends on the business model, such as whether the system was bought or leased, and on special opportunities to learn, such as the influence of other PV owners in the neighborhood. This influence accrues passively through merely witnessing PV systems in the neighborhood, increasing confidence and motivation, as well as actively through peer-to-peer communications. Using these insights we propose a new framework to provide public information on PV that could drastically reduce barriers to PV adoption, thereby accelerating its market penetration and environmental benefits. This framework could also serve as a model for other distributed generation technologies.

  1. Effects of Scandinavian hydro power on storage needs in a fully renewable European power system for various transmission capacity scenarios

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Nag, Kabitri; von Bremen, Lueder; Lorenz, Elke; Heinemann, Detlev

    2015-04-01

    The penetration of renewable energies in the European power system has increased in the last decades (23.5% share of renewables in the gross electricity consumption of the EU-28 in 2012) and is expected to increase further up to very high shares close to 100%. Planning and organizing this European energy transition towards sustainable power sources will be one of the major challenges of the 21st century. It is very likely that in a fully renewable European power system wind and photovoltaics (pv) will contribute the largest shares to the generation mix followed by hydro power. However, feed-in from wind and pv is due to the weather dependant nature of their resources fluctuating and non-controllable. To match generation and consumption several solutions and their combinations were proposed like very high backup-capacities of conventional power generation (e.g. fossile or nuclear), storages or the extension of the transmission grid. Apart from those options hydro power can be used to counterbalance fluctuating wind and pv generation to some extent. In this work we investigate the effects of hydro power from Norway and Sweden on residual storage needs in Europe depending on the overlaying grid scenario. High temporally and spatially resolved weather data with a spatial resolution of 7 x 7 km and a temporal resolution of 1 hour was used to model the feed-in from wind and pv for 34 investigated European countries for the years 2003-2012. Inflow into hydro storages and generation by run-of-river power plants were computed from ERA-Interim reanalysis runoff data at a spatial resolution of 0.75° x 0.75° and a daily temporal resolution. Power flows in a simplified transmission grid connecting the 34 European countries were modelled minimizing dissipation using a DC-flow approximation. Previous work has shown that hydro power, namely in Norway and Sweden, can reduce storage needs in a renewable European power system by a large extent. A 15% share of hydro power in Europe can reduce storage needs by up to 50% with respect to stored energy. This requires however large transmission capacities between the major hydro power producers in Scandinavia and the largest consumers of electrical energy in Western Europe. We show how Scandinavian hydro power can reduce storage needs in dependency of the transmission grid for two fully renewable scenarios: The first one has its wind and pv generation capacities distributed according to an empirically derived approach. The second scenario has an optimal spatial distribution to minimize storage needs distribution of wind and pv generation capacities across Europe. We show that in both cases hydro power together with a well developed transmission grid has the potential to contribute a large share to the solution of the generation-consumption mismatch problem. The work is part of the RESTORE 2050 project (BMBF) that investigates the requirements for cross-country grid extensions, usage of storage technologies and capacities and the development of new balancing technologies.

  2. Solar photovoltaic systems in the development of Papua New Guinea

    NASA Astrophysics Data System (ADS)

    Kinnell, G. H.

    Geographic and demographic features of Papua New Guinea are summarized, together with current applications of photovoltaic (PV) systems. The PV systems displace the increasing costs of generating power from diesel and kerosene powered units. PV systems power air navigation aids for the extensive air transport used in the absence of a road system. Remote television and visual aid education is possible with PV modules. A total of 50 kW of PV power is presently implemented, with the bulk dedicated to microwave repeater stations, navigation aids, and radio and lighting supplies. A village pumping installation is in operation, as are office lighting and ventilation, house lighting, and construction camp lighting. Another 350 kW is planned for the next 10 yr to run medical supply refrigeration, and further growth is seen for coupling with government-developed village lighting kits that feature industrial reflectors.

  3. Life Cycle Assessment of Solar Photovoltaic Microgrid Systems in Off-Grid Communities.

    PubMed

    Bilich, Andrew; Langham, Kevin; Geyer, Roland; Goyal, Love; Hansen, James; Krishnan, Anjana; Bergesen, Joseph; Sinha, Parikhit

    2017-01-17

    Access to a reliable source of electricity creates significant benefits for developing communities. Smaller versions of electricity grids, known as microgrids, have been developed as a solution to energy access problems. Using attributional life cycle assessment, this project evaluates the environmental and energy impacts of three photovoltiac (PV) microgrids compared to other energy options for a model village in Kenya. When normalized per kilowatt hour of electricity consumed, PV microgrids, particularly PV-battery systems, have lower impacts than other energy access solutions in climate change, particulate matter, photochemical oxidants, and terrestrial acidification. When compared to small-scale diesel generators, PV-battery systems save 94-99% in the above categories. When compared to the marginal electricity grid in Kenya, PV-battery systems save 80-88%. Contribution analysis suggests that electricity and primary metal use during component, particularly battery, manufacturing are the largest contributors to overall PV-battery microgrid impacts. Accordingly, additional savings could be seen from changing battery manufacturing location and ensuring end of life recycling. Overall, this project highlights the potential for PV microgrids to be feasible, adaptable, long-term energy access solutions, with health and environmental advantages compared to traditional electrification options.

  4. Accelerated Testing and Analysis | Photovoltaic Research | NREL

    Science.gov Websites

    & Engineering pages: Real-Time PV & Solar Resource Testing Systems Engineering Systems PV standards. Each year, NCPV researchers, along with solar companies and other national lab Accelerated Testing and Analysis Accelerated Testing and Analysis PV Research Other Reliability

  5. Paint it Black: One-Step Etch Cuts Solar Cell Costs - Continuum Magazine

    Science.gov Websites

    quicker, cheaper way to produce large volumes of high-performance PV devices. Cost is a major obstacle for propel PV toward cost-competitiveness. A New Approach to Antireflection Any light reflected from a solar etching large pyramids into the cell surface, add considerable cost to a solar cell-and they succeed only

  6. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less

  7. Overcoming the black body limit in plasmonic and graphene near-field thermophotovoltaic systems.

    PubMed

    Ilic, Ognjen; Jablan, Marinko; Joannopoulos, John D; Celanovic, Ivan; Soljacić, Marin

    2012-05-07

    Near-field thermophotovoltaic (TPV) systems with carefully tailored emitter-PV properties show large promise for a new temperature range (600 – 1200K) solid state energy conversion, where conventional thermoelectric (TE) devices cannot operate due to high temperatures and far-field TPV schemes suffer from low efficiency and power density. We present a detailed theoretical study of several different implementations of thermal emitters using plasmonic materials and graphene. We find that optimal improvements over the black body limit are achieved for low bandgap semiconductors and properly matched plasmonic frequencies. For a pure plasmonic emitter, theoretically predicted generated power density of 14 W/cm2 and efficiency of 36% can be achieved at 600K (hot-side), for 0.17eV bandgap (InSb). Developing insightful approximations, we argue that large plasmonic losses can, contrary to intuition, be helpful in enhancing the overall near-field transfer. We discuss and quantify the properties of an optimal near-field photovoltaic (PV) diode. In addition, we study plasmons in graphene and show that doping can be used to tune the plasmonic dispersion relation to match the PV cell bangap. In case of graphene, theoretically predicted generated power density of 6(120) W/cm2 and efficiency of 35(40)% can be achieved at 600(1200)K, for 0.17eV bandgap. With the ability to operate in intermediate temperature range, as well as high efficiency and power density, near-field TPV systems have the potential to complement conventional TE and TPV solid state heat-to-electricity conversion devices.

  8. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to thismore » deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.« less

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less

  10. Distribution-Connected PV's Response to Voltage Sags at Transmission-Scale

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mather, Barry; Ding, Fei

    The ever increasing amount of residential- and commercial-scale distribution-connected PV generation being installed and operated on the U.S.'s electric power system necessitates the use of increased fidelity representative distribution system models for transmission stability studies in order to ensure the continued safe and reliable operation of the grid. This paper describes a distribution model-based analysis that determines the amount of distribution-connected PV that trips off-line for a given voltage sag seen at the distribution circuit's substation. Such sags are what could potentially be experienced over a wide area of an interconnection during a transmission-level line fault. The results of thismore » analysis show that the voltage diversity of the distribution system does cause different amounts of PV generation to be lost for differing severity of voltage sags. The variation of the response is most directly a function of the loading of the distribution system. At low load levels the inversion of the circuit's voltage profile results in considerable differences in the aggregated response of distribution-connected PV Less variation is seen in the response to specific PV deployment scenarios, unless pushed to extremes, and in the total amount of PV penetration attained. A simplified version of the combined CMPLDW and PVD1 models is compared to the results from the model-based analysis. Furthermore, the parameters of the simplified model are tuned to better match the determined response. The resulting tuning parameters do not match the expected physical model of the distribution system and PV systems and thus may indicate that another modeling approach would be warranted.« less

  11. Final Report: Towards an Emergent Model of Technology Adoption for Accelerating the Diffusion of Residential Solar PV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rai, Varun

    This project sought to enable electric utilities in Texas to accelerate diffusion of residential solar photovoltaic (PV) by systematically identifying and targeting existing barriers to PV adoption. A core goal of the project was to develop an integrated research framework that combines survey research, econometric modeling, financial modeling, and implementation and evaluation of pilot projects to study the PV diffusion system. This project considered PV diffusion as an emergent system, with attention to the interactions between the constituent parts of the PV socio-technical system including: economics of individual decision-making; peer and social influences; behavioral responses; and information and transaction costs.more » We also conducted two pilot projects, which have yielded new insights into behavioral and informational aspects of PV adoption. Finally, this project has produced robust and generalizable results that will provide deeper insights into the technology-diffusion process that will be applicable for the design of utility programs for other technologies such as home-energy management systems and plug-in electric vehicles. When we started this project in 2013 there was little systematic research on characterizing the decision-making process of households interested in adopting PV. This project was designed to fill that research gap by analyzing the PV adoption process from the consumers' decision-making perspective and with the objective to systematically identifying and addressing the barriers that consumers face in the adoption of PV. The two key components of that decision-making process are consumers' evaluation of: (i) uncertainties and non-monetary costs associated with the technology and (ii) the direct monetary cost-benefit. This project used an integrated approach to study both the non-monetary and the monetary components of the consumer decision-making process.« less

  12. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Silva, R.M.; Fernandes, J.L.M.

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recentlymore » it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)« less

  13. PV technology and success of solar electricity in Vietnam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dung, T.Q.

    1997-12-31

    Since 1990 the PV Technology and the Solar electricity have been strongly developed in Vietnam. The PV experts of Solarlab have studied and set up an appropriate PV Technology responding to local Market needs. It has not only stood well but has been also transferred to Mali Republic and Lao P.D.R. The PV off grid systems of Solarlab demonstrate good efficiency and low prices. Over 60 solar stations and villages have been built to provide solar lighting for about 3000 families along the country in remote, mountainous areas and islands. 400 families are using stand-alone Solar Home Systems. The Solarmore » electricity has been chosen for Rural Electrification and National Telecommunication Network in remote and mountainous regions. Many International projects in cooperation with FONDEM-France, SELF USA and Governmental PV projects have been realized by Solarlab. The experiences of maintenance, management and finance about PV development in Vietnam are also mentioned.« less

  14. NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last

    Science.gov Websites

    Year | NREL | News | NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year News Release: NREL Report Shows Utility-Scale Solar PV System Cost Fell Nearly 30% Last Year September 12, 2017 Record-low costs enabled by decline in module and inverter prices The installed cost of

  15. Fuzzy comprehensive evaluation for grid-connected performance of integrated distributed PV-ES systems

    NASA Astrophysics Data System (ADS)

    Lv, Z. H.; Li, Q.; Huang, R. W.; Liu, H. M.; Liu, D.

    2016-08-01

    Based on the discussion about topology structure of integrated distributed photovoltaic (PV) power generation system and energy storage (ES) in single or mixed type, this paper focuses on analyzing grid-connected performance of integrated distributed photovoltaic and energy storage (PV-ES) systems, and proposes a comprehensive evaluation index system. Then a multi-level fuzzy comprehensive evaluation method based on grey correlation degree is proposed, and the calculations for weight matrix and fuzzy matrix are presented step by step. Finally, a distributed integrated PV-ES power generation system connected to a 380 V low voltage distribution network is taken as the example, and some suggestions are made based on the evaluation results.

  16. Valuing the Resilience Provided by Solar and Battery Energy Storage Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McLaren, Joyce A; Mullendore, Seth; Laws, Nicholas D

    This paper explores the impact of valuing resilience on the economics of photovoltaics (PV) and storage systems for commercial buildings. The analysis presented here illustrates that accounting for the cost of grid power outages can change the breakeven point for PV and storage system investment, and increase the size of systems designed to deliver the greatest economic benefit over time. In other words, valuing resilience can make PV and storage systems economical in cases where they would not be otherwise. As storage costs decrease, and outages occur more frequently, PV and storage are likely to play a larger role inmore » building design and management considerations.« less

  17. Mathematical modeling of photovoltaic thermal PV/T system with v-groove collector

    NASA Astrophysics Data System (ADS)

    Zohri, M.; Fudholi, A.; Ruslan, M. H.; Sopian, K.

    2017-07-01

    The use of v-groove in solar collector has a higher thermal efficiency in references. Dropping the working heat of photovoltaic panel was able to raise the electrical efficiency performance. Electrical and thermal efficiency were produced by photovoltaic thermal (PV/T) system concurrently. Mathematical modeling based on steady-state thermal analysis of PV/T system with v-groove was conducted. With matrix inversion method, the energy balance equations are explained by means of the investigative method. The comparison results show that in the PV/T system with the V-groove collector is higher temperature, thermal and electrical efficiency than other collectors.

  18. Building Integrated Photovoltaic Module-Based on Aluminum Substrate With Forced Water Cooling.

    PubMed

    Pang, Wei; Zhang, Yongzhe; Cui, Yanan; Yu, Hongwen; Liu, Yu; Yan, Hui

    2018-04-01

    The increase of operating temperature on a photovoltaic (PV) cell degrades its electrical efficiency. This paper is organized to describe our latest design of an aluminum substrate-based photovoltaic/thermal (PV/T) system. The electrical efficiency of the proposed PV/T can be increased by ∼ 20% in comparison with a conventional glass substrate-based PV. The work will benefit hybrid utilization of solar energy in development of building integrated photovoltaic systems.

  19. Design and Analysis of Photovoltaic (PV) Power Plant at Different Locations in Malaysia

    NASA Astrophysics Data System (ADS)

    Islam, M. A.; Hasanuzzaman, M.; Rahim, N. A.

    2018-05-01

    Power generation from sun oriented vitality through a photovoltaic (PV) system is ended up prevalent over the world due to clean innovation. Geographical location of Malaysia is very favorable for PV power generation system. The Malaysian government has also taken different steps to increase the use of solar energy especially by emphasizing on building integrated PV (BIPV) system. Comparative study on the feasibility of BIPV installation at the different location of Malaysia is rarely found. On the other hand, solar cell temperature has a negative impact on the electricity generation. So in this study cost effectiveness and initial investment cost of building integrated grid connected solar PV power plant in different regions of Malaysia have been carried. The effect of PV solar cell temperature on the payback period (PBP) is also investigated. Highest PBP is 12.38 years at Selangor and lowest PBP is 9.70 years at Sabah (Kota Kinabalu). Solar cell temperature significantly increases the PBP of PV plant and highest 14.64% and lowest 13.20% raise of PBP are encountered at Penang and Sarawak respectively.

  20. Establishment of key grid-connected performance index system for integrated PV-ES system

    NASA Astrophysics Data System (ADS)

    Li, Q.; Yuan, X. D.; Qi, Q.; Liu, H. M.

    2016-08-01

    In order to further promote integrated optimization operation of distributed new energy/ energy storage/ active load, this paper studies the integrated photovoltaic-energy storage (PV-ES) system which is connected with the distribution network, and analyzes typical structure and configuration selection for integrated PV-ES generation system. By combining practical grid- connected characteristics requirements and technology standard specification of photovoltaic generation system, this paper takes full account of energy storage system, and then proposes several new grid-connected performance indexes such as paralleled current sharing characteristic, parallel response consistency, adjusting characteristic, virtual moment of inertia characteristic, on- grid/off-grid switch characteristic, and so on. A comprehensive and feasible grid-connected performance index system is then established to support grid-connected performance testing on integrated PV-ES system.

