Sample records for pv output variability

  1. An investigation of the maximum penetration level of a photovoltaic (PV) system into a traditional distribution grid

    NASA Astrophysics Data System (ADS)

    Chalise, Santosh

    Although solar photovoltaic (PV) systems have remained the fastest growing renewable power generating technology, variability as well as uncertainty in the output of PV plants is a significant issue. This rapid increase in PV grid-connected generation presents not only progress in clean energy but also challenges in integration with traditional electric power grids which were designed for transmission and distribution of power from central stations. Unlike conventional electric generators, PV panels do not have rotating parts and thus have no inertia. This potentially causes a problem when the solar irradiance incident upon a PV plant changes suddenly, for example, when scattered clouds pass quickly overhead. The output power of the PV plant may fluctuate nearly as rapidly as the incident irradiance. These rapid power output fluctuations may then cause voltage fluctuations, frequency fluctuations, and power quality issues. These power quality issues are more severe with increasing PV plant power output. This limits the maximum power output allowed from interconnected PV plants. Voltage regulation of a distribution system, a focus of this research, is a prime limiting factor in PV penetration levels. The IEEE 13-node test feeder, modeled and tested in the MATLAB/Simulink environment, was used as an example distribution feeder to analyze the maximum acceptable penetration of a PV plant. The effect of the PV plant's location was investigated, along with the addition of a VAR compensating device (a D-STATCOM in this case). The results were used to develop simple guidelines for determining an initial estimate of the maximum PV penetration level on a distribution feeder. For example, when no compensating devices are added to the system, a higher level of PV penetration is generally achieved by installing the PV plant close to the substation. The opposite is true when a VAR compensator is installed with the PV plant. In these cases, PV penetration levels over 50% may be safely achieved.

  2. Evaluation of Data-Driven Models for Predicting Solar Photovoltaics Power Output

    DOE PAGES

    Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas

    2017-09-10

    This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less

  3. Optimal Solar PV Arrays Integration for Distributed Generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introducemore » quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moslehi, Salim; Reddy, T. Agami; Katipamula, Srinivas

    This research was undertaken to evaluate different inverse models for predicting power output of solar photovoltaic (PV) systems under different practical scenarios. In particular, we have investigated whether PV power output prediction accuracy can be improved if module/cell temperature was measured in addition to climatic variables, and also the extent to which prediction accuracy degrades if solar irradiation is not measured on the plane of array but only on a horizontal surface. We have also investigated the significance of different independent or regressor variables, such as wind velocity and incident angle modifier in predicting PV power output and cell temperature.more » The inverse regression model forms have been evaluated both in terms of their goodness-of-fit, and their accuracy and robustness in terms of their predictive performance. Given the accuracy of the measurements, expected CV-RMSE of hourly power output prediction over the year varies between 3.2% and 8.6% when only climatic data are used. Depending on what type of measured climatic and PV performance data is available, different scenarios have been identified and the corresponding appropriate modeling pathways have been proposed. The corresponding models are to be implemented on a controller platform for optimum operational planning of microgrids and integrated energy systems.« less

  5. Experimental comparison of PV-smoothing controllers using distributed generators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaicmore » output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.« less

  6. Characterization and evaluation of an aeolian-photovoltaic system in operation

    NASA Astrophysics Data System (ADS)

    Bonfatti, F.; Calzolari, P. U.; Cardinali, G. C.; Vivanti, G.; Zani, A.

    Data management, analysis techniques and results of performance monitoring of a prototype combined photovoltaic (PV)-wind turbine farm power plant in northern Italy are reported. Emphasis is placed on the PV I-V characteristics and irradiance and cell temperatures. Automated instrumentation monitors and records meteorological data and generator variables such as voltages, currents, output, battery electrolyte temperature, etc. Analysis proceeds by automated selection of I-V data for specific intervals of the year when other variables can be treated as constants. The technique permits characterization of generator performance, adjusting the power plant set points for optimal output, and tracking performance degradation over time.

  7. Quantifying Interannual Variability for Photovoltaic Systems in PVWatts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryberg, David Severin; Freeman, Janine; Blair, Nate

    2015-10-01

    The National Renewable Energy Laboratory's (NREL's) PVWatts is a relatively simple tool used by industry and individuals alike to easily estimate the amount of energy a photovoltaic (PV) system will produce throughout the course of a typical year. PVWatts Version 5 has previously been shown to be able to reasonably represent an operating system's output when provided with concurrent weather data, however this type of data is not available when estimating system output during future time frames. For this purpose PVWatts uses weather data from typical meteorological year (TMY) datasets which are available on the NREL website. The TMY filesmore » represent a statistically 'typical' year which by definition excludes anomalous weather patterns and as a result may not provide sufficient quantification of project risk to the financial community. It was therefore desired to quantify the interannual variability associated with TMY files in order to improve the understanding of risk associated with these projects. To begin to understand the interannual variability of a PV project, we simulated two archetypal PV system designs, which are common in the PV industry, in PVWatts using the NSRDB's 1961-1990 historical dataset. This dataset contains measured hourly weather data and spans the thirty years from 1961-1990 for 239 locations in the United States. To note, this historical dataset was used to compose the TMY2 dataset. Using the results of these simulations we computed several statistical metrics which may be of interest to the financial community and normalized the results with respect to the TMY energy prediction at each location, so that these results could be easily translated to similar systems. This report briefly describes the simulation process used and the statistical methodology employed for this project, but otherwise focuses mainly on a sample of our results. A short discussion of these results is also provided. It is our hope that this quantification of the interannual variability of PV systems will provide a starting point for variability considerations in future PV system designs and investigations. however this type of data is not available when estimating system output during future time frames.« less

  8. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsey, Geoffrey S., E-mail: Geoffrey.kinsey@ee.doe.gov

    2015-09-28

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  9. Spectrum sensitivity, energy yield, and revenue prediction of PV and CPV modules

    NASA Astrophysics Data System (ADS)

    Kinsey, Geoffrey S.

    2015-09-01

    Impact on module performance of spectral irradiance variation has been determined for III-V multijunctions compared against the four most common flat-plate module types (cadmium telluride, multicrystalline silicon, copper indium gallium selenide, and monocrystalline silicon. Hour-by-hour representative spectra were generated using atmospheric variables for Albuquerque, New Mexico, USA. Convolution with published values for external quantum efficiency gave the predicted current output. When combined with specifications of commercial PV modules, energy yield and revenue were predicted. This approach provides a means for optimizing PV module design based on various site-specific temporal variables.

  10. Costs of solar and wind power variability for reducing CO2 emissions.

    PubMed

    Lueken, Colleen; Cohen, Gilbert E; Apt, Jay

    2012-09-04

    We compare the power output from a year of electricity generation data from one solar thermal plant, two solar photovoltaic (PV) arrays, and twenty Electric Reliability Council of Texas (ERCOT) wind farms. The analysis shows that solar PV electricity generation is approximately one hundred times more variable at frequencies on the order of 10(-3) Hz than solar thermal electricity generation, and the variability of wind generation lies between that of solar PV and solar thermal. We calculate the cost of variability of the different solar power sources and wind by using the costs of ancillary services and the energy required to compensate for its variability and intermittency, and the cost of variability per unit of displaced CO(2) emissions. We show the costs of variability are highly dependent on both technology type and capacity factor. California emissions data were used to calculate the cost of variability per unit of displaced CO(2) emissions. Variability cost is greatest for solar PV generation at $8-11 per MWh. The cost of variability for solar thermal generation is $5 per MWh, while that of wind generation in ERCOT was found to be on average $4 per MWh. Variability adds ~$15/tonne CO(2) to the cost of abatement for solar thermal power, $25 for wind, and $33-$40 for PV.

  11. Simulation of Distributed PV Power Output in Oahu Hawaii

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lave, Matthew Samuel

    2016-08-01

    Distributed solar photovoltaic (PV) power generation in Oahu has grown rapidly since 2008. For applications such as determining the value of energy storage, it is important to have PV power output timeseries. Since these timeseries of not typically measured, here we produce simulated distributed PV power output for Oahu. Simulated power output is based on (a) satellite-derived solar irradiance, (b) PV permit data by neighborhood, and (c) population data by census block. Permit and population data was used to model locations of distributed PV, and irradiance data was then used to simulate power output. PV power output simulations are presentedmore » by sub-neighborhood polygons, neighborhoods, and for the whole island of Oahu. Summary plots of annual PV energy and a sample week timeseries of power output are shown, and a the files containing the entire timeseries are described.« less

  12. Statistical Analysis of Solar PV Power Frequency Spectrum for Optimal Employment of Building Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olama, Mohammed M; Sharma, Isha; Kuruganti, Teja

    In this paper, a statistical analysis of the frequency spectrum of solar photovoltaic (PV) power output is conducted. This analysis quantifies the frequency content that can be used for purposes such as developing optimal employment of building loads and distributed energy resources. One year of solar PV power output data was collected and analyzed using one-second resolution to find ideal bounds and levels for the different frequency components. The annual, seasonal, and monthly statistics of the PV frequency content are computed and illustrated in boxplot format. To examine the compatibility of building loads for PV consumption, a spectral analysis ofmore » building loads such as Heating, Ventilation and Air-Conditioning (HVAC) units and water heaters was performed. This defined the bandwidth over which these devices can operate. Results show that nearly all of the PV output (about 98%) is contained within frequencies lower than 1 mHz (equivalent to ~15 min), which is compatible for consumption with local building loads such as HVAC units and water heaters. Medium frequencies in the range of ~15 min to ~1 min are likely to be suitable for consumption by fan equipment of variable air volume HVAC systems that have time constants in the range of few seconds to few minutes. This study indicates that most of the PV generation can be consumed by building loads with the help of proper control strategies, thereby reducing impact on the grid and the size of storage systems.« less

  13. Analysis of a utility-interactive wind-photovoltaic hybrid system with battery storage using neural network

    NASA Astrophysics Data System (ADS)

    Giraud, Francois

    1999-10-01

    This dissertation investigates the application of neural network theory to the analysis of a 4-kW Utility-interactive Wind-Photovoltaic System (WPS) with battery storage. The hybrid system comprises a 2.5-kW photovoltaic generator and a 1.5-kW wind turbine. The wind power generator produces power at variable speed and variable frequency (VSVF). The wind energy is converted into dc power by a controlled, tree-phase, full-wave, bridge rectifier. The PV power is maximized by a Maximum Power Point Tracker (MPPT), a dc-to-dc chopper, switching at a frequency of 45 kHz. The whole dc power of both subsystems is stored in the battery bank or conditioned by a single-phase self-commutated inverter to be sold to the utility at a predetermined amount. First, the PV is modeled using Artificial Neural Network (ANN). To reduce model uncertainty, the open-circuit voltage VOC and the short-circuit current ISC of the PV are chosen as model input variables of the ANN. These input variables have the advantage of incorporating the effects of the quantifiable and non-quantifiable environmental variants affecting the PV power. Then, a simplified way to predict accurately the dynamic responses of the grid-linked WPS to gusty winds using a Recurrent Neural Network (RNN) is investigated. The RNN is a single-output feedforward backpropagation network with external feedback, which allows past responses to be fed back to the network input. In the third step, a Radial Basis Functions (RBF) Network is used to analyze the effects of clouds on the Utility-Interactive WPS. Using the irradiance as input signal, the network models the effects of random cloud movement on the output current, the output voltage, the output power of the PV system, as well as the electrical output variables of the grid-linked inverter. Fourthly, using RNN, the combined effects of a random cloud and a wind gusts on the system are analyzed. For short period intervals, the wind speed and the solar radiation are considered as the sole sources of power, whose variations influence the system variables. Since both subsystems have different dynamics, their respective responses are expected to impact differently the whole system behavior. The dispatchability of the battery-supported system as well as its stability and reliability during gusts and/or cloud passage is also discussed. In the fifth step, the goal is to determine to what extent the overall power quality of the grid would be affected by a proliferation of Utility-interactive hybrid system and whether recourse to bulky or individual filtering and voltage controller is necessary. The final stage of the research includes a steady-state analysis of two-year operation (May 96--Apr 98) of the system, with a discussion on system reliability, on any loss of supply probability, and on the effects of the randomness in the wind and solar radiation upon the system design optimization.

  14. Effect of Thermoelectric Cooling (TEC) module and the water flow heatsink on Photovoltaic (PV) panel performance

    NASA Astrophysics Data System (ADS)

    Amelia, A. R.; Jusoh, MA; Shamira Idris, Ida

    2017-11-01

    Photovoltaic (PV) panel suffers in low conversion efficiency of the output performance affected by the elevated operating temperature of the PV panel. It is important to keep the PV panel to operate at low temperature. To address this issue, this paper proposes the cooling system using thermoelectric cooling (TEC) and water block heatsink for enhancing the PV panel output performance. These both types cooling system were designed located on the back side of the PV panel to cool down the operating temperature of the PV panel. To evaluate the function for the existing cooling systems, the experiment was subsequently performed for PV panel without and with different design of the cooling system in outdoor weather conditions. By comparing the experimental results, it is concluded that by the hybrid cooling system which combining TEC module and the water block heatsink could improve the output performance of the PV panel. By the reduction temperature of the PV panel by 16.04 %, the average output power of the PV panel has been boosted up from 8.59 W to 9.03 W. In short, the output power of the PV panel was enhanced by the reduction of the operating temperature of the PV panel.

  15. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Technical Reports Server (NTRS)

    Cull, R. C.; Eltimsahy, A. H.

    1982-01-01

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  16. Investigation of energy management strategies for photovoltaic systems - An analysis technique

    NASA Astrophysics Data System (ADS)

    Cull, R. C.; Eltimsahy, A. H.

    Progress is reported in formulating energy management strategies for stand-alone PV systems, developing an analytical tool that can be used to investigate these strategies, applying this tool to determine the proper control algorithms and control variables (controller inputs and outputs) for a range of applications, and quantifying the relative performance and economics when compared to systems that do not apply energy management. The analysis technique developed may be broadly applied to a variety of systems to determine the most appropriate energy management strategies, control variables and algorithms. The only inputs required are statistical distributions for stochastic energy inputs and outputs of the system and the system's device characteristics (efficiency and ratings). Although the formulation was originally driven by stand-alone PV system needs, the techniques are also applicable to hybrid and grid connected systems.

  17. The Type-2 Fuzzy Logic Controller-Based Maximum Power Point Tracking Algorithm and the Quadratic Boost Converter for Pv System

    NASA Astrophysics Data System (ADS)

    Altin, Necmi

    2018-05-01

    An interval type-2 fuzzy logic controller-based maximum power point tracking algorithm and direct current-direct current (DC-DC) converter topology are proposed for photovoltaic (PV) systems. The proposed maximum power point tracking algorithm is designed based on an interval type-2 fuzzy logic controller that has an ability to handle uncertainties. The change in PV power and the change in PV voltage are determined as inputs of the proposed controller, while the change in duty cycle is determined as the output of the controller. Seven interval type-2 fuzzy sets are determined and used as membership functions for input and output variables. The quadratic boost converter provides high voltage step-up ability without any reduction in performance and stability of the system. The performance of the proposed system is validated through MATLAB/Simulink simulations. It is seen that the proposed system provides high maximum power point tracking speed and accuracy even for fast changing atmospheric conditions and high voltage step-up requirements.

  18. Quantitative Analysis Method of Output Loss due to Restriction for Grid-connected PV Systems

    NASA Astrophysics Data System (ADS)

    Ueda, Yuzuru; Oozeki, Takashi; Kurokawa, Kosuke; Itou, Takamitsu; Kitamura, Kiyoyuki; Miyamoto, Yusuke; Yokota, Masaharu; Sugihara, Hiroyuki

    Voltage of power distribution line will be increased due to reverse power flow from grid-connected PV systems. In the case of high density grid connection, amount of voltage increasing will be higher than the stand-alone grid connection system. To prevent the over voltage of power distribution line, PV system's output will be restricted if the voltage of power distribution line is close to the upper limit of the control range. Because of this interaction, amount of output loss will be larger in high density case. This research developed a quantitative analysis method for PV systems output and losses to clarify the behavior of grid connected PV systems. All the measured data are classified into the loss factors using 1 minute average of 1 second data instead of typical 1 hour average. Operation point on the I-V curve is estimated to quantify the loss due to the output restriction using module temperature, array output voltage, array output current and solar irradiance. As a result, loss due to output restriction is successfully quantified and behavior of output restriction is clarified.

  19. Smoothing PV System’s Output by Tuning MPPT Control

    NASA Astrophysics Data System (ADS)

    Ina, Nobuhiko; Yanagawa, Shigeyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    A PV system’s output is not stable and fluctuates depending on a weather condition. Using a battery is one of the feasible ways to stabilize a PV system’s output, although it requires an additional cost and provides an additional waste of the used battery. In this paper, we propose tuning a characteristic of Maxiumum Power Point Tracking (MPPT) control for smoothing a short term change of PV system’s output during a sharp insolation fluctuation, as an approach without additional equipments. In our proposed method, when an insolation increases rapidly, the operation point of MPPT control changes to the new point where the maximum power is not generated with present insolation, so that the speed of PV system’s output increase is limited to a certain value, i. e. 1%/min. In order to evaluate the effect of our proposed method in terms of reducing the additional operation task of the electric power system, we evaluated the additional LFC capacity for a large-scale installation of PV systems. As a result, it was revealed that the additional LFC capacity is not required even if a PV system is installed by 5% of utility system, when our proposed method is applied to all PV systems.

  20. Electric Vehicles Charging Scheduling Strategy Considering the Uncertainty of Photovoltaic Output

    NASA Astrophysics Data System (ADS)

    Wei, Xiangxiang; Su, Su; Yue, Yunli; Wang, Wei; He, Luobin; Li, Hao; Ota, Yutaka

    2017-05-01

    The rapid development of electric vehicles and distributed generation bring new challenges to security and economic operation of the power system, so the collaborative research of the EVs and the distributed generation have important significance in distribution network. Under this background, an EVs charging scheduling strategy considering the uncertainty of photovoltaic(PV) output is proposed. The characteristics of EVs charging are analysed first. A PV output prediction method is proposed with a PV database then. On this basis, an EVs charging scheduling strategy is proposed with the goal to satisfy EVs users’ charging willingness and decrease the power loss in distribution network. The case study proves that the proposed PV output prediction method can predict the PV output accurately and the EVs charging scheduling strategy can reduce the power loss and stabilize the fluctuation of the load in distributed network.

  1. Lossless hybridization between photovoltaic and thermoelectric devices.

    PubMed

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device).

  2. Lossless hybridization between photovoltaic and thermoelectric devices

    PubMed Central

    Park, Kwang-Tae; Shin, Sun-Mi; Tazebay, Abdullah S.; Um, Han-Don; Jung, Jin-Young; Jee, Sang-Won; Oh, Min-Wook; Park, Su-Dong; Yoo, Bongyoung; Yu, Choongho; Lee, Jung-Ho

    2013-01-01

    The optimal hybridization of photovoltaic (PV) and thermoelectric (TE) devices has long been considered ideal for the efficient harnessing solar energy. Our hybrid approach uses full spectrum solar energy via lossless coupling between PV and TE devices while collecting waste energy from thermalization and transmission losses from PV devices. Achieving lossless coupling makes the power output from the hybrid device equal to the sum of the maximum power outputs produced separately from individual PV and TE devices. TE devices need to have low internal resistances enough to convey photo-generated currents without sacrificing the PV fill factor. Concomitantly, a large number of p-n legs are preferred to drive a high Seebeck voltage in TE. Our simple method of attaching a TE device to a PV device has greatly improved the conversion efficiency and power output of the PV device (~30% at a 15°C temperature gradient across a TE device). PMID:23820973

  3. Boosting CSP Production with Thermal Energy Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2012-06-01

    Combining concentrating solar power (CSP) with thermal energy storage shows promise for increasing grid flexibility by providing firm system capacity with a high ramp rate and acceptable part-load operation. When backed by energy storage capability, CSP can supplement photovoltaics by adding generation from solar resources during periods of low solar insolation. The falling cost of solar photovoltaic (PV) - generated electricity has led to a rapid increase in the deployment of PV and projections that PV could play a significant role in the future U.S. electric sector. The solar resource itself is virtually unlimited; however, the actual contribution of PVmore » electricity is limited by several factors related to the current grid. The first is the limited coincidence between the solar resource and normal electricity demand patterns. The second is the limited flexibility of conventional generators to accommodate this highly variable generation resource. At high penetration of solar generation, increased grid flexibility will be needed to fully utilize the variable and uncertain output from PV generation and to shift energy production to periods of high demand or reduced solar output. Energy storage is one way to increase grid flexibility, and many storage options are available or under development. In this article, however, we consider a technology already beginning to be used at scale - thermal energy storage (TES) deployed with concentrating solar power (CSP). PV and CSP are both deployable in areas of high direct normal irradiance such as the U.S. Southwest. The role of these two technologies is dependent on their costs and relative value, including how their value to the grid changes as a function of what percentage of total generation they contribute to the grid, and how they may actually work together to increase overall usefulness of the solar resource. Both PV and CSP use solar energy to generate electricity. A key difference is the ability of CSP to utilize high-efficiency TES, which turns CSP into a partially dispatchable resource. The addition of TES produces additional value by shifting the delivery of solar energy to periods of peak demand, providing firm capacity and ancillary services, and reducing integration challenges. Given the dispatchability of CSP enabled by TES, it is possible that PV and CSP are at least partially complementary. The dispatchability of CSP with TES can enable higher overall penetration of the grid by solar energy by providing solar-generated electricity during periods of cloudy weather or at night, when PV-generated power is unavailable. Such systems also have the potential to improve grid flexibility, thereby enabling greater penetration of PV energy (and other variable generation sources such as wind) than if PV were deployed without CSP.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system ismore » based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.« less

  5. Deployment strategy for battery energy storage system in distribution network based on voltage violation regulation

    NASA Astrophysics Data System (ADS)

    Wu, H.; Zhou, L.; Xu, T.; Fang, W. L.; He, W. G.; Liu, H. M.

    2017-11-01

    In order to improve the situation of voltage violation caused by the grid-connection of photovoltaic (PV) system in a distribution network, a bi-level programming model is proposed for battery energy storage system (BESS) deployment. The objective function of inner level programming is to minimize voltage violation, with the power of PV and BESS as the variables. The objective function of outer level programming is to minimize the comprehensive function originated from inner layer programming and all the BESS operating parameters, with the capacity and rated power of BESS as the variables. The differential evolution (DE) algorithm is applied to solve the model. Based on distribution network operation scenarios with photovoltaic generation under multiple alternative output modes, the simulation results of IEEE 33-bus system prove that the deployment strategy of BESS proposed in this paper is well adapted to voltage violation regulation invariable distribution network operation scenarios. It contributes to regulating voltage violation in distribution network, as well as to improve the utilization of PV systems.

  6. Modeling of a VMJ PV array under Gaussian high intensity laser power beam condition

    NASA Astrophysics Data System (ADS)

    Eom, Jeongsook; Kim, Gunzung; Park, Yongwan

    2018-02-01

    The high intensity laser power beaming (HILPB) system is one of the most promising systems in the long-rang wireless power transfer field. The vertical multi-junction photovoltaic (VMJ PV) array converts the HILPB into electricity to power the load or charges a battery. The output power of a VMJ PV array depends mainly on irradiance values of each VMJ PV cells. For simulating an entire VMJ PV array, the irradiance profile of the Gaussian HILPB and the irradiance level of the VMJ PV cell are mathematically modeled first. The VMJ PV array is modeled as a network with dimension m*n, where m represents the number of VMJ PV cells in a column, and n represents the number of VMJ PV cells in a row. In order to validate the results obtained in modeling and simulation, a laboratory setup was developed using 55 VMJ PV array. By using the output power model of VMJ PV array, we can establish an optimal power transmission path by the receiver based on the received signal strength. When the laser beam from multiple transmitters aimed at a VMJ PV array at the same time, the received power is the sum of all energy at a VMJ PV array. The transmitter sends its power characteristics as optically coded laser pulses and powers as HILPB. Using the attenuated power model and output power model of VMJ PV array, the receiver can estimate the maximum receivable powers from the transmitters and select optimal transmitters.

  7. Photovoltaics as a terrestrial energy source. Volume 2: System value

    NASA Technical Reports Server (NTRS)

    Smith, J. L.

    1980-01-01

    Assumptions and techniques employed by the electric utility industry and other electricity planners to make estimates of the future value of photovoltaic (PV) systems interconnected with U.S. electric utilities were examined. Existing estimates of PV value and their interpretation and limitations are discussed. PV value is defined as the marginal private savings accruing to potential PV owners. For utility-owned PV systems, these values are shown to be the after-tax savings in conventional fuel and capacity displaced by the PV output. For non-utility-owned (distributed) systems, the utility's savings in fuel and capacity must first be translated through the electric rate structure (prices) to the potential PV system owner. Base-case estimates of the average value of PV systems to U.S. utilities are presented. The relationship of these results to the PV Program price goals and current energy policy is discussed; the usefulness of PV output quantity goals is also reviewed.

  8. A Modular PV System Using Chain-Link-Type Multilevel Converter

    NASA Astrophysics Data System (ADS)

    Hatano, Nobuhiko; Ise, Toshifumi

    This paper presents a modular photovoltaic system (MPVS) that uses a chain-link-type multilevel converter (CLMC). In large-scale PV generating systems, the DC power supply is generally composed of a large number of PV panels. Hence, losses are caused by differences in the maximum power point at each PV panel. An MPVS has been proposed to address the above mentioned problem. It helps improve the photoelectric conversion efficiency by applying maximum power point tracking (MPPT) control to each group of PV panels. In addition, if a CLMC is used in an MPVS, a high voltage can be output from the AC side and transmission losses can be decreased. However, with this circuit configuration, the current output from the AC side may be unbalanced. Therefore, we propose a method to output balanced current from the AC side, even if the output of the DC power supply is unbalanced. The validity of the proposed method is examined by digital simulation.

  9. Optimized MPPT algorithm for boost converters taking into account the environmental variables

    NASA Astrophysics Data System (ADS)

    Petit, Pierre; Sawicki, Jean-Paul; Saint-Eve, Frédéric; Maufay, Fabrice; Aillerie, Michel

    2016-07-01

    This paper presents a study on the specific behavior of the Boost DC-DC converters generally used for powering conversion of PV panels connected to a HVDC (High Voltage Direct Current) Bus. It follows some works pointing out that converter MPPT (Maximum Power Point Tracker) is severely perturbed by output voltage variations due to physical dependency of parameters as the input voltage, the output voltage and the duty cycle of the PWM switching control of the MPPT. As a direct consequence many converters connected together on a same load perturb each other because of the output voltage variations induced by fluctuations on the HVDC bus essentially due to a not insignificant bus impedance. In this paper we show that it is possible to include an internal computed variable in charge to compensate local and external variations to take into account the environment variables.

  10. I-V Curves from Photovoltaic Modules Deployed in Tucson

    NASA Astrophysics Data System (ADS)

    Kopp, Emily; Brooks, Adria; Lonij, Vincent; Cronin, Alex

    2011-10-01

    More than 30 Mega Watts of photo-voltaic (PV) modules are connected to the electric power grid in Tucson, AZ. However, predictions of PV system electrical yields are uncertain, in part because PV modules degrade at various rates (observed typically in the range 0% to 3 %/yr). We present I-V curves (PV output current as a function of PV output voltage) as a means to study PV module efficiency, de-ratings, and degradation. A student-made I-V curve tracer for 100-Watt modules will be described. We present I-V curves for several different PV technologies operated at an outdoor test yard, and we compare new modules to modules that have been operated in the field for 10 years.

  11. Mitigating Short-Term Variations of Photovoltaic Generation Using Energy Storage with VOLTTRON

    NASA Astrophysics Data System (ADS)

    Morrissey, Kevin

    A smart-building communications system performs smoothing on photovoltaic (PV) power generation using a battery energy storage system (BESS). The system runs using VOLTTRON(TM), a multi-agent python-based software platform dedicated to power systems. The VOLTTRON(TM) system designed for this project runs synergistically with the larger University of Washington VOLTTRON(TM) environment, which is designed to operate UW device communications and databases as well as to perform real-time operations for research. One such research algorithm that operates simultaneously with this PV Smoothing System is an energy cost optimization system which optimizes net demand and associated cost throughout a day using the BESS. The PV Smoothing System features an active low-pass filter with an adaptable time constant, as well as adjustable limitations on the output power and accumulated battery energy of the BESS contribution. The system was analyzed using 26 days of PV generation at 1-second resolution. PV smoothing was studied with unconstrained BESS contribution as well as under a broad range of BESS constraints analogous to variable-sized storage. It was determined that a large inverter output power was more important for PV smoothing than a large battery energy capacity. Two methods of selecting the time constant in real time, static and adaptive, are studied for their impact on system performance. It was found that both systems provide a high level of PV smoothing performance, within 8% of the ideal case where the best time constant is known ahead of time. The system was run in real time using VOLTTRON(TM) with BESS limitations of 5 kW/6.5 kWh and an adaptive update period of 7 days. The system behaved as expected given the BESS parameters and time constant selection methods, providing smoothing on the PV generation and updating the time constant periodically using the adaptive time constant selection method.

  12. Battery Energy Storage Systems to Mitigate the Variability of Photovoltaic Power Generation

    NASA Astrophysics Data System (ADS)

    Gurganus, Heath Alan

    Methods of generating renewable energy such as through solar photovoltaic (PV) cells and wind turbines offer great promise in terms of a reduced carbon footprint and overall impact on the environment. However, these methods also share the attribute of being highly stochastic, meaning they are variable in such a way that is difficult to forecast with sufficient accuracy. While solar power currently constitutes a small amount of generating potential in most regions, the cost of photovoltaics continues to decline and a trend has emerged to build larger PV plants than was once feasible. This has brought the matter of increased variability to the forefront of research in the industry. Energy storage has been proposed as a means of mitigating this increased variability --- and thus reducing the need to utilize traditional spinning reserves --- as well as offering auxiliary grid services such as peak-shifting and frequency control. This thesis addresses the feasibility of using electrochemical storage methods (i.e. batteries) to decrease the ramp rates of PV power plants. By building a simulation of a grid-connected PV array and a typical Battery Energy Storage System (BESS) in the NetLogo simulation environment, I have created a parameterized tool that can be tailored to describe almost any potential PV setup. This thesis describes the design and function of this model, and makes a case for the accuracy of its measurements by comparing its simulated output to that of well-documented real world sites. Finally, a set of recommendations for the design and operational parameters of such a system are then put forth based on the results of several experiments performed using this model.

  13. PV output smoothing using a battery and natural gas engine-generator.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi

    2013-02-01

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific levelmore » with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.« less

  14. Development of an Advanced Grid-Connected PV-ECS System Considering Solar Energy Estimation

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Habibur; Yamashiro, Susumu; Nakamura, Koichi

    In this paper, the development and the performance of a viable distributed grid-connected power generation system of Photovoltaic-Energy Capacitor System (PV-ECS) considering solar energy estimation have been described. Instead of conventional battery Electric Double Layer Capacitors (EDLC) are used as storage device and Photovoltaic (PV) panel to generate power from solar energy. The system can generate power by PV, store energy when the demand of load is low and finally supply the stored energy to load during the period of peak demand. To realize the load leveling function properly the system will also buy power from grid line when load demand is high. Since, the power taken from grid line depends on the PV output power, a procedure has been suggested to estimate the PV output power by calculating solar radiation. In order to set the optimum value of the buy power, a simulation program has also been developed. Performance of the system has been studied for different load patterns in different weather conditions by using the estimated PV output power with the help of the simulation program.

  15. Comparative Assessment of Tactics to Improve Primary Frequency Response Without Curtailing Solar Output in High Photovoltaic Interconnection Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Jin; Zhang, Yingchen; You, Shutang

    Power grid primary frequency response will be significantly impaired by Photovoltaic (PV) penetration increase because of the decrease in inertia and governor response. PV inertia and governor emulation requires reserving PV output and leads to solar energy waste. This paper exploits current grid resources and explores energy storage for primary frequency response under high PV penetration at the interconnection level. Based on the actual models of the U.S. Eastern Interconnection grid and the Texas grid, effects of multiple factors associated with primary frequency response, including the governor ratio, governor deadband, droop rate, fast load response. are assessed under high PVmore » penetration scenarios. In addition, performance of batteries and supercapacitors using different control strategies is studied in the two interconnections. The paper quantifies the potential of various resources to improve interconnection-level primary frequency response under high PV penetration without curtailing solar output.« less

  16. Stochastic Short-term High-resolution Prediction of Solar Irradiance and Photovoltaic Power Output

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melin, Alexander M.; Olama, Mohammed M.; Dong, Jin

    The increased penetration of solar photovoltaic (PV) energy sources into electric grids has increased the need for accurate modeling and prediction of solar irradiance and power production. Existing modeling and prediction techniques focus on long-term low-resolution prediction over minutes to years. This paper examines the stochastic modeling and short-term high-resolution prediction of solar irradiance and PV power output. We propose a stochastic state-space model to characterize the behaviors of solar irradiance and PV power output. This prediction model is suitable for the development of optimal power controllers for PV sources. A filter-based expectation-maximization and Kalman filtering mechanism is employed tomore » estimate the parameters and states in the state-space model. The mechanism results in a finite dimensional filter which only uses the first and second order statistics. The structure of the scheme contributes to a direct prediction of the solar irradiance and PV power output without any linearization process or simplifying assumptions of the signal’s model. This enables the system to accurately predict small as well as large fluctuations of the solar signals. The mechanism is recursive allowing the solar irradiance and PV power to be predicted online from measurements. The mechanism is tested using solar irradiance and PV power measurement data collected locally in our lab.« less

  17. Utilizing Maximum Power Point Trackers in Parallel to Maximize the Power Output of a Solar (Photovoltaic) Array

    DTIC Science & Technology

    2012-12-01

    photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase... photovoltaic (PV) system to use a maximum power point tracker ( MPPT ) to increase the power output of the solar array. Currently, most military... MPPT ) is an optimizing circuit that is used in conjunction with photovoltaic (PV) arrays to achieve the maximum delivery of power from the array

  18. Active optimal control strategies for increasing the efficiency of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Aljoaba, Sharif Zidan Ahmad

    Energy consumption has increased drastically during the last century. Currently, the worldwide energy consumption is about 17.4 TW and is predicted to reach 25 TW by 2035. Solar energy has emerged as one of the potential renewable energy sources. Since its first physical recognition in 1887 by Adams and Day till nowadays, research in solar energy is continuously developing. This has lead to many achievements and milestones that introduced it as one of the most reliable and sustainable energy sources. Recently, the International Energy Agency declared that solar energy is predicted to be one of the major electricity production energy sources by 2035. Enhancing the efficiency and lifecycle of photovoltaic (PV) modules leads to significant cost reduction. Reducing the temperature of the PV module improves its efficiency and enhances its lifecycle. To better understand the PV module performance, it is important to study the interaction between the output power and the temperature. A model that is capable of predicting the PV module temperature and its effects on the output power considering the individual contribution of the solar spectrum wavelengths significantly advances the PV module edsigns toward higher efficiency. In this work, a thermoelectrical model is developed to predict the effects of the solar spectrum wavelengths on the PV module performance. The model is characterized and validated under real meteorological conditions where experimental temperature and output power of the PV module measurements are shown to agree with the predicted results. The model is used to validate the concept of active optical filtering. Since this model is wavelength-based, it is used to design an active optical filter for PV applications. Applying this filter to the PV module is expected to increase the output power of the module by filtering the spectrum wavelengths. The active filter performance is optimized, where different cutoff wavelengths are used to maximize the module output power. It is predicted that if the optimized active optical filter is applied to the PV module, the module efficiency is predicted to increase by about 1%. Different technologies are considered for physical implementation of the active optical filter.

  19. Super short term forecasting of photovoltaic power generation output in micro grid

    NASA Astrophysics Data System (ADS)

    Gong, Cheng; Ma, Longfei; Chi, Zhongjun; Zhang, Baoqun; Jiao, Ran; Yang, Bing; Chen, Jianshu; Zeng, Shuang

    2017-01-01

    The prediction model combining data mining and support vector machine (SVM) was built. Which provide information of photovoltaic (PV) power generation output for economic operation and optimal control of micro gird, and which reduce influence of power system from PV fluctuation. Because of the characteristic which output of PV rely on radiation intensity, ambient temperature, cloudiness, etc., so data mining was brought in. This technology can deal with large amounts of historical data and eliminate superfluous data, by using fuzzy classifier of daily type and grey related degree. The model of SVM was built, which can dock with information from data mining. Based on measured data from a small PV station, the prediction model was tested. The numerical example shows that the prediction model is fast and accurate.

  20. Output Control Technologies for a Large-scale PV System Considering Impacts on a Power Grid

    NASA Astrophysics Data System (ADS)

    Kuwayama, Akira

    The mega-solar demonstration project named “Verification of Grid Stabilization with Large-scale PV Power Generation systems” had been completed in March 2011 at Wakkanai, the northernmost city of Japan. The major objectives of this project were to evaluate adverse impacts of large-scale PV power generation systems connected to the power grid and develop output control technologies with integrated battery storage system. This paper describes the outline and results of this project. These results show the effectiveness of battery storage system and also proposed output control methods for a large-scale PV system to ensure stable operation of power grids. NEDO, New Energy and Industrial Technology Development Organization of Japan conducted this project and HEPCO, Hokkaido Electric Power Co., Inc managed the overall project.

  1. Enhancement of real-time EPICS IOC PV management for the data archiving system

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Ha

    2015-10-01

    The operation of a 100-MeV linear proton accelerator, the major driving values and experimental data need to be archived. According to the experimental conditions, different data are required. Functions that can add new data and delete data in real time need to be implemented. In an experimental physics and industrial control system (EPICS) input output controller (IOC), the value of process variables (PVs) are matched with the driving values and data. The PV values are archived in text file format by using the channel archiver. There is no need to create a database (DB) server, just a need for large hard disk. Through the web, the archived data can be loaded, and new PV values can be archived without stopping the archive engine. The details of the implementation of a data archiving system with channel archiver are presented, and some preliminary results are reported.

  2. Grid Integrated Distributed PV (GridPV) Version 2.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included tomore » show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.« less

  3. Optimal system sizing in grid-connected photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Simoens, H. M.; Baert, D. H.; de Mey, G.

    A costs/benefits analysis for optimizing the combination of photovoltaic (PV) panels, batteries and an inverter for grid interconnected systems at a 500 W/day Belgian residence is presented. It is assumed that some power purchases from the grid will always be necessary, and that excess PV power can be fed into the grid. A minimal value for the cost divided by the performance is defined for economic optimization. Shortages and excesses are calculated for PV panels of 0.5-10 kWp output, with consideration given to the advantages of a battery back-up. The minimal economic value is found to increase with the magnitude of PV output, and an inverter should never be rated at more than half the array maximum output. A maximum panel size for the Belgian residence is projected to be 6 kWp.

  4. Distributed Optimization and Control | Grid Modernization | NREL

    Science.gov Websites

    developing an innovative, distributed photovoltaic (PV) inverter control architecture that maximizes PV communications systems to support distribution grid operations. The growth of PV capacity has introduced prescribed limits, while fast variations in PV output tend to cause transients that lead to wear-out of

  5. Eastern Renewable Generation Integration Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bloom, Aaron; Townsend, Aaron; Palchak, David

    2016-08-01

    The Eastern Interconnection (EI) is one of the largest power systems in the world, and its size and complexity have historically made it difficult to study in high levels of detail in a modeling environment. In order to understand how this system might be impacted by high penetrations (30% of total annual generation) of wind and solar photovoltaic (PV) during steady state operations, the National Renewable Energy Laboratory (NREL) and the U.S. Department of Energy (DOE) conducted the Eastern Renewable Generation Integration Study (ERGIS). This study investigates certain aspects of the reliability and economic efficiency problem faced by power systemmore » operators and planners. Specifically, the study models the ability to meet electricity demand at a 5-minute time interval by scheduling resources for known ramping events, while maintaining adequate reserves to meet random variation in supply and demand, and contingency events. To measure the ability to meet these requirements, a unit commitment and economic dispatch (UC&ED) model is employed to simulate power system operations. The economic costs of managing this system are presented using production costs, a traditional UC&ED metric that does not include any consideration of long-term fixed costs. ERGIS simulated one year of power system operations to understand regional and sub-hourly impacts of wind and PV by developing a comprehensive UC&ED model of the EI. In the analysis, it is shown that, under the study assumptions, generation from approximately 400 GW of combined wind and PV capacity can be balanced on the transmission system at a 5-minute level. In order to address the significant computational burdens associated with a model of this detail we apply novel computing techniques to dramatically reduce simulation solve time while simultaneously increasing the resolution and fidelity of the analysis. Our results also indicate that high penetrations of wind and PV (collectively variable generation (VG)), significantly impact the operation of traditional generating resources and cause these resources to be used less frequently and operate across a broader output range because wind and PV have lower operating costs and variable output levels.« less

  6. An Evaluation Method for PV Systems by using Limited Data Item

    NASA Astrophysics Data System (ADS)

    Oozeki, Takashi; Izawa, Toshiyasu; Otani, Kenji; Tsuzuku, Ken; Koike, Hisafumi; Kurokawa, Kosuke

    Beside photovoltaic (PV) systems are recently expected to introduce around Japan, almost all of them have not been taken care after established since PV systems are called maintenance free. In fact, there are few troubles about PV operations behind owners of PV systems because characteristics of them cannot be identified completely such as the ideal output energy. Therefore, it is very important to evaluate the characteristics of them. For evaluating them, equipments of measuring are required, and they, especially Pyrheliometer, are expensive as much as owners of the PV system cannot equip usually. Consequently, An evaluation method which can reveal the performance of operation such as the performance ratio with a very few kinds of data is necessary. In this paper, proposed method can evaluate performance ratio, shading losses, inverter efficiency losses by using only system output data items. The adequacies of the method are indicated by comparing with actual data and field survey results. As a result, the method is intended to be checking tool of PV system performance.

  7. Quasi-static time-series simulation using OpenDSS in IEEE distribution feeder model with high PV penetration and its impact on solar forecasting

    NASA Astrophysics Data System (ADS)

    Mohammed, Touseef Ahmed Faisal

    Since 2000, renewable electricity installations in the United States (excluding hydropower) have more than tripled. Renewable electricity has grown at a compounded annual average of nearly 14% per year from 2000-2010. Wind, Concentrated Solar Power (CSP) and solar Photo Voltaic (PV) are the fastest growing renewable energy sectors. In 2010 in the U.S., solar PV grew over 71% and CSP grew by 18% from the previous year. Globally renewable electricity installations have more than quadrupled from 2000-2010. Solar PV generation grew by a factor of more than 28 between 2000 and 2010. The amount of CSP and solar PV installations are increasing on the distribution grid. These PV installations transmit electrical current from the load centers to the generating stations. But the transmission and distribution grid have been designed for uni-directional flow of electrical energy from generating stations to load centers. This causes imbalances in voltage and switchgear of the electrical circuitry. With the continuous rise in PV installations, analysis of voltage profile and penetration levels remain an active area of research. Standard distributed photovoltaic (PV) generators represented in simulation studies do not reflect the exact location and variability properties such as distance between interconnection points to substations, voltage regulators, solar irradiance and other environmental factors. Quasi-Static simulations assist in peak load planning hour and day ahead as it gives a time sequence analysis to help in generation allocation. Simulation models can be daily, hourly or yearly depending on duty cycle and dynamics of the system. High penetration of PV into the power grid changes the voltage profile and power flow dynamically in the distribution circuits due to the inherent variability of PV. There are a number of modeling and simulations tools available for the study of such high penetration PV scenarios. This thesis will specifically utilize OpenDSS, a open source Distribution System Simulator developed by Electric Power Research Institute, to simulate grid voltage profile with a large scale PV system under quasi-static time series considering variations of PV output in seconds, minutes, and the average daily load variations. A 13 bus IEEE distribution feeder model is utilized with distributed residential and commercial scale PV at different buses for simulation studies. Time series simulations are discussed for various modes of operation considering dynamic PV penetration at different time periods in a day. In addition, this thesis demonstrates simulations taking into account the presence of moving cloud for solar forecasting studies.

  8. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2018-04-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  9. Closed Loop Fuzzy Logic Controlled PV Based Cascaded Boost Five-Level Inverter System

    NASA Astrophysics Data System (ADS)

    Revana, Guruswamy; Kota, Venkata Reddy

    2017-12-01

    Recent developments in intelligent control methods and power electronics have produced PV based DC to AC converters related to AC drives. Cascaded boost converter and inverter find their way in interconnecting PV and Induction Motor. This paper deals with digital simulation and implementation of closed loop controlled five-level inverter based Photo-Voltaic (PV) system. The objective of this work is to reduce the harmonics using Multi Level Inverter based system. The DC output from the PV panel is boosted using cascaded-boost-converters. The DC output of these cascaded boost converters is applied to the bridges of the cascaded inverter. The AC output voltage is obtained by the series cascading of the output voltage of the two inverters. The investigations are done with Induction motor load. Cascaded boost-converter is proposed in the present work to produce the required DC Voltage at the input of the bridge inverter. A simple FLC is applied to CBFLIIM system. The FLC is proposed to reduce the steady state error. The simulation results are compared with the hardware results. The results of the comparison are made to show the improvement in dynamic response in terms of settling time and steady state error. Design procedure and control strategy are presented in detail.

  10. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less

  11. Application of Distributed DC/DC Electronics in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Kabala, Michael

    In a typical residential, commercial or utility grade photovoltaic (PV) system, PV modules are connected in series and in parallel to form an array that is connected to a standard DC/AC inverter, which is then connected directly to the grid. This type of standard installation; however, does very little to maximize the energy output of the solar array if certain conditions exist. These conditions could include age, temperature, irradiance and other factors that can cause mismatch between PV modules in an array that severely cripple the output power of the system. Since PV modules are typically connected in series to form a string, the output of the entire string is limited by the efficiency of the weakest module. With PV module efficiencies already relatively low, it is critical to extract the maximum power out of each module in order to make solar energy an economically viable competitor to oil and gas. Module level DC/DC electronics with maximum power point (MPP) tracking solves this issue by decoupling each module from the string in order for the module to operate independently of the geometry and complexity of the surrounding system. This allows each PV module to work at its maximum power point by transferring the maximum power the module is able to deliver directly to the load by either boosting (stepping up) the voltage or bucking (stepping down) the voltage. The goal of this thesis is to discuss the development of a per-module DC/DC converter in order to maximize the energy output of a PV module and reduce the overall cost of the system by increasing the energy harvest.

  12. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, directmore » and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.« less

  13. An innovative integrated system utilizing solar energy as power for the treatment of decentralized wastewater.

    PubMed

    Han, Changfu; Liu, Junxin; Liang, Hanwen; Guo, Xuesong; Li, Lin

    2013-02-01

    This article reports an innovative integrated system utilizing solar energy as power for decentralized wastewater treatment, which consists of an oxidation ditch with double channels and a photovoltaic (PV) system without a storage battery. Because the system operates without a storage battery, which can reduce the cost of the PV system, the solar radiation intensity affects the amount of power output from the PV system. To ensure that the power output is sufficient in all different weather conditions, the solar radiation intensity of 78 W/m2 with 95% confidence interval was defined as a threshold of power output for the PV system according to the monitoring results in this study, and a step power output mode was used to utilize the solar energy as well as possible. The oxidation ditch driven by the PV system without storage battery ran during the day and stopped at night. Therefore, anaerobic, anoxic and aerobic conditions could periodically appear in the oxidation ditch, which was favorable to nitrogen and phosphate removal from the wastewater. The experimental results showed that the system was efficient, achieving average removal efficiencies of 88% COD, 98% NH4+-N, 70% TN and 83% TP, under the loading rates of 140 mg COD/(g MLSS x day), 32 mg NH4+-N/(g MLSS x day), 44 mg TN/(g MLSS x day) and 5 mg TP/(g MLSS x day).

  14. Optimal Configuration of PV System with Different Solar Cell Arrays

    NASA Astrophysics Data System (ADS)

    Machida, Sadayuki; Tani, Tatsuo

    Photovoltaic (PV) power generation is spreading steadily, and the dispersed PV array system is increasing from the architectural restrictions. In the case of dispersed array system, if the arrays are installed in a different azimuth or if the module that constitutes array is different, mismatching loss will be generated when a single inverter is used to convert the output of arrays, because of the difference of optimal operating voltage. The loss is related to the array configuration. However the relation between array configuration and power generation output is not clear. In order to avoid generation of mismatching loss, introducing a distributed inverter system such as string inverter system or AC modules system is considered. However it is not clear which is more advantageous between a distributed system and a concentrated system. In this paper, we verified the output characteristics of two different solar cell arrays with various strings, azimuths and tilt angles, and clarified the relation between array configuration and power generation output by the computer simulations. We also compared the distributed inverter system with the concentrated inverter system, and clarified the optimal configuration of PV system with different solar cell arrays.

  15. Photocurrent Measurement of PC and PV HgCdTe Detectors

    PubMed Central

    Eppeldauer, George P.; Martin, Robert J.

    2001-01-01

    Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 μm to 20 μm. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ω shunt resistance photodiode with a maximum signal gain of 108 V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for the output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed. PMID:27500036

  16. Photocurrent Measurement of PC and PV HgCdTe Detectors.

    PubMed

    Eppeldauer, G P; Martin, R J

    2001-01-01

    Novel preamplifiers for working standard photoconductive (PC) and photovoltaic (PV) HgCdTe detectors have been developed to maintain the spectral responsivity scale of the National Institute of Standards and Technology (NIST) in the wavelength range of 5 μm to 20 μm. The linear PC mode preamplifier does not need any compensating source to zero the effect of the detector bias current for the preamplifier output. The impedance multiplication concept with a positive feedback buffer amplifier was analyzed and utilized in a bootstrap PV transimpedance amplifier to measure photocurrent of a 200 Ω shunt resistance photodiode with a maximum signal gain of 10(8) V/A. In spite of the high performance lock-in used as a second-stage signal-amplifier, the signal-to-noise ratio had to be optimized for the output of the photocurrent preamplifiers. Noise and drift were equalized for the output of the PV mode preamplifier. The signal gain errors were calculated to determine the signal frequency range where photocurrent-to-voltage conversion can be performed with very low uncertainties. For the design of both PC and PV detector preamplifiers, the most important gain equations are described. Measurement results on signal ranges and noise performance are discussed.

  17. Photovoltaic system with improved AC connections and method of making same

    DOEpatents

    Cioffi, Philip Michael; Todorovic, Maja Harfman; Herzog, Michael Scott; Korman, Charles Steven; Doherty, Donald M.; Johnson, Neil Anthony

    2018-02-13

    An alternating current (AC) harness for a photovoltaic (PV) system includes a wire assembly having a first end and a second end, the wire assembly having a plurality of lead wires, and at least one AC connection module positioned at a location along a length of the wire assembly between the first end and the second end. Further, the at least one AC connection module includes a first connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a first PV module of the PV system. The at least one AC connection module also includes a second connection terminal electrically coupled to the plurality of lead wires of the wire assembly and constructed to electrically couple the wire assembly with an output of a second PV module of the PV system.

  18. DISTRIBUTED GRID-CONNECTED PHOTOVOLTAIC POWER SYSTEM EMISSION OFFSET ASSESSMENT: STATISTICAL TEST OF SIMULATED- AND MEASURED-BASED DATA

    EPA Science Inventory

    This study assessed the pollutant emission offset potential of distributed grid-connected photovoltaic (PV) power systems. Computer-simulated performance results were utilized for 211 PV systems located across the U.S. The PV systems' monthly electrical energy outputs were based ...

  19. PV_LIB Toolbox v. 1.3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  20. Advanced Grid-Friendly Controls Demonstration for Utility-Scale

    Science.gov Websites

    PV power plant in CAISO's footprint. NREL, CAISO, and First Solar conducted demonstration tests that vendors, integrators, and utilities to develop and evaluate photovoltaic (PV) power plants with advanced grid-friendly capabilities. Graph of power over time that shows a PV plant varying output to follow an

  1. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovativemore » concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)« less

  2. How to Integrate Variable Power Source into a Power Grid

    NASA Astrophysics Data System (ADS)

    Asano, Hiroshi

    This paper discusses how to integrate variable power source such as wind power and photovoltaic generation into a power grid. The intermittent renewable generation is expected to penetrate for less carbon intensive power supply system, but it causes voltage control problem in the distribution system, and supply-demand imbalance problem in a whole power system. Cooperative control of customers' energy storage equipment such as water heater with storage tank for reducing inverse power flow from the roof-top PV system, the operation technique using a battery system and the solar radiation forecast for stabilizing output of variable generation, smart charging of plug-in hybrid electric vehicles for load frequency control (LFC), and other methods to integrate variable power source with improving social benefits are surveyed.

  3. Insolation-oriented model of photovoltaic module using Matlab/Simulink

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsai, Huan-Liang

    2010-07-15

    This paper presents a novel model of photovoltaic (PV) module which is implemented and analyzed using Matlab/Simulink software package. Taking the effect of sunlight irradiance on the cell temperature, the proposed model takes ambient temperature as reference input and uses the solar insolation as a unique varying parameter. The cell temperature is then explicitly affected by the sunlight intensity. The output current and power characteristics are simulated and analyzed using the proposed PV model. The model verification has been confirmed through an experimental measurement. The impact of solar irradiation on cell temperature makes the output characteristic more practical. In addition,more » the insolation-oriented PV model enables the dynamics of PV power system to be analyzed and optimized more easily by applying the environmental parameters of ambient temperature and solar irradiance. (author)« less

  4. Photovoltaic-wind hybrid system for permanent magnet DC motor

    NASA Astrophysics Data System (ADS)

    Nasir, M. N. M.; Lada, M. Y.; Baharom, M. F.; Jaafar, H. I.; Ramani, A. N.; Sulaima, M. F.

    2015-05-01

    Hybrid system of Photovoltaic (PV) - Wind turbine (WT) generation has more advantages and reliable compared to PV or wind turbine system alone. The aim of this paper is to model and design hybrid system of PV-WT supplying 100W permanent-magnet dc motor. To achieve the objective, both of PV and WT are connected to converter in order to get the same source of DC supply. Then both sources were combined and straightly connected to 100W permanent magnet dc motor. All the works in this paper is only applied in circuit simulator by using Matlab Simulink. The output produced from each converter is expected to be suit to the motor specification. The output produced from each renewable energy system is as expected to be high as it can support the motor if one of them is breakdown

  5. Assessment of exit block following pulmonary vein isolation: far-field capture masquerading as entrance without exit block.

    PubMed

    Vijayaraman, Pugazhendhi; Dandamudi, Gopi; Naperkowski, Angela; Oren, Jess; Storm, Randle; Ellenbogen, Kenneth A

    2012-10-01

    Complete electrical isolation of pulmonary veins (PVs) remains the cornerstone of ablation therapy for atrial fibrillation. Entrance block without exit block has been reported to occur in 40% of the patients. Far-field capture (FFC) can occur during pacing from the superior PVs to assess exit block, and this may appear as persistent conduction from PV to left atrium (LA). To facilitate accurate assessment of exit block. Twenty consecutive patients with symptomatic atrial fibrillation referred for ablation were included in the study. Once PV isolation (entrance block) was confirmed, pacing from all the bipoles on the Lasso catheter was used to assess exit block by using a pacing stimulus of 10 mA at 2 ms. Evidence for PV capture without conduction to LA was necessary to prove exit block. If conduction to LA was noticed, pacing output was decreased until there was PV capture without conduction to LA or no PV capture was noted to assess for far-field capture in both the upper PVs. All 20 patients underwent successful isolation (entrance block) of all 76 (4 left common PV) veins: mean age 58 ± 9 years; paroxysmal atrial fibrillation 40%; hypertension 70%, diabetes mellitus 30%, coronary artery disease 15%; left ventricular ejection fraction 55% ± 10%; LA size 42 ± 11 mm. Despite entrance block, exit block was absent in only 16% of the PVs, suggesting persistent PV to LA conduction. FFC of LA appendage was noted in 38% of the left superior PVs. FFC of the superior vena cava was noted in 30% of the right superior PVs. The mean pacing threshold for FFC was 7 ± 4 mA. Decreasing pacing output until only PV capture (loss of FFC) is noted was essential to confirm true exit block. FFC of LA appendage or superior vena cava can masquerade as persistent PV to LA conduction. A careful assessment for PV capture at decreasing pacing output is essential to exclude FFC. Copyright © 2012 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  6. Energy efficiency design strategies for buildings with grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Yimprayoon, Chanikarn

    The building sector in the United States represents more than 40% of the nation's energy consumption. Energy efficiency design strategies and renewable energy are keys to reduce building energy demand. Grid-connected photovoltaic (PV) systems installed on buildings have been the fastest growing market in the PV industry. This growth poses challenges for buildings qualified to serve in this market sector. Electricity produced from solar energy is intermittent. Matching building electricity demand with PV output can increase PV system efficiency. Through experimental methods and case studies, computer simulations were used to investigate the priorities of energy efficiency design strategies that decreased electricity demand while producing load profiles matching with unique output profiles from PV. Three building types (residential, commercial, and industrial) of varying sizes and use patterns located in 16 climate zones were modeled according to ASHRAE 90.1 requirements. Buildings were analyzed individually and as a group. Complying with ASHRAE energy standards can reduce annual electricity consumption at least 13%. With energy efficiency design strategies, the reduction could reach up to 65%, making it possible for PV systems to meet reduced demands in residential and industrial buildings. The peak electricity demand reduction could be up to 71% with integration of strategies and PV. Reducing lighting power density was the best single strategy with high overall performances. Combined strategies such as zero energy building are also recommended. Electricity consumption reductions are the sum of the reductions from strategies and PV output. However, peak electricity reductions were less than their sum because they reduced peak at different times. The potential of grid stress reduction is significant. Investment incentives from government and utilities are necessary. The PV system sizes on net metering interconnection should not be limited by legislation existing in some states. Data from this study provides insight of impacts from applying energy efficiency design strategies in buildings with grid-connected PV systems. With the current transition from traditional electric grids to future smart grids, this information plus large database of various building conditions allow possible investigations needed by governments or utilities in large scale communities for implementing various measures and policies.

  7. A circuit-based photovoltaic module simulator with shadow and fault settings

    NASA Astrophysics Data System (ADS)

    Chao, Kuei-Hsiang; Chao, Yuan-Wei; Chen, Jyun-Ping

    2016-03-01

    The main purpose of this study was to develop a photovoltaic (PV) module simulator. The proposed simulator, using electrical parameters from solar cells, could simulate output characteristics not only during normal operational conditions, but also during conditions of partial shadow and fault conditions. Such a simulator should possess the advantages of low cost, small size and being easily realizable. Experiments have shown that results from a proposed PV simulator of this kind are very close to that from simulation software during partial shadow conditions, and with negligible differences during fault occurrence. Meanwhile, the PV module simulator, as developed, could be used on various types of series-parallel connections to form PV arrays, to conduct experiments on partial shadow and fault events occurring in some of the modules. Such experiments are designed to explore the impact of shadow and fault conditions on the output characteristics of the system as a whole.

  8. [Varicocele and coincidental abacterial prostato-vesiculitis: negative role about the sperm output].

    PubMed

    Vicari, Enzo; La Vignera, Sandro; Tracia, Angelo; Cardì, Francesco; Donati, Angelo

    2003-03-01

    To evaluate the frequency and the role of a coincidentally expressed abacterial prostato-vesiculitis (PV) on sperm output in patients with left varicocele (Vr). We evaluated 143 selected infertile patients (mean age 27 years, range 21-43), with oligo- and/or astheno- and/or teratozoospermia (OAT) subdivided in two groups. Group A included 76 patients with previous varicocelectomy and persistent OAT. Group B included 67 infertile patients (mean age 26 years, range 21-37) with OAT and not varicocelectomized. Patients with Vr and coincidental didymo-epididymal ultrasound (US) abnormalities were excluded from the study. Following rectal prostato-vesicular ultrasonography, each group was subdivided in two subsets on the basis of the absence (group A: subset Vr-/PV-; and group B: subset Vr+/PV-) or the presence of an abacterial PV (group A: subset Vr-/PV+; group B: subset Vr+/PV+). Particularly, PV was present in 47.4% and 41.8% patients of groups A and B, respectively. This coincidental pathology was ipsilateral with Vr in the 61% of the cases. Semen analysis was performed in all patients. Patients of group A showed a total sperm number significantly higher than those found in group B. In presence of PV, sperm parameters were not significantly different between matched--subsets (Vr-/PV+ vs. Vr+/PV+). In absence of PV, the sperm density, the total sperm number and the percentage of forward motility from subset with previous varicocelectomy (Vr-/PV) exhibited values significantly higher than those found in the matched--subset (Vr+/PV-). Sperm analysis alone performed in patients with left Vr is not a useful prognostic post-varicocelectomy marker. Since following varicocelectomy a lack of sperm response could mask another coincidental pathology, the identification through US scans of a possible PV may be mandatory. On the other hand, an integrated uro-andrological approach, including US scans, allows to enucleate subsets of patients with Vr alone, who will have an expected better sperm response following Vr repair.

  9. Determining the Effects of Environment and Atmospheric Parameters on PV Field Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo; Muller, Matthew; Kurtz, Sarah

    2016-11-21

    The performance losses due to soiling occurring on any photovoltaic (PV) device are caused by a complex mechanism that involves numerous factors and their interactions. For this reason, the present work analyzes the outputs of reference PV cells installed in various locations, with the aim of contributing to the identification of the most important factors influencing the accumulation of dust on a PV surface. Parameters such as the air-quality indexes, the recurrence and the amount of rainfall and the climate zone are investigated and related to the soiling losses of the PV device.

  10. The Tucson Electric Power Solar Test Yard

    NASA Astrophysics Data System (ADS)

    Lonij, Vincent; Orsburn, Sean; Salhab, Anas; Kopp, Emily; Brooks, Adria; Jayadevan, Vijai; Greenberg, James; St. Germaine, Michael; Allen, Nate; Jones, Sarah; Hardesty, Garrett; Cronin, Alex

    2011-10-01

    In collaboration with Tucson Electric Power we studied the performance of twenty different grid-tied photovoltaic systems, consisting of over 600 PV modules in all. We added data acquisition hardware to monitor DC power from the modules, AC power from the inverters, PV module temperatures, and meteorological data such as the irradiance incident on the PV systems. We report measurements of PV system yields and efficiencies over periods of minutes, days, and years. We also report temperature and irradiance coefficients of efficiency and measurements of long-term degradation. We also use our data to validate models that predict the output from PV systems.

  11. Model Predictive Control techniques with application to photovoltaic, DC Microgrid, and a multi-sourced hybrid energy system

    NASA Astrophysics Data System (ADS)

    Shadmand, Mohammad Bagher

    Renewable energy sources continue to gain popularity. However, two major limitations exist that prevent widespread adoption: availability and variability of the electricity generated and the cost of the equipment. The focus of this dissertation is Model Predictive Control (MPC) for optimal sized photovoltaic (PV), DC Microgrid, and multi-sourced hybrid energy systems. The main considered applications are: maximum power point tracking (MPPT) by MPC, droop predictive control of DC microgrid, MPC of grid-interaction inverter, MPC of a capacitor-less VAR compensator based on matrix converter (MC). This dissertation firstly investigates a multi-objective optimization technique for a hybrid distribution system. The variability of a high-penetration PV scenario is also studied when incorporated into the microgrid concept. Emerging (PV) technologies have enabled the creation of contoured and conformal PV surfaces; the effect of using non-planar PV modules on variability is also analyzed. The proposed predictive control to achieve maximum power point for isolated and grid-tied PV systems speeds up the control loop since it predicts error before the switching signal is applied to the converter. The low conversion efficiency of PV cells means we want to ensure always operating at maximum possible power point to make the system economical. Thus the proposed MPPT technique can capture more energy compared to the conventional MPPT techniques from same amount of installed solar panel. Because of the MPPT requirement, the output voltage of the converter may vary. Therefore a droop control is needed to feed multiple arrays of photovoltaic systems to a DC bus in microgrid community. Development of a droop control technique by means of predictive control is another application of this dissertation. Reactive power, denoted as Volt Ampere Reactive (VAR), has several undesirable consequences on AC power system network such as reduction in power transfer capability and increase in transmission loss if not controlled appropriately. Inductive loads which operate with lagging power factor consume VARs, thus load compensation techniques by capacitor bank employment locally supply VARs needed by the load. Capacitors are highly unreliable components due to their failure modes and aging inherent. Approximately 60% of power electronic devices failure such as voltage-source inverter based static synchronous compensator (STATCOM) is due to the use of aluminum electrolytic DC capacitors. Therefore, a capacitor-less VAR compensation is desired. This dissertation also investigates a STATCOM capacitor-less reactive power compensation that uses only inductors combined with predictive controlled matrix converter.

  12. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction.

    PubMed

    Gao, Xiang-Ming; Yang, Shi-Feng; Pan, San-Bo

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization.

  13. Optimal Parameter Selection for Support Vector Machine Based on Artificial Bee Colony Algorithm: A Case Study of Grid-Connected PV System Power Prediction

    PubMed Central

    2017-01-01

    Predicting the output power of photovoltaic system with nonstationarity and randomness, an output power prediction model for grid-connected PV systems is proposed based on empirical mode decomposition (EMD) and support vector machine (SVM) optimized with an artificial bee colony (ABC) algorithm. First, according to the weather forecast data sets on the prediction date, the time series data of output power on a similar day with 15-minute intervals are built. Second, the time series data of the output power are decomposed into a series of components, including some intrinsic mode components IMFn and a trend component Res, at different scales using EMD. The corresponding SVM prediction model is established for each IMF component and trend component, and the SVM model parameters are optimized with the artificial bee colony algorithm. Finally, the prediction results of each model are reconstructed, and the predicted values of the output power of the grid-connected PV system can be obtained. The prediction model is tested with actual data, and the results show that the power prediction model based on the EMD and ABC-SVM has a faster calculation speed and higher prediction accuracy than do the single SVM prediction model and the EMD-SVM prediction model without optimization. PMID:28912803

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL and the Hawaiian Electric Companies are collaborating with the solar and inverter industries to implement advanced inverters, allowing greater solar photovoltaic (PV) penetrations that will support the State of Hawaii's goal to achieve 100% renewable energy by 2045. Advanced inverters will help maintain stable grid operations by riding through grid disturbances when the PV output is needed, operating autonomously to smooth voltage fluctuations, and coordinating the start-up and reconnection of PV systems and other distributed energy resources.

  15. LCP- LIFETIME COST AND PERFORMANCE MODEL FOR DISTRIBUTED PHOTOVOLTAIC SYSTEMS

    NASA Technical Reports Server (NTRS)

    Borden, C. S.

    1994-01-01

    The Lifetime Cost and Performance (LCP) Model was developed to assist in the assessment of Photovoltaic (PV) system design options. LCP is a simulation of the performance, cost, and revenue streams associated with distributed PV power systems. LCP provides the user with substantial flexibility in specifying the technical and economic environment of the PV application. User-specified input parameters are available to describe PV system characteristics, site climatic conditions, utility purchase and sellback rate structures, discount and escalation rates, construction timing, and lifetime of the system. Such details as PV array orientation and tilt angle, PV module and balance-of-system performance attributes, and the mode of utility interconnection are user-specified. LCP assumes that the distributed PV system is utility grid interactive without dedicated electrical storage. In combination with a suitable economic model, LCP can provide an estimate of the expected net present worth of a PV system to the owner, as compared to electricity purchased from a utility grid. Similarly, LCP might be used to perform sensitivity analyses to identify those PV system parameters having significant impact on net worth. The user describes the PV system configuration to LCP via the basic electrical components. The module is the smallest entity in the PV system which is modeled. A PV module is defined in the simulation by its short circuit current, which varies over the system lifetime due to degradation and failure. Modules are wired in series to form a branch circuit. Bypass diodes are allowed between modules in the branch circuits. Branch circuits are then connected in parallel to form a bus. A collection of buses is connected in parallel to form an increment to capacity of the system. By choosing the appropriate series-parallel wiring design, the user can specify the current, voltage, and reliability characteristics of the system. LCP simulation of system performance is site-specific and follows a three-step procedure. First the hourly power produced by the PV system is computed using a selected year's insolation and temperature profile. For this step it is assumed that there are no module failures or degradation. Next, the monthly simulation is performed involving a month to month progression through the lifetime of the system. In this step, the effects of degradation, failure, dirt accumulation and operations/maintenance efforts on PV system performance over time are used to compute the monthly power capability fraction. The resulting monthly power capability fractions are applied to the hourly power matrix from the first step, giving the anticipated hourly energy output over the lifetime of the system. PV system energy output is compared with the PV system owner's electricity demand for each hour. The amount of energy to be purchased from or sold to the utility grid is then determined. Monthly expenditures on the PV system and the purchase of electricity from the utility grid are also calculated. LCP generates output reports pertaining to the performance of the PV system, and system costs and revenues. The LCP model, written in SIMSCRIPT 2.5 for batch execution on an IBM 370 series computer, was developed in 1981.

  16. GridPV Toolbox

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  17. Performance comparison investigation on solar photovoltaic-thermoelectric generation and solar photovoltaic-thermoelectric cooling hybrid systems under different conditions

    NASA Astrophysics Data System (ADS)

    Wu, Shuang-Ying; Zhang, Yi-Chen; Xiao, Lan; Shen, Zu-Guo

    2018-07-01

    The performance of solar photovoltaic-thermoelectric generation hybrid system (PV-TGS) and solar photovoltaic-thermoelectric cooling hybrid system (PV-TCS) under different conditions were theoretically analysed and compared. To test the practicality of these two hybrid systems, the performance of stand-alone PV system was also studied. The results show that PV-TGS and PV-TCS in most cases will result in the system with a better performance than stand-alone PV system. The advantage of PV-TGS is emphasised in total output power and conversion efficiency which is even poorer in PV-TCS than that in stand-alone PV system at the ambient wind speed uw being below 3 m/s. However, PV-TCS has obvious advantage on lowering the temperature of PV cell. There is an obvious increase in tendency on the performance of PV-TGS and PV-TCS when the cooling capacity of two hybrid systems varies from around 0.06 to 0.3 W/K. And it is also proved that not just a-Si in PV-TGS can produce a better performance than the stand-alone PV system alone at most cases.

  18. A Methodology to Analyze Photovoltaic Tracker Uptime

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Matthew T; Ruth, Dan

    A metric is developed to analyze the daily performance of single-axis photovoltaic (PV) trackers. The metric relies on comparing correlations between the daily time series of the PV power output and an array of simulated plane-of-array irradiances for the given day. Mathematical thresholds and a logic sequence are presented, so the daily tracking metric can be applied in an automated fashion on large-scale PV systems. The results of applying the metric are visually examined against the time series of the power output data for a large number of days and for various systems. The visual inspection results suggest that overall,more » the algorithm is accurate in identifying stuck or functioning trackers on clear-sky days. Visual inspection also shows that there are days that are not classified by the metric where the power output data may be sufficient to identify a stuck tracker. Based on the daily tracking metric, uptime results are calculated for 83 different inverters at 34 PV sites. The mean tracker uptime is calculated at 99% based on 2 different calculation methods. The daily tracking metric clearly has limitations, but as there is no existing metrics in the literature, it provides a valuable tool for flagging stuck trackers.« less

  19. Supply and Demand Control of Distributed Generators in a Microgrid for New Energy

    NASA Astrophysics Data System (ADS)

    Shimakage, Toyonari; Sumita, Jiro; Uchiyama, Noriyuki; Kato, Takeyoshi; Suzuoki, Yasuo

    We report the operational results of distributed generators (DGs) in a microgrid and present the effects after incorporating photovoltaic power generation (PV) systems into the microgrid for electric power system. The microgrid was constructed at the EXPO 2005 Aichi site as part of a demonstration promoted by NEDO. A solution is needed to problems where instability in the DGs that utilize natural energy such as solar light and wind force negatively influence existing electric power systems. So, we developed energy control system and controlled DGs output to reduce the fluctuation at the grid connected point caused by PV system's instability output. Our microgrid consists of DGs such as PV systems, fuel cells, and NaS batteries, and these DGs are controlled by an energy control system. We verified practical effectiveness of the installing the microgrid as follows. (1) 99.5% of the power imbalance in the supply and demand over 30 minutes was within a range of ±3% under normal operating conditions, (2) the microgrid contributes to the load leveling, (3) energy control system smoothes the power flow fluctuation of PV system output at the grid connected point, (4) in the future, installing a microgrid will help reduce the additional LFC (Load Frequency Control) capacity.

