Science.gov

Sample records for pvd dual magnetron

  1. Oleophobic optical coating deposited by magnetron PVD

    NASA Astrophysics Data System (ADS)

    Bernt, D.; Ponomarenko, V.; Pisarev, A.

    2016-09-01

    Thin oxinitride films of Zn-Sn-O-N and Si-Al-O-N were deposited on glass by reactive magnetron sputtering at various nitrogen-to-oxygen ratios. Nitrogen added to oxygen led to decrease of the surface roughness and increase of oleophobic properties studied by the oil-drop test. The best oleophobity was obtained for Zn-Sn-O-N oxinitride at Zn:Sn=1:1 and N:O=1:2. Improved oleophobic properties were also demonstrated if the oxinitride film was deposited on top of the multilayer coating as the final step in the industrial cycle of production of energy efficient glass.

  2. New PVD Technologies for New Ordnance Coatings

    DTIC Science & Technology

    2012-04-01

    right- -50 volt bias. 6d) MPP deposited thick Ta coatings Pulsed Laser Heating Adhesion Test MPP deposition technique was used to deposit thick...processes including plasma enhanced magnetron with external ion source, High Power Impulse Magnetron Sputtering (HIPIMS), and Modulated Pulsed Power...Vapor Deposition (PVD); High Power Impulse Magnetron Sputtering (HIPIMS); Modulated Pulsed Power (MPP); Tantalum; Chrome; Ta coatings; CrN; coating

  3. Time resolved tunable diode laser absoption spectroscopy of dual High Power Impulse Magnetron Sputtering discharges

    NASA Astrophysics Data System (ADS)

    Do, Hoang Tung; Stranak, Vitezslav; Hippler, Rainer

    2014-08-01

    Time-resolved measurements have been performed during dual High Power Impulse Magnetron Sputtering (dual-HiPIMS) with two cathodes in a closed magnetic field configuration. The dual-HiPIMS system, operated at a repetition frequency f = 100 Hz and duty cycle of 1 %, was equipped with two different metallic targets (Ti, Cu). The effect of a delay between subsequent pulses on argon excited atom density and temperature was investigated by means of tunable diode laser absorption spectroscopy. It is shown that the peak densities of pulses vary strongly with the delay. We observed an enhancement of metastable density due to pre-ionization effect but more effective than that is the contribution of metal atoms which have smaller ionization energy compare to that of buffer gas atom. Associate with the enhancement of density, the temporal variation of metastable atom temperature in the Cu pulse also transforms from those of low current pulse into the high current one.

  4. Development of Dual-Frequency Gyrotron with Triode Magnetron Injection Gun

    NASA Astrophysics Data System (ADS)

    Kajiwara, Ken; Oda, Yasuhisa; Kasugai, Atsushi; Takahashi, Koji; Sakamoto, Keishi

    2011-12-01

    A high power dual-frequency gyrotron is designed and tested. The design is based on a 170 GHz single-frequency gyrotron with a triode magnetron injection gun (MIG). The triode MIG enables to choose variety of oscillation modes for different frequencies with suitable pitch factor, which is the great advantage for a multi-frequency gyrotron. Another frequency of 137 GHz is selected in order to use a 1.853-mm-thick single-disk output window. Cavity modes are TE31,11 and TE25,9 for 170 and 137 GHz, respectively, which have high mode conversion efficiency to the RF beam mode with similar radiation angles. In short-pulse experiments, the maximum power of more than 1.3 MW is achieved with high-efficiency for both frequencies.

  5. Physical properties of erbium implanted tungsten oxide filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-11-08

    Amorphous and partially crystalline WO3 thin films wereprepared by reactive dual magnetron sputtering and successively implantedby erbium ions with a fluence in the range from 7.7 x 1014 to 5 x 1015ions/cm2. The electrical and optical properties were studied as afunction of the film deposition parameters and the ion fluence. Ionimplantation caused a strong decrease of the resistivity, a moderatedecrease of the index of refraction and a moderate increase of theextinction coefficient in the visible and near infrared, while theoptical band gap remained almost unchanged. These effects could belargely ascribed to ion-induced oxygen deficiency. When annealed in air,the already low resistivities of the implanted samples decreased furtherup to 70oC, whereas oxidation, and hence a strong increase of theresistivity, was observed at higher annealing temperatures.

  6. Structural, optical and electrical properties of WOxNy filmsdeposited by reactive dual magnetron sputtering

    SciTech Connect

    Mohamed, Sodky H.; Anders, Andre

    2006-06-05

    Thin films of tungsten oxynitride were prepared by dual magnetron sputtering of tungsten using argon/oxygen/nitrogen gas mixtures with various nitrogen/oxygen ratios. The presence of even small amounts of oxygen had a great effect not only on the composition but on the structure of WOxNy films, as shown by Rutherford backscattering and x-ray diffraction, respectively. Significant incorporation of nitrogen occurred only when the nitrogen partial pressure exceeded 89 percent of the total reactive gas pressure. Sharp changes in the stoichiometry, deposition rate, room temperature resistivity, electrical activation energy and optical band gap were observed when the nitrogen/oxygen ratio was high.The deposition rate increased from 0.31 to 0.89 nm/s, the room temperature resistivity decreased from 1.65 x 108 to 1.82 x 10-2 ?cm, the electrical activation energy decreased from 0.97 to 0.067 eV, and the optical band gap decreased from 3.19 to 2.94 eV upon nitrogen incorporation into the films. WOxNy films were highly transparent as long as the nitrogen incorporation was low, and were brownish (absorbing) and partially reflecting as nitrogen incorporation became significant.

  7. Effect of hafnium doping on density of states in dual-target magnetron co-sputtering HfZnSnO thin film transistors

    SciTech Connect

    Huang, Chuan-Xin; Li, Jun Fu, Yi-Zhou; Jiang, Xue-Yin; Zhang, Jian-Hua; Zhang, Zhi-Lin

    2015-11-23

    This study investigates the effect of hafnium doping on the density of states (DOSs) in HfZnSnO thin film transistors fabricated by dual-target magnetron co-sputtering system. The DOSs is extracted by temperature-dependent field-effect measurements, and they decrease from 1.1 × 10{sup 17} to 4.6 × 10{sup 16 }eV/cm{sup 3} with increasing the hafnium concentrations. The behavior of DOSs for the increasing hafnium concentration HfZnSnO thin film transistors can be confirmed by both the reduction of ΔV{sub T} under bias stress and the trapping charges calculated by capacitance voltage measurements. It suggests that the reduction in DOSs due to the hafnium doping is closely related with the bias stability and thermal stability.

  8. Parameter tuning of PVD process based on artificial intelligence technique

    NASA Astrophysics Data System (ADS)

    Norlina, M. S.; Diyana, M. S. Nor; Mazidah, P.; Rusop, M.

    2016-07-01

    In this study, an artificial intelligence technique is proposed to be implemented in the parameter tuning of a PVD process. Due to its previous adaptation in similar optimization problems, genetic algorithm (GA) is selected to optimize the parameter tuning of the RF magnetron sputtering process. The most optimized parameter combination obtained from GA's optimization result is expected to produce the desirable zinc oxide (ZnO) thin film from the sputtering process. The parameters involved in this study were RF power, deposition time and substrate temperature. The algorithm was tested to optimize the 25 datasets of parameter combinations. The results from the computational experiment were then compared with the actual result from the laboratory experiment. Based on the comparison, GA had shown that the algorithm was reliable to optimize the parameter combination before the parameter tuning could be done to the RF magnetron sputtering machine. In order to verify the result of GA, the algorithm was also been compared to other well known optimization algorithms, which were, particle swarm optimization (PSO) and gravitational search algorithm (GSA). The results had shown that GA was reliable in solving this RF magnetron sputtering process parameter tuning problem. GA had shown better accuracy in the optimization based on the fitness evaluation.

  9. Ionized PVD with an Inductively Coupled Plasma Source

    NASA Astrophysics Data System (ADS)

    Hayden, D. B.; Juliano, D. R.; Ruzic, D. N.

    1997-10-01

    Ionized physical vapor deposition (iPVD) is used to enhance the directionality of metal deposition. This is a potential solution to depositing into higher aspect-ratio trenches and vias for metal interconnects. A dc magnetron (Donated by Materials Research Corporation) is coupled with an inductively coupled plasma (ICP) coil to increase the ionization of the sputtered metal atoms. This allows metal ions to be accelerated across the plasma sheath to a biased substrate and deposited normally. One coil design has a wider diameter than the substrate to reduce shadowing and flaking effects. Argon and neon working gases and aluminum and copper targets are investigated at varying pressures and power levels. Deposition rates and metal flux ionization fractions are measured with a quartz crystal microbalance and a multi-grid analyzer.

  10. Characterisation of Mg biodegradable stents produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Elmrabet, N.; Botterill, N.; Grant, D. M.; Brown, P. D.

    2015-10-01

    Novel Mg-minitubes for biodegradable stent applications have been produced using PVD magnetron sputtering. The minitubes were characterised, as a function of annealing temperature, using a combination of SEM/EDS, XRD and hardness testing. The as-deposited minitubes exhibited columnar grain structures with high levels of porosity. Slight alteration to the crystal structure from columnar to equiaxed grain growth was demonstrated at elevated temperature, along with increased material densification, hardness and corrosion resistance.

  11. The effect of PVD coatings on the wear behaviour of magnesium alloys

    SciTech Connect

    Altun, Hikmet Sen, Sadri

    2007-10-15

    In this study, AlN/TiN was coated on magnesium alloys using physical vapour deposition (PVD) technique of DC magnetron sputtering, and the influence of the coating on the wear behaviour of the alloys was examined. A physical vapour deposition system for coating processes, a reciprocating wear system for wear tests, a universal hardness equipment for hardness measurement, a X-ray diffractometer (XRD) for compositional analysis of the coating, and a scanning electron microscopy (SEM) for surface examinations were used. It was determined that the wear resistance of the magnesium alloys can be increased by PVD coatings. However, small structural defects which could arise from the coating process or substrate were observed in the coating layers.

  12. Multiple frequency capacitive plasmas as a tool to optimize PVD processes

    NASA Astrophysics Data System (ADS)

    Bienholz, Stefan; Semmler, Egmont; Awakowicz, Peter

    2011-10-01

    Capacitively coupled plasmas are widely used in PVD processes over several years. Nowadays mainly DC-Magnetron sputter coaters are commonly used, which do not allow a separate control of ion flux and ion energy distribution at the target. A possibility to overcome this constriction consists of exciting the plasma at two different radio frequencies simultaneously. In this contribution we discuss the possibility of tuning electrical discharge quantities such as target voltage waveform and self bias voltage by using multiple excitation frequencies. The influence of the relative phase between one frequency and its second harmonic on these quantities is also investigated. The experiments show, that capacitively coupled multiple frequency discharges are a promising complement to existing PVD processes. The authors would like to acknowledge the funding provided by the ``Deutsche Forschungsgemeinschaft'' within the frame of the SFB-TR 87 and the ``Ruhr University Bochum Research School.''

  13. Magnetron theory

    NASA Astrophysics Data System (ADS)

    Riyopoulos, Spilios

    1996-03-01

    A guiding center fluid theory is applied to model steady-state, single mode, high-power magnetron operation. A hub of uniform, prescribed density, feeds the current spokes. The spoke charge follows from the continuity equation and the incompressibility of the guiding center flow. Included are the spoke self-fields (DC and AC), obtained by an expansion around the unperturbed (zero-spoke charge) flow in powers of ν/V1, ν, and V1 being the effective charge density and AC amplitude. The spoke current is obtained as a nonlinear function of the detuning from the synchronous (Buneman-Hartree, BH) voltage Vs; the spoke charge is included in the self-consistent definition of Vs. It is shown that there is a DC voltage region of width ‖V-Vs‖˜V1, where the spoke width is constant and the spoke current is simply proportional to the AC voltage. The magnetron characteristic curves are ``flat'' in that range, and are approximated by a linear expansion around Vs. The derived formulas differ from earlier results [J. F. Hull, in Cross Field Microwave Devices, edited by E. Okress (Academic, New York, 1961), pp. 496-527] in (a) there is no current cutoff at synchronism; the tube operates well below as well above the BH voltage; (b) the characteristics are single valued within the synchronous voltage range; (c) the hub top is not treated as virtual cathode; and (d) the hub density is not equal to the Brillouin density; comparisons with tube measurements show the best agreement for hub density near half the Brillouin density. It is also shown that at low space charge and low power the gain curve is symmetric relative to the voltage (frequency) detuning. While symmetry is broken at high-power/high space charge magnetron operation, the BH voltage remains between the current cutoff voltages.

  14. Pvd Growth Method:. Physics and Technology

    NASA Astrophysics Data System (ADS)

    Moshfegh, A. Z.

    2004-06-01

    In this review, the foundation of thin film technology namely fabrication, characterization and application is described. Classification of physical vapor deposition (PVD) is presented based on evaporation and sputtering methods. The physics and technology of three main branches of PVD deposition techniques including sputtering, pulse laser deposition (PLD) and molecular beam epitaxy (MBE) along with their characteristic differences are compared. The application of bias sputtering in producing thin films with modified properties is presented. A correlation between deposition variables and parameters of nucleation and growth is discussed. The initial stages of PVD growth modes such as layer by-layer, island, and mixed layer-island growth mechanisms are reviewed. At the end, the applications of PVD in microelectronics with several recent examples especially in the metallization process are presented.

  15. Review of Magnetron Developments

    NASA Astrophysics Data System (ADS)

    Vyas, Sandeep Kumar; Verma, Rajendra Kumar; Maurya, Shivendra; Singh, V. V. P.

    2016-09-01

    Magnetrons have been the most efficient high power microwave sources for decades. In the twenty-first century, many of the development works are headed towards the performance improvement of CW industrial magnetrons. In this review article, the development works and techniques, used on different types of magnetrons, for the performance enhancement in the past two decades have been discussed. The article focuses on the state of the art of CW magnetron and the direction it will take in foreseeable future. In addition it also glimpses some of the major variants of magnetron which have further opened up scope in mm-THz spectrum of electromagnetism.

  16. Protection of yttria-stabilized zirconia for dental applications by oxidic PVD coating.

    PubMed

    Hübsch, C; Dellinger, P; Maier, H J; Stemme, F; Bruns, M; Stiesch, M; Borchers, L

    2015-01-01

    In this study, the application of transparent physical vapor deposition (PVD) coatings on zirconia ceramics was examined as an approach to retard the low-temperature degradation of zirconia for dental applications. Transparent monolayers of titanium oxide (TixOy) and multilayers consisting of titanium oxide-alumina-titanium oxide (TixOy-AlxOy-TixOy) were deposited onto standardized discs of 3Y-TZP using magnetron sputtering. Using X-ray photospectroscopy and time-of-flight secondary-ion mass spectrometry, the compositions of the coatings were verified, and an approximate thickness of 50 nm for each type of coating was ascertained. After aging the coated and uncoated samples in water vapor at 134°C and 3 bar for 4, 8, 16, 32, 64 and 128 h, the monoclinic phase content was determined using X-ray diffraction, and its impact on mechanical properties was assessed in biaxial flexural strength tests. In addition, the depth of the transformation zone was measured from scanning electron microscopy images of the fracture surfaces of hydrothermally aged samples. The results revealed that the tetragonal-to-monoclinic phase transformation of the zirconia ceramic was retarded by the application of PVD coatings. During the first stages of aging, the coated samples exhibited a significantly lower monoclinic phase content than the uncoated samples and, after 128 h of aging, showed a transformation zone which was only ∼12-15 μm thick compared to ∼30 μm in the control group. Biaxial flexural strength decreased by ∼10% during aging and was not influenced by the application of a PVD coating.

  17. Crystal structure of PvdO from Pseudomonas aeruginosa.

    PubMed

    Yuan, Zenglin; Gao, Fei; Bai, Guohui; Xia, Hengchuan; Gu, Lichuan; Xu, Sujuan

    2017-02-26

    Pyoverdine I (PVDI) is a water-soluble fluorescein siderophore with strong iron chelating ability from the gram-negative pathogen Pseudomonas aeruginosa PAO1. Compared to common siderophores, PVDI is a relatively large compound whose synthesis requires a group of enzymes with different catalytic activities. In addition to four nonribosomal peptide synthetases (NRPS) which are responsible for the production of the peptide backbone of PVDI, several additional enzymes are associated with the modification of the side chains. PvdO is one of these enzymes and participates in PVDI precursor maturation in the periplasm. We determined the crystal structure of PvdO at 1.24 Å resolution. The PvdO structure shares a common fold with some FGly-generating enzymes (FGE) and is stabilized by Ca(2+). However, the catalytic residues in FGE are not observed in PvdO, indicating PvdO adopts a unique catalytic mechanism.

  18. Iron-regulated transcription of the pvdA gene in Pseudomonas aeruginosa: effect of Fur and PvdS on promoter activity.

    PubMed Central

    Leoni, L; Ciervo, A; Orsi, N; Visca, P

    1996-01-01

    The pvdA gene, encoding the enzyme L-ornithine N5-oxygenase, catalyzes a key step of the pyoverdin biosynthetic pathway in Pseudomonas aeruginosa. Expression studies with a promoter probe vector made it possible to identify three tightly iron-regulated promoter regions in the 5.9-kb DNA fragment upstream of pvdA. The promoter governing pvdA expression was located within the 154-bp sequence upstream of the pvdA translation start site. RNA analysis showed that expression of PvdA is iron regulated at the transcriptional level. Primer extension and S1 mapping experiments revealed two 5'termini of the pvdA transcript, 68 bp (T1) and 43 bp (T2) 5' of the PvdA initiation. The pvdA transcripts were monocystronic, with T1 accounting for 90% of the pvdA mRNA. Fur box-like sequences were apparently absent in the regions 5' of pvdA transcription start sites. A sequence motif resembling the -10 hexamer of AlgU-dependent promoters and the iron starvation box of pyoverdin genes controlled by the sigmaE -like factor PvdS were identified 5' of the T1 start site. The minimum DNA region required for iron-regulated promoter activity was mapped from bp -41 to -154 relative to the ATG translation start site of pvdA. We used pvdA'::lacZ transcriptional fusions and Northern (RNA) analyses to study the involvement of Fur and PvdS in the iron-regulated expression of pvdA. Two fur mutants of P. aeruginosa were much less responsive than wild-type PAO1 to the iron-dependent regulation of pvdA expression. Transcription from the pvdA promoter did not occur in a heterologous host unless in the presence of the pvdS gene in trans and was abrogated in a pvdS mutant of P. aeruginosa. Interaction of the Fur repressor with a 150-bp fragment encompassing the pvdS promoter was demonstrated in vivo by the Fur titration assay and confirmed in vitro by gel retardation experiments with a partially purified Fur preparation. Conversely, the promoter region of pvdA did not interact with Fur. Our results support

  19. Magnetron sputtering source

    DOEpatents

    Makowiecki, D.M.; McKernan, M.A.; Grabner, R.F.; Ramsey, P.B.

    1994-08-02

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal. 12 figs.

  20. Magnetron sputtering source

    DOEpatents

    Makowiecki, Daniel M.; McKernan, Mark A.; Grabner, R. Fred; Ramsey, Philip B.

    1994-01-01

    A magnetron sputtering source for sputtering coating substrates includes a high thermal conductivity electrically insulating ceramic and magnetically attached sputter target which can eliminate vacuum sealing and direct fluid cooling of the cathode assembly. The magnetron sputtering source design results in greater compactness, improved operating characteristics, greater versatility, and low fabrication cost. The design easily retrofits most sputtering apparatuses and provides for safe, easy, and cost effective target replacement, installation, and removal.

  1. Magnetron injection gun scaling

    SciTech Connect

    Lawson, W.

    1988-04-01

    Existing analytic design equations for magnetron injection guns (MIG's) are approximated to obtain a set of scaling laws. The constraints are chosen to examine the maximum peak power capabilities of MIG's. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations.

  2. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  3. PVD Silicon Carbide as a Thin Film Packaging Technology for Antennas on LCP Substrates for Harsh Environments

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Stanton, John W.; Ponchak, George E.; Jordan, Jennifer L.; Zorman, Christian A.

    2010-01-01

    This paper describes an effort to develop a thin film packaging technology for microfabricated planar antennas on polymeric substrates based on silicon carbide (SiC) films deposited by physical vapor deposition (PVD). The antennas are coplanar waveguide fed dual frequency folded slot antennas fabricated on liquid crystal polymer (LCP) substrates. The PVD SiC thin films were deposited directly onto the antennas by RF sputtering at room temperature at a chamber pressure of 30 mTorr and a power level of 300 W. The SiC film thickness is 450 nm. The return loss and radiation patterns were measured before and after the SiC-coated antennas were submerged into perchloric acid for 1 hour. No degradation in RF performance or physical integrity of the antenna was observed.

  4. A novel monolithic LEU foil target based on a PVD manufacturing process for (99)Mo production via fission.

    PubMed

    Hollmer, Tobias; Petry, Winfried

    2016-12-01

    (99)Mo is the most widely used radioactive isotope in nuclear medicine. Its main production route is the fission of uranium. A major challenge for a reliable supply is the conversion from highly enriched uranium (HEU) to low enriched uranium (LEU). A promising candidate to realize this conversion is the cylindrical LEU irradiation target. The target consists of a uranium foil encapsulated between two coaxial aluminum cladding cylinders. This target allows a separate processing of the irradiated uranium foil and the cladding when recovering the (99)Mo. Thereby, both the costs and the volume of highly radioactive liquid waste are significantly reduced compared to conventional targets. The presented manufacturing process is based on the direct coating of the uranium on the inside of the outer cladding cylinder. This process was realized by a cylindrical magnetron enhanced physical vapor deposition (PVD) technique. The method features a highly automated process, a good quality of the resulting uranium foils and a high material utilization.

  5. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    PubMed

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires.

  6. A regulated magnetron pulser

    SciTech Connect

    Rose, C.R.

    1997-09-01

    This paper describes and analysis of a 4.5-kV, 500-mA, regulated current pulser used to drive a Hitachi ZM130 magnetron in a particle-accelerator injector. In this application, precise beam from the injector. A high-voltage triode vacuum tube with active feedback is used to control the magnetron current. Current regulation and accuracy is better than 1%. The pulse width may be varied from as little as 5 {mu}m to cw by varying the width of a gate pulse. The current level can be programmed between 10 and 500 mA. Design of the pulser including circuit simulations, power calculations, and high-voltage issues are discussed.

  7. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1998-06-16

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence. 8 figs.

  8. Magnetron sputtered boron films

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1998-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  9. Magnetron injection gun scaling

    NASA Astrophysics Data System (ADS)

    Lawson, W.

    1988-04-01

    A set of tradeoff equations was simplified to obtain scaling laws for magnetron injection guns (MIGs). The constraints are chosen to examine the maximum-peak-power capabilities of MIGs. The scaling laws are compared with exact solutions of the design equations and are supported by MIG simulations in which each MIG is designed to double the beam power of an existing design by adjusting one of the four fundamental parameters.

  10. Evaporation rate and composition monitoring of electron beam PVD processes

    SciTech Connect

    Anklam, T.M.; Berzins, L.V.; Braun, D.G.; Haynam, C.; Meier, T.; McClelland, M.A.

    1995-03-01

    Lawrence Livermore National Laboratory (LLNL) is developing sensor and control technology to improve the quality and range of applicability of electron beam PVD. The approach being developed uses tunable lasers to measure, the density and composition of the vapor plume. This paper reviews the principles of operation of laser based sensors and discusses data from experiments in which titanium and niobium are co-vaporized. Laser data agreed well with deposited film compositions and spatial variations in deposited film cross sections. Laser based vapor monitoring appears to have broad applicability and has the potential to extend the use of high rate electron beam PVD.

  11. Low temperature Cu-Cu bonding using copper nanoparticles fabricated by high pressure PVD

    NASA Astrophysics Data System (ADS)

    Wu, Zijian; Cai, Jian; Wang, Qian; Wang, Junqiang

    2017-03-01

    Copper nanoparticles (Cu NPs) fabricated by physical vapor deposition (PVD) were introduced in Cu-Cu bonding as surface modification. The bonding structure with Ti adhesive/barrier layer and Cu substrate layer was fabricated on both surfaces first. Loose structure with Cu NPs was then deposited by magnetron sputtering in a high pressure environment. Solid state Cu-Cu bonding process was accomplished at 200°C for 3min under the pressure of 20MPa. Die shear test was carried out and an average bonding strength of 36.75MPa was achieved. The analysis of fracture surface revealed a high-reliability bonding structure. According to cross-sectional observations, a void-free intermediate Cu layer with thickness around 10nm was obtained. These results demonstrated that a reliable low temperature time-saving Cu-Cu bonding was realized by Cu NPs between the bonding pairs. This novel bonding method might be one of the most attractive techniques in the application of ultra-fine pitch 3D integration.

  12. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    DOE PAGES

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in thismore » review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.« less

  13. A review comparing cathodic arcs and high power impulse magnetron sputtering (HiPIMS)

    SciTech Connect

    Anders, André

    2014-09-02

    In this study, high power impulse magnetron sputtering (HiPIMS) has been in the center of attention over the last years as it is an emerging physical vapor deposition (PVD) technology that combines advantages of magnetron sputtering with various forms of energetic deposition of films such as ion plating and cathodic arc plasma deposition. It should not come at a surprise that many extension and variations of HiPIMS make use, intentionally or unintentionally, of previously discovered approaches to film processing such as substrate surface preparation by metal ion sputtering and phased biasing for film texture and stress control. Therefore, in this review, an overview is given on some historical developments and features of cathodic arc and HiPIMS plasmas, showing commonalities and differences. To limit the scope, emphasis is put on plasma properties, as opposed to surveying the vast literature on specific film materials and their properties.

  14. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  15. Magic-T-Coupled Magnetrons

    NASA Technical Reports Server (NTRS)

    Dickinson, R. M.

    1985-01-01

    Outputs of two magnetrons added coherently in scheme based on resonant waveguide coupling and injection phase locking. In addition, filaments are turned off after starting. Overall effect is relatively-inexpensive, lowpower, noisy magnetrons generate clean carrier signals of higher power that ordinarily require more expensive klystrons.

  16. A chemically stable PVD multilayer encapsulation for lithium microbatteries

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. F.; Sousa, R.; Cunha, D. J.; Vieira, E. M. F.; Silva, M. M.; Dupont, L.; Goncalves, L. M.

    2015-10-01

    A multilayer physical vapour deposition (PVD) thin-film encapsulation method for lithium microbatteries is presented. Lithium microbatteries with a lithium cobalt oxide (LiCoO2) cathode, a lithium phosphorous oxynitride (LiPON) electrolyte and a metallic lithium anode are under development, using PVD deposition techniques. Metallic lithium film is still the most common anode on this battery technology; however, it presents a huge challenge in terms of material encapsulation (lithium reacts with almost any materials deposited on top and almost instantly begins oxidizing in contact with atmosphere). To prove the encapsulation concept and perform all the experiments, lithium films were deposited by thermal evaporation technique on top of a glass substrate, with previously patterned Al/Ti contacts. Three distinct materials, in a multilayer combination, were tested to prevent lithium from reacting with protection materials and atmosphere. These multilayer films were deposited by RF sputtering and were composed of lithium phosphorous oxide (LiPO), LiPON and silicon nitride (Si3N4). To complete the long-term encapsulation after breaking the vacuum, an epoxy was applied on top of the PVD multilayer. In order to evaluate oxidation state of lithium films, the lithium resistance was measured in a four probe setup (cancelling wires/contact resistances) and resistivity calculated, considering physical dimensions. A lithium resistivity of 0.16 Ω μm was maintained for more than a week. This PVD multilayer exonerates the use of chemical vapour deposition (CVD), glove-box chambers and sample manipulation between them, significantly reducing the fabrication cost, since battery and its encapsulation are fabricated in the same PVD chamber.

  17. Nonsputtering impulse magnetron discharge

    SciTech Connect

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  18. Diffusion bonding of CMSX-4 to UDIMET 720 using PVD-coated interfaces and HIP

    SciTech Connect

    Larker, R.; Ockborn, J.; Selling, B.

    1999-07-01

    There is an increasing interest in development of manufacturing methods for Dual Property BLISKs (BLaded dISKs), consisting of creep resistant airfoils and fatigue resistant disks bonded together by a durable joint. Optimum heat treatments are, however, very different for creep resistant single crystal CMSX-4 and fatigue resistant polycrystalline Udimet 720 selected in this study, but fortunately the first aging treatment for CMSX-4 (1140 C, 2-6h, AC) is similar to the partial solution treatment of U 720 HS2 (1115 C, 4h, OQ). Based on this, diffusion bonding was performed by HIP at 1120 C and 200 MPa argon pressure for 4 h, followed by cooling to 400 C. Subsequently, a shortened Udimet 720 HS2 two-step aging treatment was adopted by heating to 650 C for 6 h followed by cooling to 400 C, heating to 760 C for 2 h, and finally cooling to R.T. under remaining HIP pressure. Plasma etching followed by thin (80 nm) PVD coating with either nickel or titanium were used to clean and protect the polished surfaces before joining. The selection of coatings was governed by the possibility to reduce oxidized nickel by flushing with hydrogen at 330 C during evacuation of the HIP capsules, and by the large solubility of oxygen in titanium. Hot tensile testing was performed at 750 C on both joined and reference materials subjected to the modified heat treatment. Initially solution treated Udimet 720 and CMSX-4 comprised the reference materials. The testing showed that joints with Ni-PV coatings were almost as strong as Udimet 720 (although with very limited elongation), while the joints with Ti-PVD coatings were weaker.

  19. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    NASA Astrophysics Data System (ADS)

    Liu, Xingguang; Iamvasant, Chanon; Liu, Chang; Matthews, Allan; Leyland, Adrian

    2017-01-01

    CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also found that, with sufficient Cu content (>12 at.%), annealing at a moderately high temperature (e.g. 500 °C) leads to transportation of both Cu and Ag (even at relatively low concentrations of Ag, ≤3 at.%) from inside the coating to the coating surface, which resulted in significant reductions in friction coefficient, by over 50% compared to that of the substrate (from 0.31 to 0.14 with a hemispherical diamond indenter, and from 0.83 to 0.40 with an alumina ball counterface, respectively). Results indicate that the addition of both Cu and Ag (in appropriate concentrations) to nitrogen-containing chromium is a viable strategy for the development of 'self-replenishing' silver-containing thin film architectures for temperature-dependent solid lubrication requirements or antimicrobial coating applications.

  20. Effect of Annealing Temperature on the Water Contact Angle of PVD Hard Coatings

    PubMed Central

    Yang, Yu-Sen; Cho, Ting-Pin

    2013-01-01

    Various PVD (physical vapor deposition) hard coatings including nitrides and metal-doped diamond-like carbons (Me-DLC) were applied in plastic injection and die-casting molds to improve wear resistance and reduce sticking. In this study, nitrides hcp-AlN (hexagonal close-packed AlN), Cr2N, (CrAl)2N) and Me-DLC (Si-DLC and Cr-DLC) coatings were prepared using a closed field unbalanced magnetron reactive sputtering system. The coatings were annealed in air for 2 h at various temperatures, after which the anti-sticking properties were assessed using water contact angle (WCA) measurements. The as-deposited hcp-AlN, Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior and exhibit respective WCAs of 119°, 106° and 101°. The as-deposited Si-DLC and Cr-DLC coatings exhibit hydrophilic behavior and exhibit respective WCAs of 74° and 88°. The annealed Cr2N and (CrAl)2N coatings exhibit hydrophobic behavior with higher WCAs, while the annealed hcp-AlN, Si-DLC and Cr-DLC coatings are hydrophilic. The increased WCA of the annealed Cr2N and (CrAl)2N coatings is related to their crystal structure and increased roughness. The decreased WCA of the annealed hcp-AlN, Si-DLC and Cr-DLC coatings is related to their crystal structures and has little correlation with roughness. PMID:28811440

  1. Double-sided Relativistic Magnetron

    NASA Astrophysics Data System (ADS)

    Agafonov, A. V.; Krastelev, E. G.

    1997-05-01

    A new scheme of a symmetricaly powered relativistic magnetron and several methods of localised electron flow forming in an interaction region are proposed to increase an efficiency of relativistic magnetrons. As will be shown, a very important reason is the effect of nonsymmetric feeding of power from one side of a magnetron, which is typical for experiments. One-sided powering leads to the axial drift of electrons, to the transformation of transverse velocities of electrons to longitudinal one and to the generation of a parasitic e-beam which does not take part in energy exchange between electrons and waves at all. A special driver was designed for double-sided powering of relativistic magnetrons. The proposed system is compact, rigid and capable of reliable operation at high repetition rates, which is advantageous for many applications. Several smooth-bore magnetrons were tested by means of computer simulations using PIC code KARAT. The results showed a dramatical difference between the dynamics of electron flow for one- and two-sided power feeding of a structure under test. Design of a driver and computer simulation results are presented.

  2. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    NASA Astrophysics Data System (ADS)

    Anders, André

    2017-05-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. By applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films. Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become "poisoned," i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron sputtering.

  3. Numerical simulation of oscillating magnetrons

    NASA Astrophysics Data System (ADS)

    Palevsky, A.; Bekefi, G.; Drobot, A. T.

    1981-08-01

    The temporal evolution of the current, voltage, and RF fields in magnetron-type devices is simulated by a two-dimensional, electromagnetic, fully relativistic particle-in-cell code. The simulation allows for the complete geometry of the anode vane structure, space-charge-limited cathode emission and the external power source, and is applied to a 54-vane inverted relativistic magnetron at a voltage of 300 kV and a magnetic field of 0.17 T. Fields in the RF structure and the anode-cathode gap are solved from Maxwell's equations so that results contain all the two-dimensional resonances of the system, and the numerical solution yields a complete space-time history of the particle momenta. In the presence of strong RF fields, the conventional definition of voltages is found to be inappropriate, and a definition is developed to reduce to the conventional results.

  4. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, Michael; Johnson, Rolland

    2014-09-12

    There is great potential for a magnetron power source that can be controlled both in phase and frequency. Such a power source could revolutionize many particle accelerator systems that require lower capital cost and/or higher power efficiency. Beyond the accelerator community, phase and frequency locked magnetons could improve radar systems around the world and make affordable phased arrays for wireless power transmission for solar powered satellites. This joint project of Muons, Inc., Fermilab, and L-3 CTL was supported by an STTR grant monitored by the Nuclear Physics Office of the DOE Office of Science. The object of the program was to incorporate ferrite materials into the anode of a magnetron and, with appropriate biasing of the ferrites, to maintain frequency lock and to allow for frequency adjustment of the magnetron without mechanical tuners. If successful, this device would have a dual use both as a source for SRF linacs and for military applications where fast tuning of the frequency is a requirement. In order to place the materials in the proper location, several attributes needed to be modeled. First the impact of the magnetron’s magnetic field needed to be shielded from the ferrites so that they were not saturated. And second, the magnetic field required to change the frequency of the magnetron at the ferrites needed to be shielded from the region containing the circulating electrons. ANSYS calculations of the magnetic field were used to optimize both of these parameters. Once the design for these elements was concluded, parts were fabricated and a complete test assembly built to confirm the predictions of the computer models. The ferrite material was also tested to determine its compatibility with magnetron tube processing temperatures. This required a vacuum bake out of the chosen material to determine the cleanliness of the material in terms of outgassing characteristics, and a subsequent room temperature test to verify that the characteristics of

  5. Nanograined Net-Shaped Fabrication of Rhenium Components by EB-PVD

    SciTech Connect

    Singh, Jogender; Wolfe, Douglas E.

    2004-02-04

    Cost-effective net-shaped forming components have brought considerable interest into DoD, NASA and DoE. Electron beam physical vapor deposition (EB-PVD) offers flexibility in forming net-shaped components with tailored microstructure and chemistry. High purity rhenium (Re) components including rhenium-coated graphite balls, Re- plates and tubes have been successfully manufactured by EB-PVD. EB-PVD Re components exhibited sub-micron and nano-sized grains with high hardness and strength as compared to CVD. It is estimated that the cost of Re components manufactured by EB-PVD would be less than the current CVD and powder-HIP Technologies.

  6. Large area precision optical coatings by pulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Frach, Peter; Gloess, Daniel; Goschurny, Thomas; Drescher, Andy; Hartung, Ullrich; Bartzsch, Hagen; Heisig, Andreas; Grune, Harald; Leischnig, Lothar; Leischnig, Steffen; Bundesmann, Carsten

    2017-05-01

    Pulse magnetron sputtering is very well suited for the deposition of optical coatings. Due to energetic activation during film growth, sputtered films are dense, smooth and show an excellent environmental stability. Films of materials like SiO2, Al2O3, Nb2O5 or Ta2O5 can be produced with very little absorption and scattering losses and are well suited for precision optics. FEP's coating plant PreSensLine, a deposition machine dedicated for the development and deposition of precision optical layer systems will be presented. The coating machine (VON ARDENNE) is equipped with dual magnetron systems (type RM by FEP). Concepts regarding machine design, process technology and process control as well as in situ monitoring are presented to realize the high demands on uniformity, accuracy and reproducibility. Results of gradient and multilayer type precision optical coatings are presented. Application examples are edge filters and special antireflective coatings for the backlight of 3D displays with substrate size up to 300 x 400mm. The machine allows deposition of rugate type gradient layers by rotating a rotary table with substrates between two sources of the dual magnetron system. By combination of the precision drive (by LSA) for the substrate movement and a special pulse parameter variation during the deposition process (available with the pulse unit UBS-C2 of FEP), it is possible to adjust the deposition rate as a function of the substrate position exactly. The aim of a current development is a technology for the uniform coating of 3D-substrates and freeform components as well as laterally graded layers.

  7. An efficient magnetron transmitter for superconducting accelerators

    DOE PAGES

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; ...

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron powermore » in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.« less

  8. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-09-30

    This report outlines an analytical model of the distribution of plasma in the cathode fall of a planar magnetron cathode. Here I continue commentary on previous work, and introduce an ion sheath model to describe the discharge dark space below the magnetron halo.

  9. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  10. An efficient magnetron transmitter for superconducting accelerators

    SciTech Connect

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-09-22

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injectionlocked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage. This realizes control of the magnetron power in a wide range by control of the magnetron current. Pre-excitation of the magnetron by the locking signal provides an output power range up to 10 dB. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and power control at a low noise level. In conclusion, an analysis of the kinetics of the drifting charge in the drift approximation substantiates the concept and the experimental results.

  11. An efficient magnetron transmitter for superconducting accelerators

    NASA Astrophysics Data System (ADS)

    Kazakevich, G.; Lebedev, V.; Yakovlev, V.; Pavlov, V.

    2016-12-01

    A concept of a highly-efficient high-power magnetron transmitter allowing wide-band phase and the mid-frequency power control at the frequency of the locking signal is proposed. The proposal is aimed for powering Superconducting RF (SRF) cavities of intensity-frontier accelerators. The transmitter is intended to operate with phase and amplitude control feedback loops allowing suppression of microphonics and beam loading in the SRF cavities. The concept utilizes injection-locked magnetrons controlled in phase by the locking signal supplied by a feedback system. The injection-locking signal pre-excites the magnetron and allows its operation below the critical voltage in free run. This realizes control of the magnetron power in an extended range (up to 10 dB) by control of the magnetron current. Experimental studies were carried out with 2.45 GHz, 1 kW, CW magnetrons. They demonstrated stable operation of the magnetrons and the required range of power control at a low noise level. An analysis of the kinetics of the drifting charge within the framework of the presented model of phase focusing in magnetrons substantiates the concept and the experimental results.

  12. Antimicrobial titanium/silver PVD coatings on titanium

    PubMed Central

    Ewald, Andrea; Glückermann, Susanne K; Thull, Roger; Gbureck, Uwe

    2006-01-01

    Background Biofilm formation and deep infection of endoprostheses is a recurrent complication in implant surgery. Post-operative infections may be overcome by adjusting antimicrobial properties of the implant surface prior to implantation. In this work we described the development of an antimicrobial titanium/silver hard coating via the physical vapor deposition (PVD) process. Methods Coatings with a thickness of approximately 2 μm were deposited on titanium surfaces by simultaneous vaporisation of both metals in an inert argon atmosphere with a silver content of approximately 0.7 – 9% as indicated by energy dispersive X-ray analysis. On these surfaces microorganisms and eukaryotic culture cells were grown. Results The coatings released sufficient silver ions (0.5–2.3 ppb) when immersed in PBS and showed significant antimicrobial potency against Staphylococcus epidermis and Klebsiella pneumoniae strains. At the same time, no cytotoxic effects of the coatings on osteoblast and epithelial cells were found. Conclusion Due to similar mechanical performance when compared to pure titanium, the TiAg coatings should be suitable to provide antimicrobial activity on load-bearing implant surfaces. PMID:16556327

  13. Antibacterial PVD coatings doped with silver by ion implantation

    NASA Astrophysics Data System (ADS)

    Osés, J.; Palacio, J. F.; Kulkarni, S.; Medrano, A.; García, J. A.; Rodríguez, R.

    2014-08-01

    The antibacterial effect of certain metal ions, like silver, has been exploited since antiquity. Obviously, the ways to employ the biocide activity of this element have evolved throughout time and it is currently used in a wide range of clinical applications. The work presented here reports the results of an investigation focused on combining the protective properties of PVD coatings with the biocide property of silver, applied by ion implantation. For this purpose, chromium nitride layers were doped with silver implanted at two different doses (5 × 1016 and 1 × 1017 ion/cm2) at 100 keV of energy and perpendicular incidence. Full characterization of the coatings was performed to determine its topographical and mechanical properties. The concentration profile of Ag was analyzed by GD-OES. The thickness of the layers, nano-hardness, roughness, wear resistance and coefficient of friction were measured. Finally, the anti-bacterial efficacy of the coatings was determined following the JIS Z-2801:2010 Standard. The results provide clear insights into the efficacy of silver for antibacterial purposes, as well as on its influence in the mechanical and tribological behaviour of the coatings matrix.

  14. Experimental radiation cooled magnetrons for space

    NASA Technical Reports Server (NTRS)

    Brown, W. C.; Pollock, M.

    1991-01-01

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  15. Experimental radiation cooled magnetrons for space

    NASA Astrophysics Data System (ADS)

    Brown, W. C.; Pollock, M.

    The heat disposal problem that occurs in the microwave generator of the Solar Power Satellite when it converts dc power from solar photovoltaic arrays into microwave power for transmission to earth is examined. A theoretical study is made of the radiation cooling of a magnetron directional amplifier, and some experimental data obtained from the QKH 2244 magnetron are presented. This instrument is an unpackaged microwave oven magnetron to which an anodized aluminum radiator has been attached and whose magnetic field is supplied by special samarium cobalt magnets.

  16. Plasma Spray-PVD: A New Thermal Spray Process to Deposit Out of the Vapor Phase

    NASA Astrophysics Data System (ADS)

    von Niessen, Konstantin; Gindrat, Malko

    2011-06-01

    Plasma spray-physical vapor deposition (PS-PVD) is a low pressure plasma spray technology recently developed by Sulzer Metco AG (Switzerland). Even though it is a thermal spray process, it can deposit coatings out of the vapor phase. The basis of PS-PVD is the low pressure plasma spraying (LPPS) technology that has been well established in industry for several years. In comparison to conventional vacuum plasma spraying (VPS) or low pressure plasma spraying (LPPS), the new proposed process uses a high energy plasma gun operated at a reduced work pressure of 0.1 kPa (1 mbar). Owing to the high energy plasma and further reduced work pressure, PS-PVD is able to deposit a coating not only by melting the feed stock material which builds up a layer from liquid splats but also by vaporizing the injected material. Therefore, the PS-PVD process fills the gap between the conventional physical vapor deposition (PVD) technologies and standard thermal spray processes. The possibility to vaporize feedstock material and to produce layers out of the vapor phase results in new and unique coating microstructures. The properties of such coatings are superior to those of thermal spray and electron beam-physical vapor deposition (EB-PVD) coatings. In contrast to EB-PVD, PS-PVD incorporates the vaporized coating material into a supersonic plasma plume. Owing to the forced gas stream of the plasma jet, complex shaped parts such as multi-airfoil turbine vanes can be coated with columnar thermal barrier coatings using PS-PVD. Even shadowed areas and areas which are not in the line of sight of the coating source can be coated homogeneously. This article reports on the progress made by Sulzer Metco in developing a thermal spray process to produce coatings out of the vapor phase. Columnar thermal barrier coatings made of Yttria-stabilized Zircona (YSZ) are optimized to serve in a turbine engine. This process includes not only preferable coating properties such as strain tolerance and erosion

  17. Tutorial: Reactive high power impulse magnetron sputtering (R-HiPIMS)

    DOE PAGES

    Anders, André

    2017-03-21

    High Power Impulse Magnetron Sputtering (HiPIMS) is a coating technology that combines magnetron sputtering with pulsed power concepts. Furthermore, by applying power in pulses of high amplitude and a relatively low duty cycle, large fractions of sputtered atoms and near-target gases are ionized. In contrast to conventional magnetron sputtering, HiPIMS is characterized by self-sputtering or repeated gas recycling for high and low sputter yield materials, respectively, and both for most intermediate materials. The dense plasma in front of the target has the dual function of sustaining the discharge and providing plasma-assistance to film growth, affecting the microstructure of growing films.more » Many technologically interesting thin films are compound films, which are composed of one or more metals and a reactive gas, most often oxygen or nitrogen. When reactive gas is added, non-trivial consequences arise for the system because the target may become “poisoned,” i.e., a compound layer forms on the target surface affecting the sputtering yield and the yield of secondary electron emission and thereby all other parameters. It is emphasized that the target state depends not only on the reactive gas' partial pressure (balanced via gas flow and pumping) but also on the ion flux to the target, which can be controlled by pulse parameters. This is a critical technological opportunity for reactive HiPIMS (R-HiPIMS). The scope of this tutorial is focused on plasma processes and mechanisms of operation and only briefly touches upon film properties. It introduces R-HiPIMS in a systematic, step-by-step approach by covering sputtering, magnetron sputtering, reactive magnetron sputtering, pulsed reactive magnetron sputtering, HiPIMS, and finally R-HiPIMS. The tutorial is concluded by considering variations of R-HiPIMS known as modulated pulsed power magnetron sputtering and deep-oscillation magnetron sputtering and combinations of R-HiPIMS with superimposed dc magnetron

  18. A review-application of physical vapor deposition (PVD) and related methods in the textile industry

    NASA Astrophysics Data System (ADS)

    Shahidi, Sheila; Moazzenchi, Bahareh; Ghoranneviss, Mahmood

    2015-09-01

    Physical vapor deposition (PVD) is a coating process in which thin films are deposited by the condensation of a vaporized form of the desired film material onto the substrate. The PVD process is carried out in a vacuum. PVD processes include different types, such as: cathode arc deposition, electron beam physical vapor deposition, evaporative deposition, sputtering, ion plating and enhanced sputtering. In the PVD method, the solid coating material is evaporated by heat or by bombardment with ions (sputtering). At the same time, a reactive gas is also introduced; it forms a compound with the metal vapor and is deposited on the substrate as a thin film with highly adherent coating. Such coatings are used in a wide range of applications such as aerospace, automotive, surgical, medical, dyes and molds for all manner of material processing, cutting tools, firearms, optics, thin films and textiles. The objective of this work is to give a comprehensive description and review of the science and technology related to physical vapor deposition with particular emphasis on their potential use in the textile industry. Physical vapor deposition has opened up new possibilities in the modification of textile materials and is an exciting prospect for usage in textile design and technical textiles. The basic principle of PVD is explained and the major applications, particularly sputter coatings in the modification and functionalization of textiles, are introduced in this research.