  1. Analysis on Dissemination Conditions of Photovoltaics in Japan by Using Energy System Model MARKAL

    NASA Astrophysics Data System (ADS)

    Endo, Eiichi; Ichinohe, Masayuki

    The national target for PV capacity in Japan is 4. 82, GW in 2010, and several PV Roadmaps until 2030 are also described. To achieve the target, several support programs, such as subsidization to capital cost, Green Credit by the Green Power Certification System, buy-back under the Renewable Portfolio Standard low, have been already introduced. Carbon tax is still under consideration, but there are several analyses about possible carbon tax. The purpose of this paper is to analyze PV system sales price and subsidy through buy-back which make photovoltaics cost-competitive with other energy technologies and make the target for PV capacity achievable by 2030 in Japan under an expected carbon tax. For the analysis energy system of Japan is modeled by using MARKAL. Based on the results of analysis, under 6000, JPY/t-C carbon tax, photovoltaics needs subsidy for a while even if we taking both fuel savings and Green Credit into account. For attaining the national target for PV capacity in 2010, photovoltaics needs more expensive buy-back than that in present, but after 2010 necessary buy-back decreases gradually. If 120, JPY/W PV system sales price is attained by 2030, photovoltaics becomes cost-competitive without any supports. Subsidy through buy-back becomes almost unnecessary in 2030, if we can reduce it less than 170, JPY/W. The total necessary buy-back meets peak in 2025. It is much more than ongoing subsidy to capital cost of PV systems, but annual revenue from the assumed carbon tax can finance the annual total necessary buy-back. This means if photovoltaics can attain the targeted PV system sales price, we should support it for a while by spending carbon tax revenue effectively and efficiently.

  2. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases. Energy payback times of DRI's solar PV systems range from 0.5 to 1.5 years. The cost payback time for the DRI PV systems and the cost per ton of CO2 avoided by replacing Nevada-specific electrical power will be determined. The sensitivity of these environmental and economic impacts with respect to specific model parameters is being investigated.

  3. Simulation and Experimental Study on Effect of Phase Change Material Thickness to Reduce Temperature of Photovoltaic Panel

    NASA Astrophysics Data System (ADS)

    Indartono, Y. S.; Prakoso, S. D.; Suwono, A.; Zaini, I. N.; Fernaldi, B.

    2015-09-01

    Solar energy is promising renewable energy which can be applied in Indonesia. Average solar radiation in the country is 4.8 kWh/day/m2. Weakness of silicon-based photovoltaic (PV) is efficiency reduction caused by temperature increase. Many attempts have been done to reduce PV temperature. In previous study, palm oil, which is widely available in Indonesia, is suitable to be used as phase change material (PCM) to reduce PV temperature. In this study, thickness of aluminium rectangular-tube containing phase change material oil is varied. The tube is placed at back part of PV. Numerical and experimental study was done to evaluate the effect of tube thickness to the temperature reduction of the PV. Variation of tube thickness used in the experiment is 50.8mm, 76.2 mm, 101.6 mm. Both studies show that increase of PCM thickness reduces PV temperature. Higher PCM thickness cause large reduction on PV temperature. Simulation result shows there is an optimum thickness of the PCM which is applied to the PV.

  4. Sizing and modelling of photovoltaic water pumping system

    NASA Astrophysics Data System (ADS)

    Al-Badi, A.; Yousef, H.; Al Mahmoudi, T.; Al-Shammaki, M.; Al-Abri, A.; Al-Hinai, A.

    2018-05-01

    With the decline in price of the photovoltaics (PVs) their use as a power source for water pumping is the most attractive solution instead of using diesel generators or electric motors driven by a grid system. In this paper, a method to design a PV pumping system is presented and discussed, which is then used to calculate the required size of the PV for an existing farm. Furthermore, the amount of carbon dioxide emissions saved by the use of PV water pumping system instead of using diesel-fuelled generators or electrical motor connected to the grid network is calculated. In addition, an experimental set-up is developed for the PV water pumping system using both DC and AC motors with batteries. The experimental tests are used to validate the developed MATLAB model. This research work demonstrates that using the PV water pumping system is not only improving the living conditions in rural areas but it is also protecting the environment and can be a cost-effective application in remote locations.

  5. Analysis of Aurora's Performance Simulation Engine for Three Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Simon, Joseph

    2015-07-07

    Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systemsmore » in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.« less

  6. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE PAGES

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    2018-01-30

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  7. The geography of solar energy in the United States: Market definition, industry structure, and choice in solar PV adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’Shaughnessy, Eric; Nemet, Gregory F.; Darghouth, Naïm

    The solar photovoltaic (PV) installation industry comprises thousands of firms around the world who collectively installed nearly 200 million panels in 2015. Spatial analysis of the emerging industry has received considerable attention from the literature, especially on the demand side concerning peer effects and adopter clustering. However this research area does not include similarly sophisticated spatial analysis on the supply side of the installation industry. The lack of understanding of the spatial structure of the PV installation industry leaves PV market research to rely on jurisdictional lines, such as counties, to define geographic PV markets. We develop an approach thatmore » uses the spatial distribution of installers' activity to define geographic boundaries for PV markets. Our method is useful for PV market research and applicable in the contexts of other industries. We use our approach to demonstrate that the PV industry in the United States is spatially heterogeneous. Despite the emergence of some national-scale PV installers, installers are largely local and installer communities are unique from one region to the next. The social implications of the spatial heterogeneity of the emerging PV industry involve improving understanding of issues such as market power, industry consolidation, and how much choice potential adopters have.« less

  8. Distributed Optimization and Control | Grid Modernization | NREL

    Science.gov Websites

    developing an innovative, distributed photovoltaic (PV) inverter control architecture that maximizes PV communications systems to support distribution grid operations. The growth of PV capacity has introduced prescribed limits, while fast variations in PV output tend to cause transients that lead to wear-out of

  9. Inverter testing at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Ginn, Jerry W.; Bonn, Russell H.; Sittler, Greg

    1997-02-01

    Inverters are key building blocks of photovoltaic (PV) systems that produce ac power. The balance of systems (BOS) portion of a PV system can account for up to 50% of the system cost, and its reliable operation is essential for a successful PV system. As part of its BOS program, Sandia National Laboratories (SNL) maintains a laboratory wherein accurate electrical measurements of power systems can be made under a variety of conditions. This paper outlines the work that is done in that laboratory.

  10. New Experimental Constraints on Crystallization Differentiation in a Deep Magma Ocean

    NASA Astrophysics Data System (ADS)

    Walter, M. J.; Ito, E.; Nakamura, E.; Tronnes, R.; Frost, D.

    2001-12-01

    Most of Earth's mass probably accreted as a consequence of numerous impacts between large bodies and proto-Earth, and a giant impact with a Mars-sized object is the most plausible explanation for a Moon forming event. 1 Physical models show that large impacts would have caused high-degrees of melting and a global magma ocean. 2 Crystallization differentiation in a deep magma ocean could impart stratification in the solidified mantle, forming large geochemical domains. To accurately model crystallization in a deep magma ocean the liquidus phase-relations of peridotite, as well as mineral/melt element partitioning, must be known at lower mantle conditions. Here, we report the results of liquidus experiments on fertile model peridotite compositions at 23 - 33 GPa. Experiments were performed in 6/8-type multi-anvil apparatus using carbide and sintered-diamond second-stage anvils with 4 and 2 mm truncations, respectively. Samples were encapsulated by either graphite or Re. High-temperatures were generated using LaCrO3 or Re furnaces, and temperatures were held from 2 to 50 minutes at 2300 - 2500 C. Run products were analyzed for major and trace elements using EPMA and SIMS. At 23 GPa the liquidus phase is majorite, followed closely down temperature by ferropericlase (Fp) and Mg-perovskite (Mg-Pv). At 24 GPa the liquidus phase has changed to Fp, followed closely by majorite and Mg-Pv. Ca-perovskite (Ca-Pv) is present only at much lower temperatures close to the solidus. At approximately 31 GPa Mg-Pv is the liquidus phase followed down-temperature by Fp then Ca-Pv. At ~ 33 GPa Ca-Pv crystallizes closer to the liquidus, within about 50 C, at a similar temperature to Fp. Thus, important phases crystallizing in a deep magma ocean are Mg-Pv, Ca-Pv and Fp. Crystallization models based on major element partitioning show that only very modest amounts of crystal separation of a Mg-Pv + Fp assemblage can be tolerated before Ca/Al, Al/Ti and Ca/Ti ratios become unrealistic for estimates of primitive upper mantle (PUM). 3 However, even small amounts of Ca-Pv in the crystal assemblage effectively buffer these ratios at values close to the starting composition (e.g. chondritic). Further, based on our new trace element partitioning data, models involving considerable Mg-Pv fractionation generally show poor matches with model PUM. For example, model PUM has sub-chondritic REE/Ti, whereas these ratios increase considerably during Mg-Pv crystallization. Notable exceptions are super-chondritic Zr/Ti, chondritic Sr/Ti, and sub-chondritic Zr/Nb and Sm/Yb ratios, all of which are well matched by considerable Mg-Pv crystallization. Although trace element D's for Ca-Pv are not yet measured quantitatively, the observed affinity of Ca-Pv for REE could conceivably account for the the sub-chondritic REE/Ti ratios in PUM. Ca-Pv also concentrates K, and could be an important source of heat from radioactive decay in the lower mantle. 1. Canup, R. and Agnor, C., Origin of the Earth and Moon, Righter and Canup, eds., U. Arizona Press, 113-144, 2000. 2. Melosh, H., Origin of the Earth, Newsom and Jones, eds., Oxford Press, 69-84, 1990. 3. McFarlane, E. et al., Geochimica et Cosmochimica Acta, 5161-5172, 1994.

  11. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Freestate, David; Riley, Cameron

    2016-11-01

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less

  12. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Freestate, David; Hobbs, William

    2016-11-21

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less

  13. Using Measured Plane-of-Array Data Directly in Photovoltaic Modeling: Methodology and Validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Janine; Freestate, David; Hobbs, William

    2016-06-05

    Measured plane-of-array (POA) irradiance may provide a lower-cost alternative to standard irradiance component data for photovoltaic (PV) system performance modeling without loss of accuracy. Previous work has shown that transposition models typically used by PV models to calculate POA irradiance from horizontal data introduce error into the POA irradiance estimates, and that measured POA data can correlate better to measured performance data. However, popular PV modeling tools historically have not directly used input POA data. This paper introduces a new capability in NREL's System Advisor Model (SAM) to directly use POA data in PV modeling, and compares SAM results frommore » both POA irradiance and irradiance components inputs against measured performance data for eight operating PV systems.« less

  14. Single-user MIMO system, Painlevé transcendents, and double scaling

    NASA Astrophysics Data System (ADS)

    Chen, Hongmei; Chen, Min; Blower, Gordon; Chen, Yang

    2017-12-01

    In this paper, we study a particular Painlevé V (denoted PV) that arises from multi-input-multi-output wireless communication systems. Such PV appears through its intimate relation with the Hankel determinant that describes the moment generating function (MGF) of the Shannon capacity. This originates through the multiplication of the Laguerre weight or the gamma density xαe-x, x > 0, for α > -1 by (1 + x/t)λ with t > 0 a scaling parameter. Here the λ parameter "generates" the Shannon capacity; see Chen, Y. and McKay, M. R. [IEEE Trans. Inf. Theory 58, 4594-4634 (2012)]. It was found that the MGF has an integral representation as a functional of y(t) and y'(t), where y(t) satisfies the "classical form" of PV. In this paper, we consider the situation where n, the number of transmit antennas, (or the size of the random matrix), tends to infinity and the signal-to-noise ratio, P, tends to infinity such that s = 4n2/P is finite. Under such double scaling, the MGF, effectively an infinite determinant, has an integral representation in terms of a "lesser" PIII. We also consider the situations where α =k +1 /2 ,k ∈N , and α ∈ {0, 1, 2, …}, λ ∈ {1, 2, …}, linking the relevant quantity to a solution of the two-dimensional sine-Gordon equation in radial coordinates and a certain discrete Painlevé-II. From the large n asymptotic of the orthogonal polynomials, which appears naturally, we obtain the double scaled MGF for small and large s, together with the constant term in the large s expansion. With the aid of these, we derive a number of cumulants and find that the capacity distribution function is non-Gaussian.

  15. PHOTOVOLTAICS AND THE ENVIRONMENT 1998. REPORT ON THE WORKSHOP PHOTOVOLTAICS AND THE ENVIRONMENT 1999

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FTHENAKIS,V.; ZWEIBEL,K.; MOSKOWITZ,P.

    1999-02-01

    The objective of the workshop ``Photovoltaics and the Environment'' was to bring together PV manufacturers and industry analysts to define EH and S issues related to the large-scale commercialization of PV technologies.

  16. Golden Rays - May 2017 | Solar Research | NREL

    Science.gov Websites

    , the energy reported by micro-inverters on existing PV systems can be used to back-solve for the solar future PV systems, the results matched those based on solar resource measurements from top-of-the-line the solar resource using data from 100 PV systems in five metropolitan areas. More Than 200 Attend

  17. Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance

    NASA Astrophysics Data System (ADS)

    Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.

    2016-06-01

    The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.

  18. Emissions from photovoltaic life cycles.

    PubMed

    Fthenakis, Vasilis M; Kim, Hyung Chul; Alsema, Erik

    2008-03-15

    Photovoltaic (PV) technologies have shown remarkable progress recently in terms of annual production capacity and life cycle environmental performances, which necessitate timely updates of environmental indicators. Based on PV production data of 2004-2006, this study presents the life-cycle greenhouse gas emissions, criteria pollutant emissions, and heavy metal emissions from four types of major commercial PV systems: multicrystalline silicon, monocrystalline silicon, ribbon silicon, and thin-film cadmium telluride. Life-cycle emissions were determined by employing average electricity mixtures in Europe and the United States during the materials and module production for each PV system. Among the current vintage of PV technologies, thin-film cadmium telluride (CdTe) PV emits the least amount of harmful air emissions as it requires the least amount of energy during the module production. However, the differences in the emissions between different PV technologies are very small in comparison to the emissions from conventional energy technologies that PV could displace. As a part of prospective analysis, the effect of PV breeder was investigated. Overall, all PV technologies generate far less life-cycle air emissions per GWh than conventional fossil-fuel-based electricity generation technologies. At least 89% of air emissions associated with electricity generation could be prevented if electricity from photovoltaics displaces electricity from the grid.

  19. Photovoltaic system with improved AC connections and method of making same

    DOEpatents

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony

    2018-02-13

    An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.

  20. Heritage plaza parking lots improvement project- Solar PV installation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hooks, Todd

    The Agua Caliente Band of Cahuilla Indians (ACBCI or the “Tribe”) installed a 79.95 kW solar photovoltaic (PV) system to offset the energy usage costs of the Tribal Education and Family Services offices located at the Tribe's Heritage Plaza office building, 90I Tahquitz Way, Palm Springs, CA, 92262 (the "Project"). The installation of the Solar PV system was part of the larger Heritage Plaza Parking Lot Improvements Project and mounted on the two southern carport shade structures. The solar PV system will offset 99% of the approximately 115,000 kWh in electricity delivered annually by Southern California Edison (SCE) to themore » Tribal Education and Family Services offices at Heritage Plaza, reducing their annual energy costs from approximately $22,000 annually to approximately $200. The total cost of the proposed solar PV system is $240,000.« less

  1. Interactive smart battery storage for a PV and wind hybrid energy management control based on conservative power theory

    NASA Astrophysics Data System (ADS)

    Godoy Simões, Marcelo; Davi Curi Busarello, Tiago; Saad Bubshait, Abdullah; Harirchi, Farnaz; Antenor Pomilio, José; Blaabjerg, Frede

    2016-04-01

    This paper presents interactive smart battery-based storage (BBS) for wind generator (WG) and photovoltaic (PV) systems. The BBS is composed of an asymmetric cascaded H-bridge multilevel inverter (ACMI) with staircase modulation. The structure is parallel to the WG and PV systems, allowing the ACMI to have a reduction in power losses compared to the usual solution for storage connected at the DC-link of the converter for WG or PV systems. Moreover, the BBS is embedded with a decision algorithm running real-time energy costs, plus a battery state-of-charge manager and power quality capabilities, making the described system in this paper very interactive, smart and multifunctional. The paper describes how BBS interacts with the WG and PV and how its performance is improved. Experimental results are presented showing the efficacy of this BBS for renewable energy applications.