  20. Blood parameters in draught oxen during work: relationship to physical fitness.

    PubMed

    Zanzinger, J; Becker, K

    1992-08-01

    1. Four Zebu and four Simmental oxen were submitted to moderate and exhaustive work. Venous blood samples were taken before, immediately after and 30 min after work and assayed for several blood parameters. 2. Draught work led to a decrease in carbon dioxide (pvCO2) and increases in pH, oxygen (pvO2), triglycerides, free fatty acids (FFA) and lactate. 3. Zebu oxen had higher pvCO2 and FFA and lower pH, pvO2 and lactate in response to exercise. 4. Ratios of individual draught power output and values of pvO2 and lactate after work enable the identification of fit and/or weak individuals.

  1. Solar Photovoltaic DC Systems: Basics and Safety: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNutt, Peter F; Sekulic, William R; Dreifuerst, Gary

    Solar Photovoltaic (PV) systems are common and growing with 42.4 GW installed capacity in U.S. (almost 15 GW added in 2016). This paper will help electrical workers, and emergency responders understand the basic operating principles and hazards of PV DC arrays. We briefly discuss the following aspects of solar photovoltaic (PV) DC systems: the effects of solar radiation and temperature on output power; PV module testing standards; common system configurations; a simple PV array sizing example; NEC guidelines and other safety features; DC array commissioning, periodic maintenance and testing; arc-flash hazard potential; how electrical workers and emergency responders can andmore » do work safely around PV arrays; do moonlight and artificial lighting pose a real danger; typical safe operating procedures; and other potential DC-system hazards to be aware of. We also present some statistics on PV DC array electrical incidents and injuries. Safe PV array operation is possible with a good understanding of PV DC arrays basics and having good safe operating procedures in place.« less

  2. Research on Fault Characteristics and Line Protections Within a Large-scale Photovoltaic Power Plant

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Zeng, Jie; Zhao, Wei; Zhong, Guobin; Xu, Qi; Luo, Pandian; Gu, Chenjie; Liu, Bohan

    2017-05-01

    Centralized photovoltaic (PV) systems have different fault characteristics from distributed PV systems due to the different system structures and controls. This makes the fault analysis and protection methods used in distribution networks with distributed PV not suitable for a centralized PV power plant. Therefore, a consolidated expression for the fault current within a PV power plant under different controls was calculated considering the fault response of the PV array. Then, supported by the fault current analysis and the on-site testing data, the overcurrent relay (OCR) performance was evaluated in the collection system of an 850 MW PV power plant. It reveals that the OCRs at downstream side on overhead lines may malfunction. In this case, a new relay scheme was proposed using directional distance elements. In the PSCAD/EMTDC, a detailed PV system model was built and verified using the on-site testing data. Simulation results indicate that the proposed relay scheme could effectively solve the problems under variant fault scenarios and PV plant output levels.

  3. Beeswax as phase change material to improve solar panel’s performance

    NASA Astrophysics Data System (ADS)

    Thaib, R.; Rizal, S.; Riza, M.; Mahlia, T. M. I.; Rizal, T. A.

    2018-02-01

    One of the main obstacles faced during the operation of photovoltaic (PV) panels was overheating due to excessive solar radiation and high ambient temperatures. In this research, investigates the use of beeswax phase change materials (PCM) to maintain the temperature of the panels close to ambient. Solar panels used in this study has 839 mm length, 537 mm wide, and 50 mm thick, with maximum output power at 50 W. During the study, there were two solar panels was evaluated, one without phase change material while the other one was using beeswax phase change material. Solar panels were mounted at 15° slope. Variables observed was the temperature of solar panel’s surface, output voltage and current that produced by PV panels, wind speed around solar panels, and solar radiation. The observation was started at 07:00 am and ended at 06:00 pm. The research shows that maximum temperature of solar panels surface without phase change material is ranging between 46-49 °C, and electrical efficiency is about 7.2-8.8%. Meanwhile, for solar panels with beeswax phase change material, the maximum temperature solar panels surface is relatively low ranging between 33-34 °C, and its electrical efficiency seems to increase about 9.1-9.3%.

  4. Modeling and reconfiguration of solar photovoltaic arrays under non-uniform shadow conditions

    NASA Astrophysics Data System (ADS)

    Nguyen, Dung Duc

    Mass production and use of electricity generated from solar energy has become very common recently because of the environmental threats arising from the production of electricity from fossil fuels and nuclear power. The obvious benefits of solar energy are clean energy production and infinite supply of daylight. The main disadvantage is the high cost. In these photovoltaic systems, semiconductor materials convert the solar light into electrical energy. Current versus voltage characteristics of the solar cells are nonlinear, thus leading to technical control challenges. In the first order approximation, output power of a solar array is proportional to the irradiance of sunlight. However, in many applications, such as solar power plants, building integrated photovoltaic or solar tents, the solar photovoltaic arrays might be illuminated non-uniformly. The cause of non-uniform illumination may be the shadow of clouds, the trees, booms, neighbor's houses, or the shadow of one solar array on the other, etc. This further leads to nonlinearities in characteristics. Because of the nature of the electrical characteristics of solar cells, the maximum power losses are not proportional to the shadow, but magnify nonlinearly [1]. Further, shadows of solar PV array can cause other undesired effects: (1) The power actually generated from the solar PV array is much less than designed. At some systems, the annual losses because of the shadow effects can be reached 10%. Thus, the probability for "loss of load" increases [2]. (2) The local hot spot in the shaded part of the solar PV array can damage the solar cells. The shaded solar cells may be work on the negative voltage region and become a resistive load and absorb power. Bypass diodes are sometimes connected parallel to solar cells to protect them from damage. However, in most cases, just one diode is connected in parallel to group of solar cells [3], and this hidden the potential power output of the array. This proposed research will focus on the development of an adaptable solar array that is able to optimize power output, reconfigure itself when solar cells are damaged and create controllable output voltages and currents. This study will be a technological advancement over the existing technology of solar PV. Presently solar arrays are fixed arrays that require external device to control their output. In this research, the solar array will be able to self-reconfigure, leading to the following advantages: (1) Higher efficiency because no external devices are used. (2) Can reach maximum possible output power that is much higher than the maximum power of fixed solar arrays by arranging the solar cells in optimized connections. (3) Elimination of the hot spot effects. The proposed research has the following goals: First, to create a modeling and computing algorithm, which is able to simulate and analyze the effects of non-uniform changing shadows on the output power of solar PV arrays. Our model will be able to determine the power losses in each solar cell and the collective hot spots of an array. Second, to propose new methods, which are able to predict the performance of solar PV arrays under shadow conditions for long term (days, months, years). Finally, to develop adaptive reconfiguration algorithms to reconfigure connections within solar PV arrays in real time, under shadow conditions, in order to optimize output power.

  5. Reduction of solar photovoltaic resources due to air pollution in China

    PubMed Central

    Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L.

    2017-01-01

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003–2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth’s Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20–25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. PMID:29078360

  6. Reduction of solar photovoltaic resources due to air pollution in China.

    PubMed

    Li, Xiaoyuan; Wagner, Fabian; Peng, Wei; Yang, Junnan; Mauzerall, Denise L

    2017-11-07

    Solar photovoltaic (PV) electricity generation is expanding rapidly in China, with total capacity projected to be 400 GW by 2030. However, severe aerosol pollution over China reduces solar radiation reaching the surface. We estimate the aerosol impact on solar PV electricity generation at the provincial and regional grid levels in China. Our approach is to examine the 12-year (2003-2014) average reduction in point-of-array irradiance (POAI) caused by aerosols in the atmosphere. We apply satellite-derived surface irradiance data from the NASA Clouds and the Earth's Radiant Energy System (CERES) with a PV performance model (PVLIB-Python) to calculate the impact of aerosols and clouds on POAI. Our findings reveal that aerosols over northern and eastern China, the most polluted regions, reduce annual average POAI by up to 1.5 kWh/m 2 per day relative to pollution-free conditions, a decrease of up to 35%. Annual average reductions of POAI over both northern and eastern China are about 20-25%. We also evaluate the seasonal variability of the impact and find that aerosols in this region are as important as clouds in winter. Furthermore, we find that aerosols decrease electricity output of tracking PV systems more than those with fixed arrays: over eastern China, POAI is reduced by 21% for fixed systems at optimal angle and 34% for two-axis tracking systems. We conclude that PV system performance in northern and eastern China will benefit from improvements in air quality and will facilitate that improvement by providing emission-free electricity. Published under the PNAS license.

  7. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor-A Solution for Smoothing the Output Power of PV Power Plants.

    PubMed

    Sukič, Primož; Štumberger, Gorazd

    2017-05-13

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly.

  8. Intra-Minute Cloud Passing Forecasting Based on a Low Cost IoT Sensor—A Solution for Smoothing the Output Power of PV Power Plants

    PubMed Central

    Sukič, Primož; Štumberger, Gorazd

    2017-01-01

    Clouds moving at a high speed in front of the Sun can cause step changes in the output power of photovoltaic (PV) power plants, which can lead to voltage fluctuations and stability problems in the connected electricity networks. These effects can be reduced effectively by proper short-term cloud passing forecasting and suitable PV power plant output power control. This paper proposes a low-cost Internet of Things (IoT)-based solution for intra-minute cloud passing forecasting. The hardware consists of a Raspberry PI Model B 3 with a WiFi connection and an OmniVision OV5647 sensor with a mounted wide-angle lens, a circular polarizing (CPL) filter and a natural density (ND) filter. The completely new algorithm for cloud passing forecasting uses the green and blue colors in the photo to determine the position of the Sun, to recognize the clouds, and to predict their movement. The image processing is performed in several stages, considering selectively only a small part of the photo relevant to the movement of the clouds in the vicinity of the Sun in the next minute. The proposed algorithm is compact, fast and suitable for implementation on low cost processors with low computation power. The speed of the cloud parts closest to the Sun is used to predict when the clouds will cover the Sun. WiFi communication is used to transmit this data to the PV power plant control system in order to decrease the output power slowly and smoothly. PMID:28505078

  9. On the Path to SunShot - Emerging Issues and Challenges in Integrating High Levels of Solar into the Electrical Generation and Transmission System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Clark, Kara; O'Connell, Matt

    Increasing the use of grid-flexibility options (improved grid management, demand response, and energy storage) could enable 25% or higher penetration of PV at low costs (see Denholm et al. 2016). Considering the large-scale integration of solar into electric-power systems complicates the calculation of the value of solar. In fact a comprehensive examination reveals that the value of solar technologies—or any other power-system technology or operating strategy—can only be understood in the context of the generation system as a whole. This is well illustrated by analysis of curtailment at high PV penetrations within the bulk power and transmission systems. As themore » deployment of PV increases, it is possible that during some sunny midday periods due to limited flexibility of conventional generators, system operators would need to reduce (curtail) PV output in order to maintain the crucial balance between electric supply and demand. As a result, PV’s value and cost competitiveness would degrade. For example, for utility-scale PV with a baseline SunShot LCOE of 6¢/kWh, increasing the annual energy demand met by solar energy from 10% to 20% would increase the marginal LCOE of PV from 6¢/kWh to almost 11¢/kWh in a California grid system with limited flexibility. However, this loss of value could be stemmed by increasing system flexibility via enhanced control of variable-generation resources, added energy storage, and the ability to motivate more electricity consumers to shift consumption to lower-demand periods. The combination of these measures would minimize solar curtailment and keep PV cost-competitive at penetrations at least as high as 25%. Efficient deployment of the grid-flexibility options needed to maintain solar’s value will require various innovations, from the development of communication, control, and energy storage technologies to the implementation of new market rules and operating procedures.« less

  10. Estimating Solar PV Output Using Modern Space/Time Geostatistics (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, S. J.; George, R.; Bush, B.

    2009-04-29

    This presentation describes a project that uses mapping techniques to predict solar output at subhourly resolution at any spatial point, develop a methodology that is applicable to natural resources in general, and demonstrate capability of geostatistical techniques to predict the output of a potential solar plant.

  11. Design of DSP-based high-power digital solar array simulator

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Liu, Zhilong; Tong, Weichao; Feng, Jian; Ji, Yibo

    2013-12-01

    To satisfy rigid performance specifications, a feedback control was presented for zoom optical lens plants. With the increasing of global energy consumption, research of the photovoltaic(PV) systems get more and more attention. Research of the digital high-power solar array simulator provides technical support for high-power grid-connected PV systems research.This paper introduces a design scheme of the high-power digital solar array simulator based on TMS320F28335. A DC-DC full-bridge topology was used in the system's main circuit. The switching frequency of IGBT is 25kHz.Maximum output voltage is 900V. Maximum output current is 20A. Simulator can be pre-stored solar panel IV curves.The curve is composed of 128 discrete points .When the system was running, the main circuit voltage and current values was feedback to the DSP by the voltage and current sensors in real-time. Through incremental PI,DSP control the simulator in the closed-loop control system. Experimental data show that Simulator output voltage and current follow a preset solar panels IV curve. In connection with the formation of high-power inverter, the system becomes gridconnected PV system. The inverter can find the simulator's maximum power point and the output power can be stabilized at the maximum power point (MPP).

  12. Bifacial PV cell with reflector for stand-alone mast for sensor powering purposes

    NASA Astrophysics Data System (ADS)

    Jakobsen, Michael L.; Thorsteinsson, Sune; Poulsen, Peter B.; Riedel, N.; Rødder, Peter M.; Rødder, Kristin

    2017-09-01

    Reflectors to bifacial PV-cells are simulated and prototyped in this work. The aim is to optimize the reflector to specific latitudes, and particularly northern latitudes. Specifically, by using minimum semiconductor area the reflector must be able to deliver the electrical power required at the condition of minimum solar travel above the horizon, worst weather condition etc. We will test a bifacial PV-module with a retroreflector, and compare the output with simulations combined with local solar data.

  13. A peaking-regulation-balance-based method for wind & PV power integrated accommodation

    NASA Astrophysics Data System (ADS)

    Zhang, Jinfang; Li, Nan; Liu, Jun

    2018-02-01

    Rapid development of China’s new energy in current and future should be focused on cooperation of wind and PV power. Based on the analysis of system peaking balance, combined with the statistical features of wind and PV power output characteristics, a method of comprehensive integrated accommodation analysis of wind and PV power is put forward. By the electric power balance during night peaking load period in typical day, wind power installed capacity is determined firstly; then PV power installed capacity could be figured out by midday peak load hours, which effectively solves the problem of uncertainty when traditional method hard determines the combination of the wind and solar power simultaneously. The simulation results have validated the effectiveness of the proposed method.

  14. Modeling and Simulation of a DG-Integrated Intelligent Microgrid

    DTIC Science & Technology

    2010-02-01

    17. The I-V curve from the manufacturer for BP-4175 175W PV module...........................32   Fig. 18. Wind turbine model...33   Fig. 19. Electrical outputs of wind turbine... PMSG : Permanent Magnet Synchronous Generator PLL : Phase Lock Loop PV : Photovoltaic PWM : Pulse Width Modulation TOU : Time of Use VTES

  15. Hybrid solar converters for maximum exergy and inexpensive dispatchable electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Branz, Howard M.; Regan, William; Gerst, Kacy J.

    Photovoltaic (PV) solar energy systems are being deployed at an accelerating rate to supply low-carbon electricity worldwide. However, PV is unlikely to economically supply much more than 10% of the world's electricity unless there is a dramatic reduction in the cost of electricity storage. There is an important scientific and technological opportunity to address the storage challenge by developing inexpensive hybrid solar converters that collect solar heat at temperatures between about 200 and 600 °C and also incorporate PV. Since heat can be stored and converted to electricity at relatively low cost, collection of high exergy content (high temperature) solarmore » heat can provide energy that is dispatchable on demand to meet loads that are not well matched to solar insolation. However, PV cells can collect and convert much of the solar spectrum to electricity more efficiently and inexpensively than solar thermal systems. Advances in spectrum-splitting optics, high-temperature PV cells, thermal management and system design are needed for transformational hybrid converters. We propose that maximizing the exergy output from the solar converters while minimizing the cost of exergy can help propel solar energy toward a higher contribution to carbon-free electricity in the long term than the prevailing paradigm of maximizing the energy output while minimizing the cost of energy« less

  16. High-Efficiency Photovoltaic System Using Partially-Connected DC-DC Converter

    NASA Astrophysics Data System (ADS)

    Uno, Masatoshi; Kukita, Akio; Tanaka, Koji

    Power conversion electronics for photovoltaic (PV) systems are desired to operate as efficiently as possible to exploit the power generated by PV modules. This paper proposes a novel PV system in which a dc-dc converter is partially connected to series-connected PV modules. The proposed system achieves high power-conversion efficiency by reducing the passing power and input/output voltages of the converter. The theoretical operating principle was experimentally validated. Resultant efficiency performances of the proposed and conventional systems demonstrated that the proposed system was more efficient in terms of power conversion though the identical converter was used for the both systems.

  17. Performance Analysis and Discussion on the Thermoelectric Element Footprint for PV-TE Maximum Power Generation

    NASA Astrophysics Data System (ADS)

    Li, Guiqiang; Zhao, Xudong; Jin, Yi; Chen, Xiao; Ji, Jie; Shittu, Samson

    2018-06-01

    Geometrical optimisation is a valuable way to improve the efficiency of a thermoelectric element (TE). In a hybrid photovoltaic-thermoelectric (PV-TE) system, the photovoltaic (PV) and thermoelectric (TE) components have a relatively complex relationship; their individual effects mean that geometrical optimisation of the TE element alone may not be sufficient to optimize the entire PV-TE hybrid system. In this paper, we introduce a parametric optimisation of the geometry of the thermoelectric element footprint for a PV-TE system. A uni-couple TE model was built for the PV-TE using the finite element method and temperature-dependent thermoelectric material properties. Two types of PV cells were investigated in this paper and the performance of PV-TE with different lengths of TE elements and different footprint areas was analysed. The outcome showed that no matter the TE element's length and the footprint areas, the maximum power output occurs when A n /A p = 1. This finding is useful, as it provides a reference whenever PV-TE optimisation is investigated.

  18. The AC photovoltaic module is here!

    NASA Astrophysics Data System (ADS)

    Strong, Steven J.; Wohlgemuth, John H.; Wills, Robert H.

    1997-02-01

    This paper describes the design, development, and performance results of a large-area photovoltaic module whose electrical output is ac power suitable for direct connection to the utility grid. The large-area ac PV module features a dedicated, integrally mounted, high-efficiency dc-to-ac power inverter with a nominal output of 250 watts (STC) at 120 Vac, 60 H, that is fully compatible with utility power. The module's output is connected directly to the building's conventional ac distribution system without need for any dc wiring, string combiners, dc ground-fault protection or additional power-conditioning equipment. With its advantages, the ac photovoltaic module promises to become a universal building block for use in all utility-interactive PV systems. This paper discusses AC Module design aspects and utility interface issues (including islanding).

  19. Pulmonary vein isolation using a pace-capture-guided versus an adenosine-guided approach: effect on dormant conduction and long-term freedom from recurrent atrial fibrillation--a prospective study.

    PubMed

    Andrade, Jason G; Pollak, Scott J; Monir, George; Khairy, Paul; Dubuc, Marc; Roy, Denis; Talajic, Mario; Deyell, Marc; Rivard, Léna; Thibault, Bernard; Guerra, Peter G; Nattel, Stanley; Macle, Laurent

    2013-12-01

    Atrial fibrillation recurrence after pulmonary vein (PV) isolation is associated with PV to left atrium reconduction. We prospectively studied the use of 2 procedural techniques designed to facilitate identification of residual gaps within the index ablation line. After wide circumferential PV isolation, 40 patients received additional ablation targeted at locations of left atrial capture during high-output pacing (pace-capture group), while 40 patients underwent adenosine testing with targeted ablation at sites of dormant conduction (adenosine group). Patients were followed up at 3, 6, and 12 months. After PV isolation, high-output pace-capture was documented in 39 PVs (25%; 50% of patients) in the pace-capture group. Dormant conduction was unmasked in 34 PVs (22%; 53% of patients) in the adenosine group. A subset of 25 patients in the pace-capture group underwent adenosine testing without targeted ablation of dormant conduction. In these patients, only 10 out of 86 PVs (11.6%; 24% of patients) demonstrated dormant conduction after the elimination of local pace-capture. At a follow-up of 329±124 days, the single procedure off antiarrhythmic drug freedom from recurrent atrial fibrillation was 67.5% in the adenosine group and 65.0% in the pace-capture group (P=0.814). Procedure duration and fluoroscopy time were significantly longer in the pace-capture group (P=0.002 and P<0.001), whereas radiofrequency ablation time was comparable (P=0.192). The use of high-output pacing post-PV isolation results in a significant reduction in the incidence of dormant conduction with a comparable long-term freedom from recurrent atrial fibrillation (versus adenosine-guided ablation). The use of these approaches requires evaluation in a long-term prospective randomized study. [corrected].

  20. Performance analysis of ‘Perturb and Observe’ and ‘Incremental Conductance’ MPPT algorithms for PV system

    NASA Astrophysics Data System (ADS)

    Lodhi, Ehtisham; Lodhi, Zeeshan; Noman Shafqat, Rana; Chen, Fieda

    2017-07-01

    Photovoltaic (PV) system usually employed The Maximum power point tracking (MPPT) techniques for increasing its efficiency. The performance of the PV system perhaps boosts by controlling at its apex point of power, in this way maximal power can be given to load. The proficiency of a PV system usually depends upon irradiance, temperature and array architecture. PV array shows a non-linear style for V-I curve and maximal power point on V-P curve also varies with changing environmental conditions. MPPT methods grantees that a PV module is regulated at reference voltage and to produce entire usage of the maximal output power. This paper gives analysis between two widely employed Perturb and Observe (P&O) and Incremental Conductance (INC) MPPT techniques. Their performance is evaluated and compared through theoretical analysis and digital simulation on the basis of response time and efficiency under varying irradiance and temperature condition using Matlab/Simulink.

  1. PV systems photoelectric parameters determining for field conditions and real operation conditions

    NASA Astrophysics Data System (ADS)

    Shepovalova, Olga V.

    2018-05-01

    In this work, research experience and reference documentation have been generalized related to PV systems photoelectric parameters (PV array output parameters) determining. The basic method has been presented that makes it possible to determine photoelectric parameters with the state-of-the-art reliability and repeatability. This method provides an effective tool for PV systems comparison and evaluation of PV system parameters that the end-user will have in the course of its real operation for compliance with those stipulated in reference documentation. The method takes in consideration all parameters that may possibly affect photoelectric performance and that are supported by sufficiently valid procedures for their values testing. Test conditions, requirements for equipment subject to tests and test preparations have been established and the test procedure for fully equipped PV system in field tests and in real operation conditions has been described.

  2. Conceptual approach on harvesting PV dissipated heat for enhancing water evaporation

    NASA Astrophysics Data System (ADS)

    Latiff, N. Abdul; Ya'acob, M. E.; Yunos, Khairul Faezah Md.

    2017-09-01

    The fluctuating sun radiation in tropical climate conditions has significantly affected the output performance of the PV array and also processes related to direct-sun drying. Apart from this, the dissipated heat under PV array projected from photonic effects of generating electricity is currently wasted to the environment. This study shares some conceptual idea on a new approach for harvesting the dissipated heat energy from PV arrays for the purpose of enhancing water evaporation process. Field measurements for ambient temperature (Ta) and PV bottom surface temperature (FFb) are measured and recorded for calculating the evaporation rates at different condition in real time. The waste heat dissipated in this condition is proposed as a medium to increase evaporation thru speeding up the water condensation process. The significant increase of water evaporation rate based on Penman equation supports the idea of integration with landed PV array structures.

  3. MPPT Algorithm Development for Laser Powered Surveillance Camera Power Supply Unit

    NASA Astrophysics Data System (ADS)

    Zhang, Yungui; Dushantha Chaminda, P. R.; Zhao, Kun; Cheng, Lin; Jiang, Yi; Peng, Kai

    2018-03-01

    Photovoltaics (PV) cells, modules which are semiconducting materials, convert light energy into electricity. Operation of a PV cell requires 3 basic features. When the light is absorbed it generate pairs of electron holes or excitons. An external circuit carrier opposite types of electrons irrespective of the source (sunlight or LASER light). The PV arrays have photovoltaic effect and the PV cells are defined as a device which has electrical characteristics: such as current, voltage and resistance. It varies when exposed to light, that the power output is depend on direct Laser-light. In this paper Laser-light to electricity by direct conversion with the use of PV cells and its concept of Band gap Energy, Series Resistance, Conversion Efficiency and Maximum Power Point Tracking (MPPT) methods [1].

  4. Simulation study of air and water cooled photovoltaic panel using ANSYS

    NASA Astrophysics Data System (ADS)

    Syafiqah, Z.; Amin, N. A. M.; Irwan, Y. M.; Majid, M. S. A.; Aziz, N. A.

    2017-10-01

    Demand for alternative energy is growing due to decrease of fossil fuels sources. One of the promising and popular renewable energy technology is a photovoltaic (PV) technology. During the actual operation of PV cells, only around 15% of solar irradiance is converted to electricity, while the rest is converted into heat. The electrical efficiency decreases with the increment in PV panel’s temperature. This electrical energy is referring to the open-circuit voltage (Voc), short-circuit current (Isc) and output power generate. This paper examines and discusses the PV panel with water and air cooling system. The air cooling system was installed at the back of PV panel while water cooling system at front surface. The analyses of both cooling systems were done by using ANSYS CFX and PSPICE software. The highest temperature of PV panel without cooling system is 66.3 °C. There is a decrement of 19.2% and 53.2% in temperature with the air and water cooling system applied to PV panel.

  5. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    da Silva, R.M.; Fernandes, J.L.M.

    The purpose of this work consists in thermodynamic modeling of hybrid photovoltaic-thermal (PV/T) solar systems, pursuing a modular strategy approach provided by Simulink/Matlab. PV/T solar systems are a recently emerging solar technology that allows for the simultaneous conversion of solar energy into both electricity and heat. This type of technology present some interesting advantages over the conventional ''side-by-side'' thermal and PV solar systems, such as higher combined electrical/thermal energy outputs per unit area, and a more uniform and aesthetical pleasant roof area. Despite the fact that early research on PV/T systems can be traced back to the seventies, only recentlymore » it has gained a renewed impetus. In this work, parametric studies and annual transient simulations of PV/T systems are undertaken in Simulink/Matlab. The obtained results show an average annual solar fraction of 67%, and a global overall efficiency of 24% (i.e. 15% thermal and 9% electrical), for a typical four-person single-family residence in Lisbon, with p-Si cells, and a collector area of 6 m{sup 2}. A sensitivity analysis performed on the PV/T collector suggests that the most important variable that should be addressed to improve thermal performance is the photovoltaic (PV) module emittance. Based on those results, some additional improvements are proposed, such as the use of vacuum, or a noble gas at low-pressure, to allow for the removal of PV cells encapsulation without air oxidation and degradation, and thus reducing the PV module emittance. Preliminary results show that this option allows for an 8% increase on optical thermal efficiency, and a substantial reduction of thermal losses, suggesting the possibility of working at higher fluid temperatures. The higher working temperatures negative effect in electrical efficiency was negligible, due to compensation by improved optical properties. The simulation results are compared with experimental data obtained from other authors and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)« less

  6. Design and simulation of maximum power point tracking (MPPT) system on solar module system using constant voltage (CV) method

    NASA Astrophysics Data System (ADS)

    Bhatara, Sevty Satria; Iskandar, Reza Fauzi; Kirom, M. Ramdlan

    2016-02-01

    Solar energy is one of renewable energy resource where needs a photovoltaic module to convert it into electrical energy. One of the problems on solar energy conversion is the process of battery charging. To improve efficiency of energy conversion, PV system needs another control method on battery charging called maximum power point tracking (MPPT). This paper report the study on charging optimation using constant voltage (CV) method. This method has a function of determining output voltage of the PV system on maximal condition, so PV system will always produce a maximal energy. A model represented a PV system with and without MPPT was developed using Simulink. PV system simulation showed a different outcome energy when different solar radiation and numbers of solar module were applied in the model. On the simulation of solar radiation 1000 W/m2, PV system with MPPT produces 252.66 Watt energy and PV system without MPPT produces 252.66 Watt energy. The larger the solar radiation, the greater the energy of PV modules was produced.

  7. Photovoltaic Hosting Capacity of Feeders with Reactive Power Control and Tap Changers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oğuzhan; Paudyal, Sumit; Bhattarai, Bishnu P.

    This paper proposes an algorithm to determine photovoltaic (PV) hosting capacity of power distribution networks as a function of number of PV injection nodes, reactive power support from the PVs, and the sub-station load tap changers (LTCs). In the proposed method, several minute by minute simulations are run based on randomly chosen PV injection nodes, daily PV output profiles, and daily load profiles from a pool of high-resolution realistic data set. The simulation setup is built using OpenDSS and MATLAB. The performance of the proposed method is investigated in the IEEE 123-node distribution feeder for multiple scenarios. The case studiesmore » are performed particularly for one, two, five and ten PV injection nodes, and looking at the maximum voltage deviations. Case studies show that the PV hosting capacity of the 123-node feeder greatly differs with the number of PV injection nodes. We have also observed that the PV hosting capacity increases with reactive power support and higher tap position of sub-station LTC.« less

  8. Diamond encapsulated photovoltaics for transdermal power delivery.

    PubMed

    Ahnood, A; Fox, K E; Apollo, N V; Lohrmann, A; Garrett, D J; Nayagam, D A X; Karle, T; Stacey, A; Abberton, K M; Morrison, W A; Blakers, A; Prawer, S

    2016-03-15

    A safe, compact and robust means of wireless energy transfer across the skin barrier is a key requirement for implantable electronic devices. One possible approach is photovoltaic (PV) energy delivery using optical illumination at near infrared (NIR) wavelengths, to which the skin is highly transparent. In the work presented here, a subcutaneously implantable silicon PV cell, operated in conjunction with an external NIR laser diode, is developed as a power delivery system. The biocompatibility and long-term biostability of the implantable PV is ensured through the use of an hermetic container, comprising a transparent diamond capsule and platinum wire feedthroughs. A wavelength of 980 nm is identified as the optimum operating point based on the PV cell's external quantum efficiency, the skin's transmission spectrum, and the wavelength dependent safe exposure limit of the skin. In bench-top experiments using an external illumination intensity of 0.7 W/cm(2), a peak output power of 2.7 mW is delivered to the implant with an active PV cell dimension of 1.5 × 1.5 × 0.06 mm(3). This corresponds to a volumetric power output density of ~20 mW/mm(3), significantly higher than power densities achievable using inductively coupled coil-based approaches used in other medical implant systems. This approach paves the way for further ministration of bionic implants. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Volume holographic lens spectrum-splitting photovoltaic system for high energy yield with direct and diffuse solar illumination

    NASA Astrophysics Data System (ADS)

    Chrysler, Benjamin D.; Wu, Yuechen; Yu, Zhengshan; Kostuk, Raymond K.

    2017-08-01

    In this paper a prototype spectrum-splitting photovoltaic system based on volume holographic lenses (VHL) is designed, fabricated and tested. In spectrum-splitting systems, incident sunlight is divided in spectral bands for optimal conversion by a set of single-junction PV cells that are laterally separated. The VHL spectrumsplitting system in this paper has a form factor similar to conventional silicon PV modules but with higher efficiencies (>30%). Unlike many other spectrum-splitting systems that have been proposed in the past, the system in this work converts both direct and diffuse sunlight while using inexpensive 1-axis tracking systems. The VHL system uses holographic lenses that focus light at a transition wavelength to the boundary between two PV cells. Longer wavelength light is dispersed to the narrow bandgap cell and shorter wavelength light to the wide bandgap cell. A prototype system is designed with silicon and GaAs PV cells. The holographic lenses are fabricated in Covestro Bayfol HX photopolymer by `stitching' together lens segments through sequential masked exposures. The PV cells and holographic lenses were characterized and the data was used in a raytrace simulation and predicts an improvement in total power output of 15.2% compared to a non-spectrum-splitting reference. A laboratory measurement yielded an improvement in power output of 8.5%.

  10. 76 FR 31749 - Energy Conservation Program for Certain Consumer Appliances: Test Procedures for Battery Chargers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    .... 6 at p. 1; AHAM, No. 10 at p. 8) Delta-Q cautioned ``against some overlap with any solar industry... electrical grid and the battery of many consumer photovoltaic (PV) and wind energy systems, as well as rapid... for residential PV systems that employ these higher output voltage devices. (ASAP, No. 11 at p. 2; PG...

  11. Intermediate Photovoltaic System Application Experiment. Oklahoma Center for Science and Arts. Phase II. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This report presents the key results of the Phase II efforts for the Intermediate PV System Applications Experiment at the Oklahoma Center for Science and Arts (OCSA). This phase of the project involved fabrication, installation and integration of a nominal 140 kW flat panel PV system made up of large, square polycrystalline-silicon solar cell modules, each nominally 61 cm x 122 cm in size. The output of the PV modules, supplied by Solarex Corporation, was augmented, 1.35 to 1 at peak, by a row of glass reflectors, appropriately tilted northward. The PV system interfaces with the Oklahoma Gas and Electricmore » Utility at the OCSA main switchgear. Any excess power generated by the system is fed into the utility under a one to one buyback arrangement. Except for a shortfall in the system output, presently suspected to be due to the poor performance of the modules, no serious problems were encountered. Certain value engineering changes implemented during construction and early operational failure events associated with the power conditioning system are also described. The system is currently undergoing extended testing and evaluation.« less

  12. Distributed Storage Inverter and Legacy Generator Integration Plus Renewable Solution for Microgrids

    DTIC Science & Technology

    2015-07-01

    24 6.6 DEMONSTRATION 6: PV + STORAGE SUPPORT MANAGING VARIABLE SOLAR ...Table 2. Energy generated by solar PV for 1 month. .......................................................... 23 Table 3. NG generators energy...saving with solar PV . ........................................................ 24 Table 4. NG generators fuel saving with solar PV

  13. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  14. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE PAGES

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    2017-06-08

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  15. On enhancing energy harvesting performance of the photovoltaic modules using an automatic cooling system and assessing its economic benefits of mitigating greenhouse effects on the environment

    NASA Astrophysics Data System (ADS)

    Wang, Jen-Cheng; Liao, Min-Sheng; Lee, Yeun-Chung; Liu, Cheng-Yue; Kuo, Kun-Chang; Chou, Cheng-Ying; Huang, Chen-Kang; Jiang, Joe-Air

    2018-02-01

    The performance of photovoltaic (PV) modules under outdoor operation is greatly affected by their location and environmental conditions. The temperature of a PV module gradually increases as it is exposed to solar irradiation, resulting in degradation of its electrical characteristics and power generation efficiency. This study adopts wireless sensor network (WSN) technology to develop an automatic water-cooling system for PV modules in order to improve their PV power generation efficiency. A temperature estimation method is developed to quickly and accurately estimate the PV module temperatures based on weather data provided from the WSN monitoring system. Further, an estimation method is also proposed for evaluation of the electrical characteristics and output power of the PV modules, which is performed remotely via a control platform. The automatic WSN-based water-cooling mechanism is designed to avoid the PV module temperature from reaching saturation. Equipping each PV module with the WSN-based cooling system, the ambient conditions are monitored automatically so that the temperature of the PV module is controlled by sprinkling water on the panel surface. The field-test experiment results show an increase in the energy harvested by the PV modules of approximately 17.75% when using the proposed WSN-based cooling system.

  16. The active control strategy on the output power for photovoltaic-storage systems based on extended PQ-QV-PV Node

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Zhou, Bao-Rong; Zhai, Jian-Wei; Zhang, Yong-Jun; Yi, Ying-Qi

    2017-05-01

    In order to solve the problem of voltage exceeding specified limits and improve the penetration of photovoltaic in distribution network, we can make full use of the active power regulation ability of energy storage(ES) and the reactive power regulation ability of grid-connected photovoltaic inverter to provide support of active power and reactive power for distribution network. A strategy of actively controlling the output power for photovoltaic-storage system based on extended PQ-QV-PV node by analyzing the voltage regulating mechanism of point of commom coupling(PCC) of photovoltaic with energy storage(PVES) by controlling photovoltaic inverter and energy storage. The strategy set a small wave range of voltage to every photovoltaic by making the type of PCC convert among PQ, PV and QV. The simulation results indicate that the active control method can provide a better solution to the problem of voltage exceeding specified limits when photovoltaic is connectted to electric distribution network.

  17. Solar Powered Aircraft, Photovoltaic Array/Battery System Tabletop Demonstration: Design and Operation Manual

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Scheiman, David A.; Bailey, Sheila (Technical Monitor)

    2000-01-01

    A system was constructed to demonstrate the power system operation of a solar powered aircraft. The system consists of a photovoltaic (PV) array, a charge controller, a battery, an electric motor and propeller. The system collects energy from the PV array and either utilizes this energy to operate an electric motor or stores it in a rechargeable battery for future use. The system has a control panel which displays the output of the array and battery as well as the total current going to the electric motor. The control panel also has a means for adjusting the output to the motor to control its speed. The entire system is regulated around 12 VDC.

  18. The influence of mineral dust particles on the energy output of photovoltaic cells

    NASA Astrophysics Data System (ADS)

    Roesch, C.; Eltahir, E. A. B.; Al-awwad, Z.; Alqatari, S.; Cziczo, D. J.; Roesch, M.

    2016-12-01

    The city of Al Khafji in Saudi Arabia plans to provide a regular supply of desalinated water from the Persian Gulf while simultaneously cutting back on the usage of fossil fuels. The power for the high energy-consuming reverse osmosis (RO) process will be derived from photovoltaic (PV) cells as a cleaner and resource-conserving means of energy production. Numerous sun hours (yearly 3000) makes the Persian Gulf region's geographical location appropriate for applying PV techniques at this scale. A major concern for PV power generation is mineral dust from desert regions accumulating on surfaces and thereby reducing the energy output. This study aims to show the impact of dust particles on the PV energy reduction by examining dust samples from various Persian Gulf regions. Bulk samples were collected at the surface. The experimental setup involved a sealed container with a solar panel unit (SPU), including an adjustable mounting plate, solar cells (amorphous and monocrystalline), and a pyranometer (SMP3, Kipp & Zonen Inc.). A Tungsten Halogen lamp was used as the light source. Dust particles were aerosolized with a shaker (Multi-Wrist shaker, Lab line). Different techniques were applied to characterize each sample: the particle size distributions were measured using an Optical Particle Sizer (OPS, TSI Inc.), the chemical composition was analyzed using the Particle Analysis by Mass Spectrometry (PALMS) instrument, and Transmission Electron Microscope Energy-Dispersive X-ray spectroscopy (TEM-EDX) was used to define morphology, size and structure. Preliminary results show that the energy output is affected by aerosol morphology (monodisperse, polydisperse), composition and solar cell type.

  19. A Novel Technique for Maximum Power Point Tracking of a Photovoltaic Based on Sensing of Array Current Using Adaptive Neuro-Fuzzy Inference System (ANFIS)

    NASA Astrophysics Data System (ADS)

    El-Zoghby, Helmy M.; Bendary, Ahmed F.

    2016-10-01

    Maximum Power Point Tracking (MPPT) is now widely used method in increasing the photovoltaic (PV) efficiency. The conventional MPPT methods have many problems concerning the accuracy, flexibility and efficiency. The MPP depends on the PV temperature and solar irradiation that randomly varied. In this paper an artificial intelligence based controller is presented through implementing of an Adaptive Neuro-Fuzzy Inference System (ANFIS) to obtain maximum power from PV. The ANFIS inputs are the temperature and cell current, and the output is optimal voltage at maximum power. During operation the trained ANFIS senses the PV current using suitable sensor and also senses the temperature to determine the optimal operating voltage that corresponds to the current at MPP. This voltage is used to control the boost converter duty cycle. The MATLAB simulation results shows the effectiveness of the ANFIS with sensing the PV current in obtaining the MPPT from the PV.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bank, J.; Mather, B.

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability inmore » system load and the variability of distributed PV generation are made.« less

  1. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE PAGES

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew; ...

    2018-04-05

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  2. Consequences of neglecting the interannual variability of the solar resource: A case study of photovoltaic power among the Hawaiian Islands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryce, Richard; Losada Carreno, Ignacio; Kumler, Andrew

    The interannual variability of the solar irradiance and meteorological conditions are often ignored in favor of single-year data sets for modeling power generation and evaluating the economic value of photovoltaic (PV) power systems. Yet interannual variability significantly impacts the generation from one year to another of renewable power systems such as wind and PV. Consequently, the interannual variability of power generation corresponds to the interannual variability of capital returns on investment. The penetration of PV systems within the Hawaiian Electric Companies' portfolio has rapidly accelerated in recent years and is expected to continue to increase given the state's energy objectivesmore » laid out by the Hawaii Clean Energy Initiative. We use the National Solar Radiation Database (1998-2015) to characterize the interannual variability of the solar irradiance and meteorological conditions across the State of Hawaii. These data sets are passed to the National Renewable Energy Laboratory's System Advisory Model (SAM) to calculate an 18-year PV power generation data set to characterize the variability of PV power generation. We calculate the interannual coefficient of variability (COV) for annual average global horizontal irradiance (GHI) on the order of 2% and COV for annual capacity factor on the order of 3% across the Hawaiian archipelago. Regarding the interannual variability of seasonal trends, we calculate the COV for monthly average GHI values on the order of 5% and COV for monthly capacity factor on the order of 10%. We model residential-scale and utility-scale PV systems and calculate the economic returns of each system via the payback period and the net present value. We demonstrate that studies based on single-year data sets for economic evaluations reach conclusions that deviate from the true values realized by accounting for interannual variability.« less

  3. Realworld maximum power point tracking simulation of PV system based on Fuzzy Logic control

    NASA Astrophysics Data System (ADS)

    Othman, Ahmed M.; El-arini, Mahdi M. M.; Ghitas, Ahmed; Fathy, Ahmed

    2012-12-01

    In the recent years, the solar energy becomes one of the most important alternative sources of electric energy, so it is important to improve the efficiency and reliability of the photovoltaic (PV) systems. Maximum power point tracking (MPPT) plays an important role in photovoltaic power systems because it maximize the power output from a PV system for a given set of conditions, and therefore maximize their array efficiency. This paper presents a maximum power point tracker (MPPT) using Fuzzy Logic theory for a PV system. The work is focused on the well known Perturb and Observe (P&O) algorithm and is compared to a designed fuzzy logic controller (FLC). The simulation work dealing with MPPT controller; a DC/DC Ćuk converter feeding a load is achieved. The results showed that the proposed Fuzzy Logic MPPT in the PV system is valid.

  4. A New MPPT Control for Photovoltaic Panels by Instantaneous Maximum Power Point Tracking

    NASA Astrophysics Data System (ADS)

    Tokushima, Daiki; Uchida, Masato; Kanbei, Satoshi; Ishikawa, Hiroki; Naitoh, Haruo

    This paper presents a new maximum power point tracking control for photovoltaic (PV) panels. The control can be categorized into the Perturb and Observe (P & O) method. It utilizes instantaneous voltage ripples at PV panel output terminals caused by the switching of a chopper connected to the panel in order to identify the direction for the maximum power point (MPP). The tracking for the MPP is achieved by a feedback control of the average terminal voltage of the panel. Appropriate use of the instantaneous and the average values of the PV voltage for the separate purposes enables both the quick transient response and the good convergence with almost no ripples simultaneously. The tracking capability is verified experimentally with a 2.8 W PV panel under a controlled experimental setup. A numerical comparison with a conventional P & O confirms that the proposed control extracts much more power from the PV panel.

  5. Measures for diffusion of solar PV in selected African countries

    NASA Astrophysics Data System (ADS)

    Nygaard, Ivan; Hansen, Ulrich Elmer; Mackenzie, Gordon; Pedersen, Mathilde Brix

    2017-08-01

    This paper investigates how African governments are considering supporting and promoting the diffusion of solar PV. This issue is explored by examining so-called 'technology action plans (TAPs)', which were main outputs of the Technology Needs Assessment project implemented in 10 African countries from 2010 to 2013. The paper provides a review of three distinct but characteristic trajectories for PV market development in Kenya (private-led market for solar home systems), Morocco (utility-led fee-for service model) and Rwanda (donor-led market for institutional systems). The paper finds that governments' strategies to promoting solar PV are moving from isolated projects towards frameworks for market development and that there are high expectations to upgrading in the PV value chain through local assembly of panels and local production of other system elements. Commonly identified measures include support to: local production; financing schemes; tax exemptions; establishment and reinforcement of standards; technical training; and research and development.

  6. Results of the harmonics measurement program at the John F. Long photovoltaic house

    NASA Astrophysics Data System (ADS)

    Campen, G. L.

    1982-03-01

    Photovoltaic (PV) systems used in single-family dwellings require an inverter to act as an interface between the direct-current (dc) power output of the PV unit and the alternating-current (ac) power needed by house loads. A type of inverter known as line commutated injects harmonic currents on the ac side and requires large amounts of reactive power. Large numbers of such PV installations could lead to unacceptable levels of harmonic voltages on the utility system, and the need to increase the utility's deliver of reactive power could result in significant cost increases. The harmonics and power-factor effects are examined for a single PV installation using a line-commutated inverter. The magnitude and phase of various currents and voltages from the fundamental to the 13th harmonic were recorded both with and without the operation of the PV system.

  7. Consumption Behavior Analytics-Aided Energy Forecasting and Dispatch

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yingchen; Yang, Rui; Jiang, Huaiguang

    For decades, electricity customers have been treated as mere recipients of electricity in vertically integrated power systems. However, as customers have widely adopted distributed energy resources and other forms of customer participation in active dispatch (such as demand response) have taken shape, the value of mining knowledge from customer behavior patterns and using it for power system operation is increasing. Further, the variability of renewable energy resources has been considered a liability to the grid. However, electricity consumption has shown the same level of variability and uncertainty, and this is sometimes overlooked. This article investigates data analytics and forecasting methodsmore » to identify correlations between electricity consumption behavior and distributed photovoltaic (PV) output. The forecasting results feed into a predictive energy management system that optimizes energy consumption in the near future to balance customer demand and power system needs.« less

  8. Fuzzy-driven energy storage system for mitigating voltage unbalance factor on distribution network with photovoltaic system

    NASA Astrophysics Data System (ADS)

    Wong, Jianhui; Lim, Yun Seng; Morris, Stella; Morris, Ezra; Chua, Kein Huat

    2017-04-01

    The amount of small-scaled renewable energy sources is anticipated to increase on the low-voltage distribution networks for the improvement of energy efficiency and reduction of greenhouse gas emission. The growth of the PV systems on the low-voltage distribution networks can create voltage unbalance, voltage rise, and reverse-power flow. Usually these issues happen with little fluctuation. However, it tends to fluctuate severely as Malaysia is a region with low clear sky index. A large amount of clouds often passes over the country, hence making the solar irradiance to be highly scattered. Therefore, the PV power output fluctuates substantially. These issues can lead to the malfunction of the electronic based equipment, reduction in the network efficiency and improper operation of the power protection system. At the current practice, the amount of PV system installed on the distribution network is constraint by the utility company. As a result, this can limit the reduction of carbon footprint. Therefore, energy storage system is proposed as a solution for these power quality issues. To ensure an effective operation of the distribution network with PV system, a fuzzy control system is developed and implemented to govern the operation of an energy storage system. The fuzzy driven energy storage system is able to mitigate the fluctuating voltage rise and voltage unbalance on the electrical grid by actively manipulates the flow of real power between the grid and the batteries. To verify the effectiveness of the proposed fuzzy driven energy storage system, an experimental network integrated with 7.2kWp PV system was setup. Several case studies are performed to evaluate the response of the proposed solution to mitigate voltage rises, voltage unbalance and reduce the amount of reverse power flow under highly intermittent PV power output.

  9. Effect of soiling in CPV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vivar, M.; Herrero, R.; Anton, I.

    2010-07-15

    The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?'more » The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of I{sub SC}. In general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in I{sub SC} of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure. (author)« less

  10. Nanogap near-field thermophotovoltaics.

    PubMed

    Fiorino, Anthony; Zhu, Linxiao; Thompson, Dakotah; Mittapally, Rohith; Reddy, Pramod; Meyhofer, Edgar

    2018-06-18

    Conversion of heat to electricity via solid-state devices is of great interest and has led to intense research of thermoelectric materials 1,2 . Alternative approaches for solid-state heat-to-electricity conversion include thermophotovoltaic (TPV) systems where photons from a hot emitter traverse a vacuum gap and are absorbed by a photovoltaic (PV) cell to generate electrical power. In principle, such systems may also achieve higher efficiencies and offer more versatility in use. However, the typical temperature of the hot emitter remains too low (<1,000 K) to achieve a sufficient photon flux to the PV cell, limiting practical applications. Theoretical proposals 3-12 suggest that near-field (NF) effects 13-18 that arise in nanoscale gaps may be leveraged to increase the photon flux to the PV cell and significantly enhance the power output. Here, we describe functional NFTPV devices consisting of a microfabricated system and a custom-built nanopositioner and demonstrate an ~40-fold enhancement in the power output at nominally 60 nm gaps relative to the far field. We systematically characterize this enhancement over a range of gap sizes and emitter temperatures, and for PV cells with two different bandgap energies. We anticipate that this technology, once optimized, will be viable for waste heat recovery applications.

  11. Performance of a Dynamically Controlled Inverter in a Photovoltaic System Interconnected with a Secondary Network Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coddington, M. H.; Kroposki, B. D.; Basso, T.

    In 2008, a 300 kW{sub peak} photovoltaic (PV) system was installed on the rooftop of the Colorado Convention Center (CCC). The installation was unique for the electric utility, Xcel Energy, as it had not previously permitted a PV system to be interconnected on a building served by the local secondary network distribution system (network). The PV system was installed with several provisions; one to prevent reverse power flow, another called a dynamically controlled inverter (DCI), that curtails the output of the PV inverters to maintain an amount of load supplied by Xcel Energy at the CCC. The DCI system utilizesmore » current transformers (CTs) to sense power flow to insure that a minimum threshold is maintained from Xcel Energy through the network transformers. The inverters are set to track the load on each of the three phases and curtail power from the PV system when the generated PV system current reaches 95% of the current on any phase. This is achieved by the DCI, which gathers inputs from current transformers measuring the current from the PV array, Xcel, and the spot network load. Preventing reverse power flow is a critical technical requirement for the spot network which serve this part of the CCC. The PV system was designed with the expectation that the DCI system would not curtail the PV system, as the expected minimum load consumption was historically higher than the designed PV system size. However, the DCI system has operated many days during the course of a year, and the performance has been excellent. The DCI system at the CCC was installed as a secondary measure to insure that a minimum level of power flows to the CCC from the Xcel Energy network. While this DCI system was intended for localized control, the system could also reduce output percent if an external smart grid control signal was employed. This paper specifically focuses on the performance of the innovative design at this installation; however, the DCI system could also be used for new s- art grid-enabled distribution systems where renewables power contributions at certain conditions or times may need to be curtailed.« less

  12. Loss of local capture of the pulmonary vein myocardium after antral isolation: prevalence and clinical significance.

    PubMed

    Squara, Fabien; Liuba, Ioan; Chik, William; Santangeli, Pasquale; Zado, Erica S; Callans, David J; Marchlinski, Francis E

    2015-03-01

    Capture of the myocardial sleeves of the pulmonary veins (PV) during PV pacing is mandatory for assessing exit block after PV isolation (PVI). However, previous studies reported that a significant proportion of PVs failed to demonstrate local capture after PVI. We designed this study to evaluate the prevalence and the clinical significance of loss of PV capture after PVI. Thirty patients (14 redo) undergoing antral PVI were included. Before and after PVI, local PV capture was assessed during circumferential pacing (10 mA/2 milliseconds) with a circular multipolar catheter (CMC), using EGM analysis from each dipole of the CMC and from the ablation catheter placed in ipsilateral PV. Pacing output was varied to optimize identification of sleeve capture. All PVs demonstrated sleeve capture before PVI, but only 81% and 40% after first time and redo PVI, respectively (P < 0.001 vs. before PVI). In multivariate analysis, absence of spontaneous PV depolarizations after PVI and previous PVI procedures were associated with less PV sleeve capture after PVI (40% sleeve capture, P < 0.001 for both). Loss of PV local capture by design was coincident with the development of PV entrance block and importantly predicted absence of acute reconnection during adenosine challenge with 96% positive predictive value (23% negative predictive value). Loss of PV local capture is common after antral PVI resulting in entrance block, and may be used as a specific alternate endpoint for PV electrical isolation. Additionally, loss of PV local capture may identify PVs at very low risk of acute reconnection during adenosine challenge. © 2014 Wiley Periodicals, Inc.

  13. Solar Market Research and Analysis Projects | Solar Research | NREL

    Science.gov Websites

    increase the effectiveness and reduce the variability and cost of PV operations and maintenance (O&M significantly drive up the cost of electricity for PV systems. To help reduce PV O&M costs and improve PV -Storage: Reducing Barriers Through Cost-Optimization and Market Characterization While falling costs have

  14. Distributed photovoltaic system impact upon utility load/supply management practices

    NASA Astrophysics Data System (ADS)

    Vachtsevanos, G. J.; Meliopoulos, A. P.; Paraskevopoulos, B. K.

    A methodology is described for simulation of the economic and technical factors of photovoltaic (PV) installations interfacing with utility load/management operations. A probabalistic technique is used to model the expected demand, reliability of the generating units, costs and profits from each unit, expected unserviced energy, and the loss of load probability. The available power from PV arrays is treated stochastically with statistical weighting on the basis of site meteorological data. The goal is to include the PV power while minimizing operational costs, taking into account the level of penetration of the total PV output. Two sample simulations for a utility with a diverse generating mix demonstrate that overall costs would decrease in both cases with PVs on-line through the emphasis on cheaper-fueled generators and peak-load shaving when possible.

  15. Optimization of joint energy micro-grid with cold storage

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Luo, Simin; Tian, Yan; Chen, Xianda; Xiong, Botao; Zhou, Bowen

    2018-02-01

    To accommodate distributed photovoltaic (PV) curtailment, to make full use of the joint energy micro-grid with cold storage, and to reduce the high operating costs, the economic dispatch of joint energy micro-grid load is particularly important. Considering the different prices during the peak and valley durations, an optimization model is established, which takes the minimum production costs and PV curtailment fluctuations as the objectives. Linear weighted sum method and genetic-taboo Particle Swarm Optimization (PSO) algorithm are used to solve the optimization model, to obtain optimal power supply output. Taking the garlic market in Henan as an example, the simulation results show that considering distributed PV and different prices in different time durations, the optimization strategies are able to reduce the operating costs and accommodate PV power efficiently.

  16. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis

    PubMed Central

    Cunty, A.; Cesbron, S.; Poliakoff, F.; Jacques, M.-A.

    2015-01-01

    The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level. PMID:26209667

  17. Integrating Solar PV in Utility System Operations: Analytical Framework and Arizona Case Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jing; Botterud, Audun; Mills, Andrew

    2015-06-01

    A systematic framework is proposed to estimate the impact on operating costs due to uncertainty and variability in renewable resources. The framework quantifies the integration costs associated with subhourly variability and uncertainty as well as day-ahead forecasting errors in solar PV (photovoltaics) power. A case study illustrates how changes in system operations may affect these costs for a utility in the southwestern United States (Arizona Public Service Company). We conduct an extensive sensitivity analysis under different assumptions about balancing reserves, system flexibility, fuel prices, and forecasting errors. We find that high solar PV penetrations may lead to operational challenges, particularlymore » during low-load and high solar periods. Increased system flexibility is essential for minimizing integration costs and maintaining reliability. In a set of sensitivity cases where such flexibility is provided, in part, by flexible operations of nuclear power plants, the estimated integration costs vary between $1.0 and $4.4/MWh-PV for a PV penetration level of 17%. The integration costs are primarily due to higher needs for hour-ahead balancing reserves to address the increased sub-hourly variability and uncertainty in the PV resource. (C) 2015 Elsevier Ltd. All rights reserved.« less

  18. Precipitation variability as a strong determinant on tree cover across global tropics

    NASA Astrophysics Data System (ADS)

    Xu, X.; Medvigy, D.; Guan, K.; Trugman, A. T.; Good, S. P.; Rodriguez-Iturbe, I.

    2017-12-01

    Tropical and subtropical ecosystems support a significant carbon sink and storage and provide various ecosystem services. One challenge for these ecosystems is the changing precipitation variability (PV), which is likely to become more extreme under on-going climate change. However, there is a lack of consensus in the determining role of PV on tropical tree cover, which is a widely-used indicator for ecosystem state and functions in the tropics, as well as the underlying mechanism. Here, we ask whether changes in PV by themselves are likely to lead to changes in tropical tree cover. Using a combination of climate, soil and remotely-sensed tree cover data, we comprehensively assess the effects of PV on tree cover spatial variations at intra-seasonal, seasonal and inter-annual scales. We find that PV contributes 33% -56% to the total explained spatial variation (65% -79%) in tree cover. The contribution of PV depends on mean annual precipitation (MAP) and is highest under intermediate MAP (500 - 1500 mm). In general, tree cover increases with rainy day frequency and wet season length but shows mixed responses to inter-annual precipitation variability. We further use a biophysical model to show that the PV-tree cover relation can be explained by tree-grass water competition. Our results suggest that tropical tree cover can decrease by 3-5% overall and by up to 20% in Amazonia under projected changes in PV at the end of this century.

  19. Concentrated solar power plants impact on PV penetration level and grid flexibility under Egyptian climate

    NASA Astrophysics Data System (ADS)

    Moukhtar, Ibrahim; Elbaset, Adel A.; El Dein, Adel Z.; Qudaih, Yaser; Mitani, Yasunori

    2018-05-01

    Photovoltaic (PV) system integration in the electric grid has been increasing over the past decades. However, the impact of PV penetration on the electric grid, especially during the periods of higher and lower generation for the solar system at the middle of the day and during cloudy weather or at night respectively, limit the high penetration of solar PV system. In this research, a Concentrated Solar Power (CSP) with Thermal Energy Storage (TES) has been aggregated with PV system in order to accommodate the required electrical power during the higher and lower solar energy at all timescales. This paper analyzes the impacts of CSP on the grid-connected PV considering high penetration of PV system, particularly when no energy storages in the form of batteries are used. Two cases have been studied, the first when only PV system is integrated into the electric grid and the second when two types of solar energy (PV and CSP) are integrated. The System Advisor Model (SAM) software is used to simulate the output power of renewable energy. Simulation results show that the performance of CSP has a great impact on the penetration level of PV system and on the flexibility of the electric grid. The overall grid flexibility increases due to the ability of CSP to store and dispatch the generated power. In addition, CSP/TES itself has inherent flexibility. Therefore, CSP reduces the minimum generation constraint of the conventional generators that allows more penetration of the PV system.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasemir, Kay; Pearson, Matthew R

    For several years, the Control System Studio (CS-Studio) Scan System has successfully automated the operation of beam lines at the Oak Ridge National Laboratory (ORNL) High Flux Isotope Reactor (HFIR) and Spallation Neutron Source (SNS). As it is applied to additional beam lines, we need to support simultaneous adjustments of temperatures or motor positions. While this can be implemented via virtual motors or similar logic inside the Experimental Physics and Industrial Control System (EPICS) Input/Output Controllers (IOCs), doing so requires a priori knowledge of experimenters requirements. By adding support for the parallel control of multiple process variables (PVs) to themore » Scan System, we can better support ad hoc automation of experiments that benefit from such simultaneous PV adjustments.« less

  1. New insights into the near-IR spectroscopy of the young variable PV Cep

    NASA Astrophysics Data System (ADS)

    Lorenzetti, D.; Giannini, T.; Antoniucci, S.; Kopatskaya, E. N.; Larionov, V.; Arkharov, A. A.; Di Paola, A.; Nisini, B.

    2015-08-01

    During our EXor monitoring programme dubbed EXORCISM (EXOR OptiCal and Infrared Systematic Monitoring - Antoniucci et al. 2013 PPVI, Lorenzetti et al. 2007 ApJ 665, 1182), we have been observing the variable source PV Cep (ATel #1256; #1607).

  2. Variability of a "force signature" during windmill softball pitching and relationship between discrete force variables and pitch velocity.

    PubMed

    Nimphius, Sophia; McGuigan, Michael R; Suchomel, Timothy J; Newton, Robert U

    2016-06-01

    This study assessed reliability of discrete ground reaction force (GRF) variables over multiple pitching trials, investigated the relationships between discrete GRF variables and pitch velocity (PV) and assessed the variability of the "force signature" or continuous force-time curve during the pitching motion of windmill softball pitchers. Intraclass correlation coefficient (ICC) for all discrete variables was high (0.86-0.99) while the coefficient of variance (CV) was low (1.4-5.2%). Two discrete variables were significantly correlated to PV; second vertical peak force (r(5)=0.81, p=0.03) and time between peak forces (r(5)=-0.79; p=0.03). High ICCs and low CVs support the reliability of discrete GRF and PV variables over multiple trials and significant correlations indicate there is a relationship between the ability to produce force and the timing of this force production with PV. The mean of all pitchers' curve-average standard deviation of their continuous force-time curves demonstrated low variability (CV=4.4%) indicating a repeatable and identifiable "force signature" pattern during this motion. As such, the continuous force-time curve in addition to discrete GRF variables should be examined in future research as a potential method to monitor or explain changes in pitching performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A New Control Method to Mitigate Power Fluctuations for Grid Integrated PV/Wind Hybrid Power System Using Ultracapacitors

    NASA Astrophysics Data System (ADS)

    Jayalakshmi, N. S.; Gaonkar, D. N.

    2016-08-01

    The output power obtained from solar-wind hybrid system fluctuates with changes in weather conditions. These power fluctuations cause adverse effects on the voltage, frequency and transient stability of the utility grid. In this paper, a control method is presented for power smoothing of grid integrated PV/wind hybrid system using ultracapacitors in a DC coupled structure. The power fluctuations of hybrid system are mitigated and smoothed power is supplied to the utility grid. In this work both photovoltaic (PV) panels and the wind generator are controlled to operate at their maximum power point. The grid side inverter control strategy presented in this paper maintains DC link voltage constant while injecting power to the grid at unity power factor considering different operating conditions. Actual solar irradiation and wind speed data are used in this study to evaluate the performance of the developed system using MATLAB/Simulink software. The simulation results show that output power fluctuations of solar-wind hybrid system can be significantly mitigated using the ultracapacitor based storage system.

  4. Scheme for predictive fault diagnosis in photo-voltaic modules using thermal imaging

    NASA Astrophysics Data System (ADS)

    Jaffery, Zainul Abdin; Dubey, Ashwani Kumar; Irshad; Haque, Ahteshamul

    2017-06-01

    Degradation of PV modules can cause excessive overheating which results in a reduced power output and eventually failure of solar panel. To maintain the long term reliability of solar modules and maximize the power output, faults in modules need to be diagnosed at an early stage. This paper provides a comprehensive algorithm for fault diagnosis in solar modules using infrared thermography. Infrared Thermography (IRT) is a reliable, non-destructive, fast and cost effective technique which is widely used to identify where and how faults occurred in an electrical installation. Infrared images were used for condition monitoring of solar modules and fuzzy logic have been used to incorporate intelligent classification of faults. An automatic approach has been suggested for fault detection, classification and analysis. IR images were acquired using an IR camera. To have an estimation of thermal condition of PV module, the faulty panel images were compared to a healthy PV module thermal image. A fuzzy rule-base was used to classify faults automatically. Maintenance actions have been advised based on type of faults.

  5. Distinct GABAergic targets of feedforward and feedback connections between lower and higher areas of rat visual cortex.

    PubMed

    Gonchar, Yuri; Burkhalter, Andreas

    2003-11-26

    Processing of visual information is performed in different cortical areas that are interconnected by feedforward (FF) and feedback (FB) pathways. Although FF and FB inputs are excitatory, their influences on pyramidal neurons also depend on the outputs of GABAergic neurons, which receive FF and FB inputs. Rat visual cortex contains at least three different families of GABAergic neurons that express parvalbumin (PV), calretinin (CR), and somatostatin (SOM) (Gonchar and Burkhalter, 1997). To examine whether pathway-specific inhibition (Shao and Burkhalter, 1996) is attributable to distinct connections with GABAergic neurons, we traced FF and FB inputs to PV, CR, and SOM neurons in layers 1-2/3 of area 17 and the secondary lateromedial area in rat visual cortex. We found that in layer 2/3 maximally 2% of FF and FB inputs go to CR and SOM neurons. This contrasts with 12-13% of FF and FB inputs onto layer 2/3 PV neurons. Unlike inputs to layer 2/3, connections to layer 1, which contains CR but lacks SOM and PV somata, are pathway-specific: 21% of FB inputs go to CR neurons, whereas FF inputs to layer 1 and its CR neurons are absent. These findings suggest that FF and FB influences on layer 2/3 pyramidal neurons mainly involve disynaptic connections via PV neurons that control the spike outputs to axons and proximal dendrites. Unlike FF input, FB input in addition makes a disynaptic link via CR neurons, which may influence the excitability of distal pyramidal cell dendrites in layer 1.

  6. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC)

    PubMed Central

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H.; Gaaz, Tayser Sumer

    2017-01-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m2 and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current ISC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC. PMID:28763048

  7. Outdoor Performance Analysis of a Photovoltaic Thermal (PVT) Collector with Jet Impingement and Compound Parabolic Concentrator (CPC).

    PubMed

    Jaaz, Ahed Hameed; Hasan, Husam Abdulrasool; Sopian, Kamaruzzaman; Kadhum, Abdul Amir H; Gaaz, Tayser Sumer; Al-Amiery, Ahmed A

    2017-08-01

    This paper discusses the effect of jet impingement of water on a photovoltaic thermal (PVT) collector and compound parabolic concentrators (CPC) on electrical efficiency, thermal efficiency and power production of a PVT system. A prototype of a PVT solar water collector installed with a jet impingement and CPC has been designed, fabricated and experimentally investigated. The efficiency of the system can be improved by using jet impingement of water to decrease the temperature of the solar cells. The electrical efficiency and power output are directly correlated with the mass flow rate. The results show that electrical efficiency was improved by 7% when using CPC and jet impingement cooling in a PVT solar collector at 1:00 p.m. (solar irradiance of 1050 W/m² and an ambient temperature of 33.5 °C). It can also be seen that the power output improved by 36% when using jet impingement cooling with CPC, and 20% without CPC in the photovoltaic (PV) module at 1:30 p.m. The short-circuit current I SC of the PV module experienced an improvement of ~28% when using jet impingement cooling with CPC, and 11.7% without CPC. The output of the PV module was enhanced by 31% when using jet impingement cooling with CPC, and 16% without CPC.

  8. MONITOR THE PHOTOVOLTAIC (PV) SYSTEM ON THE NCC ROOFTOP

    EPA Science Inventory

    This study will investigate the pollution emission reduction and demand-side management potential of a
    100 kW PV system located on the roof of the National Computer Center (NCC). Standardized instrumentation to measure meteorological and PV system performance variables will b...

  9. The capacity credit of grid-connected photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Alsema, E. A.; van Wijk, A. J. M.; Turkenburg, W. C.

    The capacity credit due photovoltaic (PV) power plants if integrated into the Netherlands grid was investigated, together with an estimate of the total allowable penetration. An hourly simulation was performed based on meteorological data from five stations and considering tilted surfaces, the current grid load pattern, and the load pattern after PV-power augmentation. The reliability of the grid was assessed in terms of a loss of load probability analysis, assuming power drops were limited to 1 GW. A projected tolerance for 2.5 GW of PV power was calculated. Peak demands were determined to be highest in winter, contrary to highest insolation levels; however, daily insolation levels coincided with daily peak demands. Combining the PV input with an equal amount of wind turbine power production was found to augment the capacity credit for both at aggregate outputs of 2-4 GW.

  10. Storage Free Smart Energy Management for Frequency Control in a Diesel-PV-Fuel Cell-Based Hybrid AC Microgrid.

    PubMed

    Sekhar, P C; Mishra, S

    2016-08-01

    This paper proposes a novel, smart energy management scheme for a microgrid, consisting of a diesel generator and power electronic converter interfaced renewable energy-based generators, such as photovoltaic (PV) and fuel cell, for frequency regulation without any storage. In the proposed strategy, output of the PV is controlled in coordination with other generators using neurofuzzy controller, either only for transient frequency regulation or for both transient and steady-state frequency regulation, depending on the load demand, thereby eliminating the huge storage requirements. The option of demand response control is also explored along with the generation control. For accurate and quick tracking of maximum power point and its associated reserve power from the PV generator, this paper also proposes a novel adaptive-predictor-corrector-based tracking mechanism.

  11. Progressing Deployment of Solar Photovoltaic Installations in the United States

    NASA Astrophysics Data System (ADS)

    Kwan, Calvin Lee

    2011-07-01

    This dissertation evaluates the likelihood of solar PV playing a larger role in national and state level renewable energy portfolios. I examine the feasibility of large-scale solar PV arrays on college campuses, the financials associated with large-scale solar PV arrays and finally, the influence of environmental, economic, social and political variables on the distribution of residential solar PV arrays in the United States. Chapter two investigates the challenges and feasibility of college campuses adopting a net-zero energy policy. Using energy consumption data, local solar insolation data and projected campus growth, I present a method to identify the minimum sized solar PV array that is required for the City College campus of the Los Angeles Community College District to achieve net-zero energy status. I document how current energy demand can be reduced using strategic demand side management, with remaining energy demand being met using a solar PV array. Chapter three focuses on the financial feasibility of large-scale solar PV arrays, using the proposed City College campus array as an example. I document that even after demand side energy management initiatives and financial incentives, large-scale solar PV arrays continue to have ROIs greater than 25 years. I find that traditional financial evaluation methods are not suitable for environmental projects such as solar PV installations as externalities are not taken into account and therefore calls for development of alternative financial valuation methods. Chapter four investigates the influence of environmental, social, economic and political variables on the distribution of residential solar PV arrays across the United States using ZIP code level data from the 2000 US Census. Using data from the National Renewable Energy Laboratory's Open PV project, I document where residential solar PVs are currently located. A zero-inflated negative binomial model was run to evaluate the influence of selected variables. Using the same model, predicted residential solar PV shares were generated and illustrated using GIS software. The results of this model indicate that solar insolation, state energy deregulation and cost of electricity are statistically significant factors positively correlated with the adoption of residential solar PV arrays. With this information, policymakers at the towns and cities level can establish effective solar PV promoting policies and regulations for their respective locations.