  19. A Plasma Lens for Magnetron Sputtering

    SciTech Connect

    Anders, Andre; Brown, Jeff

    2010-11-30

    A plasma lens, consisting of a solenoid and potential-defining ring electrodes, has been placed between a magnetron and substrates to be coated. Photography reveals qualitative information on excitation, ionization, and the transport of plasma to the substrate.

  20. PvdP Is a Tyrosinase That Drives Maturation of the Pyoverdine Chromophore in Pseudomonas aeruginosa

    PubMed Central

    Nadal-Jimenez, Pol; Koch, Gudrun; Reis, Carlos R.; Muntendam, Remco; Raj, Hans; Jeronimus-Stratingh, C. Margot; Cool, Robbert H.

    2014-01-01

    The iron binding siderophore pyoverdine constitutes a major adaptive factor contributing to both virulence and survival in fluorescent pseudomonads. For decades, pyoverdine production has allowed the identification and classification of fluorescent and nonfluorescent pseudomonads. Here, we demonstrate that PvdP, a periplasmic enzyme of previously unknown function, is a tyrosinase required for the maturation of the pyoverdine chromophore in Pseudomonas aeruginosa. PvdP converts the nonfluorescent ferribactin, containing two iron binding groups, into a fluorescent pyoverdine, forming a strong hexadentate complex with ferrous iron, by three consecutive oxidation steps. PvdP represents the first characterized member of a small family of tyrosinases present in fluorescent pseudomonads that are required for siderophore maturation and are capable of acting on large peptidic substrates. PMID:24816606

  1. Peer-to-Peer Magnetron Locking

    NASA Astrophysics Data System (ADS)

    Cruz, Edward Jeffrey

    The viability of coherent power combination of multiple high-efficiency, moderate power magnetrons requires a thorough understanding of frequency and phase control. Injection locking of conventional magnetrons, and other types of oscillators, employing a master-to-slave configuration has been studied theoretically and experimentally. This dissertation focuses on the peer-to-peer locking, where each oscillator acts as a master of and slave to all others, between two conventional magnetrons, where the general condition for locking was recently derived. The experiments performed on peer-to-peer locking of two 1-kW magnetrons verify the recently developed theory on the condition under which the two nonlinear oscillators may be locked to a common frequency and relative phase. This condition reduces to Adler's classical locking condition (master-slave) if the coupling is one way. Dependent on the degree of coupling, the frequency of oscillation when locking occurs was found to not necessarily lie between the two magnetrons' free running frequencies. Likewise, when the locking condition was violated, the beat of the spectrum was not necessarily found to be equal to the difference between the free running frequencies. The frequency of oscillation and relative phase between the two magnetrons when locking did occur were found to correspond to one of two solution modes given by the recent theory. The accessibility of the two possible modes is yet to be determined. This work was supported by ONR, AFRL, AFOSR, L-3 Communications Electron Devices Division and Northrop-Grumman Corporation.

  2. Pulsed dc self-sustained magnetron sputtering

    SciTech Connect

    Wiatrowski, A.; Posadowski, W. M.; Radzimski, Z. J.

    2008-09-15

    The magnetron sputtering has become one of the commonly used techniques for industrial deposition of thin films and coatings due to its simplicity and reliability. At standard magnetron sputtering conditions (argon pressure of {approx}0.5 Pa) inert gas particles (necessary to sustain discharge) are often entrapped in the deposited films. Inert gas contamination can be eliminated during the self-sustained magnetron sputtering (SSS) process, where the presence of the inert gas is not a necessary requirement. Moreover the SSS process that is possible due to the high degree of ionization of the sputtered material also gives a unique condition during the transport of sputtered particles to the substrate. So far it has been shown that the self-sustained mode of magnetron operation can be obtained using dc powering (dc-SSS) only. The main disadvantage of the dc-SSS process is its instability related to random arc formation. In such case the discharge has to be temporarily extinguished to prevent damaging both the magnetron source and power supply. The authors postulate that pulsed powering could protect the SSS process against arcs, similarly to reactive pulsed magnetron deposition processes of insulating thin films. To put this concept into practice, (i) the high enough plasma density has to be achieved and (ii) the type of pulsed powering has to be chosen taking plasma dynamics into account. In this article results of pulsed dc self-sustained magnetron sputtering (pulsed dc-SSS) are presented. The planar magnetron equipped with a 50 mm diameter and 6 mm thick copper target was used during the experiments. The maximum target power was about 11 kW, which corresponded to the target power density of {approx}560 W/cm{sup 2}. The magnetron operation was investigated as a function of pulse frequency (20-100 kHz) and pulse duty factor (50%-90%). The discharge (argon) extinction pressure level was determined for these conditions. The plasma emission spectra (400-410 nm range

  3. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis

    PubMed Central

    do Nascimento, Viviane V.; Mello, Érica de O.; Carvalho, Laís P.; de Melo, Edésio J.T.; Carvalho, André de O.; Fernandes, Katia V.S.; Gomes, Valdirene M.

    2015-01-01

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target. PMID:26285803

  4. PvD1 defensin, a plant antimicrobial peptide with inhibitory activity against Leishmania amazonensis.

    PubMed

    do Nascimento, Viviane V; Mello, Érica de O; Carvalho, Laís P; de Melo, Edésio J T; Carvalho, André de O; Fernandes, Katia V S; Gomes, Valdirene M

    2015-08-18

    Plant defensins are small cysteine-rich peptides and exhibit antimicrobial activity against a variety of both plant and human pathogens. Despite the broad inhibitory activity that plant defensins exhibit against different micro-organisms, little is known about their activity against protozoa. In a previous study, we isolated a plant defensin named PvD1 from Phaseolus vulgaris (cv. Pérola) seeds, which was seen to be deleterious against different yeast cells and filamentous fungi. It exerted its effects by causing an increase in the endogenous production of ROS (reactive oxygen species) and NO (nitric oxide), plasma membrane permeabilization and the inhibition of medium acidification. In the present study, we investigated whether PvD1 could act against the protozoan Leishmania amazonensis. Our results show that, besides inhibiting the proliferation of L. amazonensis promastigotes, the PvD1 defensin was able to cause cytoplasmic fragmentation, formation of multiple cytoplasmic vacuoles and membrane permeabilization in the cells of this organism. Furthermore, we show, for the first time, that PvD1 defensin was located within the L. amazonensis cells, suggesting the existence of a possible intracellular target.

  5. Experimental investigation of the ultra-precision turning capability of PVD ZnSe

    NASA Astrophysics Data System (ADS)

    Li, Wei-hao; Yang, Kun; Wang, Peng; Zhang, Gao-feng; Liu, Dan-dan

    2016-10-01

    ZnSe is widely used in infrared optical systems because of the good optical characteristics in 0.5 22μm and the good processability. Physical Vapor Deposition(PVD) of ZnSe is good at no pollution in production process, lower price, etc. Infrared optical parts should be made by single point diamond turning or single point diamond fly-cutting after the experimental investigation of the ultra-precision turning capability of PVD ZnSe. The orthogonal experiment of ultra-precision turning PVD ZnSe was done at first, then the smooth turning surface and the rough turning surface were observed by metallographic microscope and 3D profilometer, and the mechanism of the defects on the turning surface was discussed. The result shows: the quality of ultra-precision turning surface of PVD ZnSe was restricted by the grain size and the distribution of the grain which could easily cause the variegated macula at the grain size, rising the spindle speed, reducing the feed rate and reducing the cut depth could make the quality of ultra-precision turning surface better and reduce the roughness Ra value lower, the roughness Ra value of the smooth turning surface was reached 3 4nm which is enough to the infrared optical image systems currently by using the optimization of parameters.

  6. Pyoverdine and beyond: PvdS dependent gene regulation in Pseudomonas syringae

    USDA-ARS?s Scientific Manuscript database

    The extracytoplasmic function (ECF) sigma factor PvdS regulates the expression of genes in Pseudomonas aeruginosa encoding virulence factors and the biosynthesis and transport of pyoverdine, a siderophore involved in iron acquisition. The production of pyoverdine is a distinctive trait of the fluor...

  7. Stability of Brillouin flow in planar, conventional, and inverted magnetrons

    SciTech Connect

    Simon, D. H.; Lau, Y. Y.; Greening, G.; Wong, P.; Gilgenbach, R. M.; Hoff, B. W.

    2015-08-15

    The Brillouin flow is the prevalent flow in crossed-field devices. We systematically study its stability in the conventional, planar, and inverted magnetron geometry. To investigate the intrinsic negative mass effect in Brillouin flow, we consider electrostatic modes in a nonrelativistic, smooth bore magnetron. We found that the Brillouin flow in the inverted magnetron is more unstable than that in a planar magnetron, which in turn is more unstable than that in the conventional magnetron. Thus, oscillations in the inverted magnetron may startup faster than the conventional magnetron. This result is consistent with simulations, and with the negative mass property in the inverted magnetron configuration. Inclusion of relativistic effects and electromagnetic effects does not qualitatively change these conclusions.

  8. Analysis of peer-to-peer locking of magnetrons

    SciTech Connect

    Pengvanich, P.; Lau, Y. Y.; Cruz, E.; Gilgenbach, R. M.; Hoff, B.; Luginsland, J. W.

    2008-10-15

    The condition for mutual, or peer-to-peer, locking of two magnetrons is derived. This condition reduces to Adler's classical phase-locking condition in the limit where one magnetron becomes the 'master' and the other becomes the 'slave.' The formulation is extended to the peer-to-peer locking of N magnetrons, under the assumption that the electromagnetic coupling among the N magnetrons is modeled by an N-port network.

  9. Simulation of sputter deposition in dc magnetrons

    NASA Astrophysics Data System (ADS)

    Evstatiev, Evstati; Cluggish, Brian

    2010-11-01

    Material sputter deposition has a multitude of industrial applications. Our goal at FAR-TECH, Inc., is a complete numerical simulation of a dc magnetron device. We intend to modify existing FAR-TECH, Inc. code to include flexible geometry manipulation, the most current atomic physics data, add transport of neutral atoms across the device, and model deposition on the substrate. Currently, dc magnetron simulation codes have limited geometry manipulation capabilities; however, this is important if design optimization is intended. Another uncommon feature in dc magnetron simulation codes is parallel performance. Since PIC simulations may take extremely long times (weeks), we are parallelizing our codes to achieve shorter run times. (Codes based on hybrid models perform faster, but have the disadvantage of having to know accurately the diffusion coefficients of electrons across the magnetic field lines.) We report preliminary results of this effort.

  10. Magnetron surface coil for brain MR imaging.

    PubMed

    Rodríguez, Alfredo O

    2006-08-01

    A resonator surface coil was developed for magnetic resonance imaging of the brain and tested on a clinical imager. This resonator design was based on the cavity magnetron with an 8 slot-and-hole configuration. High-resolution brain images were obtained from a water-filled phantom and from a healthy volunteer brain. To compare coil performance, SNR-vs.-depth plots were computed for a single-loop coil and the magnetron prototype from phantom images. These experimentally acquired profiles show an important improvement in SNR. Thus, the magnetron surface coil can generate brain images with a high resolution and penetration capacity. The high sensitivity of this coil makes it a good candidate to be used in multicoil imaging sequences.

  11. Compact Relativistic Magnetron with Output Mode Converter

    NASA Astrophysics Data System (ADS)

    Andreev, Andrey; Fuks, Mikhail; Schamiloglu, Edl

    2003-10-01

    We consider a relativistic magnetron in which all of the resonators of the anode block are smoothly continued onto a conical antenna up to the radius corresponding to the cutoff frequency of the radiated wave in a cylindrical waveguide. Such a magnetron is capable of high output power, is compact, has a high resistance to microwave breakdown, is able to work with extremely high currents, and has the possibility of forming desirable output radiation patterns. The magnetic field can be provided by a small solenoid over the resonant system, which is a much smaller volume than is required for the Helmholtz coils used in traditional relativistic magnetrons. The maximum size of this magnetron is the aperture of the horn antenna. The unique aspect of such a design is the possibility of using the horn antenna for conversion of the operating mode to lower order modes, including the TE_11 mode, which is radiated as a narrow wave beam. For a magnetron operating in π-mode, the mode converter comprises a continuation of the resonantor blocks onto the horn for those resonators that correspond to the symmetry of the output mode. For example, in order to provide Gaussian mode output only two diametrically opposite resonators of even-numbered resonators must be continued onto the horn. In this case the aperture of the horn antenna can be close to the cut-off diameter for the TE_11 mode, and the output power is limited only by breakdown of the output window. In this presentation results of preliminary calculations of the magnetron with output mode converters are presented.

  12. Tribological and structural properties of titanium nitride and titanium aluminum nitride coatings deposited with modulated pulsed power magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ward, Logan

    The demand for economical high-performance materials has brought attention to the development of advanced coatings. Recent advances in high power magnetron sputtering (HPPMS) have shown to improve tribological properties of coatings. These coatings offer increased wear and oxidation resistance, which may facilitate the use of more economical materials in harsh applications. This study demonstrates the use of novel forms of HPPMS, namely modulated pulsed-power magnetron sputtering (MPPMS) and deep oscillation magnetron sputtering (DOMS), for depositing TiN and Ti1-xAlxN tribological coatings on commonly used alloys, such as Ti-6Al-4V and Inconel 718. Both technologies have been shown to offer unique plasma characteristics in the physical vapor deposition (PVD) process. High power pulses lead to a high degree of ionization compared to traditional direct-current magnetron sputtering (DCMS) and pulsed magnetron sputtering (PMS). Such a high degree of ionization was previously only achievable by cathodic arc deposition (CAD); however, CAD can lead to increased macroparticles that are unfavorable in high friction and corrosive environments. MPPMS, DOMS, and other HPPMS techniques offer unique plasma characteristics and have been shown to produce coatings with refined grain structure, improved density, hardness, adhesion, and wear resistance. Using DOMS and MPPMS, TiN and Ti1-xAlxN coatings were deposited using PMS to compare microstructures and tribological performance. For Ti1-xAlxN, two sputtering target compositions, Ti 0.5Al0.5 and Ti0.3Al0.7, were used to evaluate the effects of MPPMS on the coating's composition and tribological properties. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD) were used to characterize microstructure and crystallographic texture. Several tribological properties were evaluated including: wear rate, coefficient of friction, adhesion, and nanohardness. Results show that substrate

  13. High power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Brenning, N.; Lundin, D.; Helmersson, U.

    2012-05-15

    The high power impulse magnetron sputtering (HiPIMS) discharge is a recent addition to plasma based sputtering technology. In HiPIMS, high power is applied to the magnetron target in unipolar pulses at low duty cycle and low repetition frequency while keeping the average power about 2 orders of magnitude lower than the peak power. This results in a high plasma density, and high ionization fraction of the sputtered vapor, which allows better control of the film growth by controlling the energy and direction of the deposition species. This is a significant advantage over conventional dc magnetron sputtering where the sputtered vapor consists mainly of neutral species. The HiPIMS discharge is now an established ionized physical vapor deposition technique, which is easily scalable and has been successfully introduced into various industrial applications. The authors give an overview of the development of the HiPIMS discharge, and the underlying mechanisms that dictate the discharge properties. First, an introduction to the magnetron sputtering discharge and its various configurations and modifications is given. Then the development and properties of the high power pulsed power supply are discussed, followed by an overview of the measured plasma parameters in the HiPIMS discharge, the electron energy and density, the ion energy, ion flux and plasma composition, and a discussion on the deposition rate. Finally, some of the models that have been developed to gain understanding of the discharge processes are reviewed, including the phenomenological material pathway model, and the ionization region model.

  14. The Development and Application of the Magnetron,

    DTIC Science & Technology

    1982-03-31

    of *medicine. The power of the magnetron used is from several tens of watts to several hundred watts. Microwave physiotherapy has been used in...clinical practice for the fast cure of arthritis , rheumatism and the subsidence of swelling. Therapeutic results have been excellent. In recent years

  15. Microstructural, mechanical and oxidation features of NiCoCrAlY coating produced by plasma activated EB-PVD

    NASA Astrophysics Data System (ADS)

    He, Jian; Guo, Hongbo; Peng, Hui; Gong, Shengkai

    2013-06-01

    NiCoCrAlY coatings produced by electron beam-physical vapor deposition (EB-PVD) have been extensively used as the oxidation resistance coatings or suitable bond coats in thermal barrier coating (TBC) system. However, the inherent imperfections caused by EB-PVD process degrade the oxidation resistance of the coatings. In the present work, NiCoCrAlY coatings were creatively produced by plasma activated electron beam-physical vapor deposition (PA EB-PVD). The novel coatings showed a terraced substructure on the surface of each grain due to the increased energy of metal ions and enhanced mobility of adatoms. Also a strong (1 1 1) crystallographic texture of γ/γ' grains was observed. The toughness of the coatings got remarkably improved compared with the coatings deposited by conventional EB-PVD and the oxidation behavior at 1373 K showed that the novel coatings had excellent oxidation resistance. The possible mechanism was finally discussed.

  16. Thermal Conductivity of EB-PVD Thermal Barrier Coatings Evaluated by a Steady-State Laser Heat Flux Technique

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.; Nagaraj, Ben A.; Bruce, Robert W.

    2000-01-01

    The thermal conductivity of electron beam-physical vapor deposited (EB-PVD) Zr02-8wt%Y2O3 thermal barrier coatings was determined by a steady-state heat flux laser technique. Thermal conductivity change kinetics of the EB-PVD ceramic coatings were also obtained in real time, at high temperatures, under the laser high heat flux, long term test conditions. The thermal conductivity increase due to micro-pore sintering and the decrease due to coating micro-delaminations in the EB-PVD coatings were evaluated for grooved and non-grooved EB-PVD coating systems under isothermal and thermal cycling conditions. The coating failure modes under the high heat flux test conditions were also investigated. The test technique provides a viable means for obtaining coating thermal conductivity data for use in design, development, and life prediction for engine applications.

  17. Power Supply to Drive a Magnetron for PFC Gas Resolution

    NASA Astrophysics Data System (ADS)

    Iwabuki, Hiroyasu; Iwata, Akihiko; Yoshiyasu, Hajimu

    A power supply to drive a magnetron for a PFC gas resolution has been developed. The power supply (ratings 5kV, 1A) is composed of a full bridge inverter and a voltage doubler rectifier circuit. The characteristics of the current and electric power of a magnetron with the non-linear load were analyzed. As a result, it was found that the magnetron power and the magnetron peak current are approximately linear to the pulse width when the reactor, which controls the current of magnetron, was inserted in the inverter output. We constructed a trial power supply to drive magnetron. It was confirmed that the trial power supply could continuously control the magnetron output up to 3.5kW. The PFC gas resolution efficiency with microwave plasma is larger than the silent discharge method. Therefore we can expect the realization of a small, highly efficient gas resolution device using microwave plasma.

  18. The Photovoltaic Performances of PVdF-HFP Electrospun Membranes Employed Quasi-Solid-State Dye Sensitized Solar Cells.

    PubMed

    Gnana kumar, G; Balanay, Mannix P; Nirmala, R; Kim, Dong Hee; Raj kumar, T; Senthilkumar, N; Kim, Ae Rhan; Yoo, Dong Jin

    2016-01-01

    The PVdF-HFP nanofiber membranes with different molecular weight were prepared by electrospinning technique and were investigated as solid state electrolyte membranes in quasi solid state dye sensitized solar cells (QS-DSSC). The homogeneously distributed and fully interconnected nanofibers were obtained for all of the prepared PVdF-HFP electrospun membranes and the average fiber diameters of fabricated membranes were dependent upon the molecular weight of polymer. The thermal stability of electrospun PVdF-HFP membrane was decreased with a decrement of molecular weight, specifying the high heat transfer area of small diameter nanofibers. The QS-DSSC fabricated with the lower molecular weight PVdF-HFP electrospun nanofiber membrane exhibited the power conversion efficiency of 1 = 5.38%, which is superior over the high molecular weight membranes and is comparable with the liquid electrolyte. Furthermore, the electrospun PVdF-HFP membrane exhibited long-term durability over the liquid electrolyte, owing to the higher adsorption and retention efficiencies of liquid electrolyte in its highly porous and interconnected nanofibers. Thus the proposed electrospun PVdF-HFP membrane effectively tackled the volatilization and leakage of liquid electrolyte and provided good photoconversion efficiency associated with an excellent stability, which constructs the prepared electrospun membranes as credible solid state candidates for the application of QS-DSSCs.

  19. Plasma Spray-Physical Vapor Deposition (PS-PVD) of Ceramics for Protective Coatings

    NASA Technical Reports Server (NTRS)

    Harder, Bryan J.; Zhu, Dongming

    2011-01-01

    In order to generate advanced multilayer thermal and environmental protection systems, a new deposition process is needed to bridge the gap between conventional plasma spray, which produces relatively thick coatings on the order of 125-250 microns, and conventional vapor phase processes such as electron beam physical vapor deposition (EB-PVD) which are limited by relatively slow deposition rates, high investment costs, and coating material vapor pressure requirements. The use of Plasma Spray - Physical Vapor Deposition (PS-PVD) processing fills this gap and allows thin (< 10 microns) single layers to be deposited and multilayer coatings of less than 100 microns to be generated with the flexibility to tailor microstructures by changing processing conditions. Coatings of yttria-stabilized zirconia (YSZ) were applied to NiCrAlY bond coated superalloy substrates using the PS-PVD coater at NASA Glenn Research Center. A design-of-experiments was used to examine the effects of process variables (Ar/He plasma gas ratio, the total plasma gas flow, and the torch current) on chamber pressure and torch power. Coating thickness, phase and microstructure were evaluated for each set of deposition conditions. Low chamber pressures and high power were shown to increase coating thickness and create columnar-like structures. Likewise, high chamber pressures and low power had lower growth rates, but resulted in flatter, more homogeneous layers

  20. Study the Hardness Properties of TiAlN Coatings Prepared by Magnetron Co-sputtering Deposited Nanoscale Multi-layered Structure

    NASA Astrophysics Data System (ADS)

    Sahu, Dilip Kumar; Agrawal, Sadhana; Saji, Janita

    2011-11-01

    There is increased industrial usage of modern tools used in cutting operations today that are coated with PVD hard coatings based on TiAlN. Coating properties such as thermal stability, hot hardness, and toughness are of interest when designing their functionality in these applications. Ti1-xAlxN films were synthesized by reactive magnetron co—sputtering with different aluminum compositions. XRD, SIMS, Nano indentation techniques were used to analyze these films. Nanoindentation hardness increases with aluminum and started to decrease beyond 81% of aluminum. Continuous Multi-Cycle indentation technique is used to analyze the failure mode of the film with highest hardness and structural properties and on coating response to high temperature oxidation is presented.

  1. Functional expression and activity of the recombinant antifungal defensin PvD1r from Phaseolus vulgaris L. (common bean) seeds

    PubMed Central

    2014-01-01

    Background Defensins are basic, cysteine-rich antimicrobial peptides that are important components of plant defense against pathogens. Previously, we isolated a defensin, PvD1, from Phaseolus vulgaris L. (common bean) seeds. Results The aim of this study was to overexpress PvD1 in a prokaryotic system, verify the biologic function of recombinant PvD1 (PvD1r) by comparing the antimicrobial activity of PvD1r to that of the natural defensin, PvD1, and use a mutant Candida albicans strain that lacks the gene for sphingolipid biosynthesis to unravel the target site of the PvD1r in C. albicans cells. The cDNA encoding PvD1, which was previously obtained, was cloned into the pET-32 EK/LIC vector, and the resulting construct was used to transform bacterial cells (Rosetta Gami 2 (DE3) pLysS) leading to recombinant protein expression. After expression had been induced, PvD1r was purified, cleaved with enterokinase and repurified by chromatographic steps. N-terminal amino acid sequencing showed that the overall process of the recombinant production of PvD1r, including cleavage with the enterokinase, was successful. Additionally, modeling revealed that PvD1r had a structure that was similar to the defensin isolated from plants. Purified PvD1 and PvD1r possessed inhibitory activity against the growth of the wild-type pathogenic yeast strain C. albicans. Both defensins, however, did not present inhibitory activity against the mutant strain of C. albicans. Antifungal assays with the wild-type C. albicans strains showed morphological changes upon observation by light microscopy following growth assays. PvD1r was coupled to FITC, and the subsequent treatment of wild type C. albicans with DAPI revealed that the labeled peptide was intracellularly localized. In the mutant strain, no intracellular labeling was detected. Conclusion Our results indicate that PvD1r retains full biological activity after recombinant production, enterokinase cleavage and purification. Additionally, our

  2. Influence of the substrate bias voltage on the crystallographic structure and mechanical properties of Ti6Al4V coatings deposited by rf magnetron

    NASA Astrophysics Data System (ADS)

    Alfonso, J. E.; Pacheco, Fernando; Castro P., Alvaro; Torres, J.

    2005-08-01

    Physical and mechanical properties of pure titanium are improved when the material is mixed with aluminum and vanadium at specific concentrations. Specifically, the alloy composed by 90% of titanium, 6% of aluminum and 4% of vanadium (Ti-6Al-4V) is highly resistant to fatigue and corrosion titanium and their alloys can be deposited by two techniques: Chemical Vapor Deposition (CVD) and Physical Vapor Deposition (PVD). However, some problems are generated when carbonated steel substrates are used under the CVD technique, mainly because those substrates lost its carbon as a result of the high substrate temperature used during the deposition process. Alternatively, PVD (magnetron sputtering, ion plating) is a low temperature substrate process and also has the advantage that substrate bias can promote structure refinement through resputtering effects.Substrate bias influence on the crystalline structure of Ti6Al4V thin films prepared by rf magnetron sputtering are presented in this work. Samples were grown onto common glass and AISI 420 steel substrates using a Ti6Al4V (99.9 %) target. Substrate bias was varied from -100 V to -200 V. Samples were characterized by X-ray Diffraction (XRD), Energy Dispersive X-ray Spectroscopy (EDXS), Scanning Electron Microscopy (SEM), and Atomic Force Microscopy (AFM). Thin films stoichiometry were studied by EDX in agreement with the Ti-6Al-4V target. Finally, the studies of the mechanical behavior of the films on steel showed that the hardness increased 1100 Knoop when the bias voltage is raised to -160 V.

  3. Hybrid diffusive/PVD treatments to improve the tribological resistance of Ti-6Al-4V.

    PubMed

    Marin, E; Offoiach, R; Lanzutti, A; Regis, M; Fusi, S; Fedrizzi, L

    2014-01-01

    Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD

  4. Origin of particles during reactive sputtering of oxides using planar and cylindrical magnetrons.

    PubMed

    Rademacher, Daniel; Fritz, Benjamin; Vergöhl, Michael

    2012-03-01

    Particles generated during reactive magnetron sputtering cause defects in optical thin films, which may lead to losses in optical performance, pinholes, loss of adhesion, decreased laser-induced damage thresholds and many more negative effects. Therefore, it is important to reduce the particle contamination during the manufacturing process. In the present paper, the origin of particles during the deposition of various oxide films by midfrequency pulsed reactive magnetron sputtering was investigated. Several steps have been undertaken to decrease the particle contamination during the complete substrate handling procedure. It was found that conditioning of the vacuum chamber can help to decrease the defect level significantly. This level remains low for several hours of sputtering and increases after 100 hours of process time. Particle densities of SiO(2) films deposited with cylindrical and planar dual magnetrons at different process parameters as well as different positions underneath the target were compared. It was observed that the process power influences the particle density significantly in case of planar targets while cylindrical targets have no such strong dependence. In addition, the particle contamination caused by different cylindrical target materials was analyzed. No major differences in particle contamination of different cylindrical target types and materials were found.

  5. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  6. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  7. Metamaterial Cathodes in Multi-Cavity Magnetrons

    DTIC Science & Technology

    2011-06-01

    P.S. Campbell , R.R. Lentz, W.T. Main, S.G. Tantawi, K.G. Kato, H.K. Beutel, K.W. Brown, D.D. Crouch, G.K. Jones, and R.B. McDonald, “Develop- ment...14] G.A. Mesyats, Explosive Electron Emission, URO Press, 1998. [15] R.B. Miller, “The relativistic microwave magnetron,” in An Introduction to

  8. Recirculating planar magnetrons: simulations and experiment

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; French, David; Lau, Y.Y.; Simon, David; Hoff, Brad; Luginsland, John W.

    2011-07-01

    The Recirculating Planar Magnetron (RPM) is a novel crossed-field device whose geometry is expected to reduce thermal load, enhance current yield as well as ease the geometric limitations in scaling to high RF frequencies as compared to the conventional cylindrical magnetrons. The RPM has two different adaptations: A. Axial B field and radial E field; B. Radial B field and axial E field. The preliminary configuration (A) to be used in experiments at the University of Michigan consists of two parallel planar sections which join on either end by cylindrical regions to form a concentric extruded ellipse. Similar to conventional magnetrons, a voltage across the AK gap in conjunction with an axial magnetic field provides the electrons with an ExB drift. The device is named RPM because the drifting electrons recirculate from one planar region to the other. The drifting electrons interact with the resonantly tuned slow wave structure on the anode causing spoke formation. These electron spokes drive a RF electric field in the cavities from which RF power may be extracted to Waveguides. The RPM may be designed in either a conventional configuration with the anode on the outside, for simplified extraction, or as an inverted magnetron with the anode at the inner conductor, for fast start-up. Currently, experiments at the Pulsed Power and Microwave Laboratory at the University of Michigan are in the setup and design phase. A conventional RPM with planar cavities is to be installed on the Michigan Electron Long Beam Accelerator (MELBA) and is anticipated to operate at -200kV, 0.2T with a beam current of 1-10 kA at 1GHz. The conventional RPM consists of 12 identical planar cavities, 6 on each planar side, with simulated quality factor of 20.

  9. Clinical use of Malay Version of Vertigo Symptom Scale (MWSS) in patients with peripheral vestibular disorder (PVD).

    PubMed

    Zainun, Zuraida; Zakaria, Mohd Normani; Sidek, Dinsuhaimi; Ismail, Zalina

    2012-08-01

    The Vertigo symptom scale (VSS) is a well established tool for the evaluation of vestibular disorders and the associated symptoms of autonomic arousal and somatosensation. By using a validated Malay version of vertigo symptom scale (MVVSS) questionnaire, the severity of the vertigo from patients' perspective can be determined and rated. Before MVVSS can be applied clinically among Malaysians, it was of interest to determine its clinical value in identifying vestibular disorders. Forty normal and 65 PVD subjects participated in this cross-sectional study. Normal subjects were recruited amongst Universiti Sains Malaysia (USM) staff and students who had no history of ear and vestibular disorders. Mean total score of MVVSS in normal and PVD subjects were 13.9 +/- 11.1 and 30.1 +/- 20.9, respectively. When the total scores of normal and PVD group were compared, the Mann-Whitney U test showed that there was a significant difference between the two groups (p < 0.05). This is consistent with previous studies. It was also of interest to see if subtypes of PVD [benign paroxymal positional vertigo (BPPV), Meniere's disease, labyrinthitis and unknown] have different MVVSS results. However, analysis of variance (ANOVA) found no significant difference in term of outcomes of MVVSS among the different PVD pathologies. Using receiver operating characteristic curve (ROC) method, the sensitivity and specificity of MVVSS were 71% and 60%, respectively. MVVSS is able to discriminate clinically among the normal and PVD subjects. However, it is not a good indicator for differential diagnosis of PVD subtypes, at least in this study. Its sensitivity and specificity in clinical diagnosis are reasonably high. Perhaps a bigger sample size would be useful to further study the clinical usefulness of MVVSS.

  10. Fuzzy tungsten in a magnetron sputtering device

    NASA Astrophysics Data System (ADS)

    Petty, T. J.; Khan, A.; Heil, T.; Bradley, J. W.

    2016-11-01

    Helium ion induced tungsten nanostructure (tungsten fuzz) has been studied in a magnetron sputtering device. Three parameters were varied, the fluence from 3.4 × 1023-3.0 × 1024 m-2, the He ion energy from 25 to 70 eV, and the surface temperature from 900 to 1200 K. For each sample, SEM images were captured, and measurements of the fuzz layer thickness, surface roughness, reflectivity, and average structure widths are provided. A cross-over point from pre-fuzz to fully formed fuzz is found at 2.4 ± 0.4 × 1024 m-2, and a temperature of 1080 ± 60 K. No significant change was observed in the energy sweep. The fuzz is compared to low fluence fuzz created in the PISCES-A linear plasma device. Magnetron fuzz is less uniform than fuzz created by PISCES-A and with generally larger structure widths. The thicknesses of the magnetron samples follow the original Φ1/2 relation as opposed to the incubation fluence fit.

  11. Particle contamination formation in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Sequeda, F.; Huang, C.

    1997-07-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique which provides real-time, {ital in situ} imaging of particles {gt}0.3 {mu}m on the target, substrate, or in the plasma. Using this technique, we demonstrate that the mechanisms for particle generation, transport, and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes, due to the inherent spatial nonuniformity of magnetically enhanced plasmas. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. There, film redeposition induces filament or nodule growth. Sputter removal of these features is inhibited by the dependence of sputter yield on angle of incidence. These features enhance trapping of plasma particles, which then increases filament growth. Eventually the growths effectively {open_quotes}short-circuit{close_quotes} the sheath, causing high currents to flow through these features. This, in turn, causes mechanical failure of the growth resulting in fracture and ejection of the target contaminants into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests it may be universal to many sputter processes. {copyright} {ital 1997 American Vacuum Society.}

  12. Method and apparatus for improved high power impulse magnetron sputtering

    DOEpatents

    Anders, Andre

    2013-11-05

    A high power impulse magnetron sputtering apparatus and method using a vacuum chamber with a magnetron target and a substrate positioned in the vacuum chamber. A field coil being positioned between the magnetron target and substrate, and a pulsed power supply and/or a coil bias power supply connected to the field coil. The pulsed power supply connected to the field coil, and the pulsed power supply outputting power pulse widths of greater that 100 .mu.s.

  13. Drastic improvement in the S-band relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Hadas, Y.; Krasik, Ya. E.

    2009-08-01

    The superior operation of a S-band relativistic magnetron powered by a Linear Induction Accelerator with ≤400 kV, ≤4 kA, and ˜150 ns output pulses was revealed when the magnetron was coupled with a resonance load and a part of the generated microwave power stored in the resonator was reflected back to the magnetron. It is shown that, under optimal conditions, the efficiency of the magnetron operation increases by ˜40% and the generated microwave power reaches the power of the electron beam.

  14. Satellite Power System (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1981-01-01

    The data base was extended with respect to the magnetron directional amplifier and its operating parameters that are pertinent to its application in the solar power satellite. On the basis of the resulting extended data base the design of a magnetron was outlined that would meet the requirements of the SPS application and a technology program was designed that would result in its development. The proposed magnetron design for the SPS is a close scale of the microwave oven magnetron, and resembles it closely physically and electrically.

  15. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    PubMed Central

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-01-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures. PMID:28276475

  16. Structural characterisation of oxygen diffusion hardened alpha-tantalum PVD-coatings on titanium.

    PubMed

    Hertl, C; Koll, L; Schmitz, T; Werner, E; Gbureck, U

    2014-08-01

    Titanium substrates were coated with tantalum layers of 5 μm thickness using physical vapour deposition (PVD). The tantalum layers showed a (110)-preferred orientation. The coated samples were hardened by oxygen diffusion. Using X-ray diffraction the crystallographic structure of the tantalum coatings was characterised, comparing untreated and diffusion hardened specimen conditions. Oxygen depth profiles were determined by glow discharge spectrometry. The hardening effect of the heat treatment was examined by Vickers microhardness testing. The increase of surface hardness caused by oxygen diffusion was at least 50%.

  17. Growth Mechanism for Low Temperature PVD Graphene Synthesis on Copper Using Amorphous Carbon

    NASA Astrophysics Data System (ADS)

    Narula, Udit; Tan, Cher Ming; Lai, Chao Sung

    2017-03-01

    Growth mechanism for synthesizing PVD based Graphene using Amorphous Carbon, catalyzed by Copper is investigated in this work. Different experiments with respect to Amorphous Carbon film thickness, annealing time and temperature are performed for the investigation. Copper film stress and its effect on hydrogen diffusion through the film grain boundaries are found to be the key factors for the growth mechanism, and supported by our Finite Element Modeling. Low temperature growth of Graphene is achieved and the proposed growth mechanism is found to remain valid at low temperatures.

  18. Conductivity studies of LiCF3SO3 doped PVA: PVdF blend polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Tamilselvi, P.; Hema, M.

    2014-03-01

    Different composition of lithium ion conducting PVA: PVdF: Lithium triflate (LiCF3SO3) polymer electrolytes have been prepared by solution casting technique. Dielectric and conductivity studies have been carried out for the prepared samples. The addition of salt into the polymer matrix increases the ionic conductivity of blend polymer electrolytes. The conductivity analysis reveals 80PVA: 20PVdF: 15LiCF3SO3 polymer electrolyte exhibits the maximum ionic conductivity of 2.7×10-3 S cm-1 at 303 K. The temperature dependence of ionic conductivity for all the composition of PVA: PVdF: LiCF3SO3 polymer films obey Arrhenius relation. Low activation energy has been obtained for highest conducting sample. The dielectric spectra show absolute β-relaxation peak.

  19. Effect of temperature on the transport property of PVdF-HFP-MPII-PC/DME gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Saaid, Farish; Rodi, Izzati; Winie, Tan

    2017-09-01

    Gel polymer electrolytes employing the co-polymer poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) as the polymer host were prepared by soaking the PVdF-HFP films in a liquid electrolyte of 1.0M 1-methyl-3-propyl imidazolium iodide (MPII) ionic liquid dissolved in a mixture of propylene carbonate (PC) and 1,2-dimetoxyethane (DME) (v/v=7:3). Conductivity of PVdF-HFP-MPII-PC/DME electrolyte was investigated as a function of temperature. Conductivity enhancement with temperature is attributed to the increase in the number, n and mobility, μ of free ions. The n and μ of free ions have been determined quantitatively by impedance spectroscopy.

  20. Magnetron-Sputtered Amorphous Metallic Coatings

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Mehra, M.; Khanna, S. K.

    1985-01-01

    Amorphous coatings of refractory metal/metalloid-based alloys deposited by magnetron sputtering provide extraordinary hardness and wear resistance. Sputtering target fabricated by thoroughly mixing powders of tungsten, rhenium, and boron in stated proportions and pressing at 1,200 degrees C and 3,000 lb/in. to second power (21 MPa). Substrate lightly etched by sputtering before deposition, then maintained at bias of - 500 V during initial stages of film growth while target material sputtered onto it. Argon gas at pressure used as carrier gas for sputter deposition. Coatings dense, pinhole-free, extremely smooth, and significantly resistant to chemical corrosion in acidic and neutral aqueous environments.

  1. Relativistic Magnetron Priming Experiments and Theory

    DTIC Science & Technology

    2010-03-29

    THEORY Grant/Contract Number: FA9550-05-1-0087 Personnel Supported Faculty: R.M. Gilgenbach and Y.Y. Lau Graduate Students and Postdocs: Brad ... Hoff , PhD, (Now Employed at AFRL, Kirtland AFB, NM) Wilkin Tang, PhD, (Now Employed at AFRL, Kirtland AFB. NM) Will White, PhD, (Now Employed at...Relativistic Magnetron B.W. Hoff , R.M. Gilgenbach, N.M. Jordan, Y.Y. Lau, E. Cruz, D. French, M.R. Gomez, J.C. Zier., T.A. Spencera), D. Priceb) Plasma

  2. Metallic Conductive Nanowires Elaborated by PVD Metal Deposition on Suspended DNA Bundles.

    PubMed

    Brun, Christophe; Elchinger, Pierre-Henri; Nonglaton, Guillaume; Tidiane-Diagne, Cheikh; Tiron, Raluca; Thuaire, Aurélie; Gasparutto, Didier; Baillin, Xavier

    2017-09-01

    Metallic conductive nanowires (NWs) with DNA bundle core are achieved, thanks to an original process relying on double-stranded DNA alignment and physical vapor deposition (PVD) metallization steps involving a silicon substrate. First, bundles of DNA are suspended with a repeatable process between 2 µm high parallel electrodes with separating gaps ranging from 800 nm to 2 µm. The process consists in the drop deposition of a DNA lambda-phage solution on the electrodes followed by a naturally evaporation step. The deposition process is controlled by the DNA concentration within the buffer solution, the drop volume, and the electrode hydrophobicity. The suspended bundles are finally metallized with various thicknesses of titanium and gold by a PVD e-beam evaporation process. The achieved NWs have a width ranging from a few nanometers up to 100 nm. The electrical behavior of the achieved 60 and 80 nm width metallic NWs is shown to be Ohmic and their intrinsic resistance is estimated according to different geometrical models of the NW section area. For the 80 nm width NWs, a resistance of about few ohms is established, opening exploration fields for applications in microelectronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. [PVD-layering for increased retention of glass fibre reinforced endodontic posts].

    PubMed

    Edelhoff, Daniel; Weber, Michael; Spiekermann, Hubertus; Marx, Rudolf

    2006-01-01

    For esthetical and biomechanical reasons root canal posts made of fibre-reinforced composite (FRC) have gained an important role in clinical application. Additionally, in contrast to metal or ceramic posts, FRC-posts offer the option of removal. Prior to adhesive placement of FRC-posts the root canal dentin of the non vital tooth and the post surface have to be preconditioned. Up to now the post preconditioning has to be proceeded in the chair side technique. This leads to an additional time expense in the clinical treatment schedule. Also a certain risk of errors in application during chair side conditioning procedure is of concern. Modern PVD-technologies can help to make the treatment by the manufacturer well in advance of the clinical use more efficient and reliable, as well as saving clinicians valuable chair-time. For this reason the apical surfaces of the posts were intensively cleaned and activated, PVD-layered and coated by a conserving transparent layer. This coating has the meaning to protect the surface against environmental contamination and allows the try-in of the posts without any risk of damage of the preconditioned surface. To prove the stability of the layer system under simulated clinical conditions pull out tests after 180 days'storage in physiological saline solution have been performed.

  4. Reactive high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Gudmundsson, J. T.; Magnus, F.; Tryggvason, T. K.; Sveinsson, O. B.; Olafsson, S.

    2012-10-01

    Here we discuss reactive high power impulse magnetron sputtering sputtering (HiPIMS) [1] of Ti target in an Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on both the pulse repetition frequency and discharge voltage. The discharge current increases with decreasing frequency or voltage. This we attribute to an increase in the secondary electron emission yield during the self-sputtering phase of the pulse, as nitride [2] or oxide [3] forms on the target. We also discuss the growth of TiN films on SiO2 at temperatures of 22-600 ^oC. The HiPIMS process produces denser films at lower growth temperature and the surface is much smoother and have a significantly lower resistivity than dc magnetron sputtered films on SiO2 at all growth temperatures due to reduced grain boundary scattering [4].[4pt] [1] J. T. Gudmundsson, N. Brenning, D. Lundin and U. Helmersson, J. Vac. Sci. Technol. A, 30 030801 (2012)[0pt] [2] F. Magnus, O. B. Sveinsson, S. Olafsson and J. T. Gudmundsson, J. Appl. Phys., 110 083306 (2011)[0pt] [3] F. Magnus, T. K. Tryggvason, S. Olafsson and J. T. Gudmundsson, J. Vac. Sci. Technol., submitted 2012[0pt] [4] F. Magnus, A. S. Ingason, S. Olafsson and J. T. Gudmundsson, IEEE Elec. Dev. Lett., accepted 2012

  5. Magnetron sputtering for the production of EUV mask blanks

    NASA Astrophysics Data System (ADS)

    Kearney, Patrick; Ngai, Tat; Karumuri, Anil; Yum, Jung; Lee, Hojune; Gilmer, David; Vo, Tuan; Goodwin, Frank

    2015-03-01

    Ion Beam Deposition (IBD) has been the primary technique used to deposit EUV mask blanks since 1995 when it was discovered it could produce multilayers with few defects. Since that time the IBD technique has been extensively studied and improved and is finally approaching usable defectivities. But in the intervening years, the defectivity of magnetron sputtering has been greatly improved. This paper evaluates the suitability of a modern magnetron tool to produce EUV mask blanks and the ability to support HVM production. In particular we show that the reflectivity and uniformity of these tools are superior to current generation IBD tools, and that the magnetron tools can produce EUV films with defect densities comparable to recent best IBD tool performance. Magnetron tools also offer many advantages in manufacturability and tool throughput; however, challenges remain, including transitioning the magnetron tools from the wafer to mask formats. While work continues on quantifying the capability of magnetron sputtering to meet the mask blank demands of the industry, for the most part the remaining challenges do not require any fundamental improvements to existing technology. Based on the recent results and the data presented in this paper there is a clear indication that magnetron deposition should be considered for the future of EUV mask blank production.