  2. Field Performance of Photovoltaic Systems in the Tucson Desert

    NASA Astrophysics Data System (ADS)

    Orsburn, Sean; Brooks, Adria; Cormode, Daniel; Greenberg, James; Hardesty, Garrett; Lonij, Vincent; Salhab, Anas; St. Germaine, Tyler; Torres, Gabe; Cronin, Alexander

    2011-10-01

    At the Tucson Electric Power (TEP) solar test yard, over 20 different grid-connected photovoltaic (PV) systems are being tested. The goal at the TEP solar test yard is to measure and model real-world performance of PV systems and to benchmark new technologies such as holographic concentrators. By studying voltage and current produced by the PV systems as a function of incident irradiance, and module temperature, we can compare our measurements of field-performance (in a harsh desert environment) to manufacturer specifications (determined under laboratory conditions). In order to measure high-voltage and high-current signals, we designed and built reliable, accurate sensors that can handle extreme desert temperatures. We will present several benchmarks of sensors in a controlled environment, including shunt resistors and Hall-effect current sensors, to determine temperature drift and accuracy. Finally we will present preliminary field measurements of PV performance for several different PV technologies.

  3. A technological review on electric vehicle DC charging stations using photovoltaic sources

    NASA Astrophysics Data System (ADS)

    Youssef, Cheddadi; Fatima, Errahimi; najia, Es-sbai; Chakib, Alaoui

    2018-05-01

    Within the next few years, Electrified vehicles are destined to become the essential component of the transport field. Consequently, the charging infrastructure should be developed in the same time. Among this substructure, Charging stations photovoltaic-assisted are attracting a substantial interest due to increased environmental awareness, cost reduction and rise in efficiency of the PV modules. The intention of this paper is to review the technological status of Photovoltaic–Electric vehicle (PV-EV) charging stations during the last decade. The PV-EV charging station is divided into two categories, which are PV-grid and PV-standalone charging systems. From a practical point view, the distinction between the two architectures is the bidirectional inverter, which is added to link the station to the smart grid. The technological infrastructure includes the common hardware components of every station, namely: PV array, dc-dc converter provided with MPPT control, energy storage unit, bidirectional dc charger and inverter. We investigate, compare and evaluate many valuable researches that contain the design and control of PV-EV charging system. Additionally, this concise overview reports the studies that include charging standards, the power converters topologies that focus on the adoption of Vehicle-to grid technology and the control for both PV–grid and PV standalone DC charging systems.

  4. Moving Toward Quantifying Reliability - The Next Step in a Rapidly Maturing PV Industry: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Sample, Tony; Wohlgemuth, John

    2015-12-07

    Some may say that PV modules are moving toward being a simple commodity, but most major PV customers ask: 'How can I minimize chances of a module recall?' Or, 'How can I quantify the added value of a 'premium' module?' Or, 'How can I assess the value of an old PV system that I'm thinking of purchasing?' These are all questions that PVQAT (the International PV Quality Assurance Task Force) and partner organizations are working to answer. Defining standard methods for ensuring minimal acceptable quality of PV modules, differentiating modules that provide added value in the toughest of environments, andmore » creating a process (e.g. through IECRE [1]) that can follow a PV system from design through installation and operation are tough tasks, but having standard approaches for these will increase confidence, reduce costs, and be a critical foundation of a mature PV industry. This paper summarizes current needs for new tests, some challenges for defining those tests, and some of the key efforts toward development of international standards, emphasizing that meaningful quantification of reliability (as in defining a service life prediction) must be done in the context of a specific product with design parameters defined through a quality management system.« less

  5. Technical Report: Guide Details Best Practices in Photovoltaic System

    Science.gov Websites

    Operations and Maintenance | Solar Research | NREL Guide Details Best Practices in Photovoltaic A best-practices report on photovoltaic (PV) operations and maintenance (O&M) released by NREL and the PV O&M Working Group provides valuable insights on improving the performance of PV systems

  6. Solar Newsletter | Solar Research | NREL

    Science.gov Websites

    , General Electric Optimize Voltage Control for Utility-Scale PV As utilities increasingly add solar power components that may be used to integrate distributed solar PV onto distribution systems. More than 335 data Innovation Award for Grid Reliability PV Demonstration First Solar, the California Independent System

  7. Measured and estimated performance of a fleet of shaded photovoltaic systems with string and module-level inverters

    DOE PAGES

    MacAlpine, Sara; Deline, Chris; Dobos, Aron

    2017-03-16

    Shade obstructions can significantly impact the performance of photovoltaic (PV) systems. Although there are many models for partially shaded PV arrays, there is a lack of information available regarding their accuracy and uncertainty when compared with actual field performance. This work assesses the recorded performance of 46 residential PV systems, equipped with either string-level or module-level inverters, under a variety of shading conditions. We compare their energy production data to annual PV performance predictions, with a focus on the practical models developed here for National Renewable Energy Laboratory's system advisor model software. This includes assessment of shade extent on eachmore » PV system by using traditional onsite surveys and newer 3D obstruction modelling. The electrical impact of shade is modelled by either a nonlinear performance model or assumption of linear impact with shade extent, depending on the inverter type. When applied to the fleet of residential PV systems, performance is predicted with median annual bias errors of 2.5% or less, for systems with up to 20% estimated shading loss. The partial shade models are not found to add appreciable uncertainty to annual predictions of energy production for this fleet of systems but do introduce a monthly root-mean-square error of approximately 4%-9% due to seasonal effects. Here the use of a detailed 3D model results in similar or improved accuracy over site survey methods, indicating that, with proper description of shade obstructions, modelling of partially shaded PV arrays can be done completely remotely, potentially saving time and cost.« less

  8. Analyzing the Energy Performance, Wind Loading, and Costs of Photovoltaic Slat Modules on Commercial Rooftops

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Geet, Otto D.; Fu, Ran; Horowitz, Kelsey A.

    NREL studied a new type of photovoltaic (PV) module configuration wherein multiple narrow, tilted slats are mounted in a single frame. Each slat of the PV slat module contains a single row of cells and is made using ordinary crystalline silicon PV module materials and processes, including a glass front sheet and weatherproof polymer encapsulation. Compared to a conventional ballasted system, a system using slat modules offer higher energy production and lower weight at lower LCOE. The key benefits of slat modules are reduced wind loading, improved capacity factor and reduced installation cost. First, the individual slats allow air tomore » flow through, which reduce wind loading. Using PV performance modeling software, we compared the performance of an optimized installation of slats modules to a typical installation of conventional modules in a ballasted rack mounting system. Based on the results of the performance modeling two different row tilt and spacing were tested in a wind tunnel. Scaled models of the PV Slat modules were wind tunnel tested to quantify the wind loading of a slat module system on a commercial rooftop, comparing the results to conventional ballasted rack mounted PV modules. Some commercial roofs do not have sufficient reserve dead load capacity to accommodate a ballasted system. A reduced ballast system design could make PV system installation on these roofs feasible for the first time without accepting the disadvantages of penetrating mounts. Finally, technoeconomic analysis was conducted to enable an economic comparison between a conventional commercial rooftop system and a reduced-ballast slat module installation.« less

  9. Southeast Regional Experiment Station

    NASA Astrophysics Data System (ADS)

    1994-08-01

    This is the final report of the Southeast Regional Experiment Station project. The Florida Solar Energy Center (FSEC), a research institute of the University of Central Florida (UCF), has operated the Southeast Regional Experiment Station (SE RES) for the US Department of Energy (DOE) since September 1982. Sandia National Laboratories, Albuquerque (SNLA) provides technical program direction for both the SE RES and the Southwest Regional Experiment Station (SW RES) located at the Southwest Technology Development Institute at Las Cruces, New Mexico. This cooperative effort serves a critical role in the national photovoltaic program by conducting system evaluations, design assistance and technology transfer to enhance the cost-effective utilization and development of photovoltaic technology. Initially, the research focus of the SE RES program centered on utility-connected PV systems and associated issues. In 1987, the SE RES began evaluating amorphous silicon (a-Si) thin-film PV modules for application in utility-interactive systems. Stand-alone PV systems began receiving increased emphasis at the SE RES in 1986. Research projects were initiated that involved evaluation of vaccine refrigeration, water pumping and other stand-alone power systems. The results of this work have led to design optimization techniques and procedures for the sizing and modeling of PV water pumping systems. Later recent research at the SE RES included test and evaluation of batteries and charge controllers for stand-alone PV system applications. The SE RES project provided the foundation on which FSEC achieved national recognition for its expertise in PV systems research and related technology transfer programs. These synergistic products of the SE RES illustrate the high visibility and contributions the FSEC PV program offers to the DOE.

  10. Network Reduction Algorithm for Developing Distribution Feeders for Real-Time Simulators: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagarajan, Adarsh; Nelson, Austin; Prabakar, Kumaraguru

    As advanced grid-support functions (AGF) become more widely used in grid-connected photovoltaic (PV) inverters, utilities are increasingly interested in their impacts when implemented in the field. These effects can be understood by modeling feeders in real-time systems and testing PV inverters using power hardware-in-the-loop (PHIL) techniques. This paper presents a novel feeder model reduction algorithm using a Monte Carlo method that enables large feeders to be solved and operated on real-time computing platforms. Two Hawaiian Electric feeder models in Synergi Electric's load flow software were converted to reduced order models in OpenDSS, and subsequently implemented in the OPAL-RT real-time digitalmore » testing platform. Smart PV inverters were added to the real-time model with AGF responses modeled after characterizing commercially available hardware inverters. Finally, hardware inverters were tested in conjunction with the real-time model using PHIL techniques so that the effects of AGFs on the choice feeders could be analyzed.« less

  11. Hybrid photovoltaic-thermoelectric system for concentrated solar energy conversion: Experimental realization and modeling

    NASA Astrophysics Data System (ADS)

    Beeri, Ofer; Rotem, Oded; Hazan, Eden; Katz, Eugene A.; Braun, Avi; Gelbstein, Yaniv

    2015-09-01

    An experimental demonstration of the combined photovoltaic (PV) and thermoelectric conversion of concentrated sunlight (with concentration factor, X, up to ˜300) into electricity is presented. The hybrid system is based on a multi-junction PV cell and a thermoelectric generator (TEG). The latter increases the electric power of the system and dissipates some of the excessive heat. For X ≤ 200, the system's maximal efficiency, ˜32%, was mostly due to the contribution from the PV cell. With increasing X and system temperature, the PV cell's efficiency decreased while that of the TEG increased. Accordingly, the direct electrical contribution of the TEG started to dominate in the total system power, reaching ˜20% at X ≈ 290. Using a simple steady state finite element modeling, the cooling effect of the TEG on the hybrid system's efficiency was proved to be even more significant than its direct electrical contribution for high solar concentrations. As a result, the total efficiency contribution of the TEG reached ˜40% at X ≈ 200. This suggests a new system optimization concept that takes into account the PV cell's temperature dependence and the trade-off between the direct electrical generation and cooling capabilities of the TEG. It is shown that the hybrid system has a real potential to exceed 50% total efficiency by using more advanced PV cells and TE materials.

  12. High School Mentors in Brief: Findings from the Big Brothers Big Sisters School-Based Mentoring Impact Study. P/PV In Brief. Issue 8

    ERIC Educational Resources Information Center

    Jucovy, Linda; Herrera, Carla

    2009-01-01

    This issue of "Public/Private Ventures (P/PV) In Brief" is based on "High School Students as Mentors," a report that examined the efficacy of high school mentors using data from P/PV's large-scale random assignment impact study of Big Brothers Big Sisters school-based mentoring programs. The brief presents an overview of the findings, which…

  13. Switching Logic for Converting Off-grid PV Customers to On-grid by Utilizing Off-grid Inverter and Battery

    NASA Astrophysics Data System (ADS)

    Anishkumar, A. R.; Sreejaya, P.

    2016-12-01

    Kerala is a state in India having a very good potential for solar PV energy production. The domestic customers in Kerala using PV system are approximately 15 % and almost all of them are using the off-grid PV system. When these off grid customers move to on-grid system, off grid system accessories such as inverter and batteries become redundant. In this paper, a switching logic has been developed for the effective utilization of off grid accessories and reducing islanding power loss for on grid customers. An algorithm is proposed for the switching logic and it is verified using simulation results and hardware implementation.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosenthal, A

    Southwest Technology Development Institute (SWTDI), an independent, university-based research institute, has been the operator of the Southwest Region Photovoltaic Experiment Station (SWRES) for almost 30 years. The overarching mission of SWTDI is to position PV systems and solar technologies to become cost-effective, major sources of energy for the United States. Embedded in SWTDI's general mission has been the more-focused mission of the SWRES: to provide value added technical support to the DOE Solar Energy Technologies Program (SETP) to effectively and efficiently meet the R&D needs and targets specified in the SETP Multi-Year Technical Plan. : The DOE/SETP goals of growingmore » U.S. PV manufacturing into giga-watt capacities and seeing tera-watt-hours of solar energy production in the U.S. require an infrastructure that is under development. The staff of the SWRES has supported DOE/SETP through a coherent, integrated program to address infrastructural needs inhibiting wide-scale PV deployment in three major technical categories: specialized engineering services, workforce development, and deployment facilitation. The SWRES contract underwent three major revisions during its five year period-of- performance, but all tasks and deliverables fell within the following task areas: Task 1: PV Systems Assistance Center 1. Develop a Comprehensive multi-year plan 2. Provide technical workforce development materials and workshops for PV stakeholder groups including university, professional installers, inspectors, state energy offices, Federal agencies 3. Serve on the NABCEP exam committee 4. Provide on-demand technical PV system design reviews for U.S. PV stakeholders 5. Provide PV system field testing and instrumentation, technical outreach (including extensive support for the DOE Market Transformation program) Task 2: Design-for-Manufacture PV Systems 1. Develop and install 18 kW parking carport (cost share) and PV-thermal carport (Albuquerque) deriving and publishing lessons learned Task 3: PV Codes and Standards 1. Serve as the national lead for development and preparation of all proposals (related to PV) to the National Electrical Code 2. Participate in the Standards Technical Panels for modules (UL1703) and inverters (UL1741) Task 4: Assess Inverter Long Term Reliability 1. Install and monitor identical inverters at SWRES and SERES 2. Operate and monitor all inverters for 5 years, characterizing all failures and performance trends Task 5: Test and Evaluation Support for Solar America Initiative 1. Provide test and evaluation services to the National Laboratories for stage gate and progress measurements of SAI TPP winners« less

  15. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    NASA Astrophysics Data System (ADS)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of power. As the main aim of this research is to use renewable sources like PV in the system, it is advantageous to use a combination of both PV and synchronous generator in the system.

  16. Photovoltaic system criteria documents. Volume 3: Environmental issues and evaluation criteria for photovoltaic applications

    NASA Technical Reports Server (NTRS)

    Koenig, John C.; Billitti, Joseph W.; Tallon, John M.

    1979-01-01

    The environmental issues and evaluation criteria relating to the suitability of sites proposed for photovoltaic (PV) system deployment are identified. The important issues are defined, briefly discussed and then developed into evaluation criteria. System designers are provided with information on the environmental sensitivity of PV systems in realistic applications, background material which indicates the applicability of the siting issues identified, and evaluation criteria are defined to facilitate the selection of sites that maximize PV system operation.

  17. Structurally designed attenuated subunit vaccines for S. aureus LukS-PV and LukF-PV confer protection in a mouse bacteremia model.