  12. Quantifying Proportional Variability

    PubMed Central

    Heath, Joel P.; Borowski, Peter

    2013-01-01

    Real quantities can undergo such a wide variety of dynamics that the mean is often a meaningless reference point for measuring variability. Despite their widespread application, techniques like the Coefficient of Variation are not truly proportional and exhibit pathological properties. The non-parametric measure Proportional Variability (PV) [1] resolves these issues and provides a robust way to summarize and compare variation in quantities exhibiting diverse dynamical behaviour. Instead of being based on deviation from an average value, variation is simply quantified by comparing the numbers to each other, requiring no assumptions about central tendency or underlying statistical distributions. While PV has been introduced before and has already been applied in various contexts to population dynamics, here we present a deeper analysis of this new measure, derive analytical expressions for the PV of several general distributions and present new comparisons with the Coefficient of Variation, demonstrating cases in which PV is the more favorable measure. We show that PV provides an easily interpretable approach for measuring and comparing variation that can be generally applied throughout the sciences, from contexts ranging from stock market stability to climate variation. PMID:24386334

  13. Cell type-specific long-range connections of basal forebrain circuit.

    PubMed

    Do, Johnny Phong; Xu, Min; Lee, Seung-Hee; Chang, Wei-Cheng; Zhang, Siyu; Chung, Shinjae; Yung, Tyler J; Fan, Jiang Lan; Miyamichi, Kazunari; Luo, Liqun; Dan, Yang

    2016-09-19

    The basal forebrain (BF) plays key roles in multiple brain functions, including sleep-wake regulation, attention, and learning/memory, but the long-range connections mediating these functions remain poorly characterized. Here we performed whole-brain mapping of both inputs and outputs of four BF cell types - cholinergic, glutamatergic, and parvalbumin-positive (PV+) and somatostatin-positive (SOM+) GABAergic neurons - in the mouse brain. Using rabies virus -mediated monosynaptic retrograde tracing to label the inputs and adeno-associated virus to trace axonal projections, we identified numerous brain areas connected to the BF. The inputs to different cell types were qualitatively similar, but the output projections showed marked differences. The connections to glutamatergic and SOM+ neurons were strongly reciprocal, while those to cholinergic and PV+ neurons were more unidirectional. These results reveal the long-range wiring diagram of the BF circuit with highly convergent inputs and divergent outputs and point to both functional commonality and specialization of different BF cell types.

  14. Performance optimization of a hybrid micro-grid based on double-loop MPPT and SVC-MERS

    NASA Astrophysics Data System (ADS)

    Wei, Yewen; Hou, Xilun; Zhang, Xiang; Xiong, Shengnan; Peng, Fei

    2018-02-01

    With ever-increasing concerns on environmental pollution and energy shortage, the development of renewable resource has attracted a lot of attention. This paper first reviews both the wind and photovoltaic (PV) generation techniques and approaches of micro-grid voltage control. Then, a novel islanded micro-grid, which consists of wind & PV generation and hybrid-energy storage device, is built for application to remote and isolated areas. For the PV power generation branch, a double- maximum power point tracking (MPPT) technique is developed to trace the sunlight and regulate the tilt angle of PV panels. For wind-power generation branch, squirrel cage induction generator (SCIG) is used as its simple structure, robustness and less cost. In order to stabilize the output voltage of SCIGs, a new Static Var Compensator named magnetic energy recovery switch (SVC-MERS) is applied. Finally, experimental results confirm that both of the proposed methods can improve the efficiency of PV power generation and voltage stability of the micro-grid, respectively.

  15. Distributed photovoltaic architecture powering a DC bus: Impact of duty cycle and load variations on the efficiency of the generator

    NASA Astrophysics Data System (ADS)

    Allouache, Hadj; Zegaoui, Abdallah; Boutoubat, Mohamed; Bokhtache, Aicha Aissa; Kessaissia, Fatma Zohra; Charles, Jean-Pierre; Aillerie, Michel

    2018-05-01

    This paper focuses on a photovoltaic generator feeding a load via a boost converter in a distributed PV architecture. The principal target is the evaluation of the efficiency of a distributed photovoltaic architecture powering a direct current (DC) PV bus. This task is achieved by outlining an original way for tracking the Maximum Power Point (MPP) taking into account load variations and duty cycle on the electrical quantities of the boost converter and on the PV generator output apparent impedance. Thereafter, in a given sized PV system, we analyze the influence of the load variations on the behavior of the boost converter and we deduce the limits imposed by the load on the DC PV bus. The simultaneous influences of 1- the variation of the duty cycle of the boost converter and 2- the load power on the parameters of the various components of the photovoltaic chain and on the boost performances are clearly presented as deduced by simulation.

  16. Study on Battery Capacity for Grid-connection Power Planning with Forecasts in Clustered Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Shimada, Takae; Kawasaki, Norihiro; Ueda, Yuzuru; Sugihara, Hiroyuki; Kurokawa, Kosuke

    This paper aims to clarify the battery capacity required by a residential area with densely grid-connected photovoltaic (PV) systems. This paper proposes a planning method of tomorrow's grid-connection power from/to the external electric power system by using demand power forecasting and insolation forecasting for PV power predictions, and defines a operation method of the electricity storage device to control the grid-connection power as planned. A residential area consisting of 389 houses consuming 2390 MWh/year of electricity with 2390kW PV systems is simulated based on measured data and actual forecasts. The simulation results show that 8.3MWh of battery capacity is required in the conditions of half-hour planning and 1% or less of planning error ratio and PV output limiting loss ratio. The results also show that existing technologies of forecasting reduce required battery capacity to 49%, and increase the allowable installing PV amount to 210%.

  17. Modeling photovoltaic diffusion: an analysis of geospatial datasets

    NASA Astrophysics Data System (ADS)

    Davidson, Carolyn; Drury, Easan; Lopez, Anthony; Elmore, Ryan; Margolis, Robert

    2014-07-01

    This study combines address-level residential photovoltaic (PV) adoption trends in California with several types of geospatial information—population demographics, housing characteristics, foreclosure rates, solar irradiance, vehicle ownership preferences, and others—to identify which subsets of geospatial information are the best predictors of historical PV adoption. Number of rooms, heating source and house age were key variables that had not been previously explored in the literature, but are consistent with the expected profile of a PV adopter. The strong relationship provided by foreclosure indicators and mortgage status have less of an intuitive connection to PV adoption, but may be highly correlated with characteristics inherent in PV adopters. Next, we explore how these predictive factors and model performance varies between different Investor Owned Utility (IOU) regions in California, and at different spatial scales. Results suggest that models trained with small subsets of geospatial information (five to eight variables) may provide similar explanatory power as models using hundreds of geospatial variables. Further, the predictive performance of models generally decreases at higher resolution, i.e., below ZIP code level since several geospatial variables with coarse native resolution become less useful for representing high resolution variations in PV adoption trends. However, for California we find that model performance improves if parameters are trained at the regional IOU level rather than the state-wide level. We also find that models trained within one IOU region are generally representative for other IOU regions in CA, suggesting that a model trained with data from one state may be applicable in another state.

  18. Testing the PV-Theta Mapping Technique in a 3-D CTM Model Simulation

    NASA Technical Reports Server (NTRS)

    Frith, Stacey M.

    2004-01-01

    Mapping lower stratospheric ozone into potential vorticity (PV)- potential temperature (Theta) coordinates is a common technique employed to analyze sparse data sets. Ozone transformed into a flow-following dynamical coordinate system is insensitive to meteorological variations. Therefore data from a wide range of times/locations can be compared, so long as the measurements were made in the same airmass (as defined by PV). Moreover, once a relationship between ozone and PV/Theta is established, a full 3D ozone field can be estimated from this relationship and the 3D analyzed PV field. However, ozone data mapped in this fashion can be hampered by noisy PV fields, or "mis-matches" in the resolution and/or exact location of the ozone and PV measurements. In this study, we investigate the PV-ozone relationship using output from a recent 50-year run of the Goddard 3D chemical transport model (CTM). Model constituents are transported using off-line dynamics from the finite volume general circulation model (FVGCM). By using the internally consistent model PV and ozone fields, we minimize noise due to mis-matching and resolution issues. We calculate correlations between model ozone and PV throughout the stratosphere, and test the sensitivity of the technique to initial data resolution. To do this we degrade the model data to that of various satellite instruments, then compare the mapped fields derived from the sub-sampled data to the full resolution model data. With these studies we can determine appropriate limits for the PV-theta mapping technique in latitude, altitude, and as a function of original data resolution.

  19. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics

    NASA Astrophysics Data System (ADS)

    Leow, Shin Woei; Corrado, Carley; Osborn, Melissa; Carter, Sue A.

    2013-09-01

    Luminescent solar concentrators (LSCs) have the ability to receive light from a wide range of angles, concentrating the captured light onto small photo active areas. This enables greater incorporation of LSCs into building designs as windows, skylights and wall claddings in addition to rooftop installations of current solar panels. Using relatively cheap luminescent dyes and acrylic waveguides to effect light concentration onto lesser photovoltaic (PV) cells, there is potential for this technology to approach grid price parity. We employ a panel design in which the front facing PV cells collect both direct and concentrated light ensuring a gain factor greater than one. This also allows for flexibility in determining the placement and percentage coverage of PV cells during the design process to balance reabsorption losses against the power output and level of light concentration desired. To aid in design optimization, a Monte-Carlo ray tracing program was developed to study the transport of photons and loss mechanisms in LSC panels. The program imports measured absorption/emission spectra and transmission coefficients as simulation parameters with interactions of photons in the panel determined by comparing calculated probabilities with random number generators. LSC panels with multiple dyes or layers can also be simulated. Analysis of the results reveals optimal panel dimensions and PV cell layouts for maximum power output for a given dye concentration, absorbtion/emission spectrum and quantum efficiency.

  20. Origin of the Outbreak in France of Pseudomonas syringae pv. actinidiae Biovar 3, the Causal Agent of Bacterial Canker of Kiwifruit, Revealed by a Multilocus Variable-Number Tandem-Repeat Analysis.

    PubMed

    Cunty, A; Cesbron, S; Poliakoff, F; Jacques, M-A; Manceau, C

    2015-10-01

    The first outbreaks of bacterial canker of kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 were detected in France in 2010. P. syringae pv. actinidiae causes leaf spots, dieback, and canker that sometimes lead to the death of the vine. P. syringae pv. actinidifoliorum, which is pathogenic on kiwi as well, causes only leaf spots. In order to conduct an epidemiological study to track the spread of the epidemics of these two pathogens in France, we developed a multilocus variable-number tandem-repeat (VNTR) analysis (MLVA). MLVA was conducted on 340 strains of P. syringae pv. actinidiae biovar 3 isolated in Chile, China, France, Italy, and New Zealand and on 39 strains of P. syringae pv. actinidifoliorum isolated in Australia, France, and New Zealand. Eleven polymorphic VNTR loci were identified in the genomes of P. syringae pv. actinidiae biovar 3 ICMP 18744 and of P. syringae pv. actinidifoliorum ICMP 18807. MLVA enabled the structuring of P. syringae pv. actinidiae biovar 3 and P. syringae pv. actinidifoliorum strains in 55 and 16 haplotypes, respectively. MLVA and discriminant analysis of principal components revealed that strains isolated in Chile, China, and New Zealand are genetically distinct from P. syringae pv. actinidiae strains isolated in France and in Italy, which appear to be closely related at the genetic level. In contrast, no structuring was observed for P. syringae pv. actinidifoliorum. We developed an MLVA scheme to explore the diversity within P. syringae pv. actinidiae biovar 3 and to trace the dispersal routes of epidemic P. syringae pv. actinidiae biovar 3 in Europe. We suggest using this MLVA scheme to trace the dispersal routes of P. syringae pv. actinidiae at a global level. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  1. System and method for design and optimization of grid connected photovoltaic power plant with multiple photovoltaic module technologies

    DOEpatents

    Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich

    2016-03-29

    A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.

  2. Fault Analysis in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  3. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard (Report Summary) (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-06-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less

  4. Estimating the Value of Utility-Scale Solar Technologies in California Under a 40% Renewable Portfolio Standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jorgenson, J.; Denholm, P.; Mehos, M.

    2014-05-01

    Concentrating solar power with thermal energy storage (CSP-TES) is a unique source of solar energy in that its output can be shifted over time. The ability of CSP-TES to be a flexible source of generation may be particularly valuable in regions with high overall penetration of solar energy, such as the state of California. California's Renewable Portfolio Standard (RPS) requires the state to increase generation from eligible renewable energy resources to reach 33% of retail electricity sales by 2020. Beyond 2020, California targets a further reduction in greenhouse gas emissions. To help reach this goal, current California governor Jerry Brownmore » has stated that a higher 40% RPS might be reachable in the near term. The levelized cost of energy is generally emphasized when assessing the economic viability of renewable energy systems implemented to achieve the RPS. However, the operational and capacity benefits of such systems are often ignored, which can lead to incorrect economic comparisons between CSP-TES and variable renewable generation technologies such as solar photovoltaics (PV). Here we evaluate a 40% RPS scenario in a California grid model with PV or CSP-TES providing the last 1% of RPS energy. We compare the technical and economic implications of integrating either solar technology under several sensitivities, finding that the ability to displace new conventional thermal generation capacity may be the largest source of value of CSP-TES compared to PV at high solar penetrations.« less

  5. Mitigation of EMI/RFI Produced by a 1.2 kW Uninterruptible Power Supply

    DTIC Science & Technology

    1993-09-01

    930225 1605 NPS, LAB 419, UPS Output Inside Barrer. Black-Green/ Batery 30 MHz, 100 MHz, 30 kHz, 200 ms (LS) 201D, +10, 0, 0, -50 AMPLITUDE - PV -70.79...Figure 52. Voltage Spectrum-Output-Battery Operated 114 LIST OF REFERENCES 1. Adler, R.W., Notes for EC 3640 (Electromagnetic Environ - mental Effects

  6. Experimental grid connected PV system power analysis

    NASA Astrophysics Data System (ADS)

    Semaoui, Smail; Abdeladim, Kamel; Arab, Amar Hadj; Boulahchich, Saliha; Amrouche, Said Ould; Yassaa, Noureddine

    2018-05-01

    Almost 80 % of Algerian territory is appropriate for the exploitation of solar energy. The Algerian energetic strategy provides a substantial injection of PV electricity to the national grid. Currently, about 344 MWp of PV arrays which corresponds approximately to 2,34 km2 of module surfaces, are connected on electricity grid over the national territory. The Algerian Northern regions are characterized by strong pollution and high humidity. These phenomena affect the energetic productivity of PV generator. The objective of our study is to analyze experimental grid connected PV system power in coastal locations. Hence, experiments have been conducted on three identical PV systems to determine the electrical performances. Transformer-less inverters are the most attractive for the ground-based photovoltaic (PV) system due to their efficiencies, reduced cost and weight. Besides, the absence of the galvanic isolation generates problems of capacitive leakage current on the AC side and the degradation of the insulation resistance on the DC side of the inverter. In this work, experimental study of the behavior of single-phase inverters without transformers is presented. The main objective of this work is to study the degradation of the insulation resistance at the input of the inverter, and the capacitive leakage current at the output of the inverter. This study was achieved at the CDER on a rainy day of 15/03/2017, on the first PV plant connected to the low voltage network in Algeria. This investigation can help forecasting the PV array energetic production by taking into account natural conditions.

  7. Residential Solar PV Systems in the Carolinas: Opportunities and Outcomes.

    PubMed

    Alqahtani, Bandar Jubran; Holt, Kyra Moore; Patiño-Echeverri, Dalia; Pratson, Lincoln

    2016-02-16

    This paper presents a first-order analysis of the feasibility and technical, environmental, and economic effects of large levels of solar photovoltaic (PV) penetration within the services areas of the Duke Energy Carolinas (DEC) and Duke Energy Progress (DEP). A PV production model based on household density and a gridded hourly global horizontal irradiance data set simulates hourly PV power output from roof-top installations, while a unit commitment and real-time economic dispatch (UC-ED) model simulates hourly system operations. We find that the large generating capacity of base-load nuclear power plants (NPPs) without ramping capability in the region limits PV integration levels to 5.3% (6510 MW) of 2015 generation. Enabling ramping capability for NPPs would raise the limit of PV penetration to near 9% of electricity generated. If the planned retirement of coal-fired power plants together with new installations and upgrades of natural gas and nuclear plants materialize in 2025, and if NPPs operate flexibly, then the share of coal-fired electricity will be reduced from 37% to 22%. A 9% penetration of electricity from PV would further reduce the share of coal-fired electricity by 4-6% resulting in a system-wide CO2 emissions rate of 0.33 to 0.40 tons/MWh and associated abatement costs of 225-415 (2015$ per ton).

  8. Enhanced Contacts for Inverted Metamorphic Multi-Junction Solar Cells Using Carbon Nanotube Metal Matrix Composites

    DTIC Science & Technology

    2018-01-18

    to a variety solar energy markets. For instance, micro-cracks have been shown to cause decreased power output in single- and multi-crystalline Si PV ...fingers in silicon wafer solar cells and PV modules," Solar Energy Materials and Solar Cells, vol. 108, pp. 78-81, 1// 2013. [4] T. H. Reijenga and H...AFRL-RV-PS- AFRL-RV-PS- TR-2017-0125 TR-2017-0125 ENHANCED CONTACTS FOR INVERTED METAMORPHIC MULTI-JUNCTION SOLAR CELLS USING CARBON NANOTUBE METAL

  9. Solar Electric System

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Heat Pipe Technology, Inc. undertook the development of a PV system that could bring solar electricity to the individual home at reasonable cost. His system employs high efficiency PV modules plus a set of polished reflectors that concentrate the solar energy and enhance the output of the modules. Dinh incorporated a sun tracking system derived from space tracking technology. It automatically follows the sun throughout the day and turns the modules so that they get maximum exposure to the solar radiation, further enhancing the system efficiency.

  10. Design of A Grid Integrated PV System with MPPT Control and Voltage Oriented Controller using MATLAB/PLECES

    NASA Astrophysics Data System (ADS)

    Soreng, Bineeta; Behera, Pradyumna; Pradhan, Raseswari

    2017-08-01

    This paper presents model of a grid-integrated photovoltaic array with Maximum Power Point Tracker (MPPT) and voltage oriented controller. The MPPT of the PV array is usually an essential part of PV system as MPPT helps the operating point of the solar array to align its maximum power point. In this model, the MPPT along with a DC-DC converter lets a PV generator to produce continuous power, despite of the measurement conditions. The neutral-point-clamped converter (NPC) with a boost converter raises the voltage from the panels to the DC-link. An LCL-filter smoothens the current ripple caused by the PWM modulation of the grid-side inverter. In addition to the MPPT, the system has two more two controllers, such as voltage controller and a current controller. The voltage control has a PI controller to regulate the PV voltage to optimal level by controlling the amount of current injected into the boost stage. Here, the grid-side converter transfers the power from the DC-link into the grid and maintains the DC-link voltage. Three-phase PV inverters are used for off-grid or designed to create utility frequency AC. The PV system can be connected in series or parallel to get the desired output power. To justify the working of this model, the grid-integrated PV system has been designed in MATLAB/PLECS. The simulation shows the P-V curve of implemented PV Array consisting 4 X 20 modules, reactive, real power, grid voltage and current.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhi, Hassan

    Developments in the design and manufacture of photovoltaic cells have recently been a growing concern in the UAE. At present, the embodied energy pay-back time (EPBT) is the criterion used for comparing the viability of such technology against other forms. However, the impact of PV technology on the thermal performance of buildings is not considered at the time of EPBT estimation. If additional energy savings gained over the PV system life are also included, the total EPBT could be shorter. This paper explores the variation of the total energy of building integrated photovoltaic systems (BiPV) as a wall cladding systemmore » applied to the UAE commercial sector and shows that the ratio between PV output and saving in energy due to PV panels is within the range of 1:3-1:4. The result indicates that for the southern and western facades in the UAE, the embodied energy pay-back time for photovoltaic system is within the range of 12-13 years. When reductions in operational energy are considered, the pay-back time is reduced to 3.0-3.2 years. This study comes to the conclusion that the reduction in operational energy due to PV panels represents an important factor in the estimation of EPBT. (author)« less

  12. Photovoltaics: Reviewing the European Feed-in-Tariffs and Changing PV Efficiencies and Costs

    PubMed Central

    Zhang, H. L.; Van Gerven, T.; Baeyens, J.; Degrève, J.

    2014-01-01

    Feed-in-Tariff (FiT) mechanisms have been important in boosting renewable energy, by providing a long-term guaranteed subsidy of the kWh-price, thus mitigating investment risks and enhancing the contribution of sustainable electricity. By ongoing PV development, the contribution of solar power increases exponentially. Within this significant potential, it is important for investors, operators, and scientists alike to provide answers to different questions related to subsidies, PV efficiencies and costs. The present paper therefore (i) briefly reviews the mechanisms, advantages, and evolution of FiT; (ii) describes the developments of PV, (iii) applies a comprehensive literature-based model for the solar irradiation to predict the PV solar energy potential in some target European countries, whilst comparing output predictions with the monthly measured electricity generation of a 57 m² photovoltaic system (Belgium); and finally (iv) predicts the levelized cost of energy (LCOE) in terms of investment and efficiency, providing LCOE values between 0.149 and 0.313 €/kWh, as function of the overall process efficiency and cost. The findings clearly demonstrate the potential of PV energy in Europe, where FiT can be considerably reduced or even be eliminated in the near future. PMID:24959614

  13. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Phillips, Brandon S.; Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.

    2015-01-01

    To successfully operate a photovoltaic (PV) array system in space requires planning and testing to account for the effects of the space environment. It is critical to understand space environment interactions not only on the PV components, but also the array substrate materials, wiring harnesses, connectors, and protection circuitry (e.g. blocking diodes). Key elements of the space environment which must be accounted for in a PV system design include: Solar Photon Radiation, Charged Particle Radiation, Plasma, and Thermal Cycling. While solar photon radiation is central to generating power in PV systems, the complete spectrum includes short wavelength ultraviolet components, which photo-ionize materials, as well as long wavelength infrared which heat materials. High energy electron radiation has been demonstrated to significantly reduce the output power of III-V type PV cells; and proton radiation damages material surfaces - often impacting coverglasses and antireflective coatings. Plasma environments influence electrostatic charging of PV array materials, and must be understood to ensure that long duration arcs do not form and potentially destroy PV cells. Thermal cycling impacts all components on a PV array by inducing stresses due to thermal expansion and contraction. Given such demanding environments, and the complexity of structures and materials that form a PV array system, mission success can only be ensured through realistic testing in the laboratory. NASA's Marshall Space Flight Center has developed a broad space environment test capability to allow PV array designers and manufacturers to verify their system's integrity and avoid costly on-orbit failures. The Marshall Space Flight Center test capabilities are available to government, commercial, and university customers. Test solutions are tailored to meet the customer's needs, and can include performance assessments, such as flash testing in the case of PV cells.

  14. Grid tied PV/battery system architecture and power management for fast electric vehicle charging

    NASA Astrophysics Data System (ADS)

    Badawy, Mohamed O.

    The prospective spread of Electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV) arises the need for fast charging rates. Higher charging rates requirements lead to high power demands, which cant be always supported by the grid. Thus, the use of on-site sources alongside the electrical grid for EVs charging is a rising area of interest. In this dissertation, a photovoltaic (PV) source is used to support the high power EVs charging. However, the PV output power has an intermittent nature that is dependable on the weather conditions. Thus, battery storage are combined with the PV in a grid tied system, providing a steady source for on-site EVs use in a renewable energy based fast charging station. Verily, renewable energy based fast charging stations should be cost effective, efficient, and reliable to increase the penetration of EVs in the automotive market. Thus, this Dissertation proposes a novel power flow management topology that aims on decreasing the running cost along with innovative hardware solutions and control structures for the developed architecture. The developed power flow management topology operates the hybrid system at the minimum operating cost while extending the battery lifetime. An optimization problem is formulated and two stages of optimization, i.e online and offline stages, are adopted to optimize the batteries state of charge (SOC) scheduling and continuously compensate for the forecasting errors. The proposed power flow management topology is validated and tested with two metering systems, i.e unified and dual metering systems. The results suggested that minimal power flow is anticipated from the battery storage to the grid in the dual metering system. Thus, the power electronic interfacing system is designed accordingly. Interconnecting bi-directional DC/DC converters are analyzed, and a cascaded buck boost (CBB) converter is chosen and tested under 80 kW power flow rates. The need to perform power factor correction (PFC) on the grid power while supplying the battery storage and the DC loads inspired a novel dual switch control structure for the CBB AC/DC converter used in this dissertation. Thus, The CBB operates at a discontinuous capacitor voltage mode (DCVM) and the control structure enables for a non-distorted input current at overlapping output voltage levels. The PFC concept is validated and tested for a single phase rectifier and a 3 phase extension of the proposed concept is presented. Lastly, the PV source used in this study is required to supply power to both, the grid system, and to the DC loads, i.e the battery storage and the EVs. Thus, the PV panels used are connected in series to reach a desirable high voltage on the DC bus output of the PV system. Consequently, a novel differential power processing architecture is proposed in this dissertation. The proposed architecture enables each PV element to operate at its local maximum power point (MPP) while processing only a small portion of its total generated power through the distributed integrated converters. This leads to higher energy capture at an increased conversion efficiency while overcoming the difficulties associated with unmatched MPPs of the PV elements.

  15. Photovoltaic Inverter Controllers Seeking AC Optimal Power Flow Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.

    This paper considers future distribution networks featuring inverter-interfaced photovoltaic (PV) systems, and addresses the synthesis of feedback controllers that seek real- and reactive-power inverter setpoints corresponding to AC optimal power flow (OPF) solutions. The objective is to bridge the temporal gap between long-term system optimization and real-time inverter control, and enable seamless PV-owner participation without compromising system efficiency and stability. The design of the controllers is grounded on a dual ..epsilon..-subgradient method, while semidefinite programming relaxations are advocated to bypass the non-convexity of AC OPF formulations. Global convergence of inverter output powers is analytically established for diminishing stepsize rules formore » cases where: i) computational limits dictate asynchronous updates of the controller signals, and ii) inverter reference inputs may be updated at a faster rate than the power-output settling time.« less

  16. Distinct Physiological Maturation of Parvalbumin-Positive Neuron Subtypes in Mouse Prefrontal Cortex.

    PubMed

    Miyamae, Takeaki; Chen, Kehui; Lewis, David A; Gonzalez-Burgos, Guillermo

    2017-05-10

    Parvalbumin-positive (PV + ) neurons control the timing of pyramidal cell output in cortical neuron networks. In the prefrontal cortex (PFC), PV + neuron activity is involved in cognitive function, suggesting that PV + neuron maturation is critical for cognitive development. The two major PV + neuron subtypes found in the PFC, chandelier cells (ChCs) and basket cells (BCs), are thought to play different roles in cortical circuits, but the trajectories of their physiological maturation have not been compared. Using two separate mouse lines, we found that in the mature PFC, both ChCs and BCs are abundant in superficial layer 2, but only BCs are present in deeper laminar locations. This distinctive laminar distribution was observed by postnatal day 12 (P12), when we first identified ChCs by the presence of axon cartridges. Electrophysiology analysis of excitatory synapse development, starting at P12, showed that excitatory drive remains low throughout development in ChCs, but increases rapidly before puberty in BCs, with an earlier time course in deeper-layer BCs. Consistent with a role of excitatory synaptic drive in the maturation of PV + neuron firing properties, the fast-spiking phenotype showed different maturation trajectories between ChCs and BCs, and between superficial versus deep-layer BCs. ChC and BC maturation was nearly completed, via different trajectories, before the onset of puberty. These findings suggest that ChC and BC maturation may contribute differentially to the emergence of cognitive function, primarily during prepubertal development. SIGNIFICANCE STATEMENT Parvalbumin-positive (PV + ) neurons tightly control pyramidal cell output. Thus PV + neuron maturation in the prefrontal cortex (PFC) is crucial for cognitive development. However, the relative physiological maturation of the two major subtypes of PV + neurons, chandelier cells (ChCs) and basket cells (BCs), has not been determined. We assessed the maturation of ChCs and BCs in different layers of the mouse PFC, and found that, from early postnatal age, ChCs and BCs differ in laminar location. Excitatory synapses and fast-spiking properties matured before the onset of puberty in both cell types, but following cell type-specific developmental trajectories. Hence, the physiological maturation of ChCs and BCs may contribute to the emergence of cognitive function differentially, and predominantly during prepubertal development. Copyright © 2017 the authors 0270-6474/17/374883-20$15.00/0.

  17. Effect of surface fouling on the output of PV panels

    NASA Astrophysics Data System (ADS)

    Zhang, Zele

    2018-04-01

    Surface fouling on the photovoltaic system caused by the output of a certain impact, therefore, it is very important to explore the effect of fouling on its contribution. Through the use of photovoltaic panels to collect Baoding area under different weather output data, and the collected data for comparative analysis, obtained under different environments on the impact of its contribution. It is concluded that the output of the photovoltaic cells will decrease, and the power drop rate will stabilize after three or four days. The effect of fouling on the fog haze and low temperature is more obvious.

  18. Energy harvesting using TEG and PV cell for low power application

    NASA Astrophysics Data System (ADS)

    Tawil, Siti Nooraya Mohd; Zainal, Mohd Zulkarnain

    2018-02-01

    A thermoelectric generator (TEG) module and photovoltaic cell (PV) were utilized to harvest energy from temperature gradients of heat sources from ambient heat and light of sun. The output of TEG and PV were connected to a power management circuit consist of step-up dc-dc converter in order to increase the output voltage to supply a low power application such as wireless communication module and the photovoltaic cell for charging an energy storage element in order to switch on a fan for cooling system of the thermoelectric generator. A switch is used as a selector to choose the input of source either from photovoltaic cell or thermoelectric generator to switch on DC-DC step-up converter. In order to turn on the DC-DC step-up converter, the input must be greater than 3V. The energy harvesting was designed so that it can be used continuously and portable anywhere. Multiple sources used in this energy harvesting system is to ensure the system can work in whatever condition either in good weather or not good condition of weather. This energy harvesting system has the potential to be used in military operation and environment that require sustainability of energy resources.

  19. Statistical Evaluation of Voltage Variation of Power Distribution System with Clustered Home-Cogeneration Systems

    NASA Astrophysics Data System (ADS)

    Kato, Takeyoshi; Minagata, Atsushi; Suzuoki, Yasuo

    This paper discusses the influence of mass installation of a home co-generation system (H-CGS) using a polymer electrolyte fuel cell (PEFC) on the voltage profile of power distribution system in residential area. The influence of H-CGS is compared with that of photovoltaic power generation systems (PV systems). The operation pattern of H-CGS is assumed based on the electricity and hot-water demand observed in 10 households for a year. The main results are as follows. With the clustered H-CGS, the voltage of each bus is higher by about 1-3% compared with the conventional system without any distributed generators. Because H-CGS tends to increase the output during the early evening, H-CGS contributes to recover the voltage drop during the early evening, resulting in smaller voltage variation of distribution system throughout a day. Because of small rated power output about 1kW, the influence on voltage profile by the clustered H-CGS is smaller than that by the clustered PV systems. The highest voltage during the day time is not so high as compared with the distribution system with the clustered PV systems, even if the reverse power flow from H-CGS is allowed.

  20. Investigating the Effect of Titanium Dioxide (TiO2) Pollution on the Performance of the Mono-crystalline Solar Module

    NASA Astrophysics Data System (ADS)

    Ahmed Darwish, Zeki; Sopian, K.; Kazem, Hussein A.; Alghoul, M. A.; Alawadhi, Hussain

    2017-11-01

    This paper presents a study of titanium oxide TiO2 as one of the components of dust pollution affecting the PV performance. This pollutant can be found in various quantities in different locations around the world. The production of energy by different types of photovoltaic systems is very sensitive and depends on various environmental factors. Dust is one of the main contributing factors, yet the type of the dust is often neglected when studying the behaviour of the solar panel. In this experimental work we have studied the performance of the monocrystalline solar module as affected by the density of TiO2. The reduction of the PV module power caused by titanium dioxide under various mass densities was investigated. The results showed that the TiO2 has a significant effect on the PV output power. The dust density varied between 0-125 g.m-2. The corresponding reduction of the PV output power increased from 0 to 86.7%. This is based on various influencing parameters such as: short circuit current (Isc), maximum current (Im), open circuit voltage (Voc), maximum voltage (Vm), maximum power (Pm) and efficiency (E). Two functions are proposed as a mathematical model in order to explain this behaviour, namely the exponential and Fourier functions. The coefficients of all general models are valid for this type of dust with a density value ranging from 0-125 g.m-2.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample ofmore » 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than the rated capacity of the modules or system, are often suggested as one possible strategy. Somewhat less recognized are the many other program design options also available, each with its particular advantages and disadvantages. To provide a point of reference for assessing the current state of the art, and to inform program design efforts going forward, we examine the approaches to encouraging PV system performance - including, but not limited to, PBIs - used by 32 prominent PV incentive programs in the U.S. (see Table 1).1 We focus specifically on programs that offer an explicit subsidy payment for customer-sited PV installations. PV support programs that offer other forms of financial support or that function primarily as a mechanism for purchasing renewable energy credits (RECs) through energy production-based payments are outside the scope of our review.2 The information presented herein is derived primarily from publicly available sources, including program websites and guidebooks, programs evaluations, and conference papers, as well as from a limited number of personal communications with program staff. The remainder of this report is organized as follows. The next section presents a simple conceptual framework for understanding the issues that affect PV system performance and provides an overview of the eight general strategies to encourage performance used among the programs reviewed in this report. The subsequent eight sections discuss in greater detail each of these program design strategies and describe how they have been implemented among the programs surveyed. Based on this review, we then offer a series of recommendations for how PV incentive programs can effectively promote PV system performance.« less

  2. Rapid disinhibition by adjustment of PV intrinsic excitability during whisker map plasticity in mouse S1.

    PubMed

    Gainey, Melanie A; Aman, Joseph W; Feldman, Daniel E

    2018-04-20

    Rapid plasticity of layer (L) 2/3 inhibitory circuits is an early step in sensory cortical map plasticity, but its cellular basis is unclear. We show that, in mice of either sex, 1 day whisker deprivation drives rapid loss of L4-evoked feedforward inhibition and more modest loss of feedforward excitation in L2/3 pyramidal (PYR) cells, increasing E-I conductance ratio. Rapid disinhibition was due to reduced L4-evoked spiking by L2/3 parvalbumin (PV) interneurons, caused by reduced PV intrinsic excitability. This included elevated PV spike threshold, associated with an increase in low-threshold, voltage activated delayed rectifier (presumed Kv1) and A-type potassium currents. Excitatory synaptic input and unitary inhibitory output of PV cells were unaffected. Functionally, the loss of feedforward inhibition and excitation were precisely coordinated in L2/3 PYR cells, so that peak feedforward synaptic depolarization remained stable. Thus, rapid plasticity of PV intrinsic excitability offsets early weakening of excitatory circuits to homeostatically stabilize synaptic potentials in PYR cells of sensory cortex. SIGNIFICANCE STATEMENT Inhibitory circuits in cerebral cortex are highly plastic, but the cellular mechanisms and functional importance of this plasticity are incompletely understood. We show that brief (1-day) sensory deprivation rapidly weakens parvalbumin (PV) inhibitory circuits by reducing the intrinsic excitability of PV neurons. This involved a rapid increase in voltage-gated potassium conductances that control near-threshold spiking excitability. Functionally, the loss of PV-mediated feedforward inhibition in L2/3 pyramidal cells was precisely balanced with the separate loss of feedforward excitation, resulting in a net homeostatic stabilization of synaptic potentials. Thus, rapid plasticity of PV intrinsic excitability implements network-level homeostasis to stabilize synaptic potentials in sensory cortex. Copyright © 2018 the authors.

  3. Reconstruction of the 3-D Dynamics From Surface Variables in a High-Resolution Simulation of North Atlantic

    NASA Astrophysics Data System (ADS)

    Fresnay, S.; Ponte, A. L.; Le Gentil, S.; Le Sommer, J.

    2018-03-01

    Several methods that reconstruct the three-dimensional ocean dynamics from sea level are presented and evaluated in the Gulf Stream region with a 1/60° realistic numerical simulation. The use of sea level is motivated by its better correlation with interior pressure or quasi-geostrophic potential vorticity (PV) compared to sea surface temperature and sea surface salinity, and, by its observability via satellite altimetry. The simplest method of reconstruction relies on a linear estimation of pressure at depth from sea level. Another method consists in linearly estimating PV from sea level first and then performing a PV inversion. The last method considered, labeled SQG for surface quasi-geostrophy, relies on a PV inversion but assumes no PV anomalies. The first two methods show comparable skill at levels above -800 m. They moderately outperform SQG which emphasizes the difficulty of estimating interior PV from surface variables. Over the 250-1,000 m depth range, the three methods skillfully reconstruct pressure at wavelengths between 500 and 200 km whereas they exhibit a rapid loss of skill between 200 and 100 km wavelengths. Applicability to a real case scenario and leads for improvements are discussed.

  4. Oahu Solar Measurement Grid (1-Year Archive): 1-Second Solar Irradiance; Oahu, Hawaii (Data)

    DOE Data Explorer

    Sengupta, M.; Andreas, A.

    2010-03-16

    Seventeen measurement stations in the south western region of the island of Oahu collected data at 1-second intervals over the course of a year. The sensors are located in a 1-kilometer grid and the information then can be used to predict what PV outputs might be at 1-second intervals for medium-sized and large PV systems. This DOE-funded study by NREL supports the Hawaii Clean Energy Initiative (HCEI), a multifaceted program to substantially increase the use of renewable energy in Hawaii.

  5. New Best-Practices Guide for Photovoltaic System Operations and Maintenance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fact sheet summarizing technical report TP-7A40-67553. As solar photovoltaic (PV) systems have continued their transition from niche applications into large, mature markets in the United States, their potential as financial investments has risen accordingly. Mainstream investors, however, need to feel confident about the risk and return of solar photovoltaic (PV) systems before committing funds. A major influence on risk and return for PV is operations and maintenance (O&M) - but O&M practices and costs vary widely across the United States, making these variables difficult for investors to predict. To address this barrier to continued PV investment, the PV O&M Workingmore » Group has developed a new best-practices guide for PV O&M.« less

  6. Nonlinear Dynamics and Bifurcation Analysis of a Boost Converter for Battery Charging in Photovoltaic Applications

    NASA Astrophysics Data System (ADS)

    Al-Hindawi, Mohammed M.; Abusorrah, Abdullah; Al-Turki, Yusuf; Giaouris, Damian; Mandal, Kuntal; Banerjee, Soumitro

    Photovoltaic (PV) systems with a battery back-up form an integral part of distributed generation systems and therefore have recently attracted a lot of interest. In this paper, we consider a system of charging a battery from a PV panel through a current mode controlled boost dc-dc converter. We analyze its complete nonlinear/nonsmooth dynamics, using a piecewise model of the converter and realistic nonlinear v-i characteristics of the PV panel. Through this study, it is revealed that system design without taking into account the nonsmooth dynamics of the converter combined with the nonlinear v-i characteristics of the PV panel can lead to unpredictable responses of the overall system with high current ripple and other undesirable phenomena. This analysis can lead to better designed converters that can operate under a wide variation of the solar irradiation and the battery's state of charge. We show that the v-i characteristics of the PV panel combined with the battery's output voltage variation can increase or decrease the converter's robustness, both under peak current mode control and average current mode control. We justify the observation in terms of the change in the discrete-time map caused by the nonlinear v-i characteristics of the PV panel. The theoretical results are validated experimentally.

  7. Dynamic thermal analysis of a concentrated photovoltaic system

    NASA Astrophysics Data System (ADS)

    Avrett, John T., II; Cain, Stephen C.; Pochet, Michael

    2012-02-01

    Concentrated photovoltaic (PV) technology represents a growing market in the field of terrestrial solar energy production. As the demand for renewable energy technologies increases, further importance is placed upon the modeling, design, and simulation of these systems. Given the U.S. Air Force cultural shift towards energy awareness and conservation, several concentrated PV systems have been installed on Air Force installations across the country. However, there has been a dearth of research within the Air Force devoted to understanding these systems in order to possibly improve the existing technologies. This research presents a new model for a simple concentrated PV system. This model accurately determines the steady state operating temperature as a function of the concentration factor for the optical part of the concentrated PV system, in order to calculate the optimum concentration that maximizes power output and efficiency. The dynamic thermal model derived is validated experimentally using a commercial polysilicon solar cell, and is shown to accurately predict the steady state temperature and ideal concentration factor.

  8. Predictive Inference Using Latent Variables with Covariates*

    PubMed Central

    Schofield, Lynne Steuerle; Junker, Brian; Taylor, Lowell J.; Black, Dan A.

    2014-01-01

    Plausible Values (PVs) are a standard multiple imputation tool for analysis of large education survey data that measures latent proficiency variables. When latent proficiency is the dependent variable, we reconsider the standard institutionally-generated PV methodology and find it applies with greater generality than shown previously. When latent proficiency is an independent variable, we show that the standard institutional PV methodology produces biased inference because the institutional conditioning model places restrictions on the form of the secondary analysts’ model. We offer an alternative approach that avoids these biases based on the mixed effects structural equations (MESE) model of Schofield (2008). PMID:25231627

  9. Space Environment Testing of Photovoltaic Array Systems at NASA's Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Vaughn, Jason A.; Wright, Kenneth H., Jr.; Phillips, Brandon S.

    2015-01-01

    CubeSats, Communication Satellites, and Outer Planet Science Satellites all share one thing in common: Mission success depends on maintaining power in the harsh space environment. For a vast majority of satellites, spacecraft power is sourced by a photovoltaic (PV) array system. Built around PV cells, the array systems also include wiring, substrates, connectors, and protection diodes. Each of these components must function properly throughout the mission in order for power production to remain at nominal levels. Failure of even one component can lead to a crippling loss of power. To help ensure PV array systems do not suffer failures on-orbit due to the space environment, NASA's Marshall Space Flight Center (MSFC) has developed a wide ranging test and evaluation capability. Key elements of this capability include: Testing: a. Ultraviolet (UV) Exposure b. Charged Particle Radiation (Electron and Proton) c. Thermal Cycling d. Plasma and Beam Environments Evaluation: a. Electrostatic Discharge (ESD) Screening b. Optical Inspection and easurement c. PV Power Output including Large Area Pulsed Solar Simulator (LAPSS) measurements This paper will describe the elements of the space environment which particularly impact PV array systems. MSFC test capabilities will be described to show how the relevant space environments can be applied to PV array systems in the laboratory. A discussion of MSFC evaluation capabilities will also be provided. The sample evaluation capabilities offer test engineers a means to quantify the effects of the space environment on their PV array system or component. Finally, examples will be shown of the effects of the space environment on actual PV array materials tested at MSFC.

  10. Design and construction evaluation of a photovoltaic DC LED lighting system

    NASA Astrophysics Data System (ADS)

    Bhamidipati, Jyotsna

    2008-08-01

    The market demand for commercialization of Photovoltaic (PV) systems depends a lot on the reliability, efficiency and performance of various components within the system. PV panels produce DC power when exposed to sunlight, and an inverter converts this to AC power in a typical solar powered building. Though, PV lighting has existed for a long time it hasn't been very effective, as incandescent light sources were commonly used which are inefficient. Today fluorescent fixtures are mostly used with PV's due to its high efficacy. Light-emitting diodes present a new vision to energy efficiency in lighting design with their low energy consumption. Current research predicts improved efficiencies of LED light fixtures and their commercial use is a few years away. LEDs which operate on DC voltages when coupled with photovoltaics can be a simple PV lighting application and a sustainable solution with potential for payback. This research evaluates the design and construction of a photovoltaic DC LED lighting system for a solar house at Pennsylvania State University. A detailed cost and payback analysis of a PV DC LED lighting system is presented in this research. PV output simulations for the solar house are presented. Results presented in this research indicate that the Solid state lighting market is evolving rapidly and that LED's are a choice in stand-alone photovoltaic DC lighting systems. The efficiency and the cost-effectiveness of such systems would however improve in the coming years with research and development now focused on PV systems and on Solid state lighting technologies.

  11. Integrating Solar PV in Utility System Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mills, A.; Botterud, A.; Wu, J.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, andmore » day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved relative to DA forecasts, but still imperfect. Finally, we represent decisions within the operating hour by schedulers and transmission system operators as real-time (RT) balancing. We simulate the DA and HA scheduling processes with a detailed unit-commitment (UC) and economic dispatch (ED) optimization model. This model creates a least-cost dispatch and commitment plan for the conventional generating units using forecasts and reserve requirements as inputs. We consider only the generation units and load of the utility in this analysis; we do not consider opportunities to trade power with neighboring utilities. We also do not consider provision of reserves from renewables or from demand-side options. We estimate dynamic reserve requirements in order to meet reliability requirements in the RT operations, considering the uncertainty and variability in load, solar PV, and wind resources. Balancing reserve requirements are based on the 2.5th and 97.5th percentile of 1-min deviations from the HA schedule in a previous year. We then simulate RT deployment of balancing reserves using a separate minute-by-minute simulation of deviations from the HA schedules in the operating year. In the simulations we assume that balancing reserves can be fully deployed in 10 min. The minute-by-minute deviations account for HA forecasting errors and the actual variability of the load, wind, and solar generation. Using these minute-by-minute deviations and deployment of balancing reserves, we evaluate the impact of PV on system reliability through the calculation of the standard reliability metric called Control Performance Standard 2 (CPS2). Broadly speaking, the CPS2 score measures the percentage of 10-min periods in which a balancing area is able to balance supply and demand within a specific threshold. Compliance with the North American Electric Reliability Corporation (NERC) reliability standards requires that the CPS2 score must exceed 90% (i.e., the balancing area must maintain adequate balance for 90% of the 10-min periods). The combination of representing DA forecast errors in the DA commitments, using 1-min PV data to simulate RT balancing, and estimates of reliability performance through the CPS2 metric, all factors that are important to operating systems with increasing amounts of PV, makes this study unique in its scope.« less

  12. Graphene-enhanced thermal interface materials for heat removal from photovoltaic solar cells

    NASA Astrophysics Data System (ADS)

    Saadah, M.; Gamalath, D.; Hernandez, E.; Balandin, A. A.

    2016-09-01

    The increase in the temperature of photovoltaic (PV) solar cells affects negatively their power conversion efficiency and decreases their lifetime. The negative effects are particularly pronounced in concentrator solar cells. Therefore, it is crucial to limit the PV cell temperature by effectively removing the excess heat. Conventional thermal phase change materials (PCMs) and thermal interface materials (TIMs) do not possess the thermal conductivity values sufficient for thermal management of the next generation of PV cells. In this paper, we report the results of investigation of the increased efficiency of PV cells with the use of graphene-enhanced TIMs. Graphene reveals the highest values of the intrinsic thermal conductivity. It was also shown that the thermal conductivity of composites can be increased via utilization of graphene fillers. We prepared TIMs with up to 6% of graphene designed specifically for PV cell application. The solar cells were tested using the solar simulation module. It was found that the drop in the output voltage of the solar panel under two-sun concentrated illumination can be reduced from 19% to 6% when grapheneenhanced TIMs are used. The proposed method can recover up to 75% of the power loss in solar cells.

  13. Practical aspects of photovoltaic technology, applications and cost (revised)

    NASA Technical Reports Server (NTRS)

    Rosenblum, L.

    1985-01-01

    The purpose of this text is to provide the reader with the background, understanding, and computational tools needed to master the practical aspects of photovoltaic (PV) technology, application, and cost. The focus is on stand-alone, silicon solar cell, flat-plate systems in the range of 1 to 25 kWh/day output. Technology topics covered include operation and performance of each of the major system components (e.g., modules, array, battery, regulators, controls, and instrumentation), safety, installation, operation and maintenance, and electrical loads. Application experience and trends are presented. Indices of electrical service performance - reliability, availability, and voltage control - are discussed, and the known service performance of central station electric grid, diesel-generator, and PV stand-alone systems are compared. PV system sizing methods are reviewed and compared, and a procedure for rapid sizing is described and illustrated by the use of several sample cases. The rapid sizing procedure yields an array and battery size that corresponds to a minimum cost system for a given load requirement, insulation condition, and desired level of service performance. PV system capital cost and levelized energy cost are derived as functions of service performance and insulation. Estimates of future trends in PV system costs are made.

  14. New Markets for Solar Photovoltaic Power Systems

    NASA Astrophysics Data System (ADS)

    Thomas, Chacko; Jennings, Philip; Singh, Dilawar

    2007-10-01

    Over the past five years solar photovoltaic (PV) power supply systems have matured and are now being deployed on a much larger scale. The traditional small-scale remote area power supply systems are still important and village electrification is also a large and growing market but large scale, grid-connected systems and building integrated systems are now being deployed in many countries. This growth has been aided by imaginative government policies in several countries and the overall result is a growth rate of over 40% per annum in the sales of PV systems. Optimistic forecasts are being made about the future of PV power as a major source of sustainable energy. Plans are now being formulated by the IEA for very large-scale PV installations of more than 100 MW peak output. The Australian Government has announced a subsidy for a large solar photovoltaic power station of 154 MW in Victoria, based on the concentrator technology developed in Australia. In Western Australia a proposal has been submitted to the State Government for a 2 MW photovoltaic power system to provide fringe of grid support at Perenjori. This paper outlines the technologies, designs, management and policies that underpin these exciting developments in solar PV power.

  15. Coupling of Luminescent Solar Concentrators to Plasmonic Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Shu-Yi

    To make inexpensive solar cells is a continuous goal for solar photovoltaic (PV) energy industry. Thin film solar cells of various materials have been developed and continue to emerge in order to replace bulk silicon solar cells. A thin film solar cell not only uses less material but also requires a less expensive refinery process. In addition, other advantages coming along with small thickness are higher open circuit voltage and higher conversion efficiency. However, thin film solar cells, especially those made of silicon, have significant optical losses. In order to address this problem, this thesis investigates the spectral coupling of thin films PV to luminescent solar concentrators (LSC). LSC are passive devices, consisting of plastic sheets embedded with fluorescent dyes which absorb part of the incoming radiation spectrum and emit at specific wavelength. The emitted light is concentrated by total internal reflection to the edge of the sheet, where the PVs are placed. Since the light emitted from the LSC edge is usually in a narrow spectral range, it is possible to employ diverse strategies to enhance PV absorption at the peak of the emission wavelength. Employing plasmonic nanostructures has been shown to enhance absorption of thin films via forward scattering, diffraction and localized surface plasmon. These two strategies are theoretically investigated here for improving the absorption and elevating the output power of a thin film solar cell. First, the idea of spectral coupling of luminescent solar concentrators to plasmonic solar cells is introduced to assess its potential for increasing the power output. This study is carried out employing P3HT/PC60BM organic solar cells and LSC with Lumogen Red dyes. A simplified spectral coupling analysis is employed to predict the power density, considering the output spectrum of the LSC equivalent to the emission spectrum of the dye and neglecting any angular dependence. Plasmonic tuning is conducted to enhance absorption at the emission peak of the dye. A factorial increase in the output power density of coupled PV as compared to PV exposed directly to solar spectrum is observed for high light concentration on the edge. These initial results motivated a more in-depth study of coupled LSC-PV system, which took into account the radiative transport inside the realistic LSC. These investigations were carried out on LSCs using Lumogen Red305 and Rhodamine 6G dyes coupled to pristine and plasmonic ultra-thin film silicon solar cells. Prediction based on detailed balance shows that the coupled LSC-plasmonic solar cell can generate 63.7 mW/cm2 with a photocurrent density of 71.3 mA/cm2 which is higher than that of cSi solar cells available on current market. The second part of the thesis focuses on PV absorption enhancement techniques. First, the effect of vertical positioning of plasmonic nanostructures on absorption enhancement was theoretically investigated to understand which one of the three mechanisms usually responsible for the enhancement (forward scattering, diffraction and localized surface plamson) plays the dominant role. Simulation results suggested that the maximum enhancement occurred when placing the nanostructures in the rear side of the cell because of longer path length due to scattering. The experimental effort then switched focus on substrate patterning, which is a less expensive alternative to plasmonic absorption enhancement. Specifically, a nanostructured substrate was prepared by a simple electrochemical process based on two-step aluminum anodization technique. The absorption of thin film silicon deposited on these substrates showed a broadband enhancement. The overall photocurrent density was up to 40% higher than that of films deposited on flat substrates. In conclusion, the studies carried out in this thesis indicate that spectral coupling of LSCs to thin film solar cells could lead to significant improvements in PV output power density. Moreover, while the absorption of thin film solar cells can be enhanced by plasmonic nanostructures, it is shown that alternative methods, such as direct deposition of the films on inexpensively nanostructured substrates could also be employed to obtain significant enhancements. Combining these strategies may lead to inexpensive solar power harvesting systems with significant economic benefits. These strategies are not material-specific but applicable to a wide range of thin film solar cells.

  16. Energy Storage Requirements for Achieving 50% Penetration of Solar Photovoltaic Energy in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Margolis, Robert

    2016-09-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less

  17. Energy Storage Requirements for Achieving 50% Solar Photovoltaic Energy Penetration in California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, Paul; Margolis, Robert

    2016-08-01

    We estimate the storage required to enable PV penetration up to 50% in California (with renewable penetration over 66%), and we quantify the complex relationships among storage, PV penetration, grid flexibility, and PV costs due to increased curtailment. We find that the storage needed depends strongly on the amount of other flexibility resources deployed. With very low-cost PV (three cents per kilowatt-hour) and a highly flexible electric power system, about 19 gigawatts of energy storage could enable 50% PV penetration with a marginal net PV levelized cost of energy (LCOE) comparable to the variable costs of future combined-cycle gas generatorsmore » under carbon constraints. This system requires extensive use of flexible generation, transmission, demand response, and electrifying one quarter of the vehicle fleet in California with largely optimized charging. A less flexible system, or more expensive PV would require significantly greater amounts of storage. The amount of storage needed to support very large amounts of PV might fit within a least-cost framework driven by declining storage costs and reduced storage-duration needs due to high PV penetration.« less

  18. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners

    PubMed Central

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the “parsing” of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA. PMID:26148062

  19. Performance of PV panels for solar energy conversion at the South Pole

    NASA Astrophysics Data System (ADS)

    Peeran, Syed M.

    Expanding research facilities at the Amundson-Scott South pole station require increased electric power generation. Presently, electric power generation is by diesel generators using the JP8 fuel. As the station is accessible only for a short supply period during the austral summer, there are limitations upon the supply of fuel for power generation. This makes it necessary to seriously consider the use of the renewable energy sources. Although there is no sunlight for six months in the year, abundant solar energy is available during the remaining 6 months because of the clear skies, the clarity of air and the low humidity at the south pole. As the buildings at the south pole are built either without windows or with only porthole type windows, large areas on the walls and the roof are available for mounting the photovoltaic (PV) panels. In addition there is unlimited space around the station for constructing a PV panel 'farm'. In this paper four types of PV panels are evaluated; the 2-axis tracking panels, vertical 1-axis tracking panels, fixed vertical panels on the walls of buildings and mounted outdoors, and fixed horizontal panels on the roofs of the buildings. Equations are developed for the power output in KW/sq. ft and annual energy in kWh/sq. ft for each type of panel. The equations include the effects of the inclination of the sun above the horizon, the movement of the sun around the horizon, the direct, reflected and diffused components of the solar radiation, the characteristics of the solar cells and the types of dc/ac inverters used to interface the output of the cells with the existing ac power. A conceptual design of a 150-kW PV generation system suitable for the south pole is also discussed in this paper.

  20. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Astrophysics Data System (ADS)

    Hanak, J. J.; Kaschmitter, J. L.

    1991-05-01

    An ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) has been identified as a potential low-cost power source for small satellites. We have conducted a survey of the status of the a-Si PV array technology with respect to present and future performance, availability, cost and risks. For existing, experimental array 'blankets' made of commercial cell material, utilizing metal foil substrates, the BOL performance at AM0 and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated EOL power output after 10 years in a nominal low-earth orbit would be 80 percent of BOL, the degradation being due to largely light-induced effects (minus 10 to minus 15 percent) and in part (minus 5 percent) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing US national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long-range development program toward developing of this important power source for space. One new US developer has emerged as a future potential supplier of a-Si PV devices on thin, polyimide substrates.

  1. Network Modeling for Functional Magnetic Resonance Imaging (fMRI) Signals during Ultra-Fast Speech Comprehension in Late-Blind Listeners.

    PubMed

    Dietrich, Susanne; Hertrich, Ingo; Ackermann, Hermann

    2015-01-01

    In many functional magnetic resonance imaging (fMRI) studies blind humans were found to show cross-modal reorganization engaging the visual system in non-visual tasks. For example, blind people can manage to understand (synthetic) spoken language at very high speaking rates up to ca. 20 syllables/s (syl/s). FMRI data showed that hemodynamic activation within right-hemispheric primary visual cortex (V1), bilateral pulvinar (Pv), and left-hemispheric supplementary motor area (pre-SMA) covaried with their capability of ultra-fast speech (16 syllables/s) comprehension. It has been suggested that right V1 plays an important role with respect to the perception of ultra-fast speech features, particularly the detection of syllable onsets. Furthermore, left pre-SMA seems to be an interface between these syllabic representations and the frontal speech processing and working memory network. So far, little is known about the networks linking V1 to Pv, auditory cortex (A1), and (mesio-) frontal areas. Dynamic causal modeling (DCM) was applied to investigate (i) the input structure from A1 and Pv toward right V1 and (ii) output from right V1 and A1 to left pre-SMA. As concerns the input Pv was significantly connected to V1, in addition to A1, in blind participants, but not in sighted controls. Regarding the output V1 was significantly connected to pre-SMA in blind individuals, and the strength of V1-SMA connectivity correlated with the performance of ultra-fast speech comprehension. By contrast, in sighted controls, not understanding ultra-fast speech, pre-SMA did neither receive input from A1 nor V1. Taken together, right V1 might facilitate the "parsing" of the ultra-fast speech stream in blind subjects by receiving subcortical auditory input via the Pv (= secondary visual pathway) and transmitting this information toward contralateral pre-SMA.

  2. Some tests of flat plate photovoltaic module cell temperatures in simulated field conditions

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.; Rathod, M. S.; Paslaski, J.

    1981-01-01

    The nominal operating cell temperature (NOCT) of solar photovoltaic (PV) modules is an important characteristic. Typically, the power output of a PV module decreases 0.5% per deg C rise in cell temperature. Several tests were run with artificial sun and wind to study the parametric dependencies of cell temperature on wind speed and direction and ambient temperature. It was found that the cell temperature is extremely sensitive to wind speed, moderately so to wind direction and rather insensitive to ambient temperature. Several suggestions are made to obtain data more typical of field conditions.

  3. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions

    PubMed Central

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C.

    2015-01-01

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper. PMID:26230694

  4. A Decentralized Wireless Solution to Monitor and Diagnose PV Solar Module Performance Based on Symmetrized-Shifted Gompertz Functions.

    PubMed

    Molina-García, Angel; Campelo, José Carlos; Blanc, Sara; Serrano, Juan José; García-Sánchez, Tania; Bueso, María C

    2015-07-29

    This paper proposes and assesses an integrated solution to monitor and diagnose photovoltaic (PV) solar modules based on a decentralized wireless sensor acquisition system. Both DC electrical variables and environmental data are collected at PV module level using low-cost and high-energy efficiency node sensors. Data is real-time processed locally and compared with expected PV module performances obtained by a PV module model based on symmetrized-shifted Gompertz functions (as previously developed and assessed by the authors). Sensor nodes send data to a centralized sink-computing module using a multi-hop wireless sensor network architecture. Such integration thus provides extensive analysis of PV installations, and avoids off-line tests or post-processing processes. In comparison with previous approaches, this solution is enhanced with a low-cost system and non-critical performance constraints, and it is suitable for extensive deployment in PV power plants. Moreover, it is easily implemented in existing PV installations, since no additional wiring is required. The system has been implemented and assessed in a Spanish PV power plant connected to the grid. Results and estimations of PV module performances are also included in the paper.

  5. Differential Receptive Field Properties of Parvalbumin and Somatostatin Inhibitory Neurons in Mouse Auditory Cortex.

    PubMed

    Li, Ling-Yun; Xiong, Xiaorui R; Ibrahim, Leena A; Yuan, Wei; Tao, Huizhong W; Zhang, Li I

    2015-07-01

    Cortical inhibitory circuits play important roles in shaping sensory processing. In auditory cortex, however, functional properties of genetically identified inhibitory neurons are poorly characterized. By two-photon imaging-guided recordings, we specifically targeted 2 major types of cortical inhibitory neuron, parvalbumin (PV) and somatostatin (SOM) expressing neurons, in superficial layers of mouse auditory cortex. We found that PV cells exhibited broader tonal receptive fields with lower intensity thresholds and stronger tone-evoked spike responses compared with SOM neurons. The latter exhibited similar frequency selectivity as excitatory neurons. The broader/weaker frequency tuning of PV neurons was attributed to a broader range of synaptic inputs and stronger subthreshold responses elicited, which resulted in a higher efficiency in the conversion of input to output. In addition, onsets of both the input and spike responses of SOM neurons were significantly delayed compared with PV and excitatory cells. Our results suggest that PV and SOM neurons engage in auditory cortical circuits in different manners: while PV neurons may provide broadly tuned feedforward inhibition for a rapid control of ascending inputs to excitatory neurons, the delayed and more selective inhibition from SOM neurons may provide a specific modulation of feedback inputs on their distal dendrites. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  6. Pulse perfusion value predicts eye opening after sevoflurane anaesthesia: an explorative study.

    PubMed

    Enekvist, Bruno; Johansson, Anders

    2015-08-01

    The variables measured in modern pulse oximetry apparatuses include a graphical pulse curve and a specified perfusion value (PV) that could be a sensitive marker for detecting differences in sympathetic activity. We hypothesized that there is a correlation between a reduction of PV and the time to eye opening after general anaesthesia. The objective was to investigate whether PV can predict eye opening after sevoflurane anaesthesia. Prospective, explorative clinical study included 20 patients, ASA physical status 1 or 2, at Skåne University Hospital, Lund, Sweden, from November 2012 to January 2013 scheduled for elective breast tumour surgery. A general anaesthesia was delivered with inhalation of oxygen, nitrous oxide and sevoflurane anaesthesia to a depth of 1.2 minimal alveolar concentration. Sevoflurane inspiratory and expiratory concentrations were measured. Bispectral index monitoring, PV as measured by pulse oximeter, heart rate and carbon dioxide were registered at before anaesthesia, 15 min after induction (at 1.2 minimal alveolar concentration), at end of surgery and at eye opening at the end of anaesthesia. PV values were lower before anaesthesia and at eye opening compared to at 15 min after induction and at end of surgery (P < 0.05). The reduction of PV between end of surgery and eye opening was 0.76. We conclude that the pulse oximeter PV could be a useful variable to assess the timing of recovery, in terms of eye opening after a general anaesthesia.

  7. Photovoltaic electricity generation: Value for residential and commercial sectors

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Ujjwal

    The photovoltaic (PV) industry in the US has seen an upsurge in recent years, and PV holds great promise as a renewable technology with no greenhouse gas emissions with its use. We aim to assess the value of PV based electricity for users in the residential and commercial sectors focusing on the financial impacts it has, which may not be greatly recognized. Specifically, we pursue two goals. First, the emerging 'renewable portfolio standard (RPS)' adopted in several states in the country has been a driving force for large scale PV deployment, but financial incentives offered to PV in different RPS states differ considerably. We use life cycle cost model to estimate the cost of PV based electricity for thirty-two RPS states in the country. Results indicate that the levelized cost of PV electricity is high (40 to 60 Cents/kWh). When the contribution of the financial incentives (along with the cost of energy saved) is taken into account, the cost of PV based electricity is negative in some RPS states such as California, New Jersey, New York, while for most of the RPS states the cost of PV electricity continues to remain high. In addition, the states with negative or low cost of PV electricity have been driving the PV diffusion in the residential sector. Therefore, a need to adjust the financial incentive structure in different RPS states is recommended for homogenous development of the residential PV market in the country. Second, we assess the value of the PV in reducing the highest peak load demand in commercial buildings and hence the high value demand charge. The Time-of-Use (TOU) based electricity tariff is widely used by electric utilities in the commercial sector. Energy and peak load are two important facets of the TOU tariff regime. Tools are well established to estimate the energy contribution from a PV system (installed in a commercial building), but not power output on a short time interval. A joint conditional probability model has been developed that enables estimation of the PV contribution towards the peak load reduction for a given high building load. Results indicate a significant cost saving (15% to 40%) with application of the model. This will encourage commercial entities (building owners) to adopt PV as a distributed energy source. The tool would be useful for energy modelers and green building architects as it will enable them to estimate cost savings due to PV deployment in commercial buildings. Moreover, the model tested for three different commercial buildings indicates that school buildings show the best promise for PV deployment followed, respectively, by office buildings and manufacturing facilities. This will help PV incentive programs in the country to use resources effectively to enhance the diffusion of PV in the commercial sector.

  8. Assessment of the biophysical impacts of utility-scale photovoltaics through observations and modelling

    NASA Astrophysics Data System (ADS)

    Broadbent, A. M.; Georgescu, M.; Krayenhoff, E. S.; Sailor, D.

    2017-12-01

    Utility-scale solar power plants are a rapidly growing component of the solar energy sector. Utility-scale photovoltaic (PV) solar power generation in the United States has increased by 867% since 2012 (EIA, 2016). This expansion is likely to continue as the cost PV technologies decrease. While most agree that solar power can decrease greenhouse gas emissions, the biophysical effects of PV systems on surface energy balance (SEB), and implications for surface climate, are not well understood. To our knowledge, there has never been a detailed observational study of SEB at a utility-scale solar array. This study presents data from an eddy covariance observational tower, temporarily placed above a utility-scale PV array in Southern Arizona. Comparison of PV SEB with a reference (unmodified) site, shows that solar panels can alter the SEB and near surface climate. SEB observations are used to develop and validate a new and more complete SEB PV model. In addition, the PV model is compared to simpler PV modelling methods. The simpler PV models produce differing results to our newly developed model and cannot capture the more complex processes that influence PV SEB. Finally, hypothetical scenarios of PV expansion across the continental United States (CONUS) were developed using various spatial mapping criteria. CONUS simulations of PV expansion reveal regional variability in biophysical effects of PV expansion. The study presents the first rigorous and validated simulations of the biophysical effects of utility-scale PV arrays.

  9. Intrinsic increase in lymphangion muscle contractility in response to elevated afterload

    PubMed Central

    Scallan, Joshua P.; Wolpers, John H.; Muthuchamy, Mariappan; Gashev, Anatoliy A.; Zawieja, David C.

    2012-01-01

    Collecting lymphatic vessels share functional and biochemical characteristics with cardiac muscle; thus, we hypothesized that the lymphatic vessel pump would exhibit behavior analogous to homeometric regulation of the cardiac pump in its adaptation to elevated afterload, i.e., an increase in contractility. Single lymphangions containing two valves were isolated from the rat mesenteric microcirculation, cannulated, and pressurized for in vitro study. Pressures at either end of the lymphangion [input pressure (Pin), preload; output pressure (Pout), afterload] were set by a servo controller. Intralymphangion pressure (PL) was measured using a servo-null micropipette while internal diameter and valve positions were monitored using video methods. The responses to step- and ramp-wise increases in Pout (at low, constant Pin) were determined. PL and diameter data recorded during single contraction cycles were used to generate pressure-volume (P-V) relationships for the subsequent analysis of lymphangion pump behavior. Ramp-wise Pout elevation led to progressive vessel constriction, a rise in end-systolic diameter, and an increase in contraction frequency. Step-wise Pout elevation produced initial vessel distention followed by time-dependent declines in end-systolic and end-diastolic diameters. Significantly, a 30% leftward shift in the end-systolic P-V relationship accompanied an 84% increase in dP/dt after a step increase in Pout, consistent with an increase in contractility. Calculations of stroke work from the P-V loop area revealed that robust pumps produced net positive work to expel fluid throughout the entire afterload range, whereas weaker pumps exhibited progressively more negative work as gradual afterload elevation led to pump failure. We conclude that lymphatic muscle adapts to output pressure elevation with an intrinsic increase in contractility and that this compensatory mechanism facilitates the maintenance of lymph pump output in the face of edemagenic and/or gravitational loads. PMID:22886407

  10. Genetic variability and natural selection at the ligand domain of the Duffy binding protein in brazilian Plasmodium vivax populations

    PubMed Central

    2010-01-01

    Background Plasmodium vivax malaria is a major public health challenge in Latin America, Asia and Oceania, with 130-435 million clinical cases per year worldwide. Invasion of host blood cells by P. vivax mainly depends on a type I membrane protein called Duffy binding protein (PvDBP). The erythrocyte-binding motif of PvDBP is a 170 amino-acid stretch located in its cysteine-rich region II (PvDBPII), which is the most variable segment of the protein. Methods To test whether diversifying natural selection has shaped the nucleotide diversity of PvDBPII in Brazilian populations, this region was sequenced in 122 isolates from six different geographic areas. A Bayesian method was applied to test for the action of natural selection under a population genetic model that incorporates recombination. The analysis was integrated with a structural model of PvDBPII, and T- and B-cell epitopes were localized on the 3-D structure. Results The results suggest that: (i) recombination plays an important role in determining the haplotype structure of PvDBPII, and (ii) PvDBPII appears to contain neutrally evolving codons as well as codons evolving under natural selection. Diversifying selection preferentially acts on sites identified as epitopes, particularly on amino acid residues 417, 419, and 424, which show strong linkage disequilibrium. Conclusions This study shows that some polymorphisms of PvDBPII are present near the erythrocyte-binding domain and might serve to elude antibodies that inhibit cell invasion. Therefore, these polymorphisms should be taken into account when designing vaccines aimed at eliciting antibodies to inhibit erythrocyte invasion. PMID:21092207

  11. The status of lightweight photovoltaic space array technology based on amorphous silicon solar cells

    NASA Technical Reports Server (NTRS)

    Hanak, Joseph J.; Kaschmitter, Jim

    1991-01-01

    Ultralight, flexible photovoltaic (PV) array of amorphous silicon (a-Si) was identified as a potential low cost power source for small satellites. A survey was conducted of the status of the a-Si PV array technology with respect to present and future performance, availability, cost, and risks. For existing, experimental array blankets made of commercial cell material, utilizing metal foil substrates, the Beginning of Life (BOL) performance at Air Mass Zero (AM0) and 35 C includes total power up to 200 W, power per area of 64 W/sq m and power per weight of 258 W/kg. Doubling of power per weight occurs when polyimide substrates are used. Estimated End of Life (EOL) power output after 10 years in a nominal low earth orbit would be 80 pct. of BOL, the degradation being due to largely light induced effects (-10 to -15 pct.) and in part (-5 pct.) to space radiation. Predictions for the year 1995 for flexible PV arrays, made on the basis of published results for rigid a-Si modules, indicate EOL power output per area and per weight of 105 W/sq m and 400 W/kg, respectively, while predictions for the late 1990s based on existing U.S. national PV program goals indicate EOL values of 157 W/sq m and 600 W/kg. Cost estimates by vendors for 200 W ultralight arrays in volume of over 1000 units range from $100/watt to $125/watt. Identified risks include the lack of flexible, space compatible encapsulant, the lack of space qualification effort, recent partial or full acquisitions of US manufacturers of a-Si cells by foreign firms, and the absence of a national commitment for a long range development program toward developing of this important power source for space.

  12. Self-Cleaning Microcavity Array for Photovoltaic Modules.

    PubMed

    Vüllers, Felix; Fritz, Benjamin; Roslizar, Aiman; Striegel, Andreas; Guttmann, Markus; Richards, Bryce S; Hölscher, Hendrik; Gomard, Guillaume; Klampaftis, Efthymios; Kavalenka, Maryna N

    2018-01-24

    Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.

  13. Performance degradation of photovoltaic modules at different sites

    NASA Astrophysics Data System (ADS)

    Arab, A. Hadj; Mahammed, I. Hadj; Ould Amrouche, S.; Taghezouit, B.; Yassaa, N.