  6. The nucleation and growth of electrochemically deposited copper on PVD copper and TiN using alkaline baths

    NASA Astrophysics Data System (ADS)

    Graham, Lyndon Wallace

    2000-10-01

    The nucleation and growth of constant potential electrochemically deposited copper was investigated using ethylenediaminetetraacetic acid (EDTA) and NH3 copper complexed alkaline baths. The mechanisms of copper nucleation and growth were studied under four conditions: (1) on non-patterned PVD TiN, (2) on in-laid (Damascene) PVD TiN trenches, (3) on non-patterned PVD Cu, and (4) on in-laid (Damascene) PVD Cu trenches. The deposition mechanism for both the EDTA and the NH3 baths on both patterned and non-patterned PVD Cu was layer-by-layer. Growth of copper was conformal at lower potentials becoming sub-conformal at higher potentials, indicating mass-transfer restricted growth in the trenches. There were significant differences in the nucleation and growth mechanism for the different chemical systems on TiN. The NH3 based bath exhibited a high surface tension between the deposited copper and the TiN. This resulted in spherical growth morphology classified as the Volmer-Weber nucleation and growth mechanism. Surprisingly, fill was possible, but with sporadic pinhole voids. The adhesion of the deposited copper was poor, indicating that it is not suitable for direct deposition on TiN. However, when it is necessary to only fill trench PVD seed gaps with copper (as opposed to filling the entire trench), the NH3 bath may be suitable for this application. The EDTA based bath exhibited high adhesion at lower potentials and also filled the trenches with sporadic pinhole voids. Nucleation and growth was characterized by the Stranski-Krastanov mechanism in which copper is first deposited with two-dimensional morphology followed by three-dimensional growth in the over potential deposition (OPD) mode. This is a result of the adsorbed species reducing two-dimensionally on the TiN substrate and is probably the reason for the higher adhesion. This makes the EDTA based system more suitable for the purpose of enhancing a PVD Cu seed layer and possibly for direct deposition on a Ti

  7. Phase and Frequency Locked Magnetrons for SRF Sources

    SciTech Connect

    Neubauer, M.; Johnson, R.P.; Popovic, M.; Moretti, A.; /Fermilab

    2009-05-01

    Magnetrons are low-cost highly-efficient microwave sources, but they have several limitations, primarily centered about the phase and frequency stability of their output. When the stability requirements are low, such as for medical accelerators or kitchen ovens, magnetrons are the very efficient power source of choice. But for high energy accelerators, because of the need for frequency and phase stability - proton accelerators need 1-2 degrees source phase stability, and electron accelerators need .1-.2 degrees of phase stability - they have rarely been used. We describe a novel variable frequency cavity technique which will be utilized to phase and frequency lock magnetrons.

  8. Investigation of failure mechanism of thermal barrier coatings (TBCs) deposited by EB-PVD technique

    NASA Astrophysics Data System (ADS)

    Shahid, M. R.; Abbas, Musharaf

    2013-06-01

    Failure mechanism of thermal barrier coatings (TBCs) prepared by electron beam physical vapor deposition (EB-PVD) technique owing to formation of micro cracks was investigated. The TBCs were deposited on the Ni-based super alloy IN-100 and the micro cracks were observed within the top ceramic coat of thermally cycled TBCs at 1050°C. It was observed that these cracks propagate in the ceramic coat in the direction normal to interface while no cracks were observed in the bond coat. SEM/EDS studies revealed that some non-uniform oxides were formed on the interface between ceramic top and metallic bond coat just below the cracks. Study proposed that the cracks were initiated due to stress owing to big difference in Pilling-Bed worth ratio of non-uniform oxides as well as thermal stress, which caused the formation of cracks in top ceramic coat leading to failure of TBCs

  9. Computational modelling of constrained sintering in EB-PVD thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Cocks, A. C. F.

    2013-09-01

    A micromechanical model is developed to simulate the evolution of microstructure during in-service sintering and eventual inter-columnar cracking in coatings made using electron beam vapour deposition (EB-PVD) route. The coating is idealized with a discrete distribution of axisymmetric asperities across interfaces between columnar grains. The model assumes that inter-columnar sintering is driven by changes in interface free energy of columns and the potential energy of the applied stress. Much faster diffusion that occurs over the free surfaces of the asperities is neglected. It is further assumed that the rate of sintering of the contacting asperities is determined by diffusion along the interface between the contacting asperities. Time evolution of contact modulus of the coating is accounted for as a function of sintering strain. The developed macroscopic constitutive model is employed to evaluate the sensitivity of the sintering response to imperfections and examine the conditions under which inter-columnar cracks can develop within the coating.

  10. Crack prediction in EB-PVD thermal barrier coatings based on the simulation of residual stresses

    NASA Astrophysics Data System (ADS)

    Chen, J. W.; Zhao, Y.; Liu, S.; Zhang, Z. Z.; Ma, J.

    2016-07-01

    Thermal barrier coatings systems (TBCs) are widely used in the field of aerospace. The durability and insulating ability of TBCs are highly dependent on the residual stresses of top coatings, thus the investigation of the residual stresses is helpful to understand the failure mechanisms of TBCs. The simulation of residual stresses evolution in electron beam physical vapor deposition (EB-PVD) TBCs is described in this work. The interface morphology of TBCs subjected to cyclic heating and cooling is observed using scanning electron microscope (SEM). An interface model of TBCs is established based on thermal elastic-plastic finite method. Residual stress distributions in TBCs are obtained to reflect the influence of interfacial roughness. Both experimental and simulation results show that it is feasible to predict the crack location by stress analysis, which is crucial to failure prediction.

  11. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    NASA Astrophysics Data System (ADS)

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-01

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  12. Injection moulding of optical functional micro structures using laser structured, PVD-coated mould inserts

    SciTech Connect

    Hopmann, Ch.; Weber, M.; Schöngart, M.; Schäfer, C.; Bobzin, K.; Bagcivan, N.; Brögelmann, T.; Theiß, S.; Münstermann, T.; Steger, M.

    2015-05-22

    Micro structured optical plastics components are intensively used i. e. in consumer electronics, for optical sensors in metrology, innovative LED-lighting or laser technology. Injection moulding has proven to be successful for the large-scale production of those parts. However, the production of those parts still causes difficulties due to challenges in the moulding and demoulding of plastics parts created with laser structured mould inserts. A complete moulding of the structures often leads to increased demoulding forces, which then cause a breaking of the structures and a clogging of the mould. An innovative approach is to combine PVD-coated (physical vapour deposition), laser structured inserts and a variothermal moulding process to create functional mic8iüro structures in a one-step process. Therefore, a PVD-coating is applied after the laser structuring process in order to improve the wear resistance and the anti-adhesive properties against the plastics melt. In a series of moulding trials with polycarbonate (PC) and polymethylmethacrylate (PMMA) using different coated moulds, the mould temperature during injection was varied in the range of the glass transition and the melt temperature of the polymers. Subsequently, the surface topography of the moulded parts is evaluated by digital 3D laser-scanning microscopy. The influence of the moulding parameters and the coating of the mould insert on the moulding accuracy and the demoulding behaviour are being analysed. It is shown that micro structures created by ultra-short pulse laser ablation can be successfully replicated in a variothermal moulding process. Due to the mould coating, significant improvements could be achieved in producing micro structured optical plastics components.

  13. Influence of EB-PVD TBC Microstructure on Thermal Barrier Coating System Performance Under Cyclic Conditions

    SciTech Connect

    Leyens, C; Pint, B A; Schulz, U; Wright, I G

    1999-04-12

    The lifetimes of electron beam physical vapor deposited (EB-PVD) thermal barrier coating systems (TBCs) with three different microstructures of the Y2O3-stabilized ZrO, YSZ) ceramic top layer were investigated in lh thermal cycles at 1100 and 1150°C in flowing oxygen. Single crystal alloys CMSX-4 and Rene N5 that had been coated with an EB-PVD NiCoCrAlY bond coat were chosen as substrate materials. At 1150°C all samples failed after 80-100, lh cycles, predominantly at the bond coat/alumina interface after cooling down from test temperature. The alumina scale remained adherent to the YSZ after spallation. Despite the different YSZ microstructures no clear tendency regarding differences in spallation behavior were observed at 1150°C. At 1100°C the minimum lifetime was 750 , lh cycles for CMSX-4, whereas the first Rene N5 specimen failed after 1750, lh cycles. The longest TBC lifetime on CMSX-4 substrates was 1250, lh cycles, whereas the respective Rene N5 specimens have not yet failed after 2300, lh cycles. The failure mode at 1100°C was identical to that at 1150°C, i.e. the TBC spalled off the surface exposing bare metal after cooling. Even though not all specimens have failed to date, the available results at 1100°C suggested that both, the substrate alloy chemistry and the YSZ microstructure significantly affect the spallation resistance of the TBC.

  14. Prediction of the properties of PVD/CVD coatings with the use of FEM analysis

    NASA Astrophysics Data System (ADS)

    Śliwa, Agata; Mikuła, Jarosław; Gołombek, Klaudiusz; Tański, Tomasz; Kwaśny, Waldemar; Bonek, Mirosław; Brytan, Zbigniew

    2016-12-01

    The aim of this paper is to present the results of the prediction of the properties of PVD/CVD coatings with the use of finite element method (FEM) analysis. The possibility of employing the FEM in the evaluation of stress distribution in multilayer Ti/Ti(C,N)/CrN, Ti/Ti(C,N)/(Ti,Al)N, Ti/(Ti,Si)N/(Ti,Si)N, and Ti/DLC/DLC coatings by taking into account their deposition conditions on magnesium alloys has been discussed in the paper. The difference in internal stresses in the zone between the coating and the substrate is caused by, first of all, the difference between the mechanical and thermal properties of the substrate and the coating, and also by the structural changes that occur in these materials during the fabrication process, especially during the cooling process following PVD and CVD treatment. The experimental values of stresses were determined based on X-ray diffraction patterns that correspond to the modelled values, which in turn can be used to confirm the correctness of the accepted mathematical model for testing the problem. An FEM model was established for the purpose of building a computer simulation of the internal stresses in the coatings. The accuracy of the FEM model was verified by comparing the results of the computer simulation of the stresses with experimental results. A computer simulation of the stresses was carried out in the ANSYS environment using the FEM method. Structure observations, chemical composition measurements, and mechanical property characterisations of the investigated materials has been carried out to give a background for the discussion of the results that were recorded during the modelling process.

  15. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    NASA Astrophysics Data System (ADS)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-04-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials ( E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance ( R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance ( R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  16. Corrosion Resistance Behavior of Single-Layer Cathodic Arc PVD Nitride-Base Coatings in 1M HCl and 3.5 pct NaCl Solutions

    NASA Astrophysics Data System (ADS)

    Adesina, Akeem Yusuf; Gasem, Zuhair M.; Madhan Kumar, Arumugam

    2017-01-01

    The electrochemical behavior of single-layer TiN, CrN, CrAlN, and TiAlN coatings on 304 stainless steel substrate, deposited using state-of-the-art and industrial size cathodic arc PVD machine, were evaluated in 1M HCl and 3.5 pct NaCl solutions. The corrosion behavior of the blank and coated substrates was analyzed by electrochemical impedance spectroscopy (EIS), linear polarization resistance, and potentiodynamic polarization. Bond-coat layers of pure-Ti, pure-Cr, alloyed-CrAl, and alloyed-TiAl for TiN, CrN, CrAlN, and TiAlN coatings were, respectively, first deposited for improved coating adhesion before the actual coating. The average coating thickness was about 1.80 µm. Results showed that the corrosion potentials (E corr) of the coated substrates were shifted to more noble values which indicated improvement of the coated substrate resistance to corrosion susceptibility. The corrosion current densities were lower for all coated substrates as compared to the blank substrate. Similarly, EIS parameters showed that these coatings possessed improved resistance to defects and pores in similar solution compared to the same nitride coatings developed by magnetron sputtering. The charge transfer resistance (R ct) can be ranked in the following order: TiAlN > CrN > TiN > CrAlN in both media except in NaCl solution where R ct of TiN is lowest. While the pore resistance (R po) followed the order: CrAlN > CrN > TiAlN > TiN in HCl solution and TiAlN > CrN > CrAlN > TiN in NaCl solution. It is found that TiAlN coating has the highest protective efficiencies of 79 and 99 pct in 1M HCl and 3.5 pct NaCl, respectively. SEM analysis of the corroded substrates in both media was also presented.

  17. Direct observation of spoke evolution in magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Yang, Yuchen

    2017-08-01

    Ionization zones, also known as spokes, are plasma instabilities manifested as locations of intensified excitation and ionization over a sputtering magnetron's racetrack. Using a linear magnetron and a streak camera, we were able to observe and quantify spoke dynamics. The technique allows us to image the onset and changes for both direct current magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). Spokes in dcMS exhibit substructures. Spokes in HiPIMS are not stable as they shift along the racetrack; rather, they tend to grow or diminish, and they may split and merge. Their evolution can be interpreted in the context of localized electric fields and associated electron heating.

  18. Performance and test results of a regulated magnetron pulser

    SciTech Connect

    Rose, C.R.; Warren, D.S.

    1998-12-31

    This paper describes the test results and performance of a 5.0-kV, 750-mA, regulated current pulser used to drive an Hitachi model 2M130 2,425-MHz magnetron. The magnetron is used to modulate the plasma in a particle accelerator injector. In this application, precise and stable rf power is crucial to extract a stable and accurate particle beam. A 10-kV high-voltage triode vacuum tube with active feedback is used to control the magnetron current and output rf power. The pulse width may be varied from as little as ten microseconds to continuous duty by varying the width of a supplied gate pulse. The output current level can be programmed between 10 and 750 mA. Current regulation and accuracy are better than 1%. The paper discusses the overall performance of the pulser and magnetron including anode current and rf power waveforms, linearity compliance, and vacuum tube performance.

  19. Ordering of Fine Particles in a Planar Magnetron Plasma

    SciTech Connect

    Hayashi, Y.; Takahashi, K.; Totsuji, H.; Ishihara, O.; Sato, N.; Watanabe, Y.; Adachi, S.

    2008-09-07

    Fine particles injected in a planar magnetron were pushed upward by diffusible plasma, leading to being suspended by the force balance with the gravity and forming three-dimensional structures on the two-dimensional structure formed by particle strings.

  20. On the evolution of film roughness during magnetron sputtering deposition

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; De Hosson, J. Th. M.

    2010-11-15

    The effect of long-range screening on the surface morphology of thin films grown with pulsed-dc (p-dc) magnetron sputtering is studied. The surface evolution is described by a stochastic diffusion equation that includes the nonlocal shadowing effects in three spatial dimensions. The diffusional relaxation and the angular distribution of the incident particle flux strongly influence the transition to the shadowing growth regime. In the magnetron sputtering deposition the shadowing effect is essential because of the configuration of the magnetron system (finite size of sputtered targets, rotating sample holder, etc.). A realistic angular distribution of depositing particles is constructed by taking into account the cylindrical magnetron geometry. Simulation results are compared with the experimental data of surface roughness evolution during 100 and 350 kHz p-dc deposition, respectively.

  1. Satellite power system (SPS) magnetron tube assessment study

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Taks performed to extend the data base and to define a technology development program for the magnetron directional amplifier for the SPS are reviewed. These include: (1) demonstrating the tracking of phase and amplitude of the microwave output to phase and amplitude references; (2) expanding the range of power over which the directional amplifier will operate; (3)recognizing the importance of amplitude control in overall system design and in simplifying power conditioning; (4) developing a preliminary design for the overall architecture of the power module; (5) demonstrating magnetron starting using the amplitude control system; (6) mathematically modelling and performing a computerized study of the pyrolytic graphite radiating fin; (7) defining the mass of the magnetic circuit for the SPS tube; (8) noise measurement; (9) achieving harmonic suppression by notch reflection filters; (10) estimating the mass of the transmitting antenna; (11) developing a magnetron package with power generation, phase control, and power condition functions; and (12) projecting magnetron package characteristics.

  2. Self-lubricating Ti-C-N nanocomposite coatings prepared by double magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Martínez-Martínez, D.; López-Cartes, C.; Justo, A.; Fernández, A.; Sánchez-López, J. C.

    2009-03-01

    This paper is devoted to the development of Ti(C,N)-based nanocomposite protective coatings consisting of nanocrystals of a hard phase (TiN or TiC xN y) embedded in an amorphous carbon-based matrix (a-C or a-CN x). The objective here is the achievement of a good compromise between the mechanical and tribological properties by the appropriate control of the hard/soft phase ratio and the microstructural characteristics of the film. To achieve this purpose, dual magnetron sputtering technique was employed following two different strategies. In the first one, we use Ti and graphite targets and Ar/N 2 gas mixtures, while in the second case, TiN and graphite targets are sputtered in an Ar atmosphere. By changing the sputtering power applied to each magnetron, different sets of samples are prepared for each route. The effect of the bias voltage applied to the substrate is also studied in some selected cases. The mechanical and tribological properties of the films are characterized and correlated with the microstructure, crystallinity and phase composition. The establishment of correlations enables the development of advanced coatings with tailored mechanical and tribological properties for desired applications.

  3. 3D Magnetron simulation with CST STUDIO SUITE

    SciTech Connect

    Balk, Monika C.

    2011-07-01

    The modeling of magnetrons compared to other tubes is more difficult since it requires 3D modeling rather than a 2D investigation. This is not only due to the geometry which can include complicated details to be modeled in 3D but also due to the interaction process itself. The electric field, magnetic field and particle movement span a 3D space. In this paper 3D simulations of a strapped magnetron with CSTSTUDIO SUITE{sup TM} are presented. (author)

  4. Numerical simulation of the magnetron operation with resonance load

    NASA Astrophysics Data System (ADS)

    Sayapin, A.; Krasik, Y. E.

    2010-04-01

    The results of numerical simulations and a comparison with experimental data obtained in recent experiments with the relativistic S-band magnetron by Sayapin et al. [Appl. Phys. Lett. 95, 074101 (2009)], having a resonance load and without special measures being taken to suppress the microwaves reflected from the load, are presented. The numerical simulations were based on the model which considers a magnetron as a traveling wave resonator coupled with external resonator. In these simulations, experimentally determined parameters of the magnetron and resonator and their coupling coefficient were used. It was found that, under certain conditions, the electromagnetic wave reflected from the resonator leads to an increase in the efficiency of the magnetron operation. Taking into account microwave energy compression in the resonator, one obtains a microwave power comparable with the power of the electron beam in the magnetron. Also, it was shown that the magnetron traveling wave acquires a phase shift due to its interaction with the amplified wave of the resonator. This phase shift can be comparable with the phase of the electron spoke with respect to the maximum of the decelerating phase of the microwave electric field. The latter could be a reason for the quenching of the microwave generation and the fast decay of the microwave power in the resonator found in experiments.

  5. Tribological Properties of PVD Carbon-Copper Composite Films Reinforced by Titanium

    NASA Astrophysics Data System (ADS)

    Lungevics, J.; Leitans, A.; Rudzitis, J.; Bulahs, N.; Nazarovs, P.; Kovalenko, V.

    2016-02-01

    Carbon-copper composite coatings reinforced with titanium were deposited using high power magnetron sputtering technique. Tribological and metrological tests were performed using Taylor Hobson Talysurf Intra 50 measuring equipment and CSM Instruments ball-on-disk type tribometer. Friction coefficient and wear rate were determined at 2N, 4N, 6N loads. It was revealed that friction coefficient decreased at a higher Ti concentration, which was particularly expressed at bigger applied loads. However, wear volume values tended to increase in the beginning, till Ti concentration reached about 11 %, but then decreased, thus providing better nanocoating wear resistance.

  6. 3-D Printed High Power Microwave Magnetrons

    NASA Astrophysics Data System (ADS)

    Jordan, Nicholas; Greening, Geoffrey; Exelby, Steven; Gilgenbach, Ronald; Lau, Y. Y.; Hoff, Brad

    2015-11-01

    The size, weight, and power requirements of HPM systems are critical constraints on their viability, and can potentially be improved through the use of additive manufacturing techniques, which are rapidly increasing in capability and affordability. Recent experiments on the UM Recirculating Planar Magnetron (RPM), have explored the use of 3-D printed components in a HPM system. The system was driven by MELBA-C, a Marx-Abramyan system which delivers a -300 kV voltage pulse for 0.3-1.0 us, with a 0.15-0.3 T axial magnetic field applied by a pair of electromagnets. Anode blocks were printed from Water Shed XC 11122 photopolymer using a stereolithography process, and prepared with either a spray-coated or electroplated finish. Both manufacturing processes were compared against baseline data for a machined aluminum anode, noting any differences in power output, oscillation frequency, and mode stability. Evolution and durability of the 3-D printed structures were noted both visually and by tracking vacuum inventories via a residual gas analyzer. Research supported by AFOSR (grant #FA9550-15-1-0097) and AFRL.

  7. Model for designing planar magnetron cathodes

    SciTech Connect

    Garcia, M.

    1997-05-30

    Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density to enhance ion bombardment and sputtering. Typical parameters are: helium at 1 to 300 milli-torr, 200 to 2000 gauss at the cathode, 200 to 800 volts, and plasma density decreasing by up to ten times within 2 to 10 cm from the cathode. A 2D, quasineutral, fluid model yields formulas for the plasma density: n(x,y), current densities: j(x,y), j{sub e}(x,y), j{sub +}(x,y), the electric field: E{sub y}(y), and the voltage between the cathode surface and a distant plasma. An ion sheath develops between the cathode and the quasineutral flow. The thickness of this sheath depends on processes in the quasineutral flow. Experiments shows that T{sub e} (3 {yields} 8 eV) adjusts to ensure that {alpha}{sub 0}{tau} {approx} 2.5 in helium, for ionization rate {alpha}{sub 0} (10{sup 4} {yields} 10{sup 5} s{sup -1}), and electron transit time to the unmagnetized plasma {tau} (10 {yields} 100 {micro}s). Helium glow discharge cathode fall {alpha}{sub 0}{tau} is about 2.5, though this occurs at much higher voltage.

  8. Multi-cathode unbalanced magnetron sputtering systems

    NASA Technical Reports Server (NTRS)

    Sproul, William D.

    1991-01-01

    Ion bombardment of a growing film during deposition is necessary in many instances to ensure a fully dense coating, particularly for hard coatings. Until the recent advent of unbalanced magnetron (UBM) cathodes, reactive sputtering had not been able to achieve the same degree of ion bombardment as other physical vapor deposition processes. The amount of ion bombardment of the substrate depends on the plasma density at the substrate, and in a UBM system the amount of bombardment will depend on the degree of unbalance of the cathode. In multi-cathode systems, the magnetic fields between the cathodes must be linked to confine the fast electrons that collide with the gas atoms. Any break in this linkage results in electrons being lost and a low plasma density. Modeling of the magnetic fields in a UBM cathode using a finite element analysis program has provided great insight into the interaction between the magnetic fields in multi-cathode systems. Large multi-cathode systems will require very strong magnets or many cathodes in order to maintain the magnetic field strength needed to achieve a high plasma density. Electromagnets offer the possibility of independent control of the plasma density. Such a system would be a large-scale version of an ion beam enhanced deposition (IBED) system, but, for the UBM system where the plasma would completely surround the substrate, the acronym IBED might now stand for Ion Blanket Enhanced Deposition.

  9. Thick beryllium coatings by magnetron sputtering

    SciTech Connect

    Wu, H; Nikroo, A; Youngblood, K; Moreno, K; Wu, D; Fuller, T; Alford, C; Hayes, J; Detor, A; Wong, M; Hamza, A; van Buuren, T; Chason, E

    2011-04-14

    Thick (>150 {micro}m) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility (NIF). As an added complication, the coatings are deposited on mm-scale spherical substrates, as opposed to flats. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. We used ultra small angle x-ray spectroscopy (USAXS) to characterize the void fraction and distribution along the spherical surface. We investigated the void structure using a combination focused ion beam (FIB) and scanning electron microscope (SEM), along with transmission electron microscopy (TEM). Our results show a few volume percent of voids and a typical void diameter of less than two hundred nanometers. Understanding how the stresses in the deposited material develop with thickness is important so that we can minimize film cracking and delamination. To that end, an in-situ multiple optical beam stress sensor (MOSS) was used to measure the stress behavior of thick Beryllium coatings on flat substrates as the material was being deposited. We will show how the film stress saturates with thickness and changes with pressure.

  10. Evaluation of Antibacterial Activity of Titanium Surface Modified by PVD/PACVD Process.

    PubMed

    Ji, Min-Kyung; Lee, Min-Joo; Park, Sang-Won; Lee, Kwangmin; Yun, Kwi-Dug; Kim, Hyun-Seung; Oh, Gye-Jeong; Kim, Ji-Hyun; Lim, Hyun-Pil

    2016-02-01

    The aim of this study was to evaluate the response of Streptococcus mutans (S. mutans) via crystal violet staining assay on titanium surface modified by physical vapor deposition/plasma assisted chemical vapor deposition process. Specimens were divided into the following three groups: polished titanium (control group), titanium modified by DC magnetron sputtering (group TiN-Ti), and titanium modified by plasma nitriding (group N-Ti). Surface characteristics of specimens were observed by using nanosurface 3D optical profiler and field emission scanning electron microscope. Group TiN-Ti showed TiN layer of 1.2 microm in thickness. Group N-Ti was identified as plasma nitriding with X-ray photoelectron spectroscopy. Roughness average (Ra) of all specimens had values < or = 0.2 microm (the threshold Ra), which had no effect on bacterial adhesion. No significant difference of S. mutans adhesion was found between the surfaces of control, TiN-Ti, and N-Ti (P > 0.05). Within the process condition of this study, modified titanium surfaces by DC magnetron sputtering and plasma nitriding did not influence the adhesion of S. mutans.

  11. Development of CVD-W coatings on CuCrZr and graphite substrates with a PVD intermediate layer

    NASA Astrophysics Data System (ADS)

    Song, Jiupeng; Lian, Youyun; Lv, Yanwei; Liu, Junyong; Yu, Yang; Liu, Xiang; Yan, Binyou; Chen, Zhigang; Zhuang, Zhigang; Zhao, Ximeng; Qi, Yang

    2014-12-01

    In order to apply tungsten (W) coatings by chemical vapor deposition (CVD) for repairing or updating the plasma facing components (PFCs) of the first wall and divertor in existing or future tokomaks, where CuCrZr or graphite is the substrate material, an intermediate layer by physical vapor deposition (PVD) has been used to accommodate the interface stress due to the mismatch of thermal expansion or act as a diffusion barrier between the CVD-W coating and the substrate. The prepared CuCrZr/PVD-Cu/CVD-W sample with active cooling has passed thermal fatigue tests by electron beam with an absorbed power of 2.2 MW/m2, 50 s on/50 s off, for 100 cycles. Another graphite/PVD-Si/CVD-W sample without active cooling underwent thermal fatigue testing with an absorbed power density of 4.62 MW/m2, 5 s on/25 s off, for 200 cycles, and no catastrophic failure was found.

  12. The effect of thermal aging on the thermal conductivity of plasma sprayed and EB-PVD thermal barrier coatings

    SciTech Connect

    Dinwiddie, R.B.; Beecher, S.C.; Porter, W.D.; Nagaraj, B.A.

    1996-05-01

    Thermal barrier coatings (TBCs) applied to the hot gas components of turbine engines lead to enhanced fuel efficiency and component reliability. Understanding the mechanisms which control the thermal transport behavior of the TBCs is of primary importance. Electron beam-physical vapor deposition (EV-PVD) and air plasma spraying (APS) are the two most commonly used coating techniques. These techniques produce coatings with unique microstructures which control their performance and stability. The density of the APS coatings was controlled by varying the spray parameters. The low density APS yttria-partially stabilized zirconia (yttria-PSZ) coatings yielded a thermal conductivity that is lower than both the high density APS coatings and the EB-PVD coatings. The thermal aging of both fully and partially stabilized zirconia are compared. The thermal conductivity of the coatings permanently increases upon exposure to high temperatures. These increases are attributed to microstructural changes within the coatings. This increase in thermal conductivity can be modeled using a relationship which depends on both the temperature and time of exposure. Although the EB-PVD coatings are less susceptible to thermal aging effects, results suggest that they typically have a higher thermal conductivity than APS coatings before thermal aging. The increases in thermal conductivity due to thermal aging for plasma sprayed partially stabilized zirconia have been found to be less than for plasma sprayed fully stabilized zirconia coatings.

  13. Microstructural analyses and wear behavior of the cemented carbide tools after laser surface treatment and PVD coating

    NASA Astrophysics Data System (ADS)

    Neves, Davi; Diniz, Anselmo Eduardo; Lima, Milton Sérgio Fernandes

    2013-10-01

    Adhesion is one of the most important characteristics of coating on cutting tools. Poor coating adhesion on the tool favors fragmentation and release of hard abrasive particles between the tool and the workpiece. These particles interact with the surfaces of the tool, accelerating its wear and decreasing tool life. One possible solution is the use of laser texturing prior to coating in order to achieve a desired surface topography with enhanced adhesion properties. In the texturing, a high-frequency short-pulse laser changes surface characteristics, generating resolidified material and selective vaporization. This work evaluated the effectiveness of laser texturing in improving the substrate-coating adhesion of PVD coated cemented carbide tools. To this end, the substrates were textured with a Nd:YAG laser, in four different intensities, and then coated with a PVD TiAlN film. To ascertain the effectiveness of laser texturing, Rockwell C indentation and turning experiments were performed on both textured tools and conventional unlasered tools. The PVD coated laser-textured tool showed better performance in the indentation and turning tests than the standard tools. A comparative evaluation of tool wear mechanisms indicated that texturing did not change the wear mechanisms, but altered their importance to tool wear. The anchoring provided by the higher roughness of the textured surface increased the adhesion of the coating on the substrate, thus increasing tool life. Additionally, the chemical modification of the carbide grains due to the laser heating might be responsible for an enhanced adhesion between coating and substrate.

  14. Tracking the Magnetron Motion in FT-ICR Mass Spectrometry.

    PubMed

    Jertz, Roland; Friedrich, Jochen; Kriete, Claudia; Nikolaev, Evgeny N; Baykut, Gökhan

    2015-08-01

    In Fourier transform ion cyclotron resonance spectrometry (FT-ICR MS) the ion magnetron motion is not usually directly measured, yet its contribution to the performance of the FT-ICR cell is important. Its presence is manifested primarily by the appearance of even-numbered harmonics in the spectra. In this work, the relationship between the ion magnetron motion in the ICR cell and the intensities of the second harmonic signal and its sideband peak in the FT-ICR spectrum is studied. Ion motion simulations show that during a cyclotron motion excitation of ions which are offset to the cell axis, a position-dependent radial drift of the cyclotron center takes place. This radial drift can be directed outwards if the ion is initially offset towards one of the detection electrodes, or it can be directed inwards if the ion is initially offset towards one of the excitation electrodes. Consequently, a magnetron orbit diameter can increase or decrease during a resonant cyclotron excitation. A method has been developed to study this behavior of the magnetron motion by acquiring a series of FT-ICR spectra using varied post-capture delay (PCD) time intervals. PCD is the delay time after the capture of the ions in the cell before the cyclotron excitation of the ion is started. Plotting the relative intensity of the second harmonic sideband peak versus the PCD in each mass spectrum leads to an oscillating "PCD curve". The position and height of minima and maxima of this curve can be used to interpret the size and the position of the magnetron orbit. Ion motion simulations show that an off-axis magnetron orbit generates even-numbered harmonic peaks with sidebands at a distance of one magnetron frequency and multiples of it. This magnetron offset is due to a radial offset of the electric field axis versus the geometric cell axis. In this work, we also show how this offset of the radial electric field center can be corrected by applying appropriate DC correction voltages to the

  15. Evaluation of Osseous Integration of PVD-Silver-Coated Hip Prostheses in a Canine Model

    PubMed Central

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses. PMID:25695057

  16. Effect of Hf Additions to Pt Aluminide Bond Coats on EB-PVD TBC Life

    NASA Technical Reports Server (NTRS)

    Nesbitt, James; Nagaraj, Ben; Williams, Jeffrey

    2000-01-01

    Small Hf additions were incorporated into a Pt aluminide coating during chemical vapor deposition (CVD) on single crystal RENE N5 substrates. Standard yttria-stabilized zirconia top coats were subsequently deposited onto the coated substrates by electron beam-physical vapor deposition (EB-PVD). The coated substrates underwent accelerated thermal cycle testing in a furnace at a temperature in excess of 1121 C (2050 F) (45 minute hot exposure, 15 minute cool to approximately 121 C (250 F)) until the thermal barrier coating (TBC) failed by spallation. Incorporating Hf in the bond coat increased the TBC life by slightly more than three times that of a baseline coating without added Hf. Scanning electron microscopy of the spalled surfaces indicated that the presence of the Hf increased the adherence of the thermally grown alumina to the Pt aluminide bond coat. The presence of oxide pegs growing into the coating from the thermally grown alumina may also partially account for the improved TBC life by creating a near-surface layer with a graded coefficient of thermal expansion.

  17. The fretting corrosion resistance of PVD surface-modified orthopedic implant alloys.

    PubMed

    Hendry, J A; Pilliar, R M

    2001-01-01

    The objective of this study was to evaluate the fretting corrosion resistance of both modified and unmodified Ti6Al4V flats fretted against CoCr-alloy spheres in a buffered Hank's solution at 37 degrees C using an original fretting apparatus. A physical vapor deposition (PVD) cathodic arc evaporation technique was used to deposit 3-4 microm thick titanium nitride (TiN), zirconium nitride (ZrN), or amorphous carbon (AC) coatings onto the Ti6Al4V substrates. The fretting behavior of the nitride films (TiN and ZrN) was characterized by the absence of surface damage and the deposition of a Cr-rich oxide transferred from the CoCr-alloy spheres to the modified surfaces. This oxide led to a slight increase in surface roughness. Three of the six multilayered AC coatings tested exhibited extensive fretting damage and generated large, deep, wear scars. Cohesive failure of the AC coating was observed in the low contact stress areas of the fretting scars. The remaining AC-coated specimens experienced only slight polishing wear. The reason for the different behavior within the AC-coated specimens is not clear at the present time. The unmodified Ti6Al4V surfaces experienced severe surface damage consistent with the adhesive galling mechanism to which these alloys are susceptible.

  18. Evaluation of osseous integration of PVD-silver-coated hip prostheses in a canine model.

    PubMed

    Hauschild, Gregor; Hardes, Jendrik; Gosheger, Georg; Stoeppeler, Sandra; Ahrens, Helmut; Blaske, Franziska; Wehe, Christoph; Karst, Uwe; Höll, Steffen

    2015-01-01

    Infection associated with biomaterials used for orthopedic prostheses remains a serious complication in orthopedics, especially tumor surgery. Silver-coating of orthopedic (mega)prostheses proved its efficiency in reducing infections but has been limited to surface areas exposed to soft tissues due to concerns of silver inhibiting osseous integration of cementless stems. To close this gap in the bactericidal capacity of silver-coated orthopedic prostheses extension of the silver-coating on surface areas intended for osseous integration seems to be inevitable. Our study reports about a PVD- (physical-vapor-deposition-) silver-coated cementless stem in a canine model for the first time and showed osseous integration of a silver-coated titanium surface in vivo. Radiological, histological, and biomechanical analysis revealed a stable osseous integration of four of nine stems implanted. Silver trace elemental concentrations in serum did not exceed 1.82 parts per billion (ppb) and can be considered as nontoxic. Changes in liver and kidney functions associated with the silver-coating could be excluded by blood chemistry analysis. This was in accordance with very limited metal displacement from coated surfaces observed by laser ablation inductively coupled plasma-mass spectrometry (LA-ICP-MS) 12 months after implantation. In conclusion our results represent a step towards complete bactericidal silver-coating of orthopedic prostheses.

  19. Thermal Cycling Behavior of Quasi-Columnar YSZ Coatings Deposited by PS-PVD

    NASA Astrophysics Data System (ADS)

    Yang, Jiasheng; Zhao, Huayu; Zhong, Xinghua; Shao, Fang; Liu, Chenguang; Zhuang, Yin; Ni, Jinxing; Tao, Shunyan

    2017-01-01

    Columnar-structured thermal barrier coatings, owing to their high strain tolerance, are expected for their potential possibilities to substantially extend turbine lives and improve engine efficiencies. In this paper, plasma spray-physical vapor deposition (PS-PVD) process was used to deposit yttria partially stabilized zirconia (YSZ) coatings with quasi-columnar structures. Thermal cyclic tests on burner rigs and thermal shock tests by heating and water-quenching method were involved to evaluate the thermal cycling and thermal shock behaviors of such kind of structured thermal barrier coatings (TBCs). Evolution of the microstructures, phase composition, residual stresses and failure behaviors of quasi-columnar YSZ coatings before and after the thermal tests was investigated. The quasi-columnar coating obtained had an average life of around 623 cycles when the spallation area reached about 10% of the total coating surface during burner rig tests with the coating surface temperature of 1250 °C. Failure of the coating is mainly due to the break and pull-out of center columnar segments.

  20. Enhanced Corrosion Resistance of PVD-CrN Coatings by ALD Sealing Layers.

    PubMed

    Wan; Zhang, Teng Fei; Ding, Ji Cheng; Kim, Chang-Min; Park, So-Won; Yang, Yang; Kim, Kwang-Ho; Kwon, Se-Hun

    2017-12-01

    Multilayered hard coatings with a CrN matrix and an Al2O3, TiO2, or nanolaminate-Al2O3/TiO2 sealing layer were designed by a hybrid deposition process combined with physical vapor deposition (PVD) and atomic layer deposition (ALD). The strategy was to utilize ALD thin films as pinhole-free barriers to seal the intrinsic defects to protect the CrN matrix. The influences of the different sealing layers added in the coatings on the microstructure, surface roughness, and corrosion behaviors were investigated. The results indicated that the sealing layer added by ALD significantly decreased the average grain size and improved the corrosion resistance of the CrN coatings. The insertion of the nanolaminate-Al2O3/TiO2 sealing layers resulted in a further increase in corrosion resistance, which was attributed to the synergistic effect of Al2O3 and TiO2, both acting as excellent passivation barriers to the diffusion of corrosive substances.

  1. Model for efficiency of soil flushing using PVD-enhanced system

    SciTech Connect

    Gabr, M.A.; Wang, J.; Bowders, J.J.

    1996-11-01

    A predictive model for drain-enhanced soil flushing is developed and presented. Results from a parametric study indicate that, as the depth of the contaminated zone (H) increases, the time needed to attain 50% clean up level (t{sub 50}) increases. Results also indicated the sensitivity of the predicted contaminant concentrations to variations in the partition coefficient (K{sub d}) and radial and vertical dispersivity ({alpha}{sub r} and {alpha}{sub z}). For the case of {alpha}{sub z} = 1 m, t{sub 50} is evaluated equal to 42 h, while a t{sub 50} of 55 h is predicted for {alpha}{sub z} = 0.1 m. The estimated t{sub 50} increases from 37 h for {alpha}{sub r} = 10 m to 61 h for {alpha}{sub r} = 0.1 m. Analyses and results presented in this paper indicate the feasibility of using the proposed model to predict soil flushing rate using PVD-enhanced system.

  2. Evolution of film temperature during magnetron sputtering

    SciTech Connect

    Shaginyan, L.R.; Han, J.G.; Shaginyan, V.R.; Musil, J.

    2006-07-15

    We report on the results of measurements of the temperature T{sup F}{sub surf} which developed on the surface of films deposited by magnetron sputtering of chromium and copper targets on cooling and non-cooling silicon substrates. The T{sup F}{sub surf} and substrate temperature (T{sub s}) were simultaneously measured using high-resolution IR camera and thermocouple, respectively. We revealed that the T{sup F}{sub surf} steeply grows, keeps constant when it achieves saturation level, and rapidly drops to the value of the T{sub s} after stopping the deposition. At the same time, the T{sub s} either does not change for the case of cooling substrate or increases to a certain level for noncooling substrate. However, in both cases the T{sub s} remains several times lower than the T{sup F}{sub surf}. The T{sup F}{sub surf} is proportional to the flux of energy delivered to the growth surface by sputtered atoms and other fast particles, weakly depends on the depositing metal and can achieve several hundreds of deg. C. This phenomenon is explained by a model assuming formation of a hot thin surface layer (HTSL) on the top of the growing film, which exists only during film deposition and exhibits extremely low thermal conductivity. Due to this unique property the temperature T{sup F}{sub surf} of HTSL is several times higher than the T{sub s}. Variations in the T{sup F}{sub surf} fairly correlate with structure changes of Cr films along thickness investigated in detail previously.

  3. Very low pressure high power impulse triggered magnetron sputtering

    DOEpatents

    Anders, Andre; Andersson, Joakim

    2013-10-29

    A method and apparatus are described for very low pressure high powered magnetron sputtering of a coating onto a substrate. By the method of this invention, both substrate and coating target material are placed into an evacuable chamber, and the chamber pumped to vacuum. Thereafter a series of high impulse voltage pulses are applied to the target. Nearly simultaneously with each pulse, in one embodiment, a small cathodic arc source of the same material as the target is pulsed, triggering a plasma plume proximate to the surface of the target to thereby initiate the magnetron sputtering process. In another embodiment the plasma plume is generated using a pulsed laser aimed to strike an ablation target material positioned near the magnetron target surface.

  4. Cloning and nucleotide sequence of the pvdA gene encoding the pyoverdin biosynthetic enzyme L-ornithine N5-oxygenase in Pseudomonas aeruginosa.

    PubMed Central

    Visca, P; Ciervo, A; Orsi, N

    1994-01-01

    The enzyme L-ornithine N5-oxygenase catalyzes the hydroxylation of L-ornithine (L-Orn), which represents an early step in the biosynthesis of the peptidic moiety of the fluorescent siderophore pyoverdin in Pseudomonas aeruginosa. A gene bank of DNA from P. aeruginosa PAO1 (ATCC 15692) was constructed in the broad-host-range cosmid pLAFR3 and mobilized into the L-Orn N5-oxygenase-defective (pvdA) P. aeruginosa mutant PALS124. Screening for fluorescent transconjugants made it possible to identify the trans-complementing cosmid pPV4, which was able to restore pyoverdin synthesis and L-Orn N5-oxygenase activity in the pvdA mutant PALS124. The 17-kb PAO1 DNA insert of pPV4 contained at least two genetic determinants involved in pyoverdin synthesis, i.e., pvdA and pvdC4, as shown by complementation analysis of a set of mutants blocked in different steps of the pyoverdin biosynthetic pathway. Deletion analysis, subcloning, and transposon mutagenesis enabled us to locate the pvdA gene in a minimum DNA fragment of 1.7 kb flanked by two SphI restriction sites. Complementation of the pvdA mutation was under stringent iron control; both pyoverdin synthesis and L-Orn N5-oxygenase activity were undetectable in cells of the trans-complemented mutant which had been grown in the presence of 100 microM FeCl3. The entire nucleotide sequence of the pvdA gene, from which the primary structure of the encoded polypeptide was deduced, was determined. The pvdA structural gene is 1,278 bp; the cloned DNA fragment contains at the 5' end of the gene a putative ribosome-binding site but apparently lacks known promoterlike sequences. The P. aeruginosa L-Orn N5-oxygenase gene codes for a 426-amino-acid peptide with a predicted molecular mass of 47.7 kDa and an isoelectric point of 8.1. The enzyme shows approximately 50% homology with functional analogs, i.e., L-lysine N6-hydroxylase of aerobactin-producing Escherichia coli and L-Orn N5-oxygenase of ferrichrome-producing Ustilago maydis. The pvd

  5. rf mode switching in a relativistic magnetron with diffraction output

    SciTech Connect

    Liu Meiqin; Michel, Cedric; Prasad, Sarita; Fuks, Mikhail I.; Schamiloglu, Edl; Liu Chunliang

    2010-12-20

    The relativistic magnetron with diffraction output (RMDO) has demonstrated nearly 70% efficiency in recent simulations. This letter reports a rapid mode switching technique in the RMDO using a low power, short-pulse, external single frequency signal. The MAGIC electromagnetic finite-difference-time-domain particle-in-cell code used in simulations demonstrated that an input signal of 300 kW is sufficient to switch neighboring modes in a gigawatt output power A6 RMDO with a transparent cathode, whereas for the original A6 magnetron configuration with radial extraction driven by a transparent cathode 30 MW is required. This frequency agility adds additional versatility to this high power microwave source.

  6. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1993-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  7. Magnetron sputtered boron films and TI/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1993-04-20

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  8. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    1995-01-01

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.

  9. Magnetron sputtered boron films and Ti/B multilayer structures

    DOEpatents

    Makowiecki, D.M.; Jankowski, A.F.

    1995-02-14

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence. 6 figs.

  10. Formation of dielectric silicon compounds by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Veselov, D. S.; Voronov, Yu A.

    2016-09-01

    The paper is devoted to the study of reactive magnetron sputtering of the silicon target in the ambient of inert argon gas with reactive gas, nitrogen or oxygen. The magnetron was powered by two mid-frequency generators of a rectangular pulse of opposite polarity. The negative polarity pulse provides the sputtering of the target. The positive polarity pulse provides removal of accumulated charge from the surface of the target. This method does not require any special devices of resistances matching and provides continuous sputtering of the target.

  11. Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films

    NASA Astrophysics Data System (ADS)

    Ehiasarian, A. P.; Vetushka, A.; Gonzalvo, Y. Aranda; Sáfrán, G.; Székely, L.; Barna, P. B.