    PubMed

    Karauzum, Hatice; Adhikari, Rajan P; Sarwar, Jawad; Devi, V Sathya; Abaandou, Laura; Haudenschild, Christian; Mahmoudieh, Mahta; Boroun, Atefeh R; Vu, Hong; Nguyen, Tam; Warfield, Kelly L; Shulenin, Sergey; Aman, M Javad

    2013-01-01

    Previous efforts towards S. aureus vaccine development have largely focused on cell surface antigens to induce opsonophagocytic killing aimed at providing sterile immunity, a concept successfully applied to other Gram-positive pathogens such as Streptococcus pneumoniae. However, these approaches have largely failed, possibly in part due to the remarkable diversity of the staphylococcal virulence factors such as secreted immunosuppressive and tissue destructive toxins. S. aureus produces several pore-forming toxins including the single subunit alpha hemolysin as well as bicomponent leukotoxins such as Panton-Valentine leukocidin (PVL), gamma hemolysins (Hlg), and LukED. Here we report the generation of highly attenuated mutants of PVL subunits LukS-PV and LukF-PV that were rationally designed, based on an octameric structural model of the toxin, to be deficient in oligomerization. The attenuated subunit vaccines were highly immunogenic and showed significant protection in a mouse model of S. aureus USA300 sepsis. Protection against sepsis was also demonstrated by passive transfer of rabbit immunoglobulin raised against LukS-PV. Antibodies to LukS-PV inhibited the homologous oligomerization of LukS-PV with LukF-PV as well heterologous oligomerization with HlgB. Importantly, immune sera from mice vaccinated with the LukS mutant not only inhibited the PMN lytic activity produced by the PVL-positive USA300 but also blocked PMN lysis induced by supernatants of PVL-negative strains suggesting a broad protective activity towards other bicomponent toxins. These findings strongly support the novel concept of an anti-virulence, toxin-based vaccine intended for prevention of clinical S. aureus invasive disease, rather than achieving sterile immunity. Such a multivalent vaccine may include attenuated leukotoxins, alpha hemolysin, and superantigens.

  18. Breakthrough: micro-electronic photovoltaics

    ScienceCinema

    Okandan, Murat; Gupta, Vipin

    2018-01-16

    Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectric and micro-electromechanical systems (MEMS) techniques.

  19. Energy 101: Solar PV

    ScienceCinema

    None

    2018-01-08

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  20. Distributed Storage Inverter and Legacy Generator Integration Plus Renewables Solution for Microgrids

    DTIC Science & Technology

    2015-07-01

    Reactive kVAR Kilo Watts kW Lithium Ion Li Ion Lithium-Titanate Oxide nLTO Natural gas NG Performance Objectives PO Photovoltaic PV Power ...cloud covered) periods. The demonstration features a large (relative to the overall system power requirements) photovoltaic solar array, whose inverter...microgrid with less expensive power storage instead of large scale energy storage and that the renewable energy with small-scale power storage can

  1. The Effectiveness of Warranties in the Solar Photovoltaic and Automobile Industries

    NASA Astrophysics Data System (ADS)

    Formica, Tyler J.

    A warranty is an agreement outlined by a manufacturer to a customer that defines performance requirements for a product or service. Although long warranty periods are a useful marketing tool, in 2011 the warranty claims expense was 2.6% of total sales for computer original equipment manufacturers (OEMs) and is over 2% of total sales in many other industries today. Solar PV systems offer inverters with 5-15 year warranties and PV modules with 25-year performance warranties. This is problematic for the return on investment (ROI) of solar PV systems when the modules are still productive and covered under warranty but inverter failures occur due to degradation of electronic components after their warranty has expired. Out-of-warranty inverter failures during the lifetime of solar panels decrease the ROI of solar PV systems significantly and can cause the annual ROI to actually be negative 15-25 years into the lifetime of the system. This thesis analyzes the factors that contribute to designing an optimal warranty period and the relationship between reliability and warranty periods using General Motors (GM) and the solar PV industry as case studies. A return on investment of a solar photovoltaic system is also conducted and the effect of reliability, changing tax credit structures, and failure areas of solar PV systems are analyzed.

  2. How to Estimate Demand Charge Savings from PV on Commercial Buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter J; Bird, Lori A

    Rooftop photovoltaic (PV) systems are compensated through retail electricity tariffs - and for commercial and industrial customers, these are typically comprised of three components: a fixed monthly charge, energy charges, and demand charges. Of these, PV's ability to reduce demand charges has traditionally been the most difficult to estimate. In this fact sheet we explain the basics of demand charges, and provide a new method that a potential customer or PV developer can use to estimate a range of potential demand charge savings for a proposed PV system. These savings can then be added to other project cash flows, inmore » assessing the project's financial performance.« less

  3. Installed Cost Benchmarks and Deployment Barriers for Residential Solar Photovoltaics with Energy Storage: Q1 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardani, Kristen; O'Shaughnessy, Eric; Fu, Ran

    2016-12-01

    In this report, we fill a gap in the existing knowledge about PV-plus-storage system costs and value by providing detailed component- and system-level installed cost benchmarks for residential systems. We also examine other barriers to increased deployment of PV-plus-storage systems in the residential sector. The results are meant to help technology manufacturers, installers, and other stakeholders identify cost-reduction opportunities and inform decision makers about regulatory, policy, and market characteristics that impede solar plus storage deployment. In addition, our periodic cost benchmarks will document progress in cost reductions over time. To analyze costs for PV-plus-storage systems deployed in the first quartermore » of 2016, we adapt the National Renewable Energy Laboratory's component- and system-level cost-modeling methods for standalone PV. In general, we attempt to model best-in-class installation techniques and business operations from an installed-cost perspective. In addition to our original analysis, model development, and review of published literature, we derive inputs for our model and validate our draft results via interviews with industry and subject-matter experts. One challenge to analyzing the costs of PV-plus-storage systems is choosing an appropriate cost metric. Unlike standalone PV, energy storage lacks universally accepted cost metrics, such as dollars per watt of installed capacity and lifetime levelized cost of energy. We explain the difficulty of arriving at a standard approach for reporting storage costs and then provide the rationale for using the total installed costs of a standard PV-plus-storage system as our primary metric, rather than using a system-size-normalized metric.« less

  4. Large Scale Integration of Renewable Power Sources into the Vietnamese Power System

    NASA Astrophysics Data System (ADS)

    Kies, Alexander; Schyska, Bruno; Thanh Viet, Dinh; von Bremen, Lueder; Heinemann, Detlev; Schramm, Stefan

    2017-04-01

    The Vietnamese Power system is expected to expand considerably in upcoming decades. Power capacities installed are projected to grow from 39 GW in 2015 to 129.5 GW by 2030. Installed wind power capacities are expected to grow to 6 GW (0.8 GW 2015) and solar power capacities to 12 GW (0.85 GW 2015). This goes hand in hand with an increase of the renewable penetration in the power mix from 1.3% from wind and photovoltaics (PV) in 2015 to 5.4% by 2030. The overall potential for wind power in Vietnam is estimated to be around 24 GW. Moreover, the up-scaling of renewable energy sources was formulated as one of the priorized targets of the Vietnamese government in the National Power Development Plan VII. In this work, we investigate the transition of the Vietnamese power system towards high shares of renewables. For this purpose, we jointly optimise the expansion of renewable generation facilities for wind and PV, and the transmission grid within renewable build-up pathways until 2030 and beyond. To simulate the Vietnamese power system and its generation from renewable sources, we use highly spatially and temporally resolved historical weather and load data and the open source modelling toolbox Python for Power System Analysis (PyPSA). We show that the highest potential of renewable generation for wind and PV is observed in southern Vietnam and discuss the resulting need for transmission grid extensions in dependency of the optimal pathway. Furthermore, we show that the smoothing effect of wind power has several considerable beneficial effects and that the Vietnamese hydro power potential can be efficiently used to provide balancing opportunities. This work is part of the R&D Project "Analysis of the Large Scale Integration of Renewable Power into the Future Vietnamese Power System" (GIZ, 2016-2018).

  5. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results.

    PubMed

    Humada, Ali M; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M; Ahmed, Mushtaq N

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions.

  6. Robust PV Degradation Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk; Deline, Christopher A; Kurtz, Sarah

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of PV systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this manuscript, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year (YOY) rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  7. Robust PV Degradation Methodology and Application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  8. Robust PV Degradation Methodology and Application

    DOE PAGES

    Jordan, Dirk C.; Deline, Chris; Kurtz, Sarah R.; ...

    2017-12-21

    The degradation rate plays an important role in predicting and assessing the long-term energy generation of photovoltaics (PV) systems. Many methods have been proposed for extracting the degradation rate from operational data of PV systems, but most of the published approaches are susceptible to bias due to inverter clipping, module soiling, temporary outages, seasonality, and sensor degradation. In this paper, we propose a methodology for determining PV degradation leveraging available modeled clear-sky irradiance data rather than site sensor data, and a robust year-over-year rate calculation. We show the method to provide reliable degradation rate estimates even in the case ofmore » sensor drift, data shifts, and soiling. Compared with alternate methods, we demonstrate that the proposed method delivers the lowest uncertainty in degradation rate estimates for a fleet of 486 PV systems.« less

  9. Photovoltaic Grid-Connected Modeling and Characterization Based on Experimental Results

    PubMed Central

    Humada, Ali M.; Hojabri, Mojgan; Sulaiman, Mohd Herwan Bin; Hamada, Hussein M.; Ahmed, Mushtaq N.

    2016-01-01

    A grid-connected photovoltaic (PV) system operates under fluctuated weather condition has been modeled and characterized based on specific test bed. A mathematical model of a small-scale PV system has been developed mainly for residential usage, and the potential results have been simulated. The proposed PV model based on three PV parameters, which are the photocurrent, IL, the reverse diode saturation current, Io, the ideality factor of diode, n. Accuracy of the proposed model and its parameters evaluated based on different benchmarks. The results showed that the proposed model fitting the experimental results with high accuracy compare to the other models, as well as the I-V characteristic curve. The results of this study can be considered valuable in terms of the installation of a grid-connected PV system in fluctuated climatic conditions. PMID:27035575

  10. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a highly sensitive detection of enterovirus in the stool samples of acute flaccid paralysis cases.

    PubMed

    Arita, Minetaro; Ling, Hua; Yan, Dongmei; Nishimura, Yorihiro; Yoshida, Hiromu; Wakita, Takaji; Shimizu, Hiroyuki

    2009-12-16

    In the global eradication program for poliomyelitis, the laboratory diagnosis plays a critical role by isolating poliovirus (PV) from the stool samples of acute flaccid paralysis (AFP) cases. In this study, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a rapid and highly sensitive detection of enterovirus including PV to identify stool samples positive for enterovirus including PV. A primer set was designed for RT-LAMP to detect enterovirus preferably those with PV-like 5'NTRs of the viral genome. The sensitivity of RT-LAMP system was evaluated with prototype strains of enterovirus. Detection of enterovirus from stool extracts was examined by using RT-LAMP system. We detected at least 400 copies of the viral genomes of PV(Sabin) strains within 90 min by RT-LAMP with the primer set. This RT-LAMP system showed a preference for Human enterovirus species C (HEV-C) strains including PV, but exhibited less sensitivity to the prototype strains of HEV-A and HEV-B (detection limits of 7,400 to 28,000 copies). Stool extracts, from which PV, HEV-C, or HEV-A was isolated in the cell culture system, were mostly positive by RT-LAMP method (positive rates of 15/16 (= 94%), 13/14 (= 93%), and 4/4 (= 100%), respectively). The positive rate of this RT-LAMP system for stool extracts from which HEV-B was isolated was lower than that of HEV-C (positive rate of 11/21 (= 52%)). In the stool samples, which were negative for enterovirus isolation by the cell culture system, we found that two samples were positive for RT-LAMP (positive rates of 2/38 (= 5.3%)). In these samples, enterovirus 96 was identified by sequence analysis utilizing a seminested PCR system. RT-LAMP system developed in this study showed a high sensitivity comparable to that of the cell culture system for the detection of PV, HEV-A, and HEV-C, but less sensitivity to HEV-B. This RT-LAMP system would be useful for the direct detection of enterovirus from the stool extracts.

  11. A Two-Stage Stochastic Mixed-Integer Programming Approach to the Smart House Scheduling Problem

    NASA Astrophysics Data System (ADS)

    Ozoe, Shunsuke; Tanaka, Yoichi; Fukushima, Masao

    A “Smart House” is a highly energy-optimized house equipped with photovoltaic systems (PV systems), electric battery systems, fuel cell cogeneration systems (FC systems), electric vehicles (EVs) and so on. Smart houses are attracting much attention recently thanks to their enhanced ability to save energy by making full use of renewable energy and by achieving power grid stability despite an increased power draw for installed PV systems. Yet running a smart house's power system, with its multiple power sources and power storages, is no simple task. In this paper, we consider the problem of power scheduling for a smart house with a PV system, an FC system and an EV. We formulate the problem as a mixed integer programming problem, and then extend it to a stochastic programming problem involving recourse costs to cope with uncertain electricity demand, heat demand and PV power generation. Using our method, we seek to achieve the optimal power schedule running at the minimum expected operation cost. We present some results of numerical experiments with data on real-life demands and PV power generation to show the effectiveness of our method.

  12. NREL Finds Nanotube Semiconductors Well-suited for PV Systems | News | NREL

    Science.gov Websites

    photoinduced electron transfer for emerging organic semiconductors such as single-walled carbon nanotubes (SWCNT) that can be used in organic PV devices. In organic PV devices, after a photon is absorbed Larson, and Steven Strauss from Colorado State University. Organic PV devices involve an interface

  13. Solar Market Research and Analysis Projects | Solar Research | NREL

    Science.gov Websites

    increase the effectiveness and reduce the variability and cost of PV operations and maintenance (O&M significantly drive up the cost of electricity for PV systems. To help reduce PV O&M costs and improve PV -Storage: Reducing Barriers Through Cost-Optimization and Market Characterization While falling costs have

  14. Grid Simulation and Power Hardware-in-the-Loop | Grid Modernization | NREL

    Science.gov Websites

    used PHIL to investigate the effects of advanced solar PV inverters on Hawaii's grid. A variety of PV Evaluating the Performance of Methods for Coordinated Control of Distributed Residential PV/Energy Storage photovoltaics (PV)-battery energy storage inverter control applied across an electric distribution system

  15. Reliability and Engineering | Photovoltaic Research | NREL

    Science.gov Websites

    -Time PV and Solar Resource Testing We study long-term performance, reliability, and failures of PV (NCPV) at NREL, we focus on photovoltaic (PV) reliability research and development (R&D) to improve PV technologies. We test modules and systems for long-term performance and stress them in the field

  16. Utility-interactive photovoltaic power conditioners - Effects of transformerless design and dc injection

    NASA Astrophysics Data System (ADS)

    Das, R.; Krauthamer, S.; Klein, J.

    It is shown that the use of isolation transformers to eliminate dc injection into the utility in utility-interactive photovoltaic (PV) systems can reduce the overall efficiency of the system. In order to improve PV efficiency, a transformerless power conditioning subsystem (PCS) is proposed for a grounded PV array having two and three connections to a utility. An additional transformerless PCS configuration is proposed for an ungrounded PV array. A detailed schematic drawing of the interconnections between the elements of a transformerless PCS is provided.

  17. Test Protocols for Advanced Inverter Interoperability Functions – Main Document

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not currently required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  18. Test Protocols for Advanced Inverter Interoperability Functions - Appendices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Gonzalez, Sigifredo; Ralph, Mark E.

    2013-11-01

    Distributed energy resources (DER) such as photovoltaic (PV) systems, when deployed in a large scale, are capable of influencing significantly the operation of power systems. Looking to the future, stakeholders are working on standards to make it possible to manage the potentially complex interactions between DER and the power system. In 2009, the Electric Power Research Institute (EPRI), Sandia National Laboratories (SNL) with the U.S. Department of Energy (DOE), and the Solar Electric Power Association (SEPA) initiated a large industry collaborative to identify and standardize definitions for a set of DER grid support functions. While the initial effort concentrated onmore » grid-tied PV inverters and energy storage systems, the concepts have applicability to all DER. A partial product of this on-going effort is a reference definitions document (IEC TR 61850-90-7, Object models for power converters in distributed energy resources (DER) systems) that has become a basis for expansion of related International Electrotechnical Commission (IEC) standards, and is supported by US National Institute of Standards and Technology (NIST) Smart Grid Interoperability Panel (SGIP). Some industry-led organizations advancing communications protocols have also embraced this work. As standards continue to evolve, it is necessary to develop test protocols to independently verify that the inverters are properly executing the advanced functions. Interoperability is assured by establishing common definitions for the functions and a method to test compliance with operational requirements. This document describes test protocols developed by SNL to evaluate the electrical performance and operational capabilities of PV inverters and energy storage, as described in IEC TR 61850-90-7. While many of these functions are not now required by existing grid codes or may not be widely available commercially, the industry is rapidly moving in that direction. Interoperability issues are already apparent as some of these inverter capabilities are being incorporated in large demonstration and commercial projects. The test protocols are intended to be used to verify acceptable performance of inverters within the standard framework described in IEC TR 61850-90-7. These test protocols, as they are refined and validated over time, can become precursors for future certification test procedures for DER advanced grid support functions.« less

  19. Increased Throughput and Sensitivity of Synchrotron-Based Characterization for Photovoltaic Materials

    DOE PAGES

    Morishige, Ashley E.; Laine, Hannu S.; Looney, Erin E.; ...