    2018-05-01

    In this work are presented results of electrical performance measurements of 120 crystalline silicon PV modules following long-term outdoor measurements. A set of 90 PV modules represent the first grid-connected photovoltaic (PV) system in Algeria, installed at the level of the “Centre de Développement des Energies Renouvelables” (CDER) site (Mediterranean coast), Bouzareah. The other 30 PV modules were undertaken in an arid area of the desert region of Ghardaïa site, about 600 km south of Algiers, with measurements collected from different applications. Following different characterization tests, we noticed that the all tested PV modules kept their power-generating rate except a slight reduction. Therefore, a mathematical model has been used to carry out PV module testing at different irradiance and temperature levels. Hence, different PV module parameters have been calculated from the recorded values of the open-circuit voltage, the short-circuit current, the voltage and current at maximum power point. The electrical measurements have indicated different degradations of current-voltage parameters. All the PV modules stated a decrease in the nominal power, which is variable from one module to another.

  14. Estimated power quality for line commutated photovoltaic residential system

    NASA Astrophysics Data System (ADS)

    McNeill, B. W.; Mirza, M. A.

    1983-10-01

    A residential photovoltaic system using a line commutated inverter is modeled using a single diode model for the solar cells and a four switch model for the inverter. The model predicts power factor and total harmonic distortion as a function of solar radiation, array voltage, inverter output voltage, and inverter filter capacitor and inductor size. The model was run using parameter values appropriate for the John F. Long PV System and the predicted results compared well with measured results from the system. The model shows that improvements in total harmonic distortion are made at the expense of the power factor. The harmonic distortion is least when the inverter is operating at just continuous conduction. The total harmonic distortion can be kept to less than 0.17 all day if a variable inductor is used in the inverter's input filters.

  15. Three-dimensional carbon nanotube based photovoltaics

    NASA Astrophysics Data System (ADS)

    Flicker, Jack

    2011-12-01

    Photovoltaic (PV) cells with a three dimensional (3D) morphology are an exciting new research thrust with promise to create cheaper, more efficient solar cells. This work introduces a new type of 3D PV device based on carbon nanotube (CNT) arrays. These arrays are paired with the thin film heterojunction, CdTe/CdS, to form a complete 3D carbon nanotube PV device (3DCNTPV). Marriage of a complicated 3D structure with production methods traditionally used for planar CdTe solar cell is challenging. This work examines the problems associated with processing these types of cells and systematically alters production methods of the semiconductor layers and electrodes to increase the short circuit current (Isc), eliminate parasitic shunts, and increase the open circuit voltage (Voc). The main benefit of 3D solar cell is the ability to utilize multiple photon interactions with the solar cell surface. The three dimensionality allows photons to interact multiple times with the photoactive material, which increases the absorption and the overall power output over what is possible with a two dimensional (2D) morphology. To quantify the increased power output arising from these multiple photon interactions, a new absorption efficiency term, eta3D, is introduced. The theoretical basis behind this new term and how it relates to the absorption efficiency of a planar cell, eta 2D, is derived. A unique model for the average number of multiple photon impingements, Gamma, is proposed based on three categories of 3D morphology: an infinite trench, an enclosed box, and an array of towers. The derivation of eta3D and Gamma for these 3D PV devices gives a complete picture of the enhanced power output over 2D cells based on CNT array height, pitch, radius, and shape. This theory is validated by monte carlo simulations and experiment. This new type of 3D PV devices has been shown to work experimentally. The first 3DCNTPV cells created posses Isc values of 0.085 to 17.872mA/cm2 and Voc values in the range of 2 to 122mV. These figures of merit are low for CdTe cells, so planar cells without CNTs and planar cells with unpatterned CNTs were developed. The planar cells had figures of merit about the same as the 3DCNTPV cells, indicating that the low efficiency of the 3DCNTPV cell is due to processing and not inherent to the 3D structure. CNTs were successfully grown directly on an Ag underlayer, but the growth reproducibility and the CNT height was not sufficient for use in 3DCNTPV devices. Therefore, CNTs were grown on a SiO2 passivated Si wafer and then metallized. This eliminated the CNTs as the back contact and used them only as a structure to provide the 3D morphology. These cells exhibited low shunt resistances on the order of 300O, causing a straight line IV curve. This shunting was found to be caused by the ion assisted deposition of ITO. This plasma process etched away semiconducting layers and caused pinholes in the CdTe/CdS film. Many different strategies were utilized to try and eliminate this shunt and induce curvature in the IV curve, including adding sacrificial metal layers before the ITO deposition, using electron beam evaporated ITO, and using RF sputtered ITO. The addition of metal layers before ITO deposition did not result in cells which could reliably demonstrate both photocurrent and IV curvature. Electron beam deposition of ITO resulted in cells with excellent IV curvature, but the ITO deposited in this manner was too resistive and absorptive to create well functioning cells. The output power of the cells at varying incident angles of light was measured. The cells show an increase in the normalized power output compared to similar planar cells when the solar ux is at off-normal angles. The power output vs. incident angle curve takes an inverted C-type curve as predicted by the theory developed here. The complete theory of 3DCNTPV presented in this work describes the power output vs. incident angle of a 3DCNTPV cell based only on cell morphology. The experimental power output vs. zenith angle was compared to the theoretically calculated power output with very good agreement between the two. (Abstract shortened by UMI.)

  16. Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris).

    PubMed

    Zuiderveen, Grady H; Padder, Bilal A; Kamfwa, Kelvin; Song, Qijian; Kelly, James D

    2016-01-01

    Anthracnose is a seed-borne disease of common bean (Phaseolus vulgaris L.) caused by the fungus Colletotrichum lindemuthianum, and the pathogen is cosmopolitan in distribution. The objectives of this study were to identify new sources of anthracnose resistance in a diverse panel of 230 Andean beans comprised of multiple seed types and market classes from the Americas, Africa, and Europe, and explore the genetic basis of this resistance using genome-wide association mapping analysis (GWAS). Twenty-eight of the 230 lines tested were resistant to six out of the eight races screened, but only one cultivar Uyole98 was resistant to all eight races (7, 39, 55, 65, 73, 109, 2047, and 3481) included in the study. Outputs from the GWAS indicated major quantitative trait loci (QTL) for resistance on chromosomes, Pv01, Pv02, and Pv04 and two minor QTL on Pv10 and Pv11. Candidate genes associated with the significant SNPs were detected on all five chromosomes. An independent QTL study was conducted to confirm the physical location of the Co-1 locus identified on Pv01 in an F4:6 recombinant inbred line (RIL) population. Resistance was determined to be conditioned by the single dominant gene Co-1 that mapped between 50.16 and 50.30 Mb on Pv01, and an InDel marker (NDSU_IND_1_50.2219) tightly linked to the gene was developed. The information reported will provide breeders with new and diverse sources of resistance and genomic regions to target in the development of anthracnose resistance in Andean beans.

  17. Genome-Wide Association Study of Anthracnose Resistance in Andean Beans (Phaseolus vulgaris)

    PubMed Central

    Zuiderveen, Grady H.; Padder, Bilal A.; Kamfwa, Kelvin; Song, Qijian; Kelly, James D.

    2016-01-01

    Anthracnose is a seed-borne disease of common bean (Phaseolus vulgaris L.) caused by the fungus Colletotrichum lindemuthianum, and the pathogen is cosmopolitan in distribution. The objectives of this study were to identify new sources of anthracnose resistance in a diverse panel of 230 Andean beans comprised of multiple seed types and market classes from the Americas, Africa, and Europe, and explore the genetic basis of this resistance using genome-wide association mapping analysis (GWAS). Twenty-eight of the 230 lines tested were resistant to six out of the eight races screened, but only one cultivar Uyole98 was resistant to all eight races (7, 39, 55, 65, 73, 109, 2047, and 3481) included in the study. Outputs from the GWAS indicated major quantitative trait loci (QTL) for resistance on chromosomes, Pv01, Pv02, and Pv04 and two minor QTL on Pv10 and Pv11. Candidate genes associated with the significant SNPs were detected on all five chromosomes. An independent QTL study was conducted to confirm the physical location of the Co-1 locus identified on Pv01 in an F4:6 recombinant inbred line (RIL) population. Resistance was determined to be conditioned by the single dominant gene Co-1 that mapped between 50.16 and 50.30 Mb on Pv01, and an InDel marker (NDSU_IND_1_50.2219) tightly linked to the gene was developed. The information reported will provide breeders with new and diverse sources of resistance and genomic regions to target in the development of anthracnose resistance in Andean beans. PMID:27270627

  18. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Geoffrey Taylor; Balfour, John

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how themore » reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.« less

  19. Overview of Photovoltaic Calibration and Measurement Standards at GRC

    NASA Technical Reports Server (NTRS)

    Baraona, Cosmo; Snyder, David; Brinker, David; Bailey, Sheila; Curtis, Henry; Scheiman, David; Jenkins, Phillip

    2002-01-01

    Photovoltaic (PV) systems (cells and arrays) for spacecraft power have become an international market. This market demands accurate prediction of the solar array power output in space throughout the mission life of the spacecraft. Since the beginning of space flight, space-faring nations have independently developed methods to calibrate solar cells for power output in low Earth orbit (LEO). These methods rely on terrestrial, laboratory, or extraterrestrial light sources to simulate or approximate the air mass zero (AM0) solar intensity and spectrum.

  20. Causal Evidence for the Role of Specific GABAergic Interneuron Types in Entorhinal Recruitment of Dentate Granule Cells

    PubMed Central

    Lee, Cheng-Ta; Kao, Min-Hua; Hou, Wen-Hsien; Wei, Yu-Ting; Chen, Chin-Lin; Lien, Cheng-Chang

    2016-01-01

    The dentate gyrus (DG) is the primary gate of the hippocampus and controls information flow from the cortex to the hippocampus proper. To maintain normal function, granule cells (GCs), the principal neurons in the DG, receive fine-tuned inhibition from local-circuit GABAergic inhibitory interneurons (INs). Abnormalities of GABAergic circuits in the DG are associated with several brain disorders, including epilepsy, autism, schizophrenia, and Alzheimer disease. Therefore, understanding the network mechanisms of inhibitory control of GCs is of functional and pathophysiological importance. GABAergic inhibitory INs are heterogeneous, but it is unclear how individual subtypes contribute to GC activity. Using cell-type-specific optogenetic perturbation, we investigated whether and how two major IN populations defined by parvalbumin (PV) and somatostatin (SST) expression, regulate GC input transformations. We showed that PV-expressing (PV+) INs, and not SST-expressing (SST+) INs, primarily suppress GC responses to single cortical stimulation. In addition, these two IN classes differentially regulate GC responses to θ and γ frequency inputs from the cortex. Notably, PV+ INs specifically control the onset of the spike series, whereas SST+ INs preferentially regulate the later spikes in the series. Together, PV+ and SST+ GABAergic INs engage differentially in GC input-output transformations in response to various activity patterns. PMID:27830729

  1. A novel multi-model neuro-fuzzy-based MPPT for three-phase grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaouachi, Aymen; Kamel, Rashad M.; Nagasaka, Ken

    This paper presents a novel methodology for Maximum Power Point Tracking (MPPT) of a grid-connected 20 kW photovoltaic (PV) system using neuro-fuzzy network. The proposed method predicts the reference PV voltage guarantying optimal power transfer between the PV generator and the main utility grid. The neuro-fuzzy network is composed of a fuzzy rule-based classifier and three multi-layered feed forwarded Artificial Neural Networks (ANN). Inputs of the network (irradiance and temperature) are classified before they are fed into the appropriated ANN for either training or estimation process while the output is the reference voltage. The main advantage of the proposed methodology,more » comparing to a conventional single neural network-based approach, is the distinct generalization ability regarding to the nonlinear and dynamic behavior of a PV generator. In fact, the neuro-fuzzy network is a neural network based multi-model machine learning that defines a set of local models emulating the complex and nonlinear behavior of a PV generator under a wide range of operating conditions. Simulation results under several rapid irradiance variations proved that the proposed MPPT method fulfilled the highest efficiency comparing to a conventional single neural network and the Perturb and Observe (P and O) algorithm dispositive. (author)« less

  2. High Step-Up DC—DC Converter for AC Photovoltaic Module with MPPT Control

    NASA Astrophysics Data System (ADS)

    Sundar, Govindasamy; Karthick, Narashiman; Rama Reddy, Sasi

    2014-08-01

    This paper presents the high gain step-up BOOST converter which is essential to step up the low output voltage from PV panel to the high voltage according to the requirement of the application. In this paper a high gain BOOST converter with coupled inductor technique is proposed with the MPPT control. Without extreme duty ratios and the numerous turns-ratios of a coupled inductor this converter achieves a high step-up voltage-conversion ratio and the leakage energy of the coupled inductor is efficiently recycled to the load. MPPT control used to extract the maximum power from PV panel by controlling the Duty ratio of the converter. The PV panel, BOOST converter and the MPPT are modeled using Sim Power System blocks in MATLAB/SIMULINK environment. The prototype model of the proposed converter has been implemented with the maximum measured efficiency is up to 95.4% and full-load efficiency is 93.1%.

  3. Monitoring a photovoltaic system during the partial solar eclipse of August 2017

    NASA Astrophysics Data System (ADS)

    Kurinec, Santosh K.; Kucer, Michal; Schlein, Bill

    2018-05-01

    The power output of a 4.85 kW residential photovoltaic (PV) system located in Rochester, NY is monitored during the partial solar eclipse of August 21, 2017. The data is compared with the data on a day before and on the same day, a year ago. The area of exposed solar disk is measured using astrophotography every 16 s of the eclipse. Global solar irradiance is estimated using the eclipse shading, time of the day, location coordinates, atmospheric conditions and panel orientation. A sharp decline, as expected in the energy produced is observed at the time of the peak of the eclipse. The observed data of the PV energy produced is related with the model calculations taking into account solar eclipse coverage and cloudiness conditions. The paper provides a cohesive approach of irradiance calculations and obtaining anticipated PV performance.

  4. Behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic modules under outdoor long term exposure

    PubMed Central

    Kichou, Sofiane; Silvestre, Santiago; Nofuentes, Gustavo; Torres-Ramírez, Miguel; Chouder, Aissa; Guasch, Daniel

    2016-01-01

    Four years׳ behavioral data of thin-film single junction amorphous silicon (a-Si) photovoltaic (PV) modules installed in a relatively dry and sunny inland site with a Continental-Mediterranean climate (in the city of Jaén, Spain) are presented in this article. The shared data contributes to clarify how the Light Induced Degradation (LID) impacts the output power generated by the PV array, especially in the first days of exposure under outdoor conditions. Furthermore, a valuable methodology is provided in this data article permitting the assessment of the degradation rate and the stabilization period of the PV modules. Further discussions and interpretations concerning the data shared in this article can be found in the research paper “Characterization of degradation and evaluation of model parameters of amorphous silicon photovoltaic modules under outdoor long term exposure” (Kichou et al., 2016) [1]. PMID:26977439

  5. Intermediate photovoltaic system application experiment operational performance report: Volume 5, for Beverly High School, Beverly, Mass.

    NASA Astrophysics Data System (ADS)

    1982-02-01

    Performance data for the month of January, 1982 for a grid connected photovoltaic power supply in Massachusetts are presented. Data include: monthly and daily electrical energy produced; monthly and daily solar energy incident on the array; monthly and daily array efficiency; plots of energy produced as a function of power level, voltage, cell temperature and time of day; power conditioner input, output and efficiency for each of two individual units and for the total power conditioning system; photovoltaic system efficiency; capacity factor; PV system to load and grid to load energies and corresponding dollar values; daily energy supplies to the load by the PV system; daily PV system availability; monthly and hourly insolation; monthly and hourly temperature average; monthly and hourly wind speed; wind direction distribution; average heating and cooling degree days; number of freeze/thaw cycles; and the data acquisition mode and recording interval plot.

  6. Development of a digital solar simulator based on full-bridge converter

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Feng, Jian; Liu, Zhilong; Tong, Weichao; Ji, Yibo

    2014-02-01

    With the development of solar photovoltaic, distribution schemes utilized in power grid had been commonly application, and photovoltaic (PV) inverter is an essential equipment in grid. In this paper, a digital solar simulator based on full-bridge structure is presented. The output characteristic curve of system is electrically similar to silicon solar cells, which can greatly simplify research methods of PV inverter, improve the efficiency of research and development. The proposed simulator consists on a main control board based on TM320F28335, phase-shifted zero-voltage-switching (ZVS) DC-DC full-bridge converter and voltage and current sampling circuit, that allows emulating the voltage-current curve with the open-circuit voltage (Voc) of 900V and the short-circuit current (Isc) of 18A .When the system connected to a PV inverter, the inverter can quickly track from the open-circuit to the maximum power point and keep stability.

  7. Power output and force-velocity relationship of red and white muscle fibres from the Pacific blue marlin (Makaira nigricans).

    PubMed

    Johnston, I A; Salamonski, J

    1984-07-01

    Single white fibres and small bundles (two to three) of red fibres were isolated from the trunk muscle of Pacific Blue Marlin (50-121 kg body weight). Fibres were chemically skinned with 1% Brij. Maximum Ca2+-activated force production (Po) was 57 kN m-2 for red fibres and 176 kN m-2 for white fibres at 25 degrees C. The force-velocity (P-V) characteristics of these fibres were determined at 15 and 25 degrees C. Points below 0.6 Po on the P-V curve could be fitted to a linear form of Hill's equation. The degree of curvature of the P-V curve was similar at 15 and 25 degrees C (Hill's constant a/Po = 0.24 and 0.12 for red and white fibres respectively). Extrapolated maximum contraction velocities (Vmax) were 2.5 muscle lengths s-1 (Lo S-1) (red fibres) and 5.3 Lo S-1 (white fibres) at 25 degrees C. Q10(15-25 degrees C) values for Vmax were 1.4 and 1.3 for red and white fibres respectively. Maximum power output had a similar low temperature dependence and amounted to 13 W kg-1 for red and 57 W kg-1 for white muscle at 25 degrees C. The results are briefly discussed in relation to the locomotion and ecology of marlin.

  8. Tradeoffs and Synergies between biofuel production and large solar infrastructure in deserts.

    PubMed

    Ravi, Sujith; Lobell, David B; Field, Christopher B

    2014-01-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large solar installations. However, for efficient power generation, solar infrastructures use large amounts of water for construction and operation. We investigated the water use and greenhouse gas (GHG) emissions associated with solar installations in North American deserts in comparison to agave-based biofuel production, another widely promoted potential energy source from arid systems. We determined the uncertainty in our analysis by a Monte Carlo approach that varied the most important parameters, as determined by sensitivity analysis. We considered the uncertainty in our estimates as a result of variations in the number of solar modules ha(-1), module efficiency, number of agave plants ha(-1), and overall sugar conversion efficiency for agave. Further, we considered the uncertainty in revenue and returns as a result of variations in the wholesale price of electricity and installation cost of solar photovoltaic (PV), wholesale price of agave ethanol, and cost of agave cultivation and ethanol processing. The life-cycle analyses show that energy outputs and GHG offsets from solar PV systems, mean energy output of 2405 GJ ha(-1) year(-1) (5 and 95% quantile values of 1940-2920) and mean GHG offsets of 464 Mg of CO2 equiv ha(-1) year(-1) (375-562), are much larger than agave, mean energy output from 206 (171-243) to 61 (50-71) GJ ha(-1) year(-1) and mean GHG offsets from 18 (14-22) to 4.6 (3.7-5.5) Mg of CO2 equiv ha(-1) year(-1), depending upon the yield scenario of agave. Importantly though, water inputs for cleaning solar panels and dust suppression are similar to amounts required for annual agave growth, suggesting the possibility of integrating the two systems to maximize the efficiency of land and water use to produce both electricity and liquid fuel. A life-cycle analysis of a hypothetical colocation indicated higher returns per m(3) of water used than either system alone. Water requirements for energy production were 0.22 L MJ(-1) (0.28-0.19) and 0.42 L MJ(-1) (0.52-0.35) for solar PV-agave (baseline yield) and solar PV-agave (high yield), respectively. Even though colocation may not be practical in all locations, in some water-limited areas, colocated solar PV-agave systems may provide attractive economic incentives in addition to efficient land and water use.

  9. Population variability complicates the accurate detection of climate change responses.

    PubMed

    McCain, Christy; Szewczyk, Tim; Bracy Knight, Kevin

    2016-06-01

    The rush to assess species' responses to anthropogenic climate change (CC) has underestimated the importance of interannual population variability (PV). Researchers assume sampling rigor alone will lead to an accurate detection of response regardless of the underlying population fluctuations of the species under consideration. Using population simulations across a realistic, empirically based gradient in PV, we show that moderate to high PV can lead to opposite and biased conclusions about CC responses. Between pre- and post-CC sampling bouts of modeled populations as in resurvey studies, there is: (i) A 50% probability of erroneously detecting the opposite trend in population abundance change and nearly zero probability of detecting no change. (ii) Across multiple years of sampling, it is nearly impossible to accurately detect any directional shift in population sizes with even moderate PV. (iii) There is up to 50% probability of detecting a population extirpation when the species is present, but in very low natural abundances. (iv) Under scenarios of moderate to high PV across a species' range or at the range edges, there is a bias toward erroneous detection of range shifts or contractions. Essentially, the frequency and magnitude of population peaks and troughs greatly impact the accuracy of our CC response measurements. Species with moderate to high PV (many small vertebrates, invertebrates, and annual plants) may be inaccurate 'canaries in the coal mine' for CC without pertinent demographic analyses and additional repeat sampling. Variation in PV may explain some idiosyncrasies in CC responses detected so far and urgently needs more careful consideration in design and analysis of CC responses. © 2016 John Wiley & Sons Ltd.

  10. Air Quality Improvements of Increased Integration of Renewables: Solar Photovoltaics Penetration Scenarios

    NASA Astrophysics Data System (ADS)

    Duran, P.; Holloway, T.; Brinkman, G.; Denholm, P.; Littlefield, C. M.

    2011-12-01

    Solar photovoltaics (PV) are an attractive technology because they can be locally deployed and tend to yield high production during periods of peak electric demand. These characteristics can reduce the need for conventional large-scale electricity generation, thereby reducing emissions of criteria air pollutants (CAPs) and improving ambient air quality with regard to such pollutants as nitrogen oxides, sulfur oxides and fine particulates. Such effects depend on the local climate, time-of-day emissions, available solar resources, the structure of the electric grid, and existing electricity production among other factors. This study examines the air quality impacts of distributed PV across the United States Eastern Interconnection. In order to accurately model the air quality impact of distributed PV in space and time, we used the National Renewable Energy Lab's (NREL) Regional Energy Deployment System (ReEDS) model to form three unique PV penetration scenarios in which new PV construction is distributed spatially based upon economic drivers and natural solar resources. Those scenarios are 2006 Eastern Interconnection business as usual, 10% PV penetration, and 20% PV penetration. With the GridView (ABB, Inc) dispatch model, we used historical load data from 2006 to model electricity production and distribution for each of the three scenarios. Solar PV electric output was estimated using historical weather data from 2006. To bridge the gap between dispatch and air quality modeling, we will create emission profiles for electricity generating units (EGUs) in the Eastern Interconnection from historical Continuous Emissions Monitoring System (CEMS) data. Via those emissions profiles, we will create hourly emission data for EGUs in the Eastern Interconnect for each scenario during 2006. Those data will be incorporated in the Community Multi-scale Air Quality (CMAQ) model using the Sparse Matrix Operator Kernel Emissions (SMOKE) model. Initial results indicate that PV penetration significantly reduces conventional peak electricity production and that, due to reduced emissions during periods of extremely active photochemistry, air quality could see benefits.

  11. Integrating DC/DC Conversion with Possible Reconfiguration within Submodule Solar Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Huang, Peter Jen-Hung

    This research first proposes a method to merge photovoltaic (PV) cells or PV panels within the internal components DC-DC converters. The purpose of this merged structure is to reconfigure the PV modules between series and parallel connections using high switching frequencies (hundreds of kHz). This leads to multi-levels of voltages and currents that become applied to the output filter of the converter. Further, this research introduces a concept of a switching cell that utilizes the reconfiguration of series and parallel connections in DC-DC converters. The switching occurs at high switching frequency and the switches can be integrated to be within the solar panels or in between the solar cells. The concept is generalized and applied to basic buck and boost topologies. As examples of the new types of converters: reconfigurable PV-buck and PV-boost converter topologies are presented. It is also possible to create other reconfigurable power converters: non-isolated and isolated topologies. Analysis, simulation and experimental verification for the reconfigurable PV-buck and PV-boost converters are presented extensively to illustrate proof of concept. Benefits and drawbacks of the new approach are discussed. The second part of this research proposes to utilize the internal solar cell capacitance and internal solar module wire parasitic inductances to replace the input capacitor and filter inductor in boost derived DC-DC converters for energy harvesting applications. High switching frequency (MHz) hard switched and resonant boost converters are proposed. Their analysis, simulation and experimental prototypes are presented. A specific proof-of-concept application is especially tested for foldable PV panels, which are known for their high internal wire inductance. The experimental converters successfully boost solar module voltage without adding any external input capacitance or filter inductor. Benefits and drawbacks of new proposed PV submodule integrated boost converters are discussed.

  12. Demonstration of Essential Reliability Services by a 300-MW Solar Photovoltaic Power Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loutan, Clyde; Klauer, Peter; Chowdhury, Sirajul

    The California Independent System Operator (CAISO), First Solar, and the National Renewable Energy Laboratory (NREL) conducted a demonstration project on a large utility-scale photovoltaic (PV) power plant in California to test its ability to provide essential ancillary services to the electric grid. With increasing shares of solar- and wind-generated energy on the electric grid, traditional generation resources equipped with automatic governor control (AGC) and automatic voltage regulation controls -- specifically, fossil thermal -- are being displaced. The deployment of utility-scale, grid-friendly PV power plants that incorporate advanced capabilities to support grid stability and reliability is essential for the large-scale integrationmore » of PV generation into the electric power grid, among other technical requirements. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, PV power plants can be used to mitigate the impact of variability on the grid, a role typically reserved for conventional generators. In August 2016, testing was completed on First Solar's 300-MW PV power plant, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to use grid-friendly controls to provide essential reliability services. These data showed how the development of advanced power controls can enable PV to become a provider of a wide range of grid services, including spinning reserves, load following, voltage support, ramping, frequency response, variability smoothing, and frequency regulation to power quality. Specifically, the tests conducted included various forms of active power control such as AGC and frequency regulation; droop response; and reactive power, voltage, and power factor controls. This project demonstrated that advanced power electronics and solar generation can be controlled to contribute to system-wide reliability. It was shown that the First Solar plant can provide essential reliability services related to different forms of active and reactive power controls, including plant participation in AGC, primary frequency control, ramp rate control, and voltage regulation. For AGC participation in particular, by comparing the PV plant testing results to the typical performance of individual conventional technologies, we showed that regulation accuracy by the PV plant is 24-30 points better than fast gas turbine technologies. The plant's ability to provide volt-ampere reactive control during periods of extremely low power generation was demonstrated as well. The project team developed a pioneering demonstration concept and test plan to show how various types of active and reactive power controls can leverage PV generation's value from being a simple variable energy resource to a resource that provides a wide range of ancillary services. With this project's approach to a holistic demonstration on an actual, large, utility-scale, operational PV power plant and dissemination of the obtained results, the team sought to close some gaps in perspectives that exist among various stakeholders in California and nationwide by providing real test data.« less

  13. Feline papillomas and papillomaviruses.

    PubMed

    Sundberg, J P; Van Ranst, M; Montali, R; Homer, B L; Miller, W H; Rowland, P H; Scott, D W; England, J J; Dunstan, R W; Mikaelian, I; Jenson, A B

    2000-01-01

    Papillomaviruses (PVs) are highly species- and site-specific pathogens of stratified squamous epithelium. Although PV infections in the various Felidae are rarely reported, we identified productive infections in six cat species. PV-induced proliferative skin or mucous membrane lesions were confirmed by immunohistochemical screening for papillomavirus-specific capsid antigens. Seven monoclonal antibodies, each of which reacts with an immunodominant antigenic determinant of the bovine papillomavirus L1 gene product, revealed that feline PV capsid epitopes were conserved to various degrees. This battery of monoclonal antibodies established differential expression patterns among cutaneous and oral PVs of snow leopards and domestic cats, suggesting that they represent distinct viruses. Clinically, the lesions in all species and anatomic sites were locally extensive and frequently multiple. Histologically, the areas of epidermal hyperplasia were flat with a similarity to benign tumors induced by cutaneotropic, carcinogenic PVs in immunosuppressed human patients. Limited restriction endonuclease analyses of viral genomic DNA confirmed the variability among three viral genomes recovered from available frozen tissue. Because most previous PV isolates have been species specific, these studies suggest that at least eight different cat papillomaviruses infect the oral cavity (tentative designations: Asian lion, Panthera leo, P1PV; snow leopard, Panthera uncia, PuPV-1; bobcat, Felis rufus, FrPV; Florida panther, Felis concolor, FcPV; clouded leopard, Neofelis nebulosa, NnPV; and domestic cat, Felis domesticus, FdPV-2) or skin (domestic cat, F. domesticus, FdPV-1; and snow leopard, P. uncia, PuPV-2).

  14. Vertical Jump Height is more Strongly Associated with Velocity and Work Performed Prior to Take-off

    NASA Technical Reports Server (NTRS)

    Bentley, J. R.; Loehr, J. A.; DeWitt, J. K.; Lee, S. M. C.; English, K. L.; Nash, R. E.; Leach, M. A.; Hagan, R. D.

    2008-01-01

    Vertical jump (VJ) height is commonly used as a measure of athletic capability in strength and power sports. Although VJ has been shown to be a predictor of athletic performance, it is not clear which kinetic ground reaction force (GRF) variables, such as peak force (PF), peak power (PP), peak velocity (PV), total work (TW) or impulse (Imp) are the best correlates. To determine which kinetic variables (PF, PP, PV, TW, and Imp) best correlate with VJ height. Twenty subjects (14 males, 6 females) performed three maximal countermovement VJs on a force platform (Advanced Mechanical Technology, Inc., Watertown, MA, USA). VJ jump height was calculated as the difference between standing reach and the highest reach point measured using a Vertec. PF, PP, PV, TW, and Imp were calculated using the vertical GRF data sampled at 1000 Hz from the lowest point in the countermovement through the concentric portion until take-off. GRF data were normalized to body mass measured using a standard scale (Detecto, Webb City, MO, USA). Correlation coefficients were computed between each GRF variable and VJ height using a Pearson correlation. VJ height (43.4 plus or minus 9.1 cm) was significantly correlated (p less than 0.001) with PF (998 plus or minus 321 N; r=0.51), PP (1997 plus or minus 772 W; r=0.69), PV (2.66 plus or minus 0.40 m (raised dot) s(sup -1); r=0.85), TW (259 plus or minus 93.0 kJ; r=0.82), and Imp (204 plus or minus 51.1 N(raised dot)s; r=0.67). Although all variables were correlated to VJ height, PV and TW were more strongly correlated to VJ height than PF, PP, and Imp. Therefore, since TW is equal to force times displacement, the relative displacement of the center of mass along with the forces applied during the upward movement of the jump are critical determinants of VJ height. PV and TW are key determinants of VJ height, and therefore successful training programs to increase VJ height should focus on rapid movement (PV) and TW by increasing power over time rather than focusing on PF alone.

  15. Immunoreactivities of calbindin-D28k, calretinin and parvalbumin in the somatosensory cortex of rodents during normal aging

    PubMed Central

    Ahn, Ji Hyeon; Hong, Seongkweon; Park, Joon Ha; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Bae, Eun Joo; Jeon, Yong Hwan; Kim, Young-Myeong; Won, Moo-Ho; Choi, Soo Young

    2017-01-01

    Calbindin-D28k (CB), calretinin (CR) and parvalbumin (PV), which regulate cytosolic free Ca2+ concentrations in neurons, are chemically expressed in γ-aminobutyric acid (GABA)ergic neurons that regulate the degree of glutamatergic excitation and output of projection neurons. The present study investigated age-associated differences in CB, CR and PV immunoreactivities in the somatosensory cortex in three species (mice, rats and gerbils) of young (1 month), adult (6 months) and aged (24 months) rodents, using immunohistochemistry and western blotting. Abundant CB-immunoreactive neurons were distributed in layers II and III, and age-associated alterations in their number were different according to the species. CR-immunoreactive neurons were not abundant in all layers; however, the number of CR-immunoreactive neurons was the highest in all adult species. Many PV-immunoreactive neurons were identified in all layers, particularly in layers II and III, and they increased in all layers with age in all species. The present study demonstrated that the distribution pattern of CB-, CR- and PV-containing neurons in the somatosensory cortex were apparently altered in number with normal aging, and that CB and CR exhibited a tendency to decrease in aged rodents, whereas PV tended to increase with age. These results indicate that CB, CR and PV are markedly altered in the somatosensory cortex, and this change may be associated with normal aging. These findings may aid the elucidation of the mechanisms of aging and geriatric disease. PMID:28944879

  16. Design, optimization, and analysis of a self-deploying PV tent array

    NASA Astrophysics Data System (ADS)

    Collozza, Anthony J.

    1991-06-01

    A tent shaped PV array was designed and the design was optimized for maximum specific power. In order to minimize output power variation a tent angle of 60 deg was chosen. Based on the chosen tent angle an array structure was designed. The design considerations were minimal deployment time, high reliability, and small stowage volume. To meet these considerations the array was chosen to be self-deployable, form a compact storage configuration, using a passive pressurized gas deployment mechanism. Each structural component of the design was analyzed to determine the size necessary to withstand the various forces to which it would be subjected. Through this analysis the component weights were determined. An optimization was performed to determine the array dimensions and blanket geometry which produce the maximum specific power for a given PV blanket. This optimization was performed for both lunar and Martian environmental conditions. Other factors such as PV blanket types, structural material, and wind velocity (for Mars array), were varied to determine what influence they had on the design point. The performance specifications for the array at both locations and with each type of PV blanket were determined. These specifications were calculated using the Arimid fiber composite as the structural material. The four PV blanket types considered were silicon, GaAs/Ge, GaAsCLEFT, and amorphous silicon. The specifications used for each blanket represented either present day or near term technology. For both the Moon and Mars the amorphous silicon arrays produced the highest specific power.

  17. Limits and Economic Effects of Distributed PV Generation in North and South Carolina

    NASA Astrophysics Data System (ADS)

    Holt, Kyra Moore

    The variability of renewable sources, such as wind and solar, when integrated into the electrical system must be compensated by traditional generation sources in-order to maintain the constant balance of supply and demand required for grid stability. The goal of this study is to analyze the effects of increasing large levels of solar Photovoltaic (PV) penetration (in terms of a percentage of annual energy production) on a test grid with similar characteristics to the Duke Energy Carolinas (DEC) and Progress Energy Carolinas (PEC) regions of North and South Carolina. PV production is modeled entering the system at the distribution level and regional PV capacity is based on household density. A gridded hourly global horizontal irradiance (GHI) dataset is used to capture the variable nature of PV generation. A unit commitment model (UCM) is then used determine the hourly dispatch of generators based on generator parameters and costs to supply generation to meet demand. Annual modeled results for six different scenarios are evaluated to determine technical, environmental and economic effects of varying levels of distributed PV penetration on the system. This study finds that the main limiting factor for PV integration in the DEC and PEC balancing authority regions is defined by the large generating capacity of base-load nuclear plants within the system. This threshold starts to affect system stability at integration levels of 5.7%. System errors, defined by imbalances caused by over or under generation with respect to demand, are identified in the model however the validity of these errors in real world context needs further examination due to the lack of high frequency irradiance data and modeling limitations. Operational system costs decreased as expected with PV integration although further research is needed to explore the impacts of the capital costs required to achieve the penetration levels found in this study. PV system generation was found to mainly displace coal generation creating a loss of revenue for generator owners. In all scenarios, CO 2 emissions were reduced with PV integration. This reduction could be used to meet impending EPA state-specific CO2 emissions targets.

  18. Integrating Solar into Florida's Power System: Potential Roles for Flexibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hale, Elaine T; Stoll, Brady; Novacheck, Joshua E

    Although Florida has very little photovoltaic (PV) generation to date, it is reasonable to expect significant deployment in the 2020s under a variety of future policy and cost scenarios. To understand these potential futures, we model Florida Reliability Coordinating Council operations in 2026 over a wide range of PV penetrations with various combinations of battery storage capacity, demand response, and increased operational flexibility. By calculating the value of PV under a wide range of conditions, we find that at least 5%, and more likely 10-24%, PV penetration is cost competitive in Florida within the next decade with baseline flexibility andmore » all but the most pessimistic of assumptions. For high PV penetrations, we demonstrate Florida's electrical net-load variability (duck curve) challenges, the associated reduction of PV's value to the system, and the ability of flexibility options-in particular energy-shifting resources-to preserve value and increase the economic carrying capacity of PV. A high level of demand response boosts the economic carrying capacity of PV by up to 0.5-2 percentage points, which is comparable to the impact of deploying 1 GW of battery storage. Adding 4 GW of battery storage expands the economic carrying capacity of PV by up to 6 percentage points.« less

  19. Geographic smoothing of solar PV: Results from Gujarat

    DOE PAGES

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f -1.23 to f -1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f -1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f -1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  20. Power conversion and control methods for renewable energy sources

    NASA Astrophysics Data System (ADS)

    Yu, Dachuan

    2005-07-01

    In recent years, there has been an increase in the use of renewable energy due to the growing concern over the pollution caused by fossil-fuel-based energy. Renewable energy sources, such as photovoltaic (PV) and fuel cell, can be used to enhance the safety, reliability, sustainability, and transmission efficiency of a power system. This dissertation focuses on the power conversion and control for two major renewable-energy sources: PV and fuel cell. Firstly, a current-based, maximum power-point tracking (MPPT) algorithm is proposed for PV energy. An economical converter system using the above scheme for converting the output from PV panels into 60 Hz AC voltage is developed and built. Secondly, a novel circuit model for the Proton Exchange Membrane (PEM) fuel-cell stack that is useful in the design and analysis of fuel-cell-based power systems is proposed. This Pspice-based model uses elements available in the Pspice library with some modifications to represent both the static and dynamic responses of a PEM fuel-cell module. The accuracy of the model is verified by comparing the simulation and experimental results. Thirdly, a DSP-controlled three-phase induction-motor drive using constant voltage over frequency is built and can be used in a fuel-cell automobile. A hydrogen sensor is used in the drive to both sound an alarm and shut down the inverter trigger pulses through the DSP. Finally, a hybrid power system consisting of PV panels and fuel cell is proposed and built. In the proposed system, PV panels can supply most of the power when the sunlight is available, and the excess power required by the load is supplied by a fuel cell. Load sharing between a fuel cell (FC) and the PV panel is investigated by both simulation and experiments.

  1. PVMirror: A New Concept for Tandem Solar Cells and Hybrid Solar Converters

    DOE PAGES

    Yu, Zhengshan J.; Fisher, Kathryn C.; Wheelwright, Brian M.; ...

    2015-08-25

    As the solar electricity market has matured, energy conversion efficiency and storage have joined installed system cost as significant market drivers. In response, manufacturers of flatplate silicon photovoltaic (PV) cells have pushed cell efficiencies above 25%—nearing the 29.4% detailed-balance efficiency limit— and both solar thermal and battery storage technologies have been deployed at utility scale. This paper introduces a new tandem solar collector employing a “PVMirror” that has the potential to both increase energy conversion efficiency and provide thermal storage. A PVMirror is a concentrating mirror, spectrum splitter, and light-to-electricity converter all in one: It consists of a curved arrangementmore » of PV cells that absorb part of the solar spectrum and reflect the remainder to their shared focus, at which a second solar converter is placed. A strength of the design is that the solar converter at the focus can be of a radically different technology than the PV cells in the PVMirror; another is that the PVMirror converts a portion of the diffuse light to electricity in addition to the direct light. Here, we consider two case studies—a PV cell located at the focus of the PVMirror to form a four-terminal PV–PV tandem, and a thermal receiver located at the focus to form a PV–CSP (concentrating solar thermal power) tandem—and compare the outdoor energy outputs to those of competing technologies. PVMirrors can outperform (idealized) monolithic PV–PV tandems that are under concentration, and they can also generate nearly as much energy as silicon flat-plate PV while simultaneously providing the full energy storage benefit of CSP.« less

  2. Alterations in Blood Coagulation and Viscosity Among Young Male Cigarette Smokers of Al-Jouf Region in Saudi Arabia.

    PubMed

    Almarshad, Hassan A; Hassan, Fathelrahman M

    2016-05-01

    Hemorheology, a measure of rheological properties of blood, is often correlated with cerebral blood flow and cardiac output; an increased blood viscosity may increase the risk of thrombosis or thromboembolic events. Previous studies have reported a large variation in hemorheological properties of blood among smokers. This prompted us to conduct coagulation experiments to evaluate the effect of cigarette smoking on hematological parameters, like cell counts, and coagulation parameters among young males in Al-Jouf region, Saudi Arabia. The hematological and coagulation parameters were used to relate the changes in viscosity and coagulation to smoking. A total of 321 male participants (126 nonsmokers and 195 smokers) were enrolled into the study as randomized sample. Complete blood count was measured by hematology analyzer, and coagulation tests were performed by coagulation analyzer. Thettest analysis was performed to compare the relationships of variables between the 2 groups. The results confirmed that smoking alters some hematology parameters leading to significant deterioration in blood flow properties. Smoking also increased the hematocrit (HCT), whole blood viscosity (WBV), and plasma viscosity (PV) but decreased the international normalized ratio (INR). The decrease in INR was found to be associated with the increase in WBV, PV, and HCT. Further investigations are necessary to assess the reversibility of such changes in cessation of smoking or other elements of influence. © The Author(s) 2014.

  3. The application of the Luus-Jaakola direct search method to the optimization of a hybrid renewable energy system

    NASA Astrophysics Data System (ADS)

    Jatzeck, Bernhard Michael

    2000-10-01

    The application of the Luus-Jaakola direct search method to the optimization of stand-alone hybrid energy systems consisting of wind turbine generators (WTG's), photovoltaic (PV) modules, batteries, and an auxiliary generator was examined. The loads for these systems were for agricultural applications, with the optimization conducted on the basis of minimum capital, operating, and maintenance costs. Five systems were considered: two near Edmonton, Alberta, and one each near Lethbridge, Alberta, Victoria, British Columbia, and Delta, British Columbia. The optimization algorithm used hourly data for the load demand, WTG output power/area, and PV module output power. These hourly data were in two sets: seasonal (summer and winter values separated) and total (summer and winter values combined). The costs for the WTG's, PV modules, batteries, and auxiliary generator fuel were full market values. To examine the effects of price discounts or tax incentives, these values were lowered to 25% of the full costs for the energy sources and two-thirds of the full cost for agricultural fuel. Annual costs for a renewable energy system depended upon the load, location, component costs, and which data set (seasonal or total) was used. For one Edmonton load, the cost for a renewable energy system consisting of 27.01 m2 of WTG area, 14 PV modules, and 18 batteries (full price, total data set) was 6873/year. For Lethbridge, a system with 22.85 m2 of WTG area, 47 PV modules, and 5 batteries (reduced prices, seasonal data set) cost 2913/year. The performance of renewable energy systems based on the obtained results was tested in a simulation using load and weather data for selected days. Test results for one Edmonton load showed that the simulations for most of the systems examined ran for at least 17 hours per day before failing due to either an excessive load on the auxiliary generator or a battery constraint being violated. Additional testing indicated that increasing the generator capacity and reducing the maximum allowed battery charge current during the time of the day at which these failures occurred allowed the simulation to successfully operate.

  4. Analysis of PV Advanced Inverter Functions and Setpoints under Time Series Simulation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seuss, John; Reno, Matthew J.; Broderick, Robert Joseph

    Utilities are increasingly concerned about the potential negative impacts distributed PV may have on the operational integrity of their distribution feeders. Some have proposed novel methods for controlling a PV system's grid - tie inverter to mitigate poten tial PV - induced problems. This report investigates the effectiveness of several of these PV advanced inverter controls on improving distribution feeder operational metrics. The controls are simulated on a large PV system interconnected at several locations within two realistic distribution feeder models. Due to the time - domain nature of the advanced inverter controls, quasi - static time series simulations aremore » performed under one week of representative variable irradiance and load data for each feeder. A para metric study is performed on each control type to determine how well certain measurable network metrics improve as a function of the control parameters. This methodology is used to determine appropriate advanced inverter settings for each location on the f eeder and overall for any interconnection location on the feeder.« less

  5. Photovoltaic performance and reliability workshop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kroposki, B

    1996-10-01

    This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less

  6. Positive correlation between postoperative tumor recurrence and changes in circulating tumor cell counts in pulmonary venous blood (pvCTC) during surgical manipulation in non-small cell lung cancer.

    PubMed

    Hashimoto, Masaki; Tanaka, Fumihiro; Yoneda, Kazue; Takuwa, Teruhisa; Matsumoto, Seiji; Okumura, Yoshitomo; Kondo, Nobuyuki; Tsujimura, Tohru; Nakano, Takashi; Hasegawa, Seiki

    2018-01-01

    In non-small cell lung cancer (NSCLC), circulating tumor cells (CTC) are shed and circulate to the peripheral blood through the pulmonary vein. Previously, CTC count in pulmonary venous blood (pvCTC) was shown to significantly increase after surgical manipulation. Therefore, we assessed the correlation between the changes in the pvCTC count (ΔpvCTC) and clinical outcomes. Consecutive patients with peripheral-type, NSCLC, who underwent lobectomy or bi-lobectomy through open thoracotomy, were enrolled prospectively. Before and after lobectomy, 2.5 mL of blood was drawn from the associated lobar pulmonary vein (PV), and was served for the quantitative evaluation of CTC using the CellSearch ® system. The cut-off point of ΔpvCTC was determined according to clinical outcomes and ΔpvCTC using receiver operation characteristic (ROC) curve. Then the correlation between ΔpvCTC and clinical outcomes was evaluated by Kaplan-Meier analyses and log-rank test. In addition, the correlation between ΔpvCTC and perioperative variables was assessed. A total of 30 patients were enrolled, tumor recurrence occurred in 11 patients over a median follow-up of 64.4 months. Of these, 7 patients had distant metastasis and 4 had local recurrence. The median ΔpvCTC was 49 cells/2.5 mL, and pvCTC-count was increased during surgical manipulation in 24 patients (80%). We divided patients into two groups based on ΔpvCTC with the cut-off value as 119 cells/2.5 mL according to ROC curve. Significant shorter time to distant metastasis (TDM) (P=0.0123) was observed in high ΔpvCTC group (ΔpvCTC ≥119 cells/2.5 mL) than low ΔpvCTC group (ΔpvCTC <119 cells/ 2.5mL). Neither disease-free survival (DFS) nor overall survival (OS) was significantly correlated with ΔpvCTC. Increasing pvCTC count during surgical manipulation was significantly correlated with postoperative distant metastasis in completely resected NSCLC patients. Significant shorter TDM was observed in patient with high ΔpvCTC group.

  7. Solar pv fed stand-alone excitation system of a synchronous machine for reactive power generation

    NASA Astrophysics Data System (ADS)

    Sudhakar, N.; Jain, Siddhartha; Jyotheeswara Reddy, K.

    2017-11-01

    This paper presents a model of a stand-alone solar energy conversion system based on synchronous machine working as a synchronous condenser in overexcited state. The proposed model consists of a Synchronous Condenser, a DC/DC boost converter whose output is fed to the field of the SC. The boost converter is supplied by the modelled solar panel and a day time variable irradiance is fed to the panel during the simulation time. The model also has one alternate source of rechargeable batteries for the time when irradiance falls below a threshold value. Also the excess power produced when there is ample irradiance is divided in two parts and one is fed to the boost converter while other is utilized to recharge the batteries. A simulation is done in MATLAB-SIMULINK and the obtained results show the utility of such modelling for supplying reactive power is feasible.

  8. Single Active Switch PV Inverter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramanan, V. R.; Pan, Zhiguo

    This report presents a new PV inverter topology that uses only one active switch instead of 7 active switches in a conventional PV inverter. It has a buck boost converter and operates at discontinuous current control mode, which can reduce the output stage from an active switch bridge to a thyristor bridge. This concept, if successfully demonstrated, may have great cost and size/weight benefits over conventional solutions. Since the proposed topology is completely different from the traditional boost converter plus voltage source inverter approach, there is no existing control/modulation scheme available. A new modulation scheme for both the main switchmore » and the thyristors has been developed. An active clamping circuit has also been proposed to reduce switching losses and voltage spike during the switching transient. A simulation model has been set up to validate the control algorithm and clamping circuit. Simulated results show that a proposed 10 kW PV inverter can reach 5% total harmonic distortion (THD), 98.8% peak efficiency with only one main active switch, and an inductor weighing less than 3 kg. Based on that, a 10 kW prototype converter has been designed and built.« less

  9. Spectrum-splitting hybrid CSP-CPV solar energy system with standalone and parabolic trough plant retrofit applications

    NASA Astrophysics Data System (ADS)

    Orosz, Matthew; Zweibaum, Nicolas; Lance, Tamir; Ruiz, Maritza; Morad, Ratson

    2016-05-01

    Sunlight to electricity efficiencies of Parabolic Trough Collector (PTC) plants are typically on the order of 15%, while commercial solar Photovoltaic (PV) technologies routinely achieve efficiencies of greater than 20%, albeit with much higher conversion efficiencies of photons at the band gap. Hybridizing concentrating solar power and photovoltaic technologies can lead to higher aggregate efficiencies due to the matching of photons to the appropriate converter based on wavelength. This can be accomplished through spectral filtering whereby photons unusable or poorly utilitized by PV (IR and UV) are passed through to a heat collection element, while useful photons (VIS) are reflected onto a concentrating PV (CPV) receiver. The mechanical design and experimental validation of spectral splitting optics is described in conjunction with system level modeling and economic analysis. The implications of this architecture include higher efficiency, lower cost hybrid CSP-PV power systems, as well as the potential to retrofit existing PTC plants to boost their output by ~ 10% at a projected investment cost of less than 1 per additional net Watt and an IRR of 18%, while preserving the dispatchability of the CSP plant's thermal energy storage.

  10. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE PAGES

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.; ...

    2017-05-17

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  11. A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duman, Turgay; Marti, Shilpa; Moonem, M. A.

    A modular multilevel power converter configuration for grid connected photovoltaic (PV) systems is proposed. The converter configuration replaces the conventional bulky line frequency transformer with several high frequency transformers, potentially reducing the balance of systems cost of PV systems. The front-end converter for each port is a neutral-point diode clamped (NPC) multi-level dc-dc dual-active bridge (ML-DAB) which allows maximum power point tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is a NPC inverter.more » N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e., 13.8 kV). The cascaded NPC (CNPC) inverters have the inherent advantage of using lower rated devices, smaller filters and low total harmonic distortion required for PV grid interconnection. The proposed converter system is modular, scalable, and serviceable with zero downtime with lower foot print and lower overall cost. A novel voltage balance control at each module based on power mismatch among N-ports, have been presented and verified in simulation. Analysis and simulation results are presented for the N-port converter. The converter performance has also been verified on a hardware prototype.« less

  12. Experimental and computational fluid dynamics analysis of a photovoltaic/thermal system with active cooling using aluminum fins

    NASA Astrophysics Data System (ADS)

    Ömeroǧlu, Gökhan

    2017-10-01

    Being the most widespread renewable energy generation system, photovoltaic (PV) systems face major problems, overheating and low overall conversion efficiency. The electrical efficiency of PV systems is adversely affected by significant increases in cell temperature upon exposure to solar irradiation. There have been several ways to remove excess heat and cool down the PV to maintain efficiency at fair levels. A hybrid photovoltaic/thermal system cooled by forced air circulation blown by a PV-powered fan was set up, and a rectangular control volume with cylindrical ends was built at the back of the PV panel where aluminum fins were placed in different arrangements and numbers. During the experiments, temperature and electrical output parameters were measured for three different air velocities (3.3, 3.9, and 4.5 m/s) and two different fin numbers and arrangements (54 pcs shifted and 108 pcs inline) under a constant radiation value of 1350 W/m2. While the electrical efficiency of the panel was reduced by almost 50% and decreased from 12% to 6.8% without active cooling, at 4.5-m/s air velocity and with 108 fins in inline arrangement, the electrical efficiency could be maintained at 11.5%. To compare and verify the experimental results, a heat transfer simulation model was developed with the ANSYS Fluent, and a good fit between the simulation and the test results was obtained.

  13. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    A typical photovoltaic (PV) power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. The availability and dissemination of actual test data showing the viability of advanced utility-scale PV controls among all industry stakeholders can leverage PV's value from being simply an energy resource to providing additional ancillary services that range from variability smoothing and frequency regulation to power quality. Strategically partnering with a selected utility and/or PV power plant operator is a key condition for a successful demonstration project. The U.S. Department of Energy's (DOE's) Solar Energy Technologies Officemore » selected the National Renewable Energy Laboratory (NREL) to be a principal investigator in a two-year project with goals to (1) identify a potential partner(s), (2) develop a detailed scope of work and test plan for a field project to demonstrate the gird-friendly capabilities of utility-scale PV power plants, (3) facilitate conducting actual demonstration tests, and (4) disseminate test results among industry stakeholders via a joint NREL/DOE publication and participation in relevant technical conferences. The project implementation took place in FY 2014 and FY 2015. In FY14, NREL established collaborations with AES and First Solar Electric, LLC, to conduct demonstration testing on their utility-scale PV power plants in Puerto Rico and Texas, respectively, and developed test plans for each partner. Both Puerto Rico Electric Power Authority and the Electric Reliability Council of Texas expressed interest in this project because of the importance of such advanced controls for the reliable operation of their power systems under high penetration levels of variable renewable generation. During FY15, testing was completed on both plants, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls.« less

  14. Recovery of inter-row shading losses using differential power-processing submodule DC–DC converters

    DOE PAGES

    Doubleday, Kate; Choi, Beomseok; Maksimovic, Dragan; ...

    2016-06-17

    Large commercial photovoltaic (PV) systems can experience regular and predictable energy loss due to both inter-row shading and reduced diffuse irradiance in tightly spaced arrays. This article investigates the advantages of replacing bypass diodes with submodule-integrated DC-DC converters (subMICs) to mitigate these losses. Yearly simulations of commercial-scale PV systems were conducted considering a range of row-to-row pitches. In the limit case of array spacing (unity ground coverage), subMICs can confer a 7% increase in annual energy output and peak energy density (kW h/m 2). Simulation results are based on efficiency assumptions experimentally confirmed by prototype submodule differential power-processing converters.

  15. Difference Between Dormant Conduction Sites Revealed by Adenosine Triphosphate Provocation and Unipolar Pace-Capture Sites Along the Ablation Line After Pulmonary Vein Isolation.

    PubMed

    Kogawa, Rikitake; Okumura, Yasuo; Watanabe, Ichiro; Sonoda, Kazumasa; Sasaki, Naoko; Takahashi, Keiko; Iso, Kazuki; Nagashima, Koichi; Ohkubo, Kimie; Nakai, Toshiko; Kunimoto, Satoshi; Hirayama, Atsushi

    2016-01-01

    Dormant pulmonary vein (PV) conduction revealed by adenosine/adenosine triphosphate (ATP) provocation test and exit block to the left atrium by pacing from the PV side of the ablation line ("pace and ablate" method) are used to ensure durable pulmonary vein isolation (PVI). However, the mechanistic relation between ATP-provoked PV reconnection and the unexcitable gap along the ablation line is unclear.Forty-five patients with atrial fibrillation (AF) (paroxysmal: 31 patients, persistent: 14 patients; age: 61.1 ± 9.7 years) underwent extensive encircling PVI (EEPVI, 179 PVs). After completion of EEPVI, an ATP provocation test (30 mg, bolus injection) and unipolar pacing (output, 10 mA; pulse width, 2 ms) were performed along the previous EEPVI ablation line to identify excitable gaps. Dormant conduction was revealed in 29 (34 sites) of 179 PVs (16.2%) after EEP-VI (22/45 patients). Pace capture was revealed in 59 (89 sites) of 179 PVs (33.0%) after EEPVI (39/45 patients), and overlapping sites, ie, sites showing both dormant conduction and pace capture, were observed in 22 of 179 (12.3%) PVs (17/45 patients).Some of the ATP-provoked dormant PV reconnection sites were identical to the sites with excitable gaps revealed by pace capture, but most of the PV sites were differently distributed, suggesting that the main underling mechanism differs between these two forms of reconnection. These findings also suggest that performance of the ATP provocation test followed by the "pace and ablate" method can reduce the occurrence of chronic PV reconnections.

  16. A photovoltaic catenary-tent array for the Martian surface

    NASA Technical Reports Server (NTRS)

    Crutchik, M.; Colozza, Anthony J.; Appelbaum, J.

    1993-01-01

    To provide electrical power during an exploration mission to Mars, a deployable tent-shaped structure with a flexible photovoltaic (PV) blanket is proposed. The array is designed with a self-deploying mechanism utilizing pressurized gas expansion. The structural design for the array uses a combination of cables, beams, and columns to support and deploy the PV blanket. Under the force of gravity a cable carrying a uniform load will take the shape of a catenary curve. A catenary-tent collector is self shadowing which must be taken into account in the solar radiation calculation. The shape and the area of the shadow on the array was calculated and used in the determination of the global radiation on the array. The PV blanket shape and structure dimension were optimized to achieve a configuration which maximizes the specific power (W/kg). The optimization was performed for four types of PV blankets (Si, GaAs/Ge, GaAs CLEFT, and amorphous Si) and four types of structure materials (Carbon composite, Aramid Fiber composite, Aluminum, and Magnesium). The results show that the catenary shape of the PV blanket, which produces the highest specific power, corresponds to zero end angle at the base with respect to the horizontal. The tent angle is determined by the combined effect of the array structure specific mass and the PV blanket output power. The combination of carbon composite structural material and GaAs CLEFT solar cells produce the highest specific power. The study was carried out for two sites on Mars corresponding to the Viking Lander locations. The designs were also compared for summer, winter, and yearly operation.

  17. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets

    NASA Astrophysics Data System (ADS)

    Rai, Varun; Sigrin, Benjamin

    2013-03-01

    Diffusion of microgeneration technologies, particularly rooftop photovoltaic (PV), represents a key option in reducing emissions in the residential sector. We use a uniquely rich dataset from the burgeoning residential PV market in Texas to study the nature of the consumer’s decision-making process in the adoption of these technologies. In particular, focusing on the financial metrics and the information decision-makers use to base their decisions upon, we study how the leasing and buying models affect individual choices and, thereby, the adoption of capital-intensive energy technologies. Overall, our findings suggest that the leasing model more effectively addresses consumers’ informational requirements and that, contrary to some other studies, buyers and lessees of PV do not necessarily differ significantly along socio-demographic variables. Instead, we find that the leasing model has opened up the residential PV market to a new, and potentially very large, consumer segment—those with a tight cash-flow situation.

  18. Quantifying Reliability - The Next Step for a Rapidly Maturing PV Industry and China's Role

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    2015-10-14

    PV customers wish to know how long their PV modules will last, but quantitatively predicting service life is difficult because of the large number of ways that a module can fail, the variability of the use environment, the cost of the testing, and the short product development time, especially when compared with the long desired lifetime. China should play a key role in developing international standards because China manufactures most of the world's PV modules. The presentation will describe the steps that need to be taken to create a service life prediction within the context of a defined bill ofmore » materials, process window and use environment. Worldwide standards for cost-effective approaches to service-life predictions will be beneficial to both PV customers and manufacturers since the consequences of premature module failure can be disastrous for both.« less

  19. 78 FR 7523 - Small Generator Interconnection Agreements and Procedures

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    ... requests and the growth in solar photovoltaic (PV) installations, driven in part by state renewable energy.... Background 6 A. Order No. 2006 6 B. Solar Energy Industries Association Petition.. 12 III. Need for Reform 18... of a DC generator to alternating voltage and current. For example, the output of a solar panel is DC...

  20. 76 FR 50493 - Notice of Availability of the Record of Decision for the Desert Sunlight Holdings, LLC, Desert...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... a solar photovoltaic (PV) facility, capable of producing 550 MW of electrical output. Southern... Sunlight Solar Farm (DSSF) and California Desert Conservation Area Plan Amendment, California AGENCY... . SUPPLEMENTARY INFORMATION: Desert Sunlight Holdings, LLC, a wholly owned subsidiary of First Solar, Inc., filed...

  1. Colorado | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov Websites

    -generators. Systems >10 kW must use a second meter to measure the output. Commercial customers can measures, including solar PV. Colorado Commercial Property Assessed Clean Energy (PACE) Local authorities Colorado: Commercial Rebates for My Business Renewable Energy and Energy Efficiency for Schools Loan

  2. DISTINCT: Diversity in Solar Talent Through INnovative Curriculum and Training: An Integrated Research and Education Approach towards Creating Diversity and Advancing Utility-Scale Solar Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krishnaswami, Hariharan

    The DISTINCT project research objective is to develop an innovative N-port power converter for a utility-scale PV system that is modular, compact and cost-effective and that will enable the integration of a high-frequency, high-voltage solid-state transformer. The novelty of the proposed research is the electrical power conversion architecture using an N-port converter system that replaces the output 60Hz transformer with an integrated high-frequency low-weight solid-state transformer reducing power electronics and BOS costs to meet SunShot goals through modularity and direct high-voltage interconnection. A challenge in direct integration with a 13.8kV line is the high voltage handling capacity of the convertersmore » combined with high efficiency operation. The front-end converter for each port is a Neutral-Point Clamped (NPC) Multi-Level dc-dc Dual-Active Bridge (ML-DAB) which allows Maximum Power Point Tracking (MPPT). The integrated high frequency transformer provides the galvanic isolation between the PV and grid side and also steps up the low dc voltage from PV source. Following the ML-DAB stage, in each port, is an inverter with H-bridge configuration or NPC configuration. N number of NPC inverters’ outputs are cascaded to attain the per-phase line-to-neutral voltage to connect directly to the distribution grid (i.e. 13.8 kV). The cascaded inverters have the inherent advantage of using lower rated devices, smaller filters and low Total Harmonic Distortion (THD) required for PV grid interconnection. Our analysis and simulation results show improved performance on cost, efficiency, service life with zero downtime and THD. A comprehensive control scheme is presented to ensure the maximum power from each port and each phase are sent to the grid. A functional prototype of a 2-port converter with ML-DAB and cascaded H-bridges has been designed, built, and tested in a laboratory setup to verify the target technical metrics. The N-port converter system due to its modular structure with individual control per port can be easily adapted to integrate functionalities that go well beyond the conventional grid support functions and mitigates impacts of forecasted fast ramp downs or ramp ups and single-fault conditions by automatic reconfiguration of the output.« less

  3. Experimental Evaluation of Load Rejection Over-Voltage from Grid-Tied Solar Inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, Austin; Hoke, Andy, Chakraborty, Sudipta; Ropp, Michael

    This paper investigates the impact of load rejection over-voltage (LRO) from commercially available grid-tied photovoltaic (PV) solar inverters. LRO can occur when a local feeder or breaker opens and the power output from a distributed energy resource exceeds the load power. Simplified models of current controlled inverters can over-predict over-voltage magnitudes, thus it is useful to quantify testing. The load rejection event was replicated using a hardware testbed at the National Renewable Energy Laboratory (NREL), and a set of commercially available PV inverters was tested to quantify the impact of LRO for a range of generation-to-load ratios. The magnitude andmore » duration of the over-voltage events are reported in this paper along with a discussion of characteristic inverter output behavior. The results for the inverters under test showed that maximum over-voltage magnitudes were less than 200 percent of nominal voltage, and much lower in many test cases. These research results are important because utilities that interconnect inverter-based DER need to understand their characteristics under abnormal grid conditions.« less

  4. Impact of heavy soiling on the power output of PV modules

    NASA Astrophysics Data System (ADS)

    Schill, Christian; Brachmann, Stefan; Heck, Markus; Weiss, Karl-Anders; Koehl, Michael

    2011-09-01

    Fraunhofer ISE is running a PV-module outdoor testing set-up on the Gran Canaria island, one of the Canary Island located west of Morroco in the Atlantic Ocean. The performance of the modules is assessed by IV-curve monitoring every 10 minutes. The electronic set-up of the monitoring system - consisting of individual electronic loads for each module which go into an MPP-tracking mode between the IV-measurements - will be described in detail. Soiling of the exposed modules happened because of building constructions nearby. We decided not to clean the modules, but the radiation sensors and recorded the decrease of the power output and the efficiency over time. The efficiency dropped to 20 % within 5 months before a heavy rain and subsequently the service personnel on site cleaned the modules. A smaller rain-fall in between washed the dust partly away and accumulated it at the lower part of the module, what could be concluded from the shape of the IV-curves, which were similar to partial shading by hot-spot-tests and by partial snow cover.

  5. Rooftop Solar Photovoltaic Technical Potential in the United States. A Detailed Assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could be generated if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models--one for small buildings and one for medium and large buildings--and populate them with geographicmore » variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  6. Rooftop Solar Photovoltaic Technical Potential in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gagnon, Pieter; Margolis, Robert; Melius, Jennifer

    2016-01-01

    How much energy could we generate if PV modules were installed on all of the suitable roof area in the nation? To answer this question, we first use GIS methods to process a lidar dataset and determine the amount of roof area that is suitable for PV deployment in 128 cities nationwide, containing 23% of U.S. buildings, and provide PV-generation results for a subset of those cities. We then extend the insights from that analysis to the entire continental United States. We develop two statistical models -- one for small buildings and one for medium and large buildings -- andmore » populate them with geographic variables that correlate with rooftop's suitability for PV. We simulate the productivity of PV installed on the suitable roof area, and present the technical potential of PV on both small buildings and medium/large buildings for every state in the continental US. Within the 128 cities covered by lidar data, 83% of small buildings have a location suitable for a PV installation, but only 26% of the total rooftop area of small buildings is suitable for development. The sheer number of buildings in this class, however, gives small buildings the greatest technical potential. Small building rooftops could accommodate 731 GW of PV capacity and generate 926 TWh/year of PV energy, approximately 65% of rooftop PV's total technical potential. We conclude by summing the PV-generation results for all building sizes and therefore answering our original question, estimating that the total national technical potential of rooftop PV is 1,118 GW of installed capacity and 1,432 TWh of annual energy generation. This equates to 39% of total national electric-sector sales.« less

  7. A Novel Approach to Thermal Design of Solar Modules: Selective-Spectral and Radiative Cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Dubey, Rajiv; Chattopadhyay, Shashwata

    2016-11-21

    For commercial solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 degrees C higher than the ambient. In the long run, extreme self-heating may erode efficiency and shorten lifetime, thereby, dramatically reducing the total energy output by almost ~10% Therefore, it is critically important to develop effective and practical cooling methods to combat PV self-heating. In this paper, we explore two fundamental sources of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical and thermal properties of the solar module to eliminatemore » the parasitic absorption (selective-spectral cooling) and enhance the thermal emission to the cold cosmos (radiative cooling). The proposed technique should cool the module by ~10 degrees C, to be reflected in significant long-term energy gain (~ 3% to 8% over 25 years) for PV systems under different climatic conditions.« less

  8. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system.

    PubMed

    Mohamed, Ahmed F; Elarini, Mahdi M; Othman, Ahmed M

    2014-05-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt.

  9. A new technique based on Artificial Bee Colony Algorithm for optimal sizing of stand-alone photovoltaic system

    PubMed Central

    Mohamed, Ahmed F.; Elarini, Mahdi M.; Othman, Ahmed M.

    2013-01-01

    One of the most recent optimization techniques applied to the optimal design of photovoltaic system to supply an isolated load demand is the Artificial Bee Colony Algorithm (ABC). The proposed methodology is applied to optimize the cost of the PV system including photovoltaic, a battery bank, a battery charger controller, and inverter. Two objective functions are proposed: the first one is the PV module output power which is to be maximized and the second one is the life cycle cost (LCC) which is to be minimized. The analysis is performed based on measured solar radiation and ambient temperature measured at Helwan city, Egypt. A comparison between ABC algorithm and Genetic Algorithm (GA) optimal results is done. Another location is selected which is Zagazig city to check the validity of ABC algorithm in any location. The ABC is more optimal than GA. The results encouraged the use of the PV systems to electrify the rural sites of Egypt. PMID:25685507

  10. Continuation Power Flow with Variable-Step Variable-Order Nonlinear Predictor

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Mori, Hiroyuki

    This paper proposes a new continuation power flow calculation method for drawing a P-V curve in power systems. The continuation power flow calculation successively evaluates power flow solutions through changing a specified value of the power flow calculation. In recent years, power system operators are quite concerned with voltage instability due to the appearance of deregulated and competitive power markets. The continuation power flow calculation plays an important role to understand the load characteristics in a sense of static voltage instability. In this paper, a new continuation power flow with a variable-step variable-order (VSVO) nonlinear predictor is proposed. The proposed method evaluates optimal predicted points confirming with the feature of P-V curves. The proposed method is successfully applied to IEEE 118-bus and IEEE 300-bus systems.

  11. Effectiveness of percutaneous vertebroplasty in patients with multiple myeloma having vertebral pain

    PubMed Central

    Nas, Ömer Fatih; İnecikli, Mehmet Fatih; Hacıkurt, Kadir; Büyükkaya, Ramazan; Özkaya, Güven; Özkalemkaş, Fahir; Ali, Rıdvan; Erdoğan, Cüneyt; Hakyemez, Bahattin

    2016-01-01

    PURPOSE We aimed to assess the effectiveness, benefits, and reliability of percutaneous vertebroplasty (PV) in patients with vertebral involvement of multiple myeloma. METHODS PV procedures performed on 166 vertebrae of 41 patients with multiple myeloma were retrospectively evaluated. Most of our patients were using level 3 (moderate to severe pain) analgesics. Magnetic resonance imaging was performed before the procedure to assess vertebral involvement of multiple myeloma. The following variables were evaluated: affected vertebral levels, loss of vertebral body height, polymethylmethacrylate (PMMA) cement amount applied to the vertebral body during PV, PMMA cement leakages, and pain before and after PV as assessed by a visual analogue scale (VAS). RESULTS Median VAS scores of patients decreased from 9 one day before PV, to 6 one day after the procedure, to 3 one week after the procedure, and eventually to 1 three months after the procedure (P < 0.001). During the PV procedure, cement leakage was observed at 68 vertebral levels (41%). The median value of PMMA applied to the vertebral body was 6 mL. CONCLUSION Being a minimally invasive and easily performed procedure with low complication rates, PV should be preferred for serious back pain of multiple myeloma patients. PMID:26912107

  12. An approach for the estimation of the aggregated photovoltaic power generated in several European countries from meteorological data

    NASA Astrophysics Data System (ADS)

    Saint-Drenan, Yves-Marie; Wald, Lucien; Ranchin, Thierry; Dubus, Laurent; Troccoli, Alberto

    2018-05-01

    Classical approaches to the calculation of the photovoltaic (PV) power generated in a region from meteorological data require the knowledge of the detailed characteristics of the plants, which are most often not publicly available. An approach is proposed with the objective to obtain the best possible assessment of power generated in any region without having to collect detailed information on PV plants. The proposed approach is based on a model of PV plant coupled with a statistical distribution of the prominent characteristics of the configuration of the plant and is tested over Europe. The generated PV power is first calculated for each of the plant configurations frequently found in a given region and then aggregated taking into account the probability of occurrence of each configuration. A statistical distribution has been constructed from detailed information obtained for several thousands of PV plants representing approximately 2 % of the total number of PV plants in Germany and was then adapted to other European countries by taking into account changes in the optimal PV tilt angle as a function of the latitude and meteorological conditions. The model has been run with bias-adjusted ERA-interim data as meteorological inputs. The results have been compared to estimates of the total PV power generated in two countries: France and Germany, as provided by the corresponding transmission system operators. Relative RMSE of 4.2 and 3.8 % and relative biases of -2.4 and 0.1 % were found with three-hourly data for France and Germany. A validation against estimates of the country-wide PV-power generation provided by the ENTSO-E for 16 European countries has also been conducted. This evaluation is made difficult by the uncertainty on the installed capacity corresponding to the ENTSO-E data but it nevertheless allows demonstrating that the model output and TSO data are highly correlated in most countries. Given the simplicity of the proposed approach these results are very encouraging. The approach is particularly suited to climatic timescales, both historical and future climates, as demonstrated here.