    2011-05-01

    HIPIMS (High Power Impulse Magnetron Sputtering) discharge is a new PVD technology for the deposition of high-quality thin films. The deposition flux contains a high degree of metal ionization and nitrogen dissociation. The microstructure of HIPIMS-deposited nitride films is denser compared to conventional sputter technologies. However, the mechanisms acting on the microstructure, texture and properties have not been discussed in detail so far. In this study, the growth of TiN by HIPIMS of Ti in mixed Ar and N2 atmosphere has been investigated. Varying degrees of metal ionization and nitrogen dissociation were produced by increasing the peak discharge current (Id) from 5 to 30 A. The average power was maintained constant by adjusting the frequency. Mass spectrometry measurements of the deposition flux revealed a high content of ionized film-forming species, such as Ti1+, Ti2+ and atomic nitrogen N1+. Ti1+ ions with energies up to 50 eV were detected during the pulse with reducing energy in the pulse-off times. Langmuir probe measurements showed that the peak plasma density during the pulse was 3 × 1016 m-3. Plasma density, and ion flux ratios of N1+: N21+ and Ti1+: Ti0 increased linearly with peak current. The ratios exceeded 1 at 30 A. TiN films deposited by HIPIMS were analyzed by X-ray diffraction, and transmission electron microscopy. At high Id, N1+: N21+> 1 and Ti1+: Ti0> 1 were produced; a strong 002 texture was present and column boundaries in the films were atomically tight. As Id reduced and N1+: N21+ and Ti1+: Ti0 dropped below 1, the film texture switched to strong 111 with a dense structure. At very low Id, porosity between columns developed. The effects of the significant activation of the deposition flux observed in the HIPIMS discharge on the film texture, microstructure, morphology and properties are discussed.

  12. Antibacterial Cr-Cu-O films prepared by reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Musil, J.; Blažek, J.; Fajfrlík, K.; Čerstvý, R.; Prokšová, Š.

    2013-07-01

    The paper reports on the effect of Cu content in the Cr-Cu-O film and its structure on its antibacterial activity and mechanical properties. The Cr-Cu-O films were prepared by reactive magnetron sputtering from composed Cr/Cu targets using a dual magnetron. The antibacterial activity of Cr-Cu-O films was tested on the killing of Escheria coli bacteria. Correlations between the structure of the Cr-Cu-O film, the content of Cu in the film and its (i) antibacterial efficiency and (ii) mechanical properties were investigated in detail. It was found that the 100% efficiency of the killing of E. coli bacteria on the surface of the Cr-Cu-O film is achieved if (1) the Cu content in the film is ≥15 at.% and (2) the film is either X-ray amorphous or crystalline with the CuCrO2 delafossite structure. These Cr-Cu-O films need no excitation and very effectively kill E. coli bacteria in the daylight as well as in the dark. The X-ray amorphous Cr-Cu-O films with ~20 at.% Cu exhibit a higher (i) hardness H ≈ 4 GPa, (ii) effective Young's modulus E* ≈ 72 GPa and (iii) elastic recovery We ≈ 37% compared with the crystalline Cr-Cu-O film with the CuCrO2 delafossite structure exhibiting H ≈ 1.2 GPa, E* ≈ 21 GPa and We ≈ 21%. Both films very effectively kill the E. coli bacteria, however, exhibit a low ratio H/E* < 0.1.

  13. On the target surface cleanness during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Schelfhout, R.; Strijckmans, K.; Boydens, F.; Depla, D.

    2015-11-01

    The thickness of the chemisorbed oxide layer on a tantalum target surface was determined from sputter cleaning experiments. These measurements show a clear logarithmic growth behaviour as a function of the oxygen exposure. By extrapolating this result towards other sputter conditions, the target cleanness during magnetron sputter deposition can be estimated.

  14. Relation of thermal conductivity with process induced anisotropic void system in EB-PVD PYSZ thermal barrier coatings.

    SciTech Connect

    Renteria, A. F.; Saruhan, B.; Ilavsky, J.; German Aerospace Center

    2007-01-01

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based ,TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 1100C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  15. Relation of Thermal Conductivity with Process Induced Anisotropic Void Systems in EB-PVD PYSZ Thermal Barrier Coatings

    SciTech Connect

    Renteria, A. Flores; Saruhan-Brings, B.; Ilavsky, J.

    2008-03-03

    Thermal barrier coatings (TBCs) deposited by Electron-beam physical deposition (EB-PVD) protect the turbine blades situated at the high pressure sector of the aircraft and stationary turbines. It is an important task to uphold low thermal conductivity in TBCs during long-term service at elevated temperatures. One of the most promising methods to fulfil this task is to optimize the properties of PYSZ-based TBC by tailoring its microstructure. Thermal conductivity of the EB-PVD produced PYSZ TBCs is influenced mainly by the size, shape, orientation and volume of the various types of porosity present in the coatings. These pores can be classified as open (inter-columnar and between feather arms gaps) and closed (intra-columnar pores). Since such pores are located within the three-dimensionally deposited columns and enclose large differences in their sizes, shapes, distribution and anisotropy, the accessibility for their characterization is very complex and requires the use of sophisticated methods. In this work, three different EB-PVD TBC microstructures were manufactured by varying the process parameters, yielding various characteristics of their pores. The corresponding thermal conductivities in as-coated state and after ageing at 11000C/1h and 100h were measured via Laser Flash Analysis Method (LFA). The pore characteristics and their individual effect on the thermal conductivity are analysed by USAXS which is supported by subsequent modelling and LFA methods, respectively. Evident differences in the thermal conductivity values of each microstructure were found in as-coated and aged conditions. In summary, broader columns introduce higher values in thermal conductivity. In general, thermal conductivity increases after ageing for all three investigated microstructures, although those with initial smaller pore surface area show smaller changes.

  16. Development of Production PVD-AIN Buffer Layer System and Processes to Reduce Epitaxy Costs and Increase LED Efficiency

    SciTech Connect

    Cerio, Frank

    2013-09-14

    was analyzed and improvements implemented to the Veeco PVD-AlN prototype system to establish a specification and baseline PVD-AlN films on sapphire and in parallel the evaluation of PVD AlN on silicon substrates began. In Phase II of the project a Beta tool based on a scaled-up process module capable of depositing uniform films on batches of 4”or 6” diameter substrates in a production worthy operation was developed and qualified. In Phase III, the means to increase the throughput of the PVD-AlN system was evaluated and focused primarily on minimizing the impact of the substrate heating and cooling times that dominated the overall cycle time.

  17. Modeling and experimental studies of a side band power re-injection locked magnetron

    NASA Astrophysics Data System (ADS)

    Ye, Wen-Jun; Zhang, Yi; Yuan, Ping; Zhu, Hua-Cheng; Huang, Ka-Ma; Yang, Yang

    2016-12-01

    A side band power re-injection locked (SBPRIL) magnetron is presented in this paper. A tuning stub is placed between the external injection locked (EIL) magnetron and the circulator. Side band power of the EIL magnetron is reflected back to the magnetron. The reflected side band power is reused and pulled back to the central frequency. A phase-locking model is developed from circuit theory to explain the process of reuse of side band power in SBPRIL magnetron. Theoretical analysis proves that the side band power is pulled back to the central frequency of the SBPRIL magnetron, then the amplitude of the RF voltage increases and the phase noise performance is improved. Particle-in-cell (PIC) simulation of a 10-vane continuous wave (CW) magnetron model is presented. Computer simulation predicts that the frequency spectrum’s peak of the SBPRIL magnetron has an increase of 3.25 dB compared with the free running magnetron. The phase noise performance at the side band offset reduces 12.05 dB for the SBPRIL magnetron. Besides, the SBPRIL magnetron experiment is presented. Experimental results show that the spectrum peak rises by 14.29% for SBPRIL magnetron compared with the free running magnetron. The phase noise reduces more than 25 dB at 45-kHz offset compared with the free running magnetron. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  18. Hysteresis behavior during reactive magnetron sputtering of Al{sub 2}O{sub 3} using a rotating cylindrical magnetron

    SciTech Connect

    Depla, D.; Haemers, J.; Buyle, G.; Gryse, R. de

    2006-07-15

    Rotating cylindrical magnetrons are used intensively on industrial scale. A rotating cylindrical magnetron on laboratory scale makes it possible to study this deposition technique in detail and under well controlled conditions. Therefore, a small scale rotating cylindrical magnetron was designed and used to study the influence of the rotation speed on the hysteresis behavior during reactive magnetron sputtering of aluminum in Ar/O{sub 2} in dc mode. This study reveals that the hysteresis shifts towards lower oxygen flows when the rotation speed of the target is increased, i.e., target poisoning occurs more readily when the rotation speed is increased. The shift is more pronounced for the lower branch of the hysteresis loop than for the upper branch of the hysteresis. This behavior can be understood qualitatively. The results also show that the oxidation mechanism inside the race track is different from the oxidation mechanism outside the race track. Indeed, outside the race track the oxidation mechanism is only defined by chemisorption while inside the race track reactive ion implantation will also influence the oxidation mechanism.

  19. Time-Resolved Langmuir Probe Measurements in an Ionized PVD System

    NASA Astrophysics Data System (ADS)

    Juliano, D. R.; Hayden, D. B.; Ruzic, D. N.

    1997-10-01

    The experimental apparatus consists of a commercial-scale magnetron (Donated by Materials Research Corporation) with an RF coil between the target and substrate holder. This coil creates a secondary inductive plasma that ionizes a significant portion of the sputter flux en route from target to substrate. Ionization of the metal atoms that make up the sputter flux is highly sensitive to the high energy tail of the electron energy distribution, which in turn is highly dependent on the background gas mixture. Since there is some capacitive coupling from the coil this high energy population could change through the RF cycle. Time-averaged Langmuir probe measurements would not reveal either the extent of this high energy population or its time dependence. Further, if the probe voltage were held constant for such time-resolved measurements, they would yield incorrect results. At probe voltages above the plasma potential minimum the sheath is disrupted so that at points in the phase for which the probe voltage is below plasma potential the data is invalid. Therefore in order to take valid measurements at all phase points, it is necessary for the probe voltage to follow the RF variation in plasma potential. Using such a system, we have made time-resolved Langmuir probe measurements. Current-voltage traces as a function of phase then reveal plasma parameters as a function of time over the RF cycle for various background gases and operating parameters.

  20. Investigation of thin layers deposited by two PVD techniques on high speed steel produced by powder metallurgy

    NASA Astrophysics Data System (ADS)

    Jakubéczyová, D.; Hvizdoš, P.; Selecká, M.

    2012-04-01

    This study was intended to investigate the properties and cutting performance with thin layers applied by two PVD techniques. PVD techniques ARC and LARC were used for the deposition of thin coatings onto cutting tools prepared by powder metallurgy. Advanced types of layers - monolayer AlTiCrN and nanocomposite type of nc-AlTiN/Si3N4 layer - were analyzed by standard techniques for surface status and quality assessment - roughness, hardness, layer thickness, chemical composition by GDOES, tribological properties at room and elevated temperature. Durability testing of the cutting tools was carried out according to the standard ISO 3685-1999. The nanocomposite nc-AlTiN/Si3N4 layer achieved lower roughness when compared to monolayer AlTiCrN which leads to the achievement of higher hardness and better layer quality. The HV0.5 hardness values were ∼26 GPa. The results showed a 2-3-times longer durability of the cutting tools in comparison with equivalent uncoated PM and traditional materials. The deposited coatings contributed to the improvement of their durability.

  1. Mössbauer and Structural Studies of f.c.c. Fe-Ni-C-based PVD CAE Coatings

    NASA Astrophysics Data System (ADS)

    Nadutov, V. M.; Panarin, V. Ye.; Kosintsev, S. G.; Kramar, O. V.; Svystunov, Ye. O.; Volosevich, P. Yu.

    2008-10-01

    The physical vapor deposition by cathode arc evaporation (PVD CAE) technique in microdrops mode was applied for deposition of austenitic nanocrystalline coatings of the Fe-31.2%Ni-2%Co-0.002%Y and Fe-31.4%Ni-2%Co-0.72%C-0.001%Y alloys on Cu substrate. The Mössbauer spectroscopy, X-ray diffraction analysis, transmission electron microscopy and dilatometry have been used to study the structure, magnetic order and thermal expansion of coatings. The estimated coherently diffracting domains values (CDD) and the TEM data testify that austenitic structure in coatings is dispersed and the presence of carbon intensifies the dispersion process of structural elements. Mössbauer analysis has shown that PVD CAE process results in the decomposition of an austenitic solid solution on microareas enriched both in Ni and Co and in Fe, which leads to the formation of a specific magnetic order characterized by existence of the ferromagnetic low-moment (FM LM) and antiferomagnetic high-moment (AM HM) phases and provides stable Invar properties of a coating at the 110-400 K temperatures.

  2. Production of composite Si nanoparticles by plasma spraying PVD and CH4 annealing for negative electrodes of lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Ohta, Ryoshi; Ohta, Yutaro; Tashiro, Toru; Kambara, Makoto

    2015-09-01

    Si is a promising candidate as anode of next generation high density Li ion batteries. This material, however, needs to be nanostructured, nanoparticles and C coating of active material, to cope with huge volume change and associated rapid capacity decay. Si nanoparticles with 20-40 nm have been successfully produced by plasma spraying PVD and also Si-C core-shell composite particles by adding CH4 during processing. The battery performance has been improved with these nanopowders as anode, especially with the C coated Si particles. However, SiC that is inactive in battery reaction forms inevitably at high temperature during plasma spraying PVD and reduces the capacity density. In this work, therefore, post CH4 annealing was attempted to form Si-C nanocomposite particles while suppressing formation of SiC. The primary Si nanoparticles were unchanged in size after annealing and were coated with the finer carbonous particles that formed after CH4 infiltration through pores between nanoparticles. The batteries using annealed powders with C/Si molar ratio of 0.3 have shown two-fold capacity retention increase after 50 cycles with no capacity reduction associated with SiC formation as compared to the powders without C. This work was partly supported by the Funding Program for Next Generation World-Leading Researchers (NEXT Program) of Japan.

  3. Ionized Magnetron Sputtering with a Coupled DC and Microwave Plasma

    NASA Astrophysics Data System (ADS)

    Hayden, D. B.; Green, K. M.; Juliano, D. R.; Ruzic, D. N.; Weiss, C. A.; Lantsman, A.; Ishii, J.

    1996-10-01

    A DC magnetron sputtering system is enhanced via an antenna microwave source. The ability of the microwaves to ionize the metal atoms from the aluminum target though electron impact and Penning ionization is studied as a function of microwave power, magnetron power, and pressure. A bias in the tens of volts (negative) is applied to the substrate and sample. This creates an electric field between the plasma and the substrate which is designed to draw the metal ions into the sample orthogonally for filling increased aspect ratio trenches. A quartz crystal oscillator is placed behind a gridded energy analyzer and embedded in the substrate. It determines the ion-to-neutral ratio and the deposition rate, and the gridded energy analyzer determines the energy spectrum of the ions, the ion current density, and the uniformity. These quantities are compared to the results of a computer simulation.

  4. The role of Ohmic heating in dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Brenning, N.; Gudmundsson, J. T.; Lundin, D.; Minea, T.; Raadu, M. A.; Helmersson, U.

    2016-12-01

    Sustaining a plasma in a magnetron discharge requires energization of the plasma electrons. In this work, Ohmic heating of electrons outside the cathode sheath is demonstrated to be typically of the same order as sheath energization, and a simple physical explanation is given. We propose a generalized Thornton equation that includes both sheath energization and Ohmic heating of electrons. The secondary electron emission yield {γ\\text{SE}} is identified as the key parameter determining the relative importance of the two processes. For a conventional 5 cm diameter planar dc magnetron, Ohmic heating is found to be more important than sheath energization for secondary electron emission yields below around 0.1.

  5. Comprehensive computer model for magnetron sputtering. II. Charged particle transport

    SciTech Connect

    Jimenez, Francisco J. Dew, Steven K.; Field, David J.

    2014-11-01

    Discharges for magnetron sputter thin film deposition systems involve complex plasmas that are sensitively dependent on magnetic field configuration and strength, working gas species and pressure, chamber geometry, and discharge power. The authors present a numerical formulation for the general solution of these plasmas as a component of a comprehensive simulation capability for planar magnetron sputtering. This is an extensible, fully three-dimensional model supporting realistic magnetic fields and is self-consistently solvable on a desktop computer. The plasma model features a hybrid approach involving a Monte Carlo treatment of energetic electrons and ions, along with a coupled fluid model for thermalized particles. Validation against a well-known one-dimensional system is presented. Various strategies for improving numerical stability are investigated as is the sensitivity of the solution to various model and process parameters. In particular, the effect of magnetic field, argon gas pressure, and discharge power are studied.

  6. Microwave beamed power technology improvement. [magnetrons and slotted waveguide arrays

    NASA Technical Reports Server (NTRS)

    Brown, W. C.

    1980-01-01

    The magnetron directional amplifier was tested for (1) phase shift and power output as a function of gain, anode current, and anode voltage, (2) background noise and harmonics in the output, (3) long life potential of the magnetron cathode, and (4) high operational efficiency. Examples of results were an adequate range of current and voltage over which 20 dB of amplification could be obtained, spectral noise density 155 dB below the carrier, 81.7% overall efficiency, and potential cathode life of 50 years in a design for solar power satellite use. A fabrication method was used to fabricate a 64 slot, 30 in square slotted waveguide array module from 0.020 in thick aluminum sheet. The test results on the array are discussed.

  7. Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films

    NASA Astrophysics Data System (ADS)

    Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Rivière, J.-P.

    2009-12-01

    Nitrogen-doped titanium dioxide semiconductor photocatalytic thin films have been deposited by unbalanced reactive magnetron physical vapor deposition on glass substrates for self-cleaning applications. In order to increase the photocatalytic efficiency of the titania coatings, it is important to enhance the catalysts absorption of light from the solar spectra. Bearing this fact in mind, a reduction in the titania semiconductor band-gap has been attempted by using nitrogen doping from a coreactive gas mixture of N2:O2 during the titanium sputtering process. Rutherford backscattering spectroscopy was used in order to assess the composition of the titania thin films, whereas heavy-ion elastic recoil detection analysis granted the evaluation of the doping level of nitrogen. X-ray photoelectron spectroscopy provided valuable information about the cation-anion binding within the semiconductor lattice. The as-deposited thin films were mostly amorphous, however, after a thermal annealing in vacuum at 500 °C the crystalline polymorph anatase and rutile phases have been developed, yielding an enhancement in the crystallinity. Spectroscopic ellipsometry experiments enabled the determination the refractive index of the thin films as a function of the wavelength, while from the optical transmittance it was possible to estimate the semiconductor indirect band-gap of these coatings, which has been proven to decrease as the N-doping increases. The photocatalytic performance of the titania films has been characterized by the degradation rate of an organic reactive dye under UV/visible irradiation. It has been found that for a certain critical limit of 1.19 at. % of nitrogen doping in the titania anatase crystalline lattice enhances the photocatalytic behavior of the thin films and it is in accordance with the observed semiconductor band-gap narrowing to 3.18 eV. By doping the titania lattice with nitrogen, the photocatalytic activity is enhanced under both UV and visible light.

  8. Enhancement in the photocatalytic nature of nitrogen-doped PVD-grown titanium dioxide thin films

    SciTech Connect

    Tavares, C. J.; Marques, S. M.; Viseu, T.; Teixeira, V.; Carneiro, J. O.; Alves, E.; Barradas, N. P.; Munnik, F.; Girardeau, T.; Riviere, J.-P.

    2009-12-01

    Nitrogen-doped titanium dioxide semiconductor photocatalytic thin films have been deposited by unbalanced reactive magnetron physical vapor deposition on glass substrates for self-cleaning applications. In order to increase the photocatalytic efficiency of the titania coatings, it is important to enhance the catalysts absorption of light from the solar spectra. Bearing this fact in mind, a reduction in the titania semiconductor band-gap has been attempted by using nitrogen doping from a coreactive gas mixture of N{sub 2}:O{sub 2} during the titanium sputtering process. Rutherford backscattering spectroscopy was used in order to assess the composition of the titania thin films, whereas heavy-ion elastic recoil detection analysis granted the evaluation of the doping level of nitrogen. X-ray photoelectron spectroscopy provided valuable information about the cation-anion binding within the semiconductor lattice. The as-deposited thin films were mostly amorphous, however, after a thermal annealing in vacuum at 500 deg. C the crystalline polymorph anatase and rutile phases have been developed, yielding an enhancement in the crystallinity. Spectroscopic ellipsometry experiments enabled the determination the refractive index of the thin films as a function of the wavelength, while from the optical transmittance it was possible to estimate the semiconductor indirect band-gap of these coatings, which has been proven to decrease as the N-doping increases. The photocatalytic performance of the titania films has been characterized by the degradation rate of an organic reactive dye under UV/visible irradiation. It has been found that for a certain critical limit of 1.19 at. % of nitrogen doping in the titania anatase crystalline lattice enhances the photocatalytic behavior of the thin films and it is in accordance with the observed semiconductor band-gap narrowing to 3.18 eV. By doping the titania lattice with nitrogen, the photocatalytic activity is enhanced under both UV and

  9. Magnetron sputtering in rigid optical solar reflectors production

    NASA Astrophysics Data System (ADS)

    Asainov, O. Kh; Bainov, D. D.; Krivobokov, V. P.; Sidelev, D. V.

    2016-07-01

    Magnetron sputtering was applied to meet the growing need for glass optical solar reflectors. This plasma method provided more uniform deposition of the silver based coating on glass substrates resulted in decrease of defective reflectors fraction down to 5%. For instance, such parameter of resistive evaporation was of 30%. Silver film adhesion to glass substrate was enhanced with indium tin oxide sublayer. Sunlight absorption coefficient of these rigid reflectors was 0.081-0.083.

  10. Deposition of copper coatings in a magnetron with liquid target

    SciTech Connect

    Tumarkin, A. V. Kaziev, A. V.; Kolodko, D. V.; Pisarev, A. A.; Kharkov, M. M.; Khodachenko, G. V.

    2015-12-15

    Copper coatings were deposited on monocrystalline Si substrates using a magnetron discharge with a liquid cathode in the metal vapour plasma. During the deposition, the bias voltage in the range from 0 V to–400 V was applied to the substrate. The prepared films were investigated by a scanning electron microscope, and their adhesive properties were studied using a scratch tester. It was demonstrated that the adhesion of the deposited films strongly depends on the bias voltage and varies in a wide range.

  11. Hollow target magnetron-sputter-type solid material ion source.

    PubMed

    Sasaki, D; Ieki, S; Kasuya, T; Wada, M

    2012-02-01

    A thin-walled aluminum (Al) hollow electrode has been inserted into an ion source to serve as an electrode for a radio frequency magnetron discharge. The produced plasma stabilized by argon (Ar) gas sputters the Al electrode to form a beam of Al(+) and Ar(+) ions. The total beam current extracted through a 3 mm diameter extraction hole has been 50 μA, with the Al(+) ion beam occupying 30% of the total beam current.

  12. Theoretical investigation of the dielectric-filled relativistic magnetron

    SciTech Connect

    Wang, Xiaoyu; Fan, Yuwei; Shu, Ting; Shi, Difu

    2016-01-15

    The fundamental mode frequency of a dielectric-filled relativistic magnetron is studied theoretically by the method of the equivalent circuit, and an exact fundamental mode frequency formula is derived. To prove the validity of the theoretical formula, simulation investigation is performed. The simulation results agree well with the theoretical formula, and the relative error does not exceed 3%. The comparative results verify the creditability of the theoretical formula.

  13. PVD Cu trench-fill by viscous flow at high temperatures

    NASA Astrophysics Data System (ADS)

    Wu, Zhiyuan

    The scaling of integrated circuits has led to new challenges in Cu interconnect fabrication. It is getting difficult to fill narrow trenches, e.g. 20 nm wide, by Cu electroplating. In this work, a high temperature PVD Cu viscous flow trench fill process was explored to overcome the difficulties of filling narrow and high aspect ratio trenches. We have tested and found TaN and MoN to be good barriers, and Ru a good wetting surface for Cu. The three metals, Ta, Mo and Ru, are thus suitable for use as a thin liner to provide adhesion between the filled Cu and the dielectrics. We have therefore studied and compared Cu viscous flow trench filling on Ru, Mo and Ta liners. Cross-sectional TEM was employed to examine the trench fill profiles under different viscous flow conditions. We have found that a continuous Cu seed deposited at room temperature was essential to allow successful Cu viscous flow. The liner material's effect on Cu seed agglomeration was thus critical. It was shown that viscous flow on a Ru liner with a continuous Cu seed can fill narrow trenches (300 nm wide) at a high aspect ratio (a/r = 5), and produce maximized Cu grain size without post-fill annealing. A thicker Cu seed is required on the Mo liner for a successful viscous fill. However, on a Ta liner, because of poor Cu wetting, it is difficult to maintain a continuous Cu seed coverage at high temperatures, and the viscous fill was unsuccessful. To fill ultra-narrow (≤ 48 nm wide) and high aspect ratio (a/r ≥ 4) trenches, a lower deposition rate was needed. Agglomeration of the whole Cu fill at high temperatures is a key issue, which still remains to be overcome. Computer simulations of the viscous flow trench fill process were carried out, taking into account the effects of incoming flux divergence and Cu seed coverage. Our simulations indicated that a successful viscous trench fill relies on a continuous Cu seed coverage and a high surface mobility. Viscous flow is not sensitive to the

  14. Gas-phase clusterization of zinc during magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Abduev, A. Kh.; Akhmedov, A. K.; Asvarov, A. Sh.; Alikhanov, N. M.-R.; Emirov, R. M.; Muslimov, A. E.; Belyaev, V. V.

    2017-01-01

    The processes of gas-phase clusterization of zinc during dc magnetron sputtering of a zinc target in an argon atmosphere have been investigated. The influence of the working gas pressure and magnetron discharge current on the morphology and structure of the precipitates formed on substrates previously cooled to-50°C is studied. It is shown that dense textured (002)Zn layers with a columnar structure are formed at relatively low argon pressures in the chamber ( P = 0.5 Pa) and low discharge currents (100 mA). X-ray amorphous deposits with a fractal coral-like structure arise on substrates at an extremely high argon pressure in the chamber ( P = 5 Pa). An increase in the magnetron discharge current at an operating gas pressure of 5 Pa leads to the formation of polycrystalline layers on substrates; the intensity of the XRD peaks related to crystalline zinc increases with an increase in the discharge current. Possible mechanisms of the structural transformation of Zn deposits are considered.

  15. Passive mode control in the recirculating planar magnetron

    SciTech Connect

    Franzi, Matthew; Gilgenbach, Ronald; Lau, Y. Y.; Greening, Geoff; Zhang, Peng; Hoff, Brad

    2013-03-15

    Preliminary experiments of the recirculating planar magnetron microwave source have demonstrated that the device oscillates but is susceptible to intense mode competition due, in part, to poor coupling of RF fields between the two planar oscillators. A novel method of improving the cross-oscillator coupling has been simulated in the periodically slotted mode control cathode (MCC). The MCC, as opposed to a solid conductor, is designed to electromagnetically couple both planar oscillators by allowing for the propagation of RF fields and electrons through resonantly tuned gaps in the cathode. Using the MCC, a 12-cavity anode block with a simulated 1 GHz and 0.26 c phase velocity (where c is the speed of light) was able to achieve in-phase oscillations between the two sides of the device in as little as 30 ns. An analytic study of the modified resonant structure predicts the MCC's ability to direct the RF fields to provide tunable mode separation in the recirculating planar magnetron. The self-consistent solution is presented for both the degenerate even (in phase) and odd (180 Degree-Sign out of phase) modes that exist due to the twofold symmetry of the planar magnetrons.

  16. Extracytoplasmic Function (ECF) Sigma Factor Gene Regulation in Pseudomonas syringae: Integrated Molecular and Computational Characterization of PvdS-Regulated Promoters

    USDA-ARS?s Scientific Manuscript database

    The extracytoplasmic function (ECF) sigma factor PvdS regulates the expression of genes required for the biosynthesis and transport of pyoverdine, a siderophore that functions in iron acquisition. The production of pyoverdine is a distinctive trait of the fluorescent pseudomonads and the regulation ...

  17. Modeling high power magnetron copper seed deposition: Effect of feature geometry on coverage

    NASA Astrophysics Data System (ADS)

    Stout, Phillip J.; Zhang, Da; Ventzek, Peter L. G.

    2003-05-01

    The deposition of copper using a high power magnetron (HPM) has been studied using reactor and feature scale models. Discussed are results for Cu seed HPM deposition on trench, via, and dual inlaid features with different geometries (aspect ratio and side wall angles). At low wafer powers the Cu seed feature coverage is characterized by geometric shadowing due to the broad angular distribution of the dominant Cu athermal. At high wafer powers the metal deposited at feature bottom is sputtered by Ar+ and redistributed to the side walls. The deposition rate within a feature is nonlinear with time as metal deposited at the feature opening obstructs incoming metal from reaching the inside of the feature. Competing trends of higher copper flux at wafer center versus edge and higher Ar+ flux at wafer center versus edge result in a transition of the field thickness heights from edge>center at low wafer powers to centerdual inlaid geometry studied the via inner side wall and trench bottom corners are the most difficult regions to deposit a Cu seed. Both side wall angle and AR can have equal control of a thickness change. For instance in a via a similar side wall thickness decrease (at low wafer power) can be achieved with AR=4 and θvia=4°-0° or AR=1-4 and θvia=4°.

  18. An investigation of PVdF/PVC-based blend electrolytes with EC/PC as plasticizers in lithium battery applications

    NASA Astrophysics Data System (ADS)

    Rajendran, S.; Sivakumar, P.

    2008-03-01

    Solid polymer electrolytes (SPEs) composed of poly(vinylidene fluoride) (PVdF)-poly(vinyl chloride) (PVC) complexed with lithium perchlorate (LiClO 4) as salt and ethylene carbonate (EC)/propylene carbonate (PC) as plasticizers were prepared using solvent-casting technique, with different weight ratios of EC and PC. The amorphicity and complexation behavior of the polymer electrolytes were confirmed using X-ray diffraction (XRD) and FTIR studies. TG/DTA and scanning electron microscope (SEM) studies explained the thermal stability and surface morphology of electrolytes, respectively. The prepared thin films were subjected to AC impedance measurements as a function of temperature ranging from 302 to 373 K. The temperature-dependence conductivity of polymer films seems to obey VTF relation.

  19. Microstructure evolution during annealing of TiAl/NiCoCrAl multilayer composite prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Deming; Chen, Guiqing; Wang, Yuesheng

    2014-07-01

    TiAl/NiCoCrAl laminate composite sheet with a thickness of 0.4–0.6 mm as well as a dimension of 150 mm × 100 mm was fabricated successfully by using electron beam physical vapor deposition (EB-PVD) method. The annealing treatment was processed at 1123 and 1323 K for 3 h in a high vacuum atmosphere, respectively. The phase composition and microstructure of TiAl/NiCoCrAl microlaminated sheet have been analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Based on the sheet characterization and results of the microstructure evolution during annealing treatment process, the diffusion mechanism of interfacial reaction in TiAl/NiCoCrAl microlaminate was investigated and discussed.

  20. Studies on the effect of dispersoid(ZrO2) in PVdF-co-HFP based gel polymer electrolytes

    NASA Astrophysics Data System (ADS)

    Sivakumar, M.; Subadevi, R.; Muthupradeepa, R.

    2013-06-01

    Gel polymer electrolytes containing poly(vinylidenefluoride-co-hexafluoropropylene) (P(VdF-co-HFP)) / Lithium bis(trifluoromethane sulfon)imide (LiTFSI) / mixture of ethylene carbonate and propylene carbonate (EC+PC) with different concendration of ZrO2 has been prepared using the solution casting technique. The conductivity of the prepared electrolyte sample has been determined by AC impedance technique in the range 303-353K. The temperature dependent ionic conductivity plot seems to obey VTF relation. The maximum ionic conductivity value of 4.46 × 10-3S/cm has been obtained for PVdF-co-HFP(32%) - LiTFSI(8%) - EC+PC (60%) + ZrO2(6wt%) based polymer electrolyte. The surface morphology of the prepared electrolyte sample has been studied using SEM.

  1. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    NASA Astrophysics Data System (ADS)

    Rosikhin, Ahmad; Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto

    2016-02-01

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  2. Low pressure hand made PVD system for high crystalline metal thin film preparation in micro-nanometer scale

    SciTech Connect

    Rosikhin, Ahmad Hidayat, Aulia Fikri; Marimpul, Rinaldo; Syuhada, Ibnu; Winata, Toto

    2016-02-08

    High crystalline metal thin film preparation in application both for catalyst substrate or electrode in any electronic devices always to be considered in material functional material research and development. As a substrate catalyst, this metal take a role as guidance for material growth in order to resulted in proper surface structure although at the end it will be removed via etching process. Meanwhile as electrodes, it will dragging charges to be collected inside. This brief discussion will elaborate general fundamental principle of physical vapor deposition (PVD) system for metal thin film preparation in micro-nanometer scale. The influence of thermodynamic parameters and metal characteristic such as melting point and particle size will be elucidated. Physical description of deposition process in the chamber can be simplified by schematic evaporation phenomena which is supported by experimental measurement such as SEM and XRD.

  3. Cutting performance and wear mechanisms of PVD coated carbide tools during dry drilling of newly produced ADI

    NASA Astrophysics Data System (ADS)

    Meena, Anil; El Mansori, Mohamed

    2016-10-01

    The austempered ductile iron (ADI) material is widely used for automotive and structural applications. However, it is considered a difficult to machine material due to its strain hardening behavior and low thermal conductivity characteristics; thus delivering higher mechanical and thermal loads at the tool-chip interface, which significantly affects the tool wear and surface quality. The paper thus overviews the cutting performance and wear behavior of different cutting tools during dry drilling of newly produced ADI material. Cutting performance was evaluated in terms of specific cutting energy, workpiece surface integrity and tool wear behavior. Tool wear behavior shows crater wear mode and workpiece adhesion. The surface alteration at the machined subsurface was confirmed from the hardness variation. Multilayer (Ti,Al,Cr)N coated tool shows improved cutting performance and wear behavior due to its enhanced tribological adaptability as compared to another PVD coating leading to the reduction in specific cutting energy by 25%.

  4. Advantages of using PVD two-step titanium nitride barrier process and the impact of residual by-products from tungsten film deposition on process integration due to non-uniformity of the tungsten film

    NASA Astrophysics Data System (ADS)

    Sidhwa, Ardeshir (Ardy) Jenangir

    Device aspect ratios and dimensions at the contact and via levels for old and new technologies are driving PVD/WCVD-based metallization to its full limit at STMicroelectronics PF1 (Phoenix) site. Contact and via structures, while not posing the same rigorous dimensional problems or high aspect ratios, still suffer from problems associated with PVD sputtering of titanium (Ti) and titanium nitride (TiN) films and WCVD uniformity issues. These problems include poor barrier quality, which can lead to wormholes and volcanoes for tungsten plug technologies. Non-conformal step coverage leads to aluminum junction spiking for aluminum (Al) plugs due to poor TiN barrier quality. Bad tungsten uniformity leads to metal integration issues. Many types of metallization schemes were investigated for via structures in 0.9mum to 0.18mum technologies at the STMicroelectronics PF1 facility. One common strategy is simply to extend the existing PVD/WCVD-based solution to all technologies. Aluminum plug technologies are still used for many different semiconductor device applications and are cost-effective processes. However, there are some disadvantages associated with them. The key disadvantage is aluminum junction spiking caused by aluminum diffusing down into the silicon substrate and silicon diffusing up into the aluminum plug, due to a poor titanium nitride (TiN) barrier. The tungsten plug process is mainly used for 0.5mum and smaller technologies. Titanium nitride barrier material plays an important role as an under layer for tungsten plugs to prevent the tungsten hexafluoride (WF 6) from attacking the titanium (Ti) film. The role of the TiN barrier is to retard or prevent diffusion of the materials that the TiN layer separates. In this work, the TiN barrier film properties with respect to nitrogen flows at two different power set points and argon gas flows were investigated. Different experiments were performed to understand the properties of the TiN film with respect to process

  5. Influence of high power impulse magnetron sputtering plasma ionization on the microstructure of TiN thin films

    SciTech Connect

    Ehiasarian, A. P.; Vetushka, A.; Gonzalvo, Y. Aranda; Safran, G.; Szekely, L.; Barna, P. B.

    2011-05-15

    HIPIMS (High Power Impulse Magnetron Sputtering) discharge is a new PVD technology for the deposition of high-quality thin films. The deposition flux contains a high degree of metal ionization and nitrogen dissociation. The microstructure of HIPIMS-deposited nitride films is denser compared to conventional sputter technologies. However, the mechanisms acting on the microstructure, texture and properties have not been discussed in detail so far. In this study, the growth of TiN by HIPIMS of Ti in mixed Ar and N{sub 2} atmosphere has been investigated. Varying degrees of metal ionization and nitrogen dissociation were produced by increasing the peak discharge current (I{sub d}) from 5 to 30 A. The average power was maintained constant by adjusting the frequency. Mass spectrometry measurements of the deposition flux revealed a high content of ionized film-forming species, such as Ti{sup 1+}, Ti{sup 2+} and atomic nitrogen N{sup 1+}. Ti{sup 1+} ions with energies up to 50 eV were detected during the pulse with reducing energy in the pulse-off times. Langmuir probe measurements showed that the peak plasma density during the pulse was 3 x 10{sup 16} m{sup -3}. Plasma density, and ion flux ratios of N{sup 1+}: N{sub 2}{sup 1+} and Ti{sup 1+}: Ti{sup 0} increased linearly with peak current. The ratios exceeded 1 at 30 A. TiN films deposited by HIPIMS were analyzed by X-ray diffraction, and transmission electron microscopy. At high I{sub d}, N{sup 1+}: N{sub 2}{sup 1+} > 1 and Ti{sup 1+}: Ti{sup 0} > 1 were produced; a strong 002 texture was present and column boundaries in the films were atomically tight. As I{sub d} reduced and N{sup 1+}: N{sub 2}{sup 1+} and Ti{sup 1+}: Ti{sup 0} dropped below 1, the film texture switched to strong 111 with a dense structure. At very low I{sub d}, porosity between columns developed. The effects of the significant activation of the deposition flux observed in the HIPIMS discharge on the film texture, microstructure, morphology and

  6. Plasma regimes in high power pulsed magnetron sputtering

    NASA Astrophysics Data System (ADS)

    de Los Arcos, Teresa

    2013-09-01

    High Power Pulsed Magnetron Sputtering (HPPMS) is a relatively recent variation of magnetron sputtering where high power is applied to the magnetron in short pulses. The result is the formation of dense transient plasmas with a high fraction of ionized species, ideally leading to better control of film growth through substrate bias. However, the broad range of experimental conditions accessible in pulsed discharges results in bewildering variations in current and voltage pulse shapes, pulse power densities, etc, which represent different discharge behaviors, making it difficult to identify relevant deposition conditions. The complexity of the plasma dynamics is evident. Within each pulse, plasma characteristics such as plasma composition, density, gas rarefaction, spatial distribution, degree of self-sputtering, etc. vary with time. A recent development has been the discovery that the plasma emission can self-organize into well-defined regions of high and low plasma emissivity above the racetrack (spokes), which rotate in the direction given by the E ×B drift and that significantly influence the transport mechanisms in HPPMS. One seemingly universal characteristic of HPPMS plasmas is the existence of well defined plasma regimes for different power ranges. These regimes are clearly differentiated in terms of plasma conductivity, plasma composition and spatial plasma self-organization. We will discuss the global characteristics of these regimes in terms of current-voltage characteristics, energy-resolved QMS and OES analysis, and fast imaging. In particular we will discuss how the reorganization of the plasma emission into spokes is associated only to specific regimes of high plasma conductivity. We will also briefly discuss the role of the target in shaping the characteristics of the HPPMS plasma, since sputtering is a surface-driven process. This work was supported by the Deutsche Forschungsgemeinschaft (DFG) within the framework of the SFB-TR87.

  7. Particle contamination formation and detection in magnetron sputtering processes

    SciTech Connect

    Selwyn, G.S.; Weiss, C.A.; Sequeda, F.; Huang, C.

    1996-10-01

    Defects caused by particulate contamination are an important concern in the fabrication of thin film products. Often, magnetron sputtering processes are used for this purpose. Particle contamination can cause electrical shorting, pin holes, problems with photolithography, adhesion failure, as well as visual and cosmetic defects. Particle contamination generated during thin film processing can be detected using laser light scattering, a powerful diagnostic technique that provides real-time, {ital in-situ} imaging of particles > 0.3 {mu}m in diameter. Using this technique, the causes, sources and influences on particles in plasma and non-plasma and non-plasma processes may be independently evaluated and corrected. Several studies employing laser light scattering have demonstrated both homogeneous and heterogeneous causes of particle contamination. In this paper, we demonstrate that the mechanisms for particle generation, transport and trapping during magnetron sputter deposition are different from the mechanisms reported in previously studied plasma etch processes. During magnetron sputter deposition, one source of particle contamination is linked to portions of the sputtering target surface exposed to weaker plasma density. In this region, film redeposition is followed by filament or nodule growth and enhanced trapping which increases filament growth. Eventually the filaments effectively ``short circuit`` the sheath, causing high currents to flow through these features. This, in turn, causes heating failure of the filament fracturing and ejecting the filaments into the plasma and onto the substrate. Evidence of this effect has been observed in semiconductor (IC) fabrication and storage disk manufacturing. Discovery of this mechanism in both technologies suggests that this mechanism may be universal to many sputtering processes.

  8. Development of magnetron sputtering simulator with GPU parallel computing

    NASA Astrophysics Data System (ADS)

    Sohn, Ilyoup; Kim, Jihun; Bae, Junkyeong; Lee, Jinpil

    2014-12-01

    Sputtering devices are widely used in the semiconductor and display panel manufacturing process. Currently, a number of surface treatment applications using magnetron sputtering techniques are being used to improve the efficiency of the sputtering process, through the installation of magnets outside the vacuum chamber. Within the internal space of the low pressure chamber, plasma generated from the combination of a rarefied gas and an electric field is influenced interactively. Since the quality of the sputtering and deposition rate on the substrate is strongly dependent on the multi-physical phenomena of the plasma regime, numerical simulations using PIC-MCC (Particle In Cell, Monte Carlo Collision) should be employed to develop an efficient sputtering device. In this paper, the development of a magnetron sputtering simulator based on the PIC-MCC method and the associated numerical techniques are discussed. To solve the electric field equations in the 2-D Cartesian domain, a Poisson equation solver based on the FDM (Finite Differencing Method) is developed and coupled with the Monte Carlo Collision method to simulate the motion of gas particles influenced by an electric field. The magnetic field created from the permanent magnet installed outside the vacuum chamber is also numerically calculated using Biot-Savart's Law. All numerical methods employed in the present PIC code are validated by comparison with analytical and well-known commercial engineering software results, with all of the results showing good agreement. Finally, the developed PIC-MCC code is parallelized to be suitable for general purpose computing on graphics processing unit (GPGPU) acceleration, so as to reduce the large computation time which is generally required for particle simulations. The efficiency and accuracy of the GPGPU parallelized magnetron sputtering simulator are examined by comparison with the calculated results and computation times from the original serial code. It is found that

  9. BN coatings deposition by magnetron sputtering of B and BN targets in electron beam generated plasma

    NASA Astrophysics Data System (ADS)

    Kamenetskikh, A. S.; Gavrilov, N. V.; Koryakova, O. V.; Cholakh, S. O.

    2017-05-01

    Boron nitride coatings were deposited by reactive pulsed magnetron sputtering of B and BN targets (50 kHz, 10 µs for B; 13.56 MHz for BN) at 2-20 mA/cm2 ion current density on the substrate. The effect of electron beam generated plasma on characteristics of magnetron discharge and phase composition of coatings was studied.

  10. The Magnetron Method for the Determination of e/m for Electrons: Revisited

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2007-01-01

    Additional information concerning the energy distribution function of electrons in a magnetron diode valve can be extracted. This distribution function is a manifestation of the effect of space charge at the anode. The electron energy distribution function in the magnetron is obtained from studying the variation of the anode current with the…

  11. The Magnetron Method for the Determination of e/m for Electrons: Revisited

    ERIC Educational Resources Information Center

    Azooz, A. A.

    2007-01-01

    Additional information concerning the energy distribution function of electrons in a magnetron diode valve can be extracted. This distribution function is a manifestation of the effect of space charge at the anode. The electron energy distribution function in the magnetron is obtained from studying the variation of the anode current with the…

  12. Simulation of the velocity spread in magnetron injection guns

    SciTech Connect

    Liu, C.; Antonsen, T.M. Jr.; Levush, B.

    1996-06-01

    The velocity spread associated with phase mixing due to dc space charge in a magnetron injection gun (MIG) is investigated. A simple model is introduced to describe the mixing process. Simulations are performed by using the results of the EGUN trajectory calculation for initial conditions at the entrance of the drift region. Results for a 170 GHz gun are obtained and compared with EGUN simulations. This new model provides a more accurate and efficient approach for analyzing the velocity spread due to mixing in MIG`s.

  13. Lateral variation of target poisoning during reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Güttler, D.; Grötzschel, R.; Möller, W.

    2007-06-01

    The reactive gas incorporation into a Ti sputter target has been investigated using laterally resolving ion beam analysis during dc magnetron deposition of TiN in an Ar /N2 atmosphere. At sufficiently low reactive gas flow, the nitrogen incorporation exhibits a pronounced lateral variation, with a lower areal density in the target racetrack compared to the target center and edge. The findings are reproduced by model calculations. In the racetrack, the balance of reactive gas injection and sputter erosion is shifted toward erosion. The injection of nitrogen is dominated by combined molecular adsorption and recoil implantation versus direct ion implantation.

  14. Heteroepitaxial Ge-on-Si by DC magnetron sputtering

    SciTech Connect

    Steglich, Martin; Schrempel, Frank; Füchsel, Kevin; Kley, Ernst-Bernhard; Patzig, Christian; Berthold, Lutz; Höche, Thomas; Tünnermann, Andreas

    2013-07-15

    The growth of Ge on Si(100) by DC Magnetron Sputtering at various temperatures is studied by Spectroscopic Ellipsometry and Transmission Electron Microscopy. Smooth heteroepitaxial Ge films are prepared at relatively low temperatures of 380°C. Typical Stransky-Krastanov growth is observed at 410°C. At lower temperatures (320°C), films are essentially amorphous with isolated nanocrystallites at the Si-Ge interface. A minor oxygen contamination at the interface, developing after ex-situ oxide removal, is not seen to hinder epitaxy. Compensation of dislocation-induced acceptors in Ge by sputtering from n-doped targets is proposed.