    2017-04-03

    Optimizing photovoltaic (PV) devices requires characterization and optimization across several length scales, from centimeters to nanometers. Synchrotron-based micro-X-ray fluorescence spectromicroscopy (μ-XRF) is a valuable link in the PV-related material and device characterization suite. μ-XRF maps of elemental distributions in PV materials have high spatial resolution and excellent sensitivity and can be measured on absorber materials and full devices. Recently, we implemented on-the-fly data collection (flyscan) at Beamline 2-ID-D at the Advanced Photon Source at Argonne National Laboratory, eliminating a 300 ms per-pixel overhead time. This faster scanning enables high-sensitivity (~10 14 atoms/cm 2), large-area (10 000s of μm 2), high-spatialmore » resolution (<;200 nm scale) maps to be completed within a practical scanning time. We specifically show that when characterizing detrimental trace metal precipitate distributions in multicrystalline silicon wafers for PV, flyscans can increase the productivity of μ-XRF by an order of magnitude. Additionally, flyscan μ-XRF mapping enables relatively large-area correlative microscopy. As an example, we map the transition metal distribution in a 50 μm-diameter laser-fired contact of a silicon solar cell before and after lasing. As a result, while we focus on μ-XRF of mc-Si wafers for PV, our results apply broadly to synchrotron-based mapping of PV absorbers and devices.« less

  20. Space Station Freedom solar array panels plasma interaction test facility

    NASA Technical Reports Server (NTRS)

    Martin, Donald F.; Mellott, Kenneth D.

    1989-01-01

    The Space Station Freedom Power System will make extensive use of photovoltaic (PV) power generation. The phase 1 power system consists of two PV power modules each capable of delivering 37.5 KW of conditioned power to the user. Each PV module consists of two solar arrays. Each solar array is made up of two solar blankets. Each solar blanket contains 82 PV panels. The PV power modules provide a 160 V nominal operating voltage. Previous research has shown that there are electrical interactions between a plasma environment and a photovoltaic power source. The interactions take two forms: parasitic current loss (occurs when the currect produced by the PV panel leaves at a high potential point and travels through the plasma to a lower potential point, effectively shorting that portion of the PV panel); and arcing (occurs when the PV panel electrically discharges into the plasma). The PV solar array panel plasma interaction test was conceived to evaluate the effects of these interactions on the Space Station Freedom type PV panels as well as to conduct further research. The test article consists of two active solar array panels in series. Each panel consists of two hundred 8 cm x 8 cm silicon solar cells. The test requirements dictated specifications in the following areas: plasma environment/plasma sheath; outgassing; thermal requirements; solar simulation; and data collection requirements.

  1. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications.

    PubMed

    Rohini, G; Jamuna, V

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results.

  2. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  3. PLL Based Energy Efficient PV System with Fuzzy Logic Based Power Tracker for Smart Grid Applications

    PubMed Central

    Rohini, G.; Jamuna, V.

    2016-01-01

    This work aims at improving the dynamic performance of the available photovoltaic (PV) system and maximizing the power obtained from it by the use of cascaded converters with intelligent control techniques. Fuzzy logic based maximum power point technique is embedded on the first conversion stage to obtain the maximum power from the available PV array. The cascading of second converter is needed to maintain the terminal voltage at grid potential. The soft-switching region of three-stage converter is increased with the proposed phase-locked loop based control strategy. The proposed strategy leads to reduction in the ripple content, rating of components, and switching losses. The PV array is mathematically modeled and the system is simulated and the results are analyzed. The performance of the system is compared with the existing maximum power point tracking algorithms. The authors have endeavored to accomplish maximum power and improved reliability for the same insolation of the PV system. Hardware results of the system are also discussed to prove the validity of the simulation results. PMID:27294189

  4. A pulse-width modulated, high reliability charge controller for small photovoltaic systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerken, K.; Welsh, D.

    1997-02-01

    This report presents the results of a development effort to design, test and begin production of a new class of small photovoltaic (PV) charge controllers. Sandia National Laboratories provided technical support, test data and financial support through a Balance-of-System Development contract. One of the objectives of the development was to increase user confidence in small PV systems by improving the reliability and operating life of the system controllers. Another equally important objective was to improve the economics of small PV systems by extending the battery lifetimes. Using new technology and advanced manufacturing techniques, these objectives were accomplished. Because small stand-alonemore » PV systems account for over one third of all PV modules shipped, the positive impact of improving the reliability and economics of PV systems in this market segment will be felt throughout the industry. The results of verification testing of the new product are also included in this report. The initial design goals and specifications were very aggressive, but the extensive testing demonstrates that all the goals were achieved. Production of the product started in May at a rate of 2,000 units per month. Over 40 Morningstar distributors (5 US and 35 overseas) have taken delivery in the first 2 months of shipments. Initial customer reactions to the new controller have been very favorable.« less

  5. PV large systems project

    NASA Technical Reports Server (NTRS)

    Leonard, S. L.

    1982-01-01

    Near term photovoltaic central-station markets are analyzed. Cost effectiveness of photovoltaic plants is determined in terms of reduction of oil consumption. The breakeven photovoltaic system cost vs oil-steam power generation is given. The value of photovoltaic power plants in Southern California and in Los Angelos is given in terms of fuel savings and capacity value. The potential value of third party financing, facilitated by Federal and state tax incentives is analyzed.

  6. RTDS implementation of an improved sliding mode based inverter controller for PV system.

    PubMed

    Islam, Gazi; Muyeen, S M; Al-Durra, Ahmed; Hasanien, Hany M

    2016-05-01

    This paper proposes a novel approach for testing dynamics and control aspects of a large scale photovoltaic (PV) system in real time along with resolving design hindrances of controller parameters using Real Time Digital Simulator (RTDS). In general, the harmonic profile of a fast controller has wide distribution due to the large bandwidth of the controller. The major contribution of this paper is that the proposed control strategy gives an improved voltage harmonic profile and distribute it more around the switching frequency along with fast transient response; filter design, thus, becomes easier. The implementation of a control strategy with high bandwidth in small time steps of Real Time Digital Simulator (RTDS) is not straight forward. This paper shows a good methodology for the practitioners to implement such control scheme in RTDS. As a part of the industrial process, the controller parameters are optimized using particle swarm optimization (PSO) technique to improve the low voltage ride through (LVRT) performance under network disturbance. The response surface methodology (RSM) is well adapted to build analytical models for recovery time (Rt), maximum percentage overshoot (MPOS), settling time (Ts), and steady state error (Ess) of the voltage profile immediate after inverter under disturbance. A systematic approach of controller parameter optimization is detailed. The transient performance of the PSO based optimization method applied to the proposed sliding mode controlled PV inverter is compared with the results from genetic algorithm (GA) based optimization technique. The reported real time implementation challenges and controller optimization procedure are applicable to other control applications in the field of renewable and distributed generation systems. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  7. Bexar County Parking Garage Photovoltaic Panels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weir, Golda

    2012-01-23

    The main objective of the Bexar County Parking Garage Photovoltaic (PV) Panel project is to install a PV System that will promote the use of renewable energy. This project will also help sustain Bexar County ongoing greenhouse gas emissions reduction and energy efficiency goals. The scope of this project includes the installation of a 100-kW system on the top level of a new 236,285 square feet parking garage. The PV system consists of 420 solar panels that covers 7,200 square feet and is tied into the electric-grid. It provides electricity to the office area located within the garage. The estimatedmore » annual electricity production of the PV system is 147,000 kWh per year.« less

  8. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Stringfellow Superfund Site in Riverside, California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosey, G.; Van Geet, O.

    2010-12-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on the Stringfellow Superfund Site in Riverside, California. The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.13/kWh and incentives offered by Southern California Edison under the California Solar Initiative. According to the assessment, a government-owned, ground-mounted PV system represents a technically and economically feasible option. The report recommends financing options that could assist in themore » implementation of such a system.« less

  9. Climate, air quality and human health benefits of various solar photovoltaic deployment scenarios in China in 2030

    NASA Astrophysics Data System (ADS)

    Yang, Junnan; Li, Xiaoyuan; Peng, Wei; Wagner, Fabian; Mauzerall, Denise L.

    2018-06-01

    Solar photovoltaic (PV) electricity generation can greatly reduce both air pollutant and greenhouse gas emissions compared to fossil fuel electricity generation. The Chinese government plans to greatly scale up solar PV installation between now and 2030. However, different PV development pathways will influence the range of air quality and climate benefits. Benefits depend on how much electricity generated from PV is integrated into power grids and the type of power plant displaced. Using a coal-intensive power sector projection as the base case, we estimate the climate, air quality, and related human health benefits of various 2030 PV deployment scenarios. We use the 2030 government goal of 400 GW installed capacity but vary the location of PV installation and the extent of inter-provincial PV electricity transmission. We find that deploying distributed PV in the east with inter-provincial transmission maximizes potential CO2 reductions and air quality-related health benefits (4.2% and 1.2% decrease in national total CO2 emissions and air pollution-related premature deaths compared to the base case, respectively). Deployment in the east with inter-provincial transmission results in the largest benefits because it maximizes displacement of the dirtiest coal-fired power plants and minimizes PV curtailment, which is more likely to occur without inter-provincial transmission. We further find that the maximum co-benefits achieved with deploying PV in the east and enabling inter-provincial transmission are robust under various maximum PV penetration levels in both provincial and regional grids. We find large potential benefits of policies that encourage distributed PV deployment and facilitate inter-provincial PV electricity transmission in China.

  10. Percutaneous transsplenic portal vein catheterization: technical procedures, safety, and clinical applications.

    PubMed

    Zhu, Kangshun; Meng, Xiaochun; Zhou, Bin; Qian, Jiesheng; Huang, Wensou; Deng, Meihai; Shan, Hong

    2013-04-01

    To evaluate the safety and feasibility of percutaneous transsplenic portal vein catheterization (PTSPC) by retrospective review of its use in patients with portal vein (PV) occlusion. From July 2004 to December 2010, 46 patients with a history of uncontrolled gastroesophageal variceal bleeding secondary to portal hypertension underwent endovascular PV interventions via a percutaneous transsplenic approach. All patients had occlusion of the main PV or central intrahepatic PV branches, which prevented the performance of a transhepatic approach. A vein within the splenic parenchyma was punctured under fluoroscopic guidance by referencing preoperative computed tomography images. PTSPC-related complications and clinical applications were analyzed. PTSPC was successfully performed in 44 of 46 patients (96%); two failures were caused by inaccessible small intrasplenic veins. PTSPC-related major bleeding complications occurred in three patients (6.5%), including large intraperitoneal hemorrhage in one patient and large splenic subcapsular hemorrhage in two patients. Two of the three patients developed hypotension, and one developed severe anemia. All three of the patients required blood transfusions. PTSPC-related minor bleeding complications occurred in six patients (13%) as a result of a small splenic subcapsular hemorrhage. In addition, three patients exhibited mild left pleural effusion, which subsided spontaneously 1 week later. All 44 patients successfully treated via PTSPC received gastroesophageal variceal embolization. Eight patients received PV stents, five for treatment of PV occlusion and three during transjugular intrahepatic portosystemic shunt placement. PTSPC is a safe and effective access for endovascular PV interventions in patients without a transhepatic window. Copyright © 2013 SIR. Published by Elsevier Inc. All rights reserved.

  11. Combining Theory, Model, and Experiment to Explain How Intrinsic Theta Rhythms Are Generated in an In Vitro Whole Hippocampus Preparation without Oscillatory Inputs

    PubMed Central

    Ferguson, Katie A.

    2017-01-01

    Abstract Scientists have observed local field potential theta rhythms (3–12 Hz) in the hippocampus for decades, but understanding the mechanisms underlying their generation is complicated by their diversity in pharmacological and frequency profiles. In addition, interactions with other brain structures and oscillatory drives to the hippocampus during distinct brain states has made it difficult to identify hippocampus-specific properties directly involved in theta generation. To overcome this, we develop cellular-based network models using a whole hippocampus in vitro preparation that spontaneously generates theta rhythms. Building on theoretical and computational analyses, we find that spike frequency adaptation and postinhibitory rebound constitute a basis for theta generation in large, minimally connected CA1 pyramidal (PYR) cell network models with fast-firing parvalbumin-positive (PV+) inhibitory cells. Sparse firing of PYR cells and large excitatory currents onto PV+ cells are present as in experiments. The particular theta frequency is more controlled by PYR-to-PV+ cell interactions rather than PV+-to-PYR cell interactions. We identify two scenarios by which theta rhythms can emerge, and they can be differentiated by the ratio of excitatory to inhibitory currents to PV+ cells, but not to PYR cells. Only one of the scenarios is consistent with data from the whole hippocampus preparation, which leads to the prediction that the connection probability from PV+ to PYR cells needs to be larger than from PYR to PV+ cells. Our models can serve as a platform on which to build and develop an understanding of in vivo theta generation. PMID:28791333

  12. North American Board of Certified Energy Practitioners Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, Richard

    The U.S. DOE’s Office of EERE National Solar Energy Technology Program (SETP) calls for a “National Accreditation and Certification Program for Installation and Acceptance of Photovoltaic Systems.” A near-term goal listed in the U.S. Photovoltaic Industry’s Roadmap, 2000 - 2020 is to work to establish standards, codes, and certifications which are essential for consumer protection and acceptance as part of the goal of building toward a viable future PV industry. This program paves the way for a voluntary national certification program for PV system practitioners and installers, initiation of the first steps toward certification of hardware, and reinforcement of allmore » five of the technical objectives in the Systems category of SETPs Multi-Year technical Plan. Through this project, NABCEP will direct the continued initiation of and sustained implementation and administration of the NABCEP Solar PV Installer Certification Program (hereafter the “Program”). The NABCEP Program is a national, voluntary program designed to provide certification for those PV installers who demonstrate the requisite skills, abilities and knowledge typically required to install and maintain PV systems. The core document upon which the Program was developed and upon which the national exam is based, is referred to as the (Program) Task Analysis. It is a thorough descriptive document containing specific psychomotor and cognitive tasks for the purposes of identifying the types of training/assessment methods that apply. Psychomotor skills require measuring, assembling, fastening and related activities. Cognitive skills require knowledge processing, decision-making and computations. NABCEP effectively evaluates an applicant’s psychomotor skills through review of a candidate’s PV installations and hands-on training received. NABCEP evaluates the candidate’s cognitive skills through administration of its national Program exam. By first qualifying for and then obtaining the required passing score, NABCEP certificants receive an accreditation that upholds NABCEP’s standards of quality, compliance to applicable codes and safety in PV installation. The objectives of DOE’s National Solar Energy Technology Program (SETP) are intrinsic to NABCEP. As detailed in the PV Roadmap, the lifespan of a PV system is a function of reliability and value. PV system reliability is directly dependent upon the quality of components and, design, installation and maintenance of a system. The latter three are all core components of the NABCEP Task Analysis - accordingly NABCEP certified installers will be instrumental in improving reliability of systems through safe, code and manufacturer-compliant installation and necessary post-installation maintenance of PV systems. This will have the effect of ensuring and increasing the performance of installed systems and, as consumers realize the benefits of well-installed and maintained systems, increased demand will follow and manufacturers will respond - supporting further growth in the PV industry. Furthermore, as more NABCEP certified installers perform these installations and maintenance competently, additional installations (whole system re-installations) and unnecessary repairs can be avoided. This will drive down system costs. This combined with creation/enhancement of the DE-FG36-04GO14348/005 NABCEP Central Data Base of Installers – providing consumers with installation/maintenance service options will further reduce system costs and help meet the overall goal of reducing life cycle costs. As consumers receive more value from PV systems which are providing longer, trouble free, renewable energy, they will join the ranks of professionals and enthusiasts calling for reduced technological barriers to installation (particularly for grid-tied systems). States and utilities will react to pressure and begin easing onerous net-metering and other technological restrictions. The benefits of NABCEP’s Program will be evident to consumers, manufacturers, distributors, state energy officials and solar academic institutions. Consumers benefit through increased system performance and reduced costs. Manufacturers of PV and balance of system components as well as distributors support and benefit from NABCEP because of assurances that systems are installed in accordance to code (i.e., NEC) and their specifications, resulting in longer life. Collaborators including state energy officials (i.e., New York State Energy Research and Development Authority) benefit by knowing that rebate funds are spent on systems whose benefits will far exceed system costs. Program Objectives The improvements and advantages offered by a national voluntary certification program can only expand the horizons for photovoltaic applications.« less

  13. Integrating Solar into Florida's Power System: Potential Roles for Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E

    Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less

  14. Lightweight IMM PV Flexible Blanket Assembly

    NASA Technical Reports Server (NTRS)

    Spence, Brian

    2015-01-01

    Deployable Space Systems (DSS) has developed an inverted metamorphic multijunction (IMM) photovoltaic (PV) integrated modular blanket assembly (IMBA) that can be rolled or z-folded. This IMM PV IMBA technology enables a revolutionary flexible PV blanket assembly that provides high specific power, exceptional stowed packaging efficiency, and high-voltage operation capability. DSS's technology also accommodates standard third-generation triple junction (ZTJ) PV device technologies to provide significantly improved performance over the current state of the art. This SBIR project demonstrated prototype, flight-like IMM PV IMBA panel assemblies specifically developed, designed, and optimized for NASA's high-voltage solar array missions.