  13. New formulation feed method in tariff model of solar PV in Indonesia

    NASA Astrophysics Data System (ADS)

    Djamal, Muchlishah Hadi; Setiawan, Eko Adhi; Setiawan, Aiman

    2017-03-01

    Geographically, Indonesia has 18 latitudes that correlated strongly with the potential of solar radiation for the implementation of solar photovoltaic (PV) technologies. This is becoming the basis assumption to develop a proportional model of Feed In Tariff (FIT), consequently the FIT will be vary, according to the various of latitudes in Indonesia. This paper proposed a new formulation of solar PV FIT based on the potential of solar radiation and some independent variables such as latitude, longitude, Levelized Cost of Electricity (LCOE), and also socio-economic. The Principal Component Regression (PCR) method is used to analyzed the correlation of six independent variables C1-C6 then three models of FIT are presented. Model FIT-2 is chosen because it has a small residual value and has higher financial benefit compared to the other models. This study reveals the value of variable FIT associated with solar energy potential in each region, can reduce the total FIT to be paid by the state around 80 billion rupiahs in 10 years of 1 MW photovoltaic operation at each 34 provinces in Indonesia.

  14. Fault detection and diagnosis of photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Wu, Xing

    The rapid growth of the solar industry over the past several years has expanded the significance of photovoltaic (PV) systems. One of the primary aims of research in building-integrated PV systems is to improve the performance of the system's efficiency, availability, and reliability. Although much work has been done on technological design to increase a photovoltaic module's efficiency, there is little research so far on fault diagnosis for PV systems. Faults in a PV system, if not detected, may not only reduce power generation, but also threaten the availability and reliability, effectively the "security" of the whole system. In this paper, first a circuit-based simulation baseline model of a PV system with maximum power point tracking (MPPT) is developed using MATLAB software. MATLAB is one of the most popular tools for integrating computation, visualization and programming in an easy-to-use modeling environment. Second, data collection of a PV system at variable surface temperatures and insolation levels under normal operation is acquired. The developed simulation model of PV system is then calibrated and improved by comparing modeled I-V and P-V characteristics with measured I--V and P--V characteristics to make sure the simulated curves are close to those measured values from the experiments. Finally, based on the circuit-based simulation model, a PV model of various types of faults will be developed by changing conditions or inputs in the MATLAB model, and the I--V and P--V characteristic curves, and the time-dependent voltage and current characteristics of the fault modalities will be characterized for each type of fault. These will be developed as benchmark I-V or P-V, or prototype transient curves. If a fault occurs in a PV system, polling and comparing actual measured I--V and P--V characteristic curves with both normal operational curves and these baseline fault curves will aid in fault diagnosis.

  15. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance,more » cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.« less

  16. Evaluating the performance of a 50 kilowatt grid-connected photovoltaic system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chowdhury, B.H.; Muknahallipatn, S.; Cupal, J.J.

    A 50-kilowatt solar photovoltaic (PV) system was built at the University of Wyoming (UW) in 1996. The system comprises of three sub-systems. The first sub-system, a 10 kW roof-integrated system is located on the roof of the Engineering Building. The second sub-system is a 5 kW rack-mounted, ballasted PV system located on another part of the roof. The third sub-system is a 35 kW shade structure and is located adjacent to the university's football stadium. The three sub-systems differ in their design strategy since each is being used for research and education at the university. Each sub-system, being located atmore » some distance away from one another, supplies a different part of the campus grid. Efforts are continuing for setting up a central monitoring system, which will receive data remotely from all locations. A part of this monitoring system is complete. The system as configured provides a great deal of flexibility, which is in turn demanded by the variety of signal types measured at each installation. Each installation requires measurement of multiple dc and ac voltages and currents and one slowly varying voltage (proportional to solar insolation). The simultaneous sampling, fast sample rate, and lowpass signal conditioning allow for accurate measurement of power factor and total harmonic distortion of the inverter outputs. Panel and inverter efficiencies can be determined via simultaneous DC and AC measurements. These performance monitors provide the essential data for characterization of the PV effect at the grid input, and enable the use of intelligent power factor correction and harmonic filtering. Monitoring of the system shows that the total harmonic distortion present in the ac power output is at or below the acceptable limit as recommended by IEEE 519-1992. The harmonic distortion worsens when the ac power reaches more than 3.8 kW. A number of reliability problems with PV modules and inverters have delayed full functionality of the system.« less

  17. Role of Concentrating Solar Power in Integrating Solar and Wind Energy: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denholm, P.; Mehos, M.

    2015-06-03

    As wind and solar photovoltaics (PV) increase in penetration it is increasingly important to examine enabling technologies that can help integrate these resources at large scale. Concentrating solar power (CSP) when deployed with thermal energy storage (TES) can provide multiple services that can help integrate variable generation (VG) resources such as wind and PV. CSP with TES can provide firm, highly flexible capacity, reducing minimum generation constraints which limit penetration and results in curtailment. By acting as an enabling technology, CSP can complement PV and wind, substantially increasing their penetration in locations with adequate solar resource.

  18. Simulation and optimum design of hybrid solar-wind and solar-wind-diesel power generation systems

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    Solar and wind energy systems are considered as promising power generating sources due to its availability and topological advantages in local power generations. However, a drawback, common to solar and wind options, is their unpredictable nature and dependence on weather changes, both of these energy systems would have to be oversized to make them completely reliable. Fortunately, the problems caused by variable nature of these resources can be partially overcome by integrating these two resources in a proper combination to form a hybrid system. However, with the increased complexity in comparison with single energy systems, optimum design of hybrid system becomes more complicated. In order to efficiently and economically utilize the renewable energy resources, one optimal sizing method is necessary. This thesis developed an optimal sizing method to find the global optimum configuration of stand-alone hybrid (both solar-wind and solar-wind-diesel) power generation systems. By using Genetic Algorithm (GA), the optimal sizing method was developed to calculate the system optimum configuration which offers to guarantee the lowest investment with full use of the PV array, wind turbine and battery bank. For the hybrid solar-wind system, the optimal sizing method is developed based on the Loss of Power Supply Probability (LPSP) and the Annualized Cost of System (ACS) concepts. The optimization procedure aims to find the configuration that yields the best compromise between the two considered objectives: LPSP and ACS. The decision variables, which need to be optimized in the optimization process, are the PV module capacity, wind turbine capacity, battery capacity, PV module slope angle and wind turbine installation height. For the hybrid solar-wind-diesel system, minimization of the system cost is achieved not only by selecting an appropriate system configuration, but also by finding a suitable control strategy (starting and stopping point) of the diesel generator. The optimal sizing method was developed to find the system optimum configuration and settings that can achieve the custom-required Renewable Energy Fraction (fRE) of the system with minimum Annualized Cost of System (ACS). Du to the need for optimum design of the hybrid systems, an analysis of local weather conditions (solar radiation and wind speed) was carried out for the potential installation site, and mathematical simulation of the hybrid systems' components was also carried out including PV array, wind turbine and battery bank. By statistically analyzing the long-term hourly solar and wind speed data, Hong Kong area is found to have favorite solar and wind power resources compared with other areas, which validates the practical applications in Hong Kong and Guangdong area. Simulation of PV array performance includes three main parts: modeling of the maximum power output of the PV array, calculation of the total solar radiation on any tilted surface with any orientations, and PV module temperature predictions. Five parameters are introduced to account for the complex dependence of PV array performance upon solar radiation intensities and PV module temperatures. The developed simulation model was validated by using the field-measured data from one existing building-integrated photovoltaic system (BIPV) in Hong Kong, and good simulation performance of the model was achieved. Lead-acid batteries used in hybrid systems operate under very specific conditions, which often cause difficulties to predict when energy will be extracted from or supplied to the battery. In this thesis, the lead-acid battery performance is simulated by three different characteristics: battery state of charge (SOC), battery floating charge voltage and the expected battery lifetime. Good agreements were found between the predicted values and the field-measured data of a hybrid solar-wind project. At last, one 19.8kW hybrid solar-wind power generation project, designed by the optimal sizing method and set up to supply power for a telecommunication relay station on a remote island of Guangdong province, was studied. Simulation and experimental results about the operating performances and characteristics of the hybrid solar-wind project have demonstrated the feasibility and accuracy of the recommended optimal sizing method developed in this thesis.

  19. Device Performance Capabilities | Photovoltaic Research | NREL

    Science.gov Websites

    multijunction cells and modules. We use I-V measurement systems to assess the main performance parameters for PV cells and modules. I-V measurement systems determine the output performance of devices, including: open the device (η). Some I-V systems may also be used to perform dark I-V measurements to determine diode

  20. Experiences of a grid connected solar array energy production

    NASA Astrophysics Data System (ADS)

    Hagymássy, Zoltán; Vántus, András

    2015-04-01

    Solar energy possibilities of Hungary are higher than in Central Europe generally. The Institute for Land Utilisation, Technology and Regional Development of the University of Debrecen installed a photovoltaic (PV) system. The PV system is structured into 3 subsystems (fields). The first subsystem has 24 pieces of Kyocera KC 120 W type modules, the second subsystem has 72 pieces of Siemens ST 40W, and the remaining has 72 pieces of Dunasolar DS 40W In order to be operable independently of each other three inverter modules (SB 2500) had been installed. The recorder can be connected directly to a desktop PC. Operating and meteorological dates are recorded by MS Excel every 15 minutes. The power plant is connected to a weather station, which contents a PT 100 type temperature and humidity combined measuring instrument, a CM 11 pyranometer, and a wind speed measuring instrument. The produced DC, and AC power, together with the produced energy are as well, and the efficiency can be determined for each used PV technology. The measured operating and meteorological dates are collected by Sunny Boy Control, produced by the SMA. The energy productions of the subsystems are measured continually and the subsystems are measured separately. As an expected, the produced energy of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. It is well known that energy analysis is more suitable for energy balance when we design a system. The air temperature and the temperature of the panels and the global irradiation conditions were measured. In summertime the panel temperature reaches 60-80 degrees in a sunny day. The panel temperatures are in a spring sunny day approximately 30-40 degrees. It can be concluded that the global irradiation is a major impact feature to influence the amount of energy produced. The efficiency depends on several parameters (spectral distribution of the incoming light, temperature values, etc.). The energy efficiency of a PV system in general can be defined as the ratio of the output energy of the system to the input energy received on the photovoltaic surface. As an expected, the energy efficiencies of polycrystalline -Si PV module and monocrystalline -Si PV was higher than amorphous-Si PV module. Based on our study, in general it can be concluded that the energy efficiency is lower than theoretical.

  1. Vortex Rossby Waves in Hurricanes Katrina and Rita (2005)

    NASA Astrophysics Data System (ADS)

    Judt, F.; Chen, S. S.

    2007-12-01

    Radar observations in hurricanes reveal inner spiraling rainbands emanating from the eyewall and propagating outward. Theoretical analysis indicated that these inner bands are azimuthally and radially propagating vortex Rossby waves (VRW). The outward propagating waves convey PV from the inner core to outer regions and thus lead to PV redistribution within a hurricane. It has been hypothesized that the outward propogating VRWs may play a role in interacting with an existing secondary PV ring in the outer region of a hurricane, which could lead to a development of concentric eyewalls. However, the lack of simultaneous observations over the inner-core and rainband regions is a major difficulty in our understanding of the complex interaction. The importance of VRWs in hurricane intensity change remains to be a question. This study aims to address the question using high- resolution model (MM5) forecasts of Hurricanes Katrina and Rita during the Hurricane Rainbands and Intensity Change Experiment (RAINEX) in 2005. The two major hurricanes went through a similar rapid intensification over the Gulf of Mexico. Both RAINEX observations and model forecast fields showed that Rita developed a secondary eyewall and went through an eyewall replacement before landfall, whereas Katrina did not. We analyze the model output at 1.67 km grid-resolution with 12-min time intervals. Azimuthally and radially propagating VRWs were found in the PV, rainrate, and vertical velocity fields in both storms. In the case of Katrina, no secondary PV maximum exists due to the lack of highly circular rainbands. Thus the VRWs propagate outward smoothly over a relatively long distance. No VRW activity has been found beyond 80-100 km radius in Katrina. This result indicates that interaction between the VRWs and outer PV disturbance must take place within this region, otherwise no effect concerning the importance of VRW would occur. The stagnation radius depends on the background PV- gradient which itself can be changed by wave-redistributed PV. It is also a function of the azimuthal wavenumber. Higher wavenumbers generally propagate farther and are thus more likely to interact with outer PV disturbance in the first place. In contrast, Rita developed a PV ring in the outer rainband region. Detailed analysis of Rita is underway. The comparison between the two hurricanes may shed some lights on the interaction of VRWs and rainbands as well as its implication on hurricane intensity change.

  2. ENVI-PV: An Interactive Web Client for Multi-Criteria Life Cycle Assessment of Photovoltaic Systems Worldwide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perez-Lopez, Paula; Gschwind, Benoit; Blanc, Philippe

    Solar photovoltaics (PV) is the second largest source of new capacity among renewable energies. The worldwide capacity encompassed 135 GW in 2013 and is estimated to increase to 1721 GW in 2030 and 4674 GW in 2050, according to a prospective high-renewable scenario. To achieve this production level while minimizing environmental impacts, decision makers must have access to environmental performance data that reflect their high spatial variability accurately. We propose ENVI-PV (http://viewer.webservice-energy.org/project_iea), a new interactive tool that provides maps and screening level data, based on weighted average supply chains, for the environmental performance of common PV technologies. Environmental impacts ofmore » PV systems are evaluated according to a life cycle assessment approach. ENVI-PV was developed using a state-of-the-art interoperable and open standard Web Service framework from the Open Geospatial Consortium (OGC). It combines the latest life cycle inventories, published in 2015 by the International Energy Agency (IEA) under the Photovoltaic Power Systems Program (PVPS) Task 12, and some inventories previously published from Ecoinvent v2.2 database with solar irradiation estimates computed from the worldwide NASA SSE database. ENVI-PV is the first tool to propose a worldwide coverage of environmental performance of PV systems using a multi-criteria assessment. The user can compare the PV environmental performance to the environmental footprint of country electricity mixes. ENVI-PV is designed as an environmental interactive tool to generate PV technological options and evaluate their performance in different spatial and techno-economic contexts. Its potential applications are illustrated in this paper with several examples.« less

  3. Numerical modeling of uncertainty and variability in the technology, manufacturing, and economics of crystalline silicon photovoltaics

    NASA Astrophysics Data System (ADS)

    Ristow, Alan H.

    2008-10-01

    Electricity generated from photovoltaics (PV) promises to satisfy the world's ever-growing thirst for energy without significant pollution and greenhouse gas emissions. At present, however, PV is several times too expensive to compete economically with conventional sources of electricity delivered via the power grid. To ensure long-term success, must achieve cost parity with electricity generated by conventional sources of electricity. This requires detailed understanding of the relationship between technology and economics as it pertains to PV devices and systems. The research tasks of this thesis focus on developing and using four types of models in concert to develop a complete picture of how solar cell technology and design choices affect the quantity and cost of energy produced by PV systems. It is shown in this thesis that high-efficiency solar cells can leverage balance-of-systems (BOS) costs to gain an economic advantage over solar cells with low efficiencies. This advantage is quantified and dubbed the "efficiency premium." Solar cell device models are linked to models of manufacturing cost and PV system performance to estimate both PV system cost and performance. These, in turn, are linked to a model of levelized electricity cost to estimate the per-kilowatt-hour cost of electricity produced by the PV system. A numerical PV module manufacturing cost model is developed to facilitate this analysis. The models and methods developed in this thesis are used to propose a roadmap to high-efficiency multicrystalline-silicon PV modules that achieve cost parity with electricity from the grid. The impact of PV system failures on the cost of electricity is also investigated; from this, a methodology is proposed for improving the reliability of PV inverters.

  4. Effects of dust accumulation and module cleaning on performance ratio of solar rooftop system and solar power plants

    NASA Astrophysics Data System (ADS)

    Sakarapunthip, Nattakarn; Chenvidhya, Dhirayut; Chuangchote, Surawut; Kirtikara, Krissanapong; Chenvidhya, Tanokkorn; Onreabroy, Wandee

    2017-08-01

    Thailand is an agricultural country, with rice, sugar, and cassava as the major export products. Production of rice, sugar cane, and cassava entails agricultural activities that give rise to significant airborne dusts. In this work, five photovoltaic (PV) units (one solar rooftop and four power plants) are selected for the study. From the study of dust accumulation on glass surface located near rice farms, it was found that opaque areas due to the deposition of dust are 11-14% after 1-2-week exposure. As a consequence, PV system performance is affected. Performance ratio was calculated to determine these effects. Overall results reveal that during the dry and hot seasons, dust deposition significantly affects the performance ratio. The performance ratio reduces by 1.6-3% for 1-month dust accumulation and reduces by 6-8% for 2-month dust accumulation. After cleaning the dust accumulated, the performance ratio greatly increases, resulting in the increase in the energy output by 10%. This increase provides economic and cost benefits of PV cleaning. The performance ratio is not significantly changed during the rainy season, which PV modules are relatively clean as the dust is washed away by rain. It was also found that most of the solar power plants in Thailand still rely on manual cleaning of PV modules with washing water followed by wiping. However, only one power plant, employs a machine for cleaning, resulting in lower cleaning costs.

  5. Comparative study on laser tissue ablation between PV and HPS lasers

    NASA Astrophysics Data System (ADS)

    Kang, Hyun Wook; Jebens, David; Mitchell, Gerald; Koullick, Ed

    2008-02-01

    Laser therapy for obstructive benign prostatic hyperplasia (BPH) has gained broad adoption due to effective tissue removal, immediate hemostasis, and minor complications. The aim of this study is to quantitatively compare ablation characteristics of PV (Photoselective Vaporization) and the newly introduced HPS (High Performance System) 532 nm lasers. Bovine prostatic tissues were ablated in vitro, using a custom-made scanning system. Laser-induced volume produced by two lasers was quantified as a function of applied power, fiber working distance (WD), and treatment speed. Given the same power of 80 W and speed of 4 mm/s, HPS created up to 50 % higher tissue ablation volume than PV did. PV induced a rapid decrease of ablation volume when WD increased from 0.5 mm to 3 mm while HPS yielded almost constant tissue removal up to 3 mm for both 80 W and 120 W. As the treatment speed increased, both lasers reached saturation in tissue ablation volume. Lastly, both PV and HPS lasers exhibited approximately 1 mm thick heat affected zone (HAZ) in this study although HPS created twice deeper ablation channels with a depth of up to 4 mm. Due to a smaller beam size and a higher output power, HPS maximized tissue ablation rate with minimal thermal effects to the adjacent tissue. Furthermore, more collimated beam characteristics provides more spatial flexibility and may even help to decrease the rate of fiber degradation associated with thermal damage from debris reattachment to the tip.

  6. Local short-term variability in solar irradiance

    NASA Astrophysics Data System (ADS)

    Lohmann, Gerald M.; Monahan, Adam H.; Heinemann, Detlev

    2016-05-01

    Characterizing spatiotemporal irradiance variability is important for the successful grid integration of increasing numbers of photovoltaic (PV) power systems. Using 1 Hz data recorded by as many as 99 pyranometers during the HD(CP)2 Observational Prototype Experiment (HOPE), we analyze field variability of clear-sky index k* (i.e., irradiance normalized to clear-sky conditions) and sub-minute k* increments (i.e., changes over specified intervals of time) for distances between tens of meters and about 10 km. By means of a simple classification scheme based on k* statistics, we identify overcast, clear, and mixed sky conditions, and demonstrate that the last of these is the most potentially problematic in terms of short-term PV power fluctuations. Under mixed conditions, the probability of relatively strong k* increments of ±0.5 is approximately twice as high compared to increment statistics computed without conditioning by sky type. Additionally, spatial autocorrelation structures of k* increment fields differ considerably between sky types. While the profiles for overcast and clear skies mostly resemble the predictions of a simple model published by , this is not the case for mixed conditions. As a proxy for the smoothing effects of distributed PV, we finally show that spatial averaging mitigates variability in k* less effectively than variability in k* increments, for a spatial sensor density of 2 km-2.

  7. Optical analysis of a photovoltaic V-trough system installed in western India.

    PubMed

    Maiti, Subarna; Sarmah, Nabin; Bapat, Pratap; Mallick, Tapas K

    2012-12-20

    The low concentrating photovoltaic (PV) system such as a 2× V-trough system can be a promising choice for enhancing the power output from conventional PV panels with the inclusion of thermal management. This system is more attractive when the reflectors are retrofitted to the stationary PV panels installed in a high aspect ratio in the north-south direction and are tracked 12 times a year manually according to preset angles, thus eliminating the need of diurnal expensive tracking. In the present analysis, a V-trough system facing exactly the south direction is considered, where the tilt angle of the PV panels' row is kept constant at 18.34°. The system is installed on the terrace of CSIR-Central Salt and Marine Chemicals Research Institute in Bhavnagar, Gujarat, India (21.47 N, 71.15 E). The dimension of the entire PV system is 9.64 m×0.55 m. The V-troughs made of anodized aluminum reflectors (70% specular reflectivity) had the same dimensions. An in-house developed; experimentally validated Monte Carlo ray-trace model was used to study the effect of the angular variation of the reflectors throughout a year for the present assembly. Results of the ray trace for the optimized angles showed the maximum simulated optical efficiency to be 85.9%. The spatial distribution of solar intensity over the 0.55 m dimension of the PV panel due to the V-trough reflectors was also studied for the optimized days in periods that included solstices and equinoxes. The measured solar intensity profiles with and without the V-trough system were used to calculate the actual optical efficiencies for several sunny days in the year, and results were validated with the simulated efficiencies within an average error limit of 10%.

  8. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habte, A.; Andreas, A.; Ottoson, L.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements ofmore » the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.« less

  9. Dynamic of small photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mehrmann, A.; Kleinkauf, W.; Pigorsch, W.; Steeb, H.

    The results of 1.5 yr of field-testing of two photovoltaic (PV) power plants, one equipped with an electrolyzer and H2 storage, are reported. Both systems were interconnected with the grid and featured the PV module, a power conditioning unit, ac and dc load connections, and control units. The rated power of both units was 100 Wp. The system with electrolysis was governed by control laws which maximized the electrolyzer current. The tests underscored the preference for a power conditioning unit, rather than direct output to load connections. A 1 kWp system was developed in a follow-up program and will be tested in concert with electrolysis and interconnection with several grid customers. The program is geared to eventual development of larger units for utility-size applications.

  10. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2017-08-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  11. The role of potential vorticity anomalies in the Somali Jet on Indian Summer Monsoon Intraseasonal Variability

    NASA Astrophysics Data System (ADS)

    Rai, P.; Joshi, M.; Dimri, A. P.; Turner, A. G.

    2018-06-01

    The climate of the Indian subcontinent is dominated by rainfall arising from the Indian summer monsoon (ISM) during June to September. Intraseasonal variability during the monsoon is characterized by periods of heavy rainfall interspersed by drier periods, known as active and break events respectively. Understanding and predicting such events is of vital importance for forecasting human impacts such as water resources. The Somali Jet is a key regional feature of the monsoon circulation. In the present study, we find that the spatial structure of Somali Jet potential vorticity (PV) anomalies varies considerably during active and break periods. Analysis of these anomalies shows a mechanism whereby sea surface temperature (SST) anomalies propagate north/northwestwards through the Arabian Sea, caused by a positive feedback loop joining anomalies in SST, convection, modification of PV by diabatic heating and mixing in the atmospheric boundary layer, wind-stress curl, and ocean upwelling processes. The feedback mechanism is consistent with observed variability in the coupled ocean-atmosphere system on timescales of approximately 20 days. This research suggests that better understanding and prediction of monsoon intraseasonal variability in the South Asian monsoon may be gained by analysis of the day-to-day dynamical evolution of PV in the Somali Jet.

  12. Suitability of representative electrochemical energy storage technologies for ramp-rate control of photovoltaic power

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Fletcher, John; Burr, Patrick; Hall, Charles; Zheng, Bowen; Wang, Da-Wei; Ouyang, Zi; Lennon, Alison

    2018-04-01

    Photovoltaic (PV) systems can exhibit rapid variances in their power output due to irradiance changes which can destabilise an electricity grid. This paper presents a quantitative comparison of the suitability of different electrochemical energy storage system (ESS) technologies to provide ramp-rate control of power in PV systems. Our investigations show that, for PV systems ranging from residential rooftop systems to megawatt power systems, lithium-ion batteries with high energy densities (up to 600 Wh L-1) require the smallest power-normalised volumes to achieve the ramp rate limit of 10% min-1 with 100% compliance. As the system size increases, the ESS power-normalised volume requirements are significantly reduced due to aggregated power smoothing, with high power lithium-ion batteries becoming increasingly more favourable with increased PV system size. The possibility of module-level ramp-rate control is also introduced, and results show that achievement of a ramp rate of 10% min-1 with 100% compliance with typical junction box sizes will require ESS energy and power densities of 400 Wh L-1 and 2300 W L-1, respectively. While module-level ramp-rate control can reduce the impact of solar intermittence, the requirement is challenging, especially given the need for low cost and long cycle life.

  13. A state-of-the-art compact SiC photovoltaic inverter with maximum power point tracking function

    NASA Astrophysics Data System (ADS)

    Ando, Yuji; Oku, Takeo; Yasuda, Masashi; Ushijima, Kazufumi; Matsuo, Hiroshi; Murozono, Mikio

    2018-01-01

    We have developed a 150-W SiC-based photovoltaic (PV)-inverter with the maximum power point tracking (MPPT) function. The newly developed inverter achieved a state-of-the-art combination of the weight (0.79 kg) and the volume (790 mm3) as a 150-250 W class PV-inverter. As compared to the original version that we have previously reported, the weight and volume were decreased by 37% and 38%, respectively. This compactness originated from the optimized circuit structure and the increased density of a wiring circuit. Conversion efficiencies of the MPPT charge controller and the direct current (DC)-alternating current (AC) converter reached 96.4% and 87.6%, respectively. These efficiency values are comparable to those for the original version. We have developed a PV power generation system consisting of this inverter, a spherical Si solar cell module, and a 15-V Li-ion laminated battery. The total weight of the system was below 6 kg. The developed system exhibited stable output power characteristics, even when the weather conditions were fluctuated. These compactness, high efficiencies, and excellent stability clearly indicated the feasibility of SiC power devices even for sub-kW class PV power generation systems.

  14. Holographic lens spectrum splitting photovoltaic system for increased diffuse collection and annual energy yield

    NASA Astrophysics Data System (ADS)

    Vorndran, Shelby D.; Wu, Yuechen; Ayala, Silvana; Kostuk, Raymond K.

    2015-09-01

    Concentrating and spectrum splitting photovoltaic (PV) modules have a limited acceptance angle and thus suffer from optical loss under off-axis illumination. This loss manifests itself as a substantial reduction in energy yield in locations where a significant portion of insulation is diffuse. In this work, a spectrum splitting PV system is designed to efficiently collect and convert light in a range of illumination conditions. The system uses a holographic lens to concentrate shortwavelength light onto a smaller, more expensive indium gallium phosphide (InGaP) PV cell. The high efficiency PV cell near the axis is surrounded with silicon (Si), a less expensive material that collects a broader portion of the solar spectrum. Under direct illumination, the device achieves increased conversion efficiency from spectrum splitting. Under diffuse illumination, the device collects light with efficiency comparable to a flat-panel Si module. Design of the holographic lens is discussed. Optical efficiency and power output of the module under a range of illumination conditions from direct to diffuse are simulated with non-sequential raytracing software. Using direct and diffuse Typical Metrological Year (TMY3) irradiance measurements, annual energy yield of the module is calculated for several installation sites. Energy yield of the spectrum splitting module is compared to that of a full flat-panel Si reference module.

  15. Draft Whole Genome Sequence Analyses on Pseudomonas syringae pv. actinidiae Hypersensitive Response Negative Strains Detected from Kiwifruit Bleeding Sap Samples.

    PubMed

    Biondi, Enrico; Zamorano, Alan; Vega, Ernesto; Ardizzi, Stefano; Sitta, Davide; De Salvador, Flavio Roberto; Campos-Vargas, Reinaldo; Meneses, Claudio; Perez, Set; Bertaccini, Assunta; Fiore, Nicola

    2018-05-01

    Kiwifruit bleeding sap samples, collected in Italian and Chilean orchards from symptomatic and asymptomatic plants, were evaluated for the presence of Pseudomonas syringae pv. actinidiae, the causal agent of bacterial canker. The saps were sampled during the spring in both hemispheres, before the bud sprouting, during the optimal time window for the collection of an adequate volume of sample for the early detection of the pathogen, preliminarily by molecular assays, and then through its direct isolation and identification. The results of molecular analyses showed more effectiveness in the P. syringae pv. actinidiae detection when compared with those of microbiological analyses through the pathogen isolation on the nutritive and semiselective media selected. The bleeding sap analyses allowed the isolation and identification of two hypersensitive response (HR) negative and hypovirulent P. syringae pv. actinidiae strains from different regions in Italy. Moreover, multilocus sequence analysis (MLSA) and whole genome sequence (WGS) were carried out on selected Italian and Chilean P. syringae pv. actinidiae virulent strains to verify the presence of genetic variability compared with the HR negative strains and to compare the variability of selected gene clusters between strains isolated in both countries. All the strains showed the lack of argK and coronatine gene clusters as reported for the biovar 3 P. syringae pv. actinidiae strains. Despite the biologic differences obtained in the tobacco bioassays and in pathogenicity assays, the MLSA and WGS analyses did not show significant differences between the WGS of the HR negative and HR positive strains; the difference, on the other hand, between PAC_ICE sequences of Italian and Chilean P. syringae pv. actinidiae strains was confirmed. The inability of the hypovirulent strains IPV-BO 8893 and IPV-BO 9286 to provoke HR in tobacco and the low virulence shown in this host could not be associated with mutations or recombinations in T3SS island.

  16. Integrating Solar Power onto the Electric Grid - Bridging the Gap between Atmospheric Science, Engineering and Economics

    NASA Astrophysics Data System (ADS)

    Ghonima, M. S.; Yang, H.; Zhong, X.; Ozge, B.; Sahu, D. K.; Kim, C. K.; Babacan, O.; Hanna, R.; Kurtz, B.; Mejia, F. A.; Nguyen, A.; Urquhart, B.; Chow, C. W.; Mathiesen, P.; Bosch, J.; Wang, G.

    2015-12-01

    One of the main obstacles to high penetrations of solar power is the variable nature of solar power generation. To mitigate variability, grid operators have to schedule additional reliability resources, at considerable expense, to ensure that load requirements are met by generation. Thus despite the cost of solar PV decreasing, the cost of integrating solar power will increase as penetration of solar resources onto the electric grid increases. There are three principal tools currently available to mitigate variability impacts: (i) flexible generation, (ii) storage, either virtual (demand response) or physical devices and (iii) solar forecasting. Storage devices are a powerful tool capable of ensuring smooth power output from renewable resources. However, the high cost of storage is prohibitive and markets are still being designed to leverage their full potential and mitigate their limitation (e.g. empty storage). Solar forecasting provides valuable information on the daily net load profile and upcoming ramps (increasing or decreasing solar power output) thereby providing the grid advance warning to schedule ancillary generation more accurately, or curtail solar power output. In order to develop solar forecasting as a tool that can be utilized by the grid operators we identified two focus areas: (i) develop solar forecast technology and improve solar forecast accuracy and (ii) develop forecasts that can be incorporated within existing grid planning and operation infrastructure. The first issue required atmospheric science and engineering research, while the second required detailed knowledge of energy markets, and power engineering. Motivated by this background we will emphasize area (i) in this talk and provide an overview of recent advancements in solar forecasting especially in two areas: (a) Numerical modeling tools for coastal stratocumulus to improve scheduling in the day-ahead California energy market. (b) Development of a sky imager to provide short term forecasts (0-20 min ahead) to improve optimization and control of equipment on distribution feeders with high penetration of solar. Leveraging such tools that have seen extensive use in the atmospheric sciences supports the development of accurate physics-based solar forecast models. Directions for future research are also provided.

  17. The impact of climate change on photovoltaic power generation in Europe

    PubMed Central

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; López-Romero, Jose María; Thais, Françoise; Bartok, Blanka; Christensen, Ole Bøssing; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2015-01-01

    Ambitious climate change mitigation plans call for a significant increase in the use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared with the estimations made under current climate conditions should be in the range (−14%;+2%), with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. PMID:26658608

  18. Plasma volume shifts and exercise thermoregulation with water immersion and six-degree head-down tilt

    NASA Technical Reports Server (NTRS)

    Ertl, Andrew Carl

    1994-01-01

    The hypothesized fluid shifts and resultant responses that occur during spaceflight are simulated by six-degree head down tilt (HDT) and water immersion (WI). The purpose of this study was to compare exercise thermoregulation before and after physiologic mechanisms reduce plasma volume (PV) in response to 24-hr HDT (HDT24). A secondary study utilized WI to reproduce the PV reduction of HDT24. Seven males were studied in two conditions: during 70 minutes of supine cycling ergometry at 58 percent of peak oxygen consumption following 1-hr HDT (HDT1) and HDT24; and up to 6 hr WI at 34.5 C. Plasma volume was reduced by 10.4 percent in HDT24 when compared to HDT1. Pre-exercise rectal temperature, T(sub re), was an average 0.22 C higher after HDT24. Rectal temperature increased during exercise with no interaction between time and treatment. The reduced PV and elevated pre-exercise T(sub re) had offsetting effects on thermoregulatory mechanisms, suggesting no alteration in the response at a given T(sub re). Plasma volume was reduced by 4.3 +/- 2.3 percent and 1.1 +/- 1.8 percent following HDT24 and WI, respectively, compared to upright chair rest. Although the reductions in PV were not significantly different, great intra-individual variability was evident. The ability to reproduce PV changes consistently with HDT and WI is limited by this variability.

  19. 26+ Year Old Photovoltaic Power Plant: Degradation and Reliability Evaluation of Crystalline Silicon Modules -- South Array

    NASA Astrophysics Data System (ADS)

    Olakonu, Kolapo

    As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kW dc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kW ac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.

  20. Spectroscopic ellipsometry for analysis of polycrystalline thin-film photovoltaic devices and prediction of external quantum efficiency

    NASA Astrophysics Data System (ADS)

    Ibdah, Abdel-Rahman; Koirala, Prakash; Aryal, Puruswottam; Pradhan, Puja; Marsillac, Sylvain; Rockett, Angus A.; Podraza, Nikolas J.; Collins, Robert W.

    2017-11-01

    Complete polycrystalline thin-film photovoltaic (PV) devices employing CuIn1-xGaxSe2/CdS and CdS/CdTe heterojunctions have been studied by ex situ spectroscopic ellipsometry (SE). In this study, layer thicknesses have been extracted along with photon energy independent parameters such as compositions that describe the dielectric function spectra ε(E) of the individual layers. For accurate ex situ SE analysis of these PV devices, a database of ε(E) spectra is required for all thin film component materials used in each of the two absorber technologies. When possible, database measurements are performed by applying SE in situ immediately after deposition of the thin film materials and after cooling to room temperature in order to avoid oxidation and surface contamination. Determination of ε(E) from the resulting in situ SE data requires structural information that can be obtained from analysis of SE data acquired in real time during the deposition process. From the results of ex situ analysis of the complete CuIn1-xGaxSe2 (CIGS) and CdTe PV devices, the deduced layer thicknesses in combination with the parameters describing ε(E) can be employed in further studies that simulate the external quantum efficiency (EQE) spectra of the devices. These simulations have been performed here by assuming that all electron-hole pairs generated within the active layers, i.e. layers incorporating a dominant absorber component (either CIGS or CdTe), are separated and collected. The active layers may include not only the bulk absorber but also window and back contact interface layers, and individual current contributions from these layers have been determined in the simulations. In addition, the ex situ SE analysis results enable calculation of the absorbance spectra for the inactive layers and the overall reflectance spectra, which lead to quantification of all optical losses in terms of a current density deficit. Mapping SE can be performed given the high speed of multichannel ellipsometers employing array detection, and the resulting EQE simulation capability has wide applications in predicting large area PV module output. The ultimate goal is an on-line capability that enables prediction of PV sub-cell current output as early as possible in the production process.

  1. Methodological Guidelines on Net Energy Analysis of Photovoltaic Electricity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Raugei, Marco; Frischknecht, Rolf; Olson, Carol

    Net Energy Analysis (NEA) is a structured, comprehensive method of quantifying the extent to which a given energy source is able to provide a net energy gain (i.e., an energy surplus) to the end user, after accounting for all the energy losses occurring along the chain of processes that are required to exploit it (i.e., for its extraction, processing and transformation into a usable energy carrier, and delivery to the end user), as well as for all the additional energy 'investments' that are required in order to carry out the same chain of processes. However, this general framework leaves themore » individual practitioner with a range of choices that can affect the results and thus, the conclusions of a NEA study. The current IEA PVPS guidelines were developed to provide guidance on assuring consistency, balance, and quality to enhance the credibility and reliability of the results from photovoltaic (PV) NEAs. The guidelines represent a consensus among the authors -- PV NEA experts in North America, Europe, and Asia -- for assumptions made on PV performance, process inputs and outputs, methods of analysis, and reporting of the results. Guidance is given on photovoltaic-specific parameters used as inputs in NEA and on choices and assumptions in inventory data analysis and on implementation of modelling approaches. A consistent approach towards system modelling, the functional unit, the system boundaries and allocation aspects enhances the credibility of PV electricity NEA studies and enables balanced NEA-based comparisons of different electricity producing technologies. This document provides an in-depth discussion of a common metric of NEA, namely the energy return on investment (EROI), and how this is to be interpreted vis-a-vis the deceptively similar-sounding metrics in the field of Life Cycle Assessment (LCA): cumulative energy demand (CED) and non-renewable cumulative energy demand (nr-CED) per unit output. Specifically, a number of key differences are highlighted between these metrics as applied to electricity production systems. Transparency in reporting is of the utmost importance as parameters vary with geographical zones, and a system's boundary conditions and modelling approach can affect the findings significantly. This guideline lists 16 items that should be reported in every NEA study of PV electricity.« less

  2. Simulation, measurement, and emulation of photovoltaic modules using high frequency and high power density power electronic circuits

    NASA Astrophysics Data System (ADS)

    Erkaya, Yunus

    The number of solar photovoltaic (PV) installations is growing exponentially, and to improve the energy yield and the efficiency of PV systems, it is necessary to have correct methods for simulation, measurement, and emulation. PV systems can be simulated using PV models for different configurations and technologies of PV modules. Additionally, different environmental conditions of solar irradiance, temperature, and partial shading can be incorporated in the model to accurately simulate PV systems for any given condition. The electrical measurement of PV systems both prior to and after making electrical connections is important for attaining high efficiency and reliability. Measuring PV modules using a current-voltage (I-V) curve tracer allows the installer to know whether the PV modules are 100% operational. The installed modules can be properly matched to maximize performance. Once installed, the whole system needs to be characterized similarly to detect mismatches, partial shading, or installation damage before energizing the system. This will prevent any reliability issues from the onset and ensure the system efficiency will remain high. A capacitive load is implemented in making I-V curve measurements with the goal of minimizing the curve tracer volume and cost. Additionally, the increase of measurement resolution and accuracy is possible via the use of accurate voltage and current measurement methods and accurate PV models to translate the curves to standard testing conditions. A move from mechanical relays to solid-state MOSFETs improved system reliability while significantly reducing device volume and costs. Finally, emulating PV modules is necessary for testing electrical components of a PV system. PV emulation simplifies and standardizes the tests allowing for different irradiance, temperature and partial shading levels to be easily tested. Proper emulation of PV modules requires an accurate and mathematically simple PV model that incorporates all known system variables so that any PV module can be emulated as the design requires. A non-synchronous buck converter is proposed for the emulation of a single, high-power PV module using traditional silicon devices. With the proof-of-concept working and improvements in efficiency, power density and steady-state errors made, dynamic tests were performed using an inverter connected to the PV emulator. In order to improve the dynamic characteristics, a synchronous buck converter topology is proposed along with the use of advanced GaNFET devices which resulted in very high power efficiency and improved dynamic response characteristics when emulating PV modules.

  3. An Economic Analysis of Residential Photovoltaic Systems with and without Energy Storage

    NASA Astrophysics Data System (ADS)

    Kizito, Rodney

    Residential photovoltaic (PV) systems serve as a source of electricity generation that is separate from the traditional utilities. Investor investment into residential PV systems provides several financial benefits such as federal tax credit incentives for installation, net metering credit from excess generated electricity added back to the grid, and savings in price per kilowatt-hour (kWh) from the PV system generation versus the increasing conventional utility price per kWh. As much benefit as stand-alone PV systems present, the incorporation of energy storage yields even greater benefits. Energy storage (ES) is capable of storing unused PV provided energy from daytime periods of high solar supply but low consumption. This allows the investor to use the stored energy when the cost of conventional utility power is high, while also allowing for excess stored energy to be sold back to the grid. This paper aims to investigate the overall returns for investor's investing in solely PV and ES-based PV systems by using a return of investment (ROI) economic analysis. The analysis is carried out over three scenarios: (1) residence without a PV system or ES, (2) residence with just a PV system, and (3) residence with both a PV system and ES. Due to the variation in solar exposure across the regions of the United States, this paper performs an analysis for eight of the top solar market states separately, accounting for the specific solar generation capabilities of each state. A Microsoft Excel tool is provided for computation of the ROI in scenario 2 and 3. A benefit-cost ration (BCR) is used to depict the annual economic performance of the PV system (scenario 2) and PV + ES system (scenario 3). The tool allows the user to adjust the variables and parameters to satisfy the users' specific investment situation.

  4. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H–R)

    PubMed Central

    Bhogal, Ricky H.; Weston, Christopher J.; Curbishley, Stuart M.; Bhatt, Anand N.; Adams, David H.; Afford, Simon C.

    2011-01-01

    Hypoxia and hypoxia–reoxygenation (H–R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H–R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H–R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. PMID:21356211

  5. Dynamic analysis of combined photovoltaic source and synchronous generator connected to power grid

    NASA Astrophysics Data System (ADS)

    Mahabal, Divya

    In the world of expanding economy and technology, the energy demand is likely to increase even with the global efforts of saving and increasing energy efficiency. Higher oil prices, effects of greenhouse gases, and concerns over other environmental impacts gave way to Distributed Generation (DG). With adequate awareness and support, DG's can meet these rising energy demands at lower prices compared to conventional methods. Extensive research is taking place in different areas like fuel cells, photovoltaic cells, wind turbines, and gas turbines. DG's when connected to a grid increase the overall efficiency of the power grid. It is believed that three-fifth of the world's electricity would account for renewable energy by middle of 21st century. This thesis presents the dynamic analysis of a grid connected photovoltaic (PV) system and synchronous generator. A grid is considered as an infinite bus. The photovol-taic system and synchronous generator act as small scale distributed energy resources. The output of the photovoltaic system depends on the light intensity, temperature, and irradiance levels of sun. The maximum power point tracking and DC/AC converter are also modeled for the photovoltaic system. The PV system is connected to the grid through DC/AC system. Different combinations of PV and synchronous generator are modeled with the grid to study the dynamics of the proposed system. The dynamics of the test system is analyzed by subjecting the system to several disturbances under various conditions. All modules are individually modeled and con-nected using MATLAB/Simulink software package. Results from the study show that, as the penetration of renewable energy sources like PV increases into the power system, the dynamics of the system becomes faster. When considering cases such as load switching, PV cannot deliver more power as the performance of PV depends on environmental conditions. Synchronous generator in power system can produce the required amount of power. As the main aim of this research is to use renewable sources like PV in the system, it is advantageous to use a combination of both PV and synchronous generator in the system.

  6. Florida | Midmarket Solar Policies in the United States | Solar Research |

    Science.gov Websites

    exempts 80% of the personal property tax and assessment of real property taxes for commercial properties output sold by the taxpayer to an unrelated party is an eligible basis for the credit. Property Assessed Clean Energy (PACE) financing Local authorities PACE allows property owners to repay loans for solar PV

  7. Solar home on the range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wainwright, K.

    1999-10-01

    Solar technologies and indigenous materials are used in this remote Texas ranch house. Passive solar, thermal mass of adobe walls, photovoltaics, wood stoves, native stone, a ventilated roof, reflective barrier, and porch overhangs surrounding the house combine to keep the house comfortable all summer. The PV system used a passive solar tracking system that increased the electrical output by an overall 29 percent.

  8. Evaluation of the 2013 Southeast Asian Haze on Solar Generation Performance

    PubMed Central

    Maghami, Mohammadreza; Hizam, Hashim; Gomes, Chandima; Hajighorbani, Shahrooz; Rezaei, Nima

    2015-01-01

    Pollution in Southeast Asia is a major public energy problem and the cause of energy losses. A significant problem with respect to this type of pollution is that it decreases energy yield. In this study, two types of photovoltaic (PV) solar arrays were used to evaluate the effect of air pollution. The performance of two types of solar arrays were analysed in this research, namely, two units of a 1 kWp tracking flat photovoltaic (TFP) and two units of a 1 kWp fixed flat photovoltaic arrays (FFP). Data analysis was conducted on 2,190 samples at 30 min intervals from 01st June 2013, when both arrays were washed, until 30th June 2013. The performance was evaluated by using environmental data (irradiation, temperature, dust thickness, and air pollution index), power output, and energy yield. Multiple regression models were predicted in view of the environmental data and PV array output. Results showed that the fixed flat system was more affected by air pollution than the tracking flat plate. The contribution of this work is that it considers two types of photovoltaic arrays under the Southeast Asian pollution 2013. PMID:26275303

  9. Comparative Analysis of Reduced-Rule Compressed Fuzzy Logic Control and Incremental Conductance MPPT Methods

    NASA Astrophysics Data System (ADS)

    Kandemir, Ekrem; Borekci, Selim; Cetin, Numan S.

    2018-04-01

    Photovoltaic (PV) power generation has been widely used in recent years, with techniques for increasing the power efficiency representing one of the most important issues. The available maximum power of a PV panel is dependent on environmental conditions such as solar irradiance and temperature. To extract the maximum available power from a PV panel, various maximum-power-point tracking (MPPT) methods are used. In this work, two different MPPT methods were implemented for a 150-W PV panel. The first method, known as incremental conductance (Inc. Cond.) MPPT, determines the maximum power by measuring the derivative of the PV voltage and current. The other method is based on reduced-rule compressed fuzzy logic control (RR-FLC), using which it is relatively easier to determine the maximum power because a single input variable is used to reduce computing loads. In this study, a 150-W PV panel system model was realized using these MPPT methods in MATLAB and the results compared. According to the simulation results, the proposed RR-FLC-based MPPT could increase the response rate and tracking accuracy by 4.66% under standard test conditions.

  10. Demonstration of Active Power Controls by Utility-Scale PV Power Plant in an Island Grid: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gevorgian, Vahan; O'Neill, Barbara

    The National Renewable Energy Laboratory (NREL), AES, and the Puerto Rico Electric Power Authority conducted a demonstration project on a utility-scale photovoltaic (PV) plant to test the viability of providing important ancillary services from this facility. As solar generation increases globally, there is a need for innovation and increased operational flexibility. A typical PV power plant consists of multiple power electronic inverters and can contribute to grid stability and reliability through sophisticated 'grid-friendly' controls. In this way, it may mitigate the impact of its variability on the grid and contribute to important system requirements more like traditional generators. In 2015,more » testing was completed on a 20-MW AES plant in Puerto Rico, and a large amount of test data was produced and analyzed that demonstrates the ability of PV power plants to provide various types of new grid-friendly controls. This data showed how active power controls can leverage PV's value from being simply an intermittent energy resource to providing additional ancillary services for an isolated island grid. Specifically, the tests conducted included PV plant participation in automatic generation control, provision of droop response, and fast frequency response.« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez, Anthony; Maclaurin, Galen; Roberts, Billy

    Long-term variability of solar resource is an important factor in planning a utility-scale photovoltaic (PV) generation plant, and annual generation for a given location can vary significantly from year to year. Based on multiple years of solar irradiance data, an exceedance probability is the amount of energy that could potentially be produced by a power plant in any given year. An exceedance probability accounts for long-term variability and climate cycles (e.g., monsoons or changes in aerosols), which ultimately impact PV energy generation. Study results indicate that a significant bias could be associated with relying solely on typical meteorological year (TMY)more » resource data to capture long-term variability. While the TMY tends to under-predict annual generation overall compared to the P50, there appear to be pockets of over-prediction as well.« less

  12. Environmental and Economic Performance of Commercial-scale Solar Photovoltaic Systems: A Field Study of Complex Energy Systems at the Desert Research Institute (DRI)

    NASA Astrophysics Data System (ADS)

    Liu, X.

    2014-12-01

    Solar photovoltaic (PV) systems are being aggressively deployed at residential, commercial, and utility scales to complement power generation from conventional sources. This is motivated both by the desire to reduce carbon footprints and by policy-driven financial incentives. Although several life cycle analyses (LCA) have investigated environmental impacts and energy payback times of solar PV systems, most results are based on hypothetical systems rather than actual, deployed systems that can provide measured performance data. Over the past five years, Desert Research Institute (DRI) in Nevada has installed eight solar PV systems of scales from 3 to 1000 kW, the sum of which supply approximately 40% of the total power use at DRI's Reno and Las Vegas campuses. The goal of this work is to explore greenhouse gas (GHG) impacts and examine the economic performance of DRI's PV systems by developing and applying a comprehensive LCA and techno-economic (TEA) model. This model is built using data appropriate for each type of panel used in the DRI systems. Power output is modeled using the National Renewable Energy Laboratory (NREL) model PVWatts. The performance of PVWatts is verified by the actual measurements from DRI's PV systems. Several environmental and economic metrics are quantified for the DRI systems, including life cycle GHG emissions and energy return. GHG results are compared with Nevada grid-based electricity. Initial results indicate that DRI's solar-derived electricity offers clear GHG benefits compared to conventional grid electricity. DRI's eight systems have GHG intensity values of 29-56 gCO2e/kWh, as compared to the GHG intensity of 212 gCO2e/kWh of national average grid power. The major source of impacts (82-92% of the total) is the upstream life cycle burden of manufacturing PV panels, which are made of either mono-crystalline or multi-crystalline silicon. Given the same type of PV panel, GHG intensity decreases as the scale of the system increases. Energy payback times of DRI's solar PV systems range from 0.5 to 1.5 years. The cost payback time for the DRI PV systems and the cost per ton of CO2 avoided by replacing Nevada-specific electrical power will be determined. The sensitivity of these environmental and economic impacts with respect to specific model parameters is being investigated.

  13. A control strategy for PV stand-alone applications

    NASA Astrophysics Data System (ADS)

    Slouma, S.; Baccar, H.

    2015-04-01

    This paper proposes a stand-alone photovoltaic (PV) system study in domestic applications. Because of the decrease in power of photovoltaic module as a consequence of changes in solar radiation and temperature which affect the photovoltaic module performance, the design and control of DC-DC buck converter was proposed for providing power to the load from a photovoltaic source.In fact, the control of this converter is carried out with integrated MPPT (Maximum Power Point Tracking) algorithm which ensures a maximum energy generated by the PV arrays. Moreover, the output stage is composed by a battery energy storage system, dc-ac inverter, LCL filter which enables higher efficiency, low distortion ac waveforms and low leakage currents. The control strategy adopted is cascade control composed by two regulation loops.Simulations performed with PSIM software were able to validate the control system.The realization and testing of the photovoltaic system were achieved in the Photovoltaic laboratory of the Centre for Research and Energy Technologies at the Technopark Borj Cedria. Experimental results verify the effeciency of the proposed system.

  14. Bifacial aspects of industrial n-Pasha solar cells

    NASA Astrophysics Data System (ADS)

    Van Aken, Bas B.; Tool, Kees; Kossen, Eric J.; Carr, Anna J.; Janssen, Gaby J. M.; Newman, Bonna K.; Romijn, Ingrid G.

    2017-08-01

    Bifacial photovoltaic (PV) modules make optimal use of diffuse and ground-reflected light. The gain in energy yield depends on both the local climatic conditions and the PV system layout. These determine the additional irradiance on the rear of the PV panels. The rear response of the (laminated) solar cell(s) determines how much additional energy this rear irradiance generates. Based on our experiments and simulations, the main parameters that determine the bifaciality factor of solar cells with a front side junction are the rear metal coverage, the base resistivity and the diffusion profile on the rear. These will be evaluated and discussed in this paper. Front-junction solar cells with low base resistivity have a lower short circuit current when illuminated from the rear due to enhanced recombination in the BSF. Stencil printed rear metallization yields a higher bifaciality factor compared to screen printed by reducing the metal coverage and consumption and maintaining the front side efficiency. For our optimized 239 cm2 bifacial cell we estimate that the output with 20% contributed by the rear side is equivalent to that of a 24.4% efficient monofacial cell.

  15. Solar Photovoltaic (PV) Distributed Generation Systems - Control and Protection

    NASA Astrophysics Data System (ADS)

    Yi, Zhehan

    This dissertation proposes a comprehensive control, power management, and fault detection strategy for solar photovoltaic (PV) distribution generations. Battery storages are typically employed in PV systems to mitigate the power fluctuation caused by unstable solar irradiance. With AC and DC loads, a PV-battery system can be treated as a hybrid microgrid which contains both DC and AC power resources and buses. In this thesis, a control power and management system (CAPMS) for PV-battery hybrid microgrid is proposed, which provides 1) the DC and AC bus voltage and AC frequency regulating scheme and controllers designed to track set points; 2) a power flow management strategy in the hybrid microgrid to achieve system generation and demand balance in both grid-connected and islanded modes; 3) smooth transition control during grid reconnection by frequency and phase synchronization control between the main grid and microgrid. Due to the increasing demands for PV power, scales of PV systems are getting larger and fault detection in PV arrays becomes challenging. High-impedance faults, low-mismatch faults, and faults occurred in low irradiance conditions tend to be hidden due to low fault currents, particularly, when a PV maximum power point tracking (MPPT) algorithm is in-service. If remain undetected, these faults can considerably lower the output energy of solar systems, damage the panels, and potentially cause fire hazards. In this dissertation, fault detection challenges in PV arrays are analyzed in depth, considering the crossing relations among the characteristics of PV, interactions with MPPT algorithms, and the nature of solar irradiance. Two fault detection schemes are then designed as attempts to address these technical issues, which detect faults inside PV arrays accurately even under challenging circumstances, e.g., faults in low irradiance conditions or high-impedance faults. Taking advantage of multi-resolution signal decomposition (MSD), a powerful signal processing technique based on discrete wavelet transformation (DWT), the first attempt is devised, which extracts the features of both line-to-line (L-L) and line-to-ground (L-G) faults and employs a fuzzy inference system (FIS) for the decision-making stage of fault detection. This scheme is then improved as the second attempt by further studying the system's behaviors during L-L faults, extracting more efficient fault features, and devising a more advanced decision-making stage: the two-stage support vector machine (SVM). For the first time, the two-stage SVM method is proposed in this dissertation to detect L-L faults in PV system with satisfactory accuracies. Numerous simulation and experimental case studies are carried out to verify the proposed control and protection strategies. Simulation environment is set up using the PSCAD/EMTDC and Matlab/Simulink software packages. Experimental case studies are conducted in a PV-battery hybrid microgrid using the dSPACE real-time controller to demonstrate the ease of hardware implementation and the controller performance. Another small-scale grid-connected PV system is set up to verify both fault detection algorithms which demonstrate promising performances and fault detecting accuracies.

  16. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  17. Comparison of four MPPT techniques for PV systems

    NASA Astrophysics Data System (ADS)

    Atik, L.; Petit, P.; Sawicki, J. P.; Ternifi, Z. T.; Bachir, G.; Aillerie, M.

    2016-07-01

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, for all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.

  18. The Predictive Ability of PV-ACO2 Gap and PV-ACO2/CA-VO2 Ratio in Shock: A Prospective, Cohort Study.

    PubMed

    Shaban, Mohammad; Salahuddin, Nawal; Kolko, Mohammad Raed; Sharshir, Moh'd; AbuRageila, Mohannad; AlHussain, Ahmed

    2017-04-01

    Compromised tissue oxygenation leads to anaerobiosis, leading to organ failure and death. This study attempts to demonstrate the predictive abilities of the Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio in shock patients undergoing resuscitation. In a prospective study, consecutive patients with shock were included. Timed measurements of Pv-aCO2 gap, ScvO2, lactate, and Pv-aCO2/ Ca-vO2 ratio were obtained. The association between the mortality and each variable at all intervals was analyzed. Receiver operating characteristics curves were built. Fifty patients were enrolled. Intensive care unit survivors had a higher Pv-aCO2/ Ca-vO2 ratio at time 0 (0.21, interquartile range [IQR] 0.14 vs. 0.27, IQR 0.38, P = 0.032) and at 3 h (0.27, IQR 0.08 vs. 0.21, IQR 0.12, P = 0.035).Twenty-eight day survival was higher in patients with a low Pv-aCO2 gap at time 0 (7.5, IQR 7 vs. 4.8, IQR 5, P = 0.007).Baseline Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio showed good ability to predict 28-day mortality as seen by AUC 0.728 (95% CI 0.578-0.877, P = 0.007) and 0.711 (95% CI 0.563-0.860, P = 0.013). A cut-off point of Pv-aCO2 gap ≥6 mm Hg identified 28-day mortality (75% vs. 45.5%, P = 0.034). The best cutoff values, at baseline, to predict 28-day mortality were 0.25 for the Pv-aCO2/Ca-vO2 ratio (sensitivity 58%, specificity 85%, LR+ 3.86, LR- 0.49) and 6.3 for the Pv-aCO2 gap (sensitivity 58%, specificity 79%, LR+ 2.76, LR- 0.53). This study suggests that Pv-aCO2 gap and Pv-aCO2/Ca-vO2 ratio are discriminating predictors of 28-day mortality and can be used to provide supplementary information during resuscitation in shock.

  19. Location and Size Planning of Distributed Photovoltaic Generation in Distribution network System Based on K-means Clustering Analysis

    NASA Astrophysics Data System (ADS)

    Lu, Siqi; Wang, Xiaorong; Wu, Junyong

    2018-01-01

    The paper presents a method to generate the planning scenarios, which is based on K-means clustering analysis algorithm driven by data, for the location and size planning of distributed photovoltaic (PV) units in the network. Taken the power losses of the network, the installation and maintenance costs of distributed PV, the profit of distributed PV and the voltage offset as objectives and the locations and sizes of distributed PV as decision variables, Pareto optimal front is obtained through the self-adaptive genetic algorithm (GA) and solutions are ranked by a method called technique for order preference by similarity to an ideal solution (TOPSIS). Finally, select the planning schemes at the top of the ranking list based on different planning emphasis after the analysis in detail. The proposed method is applied to a 10-kV distribution network in Gansu Province, China and the results are discussed.

  20. Variable responses of small and large human hepatocytes to hypoxia and hypoxia/reoxygenation (H-R).

    PubMed

    Bhogal, Ricky H; Weston, Christopher J; Curbishley, Stuart M; Bhatt, Anand N; Adams, David H; Afford, Simon C

    2011-03-23

    Hypoxia and hypoxia-reoxygenation (H-R) regulate human hepatocyte cell death by mediating the accumulation of reactive oxygen species (ROS). Hepatocytes within the liver are organised into peri-portal (PP) and peri-venous (PV) subpopulations. PP and PV hepatocytes differ in size and function. We investigated whether PP and PV human hepatocytes exhibit differential susceptibility to hypoxic stress. Isolated hepatocytes were used in an in vitro model of hypoxia and H-R. ROS production and cell death were assessed using flow cytometry. PV, and not PP hepatocytes, accumulate intracellular ROS in a mitochondrial dependent manner during hypoxia and H-R. This increased ROS regulates hepatocyte apoptosis and necrosis via a mitochondrial pathway. These findings have implications on the understanding of liver injury and application of potential therapeutic strategies. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Modeling the effect of photosynthetic vegetation properties on the NDVI--LAI relationship.

    PubMed

    Steltzer, Heidi; Welker, Jeffrey M

    2006-11-01

    Developing a relationship between the normalized difference vegetation index (NDVI) and the leaf area index (LAI) is essential to describe the pattern of spatial or temporal variation in LAI that controls carbon, water, and energy exchange in many ecosystem process models. Photosynthetic vegetation (PV) properties can affect the estimation of LAI, but no models integrate the effects of multiple species. We developed four alternative NDVI-LAI models, three of which integrate PV effects: no PV effects, leaf-level effects, canopy-level effects, and effects at both levels. The models were fit to data across the natural range of variation in NDVI for a widespread High Arctic ecosystem. The weight of evidence supported the canopy-level model (Akaike weight, wr = 0.98), which includes species-specific canopy coefficients that primarily scale fractional PV cover to LAI by accounting for the area of unexposed PV. Modeling the canopy-level effects improved prediction of LAI (R2 = 0.82) over the model with no PV effect (R2 = 0.71) across the natural range of variation in NDVI but did not affect the site-level estimate of LAI. Satellite-based methods to estimate species composition, a variable in the model, will need to be developed. We expect that including the effects of PV properties in NDVI-LAI models will improve prediction of LAI where species composition varies across space or changes over time.

  2. Dynamic hybrid life cycle assessment of energy and carbon of multicrystalline silicon photovoltaic systems.

    PubMed

    Zhai, Pei; Williams, Eric D

    2010-10-15

    This paper advances the life cycle assessment (LCA) of photovoltaic systems by expanding the boundary of the included processes using hybrid LCA and accounting for the technology-driven dynamics of embodied energy and carbon emissions. Hybrid LCA is an extended method that combines bottom-up process-sum and top-down economic input-output (EIO) methods. In 2007, the embodied energy was 4354 MJ/m(2) and the energy payback time (EPBT) was 2.2 years for a multicrystalline silicon PV system under 1700 kWh/m(2)/yr of solar radiation. These results are higher than those of process-sum LCA by approximately 60%, indicating that processes excluded in process-sum LCA, such as transportation, are significant. Even though PV is a low-carbon technology, the difference between hybrid and process-sum results for 10% penetration of PV in the U.S. electrical grid is 0.13% of total current grid emissions. Extending LCA from the process-sum to hybrid analysis makes a significant difference. Dynamics are characterized through a retrospective analysis and future outlook for PV manufacturing from 2001 to 2011. During this decade, the embodied carbon fell substantially, from 60 g CO(2)/kWh in 2001 to 21 g/kWh in 2011, indicating that technological progress is realizing reductions in embodied environmental impacts as well as lower module price.

  3. Parvalbumin interneuron mediated feedforward inhibition controls signal output in the deep layers of the perirhinal‐entorhinal cortex

    PubMed Central

    Willems, Janske G. P.; Wadman, Wytse J.

    2018-01-01

    Abstract The perirhinal (PER) and lateral entorhinal (LEC) cortex form an anatomical link between the neocortex and the hippocampus. However, neocortical activity is transmitted through the PER and LEC to the hippocampus with a low probability, suggesting the involvement of the inhibitory network. This study explored the role of interneuron mediated inhibition, activated by electrical stimulation in the agranular insular cortex (AiP), in the deep layers of the PER and LEC. Activated synaptic input by AiP stimulation rarely evoked action potentials in the PER‐LEC deep layer excitatory principal neurons, most probably because the evoked synaptic response consisted of a small excitatory and large inhibitory conductance. Furthermore, parvalbumin positive (PV) interneurons—a subset of interneurons projecting onto the axo‐somatic region of principal neurons—received synaptic input earlier than principal neurons, suggesting recruitment of feedforward inhibition. This synaptic input in PV interneurons evoked varying trains of action potentials, explaining the fast rising, long lasting synaptic inhibition received by deep layer principal neurons. Altogether, the excitatory input from the AiP onto deep layer principal neurons is overruled by strong feedforward inhibition. PV interneurons, with their fast, extensive stimulus‐evoked firing, are able to deliver this fast evoked inhibition in principal neurons. This indicates an essential role for PV interneurons in the gating mechanism of the PER‐LEC network. PMID:29341361

  4. Development and Evaluation of Control System for Microgrid Supplying Heat and Electricity

    NASA Astrophysics Data System (ADS)

    Kojima, Yasuhiro; Koshio, Masanobu; Nakamura, Shizuka

    Photovoltaic (PV) and Wind Turbine (WT) generation systems are expected to offer solutions to reduce green house gases and become more widely used in the future. However, the chief technical drawback of using these kinds of weather-dependent generators is the difficulty of forecasting their output, which can have negative impacts on commercial grids if a large number of them are introduced. Thus, this problem may hinder the wider application of PV and WT generation systems. The Regional Power Grid with Renewable Energy Resources Project was launched to seek a solution to this problem. The scope of the project is to develop, operate, and evaluate a Dispersed Renewable Energy Supply System with the ability to adapt the total energy output in response to changes in weather and demand. Such a system would reduce the impact that PV and WT generation systems have on commercial grids and allow the interconnection of more Dispersed Energy Resources (DER). In other words, the main objective of this project is to demonstrate an integrated energy management system, or a type of microgrid [1], as a new way of introducing DERs. The system has been in operation since October 2005 and will continue operation until March 2008. Through the project period, the data on power quality, system efficiency, operation cost, and environmental burden will be gathered and a cost-benefit analysis of the system will be undertaken. In this paper, firstly we introduce the concept of microgrid for reducing negative impact of natural energy, and secondly illustrate the structure of electric and thermal supply control system for Microgrid, especially for the Hachinohe demonstration project. The control system consists of four stages; weekly operation planning, economic dispatching control, tie-line control and local frequency control. And finally demonstration results and evaluation results are shown.

  5. Multiobjective Particle Swarm Optimization for the optimal design of photovoltaic grid-connected systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kornelakis, Aris

    2010-12-15

    Particle Swarm Optimization (PSO) is a highly efficient evolutionary optimization algorithm. In this paper a multiobjective optimization algorithm based on PSO applied to the optimal design of photovoltaic grid-connected systems (PVGCSs) is presented. The proposed methodology intends to suggest the optimal number of system devices and the optimal PV module installation details, such that the economic and environmental benefits achieved during the system's operational lifetime period are both maximized. The objective function describing the economic benefit of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Valuemore » (NPV). The second objective function, which corresponds to the environmental benefit, equals to the pollutant gas emissions avoided due to the use of the PVGCS. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. (author)« less

  6. Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.

    2014-03-01

    Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforest. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forest, possibly through changes in plant species composition.

  7. Variation in photosynthetic and nonphotosynthetic vegetation along edaphic and compositional gradients in northwestern Amazonia

    NASA Astrophysics Data System (ADS)

    Higgins, M. A.; Asner, G. P.; Perez, E.; Elespuru, N.; Alonso, A.

    2014-07-01

    Tropical forests vary substantially in aboveground properties such as canopy height, canopy structure, and plant species composition, corresponding to underlying variations in soils and geology. Forest properties are often difficult to detect and map in the field, however, due to the remoteness and inaccessibility of these forests. Spectral mixture analysis of Landsat imagery allows mapping of photosynthetic and nonphotosynthetic vegetation quantities (PV and NPV), corresponding to biophysical properties such as canopy openness, forest productivity, and disturbance. Spectral unmixing has been used for applications ranging from deforestation monitoring to identifying burn scars from past fires, but little is known about variations in PV and NPV in intact rainforests. Here we use spectral unmixing of Landsat imagery to map PV and NPV in northern Amazonia, and to test their relationship to soils and plant species composition. To do this we sampled 117 sites crossing a geological boundary in northwestern Amazonia for soil cation concentrations and plant species composition. We then used the Carnegie Landsat Analysis System to map PV and NPV for these sites from multiple dates of Landsat imagery. We found that soil cation concentrations and plant species composition consistently explain a majority of the variation in remotely sensed PV and NPV values. After combining PV and NPV into a single variable (PV-NPV), we determined that the influence of soil properties on canopy properties was inseparable from the influence of plant species composition. In all cases, patterns in PV and NPV corresponded to underlying geological patterns. Our findings suggest that geology and soils regulate canopy PV and NPV values in intact tropical forests, possibly through changes in plant species composition.

  8. On the Path to SunShot - Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palminitier, Bryan; Broderick, Robert; Mather, Barry

    2016-05-01

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV thatmore » can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and innovation are neede« less

  9. Completeness and timeliness of vaccination and determinants for low and late uptake among young children in eastern China

    PubMed Central

    Hu, Yu; Chen, Yaping; Guo, Jing; Tang, Xuewen; Shen, Lingzhi

    2014-01-01

    Background: We studied completeness and timeliness of vaccination and determinants for low and delayed uptake in children born between 2008 and 2009 in Zhejiang province in eastern China. Methods: We used data from a cross-sectional cluster survey conducted in 2011, which included 1146 children born from 1 Jan 2008 to 31 Dec 2009. Various vaccination history, social-demographic factors, attitude and satisfaction toward immunization from caregivers were collected by a standard questionnaire. We restricted to the third dose of HepB, PV, and DPT (HepB3, PV3, and DPT3) as outcome variables for completeness of vaccination and restricted to the first dose of HepB, PV, DPT, and MCV(HepB1, PV1, DPT1, and MCV1) as outcome variables for timeliness of vaccination. The χ2 test and logistic regression analysis were applied to identify the determinants of completeness and timeliness of vaccination. Survival analysis by the Kaplan–Meier method was performed to present the timeliness vaccination. Results: Coverage for HepB1, HepB3, PV1, PV3, DPT1, DPT3, and MCV1 was 93.22%, 90.15%, 96.42%, 91.63%, 95.80%, 90.16%, and 92.70%, respectively. Timely vaccination occurred in 501/1146(43.72%) children for HepB1, 520/1146(45.38%) for PV1, 511/1146(44.59%) for DPT1, and 679/1146(59.25%) for MCV1. Completeness of specific vaccines was associated with mother’ age, immigration status, birth place of child, maternal education level, maternal occupation status, socio-economic development level of surveyed areas, satisfaction toward immunization service and distance of the house to immunization clinic. Timeliness of vaccination for specific vaccines was associated with mother’ age, maternal education level, immigration status, siblings, birth place, and distance of the house to immunization clinic. Conclusion: Despite reasonably high vaccination coverage, we observed substantial vaccination delays. We found specific factors associated with low and/or delayed vaccine uptake. These findings can help to improve strategies such as Reaching Every District (RED), out-reach vaccination services and health education to reach children who remain inadequately protected. PMID:24584000

  10. Improved hepatic arterial fraction estimation using cardiac output correction of arterial input functions for liver DCE MRI

    NASA Astrophysics Data System (ADS)

    Chouhan, Manil D.; Bainbridge, Alan; Atkinson, David; Punwani, Shonit; Mookerjee, Rajeshwar P.; Lythgoe, Mark F.; Taylor, Stuart A.