  15. Characterization and optimization of the magnetron directional amplifier

    NASA Astrophysics Data System (ADS)

    Hatfield, Michael Craig

    Many applications of microwave wireless power transmission (WPT) are dependent upon a high-powered electronically-steerable phased array composed of many radiating modules. The phase output from the high-gain amplifier in each module must be accurately controlled if the beam is to be properly steered. A highly reliable, rugged, and inexpensive design is essential for making WPT applications practical. A conventional microwave oven magnetron may be combined with a ferrite circulator and other external circuitry to create such a system. By converting it into a two-port amplifier, the magnetron is capable of delivering at least 30 dB of power gain while remaining phase-locked to the input signal over a wide frequency range. The use of the magnetron in this manner is referred to as a MDA (Magnetron Directional Amplifier). The MDA may be integrated with an inexpensive slotted waveguide array (SWA) antenna to form the Electronically-Steerable Phased Array Module (ESPAM). The ESPAM provides a building block approach to creating phased arrays for WPT. The size and shape of the phased array may be tailored to satisfy a diverse range of applications. This study provided an in depth examination into the capabilities of the MDA/ESPAM. The basic behavior of the MDA was already understood, as well as its potential applicability to WPT. The primary objective of this effort was to quantify how well the MDA could perform in this capacity. Subordinate tasks included characterizing the MDA behavior in terms of its system inputs, optimizing its performance, performing sensitivity analyses, and identifying operating limitations. A secondary portion of this study examined the suitability of the ESPAM in satisfying system requirements for the solar power satellite (SPS). Supporting tasks included an analysis of SPS requirements, modeling of the SWA antenna, and the demonstration of a simplified phased array constructed of ESPAM elements. The MDA/ESPAM is well suited for use as an

  16. Magnetron co-sputtering system for coating ICF targets

    SciTech Connect

    Hsieh, E.J.; Meyer, S.F.; Halsey, W.G.; Jameson, G.T.; Wittmayer, F.J.

    1981-12-09

    Fabrication of Inertial Confinement Fusion (ICF) targets requires deposition of various types of coatings on microspheres. The mechanical strength, and surface finish of the coatings are of concern in ICF experiments. The tensile strength of coatings can be controlled through grain refinement, selective doping and alloy formation. We have constructed a magnetron co-sputtering system to produce variable density profile coatings with high tensile strength on microspheres. The preliminary data on the properties of a Au-Cu binary alloy system by SEM and STEM analysis is presented.

  17. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  18. First demonstration and performance of an injection locked continuous wave magnetron to phase control a superconducting cavity

    SciTech Connect

    A.C. Dexter, G. Burt, R.G. Carter, I. Tahir, H. Wang, K. Davis, R. Rimmer

    2011-03-01

    The applications of magnetrons to high power proton and cw electron linacs are discussed. An experiment is described where a 2.45 GHz magnetron has been used to drive a single cell superconducting cavity. With the magnetron injection locked, a modest phase control accuracy of 0.95° rms has been demonstrated. Factors limiting performance have been identified.

  19. A kind of magnetron cavity used in rubidium atomic frequency standards

    NASA Astrophysics Data System (ADS)

    Shiyu, Yang; Jingzhong, Cui; Jianhui, Tu; Yaoting, Liang

    2011-12-01

    Research on the magnetron cavity used in the rubidium atomic frequency standards is developed, through which the main characteristic parameters of the magnetron cavity are studied, mainly including the resonant frequency, quality factor and oscillation mode. The resonant frequency and quality factor of the magnetron cavity were calculated, and the test results of the resonant frequency agreed well with the calculation theory. The test results also show that the resonant frequency of the magnetron cavity can be attenuated to 6.835 GHz, which is the resonant frequency of the rubidium atoms, and the Q-factor can be attenuated to 500-1000. The oscillation mode is a typical TE011 mode and is the correct mode needed for the rubidium atomic frequency standard. Therefore these derivative magnetron cavities meet the requirements of the rubidium atomic frequency standards well.

  20. Synthesizing mixed phase titania nanocomposites with enhanced photoactivity and redshifted photoresponse by reactive DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Le

    Recent work points out the importance of the solid-solid interface in explaining the high photoactivity of mixed phase TiO2 catalysts. The goal of this research was to probe the synthesis-structure-function relationships of the solid-solid interfaces created by the reactive direct current (DC) magnetron sputtering of titanium dioxide. I hypothesize that the reactive DC magnetron sputtering is a useful method for synthesizing photo-catalysts with unique structure including solid-solid interfaces and surface defects that are associated with enhanced photoreactivity as well as a photoresponse shifted to longer wavelengths of light. I showed that sputter deposition provides excellent control of the phase and interface formation as well as the stoichiometry of the films. I explored the effects exerted by the process parameters of pressure, oxygen partial pressure, target power, substrate bias (RF), deposition incidence angle, and post annealing treatment on the structural and functional characteristics of the catalysts. I have successfully made pure and mixed phase TiO2 films. These films were characterized with UV-Vis, XPS, AFM, SEM, TEM, XRD and EPR, to determine optical properties, elemental stoichiometry, surface morphology, phase distribution and chemical coordination. Bundles of anatase-rutile nano-columns having high densities of dual-scale of interfaces among and within the columns are fabricated. Photocatalytic performance of the sputtered films as measured by the oxidation of the pollutant, acetaldehyde, and the reduction of CO2 for fuel (CH4) production was compared (normalized for surface area) to that of mixed phase TiO2 fabricated by other methods, including flame hydrolysis powders, and solgel deposited TiO 2 films. The sputtered mixed phase materials were far superior to the commercial standard (Degussa P25) and solgel TiO2 based on gas phase reaction of acetaldehyde oxidation under UV light and CO2 reduction under both UV and visible illuminations. The

  1. Closed field unbalanced magnetron sputtering ion plating of Ni/Al thin films: influence of the magnetron power.

    PubMed

    Said, R; Ahmed, W; Gracio, J

    2010-04-01

    In this study NiAl thin films have been deposited using closed field unbalanced magnetron sputtering Ion plating (CFUBMSIP). The influence of magnetron power has been investigated using dense and humongous NiAl compound targets onto stainless steel and glass substrates. Potential applications include tribological, electronic media and bond coatings in thermal barrier coatings system. Several techniques has been used to characterise the films including surface stylus profilometry, energy dispersive spectroscopy (EDAX), X-Ray diffraction (XRD) Composition analysis of the samples was carried out using VGTOF SIMS (IX23LS) and Atomic force microscopy (AFM). Scratch tester (CSM) combined with acoustic emission singles during loading in order to compare the coating adhesion. The acoustic emission signals emitted during the indentation process were used to determine the critical load, under which the film begins to crack and/or break off the substrate. The average thickness of the films was approximately 1 um. EDAX results of NiAl thin films coating with various magnetron power exhibited the near equal atomic% Ni:Al. The best result being obtained using 300 W and 400 W DC power for Ni and Al targets respectively. XRD revealed the presence of beta NiAl phase for all the films coatings. AFM analysis of the films deposited on glass substrates exhibited quite a smooth surface with surface roughness values in the nanometre range. CSM results indicate that best adhesion was achieved at 300 W for Ni, and 400 W for Al targets compared to sample other power values. SIMS depth profile showed a uniform distribution of the Ni and Al component from the surface of the film to the interface.

  2. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  3. Recent Operation of the FNAL Magnetron H- Ion Source

    SciTech Connect

    Karns, Patrick R.; Bollinger, D. S.; Sosa, A.

    2016-09-06

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ~18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  4. Magnetron Sputtered Molybdenum Oxide for Application in Polymers Solar Cells

    NASA Astrophysics Data System (ADS)

    Sendova-Vassileva, M.; Dikov, Hr; Vitanov, P.; Popkirov, G.; Gergova, R.; Grancharov, G.; Gancheva, V.

    2016-10-01

    Thin films of molybdenum oxide were deposited by radio frequency (RF) magnetron sputtering in Ar from a MoO3 target at different deposition power on glass and silicon substrates. The thickness of the films was determined by profilometer measurements and by ellipsometry. The films were annealed in air at temperatures between 200 and 400°C in air. The optical transmission and reflection spectra were measured. The conductivity of the as deposited and annealed films was determined. The crystal structure was probed by Raman spectroscopy. The oxidation state of the surface was studied by X-ray photoelectron spectroscopy (XPS) spectroscopy. The deposition technique described above was used to experiment with MoOx as a hole transport layer (HTL) in polymer solar cells with bulk hetrojunction active layer, deposited by spin coating. The performance of these layers was compared with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS), which is the standard material used in this role. The measured current-voltage characteristics of solar cells with the structure glass/ITO/HTL/Poly(3-hexyl)thiophene (P3HT):[6,6]-phenyl-C61- butyric acid methyl ester (PCBM)/Al demonstrate that the studied MoOx layer is a good HTL and leads to comparable characteristics to those with PEDOT:PSS. On the other hand the deposition by magnetron sputtering guarantees reliable and repeatable HTLs.

  5. Asymmetric particle fluxes from drifting ionization zones in sputtering magnetrons

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Franz, Robert; Anders, André

    2014-04-01

    Electron and ion fluxes from direct current and high-power impulse magnetron sputtering (dcMS and HiPIMS) plasmas were measured in the plane of the target surface. Biased collector probes and a particle energy and mass analyzer showed asymmetric emission of electrons and of singly and doubly charged ions. For both HiPIMS and dcMS discharges, higher fluxes of all types of particles were observed in the direction of the electrons' E × B drift. These results are put in the context with ionization zones that drift over the magnetron's racetrack. The measured currents of time-resolving collector probes suggest that a large fraction of the ion flux originates from drifting ionization zones, while energy-resolving mass spectrometry indicates that a large fraction of the ion energy is due to acceleration by an electric field. This supports the recently proposed hypothesis that each ionization zone is associated with a negative-positive-negative space charge structure, thereby producing an electric field that accelerates ions from the location where they were formed.

  6. Double circular erosion patterns on dielectric target in magnetron sputtering.

    PubMed

    Suzaki, Yoshifumi; Miyagawa, Hayato; Ejima, Seiki

    2009-10-01

    In rf magnetron sputtering, a circular erosion pattern forms on the surface of a circular metal conductor target with permanent magnets on its back. In this case, the theory behind the erosion pattern has been established. However, in the case of a dielectric target, a double circular erosion pattern is formed. So far, this pattern has been phenomenologically recognized by experimenters; however, it has not yet been investigated. In this study, we performed a magnetron sputtering experiment with a SiO2 dielectric target, and confirmed the formation of a double circular erosion pattern. The dimensions of the double circular erosion pattern varied depending on the insulation resistance or the thickness of the SiO2 target. Furthermore, we found that the dimensions of a double circular erosion pattern changed by making a gap between the SiO2 target and guard ring. Based on the experimental results, we have proposed a qualitative model to explain the formation mechanism of double circular erosion patterns.

  7. Recent operation of the FNAL magnetron H- ion source

    NASA Astrophysics Data System (ADS)

    Karns, P. R.; Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper will detail changes in the operational paradigm of the Fermi National Accelerator Laboratory (FNAL) magnetron H- ion source due to upgrades in the accelerator system. Prior to November of 2012 the H- ions for High Energy Physics (HEP) experiments were extracted at ˜18 keV vertically downward into a 90 degree bending magnet and accelerated through a Cockcroft-Walton accelerating column to 750 keV. Following the upgrade in the fall of 2012 the H- ions are now directly extracted from a magnetron at 35 keV and accelerated to 750 keV by a Radio Frequency Quadrupole (RFQ). This change in extraction energy as well as the orientation of the ion source required not only a redesign of the ion source, but an updated understanding of its operation at these new values. Discussed in detail are the changes to the ion source timing, arc discharge current, hydrogen gas pressure, and cesium delivery system that were needed to maintain consistent operation at >99% uptime for HEP, with an increased ion source lifetime of over 9 months.

  8. Plasma properties of RF magnetron sputtering system using Zn target

    SciTech Connect

    Nafarizal, N.; Andreas Albert, A. R.; Sharifah Amirah, A. S.; Salwa, O.; Riyaz Ahmad, M. A.

    2012-06-29

    In the present work, we investigate the fundamental properties of magnetron sputtering plasma using Zn target and its deposited Zn thin film. The magnetron sputtering plasma was produced using radio frequency (RF) power supply and Argon (Ar) as ambient gas. A Langmuir probe was used to collect the current from the plasma and from the current intensity, we calculate the electron density and electron temperature. The properties of Zn sputtering plasma at various discharge conditions were studied. At the RF power ranging from 20 to 100 W and gas pressure 5 mTorr, we found that the electron temperature was almost unchanged between 2-2.5 eV. On the other hand, the electron temperature increased drastically from 6 Multiplication-Sign 10{sup 9} to 1 Multiplication-Sign 10{sup 10}cm{sup -3} when the discharge gas pressure increased from 5 to 10 mTorr. The electron microscope images show that the grain size of Zn thin film increase when the discharge power is increased. This may be due to the enhancement of plasma density and sputtered Zn density.

  9. Reactive high power impulse magnetron sputtering: combining simulation and experiment

    NASA Astrophysics Data System (ADS)

    Kozak, Tomas; Vlcek, Jaroslav

    2016-09-01

    Reactive high-power impulse magnetron sputtering (HiPIMS) has recently been used for preparation of various oxide films with high application potential, such as TiO2, ZrO2, Ta2O5, HfO2, VO2. Using our patented method of pulsed reactive gas flow control with an optimized reactive gas inlet, we achieved significantly higher deposition rates compared to typical continuous dc magnetron depositions. We have developed a time-dependent model of the reactive HiPIMS. The model includes a depth-resolved description of the sputtered target (featuring sputtering, implantation and knock-on implantation processes) and a parametric description of the discharge plasma (dissociation of reactive gas, ionization and return of sputtered atoms and gas rarefaction). The model uses a combination of experimental and simulation data as input. We have calculated the composition of the target and substrate for several deposition conditions. The simulations predict a reduced compound coverage of the target in HiPIMS compared to the continuous dc sputtering regime which explains the increased deposition rate. The simulations show that an increased dissociation of oxygen in a HiPIMS discharge is beneficial to achieve stoichiometric films on the substrate at high deposition rates.

  10. On Tomonaga's theory of split-anode magnetrons

    NASA Astrophysics Data System (ADS)

    Dittrich, Walter

    2016-06-01

    This article offers a review of the history of radar research and its application in the 20th century. After describing the wartime work of Sin-Itiro Tomonaga and his theory of the cavity magnetron, we formulate the equations of motion of an electron in a cavity magnetron using action-angle variables. This means following the electron's path on its way from a cylindrical cathode moving toward a co-axial cylindrical anode in presence of a uniform magnetic field parallel to the common axis. After analyzing the situation without coupling to an external oscillatory electric field, we employ methods of canonical perturbation theory to find the resonance condition between the frequencies of the free theory ωr, ωϕ and the applied perturbing oscillatory frequency ω. A long-time averaging process will then eliminate the periodic terms in the equation for the now time-dependent action-angle variables. The terms that are no longer periodic will cause secular changes so that the canonical action-angle variables (J, δ) change in a way that the path of the electron will deform gradually so that it can reach the anode. How the ensemble of the initially randomly distributed electrons forms spokes and how their energy is conveyed to the cavity-field oscillation is the main focus of this article. Some remarks concerning the importance of results in QED and the invention of radar theory and application conclude the article.

  11. Preparation and characterization of RF magnetron sputtered calcium pyrophosphate coatings.

    PubMed

    Yonggang, Yan; Wolke, J G C; Yubao, Li; Jansen, J A

    2006-03-15

    CaP ceramic has been widely used as coating on metals in orthopedics and oral dentistry. Variations in CaP composition can lead to different dissolution/precipitation behavior and may also affect the bone response. In the present study calcium pyrophosphate and hydroxylapatite coatings were successfully prepared by RF magnetron sputtering deposition. The phase composition, morphological properties, and the dissolution in SBF were characterized by using XRD, FTIR, EDS, SEM, and spectrophotometry. The results showed that all the sputtered coatings were amorphous and changed into a crystal structure after IR-radiation. The temperature for the crystallization of the amorphous coatings is lower for the hydroxylapatite coating (550 degrees C), compared to the calcium pyrophosphate coating (650 degrees C). All sputtered amorphous coatings were instable in SBF and dissolved partially within 4 wks of incubation. The heat-treated coatings appeared to be stable after incubation. These results showed that magnetron sputtering of calcium pyrophosphate coating is a promising method for forming a biocompatible ceramic coating.

  12. Elementary surface processes during reactive magnetron sputtering of chromium

    SciTech Connect

    Monje, Sascha; Corbella, Carles Keudell, Achim von

    2015-10-07

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O{sub 2} of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  13. Double circular erosion patterns on dielectric target in magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Suzaki, Yoshifumi; Miyagawa, Hayato; Ejima, Seiki

    2009-10-01

    In rf magnetron sputtering, a circular erosion pattern forms on the surface of a circular metal conductor target with permanent magnets on its back. In this case, the theory behind the erosion pattern has been established. However, in the case of a dielectric target, a double circular erosion pattern is formed. So far, this pattern has been phenomenologically recognized by experimenters; however, it has not yet been investigated. In this study, we performed a magnetron sputtering experiment with a SiO2 dielectric target, and confirmed the formation of a double circular erosion pattern. The dimensions of the double circular erosion pattern varied depending on the insulation resistance or the thickness of the SiO2 target. Furthermore, we found that the dimensions of a double circular erosion pattern changed by making a gap between the SiO2 target and guard ring. Based on the experimental results, we have proposed a qualitative model to explain the formation mechanism of double circular erosion patterns.

  14. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2012-04-15

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for a pulse length of 100 {mu}s at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were recorded with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target's racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic presheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons'ExB drift velocity, which is about 10{sup 5} m/s and shows structures in space and time.

  15. Microwave Power Measurements on the Recirculating Planar Magnetron

    NASA Astrophysics Data System (ADS)

    Jordan, N. M.; Franzi, M.; Greening, G. B.; Gilgenbach, R. M.; Simon, D. H.; Lau, Y. Y.; Hoff, B. W.; Luginsland, J. W.

    2014-10-01

    The recirculating planar magnetron (RPM) is a high power microwave generator that recirculates the beam in two-coupled, planar magnetrons. Experiments on the first L-band prototype have successfully produced 50--200 μs, 30-130 MW microwave pulses with instantaneous electronic efficiencies of up to 30% at approximately 1 GHz. The device is driven using MELBA-C, with parameters of: -300 kV for 0.3-1.0 μs, and 0.15-0.3 T axial magnetic fields. Recent RPM experiments have explored the effect of cathode surface treatment on the extracted microwave power, efficiency, and pulse width. This work utilized a proof of principle extraction system with antennas on the center vane of each oscillator to couple RF power into two, coaxial transmission lines. An advanced design, the Coaxial All Cavity Extractor, is in fabrication and will be discussed. Research supported by AFOSR Grant #FA9550-10-1-0104 and by AFRL.

  16. Elementary surface processes during reactive magnetron sputtering of chromium

    NASA Astrophysics Data System (ADS)

    Monje, Sascha; Corbella, Carles; von Keudell, Achim

    2015-10-01

    The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400-800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O2 of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation state of Cr targets, shows that the extended Berg's model constitutes a robust set of rate equations suitable to describe reactive magnetron sputtering of metals.

  17. EMI shielding using composite materials with two sources magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Jaroszewski, M.; Lewandowski, M.

    2016-02-01

    In this study, the preparation composite materials for electromagnetic shields using two sources magnetron sputtering DC-M is presented. A composite material was prepared by coating a nonwoven polypropylene metallic layer in sputtering process of targets Ti (purity 99%) and brass alloy MO58 (58%Cu, 40%Zn, 2%Pb) and ϕ diameter targets = 50 mm, under argon atmosphere. The system with magnetron sputtering sources was powered using switch-mode power supply DPS (Dora Power System) with a maximum power of 16 kW and a maximum voltage of 1.2 kV with group frequency from 50 Hz to 5 kHz. The influence of sputtering time of individual targets on the value of the EM field attenuation SE [dB] was investigated for the following supply conditions: pressure pp = 2x10-3 Torr, sputtering power P = 750 W, the time of applying a layer t = 5 min, group frequency fg = 2 kHz, the frequency of switching between targets fp = 1 Hz.

  18. A frequency tunable relativistic magnetron with a wide operation regime

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Du, Guang-Xing

    2017-02-01

    A frequency tunable relativistic magnetron (RM) with a wide operation regime is proposed. With the all cavity-magnetron axial extraction technique, the RM can output TEM mode with the operating frequency of 4.3 GHz, which is demonstrated as the dominating output mode by theoretical analysis, cold simulations and hot simulations respectively, corresponding to the output power of 466 MW and the power conversion efficiency of 56.4 %. It also can achieve a wide frequency tuning with the bandwidth of 0.96 GHz and the relative bandwidth of 20.8 %, corresponding to the output power of above 400 MW and the power conversion efficiency of above 40 %. Further simulation results show that the RM has strong performance robustness to the perturbations of the electrical parameters and almost all structural parameters except the cathode radius, anode radius and cavity radius, however two methods proposed in this paper can be taken to further improve the RM performance. The performance robustness enables the RM to operate with a wide parameter regime while keeping a good performance. In addition, a GW-level RM with the power conversion efficiency of 55.9 % also can be obtained.

  19. Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid, [BMIM][BF4].

    PubMed

    Shalu; Chaurasia, S K; Singh, R K; Chandra, S

    2013-01-24

    PVdF-HFP + IL(1-butyl-3-methylimidazolium tetrafluoroborate; [BMIM][BF(4)]) polymeric gel membranes containing different amounts of ionic liquid have been synthesized and characterized by X-ray diffraction, scanning electron microscopy, Fourier transform infrared (FTIR), differential scanning calorimetry, thermogravimetric analysis (TGA), and complex impedance spectroscopic techniques. Incorporation of IL in PVdF-HFP polymer changes different physicochemical properties such as melting temperature (T(m)), thermal stability, structural morphology, amorphicity, and ionic transport. It is shown by FTIR, TGA (also first derivative of TGA, "DTGA") that IL partly complexes with the polymer PVdF-HFP and partly remains dispersed in the matrix. The ionic conductivity of polymeric gel membranes has been found to increase with increasing concentration of IL and attains a maximum value of 1.6 × 10(-2) S·cm(-1) for polymer gel membrane containing 90 wt % IL at room temperature. Interestingly, the values of conductivity of membranes with 80 and 90 wt % of IL were higher than that of pure IL (100 wt %). The polymer chain breathing model has been suggested to explain it. The variation of ionic conductivity with temperature of these gel polymeric membranes follows Arrhenius type thermally activated behavior.

  20. Lithium ion conducting PVdF-HFP composite gel electrolytes based on N-methoxyethyl- N-methylpyrrolidinium bis(trifluoromethanesulfonyl)-imide ionic liquid

    NASA Astrophysics Data System (ADS)

    Ferrari, S.; Quartarone, E.; Mustarelli, P.; Magistris, A.; Fagnoni, M.; Protti, S.; Gerbaldi, C.; Spinella, A.

    Blends of PVdF-HFP and ionic liquids (ILs) are interesting for application as electrolytes in plastic Li batteries. They combine the advantages of the gel polymer electrolytes (GPEs) swollen by conventional organic liquid electrolytes with the nonflammability, and high thermal and electrochemical stability of ILs. In this work we prepared and characterized PVdF-HFP composite membranes swollen with a solution of LiTFSI in ether-functionalized pyrrolidinium-imide ionic liquid (PYRA 12O1TFSI). The membranes were filled in with two different types of silica: (i) mesoporous SiO 2 (SBA-15) and (ii) a commercial nano-size one (HiSil™ T700). The ionic conductivity and the electrochemical properties of the gel electrolytes were studied in terms of the nature of the filler. The thermal and the transport properties of the composite membranes are similar. In particular, room temperature ionic conductivities higher than 0.25 mS cm -1 are easily obtained at defined filler contents. However, the mesoporous filler guarantees higher lithium transference numbers, a more stable electrochemical interface and better cycling performances. Contrary to the HiSil™-based membrane, the Li/LiFePO 4 cells with PVdF-HFP/PYRA 12O1TFSI-LiTFSI films containing 10 wt% of SBA-15 show good charge/discharge capacity, columbic efficiency close to unity, and low capacity losses at medium C-rates during 180 cycles.

  1. Research and Development for an Alternative RF Source Using Magnetrons in CEBAF

    NASA Astrophysics Data System (ADS)

    Jacobs, Andrew

    2016-09-01

    At Jefferson Lab, klystrons are currently used as a radiofrequency (RF) power source for the 1497 MHz Continuous Electron Beam Accelerator Facility (CEBAF) Continuous Wave (CW) system. A drop-in replacement for the klystrons in the form of a system of magnetrons is being developed. The klystron DC-RF efficiency at CEBAF is 35-51% while the estimated magnetron efficiency is 80-90%. Thus, the introduction of magnetrons to CEBAF will have enormous benefits in terms of electrical power saving. The primary focus of this project was to characterize a magnetron's frequency pushing and pulling curves at 2.45 GHz with stub tuner and anode current adjustments so that a Low Level RF controller for a new 1.497 GHz magnetron can be built. A Virtual Instrument was created in LabVIEW, and data was taken. The resulting data allowed for the creation of many constant lines of frequency and output power. Additionally, the results provided a characterization of magnetron oven temperature drift over the operation time and the relationship between anode current and frequency. Using these results, the control model of different variables and their feedback or feedforward that affect the frequency pushing and pulling of the magnetron is better developed. Department of Energy, Science Undergraduate Laboratory Internships, and Jefferson Lab.

  2. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    SciTech Connect

    Weichsel, T. Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-15

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10{sup 10} cm{sup −3} to 1 × 10{sup 11} cm{sup −3}, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10{sup 18} atoms/s for aluminum, which meets the demand for the production of a milliampere Al{sup +} ion beam.

  3. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources.

    PubMed

    Weichsel, T; Hartung, U; Kopte, T; Zschornack, G; Kreller, M; Silze, A

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 10(10) cm(-3) to 1 × 10(11) cm(-3), when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 10(18) atoms/s for aluminum, which meets the demand for the production of a milliampere Al(+) ion beam.

  4. An inverted cylindrical sputter magnetron as metal vapor supply for electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Weichsel, T.; Hartung, U.; Kopte, T.; Zschornack, G.; Kreller, M.; Silze, A.

    2014-05-01

    An inverted cylindrical sputter magnetron device has been developed. The magnetron is acting as a metal vapor supply for an electron cyclotron resonance (ECR) ion source. FEM simulation of magnetic flux density was used to ensure that there is no critical interaction between both magnetic fields of magnetron and ECR ion source. Spatially resolved double Langmuir probe and optical emission spectroscopy measurements show an increase in electron density by one order of magnitude from 1 × 1010 cm-3 to 1 × 1011 cm-3, when the magnetron plasma is exposed to the magnetic mirror field of the ECR ion source. Electron density enhancement is also indicated by magnetron plasma emission photography with a CCD camera. Furthermore, photographs visualize the formation of a localized loss-cone - area, when the magnetron is operated at magnetic mirror field conditions. The inverted cylindrical magnetron supplies a metal atom load rate of R > 1 × 1018 atoms/s for aluminum, which meets the demand for the production of a milliampere Al+ ion beam.

  5. Highly selective etching of silicon nitride to physical-vapor-deposited a-C mask in dual-frequency capacitively coupled CH{sub 2}F{sub 2}/H{sub 2} plasmas

    SciTech Connect

    Kim, J. S.; Kwon, B. S.; Heo, W.; Jung, C. R.; Park, J. S.; Shon, J. W.; Lee, N.-E.

    2010-01-15

    A multilevel resist (MLR) structure can be fabricated based on a very thin amorphous carbon (a-C) layer ( congruent with 80 nm) and Si{sub 3}N{sub 4} hard-mask layer ( congruent with 300 nm). The authors investigated the selective etching of the Si{sub 3}N{sub 4} layer using a physical-vapor-deposited (PVD) a-C mask in a dual-frequency superimposed capacitively coupled plasma etcher by varying the process parameters in the CH{sub 2}F{sub 2}/H{sub 2}/Ar plasmas, viz., the etch gas flow ratio, high-frequency source power (P{sub HF}), and low-frequency source power (P{sub LF}). They found that under certain etch conditions they obtain infinitely high etch selectivities of the Si{sub 3}N{sub 4} layers to the PVD a-C on both the blanket and patterned wafers. The etch gas flow ratio played a critical role in determining the process window for infinitely high Si{sub 3}N{sub 4}/PVD a-C etch selectivity because of the change in the degree of polymerization. The etch results of a patterned ArF photoresisit/bottom antireflective coating/SiO{sub x}/PVD a-C/Si{sub 3}N{sub 4} MLR structure supported the idea of using a very thin PVD a-C layer as an etch-mask layer for the Si{sub 3}N{sub 4} hard-mask pattern with a pattern width of congruent with 80 nm and high aspect ratio of congruent with 5.

  6. Derivation and generalization of the dispersion relation of rising-sun magnetron with sectorial and rectangular cavities

    SciTech Connect

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei

    2013-12-15

    Field analysis method is used to derive the dispersion relation of rising-sun magnetron with sectorial and rectangular cavities. This dispersion relation is then extended to the general case in which the rising-sun magnetron can be with multi-group cavities of different shapes and sizes, and from which the dispersion relations of conventional magnetron, rising-sun magnetron, and magnetron-like device can be obtained directly. The results show that the relative errors between the theoretical and simulation values of the dispersion relation are less than 3%, the relative errors between the theoretical and simulation values of the cutoff frequencies of π mode are less than 2%. In addition, the influences of each structure parameter of the magnetron on the cutoff frequency of π mode and on the mode separation are investigated qualitatively and quantitatively, which may be of great interest to designing a frequency tuning magnetron.

  7. Controllable synthesis and defect-dependent photoluminescence properties of In2O3 nanostructures prepared by PVD

    NASA Astrophysics Data System (ADS)

    Jin, Changqing; Wei, Yongxing; Peterson, George; Zhu, Kexin; Jian, Zengyun

    2017-05-01

    In2O3 nanostructures were successfully synthesized via physical vapor deposition (PVD). It was found that the morphology of nanostuctures could be controlled by manipulation of the synthesis temperature, growth time, use of a Au-catalyst, selection of substrate material, and vapor pressure. A higher synthesis temperature is more favorable for the formation of 1D nanostructures. An increased growth time increased the width and length of the 1D nanostructures. Through the use of a Au-catalyst coated Si (1 0 0) substrate, we were able to preferentially synthesize (1 0 0) In2O3 nanostructures, even at lower growth temperatures. This research shows that a Au-catalyst is necessary for the formation of one-dimensional (1D) In2O3 nanostructures. Three dimensional (3D) octahedral nanoparticles are resultant from a Au-free Si (1 0 0) substrate. Al2O3 (1 0 0) substrates were found to be energetically favorable for the synthesis of nanofilms, not 1D nanostructures, regardless of the presence of Au-catalyst. The photoluminescence curves indicate that the defect related luminescence is not a function of morphology, but rather the ratio of the partial vapor pressures of the constituent elements (In and O), which were controlled by the growth pressure.

  8. High-current electron gun with a planar magnetron integrated with an explosive-emission cathode

    NASA Astrophysics Data System (ADS)

    Kiziridi, P. P.; Ozur, G. E.

    2017-05-01

    A new high-current electron gun with plasma anode and explosive-emission cathode integrated with planar pulsed powered magnetron is described. Five hundred twelve copper wires 1 mm in diameter and 15 mm in height serve as emitters. These emitters are installed on stainless steel disc (substrate) with 3-mm distance between them. Magnetron discharge plasma provides increased ion density on the periphery of plasma anode formed by high-current Penning discharge ignited within several milliseconds after starting of the magnetron discharge. The increased on the periphery ion density improves the uniformity of high-current electron beam produced in such an electron gun.

  9. Simulation Study Using an Injection Phase-locked Magnetron as an Alternative Source for SRF Accelerators

    SciTech Connect

    Wang, Haipeng; Plawski, Tomasz E.; Rimmer, Robert A.

    2015-09-01

    As a drop-in replacement for the CEBAF CW klystron system, a 1497 MHz, CW-type high-efficiency magnetron using injection phase lock and amplitude variation is attractive. Amplitude control using magnetic field trimming and anode voltage modulation has been studied using analytical models and MATLAB/Simulink simulations. Since the 1497 MHz magnetron has not been built yet, previously measured characteristics of a 2.45GHz cooker magnetron are used as reference. The results of linear responses to the amplitude and phase control of a superconducting RF (SRF) cavity, and the expected overall benefit for the current CEBAF and future MEIC RF systems are presented in this paper.

  10. Anisotropies in magnetron sputtered carbon nitride thin films

    NASA Astrophysics Data System (ADS)

    Hellgren, Niklas; Johansson, Mats P.; Broitman, Esteban; Hultman, Lars; Sundgren, Jan-Eric

    2001-04-01

    Carbon nitride CNx (0⩽x⩽0.35) thin films, deposited by reactive dc magnetron sputtering in Ar/N2 discharges have been studied with respect to microstructure using electron microscopy, and elastic modulus using nanoindentation and surface acoustic wave analyses. For growth temperature of 100 °C, the films were amorphous, and with an isotropic Young's modulus of ˜170-200 GPa essentially unaffected by the nitrogen fraction. The films grown at elevated temperatures (350-550 °C) show anisotropic mechanical properties due to a textured microstructure with standing basal planes, as observed from measuring the Young's modulus in different directions. The modulus measured in the plane of the film was ˜60-80 GPa, while in the vertical direction the modulus increased considerably from ˜25 to ˜200 GPa as the nitrogen content was increased above ˜15 at. %.

  11. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, D.B.; Wiley, J.D.

    1989-09-12

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness. 5 figs.

  12. Magnetron with flux switching cathode and method of operation

    DOEpatents

    Aaron, David B.; Wiley, John D.

    1989-01-01

    A magnetron sputtering apparatus is formed with a plurality of cells each for generating an independent magnetic field within a different region in the chamber of the apparatus. Each magnetic field aids in maintaining an ion plasma in the respective region of the chamber. One of a plurality of sputtering material targets is positioned on an electrode adjacent to each region so that said ions strike the target ejecting some of the target material. By selectively generating each magnetic field, the ion plasma may be moved from region to region to sputter material from different targets. The sputtered material becomes deposited on a substrate mounted on another electrode within the chamber. The duty cycle of each cell can be dynamically varied during the deposition to produce a layer having a graded composition throughout its thickness.

  13. Influence of RF power on magnetron sputtered AZO films

    SciTech Connect

    Agarwal, Mohit; Modi, Pankaj; Dusane, R. O.

    2013-02-05

    Al-doped Zinc Oxide (AZO) transparent conducting films are prepared on glass substrate by RF magnetron sputtering under different RF power with a 3 inch diameter target of 2 wt%Al{sub 2}O{sub 3} in zinc oxide. The effect of RF power on the structural, optical and electrical properties of AZO films was investigated by X-ray Diffraction (XRD), Hall measurement and UV-Visible spectrophotometry. The XRD data indicates a preferential c-axis orientation for all the films. All films exhibit high transmittance (<90%) in visible region. Films deposited at 60 W power exhibit lowest resistivity of 5.7 Multiplication-Sign 10{sup -4}{omega}cm. Such low-resistivity and high-transmittance AZO films when prepared using low RF power at room temperature could find important applications in flexible electronics.

  14. Spatiotemporal synchronization of drift waves in a magnetron sputtering plasma

    SciTech Connect

    Martines, E.; Zuin, M.; Cavazzana, R.; Antoni, V.; Serianni, G.; Spolaore, M.; Vianello, N.; Adámek, J.

    2014-10-15

    A feedforward scheme is applied for drift waves control in a magnetized magnetron sputtering plasma. A system of driven electrodes collecting electron current in a limited region of the explored plasma is used to interact with unstable drift waves. Drift waves actually appear as electrostatic modes characterized by discrete wavelengths of the order of few centimeters and frequencies of about 100 kHz. The effect of external quasi-periodic, both in time and space, travelling perturbations is studied. Particular emphasis is given to the role played by the phase relation between the natural and the imposed fluctuations. It is observed that it is possible by means of localized electrodes, collecting currents which are negligible with respect to those flowing in the plasma, to transfer energy to one single mode and to reduce that associated to the others. Due to the weakness of the external action, only partial control has been achieved.

  15. GaAs Films Prepared by RF-Magnetron Sputtering

    SciTech Connect

    L.H. Ouyang; D.L. Rode; T. Zulkifli; B. Abraham-Shrauner; N. Lewis; M.R. Freeman

    2001-08-01

    The authors reported on the optical absorption, adhesion, and microstructure of RF-magnetron sputtered films of hydrogenated amorphous and microcrystalline GaAs films for the 1 to 25 {micro}m infrared wavelength rate. Sputtering parameters which were varied include sputtering power, temperature and pressure, and hydrogen sputtering-gas concentration. TEM results show a sharp transition from purely amorphous GaAs to a mixture of microcrystalline GaAs in an amorphous matrix at 34 {+-} 2 C. By optimizing the sputtering parameters, the optical absorption coefficient can be decreased below 100 cm{sup -1} for wavelengths greater than about 1.25 {micro}m. These results represent the lowest reported values of optical absorption for sputtered films of GaAs directly measured by spectrophotometry for the near-infrared wavelength region.

  16. Characterization on RF magnetron sputtered niobium pentoxide thin films

    SciTech Connect

    Usha, N.; Sivakumar, R.; Sanjeeviraja, C.

    2014-10-15

    Niobium pentoxide (Nb{sub 2}O{sub 5}) thin films with amorphous nature were deposited on microscopic glass substrates at 100°C by rf magnetron sputtering technique. The effect of rf power on the structural, morphological, optical, and vibrational properties of Nb{sub 2}O{sub 5} films have been investigated. Optical study shows the maximum average transmittance of about 87% and the optical energy band gap (indirect allowed) changes between 3.70 eV and 3.47 eV. AFM result indicates the smooth surface nature of the samples. Photoluminescence measurement showed the better optical quality of the deposited films. Raman spectra show the LO-TO splitting of Nb-O stretching of Nb{sub 2}O{sub 5} films.

  17. Axial Structure of High-Vacuum Planar Magnetron Discharge Space

    NASA Astrophysics Data System (ADS)

    Miura, Tsutomu

    1999-09-01

    The spatial structure of high-vacuum planar magnetron discharge is theoretically investigated taking into account the electron confinement. The boundary xes of the electron confinement region depends on BA with Ea/BA as the parameter (BA: the magnetic flux density at the anode, Ea: the average electric field strength). The location at which the frequency of ionization events takes the maximum is expressed as CnNxiep (CnN: a factor related to the electron density distribution, xiep: the distance of the location from the cathode at which the ionization is most efficient). With increasing Ea and BA at a fixed Ea/BA, the density of the confined energetic electrons increases. With increasing Ea, the region where ionization is efficient shifts to the cathode side to give a high efficiency of the magnet. The boundary xes as determined by the probe method agreed with the theoretical prediction.

  18. Inverted cylindrical magnetron sputtering for HTSC thin film growth

    NASA Astrophysics Data System (ADS)

    Geerk, Jochen; Linker, G.; Meyer, O.; Ratzel, F.; Reiner, J.; Remmel, J.; Kroener, T.; Henn, R.; Massing, S.; Brecht, E.

    1992-03-01

    The conditions and quality of '1-2-3' films manufactured by inverted cylindrical magnetron sputtering (ICMS) are studied with attention given to a-axis films. The geometry of the ICMS technique eliminates ion bombardment of the substrate, and the technique is reproducible allowing systematic studies of film growth as functions of film thickness, substrate materials, and buffer layers. Film-growth direction and quality are studied with X-ray diffraction, ion-beam backscattering, and channeling. Substrate temperature is shown to be the most significant experimental parameter in the manufacture of the 1-2-3 system. Low substrate temperatures insure the growth of the a-axis configuration, and the yttrium-stabilized zirconia buffer layer is found to be of use in developing 1-2-3 films. Also reported in this paper is the growth of thin films of Bi-related HTSC compounds and the conditions for such growth.

  19. RF magnetron sputtering of thick platinum coatings on glass microspheres

    SciTech Connect

    Meyer, S.F.; Hsieh, E.J.; Burt, R.J.

    1980-05-28

    Thick platinum coatings on glass microspheres are needed for proposed Laser Fusion targets. The spherical nature of these substrates coupled with the small dimensions (approx. 100 ..mu..m OD) make it difficult to achieve a smooth and uniform coating. Coating problems encountered include a rough surface and porous microstructure from the oblique incidence and lack of temperature and bias control, clumping of the microspheres causing non-uniformities, and particle accumulation causing cone defects. Sputtering parameters significantly affecting the coatings include total pressure, DC substrate bias, and the addition of doping gases. Using an ultrasonic vibrating screened cage and RF magnetron Sputtergun, we have successfully batch coated microspheres with up to 6 ..mu..m of Pt, with a surface roughness of 200 nm, thickness non-concentricity of 300 nm, and density greater than 98% of bulk Pt.

  20. Pd-catalysts for DFAFC prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bieloshapka, I.; Jiricek, P.; Vorokhta, M.; Tomsik, E.; Rednyk, A.; Perekrestov, R.; Jurek, K.; Ukraintsev, E.; Hruska, K.; Romanyuk, O.; Lesiak, B.

    2017-10-01

    Samples of a palladium catalyst for direct formic acid fuel cell (DFAFC) applications were prepared on the Elat® carbon cloth by magnetron sputtering. The quantity of Pd was equal to 3.6, 120 and 720 μg/cm2. The samples were tested in a fuel cell for electro-oxidation of formic acid, and were characterized by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The XPS measurements revealed a high contribution of PdCx phase formed at the Pd/Elat® surface interface, with carbon concentration in PdCx from x = 9.9-14.6 at.%, resulting from the C substrate and CO residual gases. Oxygen groups, e.g. hydroxyl (-OH), carbonyl (Cdbnd O) and carboxyl (COOH), resulted from the synthesis conditions due to the presence of residual gases, electro-oxidation during the reaction and oxidation in the atmosphere. Because of the formation of CO and CO2 on the catalysts during the reaction, or because of poisoning by impurities containing the -CH3 group, together with the risk of Pd losses due to dissolution in formic acid, there was a negative effect of catalyst degradation on the active area surface. The effect of different loadings of Pd layers led to increasing catalyst efficiency. Current-voltage curves showed that different amounts of catalyst did not increase the DFAFC power to a great extent. One reason for this was the catalyst structure formed on the carbon cloth. AFM and SEM measurements showed a layer-by-layer growth with no significant variations in morphology. The results for electric power recalculated for the Pd loading per 1 mg of catalyst layers in comparison to carbon substrates decorated by Pd nanoparticles showed that there is potential for applying anodes for formic acid fuel cells prepared by magnetron sputtering.

  1. Magnetron sputtered nanostructured cadmium oxide films for ammonia sensing

    SciTech Connect

    Dhivya, P.; Prasad, A.K.; Sridharan, M.

    2014-06-01

    Nanostructured cadmium oxide (CdO) films were deposited on to glass substrates by reactive dc magnetron sputtering technique. The depositions were carried out for different deposition times in order to obtain films with varying thicknesses. The CdO films were polycrystalline in nature with cubic structure showing preferred orientation in (1 1 1) direction as observed by X-ray diffraction (XRD). Field-emission scanning electron microscope (FE-SEM) micrographs showed uniform distribution of grains of 30–35 nm size and change in morphology from spherical to elliptical structures upon increasing the film thickness. The optical band gap value of the CdO films decreased from 2.67 to 2.36 eV with increase in the thickness. CdO films were deposited on to interdigitated electrodes to be employed as ammonia (NH{sub 3}) gas sensor. The fabricated CdO sensor with thickness of 294 nm has a capacity to detect NH{sub 3} as low as 50 ppm at a relatively low operating temperature of 150 °C with quick response and recovery time. - Highlights: • Nanostructured CdO films were deposited on to glass substrates using magnetron sputtering. • Deposition time was varied in order to obtain films with different thicknesses. • The CdO films were polycrystalline in nature with preferred orientation along (1 1 1) direction. • The optical bandgap values of the films decreased on increasing the thickness of the films. • CdO films with different thickness such as 122, 204, 294 nm was capable to detect NH{sub 3} down to 50 ppm at operating temperature of 150 °C.

  2. Reactive pulsed magnetron-sputtered tantalum oxide thin films

    NASA Astrophysics Data System (ADS)

    Nielsen, Matthew Christian

    Current high speed, advanced packaging applications require the use of integrated capacitors. Tantalum oxide is one material currently being considered for use in the capacitors; however, the deposition technique used to make the thin film dielectric can alter its performance. Pulsed magnetron reactive sputtering was investigated in this thesis as it offers a robust, clean, and low temperature deposition alternative. This is a new deposition technique created to control the negative effects of target poisoning; however, to understand the relationships between the deposition variables and the resultant film properties a thorough investigation is needed. The instantaneous voltage at the target was captured using a high speed digital oscilloscope. Three target oxidation states were imaged and identified to be that of the metallic and oxidized states with an abrupt transition region separating the two. Using high resolution X-ray photoelectron spectroscopy the bonding present in the deposited films was correlated to the oxidation state of the target. While operating the target in the metallic mode, a mix of oxidized, sub-oxide and metallic states were discovered. Alternatively, the bonding present in the films deposited when the target was in the oxidized state were that of fully oxidized tantalum pentoxide. The films deposited above the critical partial pressure demonstrated excellent leakage current densities. The exact magnitude of the leakage current density inversely scaled to the relative amount of oxygen included into the sputtering atmosphere. Detailed plot analysis showed that there were two different conduction mechanisms controlling the current flow in the capacitors. High frequency test vehicles were measured up to 10 GHz in order to determine the frequency response of the dielectric material. A circuit equivalent model describing the testing system and samples was created and utilized to fit the collected data. Overall, the technique of pulsed magnetron

  3. Magnetron-Sputtered YSZ and CGO Electrolytes for SOFC

    NASA Astrophysics Data System (ADS)

    Solovyev, A. A.; Shipilova, A. V.; Ionov, I. V.; Kovalchuk, A. N.; Rabotkin, S. V.; Oskirko, V. O.