  15. NREL Report Shows U.S. Solar Photovoltaic Costs Continuing to Fall in 2016

    Science.gov Websites

    chart of solar pv costs from q4 2009 to q1 2016 NREL U.S. PV system cost benchmarks, from the fourth (NREL). Driving the cost reductions were lower module and inverter prices, increased competition, lower ;The continuing total cost decline of solar PV systems demonstrates the sustained economic

  16. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing; Botterud, Audun; Mills, Andrew

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularlymore » during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.« less

  17. Life Cycle Analysis for the Feasibility of Photovoltaic System Application in Indonesia

    NASA Astrophysics Data System (ADS)

    Yudha, H. M.; Dewi, T.; Risma, P.; Oktarina, Y.

    2018-03-01

    Electricity has become the basic need for everyone, from industry to domestic. Today electricity source still depends heavily on fossil fuels that soon will be diminished from the earth in around 50 years. This condition demands us to find the renewable energy to support our everyday life. One of the famous renewable energy sources is from solar, harnessed by energy conversion device named solar cells. Countries like Indonesia are gifted with an abundance of sunlight all the yearlong. The application of solar cells with its photovoltaic (PV) technology harnesses the sunlight and converts it into electricity. Although this technology is emerging very fast, it still has some limitation due to the current PV technology, economic feasibility, and its environmental impacts. Life cycle assessment is the method to analyze and evaluate the sustainability of PV system and its environmental impact. This paper presents literature study of PV system from the cradle to grave, it begins with the material choices (from the first generation and the possibility of the fourth generation), manufacturing process, implementation, and ends it with the after-life effect of PV modules. The result of this study will be the insights look of the PV system application in Indonesia, from the best option of material choice, the best method of application, the energy payback time, and finally the possible after life recycle of PV materials.

  18. Assessment of distributed photovoltair electric-power systems

    NASA Astrophysics Data System (ADS)

    Neal, R. W.; Deduck, P. F.; Marshall, R. N.

    1982-10-01

    The development of a methodology to assess the potential impacts of distributed photovoltaic (PV) systems on electric utility systems, including subtransmission and distribution networks, and to apply that methodology to several illustrative examples was developed. The investigations focused upon five specific utilities. Impacts upon utility system operations and generation mix were assessed using accepted utility planning methods in combination with models that simulate PV system performance and life cycle economics. Impacts on the utility subtransmission and distribution systems were also investigated. The economic potential of distributed PV systems was investigated for ownership by the utility as well as by the individual utility customer.

  19. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  20. Objective quantification of perturbations produced with a piecewise PV inversion technique

    NASA Astrophysics Data System (ADS)

    Fita, L.; Romero, R.; Ramis, C.

    2007-11-01

    PV inversion techniques have been widely used in numerical studies of severe weather cases. These techniques can be applied as a way to study the sensitivity of the responsible meteorological system to changes in the initial conditions of the simulations. Dynamical effects of a collection of atmospheric features involved in the evolution of the system can be isolated. However, aspects, such as the definition of the atmospheric features or the amount of change in the initial conditions, are largely case-dependent and/or subjectively defined. An objective way to calculate the modification of the initial fields is proposed to alleviate this problem. The perturbations are quantified as the mean absolute variations of the total energy between the original and modified fields, and an unique energy variation value is fixed for all the perturbations derived from different PV anomalies. Thus, PV features of different dimensions and characteristics introduce the same net modification of the initial conditions from an energetic point of view. The devised quantification method is applied to study the high impact weather case of 9-11 November 2001 in the Western Mediterranean basin, when a deep and strong cyclone was formed. On the Balearic Islands 4 people died, and sustained winds of 30 ms-1 and precipitation higher than 200 mm/24 h were recorded. Moreover, 700 people died in Algiers during the first phase of the event. The sensitivities to perturbations in the initial conditions of a deep upper level trough, the anticyclonic system related to the North Atlantic high and the surface thermal anomaly related to the baroclinicity of the environment are determined. Results reveal a high influence of the upper level trough and the surface thermal anomaly and a minor role of the North Atlantic high during the genesis of the cyclone.

  1. Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity

    NASA Astrophysics Data System (ADS)

    Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka

    Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.

  2. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J

    Market structure refers to the number of firms and the distribution of market shares among firms within an industry. In The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016, we examine market structure in the context of residential solar PV. We find that over 8,000 companies have installed at least one residential PV system, with about 2,900 companies active in 2016. The majority of residential PV installers are relatively small companies, with about half of installers installing fewer than five systems. At the same time, a subset of high-volume installers accumulated market share, especially beginning aroundmore » 2010 with the emergence of alternative customer financing options.« less

  3. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  4. Measures for diffusion of solar PV in selected African countries

    NASA Astrophysics Data System (ADS)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix

    2017-08-01

    This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.

  5. Feasibility Study of Economics and Performance of Solar Photovoltaics at Massachusetts Military Reservation. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, B.; Robichaud, R.; Mosey, G.

    2011-07-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying photovoltaics (PV) systems on a superfund site located within the Massachusetts Military Reservation (MMR). The site was assessed for possible PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.17/kWh and incentives offered in the State of Massachusetts, such as the solar renewable energy credits. According to calculations, MMR can place 8 MW of ballast-weighted, ground-mounted PV systems on the crowns of the three landfill capsmore » and the borrow pit with the PV modules tilted at 30 degrees.« less

  6. A Practical Irradiance Model for Bifacial PV Modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; MacAlpine, Sara; Deline, Chris

    2017-06-21

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added tomore » the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.« less

  7. A Practical Irradiance Model for Bifacial PV Modules: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marion, Bill; MacAlpine, Sara; Deline, Chris

    2017-06-15

    A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be addedmore » to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.« less

  8. How Is Solar PV Performing in Hurricane-struck Locations? | State, Local,

    Science.gov Websites

    and Tribal Governments | NREL How Is Solar PV Performing in Hurricane-struck Locations? How Is Solar PV Performing in Hurricane-struck Locations? October 24, 2017 by Eliza Hotchkiss The ongoing 2017 the surface about how solar photovoltaic (PV) systems have fared in the various locations. It's been

  9. Photovoltaics and electric utilities

    NASA Astrophysics Data System (ADS)

    Bright, R.; Leigh, R.; Sills, T.

    1981-12-01

    The long term value of grid connected, residential photovoltaic (PV) systems is determined. The value of the PV electricity is defined as the full avoided cost in accordance with the Public Utilities Regulatory Policies Act of 1978. The avoided cost is computed using a long range utility planning approach to measure revenue requirement changes in response to the time phased introduction of PV systems into the grid. A case study approach to three utility systems is used. The changing value of PV electricity over a twenty year period from 1985 is presented, and the fuel and capital savings due to FY are analyzed. These values are translated into measures of breakeven capital investment under several options of power interchange and pricing.

  10. The dark side of photovoltaic — 3D simulation of glare assessing risk and discomfort

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Thomas; Wollert, Alexander

    2015-04-15

    Photovoltaic (PV) systems form an important force in the implementation of renewable energies, but as we all know, the force has always its dark side. Besides efficiency considerations and discussions about architectures of power distribution networks, the increasing numbers of installations of PV systems for implementing renewable energies have secondary effects. PV systems can generate glare due to optical reflections and hence might be a serious concern. On the one hand, glare could affect safety, e.g. regarding traffic. On the other hand, glare is a constant source of discomfort in vicinities of PV systems. Hence, assessment of glare is decisivemore » for the success of renewable energies near municipalities and traffic zones for the success of solar power. Several courts decided on the change of PV systems and even on their de-installation because of glare effects. Thus, location-based assessments are required to limit potential reflections and to avoid risks for public infrastructure or discomfort of residents. The question arises on how to calculate reflections accurately according to the environment's topography. Our approach is founded in a 3D-based simulation methodology to calculate and visualize reflections based on the geometry of the environment of PV systems. This computational model is implemented by an interactive tool for simulation and visualization. Hence, project planners receive flexible assistance for adjusting the parameters of solar panels amid the planning process and in particular before the installation of a PV system. - Highlights: • Solar panels cause glare that impacts neighborhoods and traffic infrastructures. • Glare might cause disability and discomfort. • 3D environment for the calculation of glare • Interactive tool to simulate and visualize reflections • Impact assessment of solar power plant farms.« less

  11. U.S. Photovoltaic Prices and Cost Breakdowns. Q1 2015 Benchmarks for Residential, Commercial, and Utility-Scale Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Donald; Davidson, Carolyn; Fu, Ran

    The price of photovoltaic (PV) systems in the United States (i.e., the cost to the system owner) has continued to decline across all major market sectors. This report provides a Q1 2015 update regarding the prices of residential, commercial, and utility scale PV systems, based on an objective methodology that closely approximates the book value of a PV system. Several cases are benchmarked to represent common variations in business models, labor rates, and system architecture choice. We estimate a weighted-average cash purchase price of $3.09/W for residential scale rooftop systems, $2.15/W for commercial scale rooftop systems, $1.77/W for utility scalemore » systems with fixed mounting structures, and $1.91/W for utility scale systems using single-axis trackers. All systems are modeled assuming standard-efficiency, polycrystalline-silicon PV modules, and further assume installation within the United States.« less

  12. Comparative Analysis and Considerations for PV Interconnection Standards in the United States and China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, David Wenzhong; Muljadi, Eduard; Tian, Tian

    The main objectives of this report are to evaluate China's photovoltaic (PV) interconnection standards and the U.S. counterparts and to propose recommendations for future revisions to these standards. This report references the 2013 report Comparative Study of Standards for Grid-Connected PV System in China, the U.S. and European Countries, which compares U.S., European, and China's PV grid interconnection standards; reviews various metrics for the characterization of distribution network with PV; and suggests modifications to China's PV interconnection standards and requirements. The recommendations are accompanied by assessments of four high-penetration PV grid interconnection cases in the United States to illustrate solutionsmore » implemented to resolve issues encountered at different sites. PV penetration in China and in the United States has significantly increased during the past several years, presenting comparable challenges depending on the conditions of the grid at the point of interconnection; solutions are generally unique to each interconnected PV installation or PV plant.« less

  13. Easy and fast method for expression and native extraction of Plasmodium vivax Duffy binding protein fragments.

    PubMed

    Moreno-Pérez, Darwin Andrés; Baquero, Luis Alfredo; Bermúdez, Maritza; Gómez-Muñoz, Laura Alejandra; Varela, Yahson; Patarroyo, Manuel Alfonso

    2018-02-08

    The Plasmodium vivax Duffy binding protein (PvDBP) has been the most studied ligand binding human reticulocytes to date. This molecule has a cysteine-rich domain in region II (RII) which has been used as control for evaluating the target cell binding activity of several parasite molecules. However, obtaining rPvDBP-RII in a soluble form using the Escherichia coli expression system usually requires laborious and time-consuming steps for recovering the molecule's structure and function, considering it is extracted from inclusion bodies. The present study describes an easy and fast method for expressing and obtaining several PvDBP fragments which should prove ideal for use in protein-cell interaction assays. Two PvDBP encoding regions (rii and riii/v) were cloned in pEXP5-CT vector and expressed in E. coli and extracted from the soluble fraction (rPvDBP-RII S and rPvDBP-RIII/V S ) using a simple freezing/thawing protocol. After the purification, dichroism analysis enabled verifying high rPvDBP-RII S and rPvDBP-RIII/V S secondary structure α-helix content, which was lowered when molecules were extracted from inclusion bodies (rPvDBP-RII IB and rPvDBP-RIII/V IB ) using a denaturing step. Interestingly, rPvDBP-RII S , but not rPvDBP-RII IB , bound to human reticulocytes, while rPvDBP-RIII/V S and rPvDBP-RIII/V IB bound to such cells in a similar way to negative control (cells incubated without recombinant proteins). This research has shown for the first time how rPvDBP-RII can be expressed and obtained in soluble form using the E. coli system and avoiding the denaturation and refolding steps commonly used. The results highlight the usefulness of the rPvDBP-RIII/V S fragment as a non-binding control for protein-cell target interaction assays. The soluble extraction protocol described is a good alternative to obtain fully functional P. vivax proteins in a fast and easy way, which will surely prove useful to laboratories working in studying this parasite's biology.

  14. Photovoltaic System Pricing Trends: Historical, Recent, and Near-Term Projections. 2014 Edition (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, D.; Barbose, G.; Margolis, R.

    2014-09-01

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the third edition from this series.

  15. Photovoltaic System Pricing Trends. Historical, Recent, and Near-Term Projections, 2015 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feldman, David; Barbose, Galen; Margolis, Robert

    2015-08-25

    This presentation, based on research at Lawrence Berkeley National Laboratory and the National Renewable Energy Laboratory, provides a high-level overview of historical, recent, and projected near-term PV pricing trends in the United States focusing on the installed price of PV systems. It also attempts to provide clarity surrounding the wide variety of potentially conflicting data available about PV system prices. This PowerPoint is the fourth edition from this series.

  16. Practical aspects of photovoltaic technology, applications and cost (revised)

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1985-01-01

    The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.

  17. A Survey of State and Local PV Program Response to Financial Innovation and Disparate Federal Tax Treatment in the Residential PV Sector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolinger, Mark; Holt, Edward

    High up-front costs and a lack of financing options have historically been the primary barriers to the adoption of photovoltaics (PV) in the residential sector. State clean energy funds, which emerged in a number of states from the restructuring of the electricity industry in the mid-to-late 1990s, have for many years attempted to overcome these barriers through PV rebate and, in some cases, loan programs. While these programs (rebate programs in particular) have been popular, the residential PV market in the United States only started to achieve significant scale in the last five years – driven in large part bymore » an initial wave of financial innovation that led to the rise of third-party ownership.« less

  18. On the Path to SunShot - The Role of Advancements in Solar Photovoltaic Efficiency, Reliability, and Costs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodhouse, Michael; Jones-Albertus, Rebecca; Feldman, David

    2016-05-01

    Although tremendous progress has been made in reducing the cost of PV systems, additional LCOE reductions of 40%–50% between 2015 and 2020 will be required to reach the SunShot Initiative’s targets (see Woodhouse et al. 2016). Understanding the tradeoffs between installed prices and other PV system characteristics—such as module efficiency, module degradation rate, and system lifetime—are vital. For example, with 29%-efficient modules and high reliability (a 50-year lifetime and a 0.2%/year module degradation rate), a residential PV system could achieve the SunShot LCOE goal with modules priced at almost $1.20/W. But change the lifetime to 10 years and the degradationmore » rate to 2%/year, and the system would need those very high-efficiency modules at zero cost to achieve the same LCOE. Although these examples are extreme, they serve to illustrate the wide range of technological combinations that could help drive PV toward the LCOE goals. SunShot’s PV roadmaps illustrate specific potential pathways to the target cost reductions.« less

  19. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornelakis, Aris

    2010-12-15

    Particle Swarm Optimization (PSO) is a highly efficient evolutionary optimization algorithm. In this paper a multiobjective optimization algorithm based on PSO applied to the optimal design of photovoltaic grid-connected systems (PVGCSs) is presented. The proposed methodology intends to suggest the optimal number of system devices and the optimal PV module installation details, such that the economic and environmental benefits achieved during the system's operational lifetime period are both maximized. The objective function describing the economic benefit of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Valuemore » (NPV). The second objective function, which corresponds to the environmental benefit, equals to the pollutant gas emissions avoided due to the use of the PVGCS. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. (author)« less

  20. Photovoltaic energy production map of Greece based on simulated and measured data

    NASA Astrophysics Data System (ADS)

    Vokas, Georgios A.; Lagogiannis, Konstantinos V.; Papageorgas, Panagiotis; Salame, Takla

    2017-02-01

    The aim of this research is in one hand to reveal the real energy production of a medium scale Photovoltaic (PV) plant located at different sites in Greece and on the other to compare measured data to the predicted ones resulted from one well-known, PV simulation software. During the last ten years a capacity of more than 2,5 GWp of PV systems has been installed in Greece. Almost 37% of the installations are ranged from 10 to 100 kWp due to favorable Feed-in-Tariff policy pricing, according to the Greek regulation. Previous investigations proved a remarkable difference between measured and predicted energy production in Greece regarding all PV systems technologies. For the purposes of this study more than 250 medium scale PV plants have been measured and more than 850 annually energy production data series for those parks have been collected. Those data constitute a great sample that has been compared to more than 225 simulations data resulted by a well-known web software for PV systems energy yield calculations with improved solar radiation database. Additionally, in order to have a visual feeling concerning the real PV energy yield footprint in Greece, an updated map has been developed and illustrated, providing a useful tool for both business and academic purposes.