    2017-02-01

    Liver dynamic contrast enhanced (DCE) MRI pharmacokinetic modelling could be useful in the assessment of diffuse liver disease and focal liver lesions, but is compromised by errors in arterial input function (AIF) sampling. In this study, we apply cardiac output correction to arterial input functions (AIFs) for liver DCE MRI and investigate the effect on dual-input single compartment hepatic perfusion parameter estimation and reproducibility. Thirteen healthy volunteers (28.7  ±  1.94 years, seven males) underwent liver DCE MRI and cardiac output measurement using aortic root phase contrast MRI (PCMRI), with reproducibility (n  =  9) measured at 7 d. Cardiac output AIF correction was undertaken by constraining the first pass AIF enhancement curve using the indicator-dilution principle. Hepatic perfusion parameters with and without cardiac output AIF correction were compared and 7 d reproducibility assessed. Differences between cardiac output corrected and uncorrected liver DCE MRI portal venous (PV) perfusion (p  =  0.066), total liver blood flow (TLBF) (p  =  0.101), hepatic arterial (HA) fraction (p  =  0.895), mean transit time (MTT) (p  =  0.646), distribution volume (DV) (p  =  0.890) were not significantly different. Seven day corrected HA fraction reproducibility was improved (mean difference 0.3%, Bland-Altman 95% limits-of-agreement (BA95%LoA)  ±27.9%, coefficient of variation (CoV) 61.4% versus 9.3%, ±35.5%, 81.7% respectively without correction). Seven day uncorrected PV perfusion was also improved (mean difference 9.3 ml min-1/100 g, BA95%LoA  ±506.1 ml min-1/100 g, CoV 64.1% versus 0.9 ml min-1/100 g, ±562.8 ml min-1/100 g, 65.1% respectively with correction) as was uncorrected TLBF (mean difference 43.8 ml min-1/100 g, BA95%LoA  ±586.7 ml min-1/ 100 g, CoV 58.3% versus 13.3 ml min-1/100 g, ±661.5 ml min-1/100 g, 60.9% respectively with correction). Reproducibility of uncorrected MTT was similar (uncorrected mean difference 2.4 s, BA95%LoA  ±26.7 s, CoV 60.8% uncorrected versus 3.7 s, ±27.8 s, 62.0% respectively with correction), as was and DV (uncorrected mean difference 14.1%, BA95%LoA  ±48.2%, CoV 24.7% versus 10.3%, ±46.0%, 23.9% respectively with correction). Cardiac output AIF correction does not significantly affect the estimation of hepatic perfusion parameters but demonstrates improvements in normal volunteer 7 d HA fraction reproducibility, but deterioration in PV perfusion and TLBF reproducibility. Improved HA fraction reproducibility maybe important as arterialisation of liver perfusion is increased in chronic liver disease and within malignant liver lesions.

  11. Assessing the individual risk of fecal poliovirus shedding among vaccinated and non-vaccinated subjects following national health weeks in Mexico

    PubMed Central

    Ferreyra-Reyes, Leticia; Cruz-Hervert, Luis Pablo; Troy, Stephanie B.; Huang, ChunHong; Sarnquist, Clea; Delgado-Sánchez, Guadalupe; Canizales-Quintero, Sergio; Holubar, Marisa; Ferreira-Guerrero, Elizabeth; Montero-Campos, Rogelio; Rodríguez-Álvarez, Mauricio; Mongua-Rodriguez, Norma; Maldonado, Yvonne

    2017-01-01

    Background Mexico introduced inactivated polio vaccine (IPV) into its routine immunization (RI) schedule in 2007 but continued to give trivalent oral polio vaccine (tOPV) twice a year during national health weeks (NHW) through 2015. Objectives To evaluate individual variables associated with poliovirus (PV) shedding among children with IPV-induced immunity after vaccination with tOPV and their household contacts. Materials and methods We recruited 72 children (both genders, ≤30 months, vaccinated with at least two doses of IPV) and 144 household contacts (both genders, 2 per household, children and adults) between 08/2010 and 09/2010 in Orizaba, Veracruz. Three NHW took place (one before and two after enrollment). We collected fecal samples monthly for 12 months, and tested 2500 samples for polioviruses types 1, 2 and 3 with three serotype-specific singleplex real-time RT-PCR (rRT-PCR) assays. In order to increase the specificity for OPV virus, all positive and 112 negative samples were also processed with a two-step, OPV serotype-specific multiplex rRT-PCR. Analysis We estimated adjusted hazard ratios (HR) and 95% CI using Cox proportional hazards regression for recurrent events models accounting for individual clustering to assess the association of individual variables with the shedding of any poliovirus for all participants and stratifying according to whether the participant had received tOPV in the month of sample collection. Results 216 participants were included. Of the 2500 collected samples, using the singleplex rRT-PCR assay, PV was detected in 5.7% (n = 142); PV1 in 1.2% (n = 29), PV2 in 4.1% (n = 103), and PV3 in 1.9% (n = 48). Of the 256 samples processed by multiplex rRT-PCR, PV was detected in 106 (PV1 in 16.41% (n = 42), PV2 in 21.09% (n = 54), and PV3 in 23.05% (n = 59). Both using singleplex and multiplex assays, shedding of OPV among non-vaccinated children and subjects older than 5 years of age living in the same household was associated with shedding of PV2 by a household contact. All models were adjusted by sex, age, IPV vaccination and OPV shedding by the same individual during the previous month of sample collection. Conclusion Our results provide important evidence regarding the circulation of poliovirus in a mixed vaccination context (IPV+OPV) which mimics the “transitional phase” that occurs when countries use both vaccines simultaneously. Shedding of OPV2 by household contacts was most likely the source of infection of non-vaccinated children and subjects older than 5 years of age living in the same household. PMID:29023555

  12. Pituitary volume increase during emerging psychosis.

    PubMed

    Büschlen, Jeannine; Berger, Gregor E; Borgwardt, Stefan J; Aston, Jacqueline; Gschwandtner, Ute; Pflueger, Marlon O; Kuster, Pascal; Radü, Ernst Wilhem; Stieglitz, Rolf-Dieter; Riecher-Rössler, Anita

    2011-01-01

    Morphologic abnormalities of the pituitary gland volume (PV) have been reported in schizophrenia, but at what point in time they occur remains unclear. This study determines PV across different stages of emerging psychotic disorders compared to healthy controls. We compared PV of 36 individuals with an at-risk mental state (ARMS) for psychosis, 23 patients with a first episode psychosis (FEP) and 20 healthy controls (HC). Transition to psychosis was monitored using the BPRS transition criteria according to Yung et al. (Yung, A.R. et al., 1998. Prediction of psychosis. A step towards indicated prevention of schizophrenia. Br. J. Psychiatry Suppl. 172 (33), 14-20). Applying these transition criteria, 16 of the 36 ARMS individuals made the transition to psychosis (ARMS-T) and 20 did not (ARMS-NT). We traced PV manually on 1mm slices of magnetic resonance images in three dimensions (coronal, sagittal and axial) blind to group status. We used univariate analysis of covariance (ANCOVA) with PV as dependent variable, group and sex as between-subject factors and whole brain volume as covariate. PV increased from HC to ARMS-NT to ARMS-T/FEP. ANCOVA revealed a significant effect of group (F(3,78)=3.0; p=.036) and a sex × group interaction (F(3,78)=6.5; p=.001). Over all groups, women had considerably larger PV than men (F(1,78)=9.8; p=.003). Our findings provide further evidence that PV is increased in emerging psychotic disorders, and suggest that this is due to a stress-associated activation of the pituitary gland. Copyright © 2010 Elsevier B.V. All rights reserved.

  13. Left Atrial Anatomy in Patients Undergoing Ablation for Atrial Fibrillation.

    PubMed

    Krum, David; Hare, John; Gilbert, Carol; Choudhuri, Indrajit; Mori, Naoyo; Sra, Jasbir

    2013-01-01

    Background: Left atrial anatomy is highly variable, asymmetric, irregular and three-dimensionally unique. This variability can affect the outcome of atrial ablation. A catalog of anatomic varieties may aid patient selection and ablation approach and provide better tools for left atrial ablation. Methods: We analyzed computed tomography scans from 514 patients undergoing left atrial ablation. Images were processed on Advantage Windows with CardEP™ software (GE Healthcare, Waukesha, WI). Measurements of pulmonary vein (PV) ostial size along the long and short axes were made using double oblique cuts, and area of the ostia was calculated. Results: Patients with 2 left (LPV) and 2 right PVs (RPV) (62.6%), 2 LPVs and 3 RPVs (17.3%) and 1 LPV and 2 RPVs (14.2%) made up the three most common variants. In the 2-LPV/2-RPV anatomy, the ostial size and area of the RPVs were larger than their corresponding LPVs (p<0.001), and the ostial size and area of the superior PVs were larger than their corresponding inferior PVs (p<0.001). In the 2-LPV/3-RPV anatomy, the total area of the RPVs was larger than the total area of the LPVs (p<0.001). In the 1-LPV/2-RPV anatomy, the ostial size of the left common PV was larger than either right PV (p<0.007). However, the total area of the RPVs was larger than the area of the left common PV (p<0.002). The left common PV was also larger than any of the left veins in any of the other anatomies. The total PV area between the three most common anatomies was not significantly different. Conclusions: More than 37% of patients have a left atrial anatomy other than 2 left and 2 right PVs. This data may help in designing approaches for left atrial ablation, tailoring the procedure to individual patients and improving ablation tools.

  14. NREL Integrate: RCS-4-42326

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudgins, Andrew P.; Waight, Jim; Grover, Shailendra

    OMNETRIC Corp., Duke Energy, CPS Energy, and the University of Texas at San Antonio (UTSA) created a project team to execute the project 'OpenFMB Reference Architecture Demonstration.' The project included development and demonstration of concepts that will enable the electric utility grid to host larger penetrations of renewable resources. The project concept calls for the aggregation of renewable resources and loads into microgrids and the control of these microgrids with an implementation of the OpenFMB Reference Architecture. The production of power from the renewable resources that are appearing on the grid today is very closely linked to the weather. Themore » difficulty of forecasting the weather, which is well understood, leads to difficulty in forecasting the production of renewable resources. The current state of the art in forecasting the power production from renewables (solar PV and wind) are accuracies in the range of 12-25 percent NMAE. In contrast the demand for electricity aggregated to the system level, is easier to predict. The state of the art of demand forecasting done, 24 hours ahead, is about 2-3% MAPE. Forecasting the load to be supplied from conventional resources (demand minus generation from renewable resources) is thus very hard to forecast. This means that even a few hours before the time of consumption, there can be considerable uncertainty over what must be done to balance supply and demand. Adding to the problem of difficulty of forecasting, is the reality of the variability of the actual production of power from renewables. Due to the variability of wind speeds and solar insolation, the actual output of power from renewable resources can vary significantly over a short period of time. Gusts of winds result is variation of power output of wind turbines. The shadows of clouds moving over solar PV arrays result in the variation of power production of the array. This compounds the problem of balancing supply and demand in real time. Establishing a control system that can manage distribution systems with large penetrations of renewable resources is difficult due to two major issues: (1) the lack of standardization and interoperability between the vast array of equipment in operation and on the market, most of which use different and proprietary means of communication and (2) the magnitude of the network and the information it generates and consumes. The objective of this project is to provide the industry with a design concept and tools that will enable the electric power grid to overcome these barriers and support a larger penetration of clean energy from renewable resources.« less

  15. Ovarian and adrenal vein steroids in healthy women with ovulatory cycles--selective catheterization findings.

    PubMed

    Moltz, L; Sörensen, R; Schwartz, U; Hammerstein, J

    1984-04-01

    Bilateral ovarian-adrenal vein catheterization and androgen measurements in the efferent samples were utilized to directly assess glandular steroid release in 8 healthy volunteers with proven ovulatory cycles during the early follicular phase. Side effects did not occur in any of the women. Hormone levels were as follows (mean +/- SD; ng/ml) T: peripheral vein (PV) 0.36 +/- 0.16, ovarian veins (OV) 0.39 +/- 0.13, adrenal veins (AV) 0.85 +/- 0.63; dihydro-T (DHT): PV 0.25 +/- 0.09, OV 0.29 +/- 0.10, AV 0.93 +/- 0.65; delta 4-androstendione (A): PV 0.88 +/- 0.34, OV 1.82 +/- 1.04, AV 9.22 +/- 8.04; DHEA; PV 5.13 +/- 1.96, OV 6.73 +/- 2.69, AV 146.79 +/- 217.24; DS PV 1860 +/- 850, OV 1937 +/- 1039, AV 2567 +/- 1201; 17 alpha-hydroxyprogesterone (17P): PV 0.60 +/- 0.19, OV 1.46 +/- 1.64, AV 6.94 +/- 6.20; F: PV 170 +/- 50, OV 130 +/- 21, AV 788 +/- 1320; the bilateral differences of effluent levels were not significant. Glandular-peripheral vein steroid gradients served as semiquantitative estimates of momentary secretory activity; they were as follows (mean +/- SD; ng/ml) T: ovarian-peripheral vein gradient (OPG) 0.03 +/- 0.09, adrenal-peripheral vein gradient (APG) 0.48 +/- 0.57; DHT: OPG 0.05 +/- 0.05, APG 0.69 +/- 0.60; A: OPG 0.97 +/- 1.13, APG 8.33 +/- 7.86; DHEA: OPG 1.70 +/- 1.80, APG 141.80 +/- 216.60; DS: OPG 191 +/- 72, APG 706 +/- 824; 17P: OPG 0.87 +/- 1.67, APG 6.30 +/- 6.10; F: OPG 38 +/- 11, APG 610 +/- 1329. Gradient, analysis revealed that the ovaries produced significant quantities of A, DHEA and 17P, but no T, DHT or F between day 3-7 of the cycle; direct gonadal DS output was detected in 2 individuals. A significant OPG for DS was detected in two individuals possibly indicating its partially gonadal origin. The adrenals released larger amounts of A, DHEA and 17P than the ovaries at this stage (P less than 0.05); also, they consistently secreted T, DHT, DS and F.

  16. What Factors Affect the Prices of Low-Priced U.S. Solar PV Systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemet, Gregory F.; O'Shaughnessy, Eric; Wiser, Ryan

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors leading some systems to be so much lower priced than others. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for low-priced (LP) systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers–a variable that accounts for subsidies, electric rates, and PV generation levels–is associated with lowermore » prices for LP systems but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger cost-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. These results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.« less

  17. What factors affect the prices of low-priced U.S. solar PV systems?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nemet, Gregory F.; O'Shaughnessy, Eric; Wiser, Ryan

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors that determine prices in these low-priced (LP) systems. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for LP systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers-a variable that accounts for subsidies, electric rates, and PV generation levels-is associated with lower prices for LP systemsmore » but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger price-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. Furthermore, these results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.« less

  18. What factors affect the prices of low-priced U.S. solar PV systems?

    DOE PAGES

    Nemet, Gregory F.; O'Shaughnessy, Eric; Wiser, Ryan; ...

    2017-08-09

    The price of solar PV systems has declined rapidly, yet there are some much lower-priced systems than others. This study explores the factors that determine prices in these low-priced (LP) systems. Using a data set of 42,611 residential-scale PV systems installed in the U.S. in 2013, we use quantile regressions to estimate the importance of factors affecting the installed prices for LP systems (those at the 10th percentile) in comparison to median-priced systems. We find that the value of solar to consumers-a variable that accounts for subsidies, electric rates, and PV generation levels-is associated with lower prices for LP systemsmore » but higher prices for median priced systems. Conversely, systems installed in new home construction are associated with lower prices at the median but higher prices for LP. Other variables have larger price-reducing effects on LP than on median priced systems: systems installed in Arizona and Florida, as well as commercial and thin film systems. In contrast, the following have a smaller effect on prices for LP systems than median priced systems: tracking systems, self-installations, systems installed in Massachusetts, the system size, and installer experience. Furthermore, these results highlight the complex factors at play that lead to LP systems and shed light into how such LP systems can come about.« less

  19. A Low-cost Environmental Control System for Precise Radial Velocity Spectrometers

    NASA Astrophysics Data System (ADS)

    Sliski, David H.; Blake, Cullen H.; Halverson, Samuel

    2017-12-01

    We present an environmental control system (ECS) designed to achieve milliKelvin (mK) level temperature stability for small-scale astronomical instruments. This ECS is inexpensive and is primarily built from commercially available components. The primary application for our ECS is the high-precision Doppler spectrometer MINERVA-Red, where the thermal variations of the optical components within the instrument represent a major source of systematic error. We demonstrate ±2 mK temperature stability within a 0.5 m3 thermal enclosure using resistive heaters in conjunction with a commercially available PID controller and off-the-shelf thermal sensors. The enclosure is maintained above ambient temperature, enabling rapid cooling through heat dissipation into the surrounding environment. We demonstrate peak-to-valley (PV) temperature stability of better than 5 mK within the MINERVA-Red vacuum chamber, which is located inside the thermal enclosure, despite large temperature swings in the ambient laboratory environment. During periods of stable laboratory conditions, the PV variations within the vacuum chamber are less than 3 mK. This temperature stability is comparable to the best stability demonstrated for Doppler spectrometers currently achieving m s-1 radial velocity precision. We discuss the challenges of using commercially available thermoelectrically cooled CCD cameras in a temperature-stabilized environment, and demonstrate that the effects of variable heat output from the CCD camera body can be mitigated using PID-controlled chilled water systems. The ECS presented here could potentially provide the stable operating environment required for future compact “astrophotonic” precise radial velocity (PRV) spectrometers to achieve high Doppler measurement precision with a modest budget.

  20. A novel power converter for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Yuvarajan, S.; Yu, Dachuan; Xu, Shanguang

    A simple and economical power conditioner to convert the power available from solar panels into 60 Hz ac voltage is described. The raw dc voltage from the solar panels is converted to a regulated dc voltage using a boost converter and a large capacitor and the dc output is then converted to 60 Hz ac using a bridge inverter. The ratio between the load current and the short-circuit current of a PV panel at maximum power point is nearly constant for different insolation (light) levels and this property is utilized in designing a simple maximum power point tracking (MPPT) controller. The controller includes a novel arrangement for sensing the short-circuit current without disturbing the operation of the PV panel and implementing MPPT. The switching losses in the inverter are reduced by using snubbers. The results obtained on an experimental converter are presented.

  1. Multiple Solutions for Reconfiguration to Address Partial Shading Losses in Solar Photovoltaic Arrays

    NASA Astrophysics Data System (ADS)

    Sharma, Nikesh; Pareek, Smita; Chaturvedi, Nitin; Dahiya, Ratna

    2018-03-01

    Solar photovoltaic (SPV) systems are steadily rising and considered as the best alternatives to meet the rising demand of energy. In developing countries like India, SPV’s contribution being a clean energy is the most favourable. However, experiences have shown that produced power of these systems is usually affected due to day, night, seasonal variations, insolation, partial shading conditions etc. Among these parameters, partial shading causes a huge reduction in output power of PV systems. This results in lack of confidence for this technology among users. Thus, it is important and a major challenge in PV systems to minimize the effect of partial shading on their energy production. The work in this paper aims to propose solutions for reconfiguration of solar photovoltaic arrays in order to reduce partial shading losses and thus to enhance power generation.

  2. Data on photovoltaic system using different perturb and observe methods under fast multi-changing solar irradiances.

    PubMed

    Peng, Lele; Zheng, Shubin; Xu, Wei; Xin, Li

    2018-04-01

    This article presents the data on photovoltaic (PV) system used different perturb and observe (P&O) methods under fast multi-changing solar irradiances. The mathematical modeling of the PV system and tangent error P&O method was discussed in our previous study entitled "A novel tangent error maximum power point tracking algorithm for photovoltaic system under fast multi-changing solar irradiances" by Peng et al. (2018) [1]. The data provided in this paper can be used directly without having to spend weeks to simulate the output performance. In addition, it is easy to apply the results for comparison with other algorithms (Kollimalla et al., 2014; Belkaid et al., 2016; Chenchen et al., 2015; Jubaer and Zainal, 2015) [2,3,4,5], and develop a new method for practical application.

  3. Luminescent solar concentrators utilizing stimulated emission.

    PubMed

    Kaysir, Md Rejvi; Fleming, Simon; MacQueen, Rowan W; Schmidt, Timothy W; Argyros, Alexander

    2016-03-21

    Luminescent solar concentrators (LSCs) are an emerging technology that aims primarily to reduce the cost of solar energy, with great potential for building integrated photovoltaic (PV) structures. However, realizing LSCs with commercially viable efficiency is currently hindered by reabsorption losses. Here, we introduce an approach to reducing reabsorption as well as improving directional emission in LSCs by using stimulated emission. Light from a seed laser (potentially an inexpensive laser diode) passes through the entire area of the LSC panel, modifying the emission spectrum of excited dye molecules such that it is spectrally narrower, at wavelengths that minimize reabsorption to allow net gain in the system, and directed towards a small PV cell. A mathematical model, taking into account thermodynamic considerations, of such a system is presented which identifies key parameters and allows evaluation in terms of net effective output power.

  4. Forecast Method of Solar Irradiance with Just-In-Time Modeling

    NASA Astrophysics Data System (ADS)

    Suzuki, Takanobu; Goto, Yusuke; Terazono, Takahiro; Wakao, Shinji; Oozeki, Takashi

    PV power output mainly depends on the solar irradiance which is affected by various meteorological factors. So, it is required to predict solar irradiance in the future for the efficient operation of PV systems. In this paper, we develop a novel approach for solar irradiance forecast, in which we introduce to combine the black-box model (JIT Modeling) with the physical model (GPV data). We investigate the predictive accuracy of solar irradiance over wide controlled-area of each electric power company by utilizing the measured data on the 44 observation points throughout Japan offered by JMA and the 64 points around Kanto by NEDO. Finally, we propose the application forecast method of solar irradiance to the point which is difficulty in compiling the database. And we consider the influence of different GPV default time on solar irradiance prediction.

  5. Comparison of four MPPT techniques for PV systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atik, L., E-mail: lotfi.atik@univ-usto.dz; Ternifi, Z. T.; Université de Lorraine, LMOPS, EA 4423, 57070 Metz

    2016-07-25

    The working behavior of a module / PV array is non-linear and highly dependent on working conditions. As a given condition, there is only one point at which the level of available power at its output is maximum. This point varies with time, enlightenment and temperature. To ensure optimum operation, the use of MPPT control allows us to extract the maximum power. This paper presents a comparative study of four widely-adopted MPPT algorithms, such as Perturb and Observe, Incremental Conductance, Measurements of the variation of the open circuit voltage or of the short-circuit current. Their performance is evaluated using, formore » all these techniques. In particular, this study compares the behaviors of each technique in presence of solar irradiation variations and temperature fluctuations. These MPPT techniques will be compared using the Matlab / Simulink tool.« less

  6. Two-stage single-phase grid-connected photovoltaic system with reduced complexity

    NASA Astrophysics Data System (ADS)

    da Silva, Cintia S.; Motta, Filipe R.; Tofoli, Fernando L.

    2011-06-01

    This article presents a grid-connected photovoltaic (PV) system using the classical DC-DC buck converter, which is responsible for stepping down the resulting voltage from several series-connected panels. Besides, the structure provides high power factor operation by injecting a quasi-sinusoidal current into the grid, with near no displacement in relation to the line voltage at the point of common coupling among the PV system and the loads. A CSI employing thyristors is cascaded with the DC-DC stage so that AC voltage results. The inverter output voltage level is adjusted by using a low-frequency transformer, which also provides galvanic isolation. The proposed system is described as mathematical approach and design guidelines are presented, providing an overview of the topology. An experimental prototype is also implemented, and relevant results to validate the proposal are discussed.

  7. Design, testing, and economics of a 430 W sub p photovoltaic concentrator array for non grid-connected applications

    NASA Astrophysics Data System (ADS)

    Maish, A. B.; Rios, M., Jr.; Togami, H.

    A stand-alone 430 W/sub p/ photovoltaic (PV) concentrating system for low power, non grid-connected applications has been designed, fabricated, and tested at Sandia National Laboratories. The array consists of four passively cooled Fresnel lens concentrating modules on a newly developed polar axis tracking structure. Two axis tracking is provided using a self powered clock drive unit mounted on a single post foundation. Test results of tracking accuracy, array output power, parasitic power, performance in winds and array reliability are discussed. using a range of estimated production costs for small production volumes, the life-cycle energy costs have been calculated and compared to the equivalent energy costs of a 3 kW diesel electric generator set and of an equivalent flat panel PV system.

  8. Respiratory alkalosis and primary hypocapnia in Labrador Retrievers participating in field trials in high-ambient-temperature conditions.

    PubMed

    Steiss, Janet E; Wright, James C

    2008-10-01

    To determine whether Labrador Retrievers participating in field trials develop respiratory alkalosis and hypocapnia primarily in conditions of high ambient temperatures. 16 Labrador Retrievers. At each of 5 field trials, 5 to 10 dogs were monitored during a test (retrieval of birds over a variable distance on land [1,076 to 2,200 m]; 36 assessments); ambient temperatures ranged from 2.2 degrees to 29.4 degrees C. For each dog, rectal temperature was measured and a venous blood sample was collected in a heparinized syringe within 5 minutes of test completion. Blood samples were analyzed on site for Hct; pH; sodium, potassium, ionized calcium, glucose, lactate, bicarbonate, and total CO2 concentrations; and values of PvO2 and PvCO2. Scatterplots of each variable versus ambient temperature were reviewed. Regression analysis was used to evaluate the effect of ambient temperature (< or = 21 degrees C and > 21 degrees C) on each variable. Compared with findings at ambient temperatures < or = 21 degrees C, venous blood pH was increased (mean, 7.521 vs 7.349) and PvCO2 was decreased (mean, 17.8 vs 29.3 mm Hg) at temperatures > 21 degrees C; rectal temperature did not differ. Two dogs developed signs of heat stress in 1 test at an ambient temperature of 29 degrees C; their rectal temperatures were higher and PvCO2 values were lower than findings in other dogs. When running distances frequently encountered at field trials, healthy Labrador Retrievers developed hyperthermia regardless of ambient temperature. Dogs developed respiratory alkalosis and hypocapnia at ambient temperatures > 21 degrees C.

  9. Autoantibodies other than Anti-desmogleins in Pemphigus Vulgaris Patients

    PubMed Central

    Saleh, Marwah Adly; Salem, Hedayat; El Azizy, Hoda

    2017-01-01

    Background: Pemphigus vulgaris (PV) is an immunoglobulin G-mediated autoimmune bullous skin disease. Nonorgan-specific antibodies were detected in Tunisian and Brazilian pemphigus patients with different prevalence. Materials and Methods: Fifty PV patients and fifty controls were screened for antinuclear antibodies (ANAs), anti-smooth muscle antibodies (ASMAs), anti-parietal antibodies (APAs), anti-mitochondrial antibodies, and Anti-nuclear cytoplasmic antibodies (ANCA) by indirect immunofluorescence. Results: Thirty-nine patients were female and 11 were male. Fifteen patients did not receive treatment before while 35 patients were on systemic steroid treatment ± azathioprine. Twenty (40%) of the PV patients and 1 (2%) control had positive ANA. ANA was significantly higher in PV patients than controls, P < 0.0001. ASMAs were detected in 20 (40%) PV patients and none of the controls. ASMA was significantly higher in PV patients than controls, P < 0.0001. No significant difference was detected between treated and untreated regarding ANA, P - 0.11. However, there was a significant difference between treated and untreated regarding ASMA, P - 0.03. Six patients (12%) and none of the controls had positive APA. There was a significant difference between the patients and the controls in APA. P - 0.027. Conclusion: Egyptian PV patients showed more prevalent ANA, ASMA, and APA than normal controls. Follow-up of those patients is essential to detect the early development of concomitant autoimmune disease. Environmental factors might account for the variability of the nonorgan-specific antibodies among different populations. PMID:28216725

  10. Pulmonary venous flows reflect changes in left atrial hemodynamics during mitral balloon valvotomy.

    PubMed

    Yalçin, Fatih; El-Amrousy, Mahmoud; Müderrisoğlu, Haldun; Korkmaz, Mehmet; Flachskampf, Frank; Tuzcu, Murat; Garcia, Mario G; Thomas, James D

    2002-01-01

    Patients with mitral stenosis have usually blunted pulmonary venous (PV) flow, because of decreased mitral valve area and diastolic dysfunction. The authors compared changes in Doppler PV velocities by using transesophageal echocardiography (TEE) against hemodynamics parameters before and after mitral balloon valvotomy to observe relevance of PV velocities and endsystolic left atrial (LA) pressure-volume relationship. In 25 patients (aged 35 +/- 17 years) with mitral stenosis in sinus rhythm, changes in LA pressure and volumes were compared with PV velocities before and after valvotomy. Mitral valve area, mitral gradients, and deceleration time were obtained. Mitral valve area and mitral gradients changed from 1 +/- 0.2 cm2 and 14.6 +/- 5.4 mmHg to 1.9 +/- 0.3 cm2 and 6.3 +/- 1.7 mmHg, respectively (p<0.001). AR peak reverse flow velocity and AR duration decreased from 29 +/- 13 cm/s and 110 =/- 30 msec to 19 +/- 6 cm/s and 80 +/- 29 msec respectively (p<0.001). Transmitral Doppler E wave deceleration time decreased from 327 +/- 85 to 209 +/- 61 s and cardiac output increased from 4.2 +/- 1.0 to 5.2 +/- 1.1 L/minute (p<0.001). The changes in LA pressure were correlated with changes in S/D (r=0.57, p<0.05). The changes in endsystolic LA pressure-volume relationship were also correlated with changes in S/D (r=0.52, p<0.05). Endsystolic LA pressure-volume relationship decreased after mitral balloon valvotomy, as a result of a large decrease in pressure. PV systolic/diastolic (S/D) waves ratio reflects endsystolic LA pressure-volume relationship and may be used as another indicator of successful valvotomy.

  11. Pulmonary venous flows reflect changes in left atrial hemodynamics during mitral balloon valvotomy

    NASA Technical Reports Server (NTRS)

    Yalcin, Fatih; El-Amrousy, Mahmoud; Muderrisoglu, Haldun; Korkmaz, Mehmet; Flachskampf, Frank; Tuzcu, Murat; Garcia, Mario G.; Thomas, James D.

    2002-01-01

    Patients with mitral stenosis have usually blunted pulmonary venous (PV) flow, because of decreased mitral valve area and diastolic dysfunction. The authors compared changes in Doppler PV velocities by using transesophageal echocardiography (TEE) against hemodynamics parameters before and after mitral balloon valvotomy to observe relevance of PV velocities and endsystolic left atrial (LA) pressure-volume relationship. In 25 patients (aged 35 +/- 17 years) with mitral stenosis in sinus rhythm, changes in LA pressure and volumes were compared with PV velocities before and after valvotomy. Mitral valve area, mitral gradients, and deceleration time were obtained. Mitral valve area and mitral gradients changed from 1 +/- 0.2 cm2 and 14.6 +/- 5.4 mmHg to 1.9 +/- 0.3 cm2 and 6.3 +/- 1.7 mmHg, respectively (p<0.001). AR peak reverse flow velocity and AR duration decreased from 29 +/- 13 cm/s and 110 =/- 30 msec to 19 +/- 6 cm/s and 80 +/- 29 msec respectively (p<0.001). Transmitral Doppler E wave deceleration time decreased from 327 +/- 85 to 209 +/- 61 s and cardiac output increased from 4.2 +/- 1.0 to 5.2 +/- 1.1 L/minute (p<0.001). The changes in LA pressure were correlated with changes in S/D (r=0.57, p<0.05). The changes in endsystolic LA pressure-volume relationship were also correlated with changes in S/D (r=0.52, p<0.05). Endsystolic LA pressure-volume relationship decreased after mitral balloon valvotomy, as a result of a large decrease in pressure. PV systolic/diastolic (S/D) waves ratio reflects endsystolic LA pressure-volume relationship and may be used as another indicator of successful valvotomy.

  12. Alternative Sources of Energy for U.S. Air Force Bases

    DTIC Science & Technology

    2009-08-01

    produce power intermittently, with output gaps ranging from minutes—as caused by cloud cover over solar PV systems—or hours, as happens to solar...typically use biomass-to-liquid technology.  Third-generation biofuels use algae or algae products such as oils. Algae provide high- yield feedstocks to...produce several dozen times more energy yield per acre than first-generation feedstocks. The main bottleneck for the production of lignocellulosic

  13. Enabling a flexible exchange of energy of a photovoltaic plant with the grid by means of a controlled storage system

    NASA Astrophysics Data System (ADS)

    Lazzari, R.; Parma, C.; De Marco, A.; Bittanti, S.

    2015-07-01

    In this paper, we describe a control strategy for a photovoltaic (PV) power plant equipped with an energy storage system (ESS), based on lithium-ion battery. The plant consists of the following units: the PV generator, the energy storage system, the DC-bus and the inverter. The control, organised in a hierarchical manner, maximises the self-consumption of the local load unit. In particular, the ESS action performs power balance in case of low solar radiation or surplus of PV generation, thus managing the power exchange variability at the plant with the grid. The implemented control strategy is under testing in RSE pilot test facility in Milan, Italy.

  14. Impact of climate change on future concentrated solar power (CSP) production

    NASA Astrophysics Data System (ADS)

    Wild, Martin; Folini, Doris; Henschel, Florian

    2017-02-01

    Traditionally, for the planning and assessment of solar power plants, the amount of solar radiation incident on the Earth's surface is assumed to be invariable over the years. However, with changing climate and air pollution levels, solar resources may no longer be stable over time and undergo substantial decadal changes. Observational records covering several decades indeed confirm long-term changes in this quantity. In a previous study (Wild et al. 2015, Solar Energy)1 we examined how the latest generation of climate models (CMIP5) projects potential changes in surface solar radiation over the coming decades, and how this may affect, in combination with the expected greenhouse warming, future power output from photovoltaic (PV) systems. In the present complementary study, we use the CMIP5 model projections to estimate possible future changes in power output from Concentrated Solar Power (CSP) systems due to changing climate and air pollution levels up to the mid-21th century. The results indicate a potential for future increases in CSP production in many parts of the globe, with few exceptions such as the North of India and the irrelevant polar areas. Compared to the changes in PV production, the estimated future production changes by CSP are larger by a factor of 4.

  15. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters.

    PubMed

    Algaddafi, Ali; Altuwayjiri, Saud A; Ahmed, Oday A; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances.

  16. An Optimal Current Controller Design for a Grid Connected Inverter to Improve Power Quality and Test Commercial PV Inverters

    PubMed Central

    Altuwayjiri, Saud A.; Ahmed, Oday A.; Daho, Ibrahim

    2017-01-01

    Grid connected inverters play a crucial role in generating energy to be fed to the grid. A filter is commonly used to suppress the switching frequency harmonics produced by the inverter, this being passive, and either an L- or LCL-filter. The latter is smaller in size compared to the L-filter. But choosing the optimal values of the LCL-filter is challenging due to resonance, which can affect stability. This paper presents a simple inverter controller design with an L-filter. The control topology is simple and applied easily using traditional control theory. Fast Fourier Transform analysis is used to compare different grid connected inverter control topologies. The modelled grid connected inverter with the proposed controller complies with the IEEE-1547 standard, and total harmonic distortion of the output current of the modelled inverter has been just 0.25% with an improved output waveform. Experimental work on a commercial PV inverter is then presented, including the effect of strong and weak grid connection. Inverter effects on the resistive load connected at the point of common coupling are presented. Results show that the voltage and current of resistive load, when the grid is interrupted, are increased, which may cause failure or damage for connecting appliances. PMID:28540362

  17. Corneal, Conjunctival effects and blood flow changes related to silicone hydrogel lens wear and their correlations with end of day comfort.

    PubMed

    Sorbara, Luigina; Maram, Jyotsna; Simpson, Trefford; Hutchings, Natalie

    2018-04-01

    First, to examine how wearing high and low modulus lenses with two different base curves affected lens fit, and the corneal tissue and bulbar conjunctival vascular tissue (bulbar redness and blood velocity). Secondly, to quantify the associations between these baseline and outcome variables and the third purpose was to correlate these variables with end of day comfort. Thirty participants wore higher (PureVision (PV) 8.3, 8.6) and lower (Acuvue Advance (AA) 8.3, 8.7) modulus silicone hydrogel lenses for two weeks on a daily wear basis. Lens fitting characteristics were examined. Corneal epithelial thickness was measured and the cornea and conjunctiva were assessed. RBC velocity was estimated from high magnification bulbar conjunctival images. Subjective comfort/dryness was reported by participants using visual analogue scales. AA lenses were rated the most comfortable (ANOVA, p=0.041). The least movement was while using the AA 8.3 base curve lens (Tukey p=0.028). Steep AA and PV lenses showed significantly higher conjunctival staining at the 2 week visit (ANOVA, p=0.029). There was a significant decrease in RBC velocity with both steeper AA lenses vs PV lenses (Tukey, p=0.001). Comparing baseline and 2 week visits, there was a significant negative correlation for the PV 8.3 between comfort and superior bulbar staining (r=-0.53). For both the PV 8.3 and AA 8.3 reduced RBC velocity was correlated with dryness (r=0.61 and r=0.91, respectively). Physical differences in contact lenses affect structural and vascular functional aspects of the ocular surface and these may be associated with symptoms of dryness. Copyright © 2017 British Contact Lens Association. All rights reserved.

  18. Hybrid solar collector using nonimaging optics and photovoltaic components

    NASA Astrophysics Data System (ADS)

    Winston, Roland; Yablonovitch, Eli; Jiang, Lun; Widyolar, Bennett K.; Abdelhamid, Mahmoud; Scranton, Gregg; Cygan, David; Kozlov, Alexandr

    2015-08-01

    The project team of University of California at Merced (UC-M), Gas Technology Institute, and Dr. Eli Yablonovitch of University of California at Berkeley developed a novel hybrid concentrated solar photovoltaic thermal (PV/T) collector using nonimaging optics and world record single-junction Gallium arsenide (GaAs) PV components integrated with particle laden gas as thermal transfer and storage media, to simultaneously generate electricity and high temperature dispatchable heat. The collector transforms a parabolic trough, commonly used in CSP plants, into an integrated spectrum-splitting device. This places a spectrum-sensitive topping element on a secondary reflector that is registered to the thermal collection loop. The secondary reflector transmits higher energy photons for PV topping while diverting the remaining lower energy photons to the thermal media, achieving temperatures of around 400°C even under partial utilization of the solar spectrum. The collector uses the spectral selectivity property of Gallium arsenide (GaAs) cells to maximize the exergy output of the system, resulting in an estimated exergy efficiency of 48%. The thermal media is composed of fine particles of high melting point material in an inert gas that increases heat transfer and effectively stores excess heat in hot particles for later on-demand use.

  19. Ankyrin-G isoform imbalance and interneuronopathy link epilepsy and bipolar disorder.

    PubMed

    Lopez, A Y; Wang, X; Xu, M; Maheshwari, A; Curry, D; Lam, S; Adesina, A M; Noebels, J L; Sun, Q-Q; Cooper, E C

    2017-10-01

    ANK3, encoding the adaptor protein Ankyrin-G (AnkG), has been implicated in bipolar disorder by genome-wide association studies. ANK3 has multiple alternative first exons, and a bipolar disorder-associated ANK3 variant has been shown to reduce the expression of exon 1b. Here we identify mechanisms through which reduced ANK3 exon 1b isoform expression disrupts neuronal excitation-inhibition balance. We find that parvalbumin (PV) interneurons and principal cells differentially express ANK3 first exon subtypes. PV interneurons express only isoforms containing exon 1b, whereas excitatory principal cells express exon 1e alone or both 1e and 1b. In transgenic mice deficient for exon 1b, PV interneurons lack voltage-gated sodium channels at their axonal initial segments and have increased firing thresholds and diminished action potential dynamic range. These mice exhibit an Ank3 gene dosage-dependent phenotype including behavior changes modeling bipolar disorder, epilepsy and sudden death. Thus ANK3's important association with human bipolar susceptibility may arise from imbalance between AnkG function in interneurons and principal cells and resultant excessive circuit sensitivity and output. AnkG isoform imbalance is a novel molecular endophenotype and potential therapeutic target.

  20. Robust Operation of Soft Open Points in Active Distribution Networks with High Penetration of Photovoltaic Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Ji, Haoran; Wang, Chengshan

    Distributed generators (DGs) including photovoltaic panels (PVs) have been integrated dramatically in active distribution networks (ADNs). Due to the strong volatility and uncertainty, the high penetration of PV generation immensely exacerbates the conditions of voltage violation in ADNs. However, the emerging flexible interconnection technology based on soft open points (SOPs) provides increased controllability and flexibility to the system operation. For fully exploiting the regulation ability of SOPs to address the problems caused by PV, this paper proposes a robust optimization method to achieve the robust optimal operation of SOPs in ADNs. A two-stage adjustable robust optimization model is built tomore » tackle the uncertainties of PV outputs, in which robust operation strategies of SOPs are generated to eliminate the voltage violations and reduce the power losses of ADNs. A column-and-constraint generation (C&CG) algorithm is developed to solve the proposed robust optimization model, which are formulated as second-order cone program (SOCP) to facilitate the accuracy and computation efficiency. Case studies on the modified IEEE 33-node system and comparisons with the deterministic optimization approach are conducted to verify the effectiveness and robustness of the proposed method.« less

  1. Method of operating a thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Cowgill, Joshua D

    2013-11-05

    A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

  2. The presence of betapapillomavirus antibodies around transplantation predicts the development of keratinocyte carcinoma in organ transplant recipients: a cohort study.

    PubMed

    Genders, Roel E; Mazlom, Hadi; Michel, Angelika; Plasmeijer, Elsemieke I; Quint, Koen D; Pawlita, Michael; van der Meijden, Els; Waterboer, Tim; de Fijter, Hans; Claas, Frans H; Wolterbeek, Ron; Feltkamp, Mariet C W; Bouwes Bavinck, Jan Nico

    2015-05-01

    Organ transplant recipients (OTRs) have an increased risk of developing keratinocyte carcinomas (KCs). The aim of this study was to correlate infection with human papillomaviruses (HPVs) belonging to the beta genus (Beta-papillomavirus (Beta-PV)) at transplantation with later development of KCs. In a cohort study, sera collected between 1 year before and 1 year after transplantation of OTRs transplanted between 1990 and 2006 were tested for antibody responses against the L1 capsid antigen of Beta-PV and other HPV genera (Gamma-, Mu-, Nu-, and Alpha-PV) using multiplex serology. The OTRs were followed for a maximum of 22 years. Cox regression models with KC, squamous cell carcinoma (SCC), and basal cell carcinoma (BCC) as outcome variables were used. Out of 445 OTRs, 60 had developed KC: 14 developed only SCC, 24 only BCC, and 22 both types of KC. The time-dependent hazard ratio (HR) to develop either or both types of KC, adjusted for age, sex, and transplanted organ, in tested Beta-PV-seropositive OTR around the time of transplantation compared with Beta-PV-seronegative OTR was 2.9 (95% confidence interval (CI) 1.3-6.4). The HR for SCC was 2.9 (95% CI 0.99-8.5) and for BCC it was 3.1 (95% CI 1.2-8.0). There was also an association between Mu-PV seropositivity and KC, but there were no significant associations between other HPV genera tested and KC. A positive seroresponse for Beta-PV around transplantation significantly predicted the development of KC in OTRs up to 22 years later, providing additional evidence that infection with Beta-PV has a role in KC carcinogenesis.

  3. Publications | Energy Systems Integration Facility | NREL

    Science.gov Websites

    100% Renewable Grid: Operating Electric Power Systems with Extremely High Levels of Variable Renewable timeline. Feeder Voltage Regulation with High-Penetration PV Using Advanced Inverters and a Distribution Integrating High Levels of Variable Renewable Energy into Electric Power Systems, Journal of Modern Power

  4. Thermodynamic variables of first-order entropy corrected Lovelock-AdS black holes: P{-}V criticality analysis

    NASA Astrophysics Data System (ADS)

    Haldar, Amritendu; Biswas, Ritabrata

    2018-06-01

    We investigate the effect of thermal fluctuations on the thermodynamics of a Lovelock-AdS black hole. Taking the first order logarithmic correction term in entropy we analyze the thermodynamic potentials like Helmholtz free energy, enthalpy and Gibbs free energy. We find that all the thermodynamic potentials are decreasing functions of correction coefficient α . We also examined this correction coefficient must be positive by analysing P{-}V diagram. Further we study the P{-}V criticality and stability and find that presence of logarithmic correction in it is necessary to have critical points and stable phases. When P{-}V criticality appears, we calculate the critical volume V_c, critical pressure P_c and critical temperature T_c using different equations and show that there is no critical point for this black hole without thermal fluctuations. We also study the geometrothermodynamics of this kind of black holes. The Ricci scalar of the Ruppeiner metric is graphically analysed.

  5. Fluid-electrolyte shifts and maximal oxygen uptake in man at simulated altitude /2,287 m/

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Adams, W. C.; Juhos, L.

    1978-01-01

    Experiments were conducted on six trained distance runners (21-23 yr) subjected to an eight-day dietary control at sea level, followed by an eight-day stay in an altitude chamber (2287-m altitude) and a four-day recovery at sea level. Fluid and electrolyte shifts during exercise at altitude were evaluated to gain insight into the mechanism of reduction in working capacity. The results are discussed in terms of resting fluid volumes and blood constituents, maximal exercise variables, and maximal exercise fluid-electrolyte shifts. Since there are no significant changes in fluid balance or resting plasma volume (PV) at altitude, it is concluded that neither these nor the excessive PV shifts with exercise contribute to the reduction in maximal oxygen uptake at altitude. During altitude exposure the percent loss in PV is found to follow the percent reduction in maximal oxygen uptake; however, on the first day of recovery the percent change in PV remains depressed while maximal oxygen uptake returns to control levels.

  6. Tracking the global maximum power point of PV arrays under partial shading conditions

    NASA Astrophysics Data System (ADS)

    Fennich, Meryem

    This thesis presents the theoretical and simulation studies of the global maximum power point tracking (MPPT) for photovoltaic systems under partial shading. The main goal is to track the maximum power point of the photovoltaic module so that the maximum possible power can be extracted from the photovoltaic panels. When several panels are connected in series with some of them shaded partially either due to clouds or shadows from neighboring buildings, several local maxima appear in the power vs. voltage curve. A power increment based MPPT algorithm is effective in identifying the global maximum from the several local maxima. Several existing MPPT algorithms are explored and the state-of-the-art power increment method is simulated and tested for various partial shading conditions. The current-voltage and power-voltage characteristics of the PV model are studied under different partial shading conditions, along with five different cases demonstrating how the MPPT algorithm performs when shading switches from one state to another. Each case is supplemented with simulation results. The method of tracking the Global MPP is based on controlling the DC-DC converter connected to the output of the PV array. A complete system simulation including the PV array, the direct current to direct current (DC-DC) converter and the MPPT is presented and tested using MATLAB software. The simulation results show that the MPPT algorithm works very well with the buck converter, while the boost converter needs further changes and implementation.

  7. Comparison of Solar and Wind Power Output and Correlation with Real-Time Pricing

    NASA Astrophysics Data System (ADS)

    Hoepfl, Kathryn E.; Compaan, Alvin D.; Solocha, Andrew

    2011-03-01

    This study presents a method that can be used to determine the least volatile power output of a wind and solar hybrid energy system in which wind and solar systems have the same peak power. Hourly data for wind and PV systems in Northwest Ohio are used to show that a combination of both types of sustainable energy sources produces a more stable power output and would be more valuable to the grid than either individually. This method could be used to determine the ideal ratio in any part of the country and should help convince electric utility companies to bring more renewable generation online. This study also looks at real-time market pricing and how each system (solar, wind, and hybrid) correlates with 2009 hourly pricing from the Midwest Interconnect. KEH acknowledges support from the NSF-REU grant PHY-1004649 to the Univ. of Toledo and Garland Energy Systems/Ohio Department of Development.

  8. Phenotypic variability within the JAK2 V617F-positive MPD: The roles of progenitor cell and neutrophil allele burdens

    PubMed Central

    Moliterno, Alison R.; Williams, Donna M.; Rogers, Ophelia; Isaacs, Mary Ann; Spivak, Jerry L.

    2008-01-01

    (1) Objective The myeloproliferative disorders (MPD), polycythemia vera (PV), essential thrombocytosis (ET) and primary myelofibrosis (PMF) differ phenotypically but share the same JAK2V617F mutation. We examined the relationship of the quantitative JAK2V617F allele burden to MPD disease phenotype among the three MPD classes and within PV. (2) Methods We measured the JAK2V617F allele percentage in genomic DNA from neutrophils, CD34+ cells, and cloned progenitors in 212 JAK2V617F –positive MPD patients and correlated the allele burdens to both disease class and disease features. (3) Results In ET and PV, the mean CD34+ cell JAK2V617F allele burdens were lower than the corresponding neutrophil allele burdens, but these were equivalent in PMF. JAK2WT progenitors were present in ET and PV when the CD34+ JAK2V617F allele burden was lower than the neutrophil allele burden, but not in PV and PMF subjects in whom the CD34+ cell and neutrophil allele burdens were similar. CD34+ cell JAK2V617F clonal dominance, defined as coherence between the CD34+ cell and neutrophil JAK2V617F allele burdens, was present in 24% of ET, 56% of PV and 93% of PMF patients, and was independent of the CD34+ cell JAK2V617F genotype. Clonally-dominant PV patients had significantly longer disease durations, higher white cell counts and larger spleens than nondominant PV patients. (4) Conclusions We conclude that the extent of JAK2V617F CD34+ cell clonal dominance is associated with disease phenotype within the MPD, and in PV, is associated with extramedullary disease, leukocytosis and disease duration. PMID:18723264

  9. A Century of Shope Papillomavirus in Museum Rabbit Specimens

    PubMed Central

    Escudero Duch, Clara; Williams, Richard A. J.; Timm, Robert M.; Perez-Tris, Javier; Benitez, Laura

    2015-01-01

    Sylvilagus floridanus Papillomavirus (SfPV) causes growth of large horn-like tumors on rabbits. SfPV was described in cottontail rabbits (probably Sylvilagus floridanus) from Kansas and Iowa by Richard Shope in 1933, and detected in S. audubonii in 2011. It is known almost exclusively from the US Midwest. We explored the University of Kansas Natural History Museum for historical museum specimens infected with SfPV, using molecular techniques, to assess if additional wild species host SfPV, and whether SfPV occurs throughout the host range, or just in the Midwest. Secondary aims were to detect distinct strains, and evidence for strain spatio-temporal specificity. We found 20 of 1395 rabbits in the KU collection SfPV symptomatic. Three of 17 lagomorph species (S. nuttallii, and the two known hosts) were symptomatic, while Brachylagus, Lepus and eight additional Sylvilagus species were not. 13 symptomatic individuals were positive by molecular testing, including the first S. nuttallii detection. Prevalence of symptomatic individuals was significantly higher in Sylvilagus (1.8%) than Lepus. Half of these specimens came from Kansas, though new molecular detections were obtained from Jalisco—Mexico’s first—and Nebraska, Nevada, New Mexico, and Texas, USA. We document the oldest lab-confirmed case (Kansas, 1915), pre-dating Shope’s first case. SfPV amplification was possible from 63.2% of symptomatic museum specimens. Using multiple methodologies, rolling circle amplification and, multiple isothermal displacement amplification in addition to PCR, greatly improved detection rates. Short sequences were obtained from six individuals for two genes. L1 gene sequences were identical to all previously detected sequences; E7 gene sequences, were more variable, yielding five distinct SfPV1 strains that differing by less than 2% from strains circulating in the Midwest and Mexico, between 1915 and 2005. Our results do not clarify whether strains are host species specific, though they are consistent with SfPV specificity to genus Sylvilagus. PMID:26147570

  10. Development of a Battery-Free Solar Refrigerator

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K.; Bergeron, David J., III

    2000-01-01

    Recent technology developments and a systems engineering design approach have led to the development of a practical battery-free solar refrigerator as a spin-off of NASA's aerospace refrigeration research. Off-grid refrigeration is a good application of solar photovoltaic (PV) power if thermal storage is incorporated and a direct connection is made between the cooling system and the PV panel. This was accomplished by integrating water as a phase-change material into a well insulated refrigerator cabinet and by developing a microprocessor based control system that allows direct connection of a PV panel to a variable speed compressor. This second innovation also allowed peak power-point tracking from the PV panel and elimination of batteries from the system. First a laboratory unit was developed to prove the concept and then a commercial unit was produced and deployed in a field test. The laboratory unit was used to test many different configurations including thermoelectric, Stirling and vapor compression cooling systems. The final configuration used a vapor compression cooling cycle, vacuum insulation, a passive condenser, an integral evaporator/ thermal storage tank, two 77 watt PV panels and the novel controller mentioned above. The system's only moving part was the variable speed BD35 compressor made by Danfoss. The 365 liter cabinet stayed cold with as little as 274 watt-hours per day average PV power. Battery-free testing was conducted for several months with very good results. The amount of thermal storage, size of compressor and power of PV panels connected can all be adjusted to optimize the design for a given application and climate. In the commercial unit, the high cost of the vacuum insulated refrigerator cabinet and the stainless steel thermal storage tank were addressed in an effort to make the technology commercially viable. This unit started with a 142 liter, mass-produced chest freezer cabinet that had the evaporator integrated into its inner walls. Its compressor was replaced with a Danfoss DC compressor slightly larger than the one used in the laboratory unit. The control system was integrated onto a single electronics card and packaged with its starting capacitors. The water for thermal storage was placed behind a liner that was made to fit inside the original factory liner. The original condenser was also augmented with additional surface area to improve performance. PV panels with a total rated power of 180 watts were used. The unit was tested with very successful results in an outside ambient environment, demonstrating its potential for widespread use in many off-grid applications for solar refrigeration.

  11. Time Series Analysis of Photovoltaic Soiling Station Data: Version 1.0, August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Micheli, Leonardo; Muller, Matthew T.; Deceglie, Michael G.

    The time series data from PV soiling stations, operating in the USA, at different time periods are analyzed and presented. The current version of the paper includes twenty stations operating between 2013 and 2016, but the paper is intended to be periodically updated as more stations and more data become available. The challenges in working with soiling stations data are discussed, including measurement methodology, quality controls, and measurement uncertainty. The soiling profiles of the soiling stations are made available so that the PV community can make use of this data to guide operations and maintence decisions, estimate soiling derate inmore » performance models, and more generally come to a better understanding of the challenges associated with the variability of PV soiling.« less

  12. Patient-specific estimation of spatially variant image noise for a pinhole cardiac SPECT camera.

    PubMed

    Cuddy-Walsh, Sarah G; Wells, R Glenn

    2018-05-01

    New single photon emission computed tomography (SPECT) cameras using fixed pinhole collimation are increasingly popular. Pinhole collimators are known to have variable sensitivity with distance and angle from the pinhole aperture. It follows that pinhole SPECT systems will also have spatially variant sensitivity and hence spatially variant image noise. The objective of this study was to develop and validate a rapid method for analytically estimating a map of the noise magnitude in a reconstructed image using data from a single clinical acquisition. The projected voxel (PV) noise estimation method uses a modified forward projector with attenuation effects to estimate the number of photons detected from each voxel in the field-of-view. We approximate the noise for each voxel as the standard deviation of a Poisson distribution with a mean equal to the number of detected photons. An empirical formula is used to address scaling discrepancies caused by image reconstruction. Calibration coefficients are determined for the PV method by comparing it with noise measured from a nonparametrically bootstrapped set of images of a spherical uniformly filled Tc-99m water phantom. Validation studies compare PV noise estimates with bootstrapped measured noise for 31 patient images (5 min, 340 MBq, 99m Tc-tetrofosmin rest study). Bland-Altman analysis shows R 2 correlations ≥70% between the PV-estimated and -measured image noise. For the 31 patient cardiac images, the PV noise estimate has an average bias of 0.1% compared to bootstrapped noise and have a coefficient of variation (CV) ≤ 17%. The bootstrap approach to noise measurement requires 5 h of computation for each image, whereas the PV noise estimate requires only 64 s. In cardiac images, image noise due to attenuation and camera sensitivity varies on average from 4% at the apex to 9% in the basal posterior region of the heart. The standard deviation between 15 healthy patient study images (including physiological variability in the population) ranges from 6% to 16.5% over the length of the heart. The PV method provides a rapid estimate for spatially variant patient-specific image noise magnitude in a pinhole-collimated dedicated cardiac SPECT camera with a bias of -0.3% and better than 83% precision. © 2018 American Association of Physicists in Medicine.

  13. Optimal model of PDIG based microgrid and design of complementary stabilizer using ICA.

    PubMed

    Amini, R Mohammad; Safari, A; Ravadanegh, S Najafi

    2016-09-01

    The generalized Heffron-Phillips model (GHPM) for a microgrid containing a photovoltaic (PV)-diesel machine (DM)-induction motor (IM)-governor (GV) (PDIG) has been developed at the low voltage level. A GHPM is calculated by linearization method about a loading condition. An effective Maximum Power Point Tracking (MPPT) approach for PV network has been done using sliding mode control (SMC) to maximize output power. Additionally, to improve stability of microgrid for more penetration of renewable energy resources with nonlinear load, a complementary stabilizer has been presented. Imperialist competitive algorithm (ICA) is utilized to design of gains for the complementary stabilizer with the multiobjective function. The stability analysis of the PDIG system has been completed with eigenvalues analysis and nonlinear simulations. Robustness and validity of the proposed controllers on damping of electromechanical modes examine through time domain simulation under input mechanical torque disturbances. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  14. PV source based high voltage gain current fed converter

    NASA Astrophysics Data System (ADS)

    Saha, Soumya; Poddar, Sahityika; Chimonyo, Kudzai B.; Arunkumar, G.; Elangovan, D.

    2017-11-01

    This work involves designing and simulation of a PV source based high voltage gain, current fed converter. It deals with an isolated DC-DC converter which utilizes boost converter topology. The proposed converter is capable of high voltage gain and above all have very high efficiency levels as proved by the simulation results. The project intends to produce an output of 800 V dc from a 48 V dc input. The simulation results obtained from PSIM application interface were used to analyze the performance of the proposed converter. Transformer used in the circuit steps up the voltage as well as to provide electrical isolation between the low voltage and high voltage side. Since the converter involves high switching frequency of 100 kHz, ultrafast recovery diodes are employed in the circuitry. The major application of the project is for future modeling of solar powered electric hybrid cars.

  15. Development of a cloud-based system for remote monitoring of a PVT panel

    NASA Astrophysics Data System (ADS)

    Saraiva, Luis; Alcaso, Adérito; Vieira, Paulo; Ramos, Carlos Figueiredo; Cardoso, Antonio Marques

    2016-10-01

    The paper presents a monitoring system developed for an energy conversion system based on the sun and known as thermophotovoltaic panel (PVT). The project was implemented using two embedded microcontrollers platforms (arduino Leonardo and arduino yún), wireless transmission systems (WI-FI and XBEE) and net computing ,commonly known as cloud (Google cloud). The main objective of the project is to provide remote access and real-time data monitoring (like: electrical current, electrical voltage, input fluid temperature, output fluid temperature, backward fluid temperature, up PV glass temperature, down PV glass temperature, ambient temperature, solar radiation, wind speed, wind direction and fluid mass flow). This project demonstrates the feasibility of using inexpensive microcontroller's platforms and free internet service in theWeb, to support the remote study of renewable energy systems, eliminating the acquisition of dedicated systems typically more expensive and limited in the kind of processing proposed.

  16. Crystalline silicon solar cells with high resistivity emitter

    NASA Astrophysics Data System (ADS)

    Panek, P.; Drabczyk, K.; Zięba, P.

    2009-06-01

    The paper presents a part of research targeted at the modification of crystalline silicon solar cell production using screen-printing technology. The proposed process is based on diffusion from POCl3 resulting in emitter with a sheet resistance on the level of 70 Ω/□ and then, shaped by high temperature passivation treatment. The study was focused on a shallow emitter of high resistivity and on its influence on output electrical parameters of a solar cell. Secondary ion mass spectrometry (SIMS) has been employed for appropriate distinguishing the total donor doped profile. The solar cell parameters were characterized by current-voltage characteristics and spectral response (SR) methods. Some aspects playing a role in suitable manufacturing process were discussed. The situation in a photovoltaic industry with emphasis on silicon supply and current prices of solar cells, modules and photovoltaic (PV) systems are described. The economic and quantitative estimation of the PV world market is shortly discussed.

  17. Output variability across animals and levels in a motor system

    PubMed Central

    Norris, Brian J; Günay, Cengiz; Kueh, Daniel

    2018-01-01

    Rhythmic behaviors vary across individuals. We investigated the sources of this output variability across a motor system, from the central pattern generator (CPG) to the motor plant. In the bilaterally symmetric leech heartbeat system, the CPG orchestrates two coordinations in the bilateral hearts with different intersegmental phase relations (Δϕ) and periodic side-to-side switches. Population variability is large. We show that the system is precise within a coordination, that differences in repetitions of a coordination contribute little to population output variability, but that differences between bilaterally homologous cells may contribute to some of this variability. Nevertheless, much output variability is likely associated with genetic and life history differences among individuals. Variability of Δϕ were coordination-specific: similar at all levels in one, but significantly lower for the motor pattern than the CPG pattern in the other. Mechanisms that transform CPG output to motor neurons may limit output variability in the motor pattern. PMID:29345614

  18. Role of Pharmacovigilance in India: An overview.

    PubMed

    Suke, Sanvidhan G; Kosta, Prabhat; Negi, Harsh

    2015-01-01

    Pharmacovigilance (PV) plays a key role in the healthcare system through assessment, monitoring and discovery of interactions amongst drugs and their effects in human. Pharmaceutical and biotechnological medicines are designed to cure, prevent or treat diseases; however, there are also risks particularly adverse drug reactions (ADRs) can cause serious harm to patients. Thus, for safety medication ADRs monitoring required for each medicine throughout its life cycle, during development of drug such as pre-marketing including early stages of drug design, clinical trials, and post-marketing surveillance. PV is concerns with the detection, assessment, understanding and prevention of ADRs. Pharmacogenetics and pharmacogenomics are an indispensable part of the clinical research. Variation in the human genome is a cause of variable response to drugs and susceptibility to diseases are determined, which is important for early drug discovery to PV. Moreover, PV has traditionally involved in mining spontaneous reports submitted to national surveillance systems. The research focus is shifting toward the use of data generated from platforms outside the conventional framework such as electronic medical records, biomedical literature, and patient-reported data in health forums. The emerging trend in PV is to link premarketing data with human safety information observed in the post-marketing phase. The PV system team obtains valuable additional information, building up the scientific data contained in the original report and making it more informative. This necessitates an utmost requirement for effective regulations of the drug approval process and conscious pre and post approval vigilance of the undesired effects, especially in India. Adverse events reported by PV system potentially benefit to the community due to their proximity to both population and public health practitioners, in terms of language and knowledge, enables easy contact with reporters by electronically. Hence, PV helps to the patients get well and to manage optimally or ideally, avoid illness is a collective responsibility of industry, drug regulators, clinicians and other healthcare professionals to enhance their contribution to public health. This review summarized objectives and methodologies used in PV with critical overview of existing PV in India, challenges to overcome and future prospects with respect to Indian context.

  19. Role of Pharmacovigilance in India: An overview

    PubMed Central

    Suke, Sanvidhan G; Kosta, Prabhat; Negi, Harsh

    2015-01-01

    Pharmacovigilance (PV) plays a key role in the healthcare system through assessment, monitoring and discovery of interactions amongst drugs and their effects in human. Pharmaceutical and biotechnological medicines are designed to cure, prevent or treat diseases; however, there are also risks particularly adverse drug reactions (ADRs) can cause serious harm to patients. Thus, for safety medication ADRs monitoring required for each medicine throughout its life cycle, during development of drug such as pre-marketing including early stages of drug design, clinical trials, and post-marketing surveillance. PV is concerns with the detection, assessment, understanding and prevention of ADRs. Pharmacogenetics and pharmacogenomics are an indispensable part of the clinical research. Variation in the human genome is a cause of variable response to drugs and susceptibility to diseases are determined, which is important for early drug discovery to PV. Moreover, PV has traditionally involved in mining spontaneous reports submitted to national surveillance systems. The research focus is shifting toward the use of data generated from platforms outside the conventional framework such as electronic medical records, biomedical literature, and patient-reported data in health forums. The emerging trend in PV is to link premarketing data with human safety information observed in the post-marketing phase. The PV system team obtains valuable additional information, building up the scientific data contained in the original report and making it more informative. This necessitates an utmost requirement for effective regulations of the drug approval process and conscious pre and post approval vigilance of the undesired effects, especially in India. Adverse events reported by PV system potentially benefit to the community due to their proximity to both population and public health practitioners, in terms of language and knowledge, enables easy contact with reporters by electronically. Hence, PV helps to the patients get well and to manage optimally or ideally, avoid illness is a collective responsibility of industry, drug regulators, clinicians and other healthcare professionals to enhance their contribution to public health. This review summarized objectives and methodologies used in PV with critical overview of existing PV in India, challenges to overcome and future prospects with respect to Indian context. PMID:26392851

  20. The evolution of AAOE observed constituents with the polar vortex

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Lait, Leslie R.; Newman, P. A.; Martin, R.; Loewenstein, M.; Podolske, J. R.; Anderson, J.; Proffitt, M. H.

    1988-01-01

    One of the difficulties in determining constituent trends from the ER-2 flight data is the large amount of day to day variability generated by the motion of the polar vortex. To reduce this variability, the observations have been transformed into the conservative (Lagrangian) reference frames consisting of the coordinate pairs, potential temperature (PT) and potential vorticity (PV), or PT and N2O. The requirement of only two independent coordinates rests on the assumption that constituent distributions and their chemical processes are nearly zonal in that coordinate system. Flight data is used everywhere for these transformation except for potential vorticity. Potential vorticity is determined from level flight segments, and NMC PV values during flight dives and takeoffs are combined with flight data in a smooth fashion.

  1. Improving the Signal-To-Noise Ratio When Monitoring Countermovement Jump Performance.

    PubMed

    Kennedy, Rodney A; Drake, David

    2018-05-08

    Kennedy, RA and Drake, D. Improving the signal-to-noise ratio when monitoring countermovement jump performance. J Strength Cond Res XX(X): 000-000, 2018-Countermovement jump (CMJ) performance has been routinely used to monitor neuromuscular status. However, the protocol used to establish the criterion score is not well documented. The purpose of this study was to examine how the protocol used would influence of the sensitivity of CMJ variables in rugby union players. Fifteen male (age: 19.7 ± 0.5 years) rugby union players performed 8 CMJs on 2 occasions, separated by 7 days. The between-session coefficient of variation (CV) was calculated using 2 techniques for treating multiple trials, the average, and the trial with the best jump height (JH), and then compared with the smallest worthwhile change (SWC). The signal-to-noise ratio was measured as the group mean change in a variable divided by the CV. Using the average value across multiple trials is superior to the best trial method, based on lower CVs for all variables. Only the average performance across 6 or more trials was classified as ideal (CV < 0.5 × SWC) for peak velocity (PV). In addition, the signal-to-noise ratio for peak concentric power (PCP), PV, and JH were classified as good, irrespective of the treatment method. Although increasing the number of trials can reduce the random error, it may be pragmatic to simply take the average from 2 to 3 trials, facilitating a CV < SWC for PV, PCP, and JH. Due to its simplicity, JH may be considered the principal variable to monitor neuromuscular fatigue.

  2. Effect of Permissive Dehydration on Induction and Decay of Heat Acclimation, and Temperate Exercise Performance

    PubMed Central

    Neal, Rebecca A.; Massey, Heather C.; Tipton, Michael J.; Young, John S.; Corbett, Jo

    2016-01-01

    Purpose: It has been suggested that dehydration is an independent stimulus for heat acclimation (HA), possibly through influencing fluid-regulation mechanisms and increasing plasma volume (PV) expansion. There is also some evidence that HA may be ergogenic in temperate conditions and that this may be linked to PV expansion. We investigated: (i) the influence of dehydration on the time-course of acquisition and decay of HA; (ii) whether dehydration augmented any ergogenic benefits in temperate conditions, particularly those related to PV expansion. Methods: Eight males [VO2max: 56.9(7.2) mL·kg−1·min−1] undertook two HA programmes (balanced cross-over design), once drinking to maintain euhydration (HAEu) and once with restricted fluid-intake (HADe). Days 1, 6, 11, and 18 were 60 min exercise-heat stress tests [HST (40°C; 50% RH)], days 2–5 and 7–10 were 90 min, isothermal-strain (Tre ~ 38.5°C), exercise-heat sessions. Performance parameters [VO2max, lactate threshold, efficiency, peak power output (PPO)] were determined pre and post HA by graded exercise test (22°C; 55%RH). Results: During isothermal-strain sessions hypohydration was achieved in HADe and euhydration maintained in HAEu [average body mass loss −2.71(0.82)% vs. −0.56(0.73)%, P < 0.001], but aldosterone concentration, power output, and cardiovascular strain were unaffected by dehydration. HA was evident on day 6 {reduced end-exercise Tre [−0.30(0.27)°C] and exercise heart rate [−12(15) beats.min−1], increased PV [+7.2(6.4)%] and sweat-loss [+0.25(0.22) L.h−1], P < 0.05} with some further adaptations on day 11 {further reduced end-exercise Tre [−0.25(0.19)°C] and exercise heart rate [−3(9) beats.min−1], P < 0.05}. These adaptations were not notably affected by dehydration and were generally maintained 7-days post HA. Performance parameters were unchanged, apart from increased PPO (+16(20) W, irrespective of condition). Conclusions: When thermal-strain is matched, permissive dehydration which induces a mild, transient, hypohydration does not affect the acquisition and decay of HA, or endurance performance parameters. Irrespective of hydration, trained individuals require >5 days to optimize HA. PMID:27932993

  3. The Influence of PV Module Materials and Design on Solder Joint Thermal Fatigue Durability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bosco, Nick; Silverman, Timothy J.; Kurtz, Sarah

    Finite element model (FEM) simulations have been performed to elucidate the effect of flat plate photovoltaic (PV) module materials and design on PbSn eutectic solder joint thermal fatigue durability. The statistical method of Latin Hypercube sampling was employed to investigate the sensitivity of simulated damage to each input variable. Variables of laminate material properties and their thicknesses were investigated. Using analysis of variance, we determined that the rate of solder fatigue was most sensitive to solder layer thickness, with copper ribbon and silicon thickness being the next two most sensitive variables. By simulating both accelerated thermal cycles (ATCs) and PVmore » cell temperature histories through two characteristic days of service, we determined that the acceleration factor between the ATC and outdoor service was independent of the variables sampled in this study. This result implies that an ATC test will represent a similar time of outdoor exposure for a wide range of module designs. This is an encouraging result for the standard ATC that must be universally applied across all modules.« less

  4. The impact of climate change on photovoltaic power generation in Europe

    NASA Astrophysics Data System (ADS)

    Jerez, Sonia; Tobin, Isabelle; Vautard, Robert; Montávez, Juan Pedro; María López-Romero, Jose; Thais, Françoise; Bartok, Blanka; Bøssing Christensen, Ole; Colette, Augustin; Déqué, Michel; Nikulin, Grigory; Kotlarski, Sven; van Meijgaard, Erik; Teichmann, Claas; Wild, Martin

    2016-04-01

    Ambitious climate change mitigation plans call for a significant increase in use of renewables, which could, however, make the supply system more vulnerable to climate variability and changes. Here we evaluate climate change impacts on solar photovoltaic (PV) power in Europe using the recent EURO-CORDEX ensemble of high-resolution climate projections together with a PV power production model and assuming a well-developed European PV power fleet. Results indicate that the alteration of solar PV supply by the end of this century compared to the estimations made under current climate conditions should be in the range [-14%;+2%], with the largest decreases in Northern countries. Temporal stability of power generation does not appear as strongly affected in future climate scenarios either, even showing a slight positive trend in Southern countries. Therefore, despite small decreases in production expected in some parts of Europe, climate change is unlikely to threaten the European PV sector. Reference: S. Jerez, I. Tobin, R. Vautard, J.P. Montávez, J.M. López-Romero, F. Thais, B. Bartok, O.B. Christensen, A. Colette, M. Déqué, G. Nikulin, S. Kotlarski, E. van Meijgaard, C. Teichmann and M. Wild (2015). The impact of climate change on photovoltaic power generation in Europe. Nature Communications, 6, 10014, doi: 10.1038/ncomms10014.

  5. A potential vorticity-based determination of the transport barrier in the Asian summer monsoon anticyclone

    NASA Astrophysics Data System (ADS)

    Ploeger, F.; Gottschling, C.; Griessbach, S.; Grooß, J.-U.; Guenther, G.; Konopka, P.; Müller, R.; Riese, M.; Stroh, F.; Tao, M.; Ungermann, J.; Vogel, B.; von Hobe, M.