    2016-08-01

    Reactive magnetron sputtering has been used for deposition of yttria-stabilized ZrO2 (YSZ) and gadolinium-doped CeO2 (CGO) layers on NiO-YSZ commercial anodes for solid oxide fuel cells. To increase the deposition rate and improve the quality of the sputtered thin oxide films, asymmetric bipolar pulse magnetron sputtering was applied. Three types of anode-supported cells, with single-layer YSZ or CGO and YSZ/CGO bilayer electrolyte, were prepared and investigated. Optimal thickness of oxide layers was determined experimentally. Based on the electrochemical characteristics of the cells, it is shown that, at lower operating temperatures of 650°C to 700°C, the cells with single-layer CGO electrolyte are most effective. The power density of these fuel cells exceeds that of the cell based on YSZ single-layer electrolyte at the same temperature. Power densities of 650 mW cm-2 and 500 mW cm-2 at 700°C were demonstrated by cells with single-layer YSZ and CGO electrolyte, respectively. Significantly enhanced maximum power density was achieved in a bilayer-electrolyte single cell, as compared with cells with a single electrolyte layer. Maximum power density of 1.25 W cm-2 at 800°C and 1 W cm-2 at 750°C under voltage of 0.7 V were achieved for the YSZ/CGO bilayer electrolyte cell with YSZ and CGO thickness of about 4 μm and 1.5 μm, respectively. This signifies that the YSZ thin film serves as a blocking layer to prevent electrical current leakage in the CGO layer, leading to the overall enhanced performance. This performance is comparable to the state of the art for cells based on YSZ/CGO bilayer electrolyte.

  4. Chromium-nanodiamond coatings obtained by magnetron sputtering and their tribological properties

    NASA Astrophysics Data System (ADS)

    Atamanov, M. V.; Khrushchov, M. M.; Marchenko, E. A.; Shevchenko, N. V.; Levin, I. S.; Petrzhik, M. I.; Miroshnichenko, V. I.; Relianu, M. D.

    2017-07-01

    Peculiarities of structure, chemical and phase composition, micromechanical and tribological properties of chromium-based coatings obtained by magnetron-sputtering of composite and/or compacted chromium-nanodiamond targets have been investigated.

  5. NOVEL TECHNIQUE OF POWER CONTROL IN MAGNETRON TRANSMITTERS FOR INTENSE ACCELERATORS

    SciTech Connect

    Kazakevich, G.; Johnson, R.; Neubauer, M.; Lebedev, V.; Schappert, W.; Yakovlev, V.

    2016-10-21

    A novel concept of a high-power magnetron transmitter allowing dynamic phase and power control at the frequency of locking signal is proposed. The transmitter compensating parasitic phase and amplitude modulations inherent in Superconducting RF (SRF) cavities within closed feedback loops is intended for powering of the intensity-frontier superconducting accelerators. The con- cept uses magnetrons driven by a sufficient resonant (in- jection-locking) signal and fed by the voltage which can be below the threshold of self-excitation. This provides an extended range of power control in a single magnetron at highest efficiency minimizing the cost of RF power unit and the operation cost. Proof-of-principle of the proposed concept demonstrated in pulsed and CW regimes with 2.45 GHz, 1kW magnetrons is discussed here. A conceptual scheme of the high-power transmitter allowing the dynamic wide-band phase and y power controls is presented and discussed.

  6. Dynamic phase-control of a rising sun magnetron using modulated and continuous current

    SciTech Connect

    Fernandez-Gutierrez, Sulmer; Browning, Jim; Lin, Ming-Chieh; Smithe, David N.; Watrous, Jack

    2016-01-28

    Phase-control of a magnetron is studied via simulation using a combination of a continuous current source and a modulated current source. The addressable, modulated current source is turned ON and OFF at the magnetron operating frequency in order to control the electron injection and the spoke phase. Prior simulation work using a 2D model of a Rising Sun magnetron showed that the use of 100% modulated current controlled the magnetron phase and allowed for dynamic phase control. In this work, the minimum fraction of modulated current source needed to achieve a phase control is studied. The current fractions (modulated versus continuous) were varied from 10% modulated current to 100% modulated current to study the effects on phase control. Dynamic phase-control, stability, and start up time of the device were studied for all these cases showing that with 10% modulated current and 90% continuous current, a phase shift of 180° can be achieved demonstrating dynamic phase control.

  7. Equilibrium and Stability of Brillouin Flow in Planar, Conventional, and Inverted Magnetrons

    NASA Astrophysics Data System (ADS)

    Simon, David Henry

    The Brillouin flow is considered to be the prevalent state in many electron devices that operate with a crossed electric and magnetic field, including magnetrons. An investigation of equilibrium and stability of the Brillouin flow is undertaken in this thesis, motivated by simulations of the novel magnetron device, the Recirculating Planar Magnetron (RPM). These simulations showed faster startup in the inverted configuration when compared to the conventional configuration. This thesis first examines the equilibrium properties of the Brillouin flow for both planar and cylindrical geometries, and discovers new relations between the vector potential, scalar potential and electron velocity that mirror the Buneman-Hartree (B-H) and Hull Cutoff conditions. The B-H condition derived from the Brillouin flow model shows a better match to simulation and experiment of relativistic magnetrons than the single particle model B-H condition. The stability of the equilibrium Brillouin flow is studied by perturbation analysis. The perturbation fields are matched to the vacuum field solution to find the complex eigenvalue frequency. The first focus is on smooth-bore magnetrons. Analysis of a planar magnetron recovers the familiar diocotron-like instability growth. The Brillouin flow instability growth rate is found, for the first time, to be enhanced in the inverted cylindrical magnetron and decreased in the conventional cylindrical magnetron, relative to the planar magnetron. This shows that the negative mass effect on a thin electron beam in a cylindrical crossed-field device is not eliminated by the significant intrinsic velocity spread associated with the velocity shear in the Brillouin flow. A slow-wave structure (SWS) is then added to the anode, introducing a resonance between the wave on the slow-wave circuit and electrons. The space harmonics in the vacuum electromagnetic fields and within the flow are included in the analysis, also for the first time. The result is that the

  8. A Compact, Pi-Mode Extraction Scheme for the Axial B-Field Recirculating Planar Magnetron

    DTIC Science & Technology

    2012-07-23

    Figure 4). Thus, in a planar magnetron, the minimum phase velocity, vph , to stay above cutoff in the rectangular waveguide is ℎ = ...as magnetrons, electrons must be accelerated such that they are in synchronism with the phase velocity, vph , of the electromagnetic wave for an...is also likely to be a factor in the waveguide power-loading profile data displayed in Figure 10 (a). It is expected that a careful optimization of

  9. Characteristics of CrAlSiN + DLC coating deposited by lateral rotating cathode arc PVD and PACVD process

    NASA Astrophysics Data System (ADS)

    Lukaszkowicz, Krzysztof; Sondor, Jozef; Balin, Katarzyna; Kubacki, Jerzy

    2014-09-01

    Coating system composed of CrAlSiN film covered by diamond-like carbon (DLC)-based lubricant, deposited on hot work tool steel substrate was the subject of the research. The CrAlSiN and DLC layers were deposited by PVD lateral rotating ARC-cathodes (LARC) and PACVD technology on the X40CrMoV5-1 respectively. HRTEM investigation shows an amorphous character of DLC layer. It was found that the tested CrAlSiN layer has a nanostructural character with fine crystallites while their average size is less than 10 nm. Based on the XRD pattern of the CrAlSiN, the occurrence of fcc phase was only observed in the coating, the texture direction <3 1 1> is perpendicular to the sample surface. Combined SEM, AES and ToF-SIMS studies confirmed assumed chemical composition and layered structure of the coating. The chemical distribution of the elements inside the layers and at the interfaces was analyzed by SEM and AES methods. It was shown that additional CrN layer is present between substrate and CrAlSiN coating. The atomic concentration of the particular elements of DLC and CrAlSiN layer was calculated from the XPS measurements. In sliding dry friction conditions the friction coefficient for the investigated elements is set in the range between 0.05 and 0.07. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate.

  10. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior.

    PubMed

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H; Dosbaeva, Goulnara; Endrino, Jose L

    2012-08-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  11. Hierarchical adaptive nanostructured PVD coatings for extreme tribological applications: the quest for nonequilibrium states and emergent behavior

    PubMed Central

    Fox-Rabinovich, German S; Yamamoto, Kenji; Beake, Ben D; Gershman, Iosif S; Kovalev, Anatoly I; Veldhuis, Stephen C; Aguirre, Myriam H.; Dosbaeva, Goulnara; Endrino, Jose L

    2012-01-01

    Adaptive wear-resistant coatings produced by physical vapor deposition (PVD) are a relatively new generation of coatings which are attracting attention in the development of nanostructured materials for extreme tribological applications. An excellent example of such extreme operating conditions is high performance machining of hard-to-cut materials. The adaptive characteristics of such coatings develop fully during interaction with the severe environment. Modern adaptive coatings could be regarded as hierarchical surface-engineered nanostructural materials. They exhibit dynamic hierarchy on two major structural scales: (a) nanoscale surface layers of protective tribofilms generated during friction and (b) an underlying nano/microscaled layer. The tribofilms are responsible for some critical nanoscale effects that strongly impact the wear resistance of adaptive coatings. A new direction in nanomaterial research is discussed: compositional and microstructural optimization of the dynamically regenerating nanoscaled tribofilms on the surface of the adaptive coatings during friction. In this review we demonstrate the correlation between the microstructure, physical, chemical and micromechanical properties of hard coatings in their dynamic interaction (adaptation) with environment and the involvement of complex natural processes associated with self-organization during friction. Major physical, chemical and mechanical characteristics of the adaptive coating, which play a significant role in its operating properties, such as enhanced mass transfer, and the ability of the layer to provide dissipation and accumulation of frictional energy during operation are presented as well. Strategies for adaptive nanostructural coating design that enhance beneficial natural processes are outlined. The coatings exhibit emergent behavior during operation when their improved features work as a whole. In this way, as higher-ordered systems, they achieve multifunctionality and high wear

  12. Growth of fullerene-like carbon nitride thin solid films by reactive magnetron sputtering; role of low-energy ion irradiation in determining microstructure and mechanical properties

    NASA Astrophysics Data System (ADS)

    Neidhardt, J.; Czigány, Zs.; Brunell, I. F.; Hultman, L.

    2003-03-01

    Fullerene-like (FL) carbon nitride (CNx) films were deposited on Si (100) substrates by dc reactive, unbalanced, magnetron sputtering in a N2/Ar mixture from a high-purity pyrolythic graphite cathode in a dual-magnetron system with coupled magnetic fields. The N2 fraction in the discharge gas (0%-100%) and substrate bias (-25 V; -40 V) was varied, while the total pressure (0.4 Pa) and substrate temperature (450 °C) was kept constant. The coupled configuration of the magnetrons resulted in a reduced ion flux density, leading to a much lower average energy per incorporated particle, due to a less focused plasma as compared to a single magnetron. This enabled the evolution of a pronounced FL microstructure. The nitrogen concentration in the films saturated rapidly at 14-18 at. %, as determined by elastic recoil analysis, with a minor dependence on the discharge conditions. No correlations were detected between the photoelectron N1s core level spectra and the different microstructures, as observed by high-resolution electron microscopy. A variety of distinct FL structures were obtained, ranging from structures with elongated and aligned nitrogen-containing graphitic sheets to disordered structures, however, not exclusively linked to the total N concentration in the films. The microstructure evolution has rather to be seen as in equilibrium between the two competing processes of adsorption and desorption of nitrogen-containing species at the substrate. This balance is shifted by the energy and number of arriving species as well as by the substrate temperature. The most exceptional structure, for lower N2 fractions, consists of well-aligned, multi-layered circular features (nano-onions) with an inner diameter of approximately 0.7 nm and successive shells at a distance of ˜0.35 nm up to a diameter of 5 nm. It is shown that the intrinsic stress formation is closely linked with the evolution and accommodation of the heavily bent fullerene-like sheets. The FL CNx

  13. Deposition and characterization of magnetron sputtered bcc tantalum

    NASA Astrophysics Data System (ADS)

    Patel, Anamika

    The goal of this thesis was to provide scientific and technical research results for developing and characterizing tantalum (Ta) coatings on steel substrates deposited by DC magnetron sputtering. Deposition of tantalum on steel is of special interest for the protection it offers to surfaces, e.g. the surfaces of gun barrels against the erosive wear of hot propellant gases and the mechanical damage caused by the motion of launching projectiles. Electro-plated chromium is presently most commonly used for this purpose; however, it is considered to be carcinogenic in its hexavalent form. Tantalum is being investigated as non-toxic alternative to chromium and also because of its superior protective properties in these extreme environments. DC magnetron sputtering was chosen for this investigation of tantalum coatings on steel substrates because it is a versatile industrial proven process for deposition of metals. Sputter deposited Ta films can have two crystallographic structures: (1) body center cubic (bcc) phase, characterized by high toughness and high ductility and (2) a tetragonal beta phase characterized by brittleness and a tendency to fail under stress. It was found in this work that the bcc Ta coatings on steel can be obtained reliably by either of two methods: (1) depositing Ta on a submicron, stoichiometric TaN seed layer reactively sputtered on unheated steel and (2) depositing Ta directly on steel heated above a critical temperature. For argon sputtering gas this critical temperature was found to be 400°C at a pressure of 5 mtorr. With the heavier krypton gas, this critical temperature is reduced to 350°C. X-ray diffraction (XRD) was used to investigate the structure of tantalum and nitride films, and the composition of the nitride films was measured by nuclear reaction analyses (NRA), which were used to study in detail the enhancement of the bcc phase of Ta on steel. The scratch adhesion tests performed with a diamond hemispherical tip of radius 200 mum

  14. DEPOSITION OF NIOBIUM AND OTHER SUPERCONDUCTING MATERIALS WITH HIGH POWER IMPULSE MAGNETRON SPUTTERING: CONCEPT AND FIRST RESULTS

    SciTech Connect

    High Current Electronics Institute, Tomsk, Russia; Anders, Andre; Mendelsberg, Rueben J.; Lim, Sunnie; Mentink, Matthijs; Slack, Jonathan L.; Wallig, Joseph G.; Nollau, Alexander V.; Yushkov, Georgy Yu.

    2011-07-24

    Niobium coatings on copper cavities have been considered as a cost-efficient replacement of bulk niobium RF cavities, however, coatings made by magnetron sputtering have not quite lived up to high expectations due to Q-slope and other issues. High power impulse magnetron sputtering (HIPIMS) is a promising emerging coatings technology which combines magnetron sputtering with a pulsed power approach. The magnetron is turned into a metal plasma source by using very high peak power density of ~ 1 kW/cm{sup 2}. In this contribution, the cavity coatings concept with HIPIMS is explained. A system with two cylindrical, movable magnetrons was set up with custom magnetrons small enough to be inserted into 1.3 GHz cavities. Preliminary data on niobium HIPIMS plasma and the resulting coatings are presented. The HIPIMS approach has the potential to be extended to film systems beyond niobium, including other superconducting materials and/or multilayer systems.

  15. Ionized magnetron sputtering of aluminum(,2)oxygen(,3)

    NASA Astrophysics Data System (ADS)

    Gonzalez, Patrick Fernando

    2000-10-01

    This dissertation shows a detailed study of the conditions necessary for sputtering alumina using a novel variant of ionized magnetron sputtering (IMS) first demonstrated by Yamashita et. al. The study presented herein leverages concurrent research at our laboratory on high density plasmas, plasma characterization and charged particle beams research to demonstrate a new source capable of sputtering hydrated alumina films at high rates. High quality ceramics such as Al2O3 find uses in a variety of applications, and in particular, for mass storage applications. Consequently, there exists an ever-growing need to provide and improve the capability of growing thick insulating films. Ideally, the insulating film should be stoichiometric and able to be grown at rates high enough to be easily manufacturable. Alumina is a particularly attractive due to its high density, Na barrier properties, and stability and radiation resistance. However, high quality films are often difficult to achieve with conventional RF plasma due to extremely slow deposition rates and difficulties associated with system cooling. The preferred method is to reactively sputter Al from a solid target in an O2 ambient. Nevertheless, this process is inherently unstable and leads to arcing and uneven target wear when magnetrons are used. In this study, we build the sputtering source, evaluate, and maximize the deposition characteristics of alumina films sputtered from a solid target in an Ar/O2 ambient. Semi-crystalline (kappa + theta) alumina has been reported using a similar technique at temperatures as low 370 C. The difference in the system used herein is that RF power is used for both, the inductive and capacitive components. Additionally, we use a solid target made of sintered alumina throughout the experiment. A model is developed using regression analysis and compared to results obtained. Because plasma parameters can interact with each other, we explore ICP/CCP power interactions and gas influence

  16. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    NASA Astrophysics Data System (ADS)

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-01

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  17. Advanced process control and novel test methods for PVD silicon and elastomeric silicone coatings utilized on ion implant disks, heatsinks and selected platens

    SciTech Connect

    Springer, J.; Allen, B.; Wriggins, W.; Kuzbyt, R.; Sinclair, R.

    2012-11-06

    Coatings play multiple key roles in the proper functioning of mature and current ion implanters. Batch and serial implanters require strategic control of elemental and particulate contamination which often includes scrutiny of the silicon surface coatings encountering direct beam contact. Elastomeric Silicone Coatings must accommodate wafer loading and unloading as well as direct backside contact during implant plus must maintain rigid elemental and particulate specifications. The semiconductor industry has had a significant and continuous effort to obtain ultra-pure silicon coatings with sustained process performance and long life. Low particles and reduced elemental levels for silicon coatings are a major requirement for process engineers, OEM manufacturers, and second source suppliers. Relevant data will be presented. Some emphasis and detail will be placed on the structure and characteristics of a relatively new PVD Silicon Coating process that is very dense and homogeneous. Wear rate under typical ion beam test conditions will be discussed. The PVD Silicon Coating that will be presented here is used on disk shields, wafer handling fingers/fences, exclusion zones of heat sinks, beam dumps and other beamline components. Older, legacy implanters can now provide extended process capability using this new generation PVD silicon - even on implanter systems that were shipped long before the advent of silicon coating for contamination control. Low particles and reduced elemental levels are critical performance criteria for the silicone elastomers used on disk heatsinks and serial implanter platens. Novel evaluation techniques and custom engineered tools are used to investigate the surface interaction characteristics of multiple Elastomeric Silicone Coatings currently in use by the industry - specifically, friction and perpendicular stiction. These parameters are presented as methods to investigate the critical wafer load and unload function. Unique tools and test

  18. Coordination chemistry of verdazyl radicals: group 12 metal (Zn, Cd, Hg) complexes of 1,4,5,6-tetrahydro-2,4-dimethyl-6-(2 pyridiyl)-1,2,4,5-tetrazin -3(2H)-one (pvdH3) and 1,5-dimethyl-3-(2 pyridil)-6-oxoverdazyl (pvd).

    PubMed

    Brook, D J; Fornell, S; Stevens, J E; Noll, B; Koch, T H; Eisfeld, W

    2000-02-07

    Ferricyanide oxidation of 1,4,5,6-tetrahydro-2,4-dimethyl-6-(2'-pyridyl)-1,2,4,5-tetrazin-3(2H)-one (pvdH3) produces the stable chelating free radical 1,5-dimethyl-3-(2'-pyridyl)-6-oxoverdazyl (pvd) as an orange solid. Combination of group 12 metal halides with the ligand pvdH3 in acetonitrile results in precipitation of metal complexes. The mercuric chloride complex crystallizes in the monoclinic space group P2(1/c) with unit cell dimensions a = 8.5768(8) A, b = 19.1718(17) A, c = 8.5956(8) A, beta = 90.405 degrees, and V = 1413.4(2) A3. The mercuric ion is tricoordinate with a distorted trigonal planar geometry. Cadmium iodide and zinc chloride induce ring opening of the tetrazine resulting in pentacoordinate complexes of a hydrazone ligand. The cadmium iodide complex crystallizes in the triclinic space group P1 with cell dimensions a = 7.7184(8) A, b = 8.0240(9) A, c = 13.348(2) A, alpha = 97.876(4) degrees, beta = 95.594(6) degrees, gamma = 107.304(6) degrees, and V = 773.40(21) A3. Oxidation of all three metal complexes produces verdazyl radicals. Metal coordination is indicated by small changes in the EPR spectrum and by changes in the UV-visible spectrum, in particular the changes in the position of bands in the visible region. The metal halide-pvd complexes can also be synthesized by direct combination of metal halides with the free radical.

  19. The pvc Gene Cluster of Pseudomonas aeruginosa: Role in Synthesis of the Pyoverdine Chromophore and Regulation by PtxR and PvdS

    PubMed Central

    Stintzi, Alain; Johnson, Zaiga; Stonehouse, Martin; Ochsner, Urs; Meyer, Jean-Marie; Vasil, Michael L.; Poole, Keith

    1999-01-01

    A putative operon of four genes implicated in the synthesis of the chromophore moiety of the Pseudomonas aeruginosa siderophore pyoverdine, dubbed pvcABCD (where pvc stands for pyoverdine chromophore), was cloned and sequenced. Mutational inactivation of the pvc genes abrogated pyoverdine biosynthesis, consistent with their involvement in the biosynthesis of this siderophore. pvcABCD expression was negatively regulated by iron and positively regulated by both PvdS, the alternate sigma factor required for pyoverdine biosynthesis, and PtxR, a LysR family activator previously implicated in exotoxin A regulation. PMID:10383985

  20. The bioactivity mechanism of magnetron sputtered bioglass thin films

    NASA Astrophysics Data System (ADS)

    Berbecaru, C.; Stan, G. E.; Pina, S.; Tulyaganov, D. U.; Ferreira, J. M. F.

    2012-10-01

    Smooth and adherent bioactive coatings with ∼0.5 μm thickness were deposited onto Si substrates by the radiofrequency-magnetron sputtering method at 150 °C under 0.4 Pa of Ar atmosphere using a bioglass powder as target with a composition in the SiO2-CaO-MgO-P2O5-CaF2-B2O3-Na2O system. The bioactivity of the as-prepared bioglass samples was assessed by immersion in simulated body fluid for different periods of time up to 30 days. Grazing incidence X-ray diffraction, Fourier transform infra-red spectrometry and energy dispersive spectroscopy revealed that important structural and compositional changes took place upon immersing the samples in SBF. Whilst the excellent biomineralisation capability of the BG thin films was demonstrated by the in vitro induction of extensive and homogenous crystalline hydroxyapatite in-growths on their surfaces, a series of bioactivity process kinetics peculiarities (derogations from the classical model) were emphasised and thoroughly discussed.

  1. Electron transport in magnetrons by a posteriori Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Costin, C.; Minea, T. M.; Popa, G.

    2014-02-01

    Electron transport across magnetic barriers is crucial in all magnetized plasmas. It governs not only the plasma parameters in the volume, but also the fluxes of charged particles towards the electrodes and walls. It is particularly important in high-power impulse magnetron sputtering (HiPIMS) reactors, influencing the quality of the deposited thin films, since this type of discharge is characterized by an increased ionization fraction of the sputtered material. Transport coefficients of electron clouds released both from the cathode and from several locations in the discharge volume are calculated for a HiPIMS discharge with pre-ionization operated in argon at 0.67 Pa and for very short pulses (few µs) using the a posteriori Monte Carlo simulation technique. For this type of discharge electron transport is characterized by strong temporal and spatial dependence. Both drift velocity and diffusion coefficient depend on the releasing position of the electron cloud. They exhibit minimum values at the centre of the race-track for the secondary electrons released from the cathode. The diffusion coefficient of the same electrons increases from 2 to 4 times when the cathode voltage is doubled, in the first 1.5 µs of the pulse. These parameters are discussed with respect to empirical Bohm diffusion.

  2. Magnetron-sputtered Be coatings as reflectors for ultracold neutrons

    NASA Astrophysics Data System (ADS)

    Bryś, T.; Daum, M.; Fierlinger, P.; Fomin, A.; Geltenbort, P.; Henneck, R.; Kirch, K.; Kharitonov, A.; Krasnoshekova, I.; Kuźniak, M.; Lasakov, M.; Pichlmaier, A.; Raimondi, F.; Schelldorfer, R.; Serebrov, A.; Siber, E.; Tal'daev, R.; Varlamov, V.; Vasiliev, A.; Wambach, J.; Zherebtsov, O.

    2005-10-01

    We describe the production, characterization and performance of magnetron-sputtered Be coatings on aluminum, copper and stainless steel substrates. The coating thickness is typically 300 nm. Small samples were characterized by means of Optical Microscopy (OM), Atomic Force Microscopy (AFM) and X-ray induced Photoelectron Spectroscopy (XPS) and Elastic Recoil Detection Analysis (ERDA). The coating quality and adhesion following thermal cycling and neutron irradiation were tested with respect to future applications as storage containers in Ultracold Neutron (UCN) sources. The fractional uncoated area was determined to be 10 -4 to 10 -5 by OM and XPS. These results were confirmed by foil transmission measurements with UCN in the energy range 180 to 230 neV. The storage time of a 250 l Be-coated Cu container was determined for UCN energies up to 60 neV at room temperature and around 90 K and the wall loss factor η extracted. We obtained η (90 K)=2.7×10 -5 and η(300 K)=1.1×10 -4 in good agreement with previously published results.

  3. Plasma parameters of an active cathode during relativistic magnetron operation

    NASA Astrophysics Data System (ADS)

    Hadas, Y.; Kweller, T.; Sayapin, A.; Krasik, Ya. E.; Bernshtam, V.

    2009-09-01

    The results of time- and space-resolved spectroscopic studies of the plasma produced at the surface of the ferroelectric cathode during the operation of an S-band relativistic magnetron generating ˜50 MW microwave power at f =3005 MHz and powered by a linear induction accelerator (LIA) (150 kV, 1.5 kA, 250 ns) are presented. The surface plasma was produced by a driving pulse (3 kV, 150 ns) prior to the application of the LIA accelerating high-voltage pulse. The cathode plasma electron density and temperature were obtained by analyzing hydrogen Hα and Hβ, and carbon ions CII and CIII spectral lines, and using the results of nonstationary collision radiative modeling. It was shown that the microwave generation causes an increase in plasma ion and electron temperature up to ˜4 and ˜7 eV, respectively, and the plasma density increases up to ˜7×1014 cm-3. Estimates of the plasma transport parameters and its interaction with microwave radiation are also discussed.

  4. A modified relativistic magnetron with TEM output mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Ju, Jin-Chuan; Du, Guang-Xing

    2017-01-01

    A modified relativistic magnetron (RM) with TEM output mode is proposed. By setting the coupling slots at the bottom of the resonant cavities in the transmission region rather than in the interaction region, besides possessing the original RM's advantages of high power conversion efficiency and radiating the lowest order mode, the modified RM not only improves the compactness and miniaturization of the magnetic field system, which is beneficial to realize the RMs packed by a permanent magnet, but also improves the robustness of operating frequency to structural perturbations of the coupling slots, which contributes to optimize the RM performance by adjusting the coupling slot dimensions with a relatively stable operating frequency. In the three-dimensional particle-in-cell (PIC) simulation, the modified RM with a reduction of 27.2% in the weight of the coils, 35.8% in the occupied space of the coils, and 18.6% in the operating current, can output a relatively pure TEM mode, which has been demonstrated as the dominant output mode by simulation, corresponding to an output power of 495.0 MW and a power conversion efficiency of 56.4%, at the resonant frequency of 4.30 GHz. In addition, an output power of above 2 GW can also be obtained from the RM in simulations.

  5. Harmonic Generation in the Multifrequency Recirculating Planar Magnetron

    NASA Astrophysics Data System (ADS)

    Exelby, S. C.; Greening, G. B.; Jordan, N. M.; Simon, D.; Zhang, P.; Lau, Y. Y.; Gilgenbach, R. M.

    2015-11-01

    The Multifrequency Recirculating Planar Magnetron (MFRPM) is a high power microwave source adapted from the Recirculating Planar Magnetrona, currently under investigation at the University of Michigan. The device features 2 dissimilar periodic structures allowing for the generation of (L-band) 1- and (S-band) 2-GHz high power microwave pulses simultaneously. These distinct frequencies offer the potential for variable coupling for defense applications, such as counter-IED. Experiments have been performed on the RPM, driven by the Michigan Electron Long Beam Accelerator with a Ceramic insulator (MELBA-C) using a -300kV, 1-10 kA, 0.3-1.0 us pulse applied to the cathode. Using the Mode Control Cathodeb and a coax-to-waveguide extraction system, the MFRPM has demonstrated simultaneous production of 20 MW at 1 GHz and 10 MW at 2 GHz. The L-band oscillator also produced both 2- and 4-GHz oscillations when the S-band oscillator turns on. These harmonics persist after the S-band oscillator turns off. Ongoing work will attempt to isolate these harmonics to measure the power accurately and confirm these observations. Supported by the Office of Naval Research grant no. N00014-13-1-0566 and L-3 Communications.

  6. Optical Properties of Magnetron sputtered Nickel Thin Films

    NASA Astrophysics Data System (ADS)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  7. Discharge Physics of High Power Impulse Magnetron Sputtering

    SciTech Connect

    Anders, Andre

    2010-10-13

    High power impulse magnetron sputtering (HIPIMS) is pulsed sputtering where the peak power exceeds the time-averaged power by typically two orders of magnitude. The peak power density, averaged over the target area, can reach or exceed 107 W/m2, leading to plasma conditions that make ionization of the sputtered atoms very likely. A brief review of HIPIMS operation is given in a tutorial manner, illustrated by some original data related to the self-sputtering of niobium in argon and krypton. Emphasis is put on the current-voltage-time relationships near the threshold of self-sputtering runaway. The great variety of current pulse shapes delivers clues on the very strong gas rarefaction, self-sputtering runaway conditions, and the stopping of runaway due to the evolution of atom ionization and ion return probabilities as the gas plasma is replaced by metal plasma. The discussions are completed by considering instabilities and the special case of ?gasless? self-sputtering.

  8. Synthesis of Alumina Thin Films Using Reactive Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Angarita, G.; Palacio, C.; Trujillo, M.; Arroyave, M.

    2017-06-01

    Alumina (Al2O3) thin films were deposited on Si (100) by Magnetron Sputtering in reactive conditions between an aluminium target and oxygen 99.99% pure. The plasma was formed employing Argon with an R.F power of 100 W, the dwelling time was 3 hours. 4 samples were produced with temperatures between 350 and 400 ºC in the substrate by using an oxygen flow of 2 and 8 sccm, the remaining parameters of the process were fixed. The coatings and substrates were characterized using Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive Spectroscopy (EDS) in order to compare their properties before and after deposition. The films thicknesses were between 47 and 70 nm. The results show that at high oxygen flow the alumina structure prevails in the coatings while at lower oxygen flow only aluminum is deposited in the coatings. It was shown that the temperature increases grain size and roughness while decreasing the thicknesses of the coatings.

  9. Fabrication of oriented hydroxyapatite film by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Hirata, Keishiro; Kubota, Takafumi; Koyama, Daisuke; Takayanagi, Shinji; Matsukawa, Mami

    2017-08-01

    Hydroxyapatite (HAp) is compatible with bone tissue and is used mainly as a bone prosthetic material, especially as the coating of implants. Oriented HAp film is expected to be a high-quality epitaxial scaffold of the neonatal bone. To fabricate highly oriented HAp thin films via the conventional plasma process, we deposited the HAp film on a Ti coated silica glass substrate using RF magnetron sputtering in low substrate temperature conditions. The X-ray diffraction pattern of the film sample consisted of an intense (002) peak, corresponding to the highly oriented HAp. The (002) peak in XRD diagrams can be attributed either to the monoclinic phase or the hexagonal phase. Pole figure analysis showed that the (002) plane grew parallel to the surface of the substrate, without inclination. Transmission Electron Microscope analysis also showed the fabrication of aligned HAp crystallites. The selected area diffraction patterns indicated the existence of monoclinic phase. The existence of hexagonal phase could not be judged. These results indicate the uniaxial films fabricated by this technique enable to be the epitaxial scaffold of the neonatal bone. This scaffold can be expected to promote connection with the surrounding bone tissue and recovery of the dynamic characteristics of the bone.

  10. Fabrication of multilayered Ge nanocrystals by magnetron sputtering and annealing.

    PubMed

    Gao, Fei; Green, Martin A; Conibeer, Gavin; Cho, Eun-Chel; Huang, Yidan; Pere-Wurfl, Ivan; Flynn, Chris

    2008-11-12

    Multilayered Ge nanocrystals embedded in Si and Ge oxide films have been fabricated on Si substrate by a (SiO(2)+Ge)/(SiO(2)+GeO(2)) superlattice approach, using an rf magnetron sputtering technique with a Ge+SiO(2) composite target and subsequent thermal annealing in N(2) ambient at 750 °C for 5 min. X-ray diffraction (XRD) measurements indicated the formation of Ge nanocrystals with an average size estimated to be 9.8 nm. Raman scattering spectra showed a peak of the Ge-Ge vibrational mode shifted downwards to 298.8 cm(-1), which was caused by quantum confinement of phonons in the Ge nanocrystals. X-ray photoemission spectroscopy (XPS) analysis demonstrated that the Ge chemical state is mainly Ge(0) in the (SiO(2)+Ge) layer and Ge(4+) in the (SiO(2)+GeO(2)) layer in the superlattice structure. Transmission electron microscopy (TEM) revealed that Ge nanocrystals were confined in (SiO(2)+Ge) layers, and had good crystallinity. This superlattice approach significantly improved both the size uniformity of Ge nanocrystals and their uniformity of spacing on the 'Z' growth direction compared with the conventional Ge-ncs fabrication method using a single and thick SiO(2) matrix film.

  11. Magnetron sputtered WS2; optical and structural analysis

    NASA Astrophysics Data System (ADS)

    Koçak, Y.; Akaltun, Y.; Gür, Emre

    2016-04-01

    Remarkable properties of graphene have renewed interest in inorganic, Transition Metal Dichalgogenits (TMDC) due to unique electronic and optical properties. TMDCs such as MoS2, MoSe2, WS2 and WSe2 have sizable bandgaps that change from indirect to direct in single layers, allowing applications such as solar cells, transistors, photodetectors and electroluminescent devices in which the graphene is not actively used. So, fabrication and analysis of these films are important for new generation devices. In this work, polycrystalline WS2 films were grown by radio frequency magnetron sputtering (RFMS) on different substrates like n-Si(100), n-Si(111), p-Si(100), glass and fused silica. Structural, morphological, optical and electrical properties were investigated as a function of film thickness and RF power. From XRD analysis, signals from planes of (002), (100), (101), (110), (008) belong to the hegzagonal WS2 were obtained. Raman spectra of the WS2 show that there are two dominant peaks at ~351 cm-1 (in-plane phonon mode) and ~417 cm-1 (out-of-plane phonon mode). XPS analysis of the films has shown that binding energy and the intensity of tungsten 4f shells shifts by depending on the depth of the films which might be due to the wellknown preferential sputtering.

  12. Nanostructure evolution of magnetron sputtered hydrogenated silicon thin films

    NASA Astrophysics Data System (ADS)

    Adhikari, Dipendra; Junda, Maxwell M.; Marsillac, Sylvain X.; Collins, Robert W.; Podraza, Nikolas J.

    2017-08-01

    Hydrogenated silicon (Si:H) thin films have been prepared by radio frequency (RF) magnetron sputtering. The effect of hydrogen gas concentration during sputtering on the resultant film structural and optical properties has been investigated by real time spectroscopic ellipsometry (RTSE) and grazing incidence x-ray diffraction (GIXRD). The analysis of in-situ RTSE data collected during sputter deposition tracks the evolution of surface roughness and film bulk layer thickness with time. Growth evolution diagrams depicting amorphous, nanocrystalline, and mixed-phase regions for low and high deposition rate Si:H are constructed and the effects of process parameter (hydrogen gas concentration, total pressure, and RF power) variations on the deposition rate have been qualified. Virtual interface analysis of RTSE data provides nanocrystalline volume fraction depth profiles in the mixed-phase growth regime. GIXRD measurements show the presence of (111) and (220) oriented crystallites. Vibrational mode absorption features from Si-Hn bonding configurations at 590, 640, 2000, and 2090 cm-1 are obtained by ex-situ infrared spectroscopic ellipsometry. Hydrogen incorporation decreases as films transition from amorphous to nanocrystalline phases with increasing hydrogen gas concentration during sputtering.

  13. Langmuir probe measurements in the Hollow Cathode Magnetron

    NASA Astrophysics Data System (ADS)

    Vukovic, Mirko; Lai, Kwok-Fai

    1997-10-01

    The Hollow Cathode Magnetron (HCM) is a new kind of a high density plasma device which has been proposed as an ionized physical vapor deposition source for semiconductor device fabrication(John C. Helmer, Kwok F. Lai, Robert L. Anderson US Patent 5,482,661, Jan. 9, 1996). The target is of high purity metal machined to resemble a hollow cathode (id. 4cm, depth 6cm). It resides in a cooled metal housing. The magnetic field (several hundred Gauss) is generated by permanent magnets stacked on the outside of the metal housing, aligned parallel to the HCM axis. At the mouth of the HCM, a magnetic cusp traps a high density plasma. Beyond the cusp, a slowly diverging magnetic field produces a low temperature (T_e ~ 2-3eV), high density (n_e ~ 10^12-10^13cm-3∝ P_DC) plume. The HCM serves to both sputter and ionize metal atoms from the target. These ions may deposit onto a silicon device wafer, enabling metal deposition into the bottom of very small (<0.5μm) high aspect ratio (>=6:1) features. The unique properties of the films deposited using the HCM will be presented and related to the plasma parameters obtained from Langmuir probe data and magnetic field modeling. discharge is on the inside wall

  14. Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: Temperature dependence of the concentration of the anion conformers.

    PubMed

    Vitucci, F M; Palumbo, O; Trequattrini, F; Brubach, J-B; Roy, P; Meschini, I; Croce, F; Paolone, A

    2015-09-07

    We measured the temperature dependence of the infrared absorption spectrum of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY R14-TFSI) between 160 and 330 K, through all the phase transitions presented by this compound. The comparison of the experimental spectra with the calculated vibration modes of different conformers of the ions composing the ionic liquid allowed to detect the presence of both conformers of TFSI in the liquid, supercooled, and glass phases, while only the trans-conformer is retained in both solid phases. When the ionic liquid swells a polyvinylidenefluoride (PVdF) electrospun membrane, the cis-rotamer is detected in all phases, since the interaction between the polymer and the ionic liquid inhibits the complete transformation of TFSI into the trans-conformer in the solid phases. Computational results confirm that in the presence of a PVdF chain, cis-TFSI becomes the lowest energy conformer. Therefore, the interaction with the polymer alters the physical properties of the ionic liquid.

  15. Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: Temperature dependence of the concentration of the anion conformers

    NASA Astrophysics Data System (ADS)

    Vitucci, F. M.; Palumbo, O.; Trequattrini, F.; Brubach, J.-B.; Roy, P.; Meschini, I.; Croce, F.; Paolone, A.

    2015-09-01

    We measured the temperature dependence of the infrared absorption spectrum of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PY R14-TFSI) between 160 and 330 K, through all the phase transitions presented by this compound. The comparison of the experimental spectra with the calculated vibration modes of different conformers of the ions composing the ionic liquid allowed to detect the presence of both conformers of TFSI in the liquid, supercooled, and glass phases, while only the trans-conformer is retained in both solid phases. When the ionic liquid swells a polyvinylidenefluoride (PVdF) electrospun membrane, the cis-rotamer is detected in all phases, since the interaction between the polymer and the ionic liquid inhibits the complete transformation of TFSI into the trans-conformer in the solid phases. Computational results confirm that in the presence of a PVdF chain, cis-TFSI becomes the lowest energy conformer. Therefore, the interaction with the polymer alters the physical properties of the ionic liquid.

  16. Lithium ion conducting PVA:PVdF polymer electrolytes doped with nano SiO2 and TiO2 filler

    NASA Astrophysics Data System (ADS)

    Hema, M.; Tamilselvi, P.

    2016-09-01

    The effect of nano SiO2 and TiO2 fillers on the thermal, mechanical and electrochemical properties of PVA:PVdF:LiCF3SO3 have been investigated by three optimized systems of SPE (80PVA:20PVdF:15LiCF3SO3), CPE-I (SPE:8SiO2) and CPE-II (SPE:4TiO2). From the TGA curve least weight loss has been observed for CPE-II indicating high thermal stability compared to other systems. Stress-strain curve of the prepared samples confirm the enhancement of tensile strength in CPE-II compared to CPE-I and SPE. Conductivity studies show that addition of TiO2 filler slightly enhances ionic conductivity 3.7×10-3 S cm-1 compared to filler free system at 303 K. Dielectric plots have been analyzed and CPE-II possesses higher dielectric constant compared to CPE-I and filler free system. Temperature dependence of modulus plots has been studied for highest conductivity possessing sample. Wider electrochemical stability has been obtained for nano-composite polymer electrolytes. The results conclude that the prepared CPE-II shows the best performance and it will be well suited for lithium ion batteries.

  17. GEP-based method to formulate adhesion strength and hardness of Nb PVD coated on Ti-6Al-7Nb aimed at developing mixed oxide nanotubular arrays.

    PubMed

    Rafieerad, A R; Bushroa, A R; Nasiri-Tabrizi, B; Fallahpour, A; Vadivelu, J; Musa, S N; Kaboli, S H A

    2016-08-01

    PVD process as a thin film coating method is highly applicable for both metallic and ceramic materials, which is faced with the necessity of choosing the correct parameters to achieve optimal results. In the present study, a GEP-based model for the first time was proposed as a safe and accurate method to predict the adhesion strength and hardness of the Nb PVD coated aimed at growing the mixed oxide nanotubular arrays on Ti67. Here, the training and testing analysis were executed for both adhesion strength and hardness. The optimum parameter combination for the scratch adhesion strength and micro hardness was determined by the maximum mean S/N ratio, which was 350W, 20 sccm, and a DC bias of 90V. Results showed that the values calculated in the training and testing in GEP model were very close to the actual experiments designed by Taguchi. The as-sputtered Nb coating with highest adhesion strength and microhardness was electrochemically anodized at 20V for 4h. From the FESEM images and EDS results of the annealed sample, a thick layer of bone-like apatite was formed on the sample surface after soaking in SBF for 10 days, which can be connected to the development of a highly ordered nanotube arrays. This novel approach provides an outline for the future design of nanostructured coatings for a wide range of applications.

  18. High peak power gyroklystron with an inverted magnetron injection gun

    SciTech Connect

    Read, Michael E.; Lawson, Wesley; Miram, George; Marsden, David; Borchard, Philipp

    2005-12-01

    Calabazas Creek Research Inc. (CCR) has investigated the feasibility of a 30 GHz gyroklystron amplifier for driving advanced accelerators. Gyroklystrons have been shown to be efficient sources of high power radiation at frequencies above X-Band and are, therefore, well suited for driving high frequency accelerators. CCR's gyroklystron design includes a novel inverted magnetron injection gun (MIG) that allows support and cooling of the coaxial inner conductor of the circuit. This novel gun provides a very high quality electron beam, making it possible to achieve a cavity design with an efficiency of 54%. During Phase I, it was determined that the original frequency of 17 GHz was no longer well matched to the potential market. A survey of accelerator needs identified the Compact Linear Collider (CLIC) as requiring 30 GHz sources for testing of accelerator structures. Developers at CLIC are seeking approximately 25 MW per tube. This will result in the same power density as in the original 80 MW, 17 GHz device and will thus have essentially the same risk. CLIC will require initially 3-4 tubes and eventually 12-16 tubes. This quantity represents $5M-$10M in sales. In addition, gyroklystrons are of interest for radar systems and electron paramagnetic resonance (EPR) instruments. Following discussions with the Department of Energy, it was determined that changing the program goal to the CLIC requirement was in the best interest of CCR and the funding agency. The Phase I program resulted in a successful gyroklystron design with a calculated efficiency of 54% with an output power of 33 MW. Design calculations for all critical components are complete, and no significant technical issues remain.

  19. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    DOE PAGES

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; ...

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRFmore » cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.« less

  20. Magnetron sputtering of copper on thermosensitive polymer materials of the gas centrifuge rotors

    NASA Astrophysics Data System (ADS)

    Borisevich, V.; Senchenkov, S.; Titov, D.

    2016-09-01

    Magnetron sputtering is the well-known and widely-used deposition technique for coating versatile high-quality and well-adhered films. However, the technology has some limitations, caused by high temperatures on the coating surface. The paper is devoted to the experimental development of a process of magnetron sputtering of copper on a surface coated with a thermosensitive polymer made of carbon fiber with epoxide binder. This process is applied for balancing a rotor of a gas centrifuge for isotope separation. The optimum operating parameters of the process are found and discussed. They were in quantitative agreement with data obtained by means of non-stationary modeling based on a global description of plasma in the typical geometry of the magnetron discharges obtained in independent research. The structure of the resulting layer is investigated.

  1. Precision vector control of a superconducting RF cavity driven by an injection locked magnetron

    SciTech Connect

    Chase, Brian; Pasquinelli, Ralph; Cullerton, Ed; Varghese, Philip

    2015-03-01

    The technique presented in this paper enables the regulation of both radio frequency amplitude and phase in narrow band devices such as a Superconducting RF (SRF) cavity driven by constant power output devices i.e. magnetrons [1]. The ability to use low cost high efficiency magnetrons for accelerator RF power systems, with tight vector regulation, presents a substantial cost savings in both construction and operating costs - compared to current RF power system technology. An operating CW system at 2.45 GHz has been experimentally developed. Vector control of an injection locked magnetron has been extensively tested and characterized with a SRF cavity as the load. Amplitude dynamic range of 30 dB, amplitude stability of 0.3% r.m.s, and phase stability of 0.26 degrees r.m.s. has been demonstrated.

  2. Studies of aluminium coatings deposited by vacuum evaporation and magnetron sputtering.

    PubMed

    Garbacz, H; Wieciński, P; Adamczyk-Cieślak, B; Mizera, J; Kurzydłowski, K J

    2010-03-01

    The paper presents the results of investigations of the microstructures and properties of the aluminium coatings deposited by vacuum evaporation and magnetron sputtering. These coatings generally have a very refined microstructure with elongated nano-grains. However, the surface topography of the aluminium coating deposited by vacuum evaporation is more developed, its microstructure is less homogeneous and more porous. The residual tensile stresses in the aluminium coating deposited by magnetron sputtering are close to 130 MPa, and the texture is relatively pronounced. Vacuum evaporation does not induce residual stresses in the coatings and the texture is very weak. The results obtained indicate that the aluminium coatings produced by magnetron sputtering are more suitable for the diffusive Ti-Al intermetallic layers.