  1. Modeling and Simulation for an 8 kW Three-Phase Grid-Connected Photo-Voltaic Power System

    NASA Astrophysics Data System (ADS)

    Cen, Zhaohui

    2017-09-01

    Gird-connected Photo-Voltaic (PV) systems rated as 5-10 kW level have advantages of scalability and energy-saving, so they are very typical for small-scale household solar applications. In this paper, an 8 kW three-phase grid-connected PV system model is proposed and studied. In this high-fidelity model, some basic PV system components such as solar panels, DC-DC converters, DC-AC inverters and three-phase utility grids are mathematically modelled and organized as a complete simulation model. Also, an overall power controller with Maximum Power Point Control (MPPT) is proposed to achieve both high-efficiency for solar energy harvesting and grid-connection stability. Finally, simulation results demonstrate the effectiveness of the PV system model and the proposed controller, and power quality issues are discussed.

  2. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  3. Simple economic evaluation and applications experiments for photovoltaic systems for remote sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rios, M. Jr.

    1980-01-01

    A simple evaluation of the cost effectiveness of photovoltaic systems is presented. The evaluation is based on a calculation of breakeven costs of photovoltaics (PV) arrays with the levelized costs of two alternative energy sources (1) extension of the utility grid and (2) diesel generators. A selected number of PV applications experiments that are in progress in remote areas of the US are summarized. These applications experiments range from a 23 watt insect survey trap to a 100 kW PV system for a national park complex. It is concluded that PV systems for remote areas are now cost effective inmore » remote small applications with commercially available technology and will be cost competitive for intermediate scale systems (approx. 10 kW) in the 1980s if the DOE 1986 Commercial Readiness Goals are achieved.« less

  4. A Non-Modeling Exploration of Residential Solar Photovoltaic (PV) Adoption and Non-Adoption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moezzi, Mithra; Ingle, Aaron; Lutzenhiser, Loren

    Although U.S. deployment of residential rooftop solar photovoltaic (PV) systems has accelerated in recent years, PV is still installed on less than 1 percent of single-family homes. Most research on household PV adoption focuses on scaling initial markets and modeling predicted growth rather than considering more broadly why adoption occurs. Among the studies that have investigated the characteristics of PV adoption, most collected data from adopters, sometimes with additional non-adopter data, and rarely from people who considered but did not adopt PV. Yet the vast majority of Americans are non-adopters, and they are a diverse group - understanding their waysmore » of evaluating PV adoption is important. Similarly, PV is a unique consumer product, which makes it difficult to apply findings from studies of other technologies to PV. In addition, little research addresses the experience of households after they install PV. This report helps fill some of these gaps in the existing literature. The results inform a more detailed understanding of residential PV adoption, while helping ensure that adoption is sufficiently beneficial to adopters and even non-adopters.« less

  5. Hybrid photovoltaic and thermoelectric module for high concentration solar system

    NASA Astrophysics Data System (ADS)

    Tamaki, Ryo; Toyoda, Takeshi; Tamura, Yoichi; Matoba, Akinari; Minamikawa, Toshiharu; Tokuda, Masayuki; Masui, Megumi; Okada, Yoshitaka

    2017-09-01

    A photovoltaic (PV) and thermoelectric (TE) hybrid module was developed for application to high concentration solar systems. The waste heat from the solar cells under concentrated light illumination was utilized to generate additional electricity by assembling TE devices below the multi-junction solar cells (MJSCs). Considering the high operating temperature of the PV and TE hybrid module compared with conventional concentrator PV modules, the TE device could compensate a part of the MJSC efficiency degradation at high temperature. The performance investigation clarified the feasibility of the hybrid PV and TE module under highly concentrated sunlight illumination.

  6. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  7. Apparatuses to support photovoltaic modules

    DOEpatents

    Ciasulli, John; Jones, Jason

    2017-08-22

    Methods and apparatuses to support photovoltaic ("PV") modules are described. A saddle bracket has a mounting surface to support one or more PV modules over a tube, a gusset coupled to the mounting surface, and a mounting feature coupled to the gusset to couple to the tube. A grounding washer has a first portion to couple to a support; and a second portion coupled to the first portion to provide a ground path to a PV module. A PV system has a saddle bracket; a PV module over the saddle bracket; and a grounding washer coupled to the saddle bracket and the PV module. Saddle brackets can be coupled to a torque tube at predetermined locations. PV modules can be coupled to the saddle brackets.

  8. The bright side of snow cover effects on PV production - How to lower the seasonal mismatch between electricity supply and demand in a fully renewable Switzerland

    NASA Astrophysics Data System (ADS)

    Kahl, Annelen; Dujardin, Jérôme; Dupuis, Sonia; Lehning, Michael

    2017-04-01

    One of the major problems with solar PV in the context of a fully renewable electricity production at mid-latitudes is the trend of higher production in summer and lower production in winter. This trend is most often exactly opposite to demand patterns, causing a seasonal mismatch that requires extensive balancing power from other production sources or large storage capacities. Which possibilities do we have to bring PV production into closer correlation with demand? This question motivated our research and in response we investigated the effects of placing PV panels at different tilt angles in regions with extensive snow cover to increase winter production from ground reflected short wave radiation. The aim of this project is therefore to quantify the effect of varying snow cover duration (SCD) and of panel tilt angle on the annual total production and on production during winter months when electricity is most needed. We chose Switzerland as ideal test site, because it has a wide range of snow cover conditions and a high potential for renewable electricity production. But methods can be applied to other regions of comparable conditions for snow cover and irradiance. Our analysis can be separated into two steps: 1. A systematic, GIS and satellite-based analysis for all of Switzerland: We use time series of satellite-derived irradiance, and snow cover characteristics together with land surface cover types and elevation information to quantify the environmental conditions and to estimate potential production and ideal tilt angles. 2. A scenario-based analysis that contrasts the production patterns of different placement scenarios for PV panels in urban, rural and mountainous areas. We invoke a model of a fully renewable electricity system (including Switzerland's large hydropower system) at national level to compute the electricity import and storage capacity that will be required to balance the remaining mismatch between production and demand to further illuminate trade-offs between the different placement scenarios. Our results show that in regions with extended periods of snow cover the winter production can be 10% higher without sacrifices on the annual total production. This helps significantly in reducing the energy gap mentioned above; annual required import can be lowered by 10%-20% and forced export due to overproduction during summer months reduces to less than half.

  9. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    PubMed Central

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-01-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment. PMID:27922592

  10. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification

    NASA Astrophysics Data System (ADS)

    Bradbury, Kyle; Saboo, Raghav; L. Johnson, Timothy; Malof, Jordan M.; Devarajan, Arjun; Zhang, Wuming; M. Collins, Leslie; G. Newell, Richard

    2016-12-01

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  11. Distributed solar photovoltaic array location and extent dataset for remote sensing object identification.

    PubMed

    Bradbury, Kyle; Saboo, Raghav; L Johnson, Timothy; Malof, Jordan M; Devarajan, Arjun; Zhang, Wuming; M Collins, Leslie; G Newell, Richard

    2016-12-06

    Earth-observing remote sensing data, including aerial photography and satellite imagery, offer a snapshot of the world from which we can learn about the state of natural resources and the built environment. The components of energy systems that are visible from above can be automatically assessed with these remote sensing data when processed with machine learning methods. Here, we focus on the information gap in distributed solar photovoltaic (PV) arrays, of which there is limited public data on solar PV deployments at small geographic scales. We created a dataset of solar PV arrays to initiate and develop the process of automatically identifying solar PV locations using remote sensing imagery. This dataset contains the geospatial coordinates and border vertices for over 19,000 solar panels across 601 high-resolution images from four cities in California. Dataset applications include training object detection and other machine learning algorithms that use remote sensing imagery, developing specific algorithms for predictive detection of distributed PV systems, estimating installed PV capacity, and analysis of the socioeconomic correlates of PV deployment.

  12. Formation of intrathermocline eddies at ocean fronts by wind-driven destruction of potential vorticity

    NASA Astrophysics Data System (ADS)

    Thomas, Leif N.

    2008-08-01

    A mechanism for the generation of intrathermocline eddies (ITEs) at wind-forced fronts is examined using a high resolution numerical simulation. Favorable conditions for ITE formation result at fronts forced by "down-front" winds, i.e. winds blowing in the direction of the frontal jet. Down-front winds exert frictional forces that reduce the potential vorticity (PV) within the surface boundary in the frontal outcrop, providing a source for the low-PV water that is the materia prima of ITEs. Meandering of the front drives vertical motions that subduct the low-PV water into the pycnocline, pooling it into the coherent anticyclonic vortex of a submesoscale ITE. As the fluid is subducted along the outcropping frontal isopycnal, the low-PV water, which at the surface is associated with strongly baroclinic flow, re-expresses itself as water with nearly zero absolute vorticity. This generation of strong anticyclonic vorticity results from the tilting of the horizontal vorticity of the frontal jet, not from vortex squashing. During the formation of the ITE, high-PV water from the pycnocline is upwelled alongside the subducting low-PV surface water. The positive correlation between the ITE's velocity and PV fields results in an upward, along-isopycnal eddy PV flux that scales with the surface frictional PV flux driven by the wind. The relationship between the eddy and wind-induced frictional PV flux is nonlocal in time, as the eddy PV flux persists long after the wind forcing is shut off. The ITE's PV flux affects the large-scale flow by driving an eddy-induced transport or bolus velocity down the outcropping isopycnal layer with a magnitude that scales with the Ekman velocity.

  13. Sensitivities of projected 1980 photovoltaic system costs to major system cost drivers

    NASA Technical Reports Server (NTRS)

    Zimmerman, L. W.; Smith, J. L.

    1984-01-01

    The sensitivity of projected 1990 photovoltaic (PV) system costs to major system cost drivers was examined. It includes: (1) module costs and module efficiencies; (2) area related balance of system (BOS) costs; (3) inverter costs and efficiencies; and (4) module marketing and distribution markups and system integration fees. Recent PV system cost experiences and the high costs of electricity from the systems are reviewed. The 1990 system costs are projected for five classes of PV systems, including four ground mounted 5-MWp systems and one residential 5-kWp system. System cost projections are derived by first projecting costs and efficiencies for all subsystems and components. Sensitivity analyses reveal that reductions in module cost and engineering and system integration fees seem to have the greatest potential for contributing to system cost reduction. Although module cost is clearly the prime candidate for fruitful PV research and development activities, engineering and system integration fees seem to be more amenable to reduction through appropriate choice of system size and market strategy. Increases in inverter and module efficiency yield significant benefits, especially for systems with high area related costs.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leboeuf, C.; Taylor, R.W.; Corbus, D.

    A cooperative renewable energy project is underway between the U.S. Department of Energy (through the National Renewable Energy Laboratory, NREL), and the Federal Republic of Brazil (through the Centro de Pesquisas de Energia Eletrica, CEPEL). The objectives of this joint US/Brazilian program are to establish technical, institutional, and economic confidence in using renewable energy systems to meet the needs of the people of rural Brazil, to build ongoing partnerships beneficial to both countries, and to demonstrate the potential for large-scale rural electrification through the use of renewable energy systems. Phase 1 of this program resulted in the deployment of moremore » than 700 photovoltaic (PV) electric lighting systems in the Brazilian states of Pernambuco and Ceara. Phase 2 of the program extends the pilot project into six additional Brazilian states and demonstrates a wider variety of stand-alone end uses, including the use of wind electric power generation for selected sites and applications. Additionally, Phase 2 also includes the development of two hybrid village power systems, including one comprising PV, wind, battery, and diesel power sources. This paper focuses on this hybrid system, which is located in the Amazon River delta.« less

  15. Optimization of PV/WIND/DIESEL Hybrid Power System in HOMER for Rural Electrification

    NASA Astrophysics Data System (ADS)

    Hassan, Q.; Jaszczur, M.; Abdulateef, J.

    2016-09-01

    A large proportion of the world's population lives in remote rural areas that are geographically isolated and sparsely populated. The present study is based on modeling, computer simulation and optimization of hybrid power generation system in the rural area in Muqdadiyah district of Diyala state, Iraq. Two renewable resources, namely, solar photovoltaic (PV) and wind turbine (WT) are considered. The HOMER software is used to study and design the proposed hybrid energy system model. Based on simulation results, it has been found that renewable energy sources perhaps replace the conventional energy sources and would be a feasible solution for the generation of electric power at remote locations with a reasonable investment. The hybrid power system solution to electrify the selected area resulted in a least-cost combination of the hybrid power system that can meet the demand in a dependable manner at a cost about (0.321/kWh). If the wind resources in the study area at the lower stage, it's not economically viable for a wind turbine to generate the electricity.

  16. Droop Control of Solar PV, Grid and Critical Load using Suppressing DC Current Injection Technique without Battery Storage

    NASA Astrophysics Data System (ADS)

    Dama Mr., Jayachandra; (Mrs. , Lini Mathew, Dr.; Srikanth Mr., G.

    2017-08-01

    This paper presents design of a sustainable solar Photo voltaic system for an Indian cities based residential/community house, integrated with grid, supporting it as supplementary sources, to meet energy demand of domestic loads. The role of renewable energy sources in Distributed Generation (DG) is increasingly being recognized as a supplement and an alternative to large conventional central power supply. Though centralized economic system that solely depends on cities is hampered due to energy deficiency, the use of solar energy in cities is never been tried widely due to technical inconvenience and high installation cost. To mitigate these problems, this paper proposes an optimized design of grid-tied PV system without storage which is suitable for Indian origin as it requires less installallation cost and supplies residential loads when the grid power is unavailable. The energy requirement is mainly fulfilled from PV energy module for critical load of a city located residential house and supplemented by grid/DG for base and peak load. The system has been developed for maximum daily household demand of 50kWp and can be scaled to any higher value as per requirement of individual/community building ranging from 50kWp to 60kWp as per the requirement. A simplified control system model has been developed to optimize and control flow of power from these sources. The simulation work, using MATLAB Simulink software for proposed energy management, has resulted in an optimal yield leading efficient power flow control of proposed system.