    2015-11-01

    The Asian summer monsoon provides an important pathway of tropospheric source gases and pollution into the lower stratosphere. This transport is characterized by deep convection and steady upwelling, combined with confinement inside a large-scale anticyclonic circulation in the upper troposphere and lower stratosphere (UTLS). In this paper, we show that a barrier to horizontal transport along the 380 K isentrope in the monsoon anticyclone can be determined from a local maximum in the gradient of potential vorticity (PV), following methods developed for the polar vortex (e.g., Nash et al., 1996). The monsoon anticyclone is dynamically highly variable and the maximum in the PV gradient is weak, such that additional constraints are needed (e.g., time averaging). Nevertheless, PV contours in the monsoon anticyclone agree well with contours of trace gas mixing ratios (CO, O3) and mean age from model simulations with a Lagrangian chemistry transport model (CLaMS) and satellite observations from the Microwave Limb Sounder (MLS) instrument. Hence, the PV-based transport barrier reflects the separation between air inside the core of the anticyclone and the background atmosphere well. For the summer season 2011 we find an average PV value of 3.6 PVU for the transport barrier in the anticyclone on the 380 K isentrope.

  6. Mean Velocity vs. Mean Propulsive Velocity vs. Peak Velocity: Which Variable Determines Bench Press Relative Load With Higher Reliability?

    PubMed

    García-Ramos, Amador; Pestaña-Melero, Francisco L; Pérez-Castilla, Alejandro; Rojas, Francisco J; Gregory Haff, G

    2018-05-01

    García-Ramos, A, Pestaña-Melero, FL, Pérez-Castilla, A, Rojas, FJ, and Haff, GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability? J Strength Cond Res 32(5): 1273-1279, 2018-This study aimed to compare between 3 velocity variables (mean velocity [MV], mean propulsive velocity [MPV], and peak velocity [PV]): (a) the linearity of the load-velocity relationship, (b) the accuracy of general regression equations to predict relative load (%1RM), and (c) the between-session reliability of the velocity attained at each percentage of the 1-repetition maximum (%1RM). The full load-velocity relationship of 30 men was evaluated by means of linear regression models in the concentric-only and eccentric-concentric bench press throw (BPT) variants performed with a Smith machine. The 2 sessions of each BPT variant were performed within the same week separated by 48-72 hours. The main findings were as follows: (a) the MV showed the strongest linearity of the load-velocity relationship (median r = 0.989 for concentric-only BPT and 0.993 for eccentric-concentric BPT), followed by MPV (median r = 0.983 for concentric-only BPT and 0.980 for eccentric-concentric BPT), and finally PV (median r = 0.974 for concentric-only BPT and 0.969 for eccentric-concentric BPT); (b) the accuracy of the general regression equations to predict relative load (%1RM) from movement velocity was higher for MV (SEE = 3.80-4.76%1RM) than for MPV (SEE = 4.91-5.56%1RM) and PV (SEE = 5.36-5.77%1RM); and (c) the PV showed the lowest within-subjects coefficient of variation (3.50%-3.87%), followed by MV (4.05%-4.93%), and finally MPV (5.11%-6.03%). Taken together, these results suggest that the MV could be the most appropriate variable for monitoring the relative load (%1RM) in the BPT exercise performed in a Smith machine.

  7. Modeling of high efficiency solar cells under laser pulse for power beaming applications

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Landis, Geoffrey A.

    1994-01-01

    Solar cells have been used to convert sunlight to electrical energy for many years and also offer great potential for non-solar energy conversion applications. Their greatly improved performance under monochromatic light compared to sunlight, makes them suitable as photovoltaic (PV) receivers in laser power beaming applications. Laser beamed power to a PV array receiver could provide power to satellites, an orbital transfer vehicle, or a lunar base. Gallium arsenide (GaAs) and indium phosphide (InP) solar cells have calculated efficiencies of more than 50 percent under continuous illumination at the optimum wavelength. Currently high power free-electron lasers are being developed which operate in pulsed conditions. Understanding cell behavior under a laser pulse is important in the selection of the solar cell material and the laser. An experiment by NAsA lewis and JPL at the AVLIS laser facility in Livermore, CA presented experimental data on cell performance under pulsed laser illumination. Reference 5 contains an overview of technical issues concerning the use of solar cells for laser power conversion, written before the experiments were performed. As the experimental results showed, the actual effects of pulsed operation are more complicated. Reference 6 discusses simulations of the output of GaAs concentrator solar cells under pulsed laser illumination. The present paper continues this work, and compares the output of Si and GaAs solar cells.

  8. A new solar power output prediction based on hybrid forecast engine and decomposition model.

    PubMed

    Zhang, Weijiang; Dang, Hongshe; Simoes, Rolando

    2018-06-12

    Regarding to the growing trend of photovoltaic (PV) energy as a clean energy source in electrical networks and its uncertain nature, PV energy prediction has been proposed by researchers in recent decades. This problem is directly effects on operation in power network while, due to high volatility of this signal, an accurate prediction model is demanded. A new prediction model based on Hilbert Huang transform (HHT) and integration of improved empirical mode decomposition (IEMD) with feature selection and forecast engine is presented in this paper. The proposed approach is divided into three main sections. In the first section, the signal is decomposed by the proposed IEMD as an accurate decomposition tool. To increase the accuracy of the proposed method, a new interpolation method has been used instead of cubic spline curve (CSC) fitting in EMD. Then the obtained output is entered into the new feature selection procedure to choose the best candidate inputs. Finally, the signal is predicted by a hybrid forecast engine composed of support vector regression (SVR) based on an intelligent algorithm. The effectiveness of the proposed approach has been verified over a number of real-world engineering test cases in comparison with other well-known models. The obtained results prove the validity of the proposed method. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  9. Developing a spectroradiometer data uncertainty methodology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Josh; Vignola, Frank; Habte, Aron

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer in the wavelength range of 400-1050 nm can range from 4% to 14% at the 95% confidence level.« less

  10. Developing a spectroradiometer data uncertainty methodology

    DOE PAGES

    Peterson, Josh; Vignola, Frank; Habte, Aron; ...

    2017-04-11

    The proper calibration and measurement uncertainty of spectral data obtained from spectroradiometers is essential in accurately quantifying the output of photovoltaic (PV) devices. PV cells and modules are initially characterized using solar simulators but field performance is evaluated using natural sunlight. Spectroradiometers are used to measure the spectrum of both these light sources in an effort to understand the spectral dependence of various PV output capabilities. These chains of characterization and measurement are traceable to National Metrology Institutes such as National Institute of Standards and Technology, and therefore there is a need for a comprehensive uncertainty methodology to determine themore » accuracy of spectroradiometer data. In this paper, the uncertainties associated with the responsivity of a spectroradiometer are examined using the Guide to the Expression of Uncertainty in Measurement (GUM) protocols. This is first done for a generic spectroradiometer, and then, to illustrate the methodology, the calibration of a LI-COR 1800 spectroradiometer is performed. The reader should be aware that the implementation of this methodology will be specific to the spectroradiometer being analyzed and the experimental setup that is used. Depending of the characteristics of the spectroradiometer being evaluated additional sources of uncertainty may need to be included, but the general GUM methodology is the same. Several sources of uncertainty are associated with the spectroradiometer responsivity. Major sources of uncertainty associated with the LI-COR spectroradiometer are noise in the signal at wavelengths less than 400 nm. At wavelengths more than 400 nm, the responsivity can vary drastically, and it is dependent on the wavelength of light, the temperature dependence, the angle of incidence, and the azimuthal orientation of the sensor to the light source. As a result, the expanded uncertainties in the responsivity of the LI-COR spectroradiometer in the wavelength range of 400-1050 nm can range from 4% to 14% at the 95% confidence level.« less

  11. Identification of Isolates that Cause a Leaf Spot Disease of Brassicas as Xanthomonas campestris pv. raphani and Pathogenic and Genetic Comparison with Related Pathovars.

    PubMed

    Vicente, J G; Everett, B; Roberts, S J

    2006-07-01

    ABSTRACT Twenty-five Xanthomonas isolates, including some isolates received as either X. campestris pv. armoraciae or pv. raphani, caused discrete leaf spot symptoms when spray-inoculated onto at least one Brassica oleracea cultivar. Twelve of these isolates and four other Xanthomonas isolates were spray- and pin-inoculated onto 21 different plant species/cultivars including horseradish (Armoracia rusticana), radish (Raphanus sativus), and tomato (Lycopersicon esculentum). The remaining 13 leaf spot isolates were spray-inoculated onto a subset of 10 plant species/cultivars. The leaf spot isolates were very aggressive on several Brassica spp., radish, and tomato causing leaf spots and dark sunken lesions on the middle vein, petiole, and stem. Based on the differential reactions of several Brassica spp. and radish cultivars, the leaf spot isolates were divided into three races, with races 1 and 3 predominating. A differential series was established to determine the race-type of isolates and a gene-for-gene model based on the interaction of two avirulence genes in the pathogen races and two matching resistance genes in the differential hosts is proposed. Repetitive-DNA polymerase chain reaction-based fingerprinting was used to assess the genetic diversity of the leaf spot isolates and isolates of closely related Xanthomonas pathovars. Although there was variability within each race, the leaf spot isolates were clustered separately from the X. campestris pv. campestris isolates. We propose that X. campestris isolates that cause a nonvascular leaf spot disease on Brassica spp. should be identified as pv. raphani and not pv. armoraciae. Race-type strains and a neopathotype strain for X. campestris pv. raphani are proposed.

  12. Plasma volume shifts with immersion at rest and two exercise intensities.

    PubMed

    Ertl, A C; Bernauer, E M; Hom, C A

    1991-04-01

    Eight men were studied to determine the effect of cycling exercise on plasma volume (PV) during water immersion to the xiphoid process (WIX). In all protocols the subjects were seated upright. After 30 min of rest, subjects were immersed in 34.5 degrees C water and seated on a cycling ergometer. During three 1 h WIX protocols, subjects either remained at rest (No Ex) or pedaled from minutes 20 to 30 at 38% (Ex1) or 62% (Ex2) of peak oxygen consumption (VO2peak). Hematocrit (Hct) and hemoglobin concentration [( Hb]) from venous blood samples were compared pre-WIX and at minutes 20, 30, 40, and 60. Percent change in PV (delta PV) was calculated from pre-WIX Hct and [Hb] within each protocol. Hct and [Hb] decreased after 20 min of resting WIX (P less than 0.017). In the No Ex protocol, there were no further significant changes in these variables, with delta PV values of +10.4% at minute 20 and at a peak of +13.5% at minute 40. In Ex1 and Ex2, cycling increased Hct and [Hb] (P less than 0.01, minute 30 vs No Ex), with delta PV values at minute 30 of +3.7% and -0.9%, respectively, vs +12.8% in No Ex. Minute 60 values between protocols were not significantly different (mean delta PV of +10.8 +/- 0.6% SD). The hemodilution associated with WIX was either partially or completely attenuated by cycling exercise; the degree of hemoconcentration was related to exercise intensity. The exercise-induced hemoconcentration was reversed by 30 min of resting WIX. Exercise during WIX appears to cause similar decreases in PV, as does exercise in air provided that postural hemoconcentration prior to exercise is not already maximal.

  13. Fine Specificity of Plasmodium vivax Duffy Binding Protein Binding Engagement of the Duffy Antigen on Human Erythrocytes

    PubMed Central

    Siddiqui, Asim A.; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L.; Foley, Michael; Adams, John H.

    2012-01-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax. PMID:22615246

  14. Fine specificity of Plasmodium vivax Duffy binding protein binding engagement of the Duffy antigen on human erythrocytes.

    PubMed

    Siddiqui, Asim A; Xainli, Jia; Schloegel, Jesse; Carias, Lenore; Ntumngia, Francis; Shoham, Menachem; Casey, Joanne L; Foley, Michael; Adams, John H; King, Christopher L

    2012-08-01

    Plasmodium vivax invasion of human erythrocytes requires interaction of the P. vivax Duffy binding protein (PvDBP) with its host receptor, the Duffy antigen (Fy) on the erythrocyte surface. Consequently, PvDBP is a leading vaccine candidate. The binding domain of PvDBP lies in a cysteine-rich portion of the molecule called region II (PvDBPII). PvDBPII contains three distinct subdomains based upon intramolecular disulfide bonding patterns. Subdomain 2 (SD2) is highly polymorphic and is thought to contain many key residues for binding to Fy, while SD1 and SD3 are comparatively conserved and their role in Fy binding is not well understood. To examine the relative contributions of the different subdomains to binding to Fy and their abilities to elicit strain-transcending binding-inhibitory antibodies, we evaluated recombinant proteins from SD1+2, SD2, SD3, and SD3+, which includes 24 residues of SD2. All of the recombinant subdomains, except for SD2, bound variably to human erythrocytes, with constructs containing SD3 showing the best binding. Antisera raised in laboratory animals against SD3, SD3+, and SD2+3 inhibited the binding of full-length PvDBPII, which is strain transcending, whereas antisera generated to SD1+2 and SD2 failed to generate blocking antibodies. All of the murine monoclonal antibodies generated to full-length PvDBPII that had significant binding-inhibitory activity recognized only SD3. Thus, SD3 binds Fy and elicits blocking antibodies, indicating that it contains residues critical to Fy binding that could be the basis of a strain-transcending candidate vaccine against P. vivax.

  15. A MLVA Genotyping Scheme for Global Surveillance of the Citrus Pathogen Xanthomonas citri pv. citri Suggests a Worldwide Geographical Expansion of a Single Genetic Lineage

    PubMed Central

    Boyer, Karine; Leduc, Alice; Tourterel, Christophe; Drevet, Christine; Ravigné, Virginie; Gagnevin, Lionel; Guérin, Fabien; Chiroleu, Frédéric; Koebnik, Ralf; Verdier, Valérie; Vernière, Christian

    2014-01-01

    MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/). PMID:24897119

  16. Development of a Solar Cell Back Sheet with Excellent UV Durability and Thermal Conductivity.

    PubMed

    Kang, Seong-Hwan; Choi, Jaeho; Lee, Sung-Ho; Song, Young-Hoon; Park, Jong-Se; Jung, In-Sung; Jung, Jin-Su; Kim, Chong-Yeal; Yang, O-Bong

    2018-09-01

    The back sheet is one of the most important materials in photovoltaic (PV) modules. It plays an important role in protecting the solar cell from the environment by preventing moisture penetration. In the back sheet, the outermost layer is composed of a polyester (PET) film to protect the PV module from moisture, and the opposite layer is composed of a TiO2 + PE material. Nowadays, PV modules are installed in the desert. Therefore, methods to improve the power generation efficiency of PV modules need to be investigated as the efficiency is affected by temperature resulting from the heat radiation effect. Using a back sheet with a high thermal conductivity, the module output efficiency can be increased as heat is efficiently dissipated. In this study, a thermally conductive film was fabricated by mixing a reference film (TiO2 + PE) and a non-metallic material, MgO, with high thermal conductivity. UV irradiation tests of the film were conducted. The thermally conductive film (TiO2 + PE + MgO) showed higher conductivity than a reference film. No visible cracks and low yellowing degree were found in thermally conductive film, confirming its excellent UV durability characteristics. The sample film was bonded to a PET layer, and a back sheet was fabricated. The yellowing of the back sheet was also analyzed after UV irradiation. In addition, mini modules with four solar cell were fabricated using the developed back sheet, and a comparative outdoor test was conducted. The results showed that power generation improved by 1.38%.

  17. Process development for single-crystal silicon solar cells

    NASA Astrophysics Data System (ADS)

    Bohra, Mihir H.

    Solar energy is a viable, rapidly growing and an important renewable alternative to other sources of energy generation because of its abundant supply and low manufacturing cost. Silicon still remains the major contributor for manufacturing solar cells accounting for 80% of the market share. Of this, single-crystal solar cells account for half of the share. Laboratory cells have demonstrated 25% efficiency; however, commercial cells have efficiencies of 16% - 20% resulting from a focus on implementation processes geared to rapid throughput and low cost, thereby reducing the energy pay-back time. An example would be the use of metal pastes which dissolve the dielectric during the firing process as opposed to lithographically defined contacts. With current trends of single-crystal silicon photovoltaic (PV) module prices down to 0.60/W, almost all other PV technologies are challenged to remain cost competitive. This presents a unique opportunity in revisiting the PV cell fabrication process and incorporating moderately more expensive IC process practices into PV manufacturing. While they may drive the cost toward a 1/W benchmark, there is substantial room to "experiment", leading to higher efficiencies which will help maintain the overall system cost. This work entails a turn-key process designed to provide a platform for rapid evaluation of novel materials and processes. A two-step lithographic process yielding a baseline 11% - 13% efficient cell is described. Results of three studies have shown improvements in solar cell output parameters due to the inclusion of a back-surface field implant, a higher emitter doping and also an additional RCA Clean.

  18. Baseline and target values for regional and point PV power forecasts: Toward improved solar forecasting

    DOE PAGES

    Zhang, Jie; Hodge, Bri -Mathias; Lu, Siyuan; ...

    2015-11-10

    Accurate solar photovoltaic (PV) power forecasting allows utilities to reliably utilize solar resources on their systems. However, to truly measure the improvements that any new solar forecasting methods provide, it is important to develop a methodology for determining baseline and target values for the accuracy of solar forecasting at different spatial and temporal scales. This paper aims at developing a framework to derive baseline and target values for a suite of generally applicable, value-based, and custom-designed solar forecasting metrics. The work was informed by close collaboration with utility and independent system operator partners. The baseline values are established based onmore » state-of-the-art numerical weather prediction models and persistence models in combination with a radiative transfer model. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of PV power output. The proposed reserve-based methodology is a reasonable and practical approach that can be used to assess the economic benefits gained from improvements in accuracy of solar forecasting. Lastly, the financial baseline and targets can be translated back to forecasting accuracy metrics and requirements, which will guide research on solar forecasting improvements toward the areas that are most beneficial to power systems operations.« less

  19. Physiological characterization of the SynCardia total artificial heart in a mock circulation system.

    PubMed

    Crosby, Jessica R; DeCook, Katrina J; Tran, Phat L; Smith, Richard G; Larson, Douglas F; Khalpey, Zain I; Burkhoff, Daniel; Slepian, Marvin J

    2015-01-01

    The SynCardia total artificial heart (TAH) has emerged as an effective, life-saving biventricular replacement system for a wide variety of patients with end-stage heart failure. Although the clinical performance of the TAH is established, modern physiological characterization, in terms of elastance behavior and pressure-volume (PV) characterization has not been defined. Herein, we examine the TAH in terms of elastance using a nonejecting left ventricle, and then characterize the PV relation of the TAH by varying preload and afterload parameters using a Donovan Mock Circulatory System. We demonstrate that the TAH does not operate with time-varying elastance, differing from the human heart. Furthermore, we show that the TAH has a PV relation behavior that also differs from that of the human heart. The TAH does exhibit Starling-like behavior, with output increasing via preload-dependent mechanisms, without reliance on an alteration of inotropic state within the operating window of the TAH. Within our testing range, the TAH is insensitive to variations in afterload; however, this insensitivity has a limit, the limit being the maximum driving pressure of the pneumatic driver. Understanding the physiology of the TAH affords insight into the functional parameters that govern artificial heart behavior providing perspective on differences compared with the human heart.

  20. N-linked glycosylation of recombinant cellobiohydrolase I (Cel7A) from Penicillium verruculosum and its effect on the enzyme activity.

    PubMed

    Dotsenko, Anna S; Gusakov, Alexander V; Volkov, Pavel V; Rozhkova, Aleksandra M; Sinitsyn, Arkady P

    2016-02-01

    Cellobiohydrolase I from Penicillium verruculosum (PvCel7A) has four potential N-glycosylation sites at its catalytic module: Asn45, Asn194, Asn388, and Asn430. In order to investigate how the N-glycosylation influences the activity and other properties of the enzyme, the wild type (wt) PvCel7A and its mutant forms, carrying Asn to Ala substitutions, were cloned into Penicillium canescens PCA10 (niaD-) strain, a fungal host for production of heterologous proteins. The rPvCel7A-wt and N45A, N194A, N388A mutants were successfully expressed and purified for characterization, whereas the expression of N430A mutant was not achieved. The MALDI-TOF mass spectrometry fingerprinting of peptides, obtained as a result of digestion of rPvCel7A forms with specific proteases, showed that the N-linked glycans represent variable high-mannose oligosaccharides and the products of their sequential enzymatic trimming, according to the formula (Man)0-13 (GlcNAc)2 , or a single GlcNAc residue. Mutations had no notable effect on pH-optimum of PvCel7A activity and enzyme thermostability. However, the mutations influenced both the enzyme adsorption ability on Avicel and its activity against natural and synthetic substrates. In particular, the N45A mutation led to a significant increase in the rate of Avicel and milled aspen wood hydrolysis, while the substrate digestion rates in the case of N194A and N388A mutants were notably lower relative to rPvCel7A-wt. These data, together with data of 3D structural modeling of the PvCel7A catalytic module, indicate that the N-linked glycans are an important part of the processive catalytic machinery of PvCel7A. © 2015 Wiley Periodicals, Inc.

  1. Measurement system for determination of current-voltage characteristics of PV modules

    NASA Astrophysics Data System (ADS)

    Idzkowski, Adam; Walendziuk, Wojciech; Borawski, Mateusz; Sawicki, Aleksander

    2015-09-01

    The realization of a laboratory stand for testing photovoltaic panels is presented here. The project of the laboratory stand was designed in SolidWorks software. The aim of the project was to control the electrical parameters of a PV panel. For this purpose a meter that measures electrical parameters i.e. voltage, current and power, was realized. The meter was created with the use of LabJack DAQ device and LabVIEW software. The presented results of measurements were obtained in different conditions (variable distance from the source of light, variable tilt angle of the panel). Current voltage characteristics of photovoltaic panel were created and all parameters could be detected in different conditions. The standard uncertainties of sample voltage, current, power measurements were calculated. The paper also gives basic information about power characteristics and efficiency of a solar cell.

  2. Visualization of the Eastern Renewable Generation Integration Study: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruchalla, Kenny; Novacheck, Joshua; Bloom, Aaron

    The Eastern Renewable Generation Integration Study (ERGIS), explores the operational impacts of the wide spread adoption of wind and solar photovoltaics (PV) resources in the U.S. Eastern Interconnection and Quebec Interconnection (collectively, EI). In order to understand some of the economic and reliability challenges of managing hundreds of gigawatts of wind and PV generation, we developed state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NREL's high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated withmore » evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions. state of the art tools, data, and models for simulating power system operations using hourly unit commitment and 5-minute economic dispatch over an entire year. Using NRELs high-performance computing capabilities and new methodologies to model operations, we found that the EI, as simulated with evolutionary change in 2026, could balance the variability and uncertainty of wind and PV at a 5-minute level under a variety of conditions. A large-scale display and a combination of multiple coordinated views and small multiples were used to visually analyze the four large highly multivariate scenarios with high spatial and temporal resolutions.« less

  3. Modeling, Dynamics, Bifurcation Behavior and Stability Analysis of a DC-DC Boost Converter in Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Zhioua, M.; El Aroudi, A.; Belghith, S.; Bosque-Moncusí, J. M.; Giral, R.; Al Hosani, K.; Al-Numay, M.

    A study of a DC-DC boost converter fed by a photovoltaic (PV) generator and supplying a constant voltage load is presented. The input port of the converter is controlled using fixed frequency pulse width modulation (PWM) based on the loss-free resistor (LFR) concept whose parameter is selected with the aim to force the PV generator to work at its maximum power point. Under this control strategy, it is shown that the system can exhibit complex nonlinear behaviors for certain ranges of parameter values. First, using the nonlinear models of the converter and the PV source, the dynamics of the system are explored in terms of some of its parameters such as the proportional gain of the controller and the output DC bus voltage. To present a comprehensive approach to the overall system behavior under parameter changes, a series of bifurcation diagrams are computed from the circuit-level switched model and from a simplified model both implemented in PSIM© software showing a remarkable agreement. These diagrams show that the first instability that takes place in the system period-1 orbit when a primary parameter is varied is a smooth period-doubling bifurcation and that the nonlinearity of the PV generator is irrelevant for predicting this phenomenon. Different bifurcation scenarios can take place for the resulting period-2 subharmonic regime depending on a secondary bifurcation parameter. The boundary between the desired period-1 orbit and subharmonic oscillation resulting from period-doubling in the parameter space is obtained by calculating the eigenvalues of the monodromy matrix of the simplified model. The results from this model have been validated with time-domain numerical simulation using the circuit-level switched model and also experimentally from a laboratory prototype. This study can help in selecting the parameter values of the circuit in order to delimit the region of period-1 operation of the converter which is of practical interest in PV systems.

  4. Mnemonic Device for Relating the Eight Thermodynamic State Variables: The Energy Pie

    ERIC Educational Resources Information Center

    Fieberg, Jeffrey E.; Girard, Charles A.

    2011-01-01

    A mnemonic device, the energy pie, is presented that provides relationships between thermodynamic potentials ("U," "H," "G," and "A") and other sets of variables that carry energy units, "TS" and "PV." Methods are also presented in which the differential expressions for the potentials and the corresponding Maxwell relations follow from the energy…

  5. Assessing the PACE of California residential solar deployment: Impacts of Property Assessed Clean Energy programs on residential solar photovoltaic deployment in California, 2010-2015

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deason, Jeff; Murphy, Sean

    A new study by Berkeley Lab found that residential Property Assessed Clean Energy (R-PACE) programs increased deployment of residential solar photovoltaic (PV) systems in California, raising it by about 7-12% in cities that adopt these programs. R-PACE is a financing mechanism that uses a voluntary property tax assessment, paid off over time, to facilitate energy improvements and, in some jurisdictions, water and resilience measures. While previous studies demonstrated that early, regional R-PACE programs increased solar PV deployment, this new analysis is the first to demonstrate these impacts from the large, statewide R-PACE programs dominating the California market today, which usemore » private capital to fund the upfront costs of the improvements. Berkeley Lab estimated the impacts using econometric techniques on two samples: -Large cities only, allowing annual demographic and economic data as control variables -All California cities, without these annual data Analysis of both samples controls for several factors other than R-PACE that would be expected to drive solar PV deployment. We infer that on average, cities with R-PACE programs were associated with greater solar PV deployment in our study period (2010-2015). In the large cities sample, solar PV deployment in jurisdictions with R-PACE programs was higher by 1.1 watts per owner-occupied household per month, or 12%. Across all cities, solar PV deployment in jurisdictions with R-PACE programs was higher by 0.6 watts per owner-occupied household per month, or 7%. The large cities results are statistically significant at conventional levels; the all-cities results are not. The estimates imply that the majority of solar PV deployment financed by R-PACE programs would likely not have occurred in their absence. Results suggest that R-PACE programs have increased PV deployment in California even in relatively recent years, as R-PACE programs have grown in market share and as alternate approaches for financing solar PV have developed. The U.S. Department of Energy’s Building Technologies Office supported this research.« less

  6. Variability and Reproducibility of 3rd-generation dual-source dynamic volume perfusion CT Parameters in Comparison to MR-perfusion Parameters in Rectal Cancer.

    PubMed

    Sudarski, Sonja; Henzler, Thomas; Floss, Teresa; Gaa, Tanja; Meyer, Mathias; Haubenreisser, Holger; Schoenberg, Stefan O; Attenberger, Ulrike I

    2018-05-02

    To compare in patients with untreated rectal cancer quantitative perfusion parameters calculated from 3 rd -generation dual-source dynamic volume perfusion CT (dVPCT) with 3-Tesla-MR-perfusion with regard to data variability and tumour differentiation. In MR-perfusion, plasma flow (PF), plasma volume (PV) and mean transit time (MTT) were assessed in two measurements (M1 and M2) by the same reader. In dVPCT, blood flow (BF), blood volume (BV), MTT and permeability (PERM) were assessed respectively. CT dose values were calculated. 20 patients (60 ± 13 years) were analysed. Intra-individual and intra-reader variability of duplicate MR-perfusion measurements was higher compared to duplicate dVPCT measurements. dVPCT-derived BF, BV and PERM could differentiate between tumour and normal rectal wall (significance level for M1 and M2, respectively, regarding BF: p < 0.0001*/0.0001*; BV: p < 0.0001*/0.0001*; MTT: p = 0.93/0.39; PERM: p < 0.0001*/0.0001*), with MR-perfusion this was true for PF and PV (p-values M1/M2 for PF: p = 0.04*/0.01*; PV: p = 0.002*/0.003*; MTT: p = 0.70/0.27*). Mean effective dose of CT-staging incl. dVPCT was 29 ± 6 mSv (20 ± 5 mSv for dVPCT alone). In conclusion, dVPCT has a lower data variability than MR-perfusion while both dVPCT and MR-perfusion could differentiate tumour tissue from normal rectal wall. With 3 rd -generation dual-source CT dVPCT could be included in a standard CT-staging without exceeding national dose reference values.

  7. Feasibility of an Electromagnetic Diaphragm Compressor for Cryocoolers.

    DTIC Science & Technology

    1995-05-01

    carried out with considerable precision by Dave Slezak and Leo Hoogenboom . The review of the report has been conducted with characteristic thoroughness by...COIL S NI(t) CORE F (t) DIAPHRAGM x(t) WORKING P(t)GEN RAT R DRVRB(t•) CH e’AMBER POWER POWER PRESSURIZED SUPPLY SUPPLY GAS Figure 6. Block Diagram...efficiency r1 , defined as the ratio of the output PV power and the input electrical power Pi, (3) the operating frequency f (4) the mean fill pressure

  8. Multi-country willingness to pay study on road-traffic environmental health effects: are people willing and able to provide a number?

    PubMed

    Istamto, Tifanny; Houthuijs, Danny; Lebret, Erik

    2014-05-09

    The health impacts from traffic-related pollutants bring costs to society, which are often not reflected in market prices for transportation. We set out to simultaneously assess the willingness-to-pay (WTP) for traffic-related air pollution and noise effect on health, using a single measurement instrument and approach. We investigated the proportion and determinants of "protest vote/PV responses (people who were against valuing their health in terms of money)" and "don't know"/DK answers, and explored the effect of DK on the WTP distributions. Within the framework of the EU-funded project INTARESE, we asked over 5,200 respondents in five European countries to state their WTP to avoid health effects from road traffic-related air pollution and noise in an open-ended web-based questionnaire. Determinants of PV and DK were studied by logistic regression using variables concerning socio-demographics, income, health and environmental concern, and risk perception. About 10% of the respondents indicated a PV response and between 47-56% of respondents gave DK responses. About one-third of PV respondents thought that costs should be included in transportation prices, i.e. the polluter should pay. Logistic regression analyses showed associations of PV and DK with several factors. In addition to social-demographic, economic and health factors known to affect WTP, environmental concern, awareness of health effects, respondent's ability to relax in polluted places, and their view on the government's role to reduce pollution and on policy to improve wellbeing, also affected the PV and DK response. An exploratory weighting and imputation exercise did not show substantial effects of DK on the WTP distribution. With a proportion of about 50%, DK answers may be a more relevant issue affecting WTP than PV's. The likelihood to give PV and DK response were influenced by socio-demographic, economic and health factors, as well as environmental concerns and appreciation of environmental conditions and policies. In contested policy issues where actual policy may be based on WTP studies, PV and DK answers may indeed affect the outcome of the WTP study. PV and DK answers and their determinants therefore deserve further study in CV studies on environmental health effects.

  9. Dynamic Braking System of a Tidal Generator: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muljadi, Eduard; Wright, Alan; Gevorgian, Vahan

    Renewable energy generation has experienced significant cost reductions during the past decades, and it has become more accepted by the global population. In the beginning, wind generation dominated the development and deployment of renewable energy; however, during recent decades, photovoltaic (PV) generation has grown at a very significant pace due to the tremendous decrease in the cost of PV modules. The focus on renewable energy generation has now expanded to include new types with promising future applications, such as river and tidal generation. The input water flow to these types of resources is more predictable than wind or solar generation.more » The data used in this paper is representative of a typical river or tidal generator. The analysis is based on a generator with a power rating of 40 kW. The tidal generator under consideration is driven by two sets of helical turbines connected to each side of the generator located in between the turbines. The generator is operated in variable speed, and it is controlled to maximize the energy harvested as well as the operation of the turbine generator. The electrical system consists of a three-phase permanent magnet generator connected to a three-phase passive rectifier. The output of the rectifier is connected to a DC-DC converter to match the rectifier output to the DC bus voltage of the DC-AC inverter. The three-phase inverter is connected to the grid, and it is controlled to provide a good interface with the grid. One important aspect of river and tidal generation is the braking mechanism. In a tidal generator, the braking mechanism is important to avoid a runaway condition in case the connection to the grid is lost when there is a fault in the lines. A runaway condition may lead to an overspeed condition and cause extreme stresses on the turbine blade structure and eventual disintegration of the mechanical structure. In this paper, the concept of the dynamic braking system is developed and investigated for normal and abnormal operations. The main objective is to optimize the performance under emergency braking while designing the system to be as simple as possible to avoid overdesigning the power electronics or exceeding the target budget.« less

  10. SunShot 2030 for Photovoltaics (PV): Envisioning a Low-cost PV Future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, Wesley J.; Frew, Bethany A.; Gagnon, Pieter J.

    In this report we summarize the implications, impacts, and deployment potential of reaching the SunShot 2030 targets for the electricity system in the contiguous United States. We model 25 scenarios of the U.S. power sector using the Regional Energy Deployment Systems (ReEDS) and Distributed Generation (dGen) capacity expansion models. The scenarios cover a wide range of sensitivities to capture future uncertainties relating to fuel prices, retirements, renewable energy capital costs, and load growth. We give special attention to the potential for storage costs to also rapidly decline due to its large synergies with low-cost solar. The ReEDS and dGen modelsmore » project utility- and distributed-scale power sector evolution, respectively, for the United States. Both models have been designed with special emphasis on capturing the unique traits of renewable energy, including variability and grid integration requirements. Across the suite of scenarios modeled, we find that reaching the SunShot 2030 target has the potential to lead to significant capacity additions of PV in the United States. By 2050, PV penetration levels are projected to reach 28-46 percent of total generation. If storage also sees significant reductions in cost, then the 2050 solar penetration levels could reach 41-64 percent. PV deployment is projected to occur in all of the lower 48 states, though the specific deployment level is scenario dependent. The growth in PV is projected to be dominated by utility-scale systems, but the actual mix between utility and distributed systems could ultimately vary depending on how policies, system costs, and rate structures evolve.« less

  11. An investigation of the key parameters for predicting PV soiling losses

    DOE PAGES

    Micheli, Leonardo; Muller, Matthew

    2017-01-25

    One hundred and two environmental and meteorological parameters have been investigated and compared with the performance of 20 soiling stations installed in the USA, in order to determine their ability to predict the soiling losses occurring on PV systems. The results of this investigation showed that the annual average of the daily mean particulate matter values recorded by monitoring stations deployed near the PV systems are the best soiling predictors, with coefficients of determination ( R 2) as high as 0.82. The precipitation pattern was also found to be relevant: among the different meteorological parameters, the average length of drymore » periods had the best correlation with the soiling ratio. Lastly, a preliminary investigation of two-variable regressions was attempted and resulted in an adjusted R 2 of 0.90 when a combination of PM 2.5 and a binary classification for the average length of the dry period was introduced.« less

  12. Push-pull with recovery stage high-voltage DC converter for PV solar generator

    NASA Astrophysics Data System (ADS)

    Nguyen, The Vinh; Aillerie, Michel; Petit, Pierre; Pham, Hong Thang; Vo, Thành Vinh

    2017-02-01

    A lot of systems are basically developed on DC-DC or DC-AC converters including electronic switches such as MOS or bipolar transistors. The limits of efficiency are quickly reached when high output voltages and high input currents are needed. This work presents a new high-efficiency-high-step-up based on push-pull DC-DC converter integrating recovery stages dedicated to smart HVDC distributed architecture in PV solar energy production systems. Appropriate duty cycle ratio assumes that the recovery stage work with parallel charge and discharge to achieve high step-up voltage gain. Besides, the voltage stress on the main switch is reduced with a passive clamp circuit and thus, low on-state resistance Rdson of the main switch can be adopted to reduce conduction losses. Thus, the efficiency of a basic DC-HVDC converter dedicated to renewable energy production can be further improved with such topology. A prototype converter is developed, and experimentally tested for validation.

  13. Modeling, numerical simulation, and nonlinear dynamic behavior analysis of PV microgrid-connected inverter with capacitance catastrophe

    NASA Astrophysics Data System (ADS)

    Li, Sichen; Liao, Zhixian; Luo, Xiaoshu; Wei, Duqu; Jiang, Pinqun; Jiang, Qinghong

    2018-02-01

    The value of the output capacitance (C) should be carefully considered when designing a photovoltaic (PV) inverter since it can cause distortion in the working state of the circuit, and the circuit produces nonlinear dynamic behavior. According to Kirchhoff’s laws and the characteristics of an ideal operational amplifier for a strict piecewise linear state equation, a circuit simulation model is constructed to study the system parameters (time, C) for the current passing through an inductor with an inductance of L and the voltage across the capacitor with a capacitance of C. The developed simulation model uses Runge-Kutta methods to solve the state equations. This study focuses on predicting the fault of the circuit from the two aspects of the harmonic distortion and simulation results. Moreover, the presented model is also used to research the working state of the system in the case of a load capacitance catastrophe. The nonlinear dynamic behaviors in the inverter are simulated and verified.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  15. Performance assessment of the PNM Prosperity electricity storage project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, Dakota; Ellison, James F.; Bhatnagar, Dhruv

    2014-05-01

    The purpose of this study is to characterize the technical performance of the PNM Prosperity electricity storage project, and to identify lessons learned that can be used to improve similar projects in the future. The PNM Prosperity electricity storage project consists of a 500 kW/350 kWh advanced lead-acid battery with integrated supercapacitor (for energy smoothing) and a 250 kW/1 MWh advanced lead-acid battery (for energy shifting), and is co-located with a 500 kW solar photovoltaic (PV) resource. The project received American Reinvestment and Recovery Act (ARRA) funding. The smoothing system is e ective in smoothing intermittent PV output. The shiftingmore » system exhibits good round-trip efficiencies, though the AC-to-AC annual average efficiency is lower than one might hope. Given the current utilization of the smoothing system, there is an opportunity to incorporate additional control algorithms in order to increase the value of the energy storage system.« less

  16. Cardiovascular effects of simulated zero-gravity in humans

    NASA Astrophysics Data System (ADS)

    Bonde-Petersen, F.; Suzuki, Y.; Sadámoto, T.; Juel Christensen, N.

    Head-down and heat-up tilted bedrest (5 degrees) and head out water immersion (HOWI) for 6 hr were compared. Parameters: Cardiac output (rebreathing method), blood pressure (arm cuff), forearm blood flow (venous occlusion plethysmography), total peripheral (TPR), and forearm vascular (FVR) resistances, Hct, Hb, relativē plasma volume (PV) changes, and plasma catecholamines (single-isotope assay). During HOWI there was as expected a decrement in TPR, FVR, Mean arterial pressure (MAP, from 100 to 80 mmHg), Hct, and PV, and—as a new finding—catecholamines, which were 30-50% lower compared with both + 5 and - 5 degrees bedrest. During head down tilt, MAP was elevated (to 100-110 mmHg) and catecholamines did not fall, while TPR and FVR slowly decreased over 6 hr. HOWI is a stronger stimulus than - 5 degrees bedrest, probably because HOWI elevates central venous pressure more markedly emptying the peripheral veins, while bedrest permits a distension of veins, which induces an increase in sympathetic nervous activity.

  17. Highly efficient maximum power point tracking using DC-DC coupled inductor single-ended primary inductance converter for photovoltaic power systems

    NASA Astrophysics Data System (ADS)

    Quamruzzaman, M.; Mohammad, Nur; Matin, M. A.; Alam, M. R.

    2016-10-01

    Solar photovoltaics (PVs) have nonlinear voltage-current characteristics, with a distinct maximum power point (MPP) depending on factors such as solar irradiance and operating temperature. To extract maximum power from the PV array at any environmental condition, DC-DC converters are usually used as MPP trackers. This paper presents the performance analysis of a coupled inductor single-ended primary inductance converter for maximum power point tracking (MPPT) in a PV system. A detailed model of the system has been designed and developed in MATLAB/Simulink. The performance evaluation has been conducted on the basis of stability, current ripple reduction and efficiency at different operating conditions. Simulation results show considerable ripple reduction in the input and output currents of the converter. Both the MPPT and converter efficiencies are significantly improved. The obtained simulation results validate the effectiveness and suitability of the converter model in MPPT and show reasonable agreement with the theoretical analysis.

  18. More flexibility in representing geometric distortion in astronomical images

    NASA Astrophysics Data System (ADS)

    Shupe, David L.; Laher, Russ R.; Storrie-Lombardi, Lisa; Surace, Jason; Grillmair, Carl; Levitan, David; Sesar, Branimir

    2012-09-01

    A number of popular software tools in the public domain are used by astronomers, professional and amateur alike, but some of the tools that have similar purposes cannot be easily interchanged, owing to the lack of a common standard. For the case of image distortion, SCAMP and SExtractor, available from Astromatic.net, perform astrometric calibration and source-object extraction on image data, and image-data geometric distortion is computed in celestial coordinates with polynomial coefficients stored in the FITS header with the PV i_j keywords. Another widely-used astrometric-calibration service, Astrometry.net, solves for distortion in pixel coordinates using the SIP convention that was introduced by the Spitzer Science Center. Up until now, due to the complexity of these distortion representations, it was very difficult to use the output of one of these packages as input to the other. New Python software, along with faster-computing C-language translations, have been developed at the Infrared Processing and Analysis Center (IPAC) to convert FITS-image headers from PV to SIP and vice versa. It is now possible to straightforwardly use Astrometry.net for astrometric calibration and then SExtractor for source-object extraction. The new software also enables astrometric calibration by SCAMP followed by image visualization with tools that support SIP distortion, but not PV . The software has been incorporated into the image-processing pipelines of the Palomar Transient Factory (PTF), which generate FITS images with headers containing both distortion representations. The software permits the conversion of archived images, such as from the Spitzer Heritage Archive and NASA/IPAC Infrared Science Archive, from SIP to PV or vice versa. This new capability renders unnecessary any new representation, such as the proposed TPV distortion convention.

  19. How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunbar, Ricky B.; Duck, Benjamin C.; Moriarty, Tom E.

    Perovskite materials have generated significant interest from academia and industry as a potential component in next-generation, high-efficiency, low-cost, photovoltaic (PV) devices. The record efficiency reported for perovskite solar cells has risen rapidly, and is now more than 22%. However, due to their complex dynamic behaviour, the process of measuring the efficiency of perovskite solar cells appears to be much more complicated than for other technologies. It has long been acknowledged that this is likely to greatly reduce the reliability of reported efficiency measurements, but the quantitative extent to which this occurs has not been determined. To investigate this, we conductmore » the first major inter-comparison of this PV technology. The participants included two labs accredited for PV performance measurement (CSIRO and NREL) and eight PV research laboratories. We find that the inter-laboratory measurement variability can be almost ten times larger for a slowly responding perovskite cell than for a control silicon cell. We show that for such a cell, the choice of measurement method, far more so than measurement hardware, is the single-greatest cause for this undesirably large variability. We provide recommendations for identifying the most appropriate method for a given cell, depending on its stabilization and degradation behaviour. Moreover, the results of this study suggest that identifying a consensus technique for accurate and meaningful efficiency measurements of perovskite solar cells will lead to an immediate improvement in reliability. This, in turn, should assist device researchers to correctly evaluate promising new materials and fabrication methods, and further boost the development of this technology.« less

  20. How reliable are efficiency measurements of perovskite solar cells? The first inter-comparison, between two accredited and eight non-accredited laboratories

    DOE PAGES

    Dunbar, Ricky B.; Duck, Benjamin C.; Moriarty, Tom E.; ...

    2017-10-24

    Perovskite materials have generated significant interest from academia and industry as a potential component in next-generation, high-efficiency, low-cost, photovoltaic (PV) devices. The record efficiency reported for perovskite solar cells has risen rapidly, and is now more than 22%. However, due to their complex dynamic behaviour, the process of measuring the efficiency of perovskite solar cells appears to be much more complicated than for other technologies. It has long been acknowledged that this is likely to greatly reduce the reliability of reported efficiency measurements, but the quantitative extent to which this occurs has not been determined. To investigate this, we conductmore » the first major inter-comparison of this PV technology. The participants included two labs accredited for PV performance measurement (CSIRO and NREL) and eight PV research laboratories. We find that the inter-laboratory measurement variability can be almost ten times larger for a slowly responding perovskite cell than for a control silicon cell. We show that for such a cell, the choice of measurement method, far more so than measurement hardware, is the single-greatest cause for this undesirably large variability. We provide recommendations for identifying the most appropriate method for a given cell, depending on its stabilization and degradation behaviour. Moreover, the results of this study suggest that identifying a consensus technique for accurate and meaningful efficiency measurements of perovskite solar cells will lead to an immediate improvement in reliability. This, in turn, should assist device researchers to correctly evaluate promising new materials and fabrication methods, and further boost the development of this technology.« less

  1. Evaluation of interobserver variability of parenchymal phase of Tc-99m mercaptoacetyltriglycine and Tc-99m dimercaptosuccinic acid renal scintigraphy

    PubMed Central

    Erdoğan, Zeynep; Abdülrezzak, Ümmühan; Silov, Güler; Özdal, Ayşegül; Turhal, Özgül

    2014-01-01

    Objective: The aim of this study was to investigate the variability in the interpretation of parenchymal abnormalities and to assess the differences in interpretation of routine renal scintigraphic findings on posterior view of technetium-99m dimercaptosuccinic acid (pvDMSA) scans and parenchymal phase of technetium-99m mercaptoacetyltriglycine (ppMAG3) scans by using standard criterions to make standardization and semiquantitative evaluation and to have more accurately correlation. Materials and Methods: Two experienced nuclear medicine physicians independently interpreted pvDMSA scans of 204 and ppMAG3 scans of 102 pediatric patients, retrospectively. Comparisons were made by visual inspection of pvDMSA scans, and ppMAG3 scans by using a grading system modified from Itoh et al. According to this, anatomical damage of the renal parenchyma was classified into six types: Grade 0-V. In the calculation of the agreement rates, Kendall correlation (tau-b) analysis was used. Results: According to our findings, excellent agreement was found for DMSA grade readings (DMSA-GR) (tau-b = 0.827) and good agreement for MAG3 grade readings (MAG3-GR) (tau-b = 0.790) between two observers. Most of clear parenchymal lesions detected on pvDMSA scans and ppMAG3 scans identified by observers equally. Studies with negative or minimal lesions reduced correlation degrees for both DMSA-GR and MAG3-GR. Conclusion: Our grading system can be used for standardization of the reports. We conclude that standardization of criteria and terminology in the interpretations may result in higher interobserver consistency, also improve low interobserver reproducibility and objectivity of renal scintigraphy reports. PMID:24761059

  2. Stratosphere-to-Troposphere Transport Revealed by Ground-based Lidar and Ozonesonde at a Midlatitude Site

    NASA Technical Reports Server (NTRS)

    Kuang, Shi; Newchurch, M. J.; Burris, John; Wang, Lihua; Knupp, Kevin; Huang, Guanyu

    2013-01-01

    This paper presents ozone structures measured by a ground-based ozone lidar and ozonesonde at Huntsville, Alabama, on 27-29 April 2010 originating from a stratosphere-to-troposphere transport event associated with a cutoff cyclone and tropopause fold. In this case, the tropopause reached 6 km and the stratospheric intrusion resulted in a 2-km thick elevated ozone layer with values between 70 and 85 ppbv descending from the 306-K to 298-K isentropic surface at a rate of 5 km day1. The potential temperature was provided by a collocated microwave profiling radiometer. We examine the corresponding meteorological fields and potential vorticity (PV) structures derived from the analysis data from the North American Mesoscale model. The 2-PVU (PV unit) surface, defined as the dynamic tropopause, is able to capture the variations of the ozone tropopause estimated from the ozonesonde and lidar measurements. The estimated ozone/PV ratio, from the measured ozone and model derived PV, for the mixing layer between the troposphere and stratosphere is approximately 41 ppbv/PVU with an uncertainty of approximately 33%. Within two days, the estimated mass of ozone irreversibly transported from the stratospheric into the troposphere is between 0.07 Tg (0.9 10(exp33) molecules) and 0.11 Tg (1.3 10(exp33) molecules) with an estimated uncertainty of 59%. Tropospheric ozone exhibited enormous variability due to the complicated mixing processes. Low ozone and large variability were observed in the mid-troposphere after the stratospheric intrusion due to the westerly advection including the transition from a cyclonic system to an anticyclonic system. This study using high temporal and vertical-resolution measurements suggests that, in this case, stratospheric air quickly lost its stratospheric characteristics once it is irreversibly mixed down into the troposphere.

  3. Power Flow Simulations of a More Renewable California Grid Utilizing Wind and Solar Insolation Forecasting

    NASA Astrophysics Data System (ADS)

    Hart, E. K.; Jacobson, M. Z.; Dvorak, M. J.

    2008-12-01

    Time series power flow analyses of the California electricity grid are performed with extensive addition of intermittent renewable power. The study focuses on the effects of replacing non-renewable and imported (out-of-state) electricity with wind and solar power on the reliability of the transmission grid. Simulations are performed for specific days chosen throughout the year to capture seasonal fluctuations in load, wind, and insolation. Wind farm expansions and new wind farms are proposed based on regional wind resources and time-dependent wind power output is calculated using a meteorological model and the power curves of specific wind turbines. Solar power is incorporated both as centralized and distributed generation. Concentrating solar thermal plants are modeled using local insolation data and the efficiencies of pre-existing plants. Distributed generation from rooftop PV systems is included using regional insolation data, efficiencies of common PV systems, and census data. The additional power output of these technologies offsets power from large natural gas plants and is balanced for the purposes of load matching largely with hydroelectric power and by curtailment when necessary. A quantitative analysis of the effects of this significant shift in the electricity portfolio of the state of California on power availability and transmission line congestion, using a transmission load-flow model, is presented. A sensitivity analysis is also performed to determine the effects of forecasting errors in wind and insolation on load-matching and transmission line congestion.

  4. The dynamical structure of intense Mediterranean cyclones

    NASA Astrophysics Data System (ADS)

    Flaounas, Emmanouil; Raveh-Rubin, Shira; Wernli, Heini; Drobinski, Philippe; Bastin, Sophie

    2015-05-01

    This paper presents and analyzes the three-dimensional dynamical structure of intense Mediterranean cyclones. The analysis is based on a composite approach of the 200 most intense cyclones during the period 1989-2008 that have been identified and tracked using the output of a coupled ocean-atmosphere regional simulation with 20 km horizontal grid spacing and 3-hourly output. It is shown that the most intense Mediterranean cyclones have a common baroclinic life cycle with a potential vorticity (PV) streamer associated with an upper-level cyclonic Rossby wave breaking, which precedes cyclogenesis in the region and triggers baroclinic instability. It is argued that this common baroclinic life cycle is due to the strongly horizontally sheared environment in the Mediterranean basin, on the poleward flank of the quasi-persistent subtropical jet. The composite life cycle of the cyclones is further analyzed considering the evolution of key atmospheric elements as potential temperature and PV, as well as the cyclones' thermodynamic profiles and rainfall. It is shown that most intense Mediterranean cyclones are associated with warm conveyor belts and dry air intrusions, similar to those of other strong extratropical cyclones, but of rather small scale. Before cyclones reach their mature stage, the streamer's role is crucial to advect moist and warm air towards the cyclones center. These dynamical characteristics, typical for very intense extratropical cyclones in the main storm track regions, are also valid for these Mediterranean cases that have features that are visually similar to tropical cyclones.

  5. Comparison of CTT and Rasch-based approaches for the analysis of longitudinal Patient Reported Outcomes.

    PubMed

    Blanchin, Myriam; Hardouin, Jean-Benoit; Le Neel, Tanguy; Kubis, Gildas; Blanchard, Claire; Mirallié, Eric; Sébille, Véronique

    2011-04-15

    Health sciences frequently deal with Patient Reported Outcomes (PRO) data for the evaluation of concepts, in particular health-related quality of life, which cannot be directly measured and are often called latent variables. Two approaches are commonly used for the analysis of such data: Classical Test Theory (CTT) and Item Response Theory (IRT). Longitudinal data are often collected to analyze the evolution of an outcome over time. The most adequate strategy to analyze longitudinal latent variables, which can be either based on CTT or IRT models, remains to be identified. This strategy must take into account the latent characteristic of what PROs are intended to measure as well as the specificity of longitudinal designs. A simple and widely used IRT model is the Rasch model. The purpose of our study was to compare CTT and Rasch-based approaches to analyze longitudinal PRO data regarding type I error, power, and time effect estimation bias. Four methods were compared: the Score and Mixed models (SM) method based on the CTT approach, the Rasch and Mixed models (RM), the Plausible Values (PV), and the Longitudinal Rasch model (LRM) methods all based on the Rasch model. All methods have shown comparable results in terms of type I error, all close to 5 per cent. LRM and SM methods presented comparable power and unbiased time effect estimations, whereas RM and PV methods showed low power and biased time effect estimations. This suggests that RM and PV methods should be avoided to analyze longitudinal latent variables. Copyright © 2010 John Wiley & Sons, Ltd.

  6. New Doppler echocardiographic applications for the study of diastolic function

    NASA Technical Reports Server (NTRS)

    Garcia, M. J.; Thomas, J. D.; Klein, A. L.

    1998-01-01

    Doppler echocardiography is one of the most useful clinical tools for the assessment of left ventricular (LV) diastolic function. Doppler indices of LV filling and pulmonary venous (PV) flow are used not only for diagnostic purposes but also for establishing prognosis and evaluating the effect of therapeutic interventions. The utility of these indices is limited, however, by the confounding effects of different physiologic variables such as LV relaxation, compliance and filling pressure. Since alterations in these variables result in changes in Doppler indices of opposite direction, it is often difficult to determine the status of a given variable when a specific Doppler filling pattern is observed. Recently, color M-mode and tissue Doppler have provided useful insights in the study of diastolic function. These new Doppler applications have been shown to provide an accurate estimate of LV relaxation and appear to be relatively insensitive to the effects of preload compensation. This review will focus on the complementary role of color M-mode and tissue Doppler echocardiography and traditional Doppler indices of LV filling and PV flow in the assessment of diastolic function.

  7. Restoration of plasma volume after 16 days of head-down tilt induced by a single bout of maximal exercise

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Engelke, K. A.; Ludwig, D. A.; Doerr, D. F.

    1996-01-01

    Seven healthy men performed maximal exercise 24 h before the end of 16 days exposure to 6 degrees head-down tilt (HDT) to test the hypothesis that such an exercise technique could restore plasma volume (PV) at the end of a simulated space mission. Exercise consisted of supine cycling with graded work rates increasing by 16 W/min to volitional fatigue and required an average of 16 min. The experimental protocol was a standard cross-over design in which the order of treatment (exercise or control) was counterbalanced across all seven subjects. PV, fluid intake (ad libitum), urine output, renal function, and hormones associated with fluid homeostasis were measured before HDT, 24 h before the end of HDT just prior to exercise, and at the end of HDT 24 h after exercise. HDT reduced PV by 16% in both control and exercise conditions. Maximal exercise completely restored plasma volume within 24 h to 3.9 +/- 3.2% of pre-HDT levels despite continued HDT. Compared with control, exercise induced a 660-ml larger positive fluid balance because of greater fluid intake and reduced urine volume during the 24 h after exercise. These results suggest that one bout of maximal leg exercise before return from 16 days of spaceflight may be completely effective in stimulating thirst and restoring plasma volume to preflight levels.

  8. Determining the Optimal Dose of Adenosine for Unmasking Dormant Pulmonary Vein Conduction Following Atrial Fibrillation Ablation: Electrophysiological and Hemodynamic Assessment. DORMANT-AF Study.

    PubMed

    Prabhu, Sandeep; Mackin, Vincent; McLellan, Alex J A; Phan, Tuong; McGlade, Desmond; Ling, Liang-Han; Peck, Kah Y; Voskoboinik, Alexandr; Pathik, Bupesh; Nalliah, Chrishan J; Wong, Geoff R; Azzopardi, Sonia M; Lee, Geoffrey; Mariani, Justin; Taylor, Andrew J; Kalman, Jonathan M; Kistler, Peter M

    2017-01-01

    ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. The significance of adenosine induced dormant pulmonary vein (PV) conduction in atrial fibrillation (AF) ablation remains controversial. The optimal dose of adenosine to determine dormant PV conduction is yet to be systematically explored. ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. Consecutive patients undergoing index AF ablation received 3 adenosine doses (12, 18, and 24 mg) in a randomized blinded order, immediately after pulmonary vein isolation (PVI). Electrophysiological (PR prolongation, AV block (AVB) and PV reconnection) and hemodynamic (BP) parameters were measured. A total, 339 doses (113/dose) assessed 191 PVs in 50 patients (66% male, 72% PAF, 52% hypertensive). Dormant PV conduction occurred in 28% of patients (16.5% [32] of PVs). All cases were associated with AVB (AVB: PV reconnection vs. no PV reconnection 100% vs. 83%, P = 0.007). AVB occurred more frequently at 24 mg versus 12 mg (92% vs. 82%, P = 0.019) but not versus 18 mg (91%, P = 0.62). AVB duration progressed between 12 mg (12.0 ± 8.9 seconds), 18 mg (16.1 ± 9.1 seconds, P = 0.001), and 24 mg (19.0 ± 9.3 seconds, P < 0.001) doses. MBP fell further at 24 mg (ΔMBP: 27 ± 12 mmHg) and 18 mg (26 ± 13 mmHg) doses compared to 12 mg (22 ± 10 mmHg vs., P < 0.001). A significant reduction in AVB in patients >110 kg (65% vs. 91% in 70-110 kg group, P < 0.001) in response to adenosine was seen. ELECTROPHYSIOLOGICAL AND HEMODYNAMIC ASSESSMENT. An adenosine dose producing AVB is required to unmask dormant PV conduction. AVB is significantly reduced in patients >110 kg. Weight and dosing variability may in part explain the conflicting results of studies evaluating the clinical utility of adenosine in PVI. © 2016 Wiley Periodicals, Inc.

  9. A Study of a Two Stage Maximum Power Point Tracking Control of a Photovoltaic System under Partially Shaded Insolation Conditions

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kenji; Takano, Ichiro; Sawada, Yoshio

    A photovoltaic array shows relatively low output power density, and has a greatly drooping Current-Voltage (I-V) characteristic. Therefore, Maximum Power Point Tracking (MPPT) control is used to maximize the output power of the array. Many papers have been reported in relation to MPPT. However, the Current-Power (I-P) curve sometimes shows multi-local maximum points mode under non-uniform insolation conditions. The operating point of the PV system tends to converge to a local maximum output point which is not the real maximal output point on the I-P curve. Some papers have been also reported, trying to avoid this difficulty. However most of those control systems become rather complicated. Then, the two stage MPPT control method is proposed in this paper to realize a relatively simple control system which can track the real maximum power point even under non-uniform insolation conditions. The feasibility of this control concept is confirmed for steady insolation as well as for rapidly changing insolation by simulation study using software PSIM and LabVIEW. In addition, simulated experiment confirms fundament al operation of the two stage MPPT control.

  10. Method of Fatigue-Life Prediction for an Asphalt Mixture Based on the Plateau Value of Permanent Deformation Ratio.

    PubMed

    Sun, Yazhen; Fang, Chenze; Wang, Jinchang; Yuan, Xuezhong; Fan, Dong

    2018-05-03

    Laboratory predictions for the fatigue life of an asphalt mixture under cyclic loading based on the plateau value (PV) of the permanent deformation ratio (PDR) were carried out by three-point bending fatigue tests. The influence of test conditions on the recovery ratio of elastic deformation (RRED), the permanent deformation (PD) and PDR, and the trends of RRED, PD, and PDR were studied. The damage variable was defined by using PDR, and the relation of the fatigue life to PDR was determined by analyzing the damage evolution process. The fatigue equation was established based on the PV of PDR and the fatigue life was predicted by analyzing the relation of the fatigue life to the PV. The results show that the RRED decreases with the increase of the number of loading cycles, and the elastic recovery ability of the asphalt mixture gradually decreases. The two mathematical models proposed are based on the change laws of the RRED, and the PD can well describe the change laws. The RRED or the PD cannot well predict the fatigue life because they do not change monotonously with the fatigue life, and one part of the deformation causes the damage and the other part causes the viscoelastic deformation. The fatigue life decreases with the increase of the PDR. The average PDR in the second stage is taken as the PV, and the fatigue life decreases in a power law with the increase of the PV. The average relative error of the fatigue life predicted by the fatigue equation to the test fatigue life is 5.77%. The fatigue equation based on PV can well predict the fatigue life.

  11. Multi-country willingness to pay study on road-traffic environmental health effects: are people willing and able to provide a number?

    PubMed Central

    2014-01-01

    Background The health impacts from traffic-related pollutants bring costs to society, which are often not reflected in market prices for transportation. We set out to simultaneously assess the willingness-to-pay (WTP) for traffic-related air pollution and noise effect on health, using a single measurement instrument and approach. We investigated the proportion and determinants of “protest vote/PV responses (people who were against valuing their health in terms of money)” and “don’t know”/DK answers, and explored the effect of DK on the WTP distributions. Methods Within the framework of the EU-funded project INTARESE, we asked over 5,200 respondents in five European countries to state their WTP to avoid health effects from road traffic-related air pollution and noise in an open-ended web-based questionnaire. Determinants of PV and DK were studied by logistic regression using variables concerning socio-demographics, income, health and environmental concern, and risk perception. Results About 10% of the respondents indicated a PV response and between 47-56% of respondents gave DK responses. About one-third of PV respondents thought that costs should be included in transportation prices, i.e. the polluter should pay. Logistic regression analyses showed associations of PV and DK with several factors. In addition to social-demographic, economic and health factors known to affect WTP, environmental concern, awareness of health effects, respondent’s ability to relax in polluted places, and their view on the government’s role to reduce pollution and on policy to improve wellbeing, also affected the PV and DK response. An exploratory weighting and imputation exercise did not show substantial effects of DK on the WTP distribution. Conclusions With a proportion of about 50%, DK answers may be a more relevant issue affecting WTP than PV’s. The likelihood to give PV and DK response were influenced by socio-demographic, economic and health factors, as well as environmental concerns and appreciation of environmental conditions and policies. In contested policy issues where actual policy may be based on WTP studies, PV and DK answers may indeed affect the outcome of the WTP study. PV and DK answers and their determinants therefore deserve further study in CV studies on environmental health effects. PMID:24885941

  12. A power pack based on organometallic perovskite solar cell and supercapacitor.

    PubMed

    Xu, Xiaobao; Li, Shaohui; Zhang, Hua; Shen, Yan; Zakeeruddin, Shaik M; Graetzel, Michael; Cheng, Yi-Bing; Wang, Mingkui

    2015-02-24

    We present an investigation on a power pack combining a CH3NH3PbI3-based solar cell with a polypyrrole-based supercapacitor and evaluate its performance as an energy pack. The package achieved an energy storage efficiency of 10%, which is much higher than that of other systems combining a PV cell with a supercapacitor. We find a high output voltage of 1.45 V for the device under AM 1.5G illumination when the CH3NH3PbI3-based solar cell is connected in series with a polypyrrole-based supercapacitor. This system affords continuous output of electric power by using CH3NH3PbI3-based solar cell as an energy source mitigating transients caused by light intensity fluctuations or the diurnal cycle.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narang, David; Ayyanar, Raja; Gemin, Paul

    APS’s renewable energy portfolio, driven in part by Arizona’s Renewable Energy Standard (RES) currently includes more than 1100 MW of installed capacity, equating to roughly 3000 GWh of annual production. Overall renewable production is expected to grow to 6000 GWh by 2025. It is expected that distributed photovoltaics, driven primarily by lower cost, will contribute to much of this growth and that by 2025, distributed installations will account for half of all renewable production (3000GHW). As solar penetration increases, additional analysis may be required for routine utility processes to ensure continued safe and reliable operation of the electric distribution network.more » Such processes include residential or commercial interconnection requests and load shifting during normal feeder operations. Circuits with existing high solar penetration will also have to be studied and results will need to be evaluated for adherence to utility practices or strategy. Increased distributed PV penetration may offer benefits such as load offsetting, but it also has the potential to adversely impact distribution system operation. These effects may be exacerbated by the rapid variability of PV production. Detailed effects of these phenomena in distributed PV applications continue to be studied. Comprehensive, high-resolution electrical models of the distribution system were developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. Modeling methods were refined by validating against field measurements. To augment the field measurements, methods were developed to synthesize high resolution load and PV generation data to facilitate quasi-static time series simulations. The models were then extended to explore boundary conditions for PV hosting capability of the feeder and to simulate common utility practices such as feeder reconfiguration. The modeling and analysis methodology was implemented using open source tools and a process was developed to aid utility engineers in future interconnection requests. Methods to increase PV hosting capacity were also explored during the course of the study. A 700kVA grid-supportive inverter was deployed on the feeder and each grid support mode was demonstrated. Energy storage was explored through simulation and models were developed to calculate the optimum size and placement needed to increase PV hosting capacity. A tool was developed to aid planners in assigning relative costs and benefits to various strategies for increasing PV hosting capacity beyond current levels. Following the completion of the project, APS intends to use the tools and methods to improve the framework of future PV integration on its system. The tools and methods are also expected to aid other utilities to accelerate distributed PV deployment.« less

  14. Solar simulators vs outdoor module performance in the Negev Desert

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faiman, D

    The power output of photovoltaic cells depends on the intensity of the incoming light, its spectral content and the cell temperature. In order to be able to predict the performance of a pv system, therefore, it is of paramount importance to be able to quantify cell performance in a reproducible manner. The standard laboratory technique for this purpose is to employ a solar simulator and a calibrated reference cell. Such a setup enables module performance to be assessed under constant, standard, illumination and temperature conditions. However, this technique has three inherent weaknesses.

  15. Spatial Pattern Classification for More Accurate Forecasting of Variable Energy Resources

    NASA Astrophysics Data System (ADS)

    Novakovskaia, E.; Hayes, C.; Collier, C.

    2014-12-01

    The accuracy of solar and wind forecasts is becoming increasingly essential as grid operators continue to integrate additional renewable generation onto the electric grid. Forecast errors affect rate payers, grid operators, wind and solar plant maintenance crews and energy traders through increases in prices, project down time or lost revenue. While extensive and beneficial efforts were undertaken in recent years to improve physical weather models for a broad spectrum of applications these improvements have generally not been sufficient to meet the accuracy demands of system planners. For renewables, these models are often used in conjunction with additional statistical models utilizing both meteorological observations and the power generation data. Forecast accuracy can be dependent on specific weather regimes for a given location. To account for these dependencies it is important that parameterizations used in statistical models change as the regime changes. An automated tool, based on an artificial neural network model, has been developed to identify different weather regimes as they impact power output forecast accuracy at wind or solar farms. In this study, improvements in forecast accuracy were analyzed for varying time horizons for wind farms and utility-scale PV plants located in different geographical regions.

  16. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  17. Why do electricity policy and competitive markets fail to use advanced PV systems to improve distribution power quality?

    DOE PAGES

    McHenry, Mark P.; Johnson, Jay; Hightower, Mike

    2016-01-01

    The increasing pressure for network operators to meet distribution network power quality standards with increasing peak loads, renewable energy targets, and advances in automated distributed power electronics and communications is forcing policy-makers to understand new means to distribute costs and benefits within electricity markets. Discussions surrounding how distributed generation (DG) exhibits active voltage regulation and power factor/reactive power control and other power quality capabilities are complicated by uncertainties of baseline local distribution network power quality and to whom and how costs and benefits of improved electricity infrastructure will be allocated. DG providing ancillary services that dynamically respond to the networkmore » characteristics could lead to major network improvements. With proper market structures renewable energy systems could greatly improve power quality on distribution systems with nearly no additional cost to the grid operators. Renewable DG does have variability challenges, though this issue can be overcome with energy storage, forecasting, and advanced inverter functionality. This paper presents real data from a large-scale grid-connected PV array with large-scale storage and explores effective mitigation measures for PV system variability. As a result, we discuss useful inverter technical knowledge for policy-makers to mitigate ongoing inflation of electricity network tariff components by new DG interconnection requirements or electricity markets which value power quality and control.« less

  18. Molecular Variability Among Isolates of Prunus Necrotic Ringspot Virus from Different Prunus spp.

    PubMed

    Aparicio, F; Myrta, A; Di Terlizzi, B; Pallás, V

    1999-11-01

    ABSTRACT Viral sequences amplified by polymerase chain reaction from 25 isolates of Prunus necrotic ringspot virus (PNRSV), varying in the symptomatology they cause in six different Prunus spp., were analyzed for restriction fragment polymorphisms. Most of the isolates could be discriminated by using a combination of three different restriction enzymes. The nucleotide sequences of the RNA 4 of 15 of these isolates were determined. Sequence comparisons and phylogenetic analyses of the RNA 4 and coat proteins (CPs) revealed that all of the isolates clustered into three different groups, represented by three previously sequenced PNRSV isolates: PV32, PE5, and PV96. The PE5-type group was characterized by a 5' untranslated region that was clearly different from that of the other two groups. The PV32-type group was characterized by an extra hexanucleotide consisting of a duplication of the six immediately preceding nucleotides. Although most of the variability was observed in the first third of the CP, the amino acid residues in this region, which were previously thought to be functionally important in the replication cycle of the virus, were strictly conserved. No clear correlation with the type of symptom or host specificity could be observed. The validity of this grouping was confirmed when other isolates recently characterized by other authors were included in these analyses.

  19. Simulation Tools and Techniques for Analyzing the Impacts of Photovoltaic System Integration

    NASA Astrophysics Data System (ADS)

    Hariri, Ali

    Solar photovoltaic (PV) energy integration in distribution networks is one of the fastest growing sectors of distributed energy integration. The growth in solar PV integration is incentivized by various clean power policies, global interest in solar energy, and reduction in manufacturing and installation costs of solar energy systems. The increase in solar PV integration has raised a number of concerns regarding the potential impacts that might arise as a result of high PV penetration. Some impacts have already been recorded in networks with high PV penetration such as in China, Germany, and USA (Hawaii and California). Therefore, network planning is becoming more intricate as new technologies are integrated into the existing electric grid. The integrated new technologies pose certain compatibility concerns regarding the existing electric grid infrastructure. Therefore, PV integration impact studies are becoming more essential in order to have a better understanding of how to advance the solar PV integration efforts without introducing adverse impacts into the network. PV impact studies are important for understanding the nature of the new introduced phenomena. Understanding the nature of the potential impacts is a key factor for mitigating and accommodating for said impacts. Traditionally, electric power utilities relied on phasor-based power flow simulations for planning their electric networks. However, the conventional, commercially available, phasor-based simulation tools do not provide proper visibility across a wide spectrum of electric phenomena. Moreover, different types of simulation approaches are suitable for specific types of studies. For instance, power flow software cannot be used for studying time varying phenomena. At the same time, it is not practical to use electromagnetic transient (EMT) tools to perform power flow solutions. Therefore, some electric phenomena caused by the variability of PV generation are not visible using the conventional utility simulation software. On the other hand, EMT simulation tools provide high accuracy and visibility over a wide bandwidth of frequencies at the expense of larger processing and memory requirements, limited network size, and long simulation time. Therefore, there is a gap in simulation tools and techniques that can efficiently and effectively identify potential PV impact. New planning simulation tools are needed in order to accommodate for the simulation requirements of new integrated technologies in the electric grid. The dissertation at hand starts by identifying some of the potential impacts that are caused by high PV penetration. A phasor-based quasi-static time series (QSTS) analysis tool is developed in order to study the slow dynamics that are caused by the variations in the PV generation that lead to voltage fluctuations. Moreover, some EMT simulations are performed in order to study the impacts of PV systems on the electric network harmonic levels. These studies provide insights into the type and duration of certain impacts, as well as the conditions that may lead to adverse phenomena. In addition these studies present an idea about the type of simulation tools that are sufficient for each type of study. After identifying some of the potential impacts, certain planning tools and techniques are proposed. The potential PV impacts may cause certain utilities to refrain from integrating PV systems into their networks. However, each electric network has a certain limit beyond which the impacts become substantial and may adversely interfere with the system operation and the equipment along the feeder; this limit is referred to as the hosting limit (or hosting capacity). Therefore, it is important for utilities to identify the PV hosting limit on a specific electric network in order to safely and confidently integrate the maximum possible PV systems. In the following dissertation, two approaches have been proposed for identifying the hosing limit: 1. Analytical approach: this is a theoretical mathematical approach that demonstrated the understanding of the fundamentals of electric power system operation. It provides an easy way to estimate the maximum amount of PV power that can be injected at each node in the network. This approach has been tested and validated. 2. Stochastic simulation software approach: this approach provides a comprehensive simulation software that can be used in order to identify the PV hosting limit. The software performs a large number of stochastic simulation while varying the PV system size and location. The collected data is then analyzed for violations in the voltage levels, voltage fluctuations and reverse power flow. (Abstract shortened by ProQuest.).