  3. Polyester fabric coated with Ag/ZnO composite film by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yuan, Xiaohong; Xu, Wenzheng; Huang, Fenglin; Chen, Dongsheng; Wei, Qufu

    2016-12-01

    Ag/ZnO composite film was successfully deposited on polyester fabric by using direct current (DC) magnetron sputtering and radio frequency (RF) magnetron reaction sputtering techniques with pure silver (Ag) and zinc (Zn) targets. X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to examine the deposited film on the fabric. It was found that the zinc film coated on Ag film before RF reactive sputtering could protect the silver film from oxidation. Anti-ultraviolet property and antistatic property of the coated samples using different magnetron sputtering methods were also investigated. The experimental results showed that Ag film was oxidized into in Ag2O film in high vacuum oxygen environment. The deposition of Zn film on the surface of the fabric coated with Ag film before RF reactive sputtering, could successfully obtained Ag/ZnO composite film, and also generated structural color on the polyester fabric.

  4. Solid-state pulse modulator for a 1.7-MW X-band magnetron

    NASA Astrophysics Data System (ADS)

    Choi, Jaegu; Shin, Yong-Moon; Choi, Young-Wook; Kim, Kwan-Ho

    2014-05-01

    Medical linear accelerators (LINAC) for cancer treatment require pulse modulators to generate high-power pulses with a fast rise time, flat top and short duration to drive high-power magnetrons. Solid-state pulse modulators (SSPM) for medical LINACs that use high power semiconductor switches with high repetition rates, high stability and long lifetimes have been introduced to replace conventional linear-type pulse generators that use gaseous discharge switches. In this paper, the performance of a developed SSPM, which mainly consists of a capacitor charger, an insulatedgate bipolar transistor (IGBT)-capacitor stack and a pulse transformer, is evaluated with a dummy load and an X-band magnetron load. A theoretical analysis of the pulse transformer, which is a critical element of the SSPM, is carried out. The output pulse has a fast rise time and low droop, such that the modulator can drive the X-band magnetron.

  5. Microwave impedance matching strategies of an applicator supplied by a bi-directional magnetron waveguide launcher.

    PubMed

    Roussy, Georges; Kongmark, Nils

    2003-01-01

    It is shown that a bi-directional waveguide launcher can be used advantageously for reducing the reflection coefficient mismatch of an input impedance of an applicator. In a simple bi-directional waveguide launcher, the magnetron is placed in the waveguide and generates a nominal field distribution with significant output impedance in both directions of the waveguide. If a standing wave is tolerated in the torus, which connects the launcher and the applicator, the power transfer from the magnetron to the applicator can be optimal, without using special matching devices. It is also possible to match the bi-directional launcher with two inductance stubs near the antenna of the magnetron and use them for supplying a two-input applicator without reflection.

  6. Surface hardening of VT-22 alloy by inductively coupled plasma nitriding and magnetron deposition of TiN films

    NASA Astrophysics Data System (ADS)

    Kharkov, Maxim M.; Kaziev, Andrey V.; Tumarkin, Alexander V.; Drobinin, Vyacheslav E.; Stepanova, Tatiana V.; Pisarev, Alexander A.

    2017-01-01

    The surface of VT-22 Russian grade titanium alloy samples was modified by inductively coupled plasma (ICP) nitriding followed by magnetron deposition of TiN coatings. Different operating conditions of ICP nitriding and magnetron deposition were considered. The microhardness depth profiles were measured for samples after nitriding. The performance of TiN coatings was examined with a scratch tester.

  7. Combined Monte Carlo and Fluid Sputter Transport Model in an Ionized PVD System with Experimental Plasma Characterization

    NASA Astrophysics Data System (ADS)

    Ruzic, David N.; Juliano, Daniel R.; Hayden, Douglas B.; Allain, Monica M. C.

    1998-10-01

    A code has been developed to model the transport of sputtered material in a modified industrial-scale magnetron. The device has a target diameter of 355 mm and was designed for 200 mm substrates. The chamber has been retrofitted with an auxilliary RF inductive plasma source located between the target and substrate. The source consists of a water-cooled copper coil immersed in the plasma, but with a diameter large enough to prevent shadowing of the substrate. The RF plasma, target sputter flux distribution, background gas conditions, and geometry are all inputs to the code. The plasma is characterized via a combination of a Langmuir probe apparatus and the results of a simple analytic model of the ICP system. The source of sputtered atoms from the target is found through measurements of the depth of the sputter track in an eroded target and the distribution of the sputter flux is calculated via VFTRIM. A Monte Carlo routine tracks high energy atoms emerging from the target as they move through the chamber and undergo collisions with the electrons and background gas. The sputtered atoms are tracked by this routine whatever their electronic state (neutral, excited, or ion). If the energy of a sputtered atom decreases to near-thermal levels, then it exits the Monte Carlo routine as is tracked with a simple diffusion model. In this way, all sputtered atoms are followed until they hit and stick to a surface, and the velocity distribution of the sputtered atom population (including electronic state information) at each surface is calculated, especially the substrate. Through the use of this simulation the coil parameters and geometry can be tailored to maximize deposition rate and sputter flux uniformity.

  8. Dual Wavelength Lasers

    NASA Technical Reports Server (NTRS)

    Walsh, Brian M.

    2010-01-01

    Dual wavelength lasers are discussed, covering fundamental aspects on the spectroscopy and laser dynamics of these systems. Results on Tm:Ho:Er:YAG dual wavelength laser action (Ho at 2.1 m and Er at 2.9 m) as well as Nd:YAG (1.06 and 1.3 m) are presented as examples of such dual wavelength systems. Dual wavelength lasers are not common, but there are criteria that govern their behavior. Based on experimental studies demonstrating simultaneous dual wavelength lasing, some general conclusions regarding the successful operation of multi-wavelength lasers can be made.

  9. On the electron energy in the high power impulse magnetron sputtering discharge

    SciTech Connect

    Gudmundsson, J. T.; Sigurjonsson, P.; Larsson, P.; Lundin, D.; Helmersson, U.

    2009-06-15

    The temporal variation of the electron energy distribution function (EEDF) was measured with a Langmuir probe in a high power impulse magnetron sputtering (HiPIMS) discharge at 3 and 20 mTorr pressures. In the HiPIMS discharge a high power pulse is applied to a planar magnetron giving a high electron density and highly ionized sputtered vapor. The measured EEDF is Maxwellian-like during the pulse; it is broader for lower discharge pressure and it becomes narrower as the pulse progresses. This indicates that the plasma cools as the pulse progresses, probably due to high metal content of the discharge.

  10. High power impulse magnetron sputtering discharges: Instabilities and plasma self-organization

    SciTech Connect

    Ehiasarian, A. P.; New, R.; Hecimovic, A.; Arcos, T. de los; Schulz-von der Gathen, V.; Boeke, M.; Winter, J.

    2012-03-12

    We report on instabilities in high power impulse magnetron sputtering plasmas which are likely to be of the generalized drift wave type. They are characterized by well defined regions of high and low plasma emissivity along the racetrack of the magnetron and cause periodic shifts in floating potential. The azimuthal mode number m depends on plasma current, plasma density, and gas pressure. The structures rotate in E-vectorxB-vector direction at velocities of {approx}10 km s{sup -1} and frequencies up to 200 kHz. Collisions with residual gas atoms slow down the rotating wave, whereas increasing ionization degree of the gas and plasma conductivity speeds it up.

  11. Modelling of a high-current magnetron discharge in a plasma electron emitter

    NASA Astrophysics Data System (ADS)

    Udovichenko, S. Yu; Kostrin, D. K.; Lisenkov, A. A.

    2017-07-01

    An analytical model of a high-current form of a low-pressure glow discharge in an inverted cylindrical magnetron, which performs the function of plasma electron emitter, is shown. Were found conditions of the discharge self-sustaining, allowing to estimate the voltage of the discharge and determine the critical value of the magnetic field and residual gas pressure below which the existence of this type of discharge is impossible. A comparison of the calculated discharge characteristics with experimental data obtained on the setup for studying the emission properties of the magnetron discharge was carried out.

  12. Photoluminescence observation from zinc oxide formed by magnetron sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Kudryashov, D.; Babichev, A.; Nikitina, E.; Gudovskikh, A.; Kladko, P.

    2015-11-01

    The photoluminescence (PL) of ZnO thin films grown by magnetron sputtering at room temperature has been observed. The PL spectra were measured using an instrument from Accent Optical Technologies with a solid state UV laser (λ = 266 nm) as the pumping source and at the temperature of 300 K. Samples grown at sputtering power of 100-200 W show a strong photoluminescence (PL) at wavelength of 377 nm and its intensity shows non-linear dependence with magnetron power. At values of sputtering power less then 100 W PL signal was not observed. A correlation between PL, XRD intensity and ZnO grain size was shown.

  13. Synthesis of ZrO2 nanoparticles in microwave hydrolysis of Zr (IV) salt solutions—Ionic conductivity of PVdF-co-HFP-based polymer electrolyte by the inclusion of ZrO2 nanoparticles

    NASA Astrophysics Data System (ADS)

    Kalyana Sundaram, N. T.; Vasudevan, T.; Subramania, A.

    2007-02-01

    Nanocrystalline ZrO2 particles have been prepared by microwave hydrolysis of Zr(IV) salt solutions at 400C for 6 h. The paper describes the PVdF-co-HFP-ZrO2-based NCPEMs prepared by a simple solvent casting technique. The incorporation of ZrO2 nanoparticles in the PVdF-co-HFP matrix, improved the ionic conductivity due to the availability of a large amount of oxygen vacancies on ZrO2 surface which may act as the active Lewis acidic site that interact with ClO4- ions. On the other hand, a high concentration of ZrO2 [10 wt(%)] leads to depression in ionic conductivity due to the formation of more crystalline phase in the PVdF-co-HFP matrix. DSC, XRD, SEM and DC-polarization studies were carried out. This paper also explores and proposes a structure conductivity correlation in the PVdF-co-HFP-LiClO4 ZrO2-based NCPEMs system. The proposed correlation is derived from the interpretation of DSC, XRD and AC-impedance measurements. The temperature dependence of the ionic conductivity of NCPEMs follows the Arrhenius behaviour. Finally, the LSV experiment has been carried out to investigate the electrochemical stability in the polymer electrolytes.

  14. Particle-balance models for pulsed sputtering magnetrons

    NASA Astrophysics Data System (ADS)

    Huo, Chunqing; Lundin, D.; Gudmundsson, J. T.; Raadu, M. A.; Bradley, J. W.; Brenning, N.

    2017-09-01

    The time-dependent plasma discharge ionization region model (IRM) has been under continuous development during the past decade and used in several studies of the ionization region of high-power impulse magnetron sputtering (HiPIMS) discharges. In the present work, a complete description of the most recent version of the IRM is given, which includes improvements, such as allowing for returning of the working gas atoms from the target, a separate treatment of hot secondary electrons, addition of doubly charged metal ions, etc. To show the general applicability of the IRM, two different HiPIMS discharges are investigated. The first set concerns 400 μs long discharge pulses applied to an Al target in an Ar atmosphere at 1.8 Pa. The second set focuses on 100 μs long discharge pulses applied to a Ti target in an Ar atmosphere at 0.54 Pa, and explores the effects of varying the magnetic field strength. The model results show that Al2+ -ions contribute negligibly to the production of secondary electrons, while Ti2+ -ions effectively contribute to the production of secondary electrons. Similarly, the model results show that for an argon discharge with Al target the contribution of Al+-ions to the discharge current at the target surface is over 90% at 800 V. However, at 400 V the Al+-ions and Ar+-ions contribute roughly equally to the discharge current in the initial peak, while in the plateau region Ar+-ions contribute to roughly \\frac{2}{3} of the current. For high currents the discharge with Al target develops almost pure self-sputter recycling, while the discharge with Ti target exhibits close to a 50/50 combination of self-sputter recycling and working gas-recycling. For a Ti target, a self-sputter yield significantly below unity makes working gas-recycling necessary at high currents. For the discharge with Ti target, a decrease in the B-field strength, resulted in a corresponding stepwise increase in the discharge resistivity.

  15. Preparation and characterization on nano-hybrid composite solid polymer electrolyte of PVdF-HFP /MG49-ZrO{sub 2} for battery application

    SciTech Connect

    Lee, T. K.; Ahmad, A.; Hasyareeda, N.

    2014-09-03

    Initial study on nano composite polymer electrolyte of PVdF-HFP/MG49-ZrO{sub 2} has been done. The zirconium was synthesis via in-situ sol-gel method in a dissolved polymer blends. The effects of different concentrations of zirconium and pH values have been investigated on nano composite polymer (NCP). Analysis impedance show that only at 6 wt. % of zirconium for all pH values show a semi-circle arc which have lowest value of bulk resistance. No ionic conductivity value is obtain due to the absent of ion charge carriers. Analysis of XRD revealed that crystallinity phase of the nano composite polymer was affect by different pH values. However, no significant changes have been observed in IR bands. This could well indicate that different pH medium did not affect the chemical bonding in the structure.

  16. Advanced, phase-locked, 100 kW, 1.3 GHz magnetron

    DOE PAGES

    Read, Michael; Ives, R. Lawrence; Bui, Thuc; ...

    2017-03-06

    Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Here, phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.

  17. Magnetron deposited TiN coatings for protection of Al-Cu-Ag-Mg-Mn alloy

    NASA Astrophysics Data System (ADS)

    Stepanova, Tatiana V.; Kaziev, Andrey V.; Atamanov, Mikhail V.; Tumarkin, Alexander V.; Dolzhikova, Svetlana A.; Izmailova, Nelly Ph; Kharkov, Maxim M.; Berdnikova, Maria M.; Mozgrin, Dmitry V.; Pisarev, Alexander A.

    2016-09-01

    TiN coatings were deposited on a new Al super-alloy by magnetron sputtering in argon/nitrogen environment. The deposited layer structure, microhardness, adhesion, corrosion resistance, and fatigue life were investigated and tests demonstrated improved performance of the alloy.

  18. A cookbook for building a high-current dimpled H– magnetron source for accelerators

    DOE PAGES

    Bollinger, Daniel S.; Karns, Patrick R.; Tan, Cheng -Yang

    2015-10-30

    A high-current (>50 mA) dimpled H– magnetron source has been built at Fermilab for supplying H– beam to the entire accelerator complex. Despite many decades of expertise with slit H– magnetron sources at Fermilab, we were faced with many challenges from the dimpled H– magnetron source, which needed to be overcome in order to make it operational. Dimpled H– sources for high-energy physics are not new: Brookhaven National Laboratory has operated a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took about two years because a cookbook for building this type ofmore » source did not exist and seemingly innocuous or undocumented choices had a huge impact on the success or failure for this type of source. Moreover, it is the goal of this paper to document the reasons for these choices and to present a cookbook for building and operating dimpled H– magnetron sources.« less

  19. A high power impulse magnetron sputtering model to explain high deposition rate magnetic field configurations

    NASA Astrophysics Data System (ADS)

    Raman, Priya; Weberski, Justin; Cheng, Matthew; Shchelkanov, Ivan; Ruzic, David N.

    2016-10-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is one of the recent developments in the field of magnetron sputtering technology that is capable of producing high performance, high quality thin films. Commercial implementation of HiPIMS technology has been a huge challenge due to its lower deposition rates compared to direct current Magnetron Sputtering. The cylindrically symmetric "TriPack" magnet pack for a 10 cm sputter magnetron that was developed at the Center for Plasma Material Interactions was able to produce higher deposition rates in HiPIMS compared to conventional pack HiPIMS for the same average power. The "TriPack" magnet pack in HiPIMS produces superior substrate uniformity without the need of substrate rotation in addition to producing higher metal ion fraction to the substrate when compared to the conventional pack HiPIMS [Raman et al., Surf. Coat. Technol. 293, 10 (2016)]. The films that are deposited using the "TriPack" magnet pack have much smaller grains compared to conventional pack DC and HiPIMS films. In this paper, the reasons behind the observed increase in HiPIMS deposition rates from the TriPack magnet pack along with a modified particle flux model is discussed.

  20. Flow of nanosize cluster-containing plasma in a magnetron discharge

    SciTech Connect

    Smirnov, Boris M.

    2007-06-15

    A magnetron source of silver clusters captured by an argon flow with the quadrupole mass filter is used for the analysis of charged clusters after an orifice of the magnetron chamber, and the size distribution function follows from the analysis of clusters deposited on a silicon substrate by an atomic force microscope. Cluster charge near an orifice results from attachment of ions of a secondary plasma that is a tail of a magnetron plasma, and the cluster charge is mostly positive. The character of passage of a buffer gas flow with metal clusters through an orifice is studied both theoretically and experimentally. Assuming the cone shape of the drift chamber near the orifice, we analyze drift of charged clusters in a buffer gas flow towards the orifice if the electric field inside the drift chamber is created by charged rings on the cone surface. Under experimental conditions, when an equilibrium between the buffer gas flow and cluster flux is violated, a typical voltage of rings and parameters of corona discharge for cluster charging are estimated if the electric field does not allow for clusters to reach walls of the drift chamber. The number density of clusters near the orifice is estimated that increases both due to violation of an equilibrium for the cluster flux inside the buffer gas flow and owing to focusing of the cluster by the electric field that is created by electrodes located near walls and due to diffusion motion of clusters. Processes of cluster charging in the magnetron chamber are analyzed.

  1. Flow of nanosize cluster-containing plasma in a magnetron discharge.

    PubMed

    Smirnov, Boris M; Shyjumon, Ibrahimkutty; Hippler, Rainer

    2007-06-01

    A magnetron source of silver clusters captured by an argon flow with the quadrupole mass filter is used for the analysis of charged clusters after an orifice of the magnetron chamber, and the size distribution function follows from the analysis of clusters deposited on a silicon substrate by an atomic force microscope. Cluster charge near an orifice results from attachment of ions of a secondary plasma that is a tail of a magnetron plasma, and the cluster charge is mostly positive. The character of passage of a buffer gas flow with metal clusters through an orifice is studied both theoretically and experimentally. Assuming the cone shape of the drift chamber near the orifice, we analyze drift of charged clusters in a buffer gas flow towards the orifice if the electric field inside the drift chamber is created by charged rings on the cone surface. Under experimental conditions, when an equilibrium between the buffer gas flow and cluster flux is violated, a typical voltage of rings and parameters of corona discharge for cluster charging are estimated if the electric field does not allow for clusters to reach walls of the drift chamber. The number density of clusters near the orifice is estimated that increases both due to violation of an equilibrium for the cluster flux inside the buffer gas flow and owing to focusing of the cluster by the electric field that is created by electrodes located near walls and due to diffusion motion of clusters. Processes of cluster charging in the magnetron chamber are analyzed.

  2. Spatial and temporal evolution of ion energies in high power impulse magnetron sputtering plasma discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Ehiasarian, A. P.

    2010-09-01

    High power impulse magnetron sputtering (HIPIMS) is a novel deposition technology successfully implemented on full scale industrial machines. HIPIMS utilizes short pulses of high power delivered to the target in order to generate high amount of metal ions. The life-span of ions between the pulses and their energy distribution could strongly influence the properties and characteristics of the deposited coating. In modern industrial coating machines the sample rotates on a substrate holder and changes its position and distance with regard to the magnetron. Time resolved measurements of the ion energy distribution function (IEDF) at different distances from the magnetron have been performed to investigate the temporal evolution of ions at various distances from target. The measurements were performed using two pressures, 1 and 3 Pa to investigate the influence of working gas pressure on IEDF. Plasma sampling energy-resolved mass spectroscopy was used to measure the IEDF of Ti1+, Ti2+, Ar1+, and Ar2+ ions in HIPIMS plasma discharge with titanium (Ti) target in Ar atmosphere. The measurements were done over a full pulse period and the distance between the magnetron and the orifice of the mass spectrometer was changed from 25 to 215 mm.

  3. Research of mechanical stresses in micromechanical structures based on silicon carbide films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mikhailova, O. N.; Korlyakov, A. V.; Lagosh, A. V.

    2017-07-01

    Investigations of the effect of residual atmosphere in the magnetron chamber on the mechanical stresses and the shape of micromechanical structure based on SiC film are discussed. Measurements of the curvature radius of SiC micromechanical structure deflection are presented.

  4. Structure of the metallic films deposited on small spheres trapped in the rf magnetron plasma

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.

    2016-11-01

    Metallic coatings were deposited onto glass spheres having diameters from several to one hundred micrometers by the magnetron sputtering. Two different experimental schemes were exploited. One of them had the traditional configuration where a magnetron sputter was placed at one hundred millimeters from particles. In this scheme, continuous mechanical agitation in a fluidized bed was used to achieve uniformity of coatings. In the second scheme the treated particles (substrates) levitated in a magnetron rf plasma over a sputtered rf electrode (target) at the distance d of few mm from it and at gas pressure p values of 30-100 mTorr. These parameters are essentially different from those in the traditional sputtering. Agitation due to the features of a particle confinement in dusty plasma was used here to obtain uniform coatings. Thickness and morphology of the obtained coatings were studied. As it is known, film growth rate and structure are determined by the substrate temperature, the densities of ion and neutral atom fluxes to the substrate surface, the radiation flux density, and the heat energy produced due to the surface condensation of atoms and recombination of electrons and ions. These parameters particularly depend on the product of p and d. In the case of magnetron rf dusty plasma, it is possible to achieve the pd value several times lower than the lowest value proper to the first traditional case. Completely different dependencies of the film growth rate and structure on the pd value in these sputtering processes were observed and qualitatively explained.

  5. Advanced, phase-locked, 100 kW, 1.3 GHz magnetron

    NASA Astrophysics Data System (ADS)

    Read, Michael; Ives, R. Lawrence; Bui, Thuc; Pasquinelli, Ralph; Chase, Brian; Walker, Chris; Conant, Jeff

    2017-03-01

    Calabazas Creek Research, Inc., in collaboration with Fermilab and Communications & Power Industries, LLC, is developing a phase-locked, 100 kW peak, 10 kW average power magnetron-based RF system for driving accelerators. Phase locking will be achieved using an approach originating at Fermilab that includes control of both amplitude and phase on a fast time scale.

  6. Low-pressure planar magnetron discharge for surface deposition and nanofabrication

    SciTech Connect

    Baranov, Oleg; Romanov, Maxim; Wolter, Matthias; Kumar, Shailesh; Zhong Xiaoxia; Ostrikov, Kostya

    2010-05-15

    Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results.

  7. Decoration of ZnO nanorod arrays by Cu nanocrystals via magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Liu, Yangsi; Gao, Wei

    2017-07-01

    ZnO nanorods were decorated by Cu nanocrystals via magnetron sputtering to form Cu/ZnO nanocomposite arrays. The crystal structure and morphology of Cu/ZnO nanocomposite arrays were characterized by XRD and SEM. The optical absorbance of Cu/ZnO nanocomposite arrays was measured using a UV-vis spectrophotometer and their potential applications were discussed.

  8. [Spectrum diagnostics for optimization of experimental parameters in thin films deposited by magnetron sputtering].

    PubMed

    Guo, Qing-Lin; Cui, Yong-Liang; Chen, Jian-Hui; Zhang, Jin-Ping; Huai, Su-Fang; Liu, Bao-Ting; Chen, Jin-Zhong

    2010-12-01

    The plasma emission spectra generated during the deposition process of Si-based thin films by radio frequency (RF) magnetron sputtering using Cu and Al targets in an argon atmosphere were acquired by the plasma analysis system, which consists of a magnetron sputtering apparatus, an Omni-lambda300 series grating spectrometer, a CCD data acquisition system and an optical fiber transmission system. The variation in Cu and Al plasma emission spectra intensity depending on sputtering conditions, such as sputtering time, sputtering power, the target-to-substrate distance and deposition pressure, was studied by using the analysis lines Cu I 324. 754 nm, Cu I 327. 396 nm, Cu I 333. 784 nm, Cu I 353. 039 nm, Al I 394. 403 nm and Al I 396. 153 nm. Compared with the option of experimental parameters of thin films deposited by RF magnetron sputtering, it was shown that emission spectra analysis methods play a guiding role in optimizing the deposition conditions of thin films in RF magnetron sputtering.

  9. Dual-fuel, dual-throat engine preliminary analysis

    NASA Technical Reports Server (NTRS)

    Obrien, C. J.

    1979-01-01

    A propulsion system analysis of the dual fuel, dual throat engine for launch vehicle applications was conducted. Basic dual throat engine characterization data were obtained to allow vehicle optimization studies to be conducted. A preliminary baseline engine system was defined.

  10. High-rate deposition of MgO by reactive ac pulsed magnetron sputtering in the transition mode

    SciTech Connect

    Kupfer, H.; Kleinhempel, R.; Richter, F.; Peters, C.; Krause, U.; Kopte, T.; Cheng, Y.

    2006-01-15

    A reactive ac pulsed dual magnetron sputtering process for MgO thin-film deposition was equipped with a closed-loop control of the oxygen flow rate (F{sub O2}) using the 285 nm magnesium radiation as input. Owing to this control, most of the unstable part of the partial pressure versus flowrate curve became accessible. The process worked steadily and reproducible without arcing. A dynamic deposition rate of up to 35 nm m/min could be achieved, which was higher than in the oxide mode by about a factor of 18. Both process characteristics and film properties were investigated in this work in dependence on the oxygen flow, i.e., in dependence on the particular point within the transition region where the process is operated. The films had very low extinction coefficients (<5x10{sup -5}) and refractive indices close to the bulk value. They were nearly stoichiometric with a slight oxygen surplus (Mg/O=48/52) which was independent of the oxygen flow. X-ray diffraction revealed a prevailing (111) orientation. Provided that appropriate rf plasma etching was performed prior to deposition, no other than the (111) peak could be detected. The intensity of this peak increased with increasing F{sub O{sub 2}}, indicating an even more pronounced (111) texture. The ion-induced secondary electron emission coefficient (iSEEC) was distinctly correlated with the markedness of the (111) preferential orientation. Both refractive index and (111) preferred orientation (which determines the iSEEC) were found to be improved in comparison with the MgO growth in the fully oxide mode. Consequently, working in the transition mode is superior to the oxide mode not only with respect to the growth rate, but also to most important film properties.

  11. Self-dual gravity

    NASA Astrophysics Data System (ADS)

    Krasnov, Kirill

    2017-05-01

    Self-dual gravity is a diffeomorphism invariant theory in four dimensions that describes two propagating polarisations of the graviton and has a negative mass dimension coupling constant. Nevertheless, this theory is not only renormalisable but quantum finite, as we explain. We also collect various facts about self-dual gravity that are scattered across the literature.

  12. Dual Enrollment Academy Programs

    ERIC Educational Resources Information Center

    Gonzalez, Nicolas; Chavez, Guadalupe

    2009-01-01

    Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…

  13. Dual Enrollment Academy Programs

    ERIC Educational Resources Information Center

    Gonzalez, Nicolas; Chavez, Guadalupe

    2009-01-01

    Dual Enrollment Engineering (DEEA) and Medical Science (DEMSA) Academies are two-year dual enrollment programs for high school students. Students explore engineering and medical careers through college coursework. Students prepare for higher education in engineering and medical fields while completing associate degrees in biology or engineering…

  14. Dual Credit Report

    ERIC Educational Resources Information Center

    Light, Noreen

    2016-01-01

    In 2015, legislation to improve access to dual-credit programs and to reduce disparities in access and completion--particularly for low income and underrepresented students--was enacted. The new law focused on expanding access to College in the High School but acknowledged issues in other dual-credit programs and reinforced the notion that cost…

  15. X-band Linac for a 6 MeV dual-head radiation therapy gantry

    NASA Astrophysics Data System (ADS)

    Lee, Seung Hyun; Shin, Seung-Wook; Lee, Jongchul; Kim, Hui-Su; Lee, Byeong-No; Lee, Byung-Chul; Park, Hyung-dal; Song, Ki-back; Song, Ho-seung; Mun, Sangchul; Ha, Donghyup; Chai, Jong-Seo

    2017-04-01

    We developed a design for a 6 MeV X-band linear accelerator for radiation therapy in a dual-head gantry layout. The dual-head gantry has two linacs that can be operated independently. Each X-band linac accelerates electron bunches using high-power RF and generates X-rays for radiation therapy. It requires a versatile RF system and pulse sequence to accomplish various radiation therapy procedures. The RF system consists of 9.3 GHz, 2 MW X-band magnetron and associated RF transmission components. A test linac was assembled and operated to characterize its RF performance without beam. This paper presents these results along with a description of the gantry linacs and their operational requirements.

  16. Investigation of Optical and Electrochromic Properties of Tungsten Oxide Deposited with Horizontal DC and DC Pulse Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han

    2012-04-01

    The proposal of this research was to compare the optical and electrochromic properties of tungsten oxide (WO3) thin films deposited with a horizontal direct current (DC) and DC pulse magnetron sputtering. These WO3 thin films were deposited onto indium tin oxide (ITO) glass and p-type silicon substrate at different gas ratios of oxygen and argon. The variation in the transmittance between the coloring and bleaching was important for the smart window. WO3 thin films have good electrochromic properties at gas ratios of oxygen/argon (O2/Ar) of 0.7 and 0.6 for DC and DC pulse magnetron sputtering, respectively. However, WO3 thin films deposited by DC pulse magnetron sputtering have better optical and electrochromic properties than the films deposited by DC magnetron sputtering.

  17. Characterization of high power impulse magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Hala, Matej

    Paper I: In the first paper, we present a new approach in the characterization of the high power pulsed magnetron sputtering (HiPIMS) discharge evolution—time- and species-resolved plasma imaging—employing a set of band-pass optical interference filters suitable for the isolation of the emission originating from different species populating the plasma. We demonstrate that the introduction of such filters can be used to distinguish different phases of the discharge, and to visualize numerous plasma effects including background gas excitations during the discharge ignition, gas shock waves, and expansion of metal-rich plasmas. In particular, the application of this technique is shown on the diagnostics of the 200 µs long non-reactive HiPIMS discharges using a Cr target. Paper II: In order to gain further information about the dynamics of reactive HiPIMS discharges, both fast plasma imaging and time- and space-resolved optical emission spectroscopy (OES) are used for a systematic investigation of the 200 µs long HiPIMS pulses operated in Ar, N2 and N 2/Ar mixtures and at various pressures. It is observed that the dense metal plasma created next to the target propagates in the reactor at a speed ranging from 0.7 to 3.5 km s-1, depending on the working gas composition and the pressure. In fact, it increases with higher N 2 concentration and with lower pressure. The visible form of the propagating plasma wave changes from a hemispherical shape in Ar to a drop-like shape extending far from the target with increasing N2 concentration, owing to the significant emission from molecular N2. Interestingly, the evidence of the target self-sputtering is found for all investigated conditions, including pure N2 atmosphere. Paper III: Here, we report on the time- and species-resolved plasma imaging analysis of the dynamics of the 200 µs long HiPIMS discharges above a Cr target ignited in pure O2. It is shown that the discharge emission is dominated solely by neutral and

  18. H/sup -/ beam emittance measurements for the penning and the asymmetric, grooved magnetron surface-plasma sources

    SciTech Connect

    Smith, H.V. Jr.; Allison, P.W.

    1981-01-01

    Beam-intensity and emittance measurements show that the H/sup -/ beam from our Penning surface-plasma source (SPS) has twice the intensity and ten times the brightness of the H/sup -/ beam from an asymmetric, grooved magnetron SPS. We deduce H/sup -/ ion temperatures of 5 eV for the Penning SPS and 22 eV for the asymmetric, grooved magnetron.

  19. Study on the influence of the magnetron power supply on the properties of the Silicon Nitride films

    NASA Astrophysics Data System (ADS)

    Kiseleva, D. V.; Yurjev, Y. N.; Petrakov, Y. V.; Sidelev, D. V.; Korzhenko, D. V.; Erofeev, E. V.

    2017-01-01

    Silicon nitride (Si3N4) films were deposited by magnetron sputtering of silicon target in (Ar+N2) atmosphere with refractive index 1.95 - 2.05. The results of Fourier transform infrared (FTIR) spectrophotometry showed Si-N bonds in the thin films with concentration 2.41·1023 – 3.48·1023 cm-3. Dependences of deposition rate, optical characteristics and surface morphology on rate of N2 flow and properties of magnetron power supply.

  20. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  1. Dual Credit/Dual Enrollment and Data Driven Policy Implementation

    ERIC Educational Resources Information Center

    Lichtenberger, Eric; Witt, M. Allison; Blankenberger, Bob; Franklin, Doug

    2014-01-01

    The use of dual credit has been expanding rapidly. Dual credit is a college course taken by a high school student for which both college and high school credit is given. Previous studies provided limited quantitative evidence that dual credit/dual enrollment is directly connected to positive student outcomes. In this study, predictive statistics…

  2. Bifocal dual reflector antenna

    NASA Technical Reports Server (NTRS)

    Rao, B. L. J.

    1973-01-01

    A bifocal dual reflector antenna is similar to and has better scan capability than classical cassegrain reflector antenna. The method used in determining the reflector surfaces is a modification of a design method for the dielectric bifocal lens. The three dimensional dual reflector is obtained by first designing an exact (in geometrical optics sense) two-point corrected two dimensional reflector and then rotating it around its axis of symmetry. A point by point technique is used in computing the reflector surfaces. Computed radiation characteristics of the dual reflector are compared with those of a cassegrain reflector. The results confirm that the bifocal antenna has superior performance.

  3. Power-combining based on master-slave injection-locking magnetron

    NASA Astrophysics Data System (ADS)

    Ping, Yuan; Yi, Zhang; Wenjun, Ye; Huacheng, Zhu; Kama, Huang; Yang, Yang

    2016-07-01

    A microwave power-combining system composed of two Panasonic 2M244-M1 magnetrons based on master-slave injection-locking is demonstrated in this paper. The principle of master-slave injection-locking and the locking condition are theoretical analyzed. Experimental results are consistent with the theoretical analysis and the experimental combined efficiency is higher than 96%. Compared with the external-injection-locked system, the power-combining based on the master-slave injection-locking magnetron is superior by taking out the external solid-state driver and the real-time phase control system. Thus, this power-combining system has great potential for obtaining a high efficiency, high stability, low cost, and high power microwave source. Project supported by the National Basic Research Program of China (Grant No. 2013CB328902) and the National Natural Science Foundation of China (Grant No. 61501311).

  4. AZO films prepared by r.f. magnetron sputtering: structural, electrical, and optical properties

    NASA Astrophysics Data System (ADS)

    Grilli, Maria Luisa; Krasilnikova Sytchkova, Anna; Boycheva, Sylvia; Piegari, Angela

    2008-09-01

    Aluminium-doped zinc oxide films with 91% transmittance in the visible range and electrical resistivity of the order of 10-3 Ωcm were fabricated by radio frequency magnetron sputtering in Ar atmosphere starting from a target of ZnO mixed with 2% wt Al2O3. A systematic study of the deposition conditions such as substrate temperature, working gas pressure, radio frequency power, magnetron strength, target to substrate distance, etc., was performed when searching for improved electrical and optical performances of the films. Several deposition conditions govern the film characteristics, so that films with same good optical and electrical properties can be obtained by opportunely combining different deposition parameters.

  5. Nonlocal electron kinetics and excited state densities in a magnetron discharge in argon.

    PubMed

    Porokhova, I A; Golubovskii, Yu B; Csambal, C; Helbig, V; Wilke, C; Behnke, J F

    2002-04-01

    The densities of argon metastable (3)P(2), and resonance (1)P(1), (3)P(1) states were measured along a cylindrical magnetron discharge radius by absorption spectroscopy using a narrow bandwidth single mode diode laser. The theoretical treatment includes calculations of the rates of numerous excitation and decay processes based on nonlocal electron kinetics, and analysis of the transport equations for the resonance and metastable atoms. The solution technique of the Biberman-Holstein equation of radiation transport is developed in conformity with magnetron discharge geometry. The radial profile of the effective lifetime is obtained, taking into account radiation escape on the inner and outer electrodes. The distinction in formations of the radial profiles of the resonance and metastable atoms caused by specifics of radiation transport and diffusion is demonstrated. The results of experiments and calculations are compared.

  6. Performance Characterization of a Solenoid-type Gas Valve for the H- Magnetron Source at FNAL

    SciTech Connect

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    2016-09-06

    The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.

  7. Analytic model of the energy distribution function for highly energetic electrons in magnetron plasmas

    SciTech Connect

    Gallian, Sara Trieschmann, Jan; Mussenbrock, Thomas; Brinkmann, Ralf Peter; Hitchon, William N. G.

    2015-01-14

    This paper analyzes a situation which is common for magnetized technical plasmas such as dc magnetron discharges and high power impulse magnetron sputtering (HiPIMS) systems, where secondary electrons enter the plasma after being accelerated in the cathode fall and encounter a nearly uniform bulk. An analytic calculation of the distribution function of hot electrons is presented; these are described as an initially monoenergetic beam that slows down by Coulomb collisions with a Maxwellian distribution of bulk (cold) electrons, and by inelastic collisions with neutrals. Although this analytical solution is based on a steady-state assumption, a comparison of the characteristic time-scales suggests that it may be applicable to a variety of practical time-dependent discharges, and it may be used to introduce kinetic effects into models based on the hypothesis of Maxwellian electrons. The results are verified for parameters appropriate to HiPIMS discharges, by means of time-dependent and fully kinetic numerical calculations.

  8. Structural formation and photocatalytic activity of magnetron sputtered titania and doped-titania coatings.

    PubMed

    Kelly, Peter J; West, Glen T; Ratova, Marina; Fisher, Leanne; Ostovarpour, Soheyla; Verran, Joanna

    2014-10-13

    Titania and doped-titania coatings can be deposited by a wide range of techniques; this paper will concentrate on magnetron sputtering techniques, including "conventional" reactive co-sputtering from multiple metal targets and the recently introduced high power impulse magnetron sputtering (HiPIMS). The latter has been shown to deliver a relatively low thermal flux to the substrate, whilst still allowing the direct deposition of crystalline titania coatings and, therefore, offers the potential to deposit photocatalytically active titania coatings directly onto thermally sensitive substrates. The deposition of coatings via these techniques will be discussed, as will the characterisation of the coatings by XRD, SEM, EDX, optical spectroscopy, etc. The assessment of photocatalytic activity and photoactivity through the decomposition of an organic dye (methylene blue), the inactivation of E. coli microorganisms and the measurement of water contact angles will be described. The impact of different deposition technologies, doping and co-doping strategies on coating structure and activity will be also considered.

  9. Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge

    SciTech Connect

    Baranov, O.; Romanov, M.; Ostrikov, Kostya

    2009-06-15

    Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

  10. Magnetron sputtered boron films for increasing hardness of a metal surface

    DOEpatents

    Makowiecki, Daniel M.; Jankowski, Alan F.

    2003-05-27

    A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for producing hardened surfaces, surfacing machine tools, etc. and for ultra-thin band pass filters as well as the low Z element in low Z/high Z optical components, such as mirrors which enhance reflectivity from grazing to normal incidence.

  11. Colored and transparent oxide thin films prepared by magnetron sputtering: the glass blower approach.

    PubMed

    Gil-Rostra, Jorge; Chaboy, Jesús; Yubero, Francisco; Vilajoana, Antoni; González-Elipe, Agustín R

    2013-03-01

    This work describes the reactive magnetron sputtering processing at room temperature of several mixed oxide MxSiyOz thin films (M: Fe, Ni, Co, Mo, W, Cu) intended for optical, coloring, and aesthetic applications. Specific colors can be selected by adjusting the plasma gas composition and the Si-M ratio in the magnetron target. The microstructure and chemistry of the films are characterized by a large variety of techniques including X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and infrared spectroscopy, while their optical properties are characterized by UV-vis transmission and reflection analysis. Particularly, XAS analysis of the M cations in the amorphous thin films has provided valuable information about their chemical state and local structure. It is concluded that the M cations are randomly distributed within the SiO2 matrix and that both the M concentration and its chemical state are the key parameters to control the final color of the films.

  12. Facility for combined in situ magnetron sputtering and soft x-ray magnetic circular dichroism

    SciTech Connect

    Telling, N. D.; Laan, G. van der; Georgieva, M. T.; Farley, N. R. S.

    2006-07-15

    An ultrahigh vacuum chamber that enables the in situ growth of thin films and multilayers by magnetron sputtering techniques is described. Following film preparation, x-ray absorption spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD) measurements are performed by utilizing an in vacuum electromagnet. XMCD measurements on sputtered thin films of Fe and Co yield spin and orbital moments that are consistent with those obtained previously on films measured in transmission geometry and grown in situ by evaporation methods. Thin films of FeN prepared by reactive sputtering are also examined and reveal an apparent enhancement in the orbital moment for low N content samples. The advantages of producing samples for in situ XAS and XMCD studies by magnetron sputtering are discussed.

  13. Are the argon metastables important in high power impulse magnetron sputtering discharges?

    SciTech Connect

    Gudmundsson, J. T.; Lundin, D.; Minea, T. M.; Stancu, G. D.; Brenning, N.

    2015-11-15

    We use an ionization region model to explore the ionization processes in the high power impulse magnetron sputtering (HiPIMS) discharge in argon with a titanium target. In conventional dc magnetron sputtering (dcMS), stepwise ionization can be an important route for ionization of the argon gas. However, in the HiPIMS discharge stepwise ionization is found to be negligible during the breakdown phase of the HiPIMS pulse and becomes significant (but never dominating) only later in the pulse. For the sputtered species, Penning ionization can be a significant ionization mechanism in the dcMS discharges, while in the HiPIMS discharge Penning ionization is always negligible as compared to electron impact ionization. The main reasons for these differences are a higher plasma density in the HiPIMS discharge, and a higher electron temperature. Furthermore, we explore the ionization fraction and the ionized flux fraction of the sputtered vapor and compare with recent experimental work.

  14. Microstructural evaluation of NiTi-based films deposited by magnetron sputtering

    SciTech Connect

    Crăciunescu, Corneliu M. Mitelea, Ion Budău, Victor; Ercuţa, Aurel

    2014-11-24

    Shape memory alloy films belonging to the NiTi-based systems were deposited on heated and unheated substrates, by magnetron sputtering in a custom made system, and their structure and composition was analyzed using electron microscopy. Several substrates were used for the depositions: glass, Cu-Zn-Al, Cu-Al-Ni and Ti-NiCu shape memory alloy ribbons and kapton. The composition of the Ti-Ni-Cu films showed limited differences, compared to the one of the target and the microstructure for the DC magnetron sputtering revealed crystallized structure with features determined on peel off samples from a Si wafer. Both inter and transcrystalline fractures were observed and related to the interfacial stress developed on cooling from deposition temperature.

  15. A novel relativistic magnetron with circularly polarized TE11 coaxial waveguide mode

    NASA Astrophysics Data System (ADS)

    Shi, Di-Fu; Qian, Bao-Liang; Wang, Hong-Gang; Li, Wei; Du, Guang-Xing

    2016-11-01

    A novel relativistic magnetron (RM) with a circularly polarized TE11 coaxial waveguide mode and its corresponding mode excitation are investigated in this paper. By operating in the 4π/5 mode in the ten-cavity RM and compactly designing the RM structure with the all cavity-magnetron axial extraction technique, the RM can directly output a circularly polarized TE11 coaxial waveguide mode in a reversible direction of rotation without any mode converters. In addition, the analysis of mode excitation can be generalized to a 2N-cavity RM, where 2N  >  4 is the number of cavities. Results of the 3D particle-in-cell (PIC) simulation show that a high power microwave (HPM) with an operating frequency of 4.15 GHz and an output power of 700 MW is obtained from the RM, corresponding to the power conversion efficiency of 50.0%.

  16. Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas

    NASA Astrophysics Data System (ADS)

    Revel, A.; Minea, T.; Tsikata, S.

    2016-10-01

    A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.

  17. Modeling of the Reactive High Power Impulse Magnetron Sputtering (HiPIMS) process

    NASA Astrophysics Data System (ADS)

    Gudmundsson, Jon Tomas; Lundin, Daniel; Raadu, Michael; Brenning, Nils; Minea, Tiberiu

    2015-09-01

    Reactive high power impulse magnetron sputtering (HiPIMS) provides both a high ionization fraction of the sputtered material and a high dissociation fraction of the molecular gas. We demonstrate this through an ionization region model (IRM) of the reactive Ar/O2 HiPIMS discharge with a titanium target. We explore the influence of oxygen dilution on the discharge properties such as electron density, the ionization fraction of the sputtered vapor and the oxygen dissociation fraction. We discuss the important processes and challenges for more detailed modeling of the reactive HiPIMS discharge. Furthermore, we discuss experimental observations during reactive high power impulse magnetron sputtering sputtering (HiPIMS) of Ti target in Ar/N2 and Ar/O2 atmosphere. The discharge current waveform is highly dependent on the reactive gas flow rate, pulse repetition frequency and discharge voltage. The discharge current increases with decreasing repetition frequency and increasing flowrate of the reactive gas.

  18. Resistive switching behavior of RF magnetron sputtered ZnO thin films

    SciTech Connect

    Rajalakshmi, R.; Angappane, S.

    2015-06-24

    The resistive switching characteristics of RF magnetron sputtered zinc oxide thin films have been studied. The x-ray diffraction studies confirm the formation of crystalline ZnO on Pt/TiO{sub 2}/SiO{sub x}/Si substrate. We have fabricated Cu/ZnO/Pt device using a shadow masking technique for resistive switching study. Our Cu/ZnO/Pt device exhibits a unipolar resistive switching behaviour. The switching observed in our device could be related to oxygen vacancies or Cu ions that generate the conducting filaments responsible for resistive switching. We found HRS to LRS resistance ratio of as high as ∼200 for our Cu/ZnO/Pt device. The higher resistance ratio and stability of Cu/ZnO/Pt device would make our RF magnetron sputtered zinc oxide thin films suitable for non volatile memory applications.