  17. Development of a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a highly sensitive detection of enterovirus in the stool samples of acute flaccid paralysis cases

    PubMed Central

    2009-01-01

    Background In the global eradication program for poliomyelitis, the laboratory diagnosis plays a critical role by isolating poliovirus (PV) from the stool samples of acute flaccid paralysis (AFP) cases. In this study, we developed a reverse transcription-loop-mediated isothermal amplification (RT-LAMP) system for a rapid and highly sensitive detection of enterovirus including PV to identify stool samples positive for enterovirus including PV. Methods A primer set was designed for RT-LAMP to detect enterovirus preferably those with PV-like 5'NTRs of the viral genome. The sensitivity of RT-LAMP system was evaluated with prototype strains of enterovirus. Detection of enterovirus from stool extracts was examined by using RT-LAMP system. Results We detected at least 400 copies of the viral genomes of PV(Sabin) strains within 90 min by RT-LAMP with the primer set. This RT-LAMP system showed a preference for Human enterovirus species C (HEV-C) strains including PV, but exhibited less sensitivity to the prototype strains of HEV-A and HEV-B (detection limits of 7,400 to 28,000 copies). Stool extracts, from which PV, HEV-C, or HEV-A was isolated in the cell culture system, were mostly positive by RT-LAMP method (positive rates of 15/16 (= 94%), 13/14 (= 93%), and 4/4 (= 100%), respectively). The positive rate of this RT-LAMP system for stool extracts from which HEV-B was isolated was lower than that of HEV-C (positive rate of 11/21 (= 52%)). In the stool samples, which were negative for enterovirus isolation by the cell culture system, we found that two samples were positive for RT-LAMP (positive rates of 2/38 (= 5.3%)). In these samples, enterovirus 96 was identified by sequence analysis utilizing a seminested PCR system. Conclusions RT-LAMP system developed in this study showed a high sensitivity comparable to that of the cell culture system for the detection of PV, HEV-A, and HEV-C, but less sensitivity to HEV-B. This RT-LAMP system would be useful for the direct detection of enterovirus from the stool extracts. PMID:20015403

  18. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f -1.23 to f -1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f -1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f -1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  19. Power Generation Potential and Cost of a Roof Top Solar PV System in Kathmandu, Nepal

    NASA Astrophysics Data System (ADS)

    Sanjel, N.; Zhand, A.

    2017-12-01

    The paper presents a comparative study of the 3 most used solar PV module technologies in Nepal, which are Si-mono-crystalline, Si-poly-crystalline and Si-amorphous. The aim of the paper is to present and discuss the recorded Global Solar Radiation, received in the Kathmandu valley by three different, Si-mono-crystalline, Si-poly-crystalline and Si-amorphous calibrated solar cell pyranometers and to propose the best-suited solar PV module technology for roof top solar PV systems inside the Kathmandu valley. Data recorded over the course of seven months, thus covering most of the seasonal meteorological conditions determining Kathmandu valley's global solar radiation reception are presented. The results indicate that the Si-amorphous pyranometer captured 1.56% more global solar radiation than the Si-mono-crystalline and 18.4% more than Si-poly-crystalline pyranometer over the course of seven months. Among the three pyranometer technologies the maximum and minimum cell temperature was measured by the Si-mono-crystalline pyranometer. Following the technical data and discussion, an economical analysis, using the versatile software tool PVSYST V5.01is used to calculate the life cycle costs of a 1kW roof top solar PV RAPS system, with battery storage, and a 1kW roof top solar PV grid connected system with no energy storage facility, through simulations, using average recorded global solar radiation data for the KTM valley and investigated market values for each solar PV module and peripheral equipment costs.

  20. Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Leng, W.

    2017-12-01

    Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.

  1. The Evolving Market Structure of the U.S. Residential Solar PV Installation Industry, 2000-2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    OShaughnessy, Eric J.

    This study uses data on over 900,000 solar PV installations to summarize the evolving market structure of the U.S. residential solar PV installation industry. Over 8,000 companies have installed residential PV systems in the United States. The vast majority of these installers are small local companies. At the same time, a subset of national-scale high-volume PV installation companies hold high market shares. This study examines the factors behind these trends in market concentration, including the role of customer financing options.

  2. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  3. Guide for certifying pressure vessels and systems

    NASA Technical Reports Server (NTRS)

    Lundy, Floyd; Krusa, Paul W.

    1992-01-01

    This guide is intended to provide methodology and describe the intent of the Pressure Vessel and System (PV/S) Certification program. It is not meant to be a mandated document, but is intended to transmit a basic understanding of the PV/S program, and include examples. After the reader has familiarized himself with this publication, he should have a basic understanding of how to go about developing a PV/S certification program.

  4. Cost Estimates Of Concentrated Photovoltaic Heat Sink Production

    DTIC Science & Technology

    2016-06-01

    steady year-round sunshine and in many cases high levels of direct normal irradiance (DNI). Beyond traditional PV , some climates favor rooftop solar ...water heating, but the majority of installed solar systems, are PV (EIA, 2015). Solar power generation has great benefits for the DON considering the...systems concentrate and focus sunlight onto a smaller focal point in order to take advantage of the highly efficient solar cells. Generally, PV

  5. Life cycle assessment and economic analysis of a low concentrating photovoltaic system.

    PubMed

    De Feo, G; Forni, M; Petito, F; Renno, C

    2016-10-01

    Many new photovoltaic (PV) applications, such as the concentrating PV (CPV) systems, are appearing on the market. The main characteristic of CPV systems is to concentrate sunlight on a receiver by means of optical devices and to decrease the solar cells area required. A low CPV (LCPV) system allows optimizing the PV effect with high increase of generated electric power as well as decrease of active surface area. In this paper, an economic analysis and a life cycle assessment (LCA) study of a particular LCPV scheme is presented and its environmental impacts are compared with those of a PV traditional system. The LCA study was performed with the software tool SimaPro 8.0.2, using the Econinvent 3.1 database. A functional unit of 1 kWh of electricity produced was chosen. Carbon Footprint, Ecological Footprint and ReCiPe 2008 were the methods used to assess the environmental impacts of the LCPV plant compared with a corresponding traditional system. All the methods demonstrated the environmental convenience of the LCPV system. The innovative system allowed saving 16.9% of CO2 equivalent in comparison with the traditional PV plant. The environmental impacts saving was 17% in terms of Ecological Footprint, and, finally, 15.8% with the ReCiPe method.

  6. Energy System Basics and Distribution Integration Video Series | Energy

    Science.gov Websites

    renewablesparticularly solar photovoltaic (PV) technologiesonto the distribution grid. Solar Energy Technologies PV Integration Case Studies Integrating Photovoltaic Systems onto Secondary Network Distribution Systems Standards and Codes for U.S. Photovoltaic System Installation Network-Optimal Control of Photovoltaics on

  7. Feasibility Study of Solar Photovoltaics on Landfills in Puerto Rico (Second Study)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a solar photovoltaics (PV) system on landfill sites in Puerto Rico. The purpose of this report is to assess the landfills with the highest potential for possible solar PV installation and estimate cost, performance, and site impacts of three different PV options: crystalline silicon (fixed tilt), crystalline silicon (single-axis tracking), and thin film (fixed tilt). The report outlines financing options that could assist in the implementation of a system. According to the site production calculations, the most cost-effective system in terms of return onmore » investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system. The landfills and sites considered in this report were all determined feasible areas in which to implement solar PV systems.« less

  8. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Refuse Hideaway Landfill in Middleton, Wisconsin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salasovich, J.; Mosey, G.

    2011-08-01

    This report presents the results of an assessment of the technical and economic feasibility of deploying a photovoltaics (PV) system on a brownfield site at the Refuse Hideaway Landfill in Middleton, Wisconsin. The site currently has a PV system in place and was assessed for further PV installations. The cost, performance, and site impacts of different PV options were estimated. The economics of the potential systems were analyzed using an electric rate of $0.1333/kWh and incentives offered by the State of Wisconsin and by the serving utility, Madison Gas and Electric. According to the site production calculations, the most cost-effectivemore » system in terms of return on investment is the thin-film fixed-tilt technology. The report recommends financing options that could assist in the implementation of such a system.« less

  9. Data report for the Northeast Residential Experiment Station, January 1982

    NASA Astrophysics Data System (ADS)

    Russell, M. C.; Raghuraman, P.; Mahoney, P. C.

    1982-06-01

    Physical performance data obtained from photovoltaic energy systems under test at the Northeast Residential Experiment Station(NE RES) in Concord, Massachusetts are tabulated. Five prototype residential photovoltaic systems are under test at the NE RES. Each consists of a roof mounted PV array sized to meet at least 50% of the annual electrical demand of an energy conserving house and an enclosed structure to house the remainder of the PV equipment, test instrumentation and work space. The arrays provide DC power which is converted to AC by power conditioning equipment to service all the usual loads of a residence. Each prototype system is grid connected. Another house in Carlisle, Massachusetts provided with a PV system is also being monitored. The computational basis for the data reported is given. A monthly summary tabulates the monthly performance of the PV systems and monitored houses as well as meteorological data.

  10. NREL Adds Solar Array Field to Help Inform Consumers | NREL

    Science.gov Websites

    PV modules at NREL's new solar array field. Workers install PV modules just north of the NREL parking be Added Each Year Once completed, the new solar array field will house four rows of PV modules. The the lifetime of a PV system, and that increases the per-kilowatt-hour cost of generating solar

  11. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance.

    PubMed

    Aïssa, Brahim; Isaifan, Rima J; Madhavan, Vinod E; Abdallah, Amir A

    2016-08-16

    Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.

  12. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    NASA Technical Reports Server (NTRS)

    Steingass, H.; Asmon, I.

    1981-01-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  13. Structural and physical properties of the dust particles in Qatar and their influence on the PV panel performance

    NASA Astrophysics Data System (ADS)

    Aïssa, Brahim; Isaifan, Rima J.; Madhavan, Vinod E.; Abdallah, Amir A.

    2016-08-01

    Recently, extensive R&D has been conducted, both by industry and academia, to significantly raise the conversion efficiency of commercial photovoltaic (PV) modules. The installation of PV systems aimed at optimizing solar energy yield is primarily dictated by its geographic location and installation design to maximize solar exposure. However, even when these characteristics have been addressed appropriately, there are other factors that adversely affect the performance of PV systems, namely the temperature-induced voltage decrease leading to a PV power loss, and the dust accumulation (soiling). The latter is the lesser acknowledged factor that significantly influences the performance of PV installations especially in the Middle East region. In this paper we report on the investigation of the structural and physical properties of the desert-dust particles in the State of Qatar. The dust particles were collected directly from the PV panels installed in desert environment and characterized by different techniques, including scanning electron, optical and atomic force microscopies, X-ray diffraction, energy-dispersive, UV-Vis, micro-Raman and Fourier transform infrared spectroscopy. The vibrating sample magnetometry analyses were also conducted to study the magnetic properties of the dust particles. The influence of the dust accumulation on the PV panel performance was also presented and discussed.

  14. Market assessment of photovoltaic power systems for agricultural applications in Morocco

    NASA Astrophysics Data System (ADS)

    Steingass, H.; Asmon, I.

    1981-09-01

    Results of a month-long study in Morocco aimed at assessing the market potential for stand-alone photovoltaic systems in agriculture and rural service applications are presented. The following applications, requiring less than 15 kW of power, are described: irrigation, cattle watering, refrigeration, crop processing, potable water and educational TV. Telecommunications and transportation signalling applications, descriptions of power and energy use profiles, assessments of business environment, government and private sector attitudes towards photovoltaics, and financing were also considered. The Moroccan market presents both advantages and disadvantages for American PV manufacturers. The principle advantages of the Moroccan market are: a limited grid, interest in and present use of PV in communications applications, attractive investment incentives, and a stated policy favoring American investment. Disadvantages include: lack of government incentives for PV use, general unfamiliarity with PV technology, high first cost of PV, a well-established market network for diesel generators, and difficulty with financing. The market for PV in Morocco (1981-1986), will be relatively small, about 340 kwp. The market for PV is likely to be more favorable in telecommunications, transport signalling and some rural services. The primary market appears to be in the public (i.e., government) rather than private sector, due to financial constraints and the high price of PV relative to conventional power sector.

  15. Role of Pharmacovigilance in India: An overview.

    PubMed

    Suke, Sanvidhan G; Kosta, Prabhat; Negi, Harsh

    2015-01-01

    Pharmacovigilance (PV) plays a key role in the healthcare system through assessment, monitoring and discovery of interactions amongst drugs and their effects in human. Pharmaceutical and biotechnological medicines are designed to cure, prevent or treat diseases; however, there are also risks particularly adverse drug reactions (ADRs) can cause serious harm to patients. Thus, for safety medication ADRs monitoring required for each medicine throughout its life cycle, during development of drug such as pre-marketing including early stages of drug design, clinical trials, and post-marketing surveillance. PV is concerns with the detection, assessment, understanding and prevention of ADRs. Pharmacogenetics and pharmacogenomics are an indispensable part of the clinical research. Variation in the human genome is a cause of variable response to drugs and susceptibility to diseases are determined, which is important for early drug discovery to PV. Moreover, PV has traditionally involved in mining spontaneous reports submitted to national surveillance systems. The research focus is shifting toward the use of data generated from platforms outside the conventional framework such as electronic medical records, biomedical literature, and patient-reported data in health forums. The emerging trend in PV is to link premarketing data with human safety information observed in the post-marketing phase. The PV system team obtains valuable additional information, building up the scientific data contained in the original report and making it more informative. This necessitates an utmost requirement for effective regulations of the drug approval process and conscious pre and post approval vigilance of the undesired effects, especially in India. Adverse events reported by PV system potentially benefit to the community due to their proximity to both population and public health practitioners, in terms of language and knowledge, enables easy contact with reporters by electronically. Hence, PV helps to the patients get well and to manage optimally or ideally, avoid illness is a collective responsibility of industry, drug regulators, clinicians and other healthcare professionals to enhance their contribution to public health. This review summarized objectives and methodologies used in PV with critical overview of existing PV in India, challenges to overcome and future prospects with respect to Indian context.

  16. Role of Pharmacovigilance in India: An overview

    PubMed Central

    Suke, Sanvidhan G; Kosta, Prabhat; Negi, Harsh

    2015-01-01

    Pharmacovigilance (PV) plays a key role in the healthcare system through assessment, monitoring and discovery of interactions amongst drugs and their effects in human. Pharmaceutical and biotechnological medicines are designed to cure, prevent or treat diseases; however, there are also risks particularly adverse drug reactions (ADRs) can cause serious harm to patients. Thus, for safety medication ADRs monitoring required for each medicine throughout its life cycle, during development of drug such as pre-marketing including early stages of drug design, clinical trials, and post-marketing surveillance. PV is concerns with the detection, assessment, understanding and prevention of ADRs. Pharmacogenetics and pharmacogenomics are an indispensable part of the clinical research. Variation in the human genome is a cause of variable response to drugs and susceptibility to diseases are determined, which is important for early drug discovery to PV. Moreover, PV has traditionally involved in mining spontaneous reports submitted to national surveillance systems. The research focus is shifting toward the use of data generated from platforms outside the conventional framework such as electronic medical records, biomedical literature, and patient-reported data in health forums. The emerging trend in PV is to link premarketing data with human safety information observed in the post-marketing phase. The PV system team obtains valuable additional information, building up the scientific data contained in the original report and making it more informative. This necessitates an utmost requirement for effective regulations of the drug approval process and conscious pre and post approval vigilance of the undesired effects, especially in India. Adverse events reported by PV system potentially benefit to the community due to their proximity to both population and public health practitioners, in terms of language and knowledge, enables easy contact with reporters by electronically. Hence, PV helps to the patients get well and to manage optimally or ideally, avoid illness is a collective responsibility of industry, drug regulators, clinicians and other healthcare professionals to enhance their contribution to public health. This review summarized objectives and methodologies used in PV with critical overview of existing PV in India, challenges to overcome and future prospects with respect to Indian context. PMID:26392851

  17. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Sigrin, Benjamin

    2013-03-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

  18. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill ofmore » materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.« less

  19. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  20. Solar plus: Optimization of distributed solar PV through battery storage and dispatchable load in residential buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O'Shaughnessy, Eric; Cutler, Dylan; Ardani, Kristen

    As utility electricity rates evolve, pairing solar photovoltaic (PV) systems with battery storage has potential to ensure the value proposition of residential solar by mitigating economic uncertainty. In addition to batteries, load control technologies can reshape customer load profiles to optimize PV system use. The combination of PV, energy storage, and load control provides an integrated approach to PV deployment, which we call 'solar plus'. The U.S. National Renewable Energy Laboratory's Renewable Energy Optimization (REopt) model is utilized to evaluate cost-optimal technology selection, sizing, and dispatch in residential buildings under a variety of rate structures and locations. The REopt modelmore » is extended to include a controllable or 'smart' domestic hot water heater model and smart air conditioner model. We find that the solar plus approach improves end user economics across a variety of rate structures - especially those that are challenging for PV - including lower grid export rates, non-coincident time-of-use structures, and demand charges.« less

Top