  20. The impact of a large penetration of intermittent sources on the power system operation and planning

    NASA Astrophysics Data System (ADS)

    Ausin, Juan Carlos

    This research investigated the impact on the power system of a large penetration of intermittent renewable sources, mainly wind and photovoltaic generation. Currently, electrical utilities deal with wind and PV plants as if they were sources of negative demand, that is to say, they have no control over the power output produced. In this way, the grid absorbs all the power fluctuation as if it were coming from a common load. With the level of wind penetration growing so quickly, there is growing concern amongst the utilities and the grid operators, as they will have to deal with a much higher level of fluctuation. In the same way, the potential cost reduction of PV technologies suggests that a similar development may be expected for solar production in the mid term. The first part of the research was focused on the issues that affect utility planning and reinforcement decision making. Although DG is located mainly on the distribution network, a large penetration may alter the flows, not only on the distribution lines, but also on the transmission system and through the transmission - distribution interfaces. The optimal capacity and production costs for the UK transmission network have been calculated for several combinations of load profiles and typical wind/PV output scenarios. A full economic analysis is developed, showing the benefits and disadvantages that a large penetration of these distributed generators may have on transmission system operator reinforcement strategies. Closely related to planning factors are institutional, revelatory, and economic considerations, such as transmission pricing, which may hamper the integration of renewable energy technologies into the electric utility industry. The second part of the research related to the impact of intermittent renewable energy technologies on the second by second, minute by minute, and half-hour by half-hour operations of power systems. If a large integration of these new generators partially replaces the conventional rotating machines the aggregate fluctuation starts to become an important factor, and should be taken into account for the calculation of the balancing requirements. Additional balancing requirements would increase the total balancing cost and this could stop the future development of the intermittent sources.

  1. Control strategy of grid-connected photovoltaic generation system based on GMPPT method

    NASA Astrophysics Data System (ADS)

    Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen

    2018-02-01

    There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.

  2. Energy storage connection system

    DOEpatents

    Benedict, Eric L.; Borland, Nicholas P.; Dale, Magdelena; Freeman, Belvin; Kite, Kim A.; Petter, Jeffrey K.; Taylor, Brendan F.

    2012-07-03

    A power system for connecting a variable voltage power source, such as a power controller, with a plurality of energy storage devices, at least two of which have a different initial voltage than the output voltage of the variable voltage power source. The power system includes a controller that increases the output voltage of the variable voltage power source. When such output voltage is substantially equal to the initial voltage of a first one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the first one of the energy storage devices. The controller then causes the output voltage of the variable voltage power source to continue increasing. When the output voltage is substantially equal to the initial voltage of a second one of the energy storage devices, the controller sends a signal that causes a switch to connect the variable voltage power source with the second one of the energy storage devices.

  3. Regional PV power estimation and forecast to mitigate the impact of high photovoltaic penetration on electric grid.

    NASA Astrophysics Data System (ADS)

    Pierro, Marco; De Felice, Matteo; Maggioni, Enrico; Moser, David; Perotto, Alessandro; Spada, Francesco; Cornaro, Cristina

    2017-04-01

    The growing photovoltaic generation results in a stochastic variability of the electric demand that could compromise the stability of the grid and increase the amount of energy reserve and the energy imbalance cost. On regional scale, solar power estimation and forecast is becoming essential for Distribution System Operators, Transmission System Operator, energy traders, and aggregators of generation. Indeed the estimation of regional PV power can be used for PV power supervision and real time control of residual load. Mid-term PV power forecast can be employed for transmission scheduling to reduce energy imbalance and related cost of penalties, residual load tracking, trading optimization, secondary energy reserve assessment. In this context, a new upscaling method was developed and used for estimation and mid-term forecast of the photovoltaic distributed generation in a small area in the north of Italy under the control of a local DSO. The method was based on spatial clustering of the PV fleet and neural networks models that input satellite or numerical weather prediction data (centered on cluster centroids) to estimate or predict the regional solar generation. It requires a low computational effort and very few input information should be provided by users. The power estimation model achieved a RMSE of 3% of installed capacity. Intra-day forecast (from 1 to 4 hours) obtained a RMSE of 5% - 7% while the one and two days forecast achieve to a RMSE of 7% and 7.5%. A model to estimate the forecast error and the prediction intervals was also developed. The photovoltaic production in the considered region provided the 6.9% of the electric consumption in 2015. Since the PV penetration is very similar to the one observed at national level (7.9%), this is a good case study to analyse the impact of PV generation on the electric grid and the effects of PV power forecast on transmission scheduling and on secondary reserve estimation. It appears that, already with 7% of PV penetration, the distributed PV generation could have a great impact both on the DSO energy need and on the transmission scheduling capability. Indeed, for some hours of the days in summer time, the photovoltaic generation can provide from 50% to 75% of the energy that the local DSO should buy from Italian TSO to cover the electrical demand. Moreover, mid-term forecast can reduce the annual energy imbalance between the scheduled transmission and the actual one from 10% of the TSO energy supply (without considering the PV forecast) to 2%. Furthermore, it was shown that prediction intervals could be used not only to estimate the probability of a specific PV generation bid on the energy market, but also to reduce the energy reserve predicted for the next day. Two different methods for energy reserve estimation were developed and tested. The first is based on a clear sky model while the second makes use of the PV prediction intervals with the 95% of confidence level. The latter reduces the amount of the day-ahead energy reserve of 36% with respect the clear sky method.

  4. The potential for PVs in Greek commercial buildings

    NASA Astrophysics Data System (ADS)

    Samouil, Chris

    The photovoltaic sector has been growing explosively, worldwide, for the past few years. At present, grid-connected installations dominate the world market. The photovoltaic technology, types of systems, applications and the market of PVs are presented, placing emphasis on installations regarding the building sector. The main focus of the project is concentrated on Greece. The fact that Greece has favourable natural conditions for the exploitation of solar energy, coupled with the support scheme on phototovoltaics introduced with the new law on renewable energy sources voted in June 2006, makes it very interesting to invest in the Greek PV market. Using a newly built office building in Athens with a roof-top PV installation as a case study, this project looks at the viability of grid-connected systems in the building sector. The annual energy output of the system and CO2 emissions reduction were modelled. Embodied energy, installation cost and annual savings were also considered to determine payback periods. The economic payback period of the system was found to be shorter than its lifetime at 16.2 years, reducing to 9.7 years when grants were included. The carbon payback period was calculated at 6.3 years. A sensitivity analysis on the effect of different factors affecting the viability of the PV installation was carried out. Assuming constant electricity rate increases or a more favourable location for the project the results are more attractive. The same case study in Crete would have a payback period reduced by almost 20% compared to that in Athens. A method to extrapolate the findings for the whole building sector of Attica is proposed as a future research project. As an indication it is found that 60,000 similar to the base case roof-top PV systems can produce around 3.1% of the country's thermally produced electricity and save 0.9% of its CO2 emissions. Finally, the strengths and weeknesses of the new RES law are identified and suggestions are made in order to smoothen PV implementation in Greece.

  5. Impacts of precipitation variability on plant species and community water stress in a temperate deciduous forest in the central US

    DOE PAGES

    Gu, Lianhong; Pallardy, Stephen G.; Hosman, Kevin P.; ...

    2015-12-11

    Variations in precipitation regimes can shift ecosystem structure and function by altering frequency, severity and timing of plant water stress. There is a need for predictively understanding impacts of precipitation regimes on plant water stress in relation to species water use strategies. Here we first formulated two complementary, physiologically-linked measures of precipitation variability (PV) - Precipitation Variability Index (PVI) and Average Recurrence Interval of Effective Precipitation (ARIEP). We then used nine-year continuous measurements of Predawn Leaf Water Potential Integral (PLWPI) in a central US forest to relate PVI and ARIEP to actual plant water availability and comparative water stress responsesmore » of six species with different capacities to regulate their internal water status. We found that PVI and ARIEP explained nearly all inter-annual variations in PLWPI for all species as well as for the community scaled from species measurements. The six species investigated showed differential sensitivities to variations in precipitation regimes. Their sensitivities were reflected more in the responses to PVI and ARIEP than to the mean precipitation rate. Further, they exhibited tradeoffs between responses to low and high PV. Finally, PVI and ARIEP were closely correlated with temporal integrals of positive temperature anomalies and vapor pressure deficit. We suggest that the comparative responses of plant species to PV are part of species-specific water use strategies in a plant community facing the uncertainty of fluctuating precipitation regimes. In conclusion, PVI and ARIEP should be adopted as key indices to quantify physiological drought and the ecological impacts of precipitation regimes in a changing climate.« less

  6. Voltage management of distribution networks with high penetration of distributed photovoltaic generation sources

    NASA Astrophysics Data System (ADS)

    Alyami, Saeed

    Installation of photovoltaic (PV) units could lead to great challenges to the existing electrical systems. Issues such as voltage rise, protection coordination, islanding detection, harmonics, increased or changed short-circuit levels, etc., need to be carefully addressed before we can see a wide adoption of this environmentally friendly technology. Voltage rise or overvoltage issues are of particular importance to be addressed for deploying more PV systems to distribution networks. This dissertation proposes a comprehensive solution to deal with the voltage violations in distribution networks, from controlling PV power outputs and electricity consumption of smart appliances in real time to optimal placement of PVs at the planning stage. The dissertation is composed of three parts: the literature review, the work that has already been done and the future research tasks. An overview on renewable energy generation and its challenges are given in Chapter 1. The overall literature survey, motivation and the scope of study are also outlined in the chapter. Detailed literature reviews are given in the rest of chapters. The overvoltage and undervoltage phenomena in typical distribution networks with integration of PVs are further explained in Chapter 2. Possible approaches for voltage quality control are also discussed in this chapter, followed by the discussion on the importance of the load management for PHEVs and appliances and its benefits to electric utilities and end users. A new real power capping method is presented in Chapter 3 to prevent overvoltage by adaptively setting the power caps for PV inverters in real time. The proposed method can maintain voltage profiles below a pre-set upper limit while maximizing the PV generation and fairly distributing the real power curtailments among all the PV systems in the network. As a result, each of the PV systems in the network has equal opportunity to generate electricity and shares the responsibility of voltage regulation. The method does not require global information and can be implemented either under a centralized supervisory control scheme or in a distributed way via consensus control. Chapter 4 investigates autonomous operation schedules for three types of intelligent appliances (or residential controllable loads) without receiving external signals for cost saving and for assisting the management of possible photovoltaic generation systems installed in the same distribution network. The three types of controllable loads studied in the chapter are electric water heaters, refrigerators deicing loads, and dishwashers, respectively. Chapter 5 investigates the method to mitigate overvoltage issues at the planning stage. A probabilistic method is presented in the chapter to evaluate the overvoltage risk in a distribution network with different PV capacity sizes under different load levels. Kolmogorov--Smirnov test (K--S test) is used to identify the most proper probability distributions for solar irradiance in different months. To increase accuracy, an iterative process is used to obtain the maximum allowable injection of active power from PVs. Conclusion and discussions on future work are given in Chapter 6.

  7. Computer Modelling and Simulation of Solar PV Array Characteristics

    NASA Astrophysics Data System (ADS)

    Gautam, Nalin Kumar

    2003-02-01

    The main objective of my PhD research work was to study the behaviour of inter-connected solar photovoltaic (PV) arrays. The approach involved the construction of mathematical models to investigate different types of research problems related to the energy yield, fault tolerance, efficiency and optimal sizing of inter-connected solar PV array systems. My research work can be divided into four different types of research problems: 1. Modeling of inter-connected solar PV array systems to investigate their electrical behavior, 2. Modeling of different inter-connected solar PV array networks to predict their expected operational lifetimes, 3. Modeling solar radiation estimation and its variability, and 4. Modeling of a coupled system to estimate the size of PV array and battery-bank in the stand-alone inter-connected solar PV system where the solar PV system depends on a system providing solar radiant energy. The successful application of mathematics to the above-m entioned problems entailed three phases: 1. The formulation of the problem in a mathematical form using numerical, optimization, probabilistic and statistical methods / techniques, 2. The translation of mathematical models using C++ to simulate them on a computer, and 3. The interpretation of the results to see how closely they correlated with the real data. Array is the most cost-intensive component of the solar PV system. Since the electrical performances as well as life properties of an array are highly sensitive to field conditions, different characteristics of the arrays, such as energy yield, operational lifetime, collector orientation, and optimal sizing were investigated in order to improve their efficiency, fault-tolerance and reliability. Three solar cell interconnection configurations in the array - series-parallel, total-cross-tied, and bridge-linked, were considered. The electrical characteristics of these configurations were investigated to find out one that is comparatively less susceptible to the mismatches due to manufacturer's tolerances in cell characteristics, shadowing, soiling and aging of solar cells. The current-voltage curves and the values of energy yield characterized by maximum-power points and fill factors for these arrays were also obtained. Two different mathematical models, one for smaller size arrays and the other for the larger size arrays, were developed. The first model takes account of the partial differential equations with boundary value conditions, whereas the second one involves the simple linear programming concept. Based on the initial information on the values of short-circuit current and open-circuit voltage of thirty-six single-crystalline silicon solar cells provided by a manufacturer, the values of these parameters for up to 14,400 solar cells were generated randomly. Thus, the investigations were done for three different cases of array sizes, i.e., (6 x 6), (36 x 8) and (720 x 20), for each configuration. The operational lifetimes of different interconnected solar PV arrays and the improvement in their life properties through different interconnection and modularized configurations were investigated using a reliability-index model. Under normal conditions, the efficiency of a solar cell degrades in an exponential manner, and its operational life above a lowest admissible efficiency may be considered as the upper bound of its lifetime. Under field conditions, the solar cell may fail any time due to environmental stresses, or it may function up to the end of its expected lifetime. In view of this, the lifetime of a solar cell in an array was represented by an exponentially distributed random variable. At any instant of time t, this random variable was considered to have two states: (i) the cell functioned till time t, or (ii) the cell failed within time t. It was considered that the functioning of the solar cell included its operation at an efficiency decaying with time under normal conditions. It was assumed that the lifetime of a solar cell had lack of memory or aging property, which meant that no matter how long (say, t) the cell had been operational, the probability that it would last an additional time ?t was independent of t. The operational life of the solar cell above a lowest admissible efficiency was considered as the upper bound of its expected lifetime. The value of the upper bound on the expected life of solar cell was evaluated using the information provided by the manufacturers of the single-crystalline silicon solar cells. Then on the basis of these lifetimes, the expected operational lifetimes of the array systems were obtained. Since the investigations of the effects of collector orientation on the performance of an array require the continuous values of global solar radiation on a surface, a method to estimate the global solar radiation on a surface (horizontal or tilted) was also proposed. The cloudiness index was defined as the fraction of extraterrestrial radiation that reached the earth's surface when the sky above the location of interest was obscured by the cloud cover. The cloud cover at the location of interest during any time interval of a day was assumed to follow the fuzzy random phenomenon. The cloudiness index, therefore, was considered as a fuzzy random variable that accounted for the cloud cover at the location of interest during any time interval of a day. This variable was assumed to depend on four other fuzzy random variables that, respectively, accounted for the cloud cover corresponding to the 1) type of cloud group, 2) climatic region, 3) season with most of the precipitation, and 4) type of precipitation at the location of interest during any time interval. All possible types of cloud covers were categorized into five types of cloud groups. Each cloud group was considered to be a fuzzy subset. In this model, the cloud cover at the location of interest during a time interval was considered to be the clouds that obscure the sky above the location. The cloud covers, with all possible types of clouds having transmissivities corresponding to values in the membership range of a fuzzy subset (i.e., a type of cloud group), were considered to be the membership elements of that fuzzy subset. The transmissivities of different types of cloud covers in a cloud group corresponded to the values in the membership range of that cloud group. Predicate logic (i.e., if---then---, else---, conditions) was used to set the relationship between all the fuzzy random variables. The values of the above-mentioned fuzzy random variables were evaluated to provide the value of cloudiness index for each time interval at the location of interest. For each case of the fuzzy random variable, heuristic approach was used to identify subjectively the range ([a, b], where a and b were real numbers with in [0, 1] such that a

  8. Features of the Upgraded Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) Software

    NASA Technical Reports Server (NTRS)

    Mason, Michelle L.; Rufer, Shann J.

    2016-01-01

    The Imaging for Hypersonic Experimental Aeroheating Testing (IHEAT) software is used at the NASA Langley Research Center to analyze global aeroheating data on wind tunnel models tested in the Langley Aerothermodynamics Laboratory. One-dimensional, semi-infinite heating data derived from IHEAT are used in the design of thermal protection systems for hypersonic vehicles that are exposed to severe aeroheating loads, such as reentry vehicles during descent and landing procedures. This software program originally was written in the PV-WAVE(Registered Trademark) programming language to analyze phosphor thermography data from the two-color, relative-intensity system developed at Langley. To increase the efficiency, functionality, and reliability of IHEAT, the program was migrated to MATLAB(Registered Trademark) syntax and compiled as a stand-alone executable file labeled version 4.0. New features of IHEAT 4.0 include the options to perform diagnostic checks of the accuracy of the acquired data during a wind tunnel test, to extract data along a specified multi-segment line following a feature such as a leading edge or a streamline, and to batch process all of the temporal frame data from a wind tunnel run. Results from IHEAT 4.0 were compared on a pixel level to the output images from the legacy software to validate the program. The absolute differences between the heat transfer data output from the two programs were on the order of 10(exp -5) to 10(exp -7). IHEAT 4.0 replaces the PV-WAVE(Registered Trademark) version as the production software for aeroheating experiments conducted in the hypersonic facilities at NASA Langley.

  9. Comparison of P&O and INC Methods in Maximum Power Point Tracker for PV Systems

    NASA Astrophysics Data System (ADS)

    Chen, Hesheng; Cui, Yuanhui; Zhao, Yue; Wang, Zhisen

    2018-03-01

    In the context of renewable energy, the maximum power point tracker (MPPT) is often used to increase the solar power efficiency, taking into account the randomness and volatility of solar energy due to changes in temperature and photovoltaic. In all MPPT techniques, perturb & observe and incremental conductance are widely used in MPPT controllers, because of their simplicity and ease of operation. According to the internal structure of the photovoltaic cell and the output volt-ampere characteristic, this paper established the circuit model and establishes the dynamic simulation model in Matlab/Simulink with the preparation of the s function. The perturb & observe MPPT method and the incremental conductance MPPT method were analyzed and compared by the theoretical analysis and digital simulation. The simulation results have shown that the system with INC MPPT method has better dynamic performance and improves the output power of photovoltaic power generation.

  10. Improved power control using optimal adjustable coefficients for three-phase photovoltaic inverter under unbalanced grid voltage.

    PubMed

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software.

  11. Improved Power Control Using Optimal Adjustable Coefficients for Three-Phase Photovoltaic Inverter under Unbalanced Grid Voltage

    PubMed Central

    Wang, Qianggang; Zhou, Niancheng; Lou, Xiaoxuan; Chen, Xu

    2014-01-01

    Unbalanced grid faults will lead to several drawbacks in the output power quality of photovoltaic generation (PV) converters, such as power fluctuation, current amplitude swell, and a large quantity of harmonics. The aim of this paper is to propose a flexible AC current generation method by selecting coefficients to overcome these problems in an optimal way. Three coefficients are brought in to tune the output current reference within the required limits of the power quality (the current harmonic distortion, the AC current peak, the power fluctuation, and the DC voltage fluctuation). Through the optimization algorithm, the coefficients can be determined aiming to generate the minimum integrated amplitudes of the active and reactive power references with the constraints of the inverter current and DC voltage fluctuation. Dead-beat controller is utilized to track the optimal current reference in a short period. The method has been verified in PSCAD/EMTDC software. PMID:25243215

  12. Automated Intelligent Monitoring and the Controlling Software System for Solar Panels

    NASA Astrophysics Data System (ADS)

    Nalamwar, H. S.; Ivanov, M. A.; Baidali, S. A.

    2017-01-01

    The inspection of the solar panels on a periodic basis is important to improve longevity and ensure performance of the solar system. To get the most solar potential of the photovoltaic (PV) system is possible through an intelligent monitoring & controlling system. The monitoring & controlling system has rapidly increased its popularity because of its user-friendly graphical interface for data acquisition, monitoring, controlling and measurements. In order to monitor the performance of the system especially for renewable energy source application such as solar photovoltaic (PV), data-acquisition systems had been used to collect all the data regarding the installed system. In this paper the development of a smart automated monitoring & controlling system for the solar panel is described, the core idea is based on IoT (the Internet of Things). The measurements of data are made using sensors, block management data acquisition modules, and a software system. Then, all the real-time data collection of the electrical output parameters of the PV plant such as voltage, current and generated electricity is displayed and stored in the block management. The proposed system is smart enough to make suggestions if the panel is not working properly, to display errors, to remind about maintenance of the system through email or SMS, and to rotate panels according to a sun position using the Ephemeral table that stored in the system. The advantages of the system are the performance of the solar panel system which can be monitored and analyzed.

  13. Study of the electrical and thermal performances of photovoltaic thermal collector-compound parabolic concentrated

    NASA Astrophysics Data System (ADS)

    Jaaz, Ahed Hameed; Sopian, Kamaruzzaman; Gaaz, Tayser Sumer

    2018-06-01

    The importance of utilizing the solar energy as a very suitable source among multi-source approaches to replace the conventional energy is on the rise in the last four decades. The invention of the photovoltaic module (PV) could be the corner stone in this process. However, the limited amount of energy obtained from PV was and still the main challenge of full utilization of the solar energy. In this paper, the use of the compound parabolic concentrator (CPC) along with the thermal photovoltaic module (PVT) where the cooling process of the CPC is conducted using a novel technique of water jet impingement has applied experimentally and physically tested. The test includes the effect of water jet impingement on the total power, electrical efficiency, thermal efficiency, and total efficiency on CPC-PVT system. The cooling process at the maximum irradiation by water jet impingement resulted in improving the electrical efficiency by 7%, total output power by 31% and the thermal efficiency by 81%. These results outperform the recent highest results recorded by the most recent work.

  14. Optics-based approach to thermal management of photovoltaics: Selective-spectral and radiative cooling

    DOE PAGES

    Sun, Xingshu; Silverman, Timothy J.; Zhou, Zhiguang; ...

    2017-01-20

    For commercial one-sun solar modules, up to 80% of the incoming sunlight may be dissipated as heat, potentially raising the temperature 20-30 °C higher than the ambient. In the long term, extreme self-heating erodes efficiency and shortens lifetime, thereby dramatically reducing the total energy output. Therefore, it is critically important to develop effective and practical (and preferably passive) cooling methods to reduce operating temperature of photovoltaic (PV) modules. In this paper, we explore two fundamental (but often overlooked) origins of PV self-heating, namely, sub-bandgap absorption and imperfect thermal radiation. The analysis suggests that we redesign the optical properties of themore » solar module to eliminate parasitic absorption (selective-spectral cooling) and enhance thermal emission (radiative cooling). Comprehensive opto-electro-thermal simulation shows that the proposed techniques would cool one-sun terrestrial solar modules up to 10 °C. As a result, this self-cooling would substantially extend the lifetime for solar modules, with corresponding increase in energy yields and reduced levelized cost of electricity.« less

  15. Design construction and analysis of solar ridge concentrator photovoltaic (PV) system to improve battery charging performance.

    PubMed

    Narasimman, Kalaiselvan; Selvarasan, Iniyan

    2016-05-01

    A ridge concentrator photovoltaic system for a 10W multi-crystalline solar panel was designed with the concentration ratios of 1X and 2X. The ray tracing model of ridge concentrator photovoltaic system was carried out using Trace-Pro simulation. The optimum tilt angle for the concentrator PV system throughout the year was computed. The electrical parameters of the 3 panels were analyzed. The effect of temperature on the electrical performance of the panel was also studied. The reduction of voltage due to increasing panel temperature was managed by MPES type Charge controller. Glass reflector with reflectivity 0.95 was chosen as the ridge wall for the concentrator system. The maximum power outputs for the 1X and 2X panel reached were 9W and 10.5W with glass reflector. The percentage of power improvement for 1X and 2X concentrations were 22.3% and 45.8% respectively. The 2X concentrated panel connected battery takes lower time to charge compared with normal panel connected battery. Copyright © 2016. Published by Elsevier Inc.

  16. A proposed Kalman filter algorithm for estimation of unmeasured output variables for an F100 turbofan engine

    NASA Technical Reports Server (NTRS)

    Alag, Gurbux S.; Gilyard, Glenn B.

    1990-01-01

    To develop advanced control systems for optimizing aircraft engine performance, unmeasurable output variables must be estimated. The estimation has to be done in an uncertain environment and be adaptable to varying degrees of modeling errors and other variations in engine behavior over its operational life cycle. This paper represented an approach to estimate unmeasured output variables by explicitly modeling the effects of off-nominal engine behavior as biases on the measurable output variables. A state variable model accommodating off-nominal behavior is developed for the engine, and Kalman filter concepts are used to estimate the required variables. Results are presented from nonlinear engine simulation studies as well as the application of the estimation algorithm on actual flight data. The formulation presented has a wide range of application since it is not restricted or tailored to the particular application described.

  17. Fibrous selective emitter structures from sol-gel process

    NASA Astrophysics Data System (ADS)

    Chen, K. C.

    1999-03-01

    Selective emitters have the potential benefit of high efficiency due to the matching of emission spectra to the response of photovoltaic (PV) cells. Continuous uniform rare-earth oxide selective emitter fibers were successfully fabricated using a viscous solution made from metal organic precursors. Cylindrical- and planar configuration emitter structures were made by direct cross-winding or stacking of precursor fiber layers. The combustion and optical performance of the planar emitter structures were tested. The results indicates that both the designing of the fiber packing density and the thickness is critical for high photon and power output.

  18. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603 Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  19. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the ..Section..1603 Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, D.; Porro, G.; Goldberg, M.

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the Section 1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the Section 1603 grant program.

  20. McClellan PV system installation provides key lessons

    NASA Astrophysics Data System (ADS)

    Kauffman, W. R.

    Design features and lessons learned in the installation of a 40 kWp solar cell array to supply power to a market on an airbase are outlined. The fixed-position modules interface with an inverter, ac and dc switchgear, controls, instrumentation, and an energy management system. The power control unit has a peak power tracking feature to maximize output from the 1142 cell modules. The inverter has functioned at over 98 percent efficiency near the 25 kW design range of the array. Moisture sealing to prevent ground faults was found necessary during the installation of the underground cabling.

  1. Linkages from DOE's Solar Photovoltaic R&D to Commercial Renewable Power from Solar Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruegg, Rosalie; Thomas, Patrick

    2011-04-01

    DOE's Solar Photovoltaic R&D Subprogram promotes the development of cost-effective systems for directly converting solar energy into electricity for residential, commercial, and industrial applications. This study was commissioned to assess the extent to which the knowledge outputs of R&D funded by the DOE Solar PV subprogram are linked to downstream developments in commercial renewable power. A second purpose was to identify spillovers of the resulting knowledge to other areas of application. A third purpose was to lend support to a parallel benefit-cost study by contributing evidence of attribution of benefits to DOE.

  2. A new framework to increase the efficiency of large-scale solar power plants.

    NASA Astrophysics Data System (ADS)

    Alimohammadi, Shahrouz; Kleissl, Jan P.

    2015-11-01

    A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.

  3. Preliminary Analysis of the Jobs and Economic Impacts of Renewable Energy Projects Supported by the §1603Treasury Grant Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinberg, Daniel; Porro, Gian; Goldberg, Marshall

    2012-04-01

    This analysis responds to a request from the Department of Energy Office of Energy Efficiency and Renewable Energy to the National Renewable Energy Laboratory (NREL) to estimate the direct and indirect jobs and economic impacts of projects supported by the §1603 Treasury grant program. The analysis employs the Jobs and Economic Development Impacts (JEDI) models to estimate the gross jobs, earnings, and economic output supported by the construction and operation of the large wind (greater than 1 MW) and solar photovoltaic (PV) projects funded by the §1603 grant program.

  4. Analysis of the Latitudinal Variability of Tropospheric Ozone in the Arctic Using the Large Number of Aircraft and Ozonesonde Observations in Early Summer 2008

    NASA Technical Reports Server (NTRS)

    Ancellet, Gerard; Daskalakis, Nikos; Raut, Jean Christophe; Tarasick, David; Hair, Jonathan; Quennehen, Boris; Ravetta, Francois; Schlager, Hans; Weinheimer, Andrew J.; Thompson, Anne M.; hide

    2016-01-01

    The goals of the paper are to: (1) present tropospheric ozone (O3) climatologies in summer 2008 based on a large amount of measurements, during the International Polar Year when the Polar Study using Aircraft, Remote Sensing, Surface Measurements, and Models of Climate Chemistry, Aerosols, and Transport (POLARCAT) campaigns were conducted (2) investigate the processes that determine O3 concentrations in two different regions (Canada and Greenland) that were thoroughly studied using measurements from 3 aircraft and 7 ozonesonde stations. This paper provides an integrated analysis of these observations and the discussion of the latitudinal and vertical variability of tropospheric ozone north of 55oN during this period is performed using a regional model (WFR-Chem). Ozone, CO and potential vorticity (PV) distributions are extracted from the simulation at the measurement locations. The model is able to reproduce the O3 latitudinal and vertical variability but a negative O3 bias of 6-15 ppbv is found in the free troposphere over 4 km, especially over Canada. Ozone average concentrations are of the order of 65 ppbv at altitudes above 4 km both over Canada and Greenland, while they are less than 50 ppbv in the lower troposphere. The relative influence of stratosphere-troposphere exchange (STE) and of ozone production related to the local biomass burning (BB) emissions is discussed using differences between average values of O3, CO and PV for Southern and Northern Canada or Greenland and two vertical ranges in the troposphere: 0-4 km and 4-8 km. For Canada, the model CO distribution and the weak correlation ( 30) of O3 and PV suggests that stratosphere-troposphere exchange (STE) is not the major contribution to average tropospheric ozone at latitudes less than 70oN, due to the fact that local biomass burning (BB) emissions were significant during the 2008 summer period. Conversely over Greenland, significant STE is found according to the better O3 versus PV correlation ( 40) and the higher 75th PV percentile. A weak negative latitudinal summer ozone gradient -6 to -8 ppbv is found over Canada in the mid troposphere between 4 and 8 km. This is attributed to an efficient O3 photochemical production due to the BB emissions at latitudes less than 65oN, while STE contribution is more homogeneous in the latitude range 55oN to 70oN. A positive ozone latitudinal gradient of 12 ppbv is observed in the same altitude range over Greenland not because of an increasing latitudinal influence of STE, but because of different long range transport from multiple mid-latitude sources (North America, Europe and even Asia for latitudes higher than 77oN).

  5. UWB delay and multiply receiver

    DOEpatents

    Dallum, Gregory E.; Pratt, Garth C.; Haugen, Peter C.; Romero, Carlos E.

    2013-09-10

    An ultra-wideband (UWB) delay and multiply receiver is formed of a receive antenna; a variable gain attenuator connected to the receive antenna; a signal splitter connected to the variable gain attenuator; a multiplier having one input connected to an undelayed signal from the signal splitter and another input connected to a delayed signal from the signal splitter, the delay between the splitter signals being equal to the spacing between pulses from a transmitter whose pulses are being received by the receive antenna; a peak detection circuit connected to the output of the multiplier and connected to the variable gain attenuator to control the variable gain attenuator to maintain a constant amplitude output from the multiplier; and a digital output circuit connected to the output of the multiplier.

  6. Precision digital pulse phase generator

    DOEpatents

    McEwan, T.E.

    1996-10-08

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code. 2 figs.

  7. Precision digital pulse phase generator

    DOEpatents

    McEwan, Thomas E.

    1996-01-01

    A timing generator comprises a crystal oscillator connected to provide an output reference pulse. A resistor-capacitor combination is connected to provide a variable-delay output pulse from an input connected to the crystal oscillator. A phase monitor is connected to provide duty-cycle representations of the reference and variable-delay output pulse phase. An operational amplifier drives a control voltage to the resistor-capacitor combination according to currents integrated from the phase monitor and injected into summing junctions. A digital-to-analog converter injects a control current into the summing junctions according to an input digital control code. A servo equilibrium results that provides a phase delay of the variable-delay output pulse to the output reference pulse that linearly depends on the input digital control code.

  8. Fire resistant PV shingle assembly

    DOEpatents

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  9. Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures

    PubMed Central

    Maljevic, Snezana; Vejzovic, Sabina; Bernhard, Matthias K.; Bertsche, Astrid; Weise, Sebastian; Döcker, Miriam; Lerche, Holger; Lemke, Johannes R.; Merkenschlager, Andreas; Syrbe, Steffen

    2016-01-01

    Benign familial neonatal seizures (BFNS) present a rare familial epilepsy syndrome caused by genetic alterations in the voltage-gated potassium channels Kv7.2 and Kv7.3, encoded by KCNQ2 and KCNQ3. While most BFNS families carry alterations in KCNQ2, mutations in KCNQ3 appear to be less common. Here, we describe a family with 6 individuals presenting with neonatal focal and generalized seizures. Genetic testing revealed a novel KCNQ3 variant, c.835G>T, cosegregating with seizures in 4 tested individuals. This variant results in a substitution of the highly conserved amino acid valine localized within the pore-forming transmembrane segment S5 (p.V279F). Functional investigations in Xenopus laevis oocytes revealed a loss of function, which supports p.V279F as a pathogenic mutation. When p.V279F was coexpressed with the wild-type (WT) Kv7.2 subunits, the resulting potassium currents were about 10-fold reduced compared to the WT Kv7.3 and Kv7.2 coexpression. Genotype-phenotype correlation shows an incomplete penetrance of p.V279F. Response to antiepileptic treatment was variable, but evaluation of treatment response remained challenging due to the self-limiting character of the disease. The identification of the pathogenic variant helped to avoid unnecessary investigations in affected family members and allowed guided therapy. PMID:27781029

  10. Novel KCNQ3 Mutation in a Large Family with Benign Familial Neonatal Epilepsy: A Rare Cause of Neonatal Seizures.

    PubMed

    Maljevic, Snezana; Vejzovic, Sabina; Bernhard, Matthias K; Bertsche, Astrid; Weise, Sebastian; Döcker, Miriam; Lerche, Holger; Lemke, Johannes R; Merkenschlager, Andreas; Syrbe, Steffen

    2016-09-01

    Benign familial neonatal seizures (BFNS) present a rare familial epilepsy syndrome caused by genetic alterations in the voltage-gated potassium channels Kv7.2 and Kv7.3, encoded by KCNQ2 and KCNQ3. While most BFNS families carry alterations in KCNQ2 , mutations in KCNQ3 appear to be less common. Here, we describe a family with 6 individuals presenting with neonatal focal and generalized seizures. Genetic testing revealed a novel KCNQ3 variant, c.835G>T, cosegregating with seizures in 4 tested individuals. This variant results in a substitution of the highly conserved amino acid valine localized within the pore-forming transmembrane segment S5 (p.V279F). Functional investigations in Xenopus laevis oocytes revealed a loss of function, which supports p.V279F as a pathogenic mutation. When p.V279F was coexpressed with the wild-type (WT) Kv7.2 subunits, the resulting potassium currents were about 10-fold reduced compared to the WT Kv7.3 and Kv7.2 coexpression. Genotype-phenotype correlation shows an incomplete penetrance of p.V279F. Response to antiepileptic treatment was variable, but evaluation of treatment response remained challenging due to the self-limiting character of the disease. The identification of the pathogenic variant helped to avoid unnecessary investigations in affected family members and allowed guided therapy.

  11. Perspectives on NO, NOy, and fine aerosol sources and variability during SONEX

    NASA Astrophysics Data System (ADS)

    Thompson, Anne M.; Sparling, Lynn C.; Kondo, Yutaka; Anderson, Bruce E.; Gregory, Gerald L.; Sachse, Glen W.

    Distributions of upper tropospheric tracer data on each of the 14 science flights of SONEX (SASS [Subsonics Assessment] Ozone and Nitrogen Oxides Experiment) provide a statistical overview of NO, NOy and fine aerosol variability during SONEX (an aircraft mission conducted in October and November 1997). The wide range of variability of NO from all sources provides a perspective on the aircraft perturbation. Background distributions of NOy are somewhat elevated inside flight corridors relative to outside; fine aerosol and NO/NOy in and out of corridors are similar. The potential vorticity of air sampled during SONEX is low relative to the NAFC (North Atlantic Flight Corridor) as a whole, due either to advection of lower latitude air into the corridor or biases in sampling to avoid the stratosphere. High NO/NOy (>0.4) from fresh lightning and aircraft sources was usually associated with pv much lower than the NAFC as a whole. Air masses identified as tropospheric by a low ozone criterion nevertheless have high pv, a marker for stratospheric air. Thus, stratospheric and surface sources also contribute to overall variability. A statistically robust assessment of the relative aircraft NO contribution during SONEX, based on data alone, is unlikely, given the mixture of other NO sources within which the aircraft signal is embedded. This underscores the need for more data and modeling studies.

  12. Experimental study of efficiency of solar panel by phase change material cooling

    NASA Astrophysics Data System (ADS)

    Wei, Nicholas Tan Jian; Nan, Wong Jian; Guiping, Cheng

    2017-07-01

    The dependence of efficiency of photovoltaic panels on their temperature during operation is a major concern for developers and users. In this paper, a phase change material (PCM) cooling system was designed for a 60W mono-crystalline solar panel. Tealights candle was selected as the cooling medium. The solar irradiance was recorded using Kipp & Zonen CMP3 pyranometer and Meteon data logger. Temperature distribution on the surface of solar panel, output voltage and output current of solar panel were measured. The average irradiance throughout data collection was found to be 705W/m2 and highest irradiance was 1100 W/m2. The average solar panel temperature was 43.6°C and a maximum temperature of 53°C was at the center of solar panel. Results showed that average power output and efficiency of the solar panel were 44.4W and 15%, respectively. It was found that the higher the solar irradiance, the lower the efficiency of solar panel and the higher the temperature and power output of solar panel. This is due to the fact that high irradiance results in high power input and high solar panel temperature. But high PV panel temperature reduces its power output. Therefore, the increase of power input outweighs that of power output, which leads to the decrease of efficiency of solar panel with the increase of solar irradiance. Compared with solar panel without cooling, the power output and efficiency of solar panel did not increase with PCM cooling. It indicates that Tealights candle as PCM cooling is not efficient in improving the efficiency of solar panel in this study.

  13. Qualification Testing Versus Quantitative Reliability Testing of PV - Gaining Confidence in a Rapidly Changing Technology: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah; Repins, Ingrid L; Hacke, Peter L

    Continued growth of PV system deployment would be enhanced by quantitative, low-uncertainty predictions of the degradation and failure rates of PV modules and systems. The intended product lifetime (decades) far exceeds the product development cycle (months), limiting our ability to reduce the uncertainty of the predictions for this rapidly changing technology. Yet, business decisions (setting insurance rates, analyzing return on investment, etc.) require quantitative risk assessment. Moving toward more quantitative assessments requires consideration of many factors, including the intended application, consequence of a possible failure, variability in the manufacturing, installation, and operation, as well as uncertainty in the measured accelerationmore » factors, which provide the basis for predictions based on accelerated tests. As the industry matures, it is useful to periodically assess the overall strategy for standards development and prioritization of research to provide a technical basis both for the standards and the analysis related to the application of those. To this end, this paper suggests a tiered approach to creating risk assessments. Recent and planned potential improvements in international standards are also summarized.« less

  14. The impact of short-term stochastic variability in solar irradiance on optimal microgrid design

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schittekatte, Tim; Stadler, Michael; Cardoso, Gonçalo

    2016-07-01

    This paper proposes a new methodology to capture the impact of fast moving clouds on utility power demand charges observed in microgrids with photovoltaic (PV) arrays, generators, and electrochemical energy storage. It consists of a statistical approach to introduce sub-hourly events in the hourly economic accounting process. The methodology is implemented in the Distributed Energy Resources Customer Adoption Model (DER-CAM), a state of the art mixed integer linear model used to optimally size DER in decentralized energy systems. Results suggest that previous iterations of DER-CAM could undersize battery capacities. The improved model depicts more accurately the economic value of PVmore » as well as the synergistic benefits of pairing PV with storage.« less

  15. Relationship Between Selected Strength and Power Assessments to Peak and Average Velocity of the Drive Block in Offensive Line Play.

    PubMed

    Jacobson, Bert H; Conchola, Eric C; Smith, Doug B; Akehi, Kazuma; Glass, Rob G

    2016-08-01

    Jacobson, BH, Conchola, EC, Smith, DB, Akehi, K, and Glass, RG. Relationship between selected strength and power assessments to peak and average velocity of the drive block in offensive line play. J Strength Cond Res 30(8): 2202-2205, 2016-Typical strength training for football includes the squat and power clean (PC) and routinely measured variables include 1 repetition maximum (1RM) squat and 1RM PC along with the vertical jump (VJ) for power. However, little research exists regarding the association between the strength exercises and velocity of an actual on-the-field performance. The purpose of this study was to investigate the relationship of peak velocity (PV) and average velocity (AV) of the offensive line drive block to 1RM squat, 1RM PC, the VJ, body mass (BM), and body composition. One repetition maximum assessments for the squat and PC were recorded along with VJ height, BM, and percent body fat. These data were correlated with PV and AV while performing the drive block. Peal velocity and AV were assessed using a Tendo Power and Speed Analyzer as the linemen fired, from a 3-point stance into a stationary blocking dummy. Pearson product analysis yielded significant (p ≤ 0.05) correlations between PV and AV and the VJ, the squat, and the PC. A significant inverse association was found for both PV and AV and body fat. These data help to confirm that the typical exercises recommended for American football linemen is positively associated with both PV and AV needed for the drive block effectiveness. It is recommended that these exercises remain the focus of a weight room protocol and that ancillary exercises be built around these exercises. Additionally, efforts to reduce body fat are recommended.

  16. On the Path to SunShot. Advancing Concentrating Solar Power Technology, Performance, and Dispatchability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehos, Mark; Turchi, Craig; Jorgenson, Jennie

    2016-05-01

    This report examines the remaining challenges to achieving the competitive concentrating solar power (CSP) costs and large-scale deployment envisioned under the U.S. Department of Energy's SunShot Initiative. Although CSP costs continue to decline toward SunShot targets, CSP acceptance and deployment have been hindered by inexpensive photovoltaics (PV). However, a recent analysis found that thermal energy storage (TES) could increase CSP's value--based on combined operational and capacity benefits--by up to 6 cents/kWh compared to variable-generation PV, under a 40% renewable portfolio standard in California. Thus, the high grid value of CSP-TES must be considered when evaluating renewable energy options. An assessmentmore » of net system cost accounts for the difference between the costs of adding new generation and the avoided cost from displacing other resources providing the same level of energy and reliability. The net system costs of several CSP configurations are compared with the net system costs of conventional natural-gas-fired combustion-turbine (CT) and combined-cycle plants. At today's low natural gas prices and carbon emission costs, the economics suggest a peaking configuration for CSP. However, with high natural gas prices and emission costs, each of the CSP configurations compares favorably against the conventional alternatives, and systems with intermediate to high capacity factors become the preferred alternatives. Another analysis compares net system costs for three configurations of CSP versus PV with batteries and PV with CTs. Under current technology costs, the least-expensive option is a combination of PV and CTs. However, under future cost assumptions, the optimal configuration of CSP becomes the most cost-effective option.« less

  17. Variable camber wing based on pneumatic artificial muscles

    NASA Astrophysics Data System (ADS)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  18. Correction of I/Q channel errors without calibration

    DOEpatents

    Doerry, Armin W.; Tise, Bertice L.

    2002-01-01

    A method of providing a balanced demodular output for a signal such as a Doppler radar having an analog pulsed input; includes adding a variable phase shift as a function of time to the input signal, applying the phase shifted input signal to a demodulator; and generating a baseband signal from the input signal. The baseband signal is low-pass filtered and converted to a digital output signal. By removing the variable phase shift from the digital output signal, a complex data output is formed that is representative of the output of a balanced demodulator.

  19. Locational Sensitivity Investigation on PV Hosting Capacity and Fast Track PV Screening

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Fei; Mather, Barry; Ainsworth, Nathan

    A 15% PV penetration threshold is commonly used by utilities to define photovoltaic (PV) screening methods where PV penetration is defined as the ratio of total solar PV capacity on a line section to peak load. However, this method doesn't take into account PV locational impact or feeder characteristics that could strongly change the feeder's capability to host PVs. This paper investigates the impact of PV location and phase connection type on PV hosting capacity, and then proposes a fast-track PV screening approach that leverages various PV hosting capacity metric responding to different PV locations and types. The proposed studymore » could help utilities to evaluate PV interconnection requests and also help increase the PV hosting capacity of distribution feeders without adverse impacts on system voltages.« less

  20. Characterization, antioxidant and immunomodulatory activities of polysaccharides from Prunella vulgaris Linn.

    PubMed

    Li, Chao; Huang, Qiang; Fu, Xiong; Yue, Xiu-Jie; Liu, Rui Hai; You, Li-Jun

    2015-04-01

    Water-soluble polysaccharides from Prunella vulgaris Linn (P. vulgaris) were fractionated using DEAE-Sepharose fast-flow column to obtain several eluents of water (PV-P1), 0.1M NaCl (PV-P2) and 0.2M NaCl (PV-P3). Structural analyses showed that PV-P1 had a higher molecular weight and degree of branching as compared to PV-P2 and PV-P3. Tertiary structure analyses indicated that PV-P1, PV-P2 and PV-P3 did not have triple-helical conformation. PV-P2 and PV-P3 showed stronger antioxidant activities than PV-P1, as measured radical scavenging capacities. PV-P1 showed stronger immunomodulatory activities than PV-P2 and PV-P3 in term of stimulation of the production of pro-inflammatory cytokines, including nitric oxide (NO), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in murine macrophage RAW 264.7 cells. PV-P1, PV-P2 and PV-P3 did not exhibit cytotoxicities against RAW 264.7 at the concentrations tested. These results suggest that P. vulgaris polysaccharides could be explored as potential antioxidant and immunomodulatory agents for the complementary medicine or functional foods. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Ensemble Data Assimilation of Photovoltaic Power Information in the Convection-permitting High-Resolution Model COSMO-DE

    NASA Astrophysics Data System (ADS)

    Declair, Stefan; Saint-Drenan, Yves-Marie; Potthast, Roland

    2017-04-01

    Determining the amount of weather dependent renewable energy is a demanding task for transmission system operators (TSOs) and wind and photovoltaic (PV) prediction errors require the use of reserve power, which generate costs and can - in extreme cases - endanger the security of supply. In the project EWeLiNE funded by the German government, the German Weather Service and the Fraunhofer Institute on Wind Energy and Energy System Technology develop innovative weather- and power forecasting models and tools for grid integration of weather dependent renewable energy. The key part in energy prediction process chains is the numerical weather prediction (NWP) system. Irradiation forecasts from NWP systems are however subject to several sources of error. For PV power prediction, weaknesses of the NWP model to correctly forecast i.e. low stratus, absorption of condensed water or aerosol optical depths are the main sources of errors. Inaccurate radiation schemes (i.e. the two-stream parametrization) are also known as a deficit of NWP systems with regard to irradiation forecast. To mitigate errors like these, latest observations can be used in a pre-processing technique called data assimilation (DA). In DA, not only the initial fields are provided, but the model is also synchronized with reality - the observations - and hence forecast errors are reduced. Besides conventional observation networks like radiosondes, synoptic observations or air reports of wind, pressure and humidity, the number of observations measuring meteorological information indirectly by means of remote sensing such as satellite radiances, radar reflectivities or GPS slant delays strongly increases. Numerous PV plants installed in Germany potentially represent a dense meteorological network assessing irradiation through their power measurements. Forecast accuracy may thus be enhanced by extending the observations in the assimilation by this new source of information. PV power plants can provide information on clouds, aerosol optical depth or low stratus in terms of remote sensing: the power output is strongly dependent on perturbations along the slant between sun position and PV panel. Since these data are not limited to the vertical column above or below the detector, it may thus complement satellite data and compensate weaknesses in the radiation scheme. In this contribution, the used DA technique (Local Ensemble Transform Kalman Filter, LETKF) is shortly sketched. Furthermore, the computation of the model power equivalents is described and first results are presented and discussed.

  2. High power broadband all fiber super-fluorescent source with linear polarization and near diffraction-limited beam quality.

    PubMed

    Ma, Pengfei; Huang, Long; Wang, Xiaolin; Zhou, Pu; Liu, Zejin

    2016-01-25

    In this manuscript, a high power broadband superfluorescent source (SFS) with linear polarization and near-diffraction-limited beam quality is achieved based on an ytterbium-doped (Yb-doped), all fiberized and polarization-maintained master oscillator power amplifier (MOPA) configuration. The MOPA structure generates a linearly polarized output power of 1427 W with a slope efficiency of 80% and a full width at half maximum (FWHM) of 11 nm, which is power scaled by an order of magnitude compared with the previously reported SFSs with linear polarization. In the experiment, both the polarization extinction ratio (PER) and beam quality (M(2) factor) are degraded little during the power scaling process. At maximal output power, the PER and M(2) factor are measured to be 19.1dB and 1.14, respectively. The root-mean-square (RMS) and peak-vale (PV) values of the power fluctuation at maximal output power are just 0.48% and within 3%, respectively. Further power scaling of the whole system is limited by the available pump sources. To the best of our knowledge, this is the first demonstration of kilowatt level broadband SFS with linear polarization and near-diffraction-limited beam quality.

  3. First report of bacterial blight of carrot in Indiana caused by Xanthomonas hortorum pv. carotae

    USDA-ARS?s Scientific Manuscript database

    In summer 2012, bacterial blight symptoms were observed on leaves of carrot plants in 7 out of 70 plots of carrot breeding lines at the Purdue University Meig Horticulture Research Farm, Lafayette, IN. Symptoms included small to large, variably shaped, water soaked to dry, necrotic lesions, with or ...

  4. Advanced Energy Storage Management in Distribution Network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Guodong; Ceylan, Oguzhan; Xiao, Bailu

    2016-01-01

    With increasing penetration of distributed generation (DG) in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative mixed integer quadratic constrained quadratic programming model to optimize the operation of a three phase unbalanced distribution system with high penetration of Photovoltaic (PV) panels, DG and energy storage (ES) is developed. The proposed model minimizes not only the operating cost, including fuel cost and purchasing cost, but also voltage deviations and power loss. The optimization model is based on the linearized sensitivity coefficients between state variables (e.g., node voltages) andmore » control variables (e.g., real and reactive power injections of DG and ES). To avoid slow convergence when close to the optimum, a golden search method is introduced to control the step size and accelerate the convergence. The proposed algorithm is demonstrated on modified IEEE 13 nodes test feeders with multiple PV panels, DG and ES. Numerical simulation results validate the proposed algorithm. Various scenarios of system configuration are studied and some critical findings are concluded.« less

  5. Time Course and Variability of Polycythemic Response in Men at High Altitude

    NASA Technical Reports Server (NTRS)

    Grover, R. F.; Seiland, M.; McCullough, R. G.; Greenleaf, J. E.; Dahms, T. E.; Wolfel, E.; Reeves, J. T.

    2000-01-01

    Ten young men were exposed to 4,300 m (PB 460 Torr) for three weeks. Plasma volume (PV, Evans Blue dye). and blood volume (BV, carbon monoxide) measured simultaneously, and red cell volume (RCV) calculated from hematocrit, were determined twice at sea level and after 9-11 and 19-20 days at high altitude. After 19-20 days. half the subjects increased RCV +19.4 +/- 1.8% (p<0.001); the other 5 subjects had no significant change in RCV. All 10 subjects had a sustained decrease in PV (-16.2 +/- 1.9%, p<0.05) at altitude. Consequently, compared with sea level values, BV was unchanged (-3.1 +/- 1.8%) in the group with increased RCV, but BV decreased significantly (-12.2 +/- 1.4%, p<0.05) in the other group. Variability in RCV response was not explained by differences, in hypoxemic stimulus or the erythropoictin and reticulocyte responses. Since RCV reflects the balance between red cell. production and destruction, accelerated red cell destruction may have occurred in those individuals with no net change in RCV.

  6. Failure and Degradation Modes of PV modules in a Hot Dry Climate: Results after 4 and 12 years of field exposure

    NASA Astrophysics Data System (ADS)

    Mallineni, Jaya krishna

    This study evaluates two photovoltaic (PV) power plants based on electrical performance measurements, diode checks, visual inspections and infrared scanning. The purpose of this study is to measure degradation rates of performance parameters (Pmax, Isc, Voc, Vmax, Imax and FF) and to identify the failure modes in a "hot-dry desert" climatic condition along with quantitative determination of safety failure rates and reliability failure rates. The data obtained from this study can be used by module manufacturers in determining the warranty limits of their modules and also by banks, investors, project developers and users in determining appropriate financing or decommissioning models. In addition, the data obtained in this study will be helpful in selecting appropriate accelerated stress tests which would replicate the field failures for the new modules and would predict the lifetime for new PV modules. The study was conducted at two, single axis tracking monocrystalline silicon (c-Si) power plants, Site 3 and Site 4c of Salt River Project (SRP). The Site 3 power plant is located in Glendale, Arizona and the Site 4c power plant is located in Mesa, Arizona both considered a "hot-dry" field condition. The Site 3 power plant has 2,352 modules (named as Model-G) which was rated at 250 kW DC output. The mean and median degradation of these 12 years old modules are 0.95%/year and 0.96%/year, respectively. The major cause of degradation found in Site 3 is due to high series resistance (potentially due to solder-bond thermo-mechanical fatigue) and the failure mode is ribbon-ribbon solder bond failure/breakage. The Site 4c power plant has 1,280 modules (named as Model-H) which provide 243 kW DC output. The mean and median degradation of these 4 years old modules are 0.96%/year and 1%/year, respectively. At Site 4c, practically, none of the module failures are observed. The average soiling loss is 6.9% in Site 3 and 5.5% in Site 4c. The difference in soiling level is attributed to the rural and urban surroundings of these two power plants.

  7. Survey of submesoscale structures at the margin of the Northern Current in the North Western Mediterranean Sea using Gliders: observations and diagnostics

    NASA Astrophysics Data System (ADS)

    Bosse, Anthony; Testor, Pierre; Mortier, Laurent; Beguery, Laurent; Bernardet, Karim; Taillandier, Vincent; d'Ortenzio, Fabrizio; Prieur, Louis; Coppola, Laurent; Bourrin, François

    2013-04-01

    From 2008 on, repeated sections crossing the Northern Current (NC) were operated by gliders as part of a global observing system (MOOSE project) of the North Western Mediterranean Sea. This work is dedicated to the analysis of the submesoscale thermohaline variability at the margin of this current observed by gliders. The mean circulation of the basin is characterized by a cyclonic gyre (whose Northern part is the so-called NC) associated with a doming of the isopycnals preconditionning the whole interior basin to great vertical mixing. The thermal and haline differences between the Atlantic Water (AW) transported by the NC and older and modified AW off the coast leads to a frontal structure. Especially in winter, when the mixed layer depth used to reach several hundreds of meters offshore, isopycnal outcropping and the role of frontal processes are enhanced leading to intense variability at scales smaller than the deformation radius. Based on diagnostics using the Potential Vorticity (PV) computed from the glider data assuming quasi-geostrophic conditions and no variation in the alongshore direction, we discuss the dynamical processes at work, with a focus on 2 typical examples: (1) the first example takes place in winter during a strong vertical mixing event. While the glider crossed the frontal region, the temperature and salinity fields exhibit vertical motions at depths about 0-400m. Frontogenesis might be at play through mesoscale strain since the glider shows an intense mesoscale activity but a weak stratification and enhanced horizontal buoyancy gradient actually make the Ertel PV reach negative values and symmetric instability is likely to be a prominent mechanism explaining the observed variability. (2) the second example takes place in spring. We identify an episode of down-front wind blowing during the glider deployment which could have extracted PV from the surface layer. However, the geostrophic turbulence is in that case likely to play a key role in the formation of the observed variability of the temperature and salinity since it is organized along slopes characterized by an aspect ratio of an order of f/N.

  8. Thyroid Hormone Receptor α Mutation Causes a Severe and Thyroxine-Resistant Skeletal Dysplasia in Female Mice

    PubMed Central

    Bassett, J. H. Duncan; Boyde, Alan; Zikmund, Tomas; Evans, Holly; Croucher, Peter I.; Zhu, Xuguang; Park, Jeong Won

    2014-01-01

    A new genetic disorder has been identified that results from mutation of THRA, encoding thyroid hormone receptor α1 (TRα1). Affected children have a high serum T3:T4 ratio and variable degrees of intellectual deficit and constipation but exhibit a consistently severe skeletal dysplasia. In an attempt to improve developmental delay and alleviate symptoms of hypothyroidism, patients are receiving varying doses and durations of T4 treatment, but responses have been inconsistent so far. Thra1PV/+ mice express a similar potent dominant-negative mutant TRα1 to affected individuals, and thus represent an excellent disease model. We hypothesized that Thra1PV/+ mice could be used to predict the skeletal outcome of human THRA mutations and determine whether prolonged treatment with a supraphysiological dose of T4 ameliorates the skeletal abnormalities. Adult female Thra1PV/+ mice had short stature, grossly abnormal bone morphology but normal bone strength despite high bone mass. Although T4 treatment suppressed TSH secretion, it had no effect on skeletal maturation, linear growth, or bone mineralization, thus demonstrating profound tissue resistance to thyroid hormone. Despite this, prolonged T4 treatment abnormally increased bone stiffness and strength, suggesting the potential for detrimental consequences in the long term. Our studies establish that TRα1 has an essential role in the developing and adult skeleton and predict that patients with different THRA mutations will display variable responses to T4 treatment, which depend on the severity of the causative mutation. PMID:24914936

  9. Supported PV module assembly

    DOEpatents

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  10. Pressure-equalizing PV assembly and method

    DOEpatents

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  11. Molecular characterization of novel mucosotropic papillomaviruses from a Florida manatee (Trichechus manatus latirostris).

    PubMed

    2015-12-01

    We isolated two new manatee papillomavirus (PV) types, TmPV3 and TmPV4, from a Florida manatee (Trichechus manatus latirostris). Two PV types were previously isolated from this species. TmPV1 is widely dispersed amongst manatees and a close-to-root PV; not much is known about TmPV2. The genomes of TmPV3 and TmPV4 were 7622 and 7771 bp in size, respectively. Both PVs had a genomic organization characteristic of all PVs, with one non-coding region and seven ORFs, including the E7 ORF that is absent in other cetacean PVs. Although these PVs were isolated from separate genital lesions of the same manatee, an enlarged E2/E4 ORF was found only in the TmPV4 genome. The full genome and L1 sequence similarities between TmPV3 and TmPV4 were 63.2 and 70.3 %, respectively. These genomes shared only 49.1 and 50.2 % similarity with TmPV1. The pairwise alignment of L1 nucleotide sequences indicated that the two new PVs nested in a monophyletic group of the genus Rhopapillomavirus, together with the cutaneotropic TmPV1 and TmPV2.

  12. Segregated Excitatory–Inhibitory Recurrent Subnetworks in Layer 5 of the Rat Frontal Cortex

    PubMed Central

    Morishima, Mieko; Kobayashi, Kenta; Kato, Shigeki; Kobayashi, Kazuto; Kawaguchi, Yasuo

    2017-01-01

    Abstract A prominent feature of neocortical pyramidal cells (PCs) is their numerous projections to diverse brain areas. In layer 5 (L5) of the rat frontal cortex, there are 2 major subtypes of PCs that differ in their long-range axonal projections, corticopontine (CPn) cells and crossed corticostriatal (CCS) cells. The outputs of these L5 PCs can be regulated by feedback inhibition from neighboring cortical GABAergic cells. Two major subtypes of GABAergic cells are parvalbumin (PV)-positive and somatostatin (SOM)-positive cells. PV cells have a fast-spiking (FS) firing pattern, while SOM cells have a low threshold spike (LTS) and regular spiking. In this study, we found that the 2 PC subtypes in L5 selectively make recurrent connections with LTS cells. The connection patterns correlated with the morphological and physiological diversity of LTS cells. LTS cells with high input resistance (Ri) exhibited more compact dendrites and more rebound spikes than LTS cells with low Ri, which had vertically elongated dendrites. LTS subgroups differently inhibited the PC subtypes, although FS cells made nonselective connections with both projection subtypes. These results demonstrate a novel recurrent network of inhibitory and projection-specific excitatory neurons within the neocortex. PMID:29045559

  13. Fuzzy logic control of stand-alone photovoltaic system with battery storage

    NASA Astrophysics Data System (ADS)

    Lalouni, S.; Rekioua, D.; Rekioua, T.; Matagne, E.

    Photovoltaic energy has nowadays an increased importance in electrical power applications, since it is considered as an essentially inexhaustible and broadly available energy resource. However, the output power provided via the photovoltaic conversion process depends on solar irradiation and temperature. Therefore, to maximize the efficiency of the photovoltaic energy system, it is necessary to track the maximum power point of the PV array. The present paper proposes a maximum power point tracker (MPPT) method, based on fuzzy logic controller (FLC), applied to a stand-alone photovoltaic system. It uses a sampling measure of the PV array power and voltage then determines an optimal increment required to have the optimal operating voltage which permits maximum power tracking. This method carries high accuracy around the optimum point when compared to the conventional one. The stand-alone photovoltaic system used in this paper includes two bi-directional DC/DC converters and a lead-acid battery bank to overcome the scare periods. One converter works as an MPP tracker, while the other regulates the batteries state of charge and compensates the power deficit to provide a continuous delivery of energy to the load. The Obtained simulation results show the effectiveness of the proposed fuzzy logic controller.

  14. Investigation of test methods, material properties, and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.

  15. Solar radiation - to - power generation models for one-axis tracking PV system with on-site measurements from Eskisehir, Turkey

    NASA Astrophysics Data System (ADS)

    Filik, Tansu; Başaran Filik, Ümmühan; Nezih Gerek, Ömer

    2017-11-01

    In this study, new analytic models are proposed for mapping on-site global solar radiation values to electrical power output values in solar photovoltaic (PV) panels. The model extraction is achieved by simultaneously recording solar radiation and generated power from fixed and tracking panels, each with capacity of 3 kW, in Eskisehir (Turkey) region. It is shown that the relation between the solar radiation and the corresponding electric power is not only nonlinear, but it also exhibits an interesting time-varying characteristic in the form of a hysteresis function. This observed radiation-to-power relation is, then, analytically modelled with three piece-wise function parts (corresponding to morning, noon and evening times), which is another novel contribution of this work. The model is determined for both fixed panels and panels with a tracking system. Especially the panel system with a dynamic tracker produces a harmonically richer (with higher values in general) characteristic, so higher order polynomial models are necessary for the construction of analytical solar radiation models. The presented models, characteristics of the hysteresis functions, and differences in the fixed versus solar-tracking panels are expected to provide valuable insight for further model based researches.

  16. Integration of permanent magnet synchronous generator wind turbines into power grid

    NASA Astrophysics Data System (ADS)

    Abedini, Asghar

    The world is seeing an ever-increasing demand for electrical energy. The future growth of electrical power generation needs to be a mix of technologies including fossil fuels, hydro, nuclear, wind, and solar. The federal and state energy agencies have taken several proactive steps to increase the share of renewable energy in the total generated electrical power. In 2005, 11.1% of the total 1060 GW electricity generation capacity was from Renewable Energy Sources (RES) in the US. The power capacity portfolio included 9.2% from hydroelectric, 0.87% from wind, and 0.7% from biomass. Other renewable power capacity included 2.8 GW of geothermal, 0.4 GW of solar thermal, and 0.2 GW of solar PV. Although the share of renewable energy sources is small compared with the total power capacity, they are experiencing a high and steady growth. The US is leading the world in wind energy growth with a 27% increase in 2006 and a projected 26% increase in 2007, according to the American Wind Energy Association (AWEA). The US Department of Energy benchmarked a goal to meet 5% of the nation's energy need by launching the Wind Powering America (WPA) program. Although renewable energy sources have many benefits, their utilization in the electrical grid does not come without cost. The higher penetration of RES has introduced many technical and non-technical challenges, including power quality, reliability, safety and protection, load management, grid interconnections and control, new regulations, and grid operation economics. RES such as wind and PV are also intermittent in nature. The energy from these sources is available as long as there is wind or sunlight. However, these are energies that are abundant in the world and the power generated from these sources is pollution free. Due to high price of foundation of wind farms, employing variable speed wind turbines to maximize the extracted energy from blowing wind is more beneficial. On the other hand, since wind power is intermittent, integrating energy storage systems with wind farms has attracted a lot of attention. These two subjects are addressed in this dissertation in detail. Permanent Magnet Synchronous Generators (PMSG) are used in variable speed wind turbines. In this thesis, the dynamic of the PMSG is investigated and a power electronic converter is designed to integrate the wind turbine to the grid. The risks of PMSG wind turbines such as low voltage ride through and short circuits, are assessed and the methods of mitigating the risks are discussed. In the second section of the thesis, various methods of smoothing wind turbine output power are explained and compared. Two novel methods of output power smoothing are analyzed: Rotor inertia and Super capacitors. The advantages and disadvantages of each method are explained and the dynamic model of each method is developed. The performance of the system is evaluated by simulating the wind turbine system in each method. The concepts of the methods of smoothing wind power can be implemented in other types of wind turbines such as Doubly Fed Induction Generator (DFIG) wind turbines.

  17. Acute effects of elastic bands during the free-weight barbell back squat exercise on velocity, power, and force production.

    PubMed

    Stevenson, Mark W; Warpeha, Joseph M; Dietz, Cal C; Giveans, Russell M; Erdman, Arthur G

    2010-11-01

    The use of elastic bands in resistance training has been reported to be effective in increasing performance-related parameters such as power, rate of force development (RFD), and velocity. The purpose of this study was to assess the following measures during the free-weight back squat exercise with and without elastic bands: peak and mean velocity in the eccentric and concentric phases (PV-E, PV-C, MV-E, MV-C), peak force (PF), peak power in the concentric phase, and RFD immediately before and after the zero-velocity point and in the concentric phase (RFDC). Twenty trained male volunteers (age = 26.0 ± 4.4 years) performed 3 sets of 3 repetitions of squats (at 55% one repetition maximum [1RM]) on 2 separate days: 1 day without bands and the other with bands in a randomized order. The added band force equaled 20% of the subjects' 55% 1RM. Two independent force platforms collected ground reaction force data, and a 9-camera motion capture system was used for displacement measurements. The results showed that PV-E and RFDC were significantly (p < 0.05) greater with the use of bands, whereas PV-C and MV-C were greater without bands. There were no differences in any other variables. These results indicate that there may be benefits to performing squats with elastic bands in terms of RFD. Practitioners concerned with improving RFD may want to consider incorporating this easily implemented training variation.

  18. What is stopping you from installing solar systems? Contrasting Chilean with German homes.

    NASA Astrophysics Data System (ADS)

    Haas, J.; Caro Castro, C. P.

    2017-12-01

    Towards meeting Paris` climate change goals, a rapid shift towards clean energy sources is needed. While the deployment of centralized solar photovoltaic (PV) power plants has been remarkable in Germany and -in the last years- also in Chile, the residential PV installations in Chile lag greatly in contrast to Germany. In fact, Chile's largest PV system until 2012 was smaller than 25 kW. And, although the recently implemented net-billing scheme has brightened this scenario, most of Chile's roofs keep being bald. Beyond the evident economic contrasts among both countries, there are many other underlying differences in public acceptance of renewable technologies. Understanding them is of both conceptual and practical importance. Here, we study the variables that determine the public acceptance of residential PV systems in Germany and Chile. We survey the positions of laypersons on the support of climate change goals, on the necessity of renewable technologies, on their auto-sustainability (how much I identify myself with being sustainable), and on their auto-effectiveness (do I believe that my behavior has impact on global targets). The sample is further characterized by socioeconomic status, knowledge and experience and proximity to solar systems, esthetic perception of the systems, security of the neighborhood and house ownership, willingness of installing solar systems, and trust in the technology. We identify the main factors via data correlation analysis. From our findings, actions to improve the acceptance and literacy of solar technologies in Chile can be derived.

  19. Intracerebroventricular kainic acid administration to neonatal rats alters interneuron development in the hippocampus.

    PubMed

    Dong, Hongxin; Csernansky, Cynthia A; Chu, Yunxiang; Csernansky, John G

    2003-10-10

    The effects of neonatal exposure to excitotoxins on the development of interneurons have not been well characterized, but may be relevant to the pathogenesis of neuropsychiatric disorders. In this study, the excitotoxin, kainic acid (KA) was administered to rats at postnatal day 7 (P7) by intracerebroventricular (i.c.v.) infusion. At P14, P25, P40 and P60, Nissl staining and immunohistochemical studies with the interneuron markers, glutamic acid decarboxylase (GAD-67), calbindin-D28k (CB) and parvalbumin (PV) were performed in the hippocampus. In control animals, the total number of interneurons, as well as the number of interneurons stained with GAD-67, CB and PV, was nearly constant from P14 through P60. In KA-treated rats, Nissl staining, GAD-67 staining, and CB staining revealed a progressive decline in the overall number of interneurons in the CA1 and CA3 subfields from P14 to P60. In contrast, PV staining in KA-treated rats showed initial decreases in the number of interneurons in the CA1 and CA3 subfields at P14 followed by increases that approached control levels by P60. These results suggest that, in general, early exposure to the excitotoxin KA decreases the number of hippocampal interneurons, but has a more variable effect on the specific population of interneurons labeled by PV. The functional impact of these changes may be relevant to the pathogenesis of neuropsychiatric disorders, such as schizophrenia.

  20. A Power Regulation and Droop Mode Control Method for a Stand-Alone Load Fed from a PV-Current Source Inverter

    NASA Astrophysics Data System (ADS)

    Khayamy, Mehdy; Ojo, Olorunfemi

    2015-04-01

    A current source inverter fed from photovoltaic cells is proposed to power an autonomous load when operating under either power regulation or voltage and frequency drooping modes. Input-output linearization technique is applied to the overall nonlinear system to achieve a globally stable system under feasible operating conditions. After obtaining the steady-state model that demarcates the modes of operation, computer Simulation results for variations in irradiance and the load power of the controlled system are generated in which an acceptable dynamic response of the power generator system under the two modes of operation is observed.

Top