  19. High power pulsed magnetron sputtering: A method to increase deposition rate

    SciTech Connect

    Raman, Priya McLain, Jake; Ruzic, David N; Shchelkanov, Ivan A.

    2015-05-15

    High power pulsed magnetron sputtering (HPPMS) is a state-of-the-art physical vapor deposition technique with several industrial applications. One of the main disadvantages of this process is its low deposition rate. In this work, the authors report a new magnetic field configuration, which produces deposition rates twice that of conventional magnetron's dipole magnetic field configuration. Three different magnet pack configurations are discussed in this paper, and an optimized magnet pack configuration for HPPMS that leads to a higher deposition rate and nearly full-face target erosion is presented. The discussed magnetic field produced by a specially designed magnet assembly is of the same size as the conventional magnet assembly and requires no external fields. Comparison of deposition rates with different power supplies and the electron trapping efficiency in complex magnetic field arrangements are discussed.

  20. Bioactivity and hemocompatibility study of amorphous hydrogenated carbon coatings produced by pulsed magnetron discharge.

    PubMed

    Lopez-Santos, C; Colaux, J L; Laloy, J; Fransolet, M; Mullier, F; Michiels, C; Dogné, J-M; Lucas, S

    2013-06-01

    Literature contains very few data about the potential biomedical application of amorphous hydrogenated carbon (a-C:H) thin films deposited by reactive pulsed magnetron discharge even so it is one of the most scalable plasma deposition technique. In this article, we show that such a C2H2 pulsed magnetron plasma produces high quality coating with good hemocompatibility and bioactive response: no effect on hemolysis and hemostasis were observed, and proliferation of various cell types such as endothelial, fibroblast, and osteoblast-like cells was not affected when the deposition conditions were varied. Cell growth on a-C:H coatings is proposed to take place by a two-step process: the initial cell contact is affected by the smooth topography of the a-C:H coatings, whereas the polymeric-like structure, together with a moderate hydrophilicity and a high hydrogen content, directs the posterior cell spreading while preserving the hemocompatible behavior.

  1. Laser-Aided Diagnostics of Atoms and Particulates in Magnetron Sputtering Plasmas

    SciTech Connect

    Nafarizal, N.; Takada, N.; Sasaki, K.

    2009-07-07

    Laser-aided diagnostic technique is introduced as an advanced and valuable technique to evaluate the properties of plasma. This technique is an expensive and sophisticated technique which requires researchers to have a basic knowledge in optical spectroscopy. In the present paper, we will generally introduce the experimental work using laser-induced fluorescence (LIF) and laser light scattering (LLS) techniques. The LIF was used to evaluate the spatial distribution of Cu atoms in magnetron sputtering plasma. The change in the spatial distribution was studied as a function of discharge power. On the other hand, the LLS was used to evaluate the generation of Cu particulates in high-pressure magnetron sputtering plasma. The temporal evolution of Cu particulates in the gas phase of sputtering plasma was visualized successfully.

  2. Particle-In-Cell (PIC) simulation of long-anode magnetron

    NASA Astrophysics Data System (ADS)

    Verma, Rajendra Kumar; Maurya, Shivendra; Singh, Vindhyavasini Prasad

    2016-03-01

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was `Virtual Prototyped' using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were - hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.

  3. Characterization thin films TiO2 obtained in the magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Kamiński, Maciej; Firek, Piotr; Caban, Piotr

    2016-12-01

    The aim of the study was to elucidate influence parameters of magnetron sputtering process on growth rate and quality of titanium dioxide thin films. TiO2 films were produced on two inch silicon wafers by means of magnetron sputtering method. Characterization of samples was performed using ellipsometer and atomic force microscope (AFM). Currentvoltage (I-V) and capacitance-voltage (C-V) measurements were also carried out. The results enable to determine impact of pressure, power, gases flow and process duration on the physical parameters obtained layers such as electrical permittivity, flat band voltage and surface topography. Experiments were designed according to orthogonal array Taguchi method. Respective trends impact were plotted.

  4. The microstructure and properties of titanium dioxide films synthesized by unbalanced magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Leng, Y. X.; Chen, J. Y.; Yang, P.; Sun, H.; Huang, N.

    2007-04-01

    In this work, titanium oxide films were deposited on Ti6Al4V and Si (1 0 0) by DC unbalanced magnetron sputtering method at different oxygen pressure. X-ray diffraction (XRD), microhardness tests, pin-on-disk wear experiments, surface contact angle tests and platelet adhesion investigation were conducted to evaluate the properties of the films. The corrosion behavior of titanium dioxide films was characterized by potentiodynamic polarization. The results showed that titanium oxide films deposited by unbalance magnetron sputtering were compact and could obviously enhance microhardness, wear resistance of titanium alloy substrate. Potentiodynamic polarization curves showed that Ti-6Al-4V deposited with titanium dioxide films had lower dissolution currents than that of the uncoated one. The results of in vitro hemocompatibility analyses indicated that the blood compatibility of the titanium dioxide films with bandgap 3.2 eV have better blood compatibility.

  5. Development of a 14-vane, double-strapped, 5.8-GHz magnetron oscillator

    NASA Astrophysics Data System (ADS)

    Choi, Jin Joo; Lee, Han Seoul; Jang, Kwang Ho; Sim, Sung Hun; Choi, Heung Sik

    2016-08-01

    Experiments on a 14-vane, double-strapped magnetron oscillator were performed to demonstrate high-power, high-efficiency coherent radiation at 5.8 GHz. The double-strapped magnetron was designed by using the Buneman-Hatree resonance condition, electromagnetic simulations and non-linear three-dimensional particle-in-cell (PIC) simulations. Experiments showed an oscillation output power of 5.3 kW at 5.79 GHz, corresponding to a DC-RF conversion efficiency of 57%. The cathode voltage was 9.2 kV, the collected anode current was 1 A, and the external magnetic field is 7.5 kG. Experimental results for the RF power, oscillation frequency, and efficiency were in good agreement with the corresponding values from non-linear three-dimensional PIC simulations.

  6. Equibrium and Stability of the Brillouin Flow in Recirculating Planar Magnetron

    NASA Astrophysics Data System (ADS)

    Simon, D. H.; Lau, Y. Y.; Franzi, M.; Greening, G.; Gilgenbach, R. M.; Luginsland, J. W.

    2011-10-01

    Simulation of the novel recirculating planar magnetron, RPM, has shown rapid formation of electron bunches in the inverted magnetron configuration. This bunching mechanism was recently simulated in a thin electron layer model, which exhibited negative, positive, and infinite mass behavior, depending on the magnitude and sign of the radial electric field. We analyze these properties for the relativistic, cylindrical Brillouin flow, to evaluate RPM startup. We make use of our recent discovery that the electrostatic potential and the vector potential satisfy a Buneman-Hartree like relation, and a Hull-cutoff like relation EVERYWHERE within the equilibrium Brillouin flow. This work was supported by AFOSR, L-3 Communications Electron Devices, and Northrop Grumman Corporation.

  7. Particle-In-Cell (PIC) simulation of long-anode magnetron

    SciTech Connect

    Verma, Rajendra Kumar Maurya, Shivendra; Singh, Vindhyavasini Prasad

    2016-03-09

    Long Anode Magnetron (LAM) is a design scheme adopted to attain greater thermal stability and higher power levels for the conventional magnetrons. So a LAM for 5MW Power level at 2.858 GHz was ‘Virtual Prototyped’ using Admittance Matching field theory (AMT) andthen a PIC Study (Beam-wave interaction) was conducted using CST Particle Studio (CST-PS) which is explained in this paper. The convincing results thus obtained were – hot resonant frequency of 2.834 GHz. Output power of 5 MW at beam voltage of 58kV and applied magnetic field of 2200 Gauss with an overall efficiency of 45%. The simulated parameters values on comparison with the E2V LAM tube (M5028) were in good agreement which validates the feasibility of the design approach.

  8. Performance characterization of a solenoid-type gas valve for the H- magnetron source at FNAL

    NASA Astrophysics Data System (ADS)

    Sosa, A.; Bollinger, D. S.; Karns, P. R.

    2017-08-01

    The magnetron-style H- ion sources currently in operation at Fermilab use piezoelectric gas valves to function. This kind of gas valve is sensitive to small changes in ambient temperature, which affect the stability and performance of the ion source. This motivates the need to find an alternative way of feeding H2 gas into the source. A solenoid-type gas valve has been characterized in a dedicated off-line test stand to assess the feasibility of its use in the operational ion sources. H- ion beams have been extracted at 35 keV using this valve. In this study, the performance of the solenoid gas valve has been characterized measuring the beam current output of the magnetron source with respect to the voltage and pulse width of the signal applied to the gas valve.

  9. Plasma-Enhanced Chemical Vapor Deposition (PE-CVD) yields better Hydrolytical Stability of Biocompatible SiOx Thin Films on Implant Alumina Ceramics compared to Rapid Thermal Evaporation Physical Vapor Deposition (PVD).

    PubMed

    Böke, Frederik; Giner, Ignacio; Keller, Adrian; Grundmeier, Guido; Fischer, Horst

    2016-07-20

    Densely sintered aluminum oxide (α-Al2O3) is chemically and biologically inert. To improve the interaction with biomolecules and cells, its surface has to be modified prior to use in biomedical applications. In this study, we compared two deposition techniques for adhesion promoting SiOx films to facilitate the coupling of stable organosilane monolayers on monolithic α-alumina; physical vapor deposition (PVD) by thermal evaporation and plasma enhanced chemical vapor deposition (PE-CVD). We also investigated the influence of etching on the formation of silanol surface groups using hydrogen peroxide and sulfuric acid solutions. The film characteristics, that is, surface morphology and surface chemistry, as well as the film stability and its adhesion properties under accelerated aging conditions were characterized by means of X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and tensile strength tests. Differences in surface functionalization were investigated via two model organosilanes as well as the cell-cytotoxicity and viability on murine fibroblasts and human mesenchymal stromal cells (hMSC). We found that both SiOx interfaces did not affect the cell viability of both cell types. No significant differences between both films with regard to their interfacial tensile strength were detected, although failure mode analyses revealed a higher interfacial stability of the PE-CVD films compared to the PVD films. Twenty-eight day exposure to simulated body fluid (SBF) at 37 °C revealed a partial delamination of the thermally deposited PVD films whereas the PE-CVD films stayed largely intact. SiOx layers deposited by both PVD and PE-CVD may thus serve as viable adhesion-promoters for subsequent organosilane coupling agent binding to α-alumina. However, PE-CVD appears to be favorable for long-term direct film exposure to aqueous

  10. Design comparison of single-anode and double-anode 300-MW magnetron injection gun

    SciTech Connect

    Lawson, W.; Specht, V. )

    1993-07-01

    Analytic tradeoff equations based on adiabatic assumptions are used to explore feasible design regions for single-anode Magnetron Injection Guns (MIG's). Particle simulations are then used to optimize a single-anode and a double-anode design for a 1-[mu]s, 500-kV, 600-A MIG which is required for a second-harmonic gyroklystron. The advantages and disadvantages of each configuration are critically examined.

  11. Experimental investigation of quasiperiodic-chaotic-quasiperiodic-chaotic transition in a direct current magnetron sputtering plasma

    SciTech Connect

    Sabavath, Gopi Kishan; Banerjee, I.; Mahapatra, S. K.; Shaw, Pankaj Kumar; Sekar Iyengar, A. N.

    2015-08-15

    Floating potential fluctuations from a direct current magnetron sputtering plasma have been analysed using time series analysis techniques like phase space plots, power spectra, frequency bifurcation plot, etc. The system exhibits quasiperiodic-chaotic-quasiperiodic-chaotic transitions as the discharge voltage was increased. The transitions of the fluctuations, quantified using the largest Lyapunov exponent, have been corroborated by Hurst exponent and the Shannon entropy. The Shannon entropy is high for quasiperiodic and low for chaotic oscillations.

  12. Comparison of DC and RF magnetron sputtering systems for Electrochromic W/Ti Thin Film Deposition

    NASA Astrophysics Data System (ADS)

    Teke, Erdogan; Kiristi, Melek; Uygun Oksuz, Aysegul; Bozduman, Ferhat; Gulec, Ali; Oksuz, Lutfi; Hala, Ahmed M.

    2013-10-01

    In this study electrochromic tungsten-titanium thin films were deposited on ITO (indium thin oxide) glasses by using both DC and RF magnetron sputtering techniques. The discharges have been operated in same discharge power, geometry and argon/oxygen mixture pressure for comparison. The voltage and current characteristics and optical emission spectrums of both plasma systems will be given. The plasma parameters are determined by a double probe. ITO thin films coating electrical, optical and morphological characteristics will be compared.

  13. Composition control of PZT thin films by varying technological parameters of RF magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Pronin, V. P.; Dolgintsev, D. M.; Pronin, I. P.; Senkevich, S. V.; Kaptelov, E. Yu; Sergienko, A. Yu

    2017-07-01

    The article presents the effect of technological parameters of RF magnetron sputtering on the concentration of components of thin-film ferroelectric structures based on lead zirconate titanate PZT in the region of the morphotropic phase boundary. It is shown that by changing the distance from the target to the substrate and the pressure of the working gas mixture Ar + O2, it is possible to vary the composition of the deposited thin layers.

  14. Magnetic properties of thin films of samarium-cobalt alloy prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panchal, Gyanendra; Gupta, Mukul; Choudhary, R. J.; Phase, D. M.

    2016-10-01

    We examine the magnetic properties of samarium-cobalt thin films on quartz and Si(111) substrates grown by dc magnetron sputtering. Both films are deposited on Cr buffer layer and subsequently a capping layer of Cr was also deposited. Secondary ion mass spectroscopy results reveal that Cr diffused in to Sm-Co layer.This lead to local change in magnetocrystalline anisotropy. As the result of this we observed the two coercive behaviors in magnetization of thin film.

  15. Measuring the energy flux at the substrate position during magnetron sputter deposition processes

    SciTech Connect

    Cormier, P.-A.; Thomann, A.-L.; Dussart, R.; Semmar, N.; Mathias, J.; Balhamri, A.; Snyders, R.; Konstantinidis, S.

    2013-01-07

    In this work, the energetic conditions at the substrate were investigated in dc magnetron sputtering (DCMS), pulsed dc magnetron sputtering (pDCMS), and high power impulse magnetron sputtering (HiPIMS) discharges by means of an energy flux diagnostic based on a thermopile sensor, the probe being set at the substrate position. Measurements were performed in front of a titanium target for a highly unbalanced magnetic field configuration. The average power was always kept to 400 W and the probe was at the floating potential. Variation of the energy flux against the pulse peak power in HiPIMS was first investigated. It was demonstrated that the energy per deposited titanium atom is the highest for short pulses (5 {mu}s) high pulse peak power (39 kW), as in this case, the ion production is efficient and the deposition rate is reduced by self-sputtering. As the argon pressure is increased, the energy deposition is reduced as the probability of scattering in the gas phase is increased. In the case of the HiPIMS discharge run at moderate peak power density (10 kW), the energy per deposited atom was found to be lower than the one measured for DCMS and pDCMS discharges. In these conditions, the HiPIMS discharge could be characterized as soft and close to a pulsed DCMS discharge run at very low duty cycle. For the sake of comparison, measurements were also carried out in DCMS mode with a balanced magnetron cathode, in the same working conditions of pressure and power. The energy flux at the substrate is significantly increased as the discharge is generated in an unbalanced field.

  16. Three Dimensional PIC Simulations of the Transparent and Eggbeater Cathodes in the Michigan Relativistic Magnetron

    DTIC Science & Technology

    2006-04-01

    A novel relativistic magnetron priming technique extended from greater than 35% output power efficiency consisting of either a main center cathode...code slow wave structure) provided an additional ~50 MW of ICEPIC. Both these cathode designs rely on RF field output power. penetration into the...cathode region to enhance performance. This priming technique is thought to allow Transparent and eggbeater cathode designs were for larger amplitudes of

  17. Plasma potential of a moving ionization zone in DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Anders, André

    2017-02-01

    Using movable emissive and floating probes, we determined the plasma and floating potentials of an ionization zone (spoke) in a direct current magnetron sputtering discharge. Measurements were recorded in a space and time resolved manner, which allowed us to make a three-dimensional representation of the plasma potential. From this information we could derive the related electric field, space charge, and the related spatial distribution of electron heating. The data reveal the existence of strong electric fields parallel and perpendicular to the target surface. The largest E-fields result from a double layer structure at the leading edge of the ionization zone. We suggest that the double layer plays a crucial role in the energization of electrons since electrons can gain several 10 eV of energy when crossing the double layer. We find sustained coupling between the potential structure, electron heating, and excitation and ionization processes as electrons drift over the magnetron target. The brightest region of an ionization zone is present right after the potential jump, where drifting electrons arrive and where most local electron heating occurs. The ionization zone intensity decays as electrons continue to drift in the Ez × B direction, losing energy by inelastic collisions; electrons become energized again as they cross the potential jump. This results in the elongated, arrowhead-like shape of the ionization zone. The ionization zone moves in the -Ez × B direction from which the to-be-heated electrons arrive and into which the heating region expands; the zone motion is dictated by the force of the local electric field on the ions at the leading edge of the ionization zone. We hypothesize that electron heating caused by the potential jump and physical processes associated with the double layer also apply to magnetrons at higher discharge power, including high power impulse magnetron sputtering.

  18. Automated diagnostics of a magnetron discharge plasma based on atomic molecular emission spectra

    NASA Astrophysics Data System (ADS)

    Gradov, V. M.; Zimin, A. M.; Krivitskiy, S. E.; Serushkin, S. V.; Troynov, V. I.

    2012-12-01

    A software-hardware complex intended for investigating spatial distributions of the plasma spectral emissivity is described. It allows us to record and identify the lines and systems of molecular bands in an automatic mode and to perform computer processing of spectra. Molecular bands of deuterium for different electronic-vibrational-rotational transitions are identified. The excitation temperatures of atomic levels, translational, rotational and vibrational temperatures are estimated for a discharge in a planar magnetron.

  19. Overview of recent studies and design changes for the FNAL magnetron ion source

    NASA Astrophysics Data System (ADS)

    Bollinger, D. S.; Sosa, A.

    2017-08-01

    This paper presents several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.

  20. Modelling and Optimization of Technological Process for Magnetron Synthesis of Altin Nanocomposite Films on Cutting Tools

    NASA Astrophysics Data System (ADS)

    Kozhina, T. D.

    2016-04-01

    The paper highlights the results of the research on developing the mechanism to model the technological process for magnetron synthesis of nanocomposite films on cutting tools, which provides their specified physical and mechanical characteristics by controlling pulsed plasma parameters. The paper presents optimal conditions for AlTiN coating deposition on cutting tools according to the ion energy of sputtered atoms in order to provide their specified physical and mechanical characteristics.

  1. Comparative analysis of Cr-B coatings deposited by magnetron sputtering in DC and HIPIMS modes

    NASA Astrophysics Data System (ADS)

    Kiryukhantsev-Korneev, Ph. V.; Horwat, D.; Pierson, J. F.; Levashov, E. A.

    2014-07-01

    Surface coatings of the Cr-B system have been obtained by magnetron sputtering in the DC and high-power impulse (HIPIMS) regimes. It is established that the passage from the DC regime to HIPIMS leads to suppression of the columnar grain growth and a twofold increase in the resistance of coatings to plastic deformation, while the plasticity index and hardness of coatings increase by 29 and 18%, respectively.

  2. Non-uniform plasma distribution in dc magnetron sputtering: origin, shape and structuring of spokes

    NASA Astrophysics Data System (ADS)

    Panjan, Matjaž; Loquai, Simon; Ewa Klemberg-Sapieha, Jolanta; Martinu, Ludvik

    2015-12-01

    Non-homogeneous plasma distribution in the form of organized patterns called spokes was first observed in high power impulse magnetron sputtering (HiPIMS). In the present work we investigate the spoke phenomenon in non-pulsed low-current dc magnetron sputtering (DCMS). Using a high-speed camera the spokes were systematically studied with respect to discharge current, pressure, target material and magnetic field strength. Increase in the discharge current and/or gas pressure resulted in the sequential formation of two, then three and more spokes. The observed patterns were reproducible for the same discharge conditions. Spokes at low currents and pressures formed an elongated arrowhead-like shape and were commonly arranged in symmetrical patterns. Similar spoke patterns were observed for different target materials. When using a magnetron with a weaker magnetic field, spokes had an indistinct and diffuse shape, whereas in stronger magnetic fields spokes exhibited an arrowhead-like shape. The properties of spokes are discussed in relation to the azimuthally dependent electron-argon interactions. It is suggested that a single spoke is formed due to local gas breakdown and subsequent electron drift in the azimuthal direction. The spoke is self-sustained by electrons drifting in complex electric and magnetic fields that cause and govern azimuthally dependent processes: ionization, sputtering, and secondary electron emission. In this view plasma evolves from a single spoke into different patterns when discharge conditions are changed either by the discharge current, pressure or magnetic field strength. The azimuthal length of the spoke is associated with the electron-Ar collision frequency which increases with pressure and results in shortening of spoke until an additional spoke forms at a particular threshold pressure. It is proposed that the formation of additional spokes at higher pressures and discharge currents is, in part, related to the increased transport of

  3. Overview of Recent Studies and Design Changes for the FNAL Magnetron Ion Source

    SciTech Connect

    Bollinger, D. S.; Sosa, A.

    2016-09-06

    This paper will cover several studies and design changes that will eventually be implemented to the Fermi National Accelerator Laboratory (FNAL) magnetron ion source. The topics include tungsten cathode insert, solenoid gas valves, current controlled arc pulser, cesium boiler redesign, gas mixtures of hydrogen and nitrogen, and duty factor reduction. The studies were performed on the FNAL test stand described in [1], with the aim to improve source lifetime, stability, and reducing the amount of tuning needed.

  4. Modular deposition chamber for in situ X-ray experiments during RF and DC magnetron sputtering.

    PubMed

    Krause, Bärbel; Darma, Susan; Kaufholz, Marthe; Gräfe, Hans Hellmuth; Ulrich, Sven; Mantilla, Miguel; Weigel, Ralf; Rembold, Steffen; Baumbach, Tilo

    2012-03-01

    A new sputtering system for in situ X-ray experiments during DC and RF magnetron sputtering is described. The outstanding features of the system are the modular design of the vacuum chamber, the adjustable deposition angle, the option for plasma diagnostics, and the UHV sample transfer in order to access complementary surface analysis methods. First in situ diffraction and reflectivity measurements during RF and DC deposition of vanadium carbide demonstrate the performance of the set-up.

  5. Magnetic control of breakdown: Toward energy-efficient hollow-cathode magnetron discharges

    SciTech Connect

    Baranov, O.; Romanov, M.; Kumar, S.; Zong, X. X.; Ostrikov, K.

    2011-03-15

    Characteristics of electrical breakdown of a planar magnetron enhanced with an electromagnet and a hollow-cathode structure, are studied experimentally and numerically. At lower pressures the breakdown voltage shows a dependence on the applied magnetic field, and the voltage necessary to achieve the self-sustained discharge regime can be significantly reduced. At higher pressures, the dependence is less sensitive to the magnetic field magnitude and shows a tendency of increased breakdown voltage at the stronger magnetic fields. A model of the magnetron discharge breakdown is developed with the background gas pressure and the magnetic field used as parameters. The model describes the motion of electrons, which gain energy by passing the electric field across the magnetic field and undergo collisions with neutrals, thus generating new bulk electrons. The electrons are in turn accelerated in the electric field and effectively ionize a sufficient amount of neutrals to enable the discharge self-sustainment regime. The model is based on the assumption about the combined classical and near-wall mechanisms of electron conductivity across the magnetic field, and is consistent with the experimental results. The obtained results represent a significant advance toward energy-efficient multipurpose magnetron discharges.

  6. Evaluation of thin amorphous calcium phosphate coatings on titanium dental implants deposited using magnetron sputtering.

    PubMed

    Yokota, Sou; Nishiwaki, Naruhiko; Ueda, Kyosuke; Narushima, Takayuki; Kawamura, Hiroshi; Takahashi, Tetsu

    2014-06-01

    Calcium phosphate is used for dental material because of its biocompatibility and osteoconductivity. Amorphous calcium phosphate (ACP) coatings deposited by magnetron sputtering can control their thickness and absorbability. This study aimed to evaluate and characterize ACP coatings deposited via magnetron sputtering. It was hypothesized that ACP coatings would enhance bone formation and be absorbed rapidly in vivo. ACP coatings that are 0.5 μm in thickness were deposited via magnetron sputtering on dental implants. Uncoated implants served as controls. The effect of the ACP coatings in vivo was investigated in New Zealand white rabbit. To evaluate the effect of the ACP coatings on the bone response of the implants, the removal torque, implant stability quotient, and histomorphometric analysis were performed on the implants at 1, 2, and 4 weeks after implantation. Results of the x-ray diffraction analyses confirmed the deposition of ACP coatings. Images from the scanning electron microscopy revealed that the coatings were dense, uniform, and 0.5 μm in thickness and that they were absorbed completely. Mechanical stability and bone formation in the case of the ACP-coated implants were higher than those of control. These results suggest that implants coated with thin ACP layers improve implant fixation and accelerate bone response.

  7. Theoretical investigation of frequency characteristics of free oscillation and injection-locked magnetrons

    NASA Astrophysics Data System (ADS)

    Yue, Song; Gao, Dong-ping; Zhang, Zhao-chuan; Wang, Wei-long

    2016-11-01

    The frequency characteristics of free oscillation magnetron (FOM) and injection-locked magnetron (ILM) are theoretically investigated. By using the equal power voltage obtained from the experiment data, expressions of the frequency and radio frequency (RF) voltage of FOM and ILM, as well as the locking bandwidth, on the anode voltage and magnetic field are derived. With the increase of the anode voltage and the decrease of the magnetic field, the power and its growth rate increase, while the frequency increases and its growth rate decreases. The theoretical frequency and power of FOM agree with the particle-in-cell (PIC) simulation results. Besides, the theoretical trends of the power and frequency with the anode voltage and magnetic field are consistent with the experimental results, which verifies the accuracy of the theory. The theory provides a novel calculation method of frequency characteristics. It can approximately analyze the power and frequency of both FOM and ILM, which promotes the industrial applications of magnetron and microwave energy. Project supported by the National Basic Research Program of China (Grant No. 2013CB328901) and the National Natural Science Foundation of China (Grant No. 11305177).

  8. Study on the effect of target on plasma parameters of magnetron sputtering discharge plasma

    SciTech Connect

    Saikia, P.; Kakati, B.; Saikia, B. K.

    2013-10-15

    In this study, the effect of magnetron target on different plasma parameters of Argon/Hydrogen (Ar - H{sub 2}) direct current (DC) magnetron discharge is examined. Here, Copper (Cu) and Chromium (Cr) are used as magnetron targets. The value of plasma parameters such as electron temperature (kT{sub e}), electron density (N{sub e}), ion density (N{sub i}), degree of ionization of Ar, and degree of dissociation of H{sub 2} for both the target are studied as a function of input power and hydrogen content in the discharge. The plasma parameters are determined by using Langmuir probe and Optical emission spectroscopy. On the basis of the different reactions in the gas phase, the variation of plasma parameters and sputtering rate are explained. The obtained results show that electron and ion density decline with gradual addition of Hydrogen in the discharge and increase with rising input power. It brings significant changes on the degree of ionization of Ar and dissociation of H{sub 2}. The enhanced value of electron density (N{sub e}), ion density (N{sub i}), degree of Ionization of Ar, and degree of dissociation of H{sub 2} for Cr compared to Cu target is explained on the basis of it's higher Ion Induced Secondary Electron Emission Coefficient (ISEE) value.

  9. S-band relativistic magnetron operation with an active plasma cathode

    SciTech Connect

    Hadas, Y.; Sayapin, A.; Kweller, T.; Krasik, Ya. E.

    2009-04-15

    Results of experimental research on a relativistic S-band magnetron with a ferroelectric plasma source as a cathode are presented. The cathode plasma was generated using a driving pulse (approx3 kV, 200 ns) applied to the ferroelectric cathode electrodes via inductive decoupling prior to the beginning of an accelerating pulse (200 kV, 150 ns) delivered by a linear induction accelerator. The magnetron and generated microwave radiation parameters obtained for the ferroelectric plasma cathode and the explosive emission plasma were compared. It was shown that the application of the ferroelectric plasma cathode allows one to avoid a time delay in the appearance of the electron emission to achieve a better matching between the magnetron and linear induction accelerator impedances and to increase significantly (approx30%) the duration of the microwave pulse with an approx10% increase in the microwave power. The latter results in the microwave radiation generation being 30% more efficient than when the explosive emission cathode is used, where efficiency does not exceed 20%.

  10. Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Ricard, A.; Hecq, M.

    2006-01-01

    High-power pulsed magnetron discharges have drawn an increasing interest as an approach to produce highly ionized metallic vapor. In this paper we propose to study how the plasma composition and the deposition rate are influenced by the pulse duration. The plasma is studied by time-resolved optical emission and absorption spectroscopies and the deposition rate is controlled thanks to a quartz microbalance. The pulse length is varied between 2.5 and 20 {mu}s at 2 and 10 mTorr in pure argon. The sputtered material is titanium. For a constant discharge power, the deposition rate increases as the pulse length decreases. With 5 {mu}s pulse, for an average power of 300 W, the deposition rate is {approx}70% of the deposition rate obtained in direct current magnetron sputtering at the same power. The increase of deposition rate can be related to the sputtering regime. For long pulses, self-sputtering seems to occur as demonstrated by time-resolved optical emission diagnostic of the discharge. In contrary, the metallic vapor ionization rate, as determined by absorption measurements, diminishes as the pulses are shortened. Nevertheless, the ionization rate is in the range of 50% for 5 {mu}s pulses while it lies below 10% in the case of a classical continuous magnetron discharge.

  11. Effect of buffer layer on thermochromic performances of VO2 films fabricated by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Benqin; Tao, Haizheng; Zhao, Xiujian

    2016-03-01

    As a well-developed industrial fabricating method, magnetron sputtering technique has its distinct advantages for the large-scale production. In order to investigate the effect of buffer layer on the formation and thermochromic performances of VO2 films, using RF magnetron sputtering method, we fabricated three kinds of buffer layers SiO2, TiO2 and SnO2 on soda lime float-glass. Then according to the reactive DC magnetron sputtering method, VO2 films were deposited. Due to the restriction of heat treatment temperature when using soda lime float-glass as substrates, dense rutile phase TiO2 cannot be formed, leading to the formation of vanadium oxide compounds containing Na ions. When using SnO2 as buffer layer, we found that relatively high pure VO2 can be deposited more easily. In addition, compared with the effect of SiO2 buffer layer, we observed an enhanced visible transparency, a decreased infrared emissivity, which should be mainly originated from the modified morphology and/or the hetero-structured VO2/SnO2 interface.

  12. Simulation of the electric potential and plasma generation coupling in magnetron sputtering discharges

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Krueger, Dennis; Schmidt, Frederik; Brinkmann, Ralf Peter; Mussenbrock, Thomas

    2016-09-01

    Magnetron sputtering typically operated at low pressures below 1 Pa is a widely applied deposition technique. For both, high power impulse magnetron sputtering (HiPIMS) as well as direct current magnetron sputtering (dcMS) the phenomenon of rotating ionization zones (also referred to as spokes) has been observed. A distinct spatial profile of the electric potential has been associated with the latter, giving rise to low, mid, and high energy groups of ions observed at the substrate. The adherent question of which mechanism drives this process is still not fully understood. This query is approached using Monte Carlo simulations of the heavy particle (i.e., ions and neutrals) transport consistently coupled to a pre-specified electron density profile via the intrinsic electric field. The coupling between the plasma generation and the electric potential, which establishes correspondingly, is investigated. While the system is observed to strive towards quasi-neutrality, distinct mechanisms governing the shape of the electric potential profile are identified. This work is supported by the German Research Foundation (DFG) in the frame of the transregional collaborative research centre TRR 87.

  13. Fabrication and characterization of flaky core-shell particles by magnetron sputtering silver onto diatomite

    NASA Astrophysics Data System (ADS)

    Wang, Yuanyuan; Zhang, Deyuan; Cai, Jun

    2016-02-01

    Diatomite has delicate porous structures and various shapes, making them ideal templates for microscopic core-shell particles fabrication. In this study, a new process of magnetron sputtering assisted with photoresist positioning was proposed to fabricate lightweight silver coated porous diatomite with superior coating quality and performance. The diatomite has been treated with different sputtering time to investigate the silver film growing process on the surface. The morphologies, constituents, phase structures and surface roughness of the silver coated diatomite were analyzed with SEM, EDS, XRD and AFM respectively. The results showed that the optimized magnetron sputtering time was 8-16 min, under which the diatomite templates were successfully coated with uniform silver film, which exhibits face centered cubic (fcc) structure, and the initial porous structures were kept. Moreover, this silver coating has lower surface roughness (RMS 4.513 ± 0.2 nm) than that obtained by electroless plating (RMS 15.692 ± 0.5 nm). And the infrared emissivity of coatings made with magnetron sputtering and electroless plating silver coated diatomite can reach to the lowest value of 0.528 and 0.716 respectively.

  14. Plasma"anti-assistance" and"self-assistance" to high power impulse magnetron sputtering

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.

    2009-01-30

    A plasma assistance system was investigated with the goal to operate high power impulse magnetron sputtering (HiPIMS) at lower pressure than usual, thereby to enhance the utilization of the ballistic atoms and ions with high kinetic energy in the film growth process. Gas plasma flow from a constricted plasma source was aimed at the magnetron target. Contrary to initial expectations, such plasma assistance turned out to be contra-productive because it led to the extinction of the magnetron discharge. The effect can be explained by gas rarefaction. A better method of reducing the necessary gas pressure is operation at relatively high pulse repetition rates where the afterglow plasma of one pulse assists in the development of the next pulse. Here we show that this method, known from medium-frequency (MF) pulsed sputtering, is also very important at the much lower pulse repetition rates of HiPIMS. A minimum in the possible operational pressure is found in the frequency region between HiPIMS and MF pulsed sputtering.

  15. Fabrication of Optical Multilayer Devices from Porous Silicon Coatings with Closed Porosity by Magnetron Sputtering.

    PubMed

    Caballero-Hernández, Jaime; Godinho, Vanda; Lacroix, Bertrand; Jiménez de Haro, Maria C; Jamon, Damien; Fernández, Asunción

    2015-07-01

    The fabrication of single-material photonic-multilayer devices is explored using a new methodology to produce porous silicon layers by magnetron sputtering. Our bottom-up methodology produces highly stable amorphous porous silicon films with a controlled refractive index using magnetron sputtering and incorporating a large amount of deposition gas inside the closed pores. The influence of the substrate bias on the formation of the closed porosity was explored here for the first time when He was used as the deposition gas. We successfully simulated, designed, and characterized Bragg reflectors and an optical microcavity that integrates these porous layers. The sharp interfaces between the dense and porous layers combined with the adequate control of the refractive index and thickness allowed for excellent agreement between the simulation and the experiments. The versatility of the magnetron sputtering technique allowed for the preparation of these structures for a wide range of substrates such as polymers while also taking advantage of the oblique angle deposition to prepare Bragg reflectors with a controlled lateral gradient in the stop band wavelengths.

  16. Phased Array Technology with Phase and Amplitude Controlled Magnetron for Microwave Power Transmission

    NASA Astrophysics Data System (ADS)

    Shinohara, N.; Matsumoto, H.

    2004-12-01

    We need a microwave power transmitter with light weight and high DC-RF conversion efficiency for an economical SSPS (Space Solar Power System). We need a several g/W for a microwave power transmission (MPT) system with a phased array with 0.0001 degree of beam control accuracy (=tan-1 (100m/36,000km)) and over 80 % of DC-RF conversion efficiency when the weight of the 1GW-class SPS is below a several thousand ton - a several tens of thousand ton. We focus a microwave tube, especially magnetron by economical reason and by the amount of mass-production because it is commonly used for microwave oven in the world. At first, we have developed a phase controlled magnetron (PCM) with different technologies from what Dr. Brown developed. Next we have developed a phase and amplitude controlled magnetron (PACM). For the PACM, we add a feedback to magnetic field of the PCM with an external coil to control and stabilize amplitude of the microwave. We succeed to develop the PACM with below 10-6 of frequency stability and within 1 degree of an error in phase and within 1% of amplitude. We can control a phase and amplitude of the PACM and we have developed a phased array the PCMs. With the PCM technology, we have developed a small light weight MPT transmitter COMET (Compact Microwave Energy Transmitter) with consideration of heat radiation for space use and with consideration of mobility to space.

  17. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    PubMed Central

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-01-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg−1 at the current density of 1Ag−1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors. PMID:28397783

  18. Effect of La2O3 addition on interface chemistry between 4YSZ top layer and Ni based alloy bond coat in thermal barrier coating by EB PVD.

    PubMed

    Park, Chan-Young; Yang, Young-Hwan; Kim, Seong-Won; Lee, Sung-Min; Kim, Hyung-Tae; Jang, Byung-Koog; Lim, Dae-Soon; Oh, Yoon-Suk

    2014-11-01

    The effect of a 5 mol% La2O3 addition on the forming behavior and compositional variation at interface between a 4 mol% Yttria (Y2O3) stabilized ZrO2 (4YSZ) top coat and bond coat (NiCrAlY) as a thermal barrier coating (TBC) has been investigated. Top coats were deposited by electron beam physical vapor deposition (EB PVD) onto a super alloy (Ni-Cr-Co-Al) substrate without pre-oxidation of the bond coat. Top coats are found to consist of dense columnar grains with a thin interdiffusion layer between metallic bond coats. In the as-received 4YSZ coating, a thin interdiffusion zone at the interface between the top and bond coats was found to consist of a Ni-Zr intermetallic compound with a reduced quantity of Y, Al or O elements. On the other hand, in the case of an interdiffusion area of 5 mol% La2O3-added 4YSZ coating, it was found that the complicated composition and structure with La-added YSZ and Ni-Al rich compounds separately. The thermal conductivity of 5 mol% La2O3-added 4YSZ coating (- 1.6 W/m x k at 1100 degrees C) was lower than a 4YSZ coating (- 3.2 W/m x k at 1100 degrees C) alone.

  19. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  20. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors.

    PubMed

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-04-11

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg(-1) at the current density of 1Ag(-1) and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  1. Dimensional stability and electrochemical behaviour of ZrO2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors

    NASA Astrophysics Data System (ADS)

    Solarajan, Arun Kumar; Murugadoss, Vignesh; Angaiah, Subramania

    2017-04-01

    Different weight percentages of ZrO2 (0, 3, 5, 7 and 10 wt%) incorporated electrospun PVDF-HFP nanocomposite polymer membranes (esCPMs) were prepared by electrospinning technique. They were activated by soaking in 1 M LiPF6 containing 1:1 volume ratio of EC : DMC (ethylene carbonate:dimethyl carbonate) to get electrospun nanocomposite polymer membrane electrolytes (esCPMEs). The influence of ZrO2 on the physical, mechanical and electrochemical properties of esCPM was studied in detail. Finally, coin type Li-ion capacitor cell was assembled using LiCo0.2Mn1.8O4 as the cathode, Activated carbon as the anode and the esCPME containing 7 wt% of ZrO2 as the separator, which delivered a discharge capacitance of 182.5 Fg-1 at the current density of 1Ag-1 and retained 92% of its initial discharge capacitance even after 2,000 cycles. It revealed that the electrospun PVdF-HFP/ZrO2 based nanocomposite membrane electrolyte could be used as a good candidate for high performance Li-ion capacitors.

  2. ECR plasma-assisted PVD deposition of α-Fe thin film on melt-spun Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Fedorchenko, V. D.; Bovda, A. M.; Bovda, V. A.; Chen, C. H.; Chebotarev, V. V.; Garkusha, I. E.; Liu, S.; Medvedev, A. V.; Tereshin, V. I.

    2008-03-01

    The paper deals with plasma-assisted PVD of α-Fe thin film onto the melt-spun Nd-Fe-B-Co ribbons. The parameters of the plasma created by a planar rectangular ECR plasma source with a multipolar magnetic field and a double-slot antenna were as follows: electron density up to 1×1010 cm-3, electron temperature ˜22 eV, the current density of ion flow to grounded disk-substrate was equal to ˜0.5 mA/cm2 at the gas flow of 1 sccm, the microwave power was up to 300W. After degreasing and ultrasonic washing of Nd-Fe-B-Co ribbons, follow by ion etching, the deposition process was realized at a pulsed voltage bias of -1000 V with frequency 100 Hz, total current on the target 240 mA, current density 2.9 mA/cm2. The deposition rate of 0.0083 μm/min was achieved. The process continued for 2 hour. It was found that the magnetic melt-spun ribbons were homogeneously coated with the α-Fe film having a typical thickness of 1 μm.

  3. Highly conductive and electrochemically stable plasticized blend polymer electrolytes based on PVdF-HFP and triblock copolymer PPG-PEG-PPG diamine for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Saikia, Diganta; Wu, Hao-Yiang; Pan, Yu-Chi; Lin, Chi-Pin; Huang, Kai-Pin; Chen, Kan-Nan; Fey, George T. K.; Kao, Hsien-Ming

    2011-03-01

    A new plasticized poly(vinylidene fluoride-co-hexafluoropropylene (PVdF-HFP)/PPG-PEG-PPG diamine/organosilane blend-based polymer electrolyte system has been synthesized and characterized. The structural and electrochemical properties of the electrolytes thus obtained were systematically investigated by a variety of techniques including differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), tensile test, Fourier transform infrared spectroscopy (FTIR), 13C and 29Si solid-state NMR, AC impedance, linear sweep voltammetry (LSV) and charge-discharge measurements. The FTIR and NMR results provided the information about the interaction among the constituents in the blend polymer membrane. The present blend polymer electrolyte exhibits several advantageous electrochemical properties such as ionic conductivity up to 1.3 × 10-2 S cm-1 at room temperature, high value of Li+ transference number (t+ = 0.82), electrochemical stability up to 6.4 V vs. Li/Li+ with the platinum electrode, and stable charge-discharge cycles for lithium-ion batteries.

  4. Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE)

    NASA Astrophysics Data System (ADS)

    Aravindan, V.; Vickraman, P.

    2007-11-01

    A novel type of lithium bis(oxalato)borate (LiBOB) synthesized by the solid-state reaction method has been presented. LiBOB composite polymer electrolytes (CPE) prepared with dispersions of TIO2/ZrO2with various concentrations into the host blend matrices of poly(vinylidenefluoride) (PVdF)-poly(vinylchloride) (PVC) are investigated by scanning electron microscopy, x-ray diffraction (XRD) and ac impedance measurements. The plasticizing agent selected for the present study is a mixture of ethylene carbonate (EC) and diethyl carbonate (DEC) for the phase separated morphology of the studied polymers. The impedance studies on CPE membranes identify that membranes, with 2.5 wt% of fillers, have enhanced conductivities of 5.43 × 10-4 S cm-1 and 4.38 × 10-4 S cm-1, respectively, for TiO2 and ZrO2 at ambient temperature. The XRD investigations confirm that the membranes with filler levels exceeding the limit of 2.5 wt% show a gradual increase in the degree of crystallinity, rendering them less conducting. The activation energy calculations also highlight variations in conductivities of all the membranes.

  5. Synthesis and characterization of electrospun PVdF-HFP/silane-functionalized ZrO2 hybrid nanofiber electrolyte with enhanced optical and electrochemical properties

    NASA Astrophysics Data System (ADS)

    Puguan, John Marc C.; Chung, Wook-Jin; Kim, Hern

    2016-12-01

    A facile method to produce a hybrid of organic-inorganic nanofiber electrolyte via electrospinning is hereby presented. The incorporation of functionalized zirconium oxide (ZrO2) nanoparticles into poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) and complexed with lithium trifluoromethanesulfonate (LiCF3SO3) provided an enhanced optical transmissivity and ionic conductivity. The dependence of the nanofiber's morphology, optical and electrochemical properties on the various ZrO2 loading was studied. Results show that while nanofiller content was increased, the diameter of the nanofibers was reduced. The improved bulk ionic conductivity of the nanofiber electrolyte was at 1.96 × 10-5 S cm-1. Owing to the enhanced dispersibility of the 3-(trimethoxysilyl)propyl methacrylate (MPS) functionalized ZrO2, the optical transmissivity of the nanofiber electrolyte was improved significantly. This new nanofiber composite electrolyte membrane with further development has the potential to be next generation electrolyte for energy efficient windows like electrochromic devices.

  6. Dual-Mode Combustor

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J (Inventor); Dippold, Vance F (Inventor)

    2013-01-01

    A new dual-mode ramjet combustor used for operation over a wide flight Mach number range is described. Subsonic combustion mode is usable to lower flight Mach numbers than current dual-mode scramjets. High speed mode is characterized by supersonic combustion in a free-jet that traverses the subsonic combustion chamber to a variable nozzle throat. Although a variable combustor exit aperture is required, the need for fuel staging to accommodate the combustion process is eliminated. Local heating from shock-boundary-layer interactions on combustor walls is also eliminated.

  7. Électrolytes-gels pour piles au lithium système PVdF-HFP/SiO2/VL-LiTFSI

    NASA Astrophysics Data System (ADS)

    Caillon-Caravanier, M.; Claude-Montigny, B.; Lemordant, D.; Bosser, G.

    2002-04-01

    Les électrolytes-gels étudiés sont constitués du copolymère poly (fluorure de vinylidène-hexafluoropropylène) (PVdF-HFP) contenant où non de la silice et ayant absorbé un électrolyte liquide obtenu par dissolution du (trifluorométhyl sulfone) imidure de lithium (LiTFSI) dans la gamma-valérolactone (VL) ou dans le mélange VL:EC (90:10 en moles) (EC:carbonate d'éthylène). L'influence du pourcentage en sel de lithium dans l'électrolyte liquide, de la proportion de silice dans le copolymère sec et de la température sur la capacité d'absorption est étudiée. L'évolution de la conductivité en fonction de la composition de l'électrolyte-gel et de la température ainsi que l'étude de la solvatation de l'ion Li^+ par spectroscopie RAMAN ont permis de proposer un modèle de conductivité ionique pour ces matériaux. Après avoir déterminé le domaine d'électroactivité des gels, l'évolution des spectres d'impédance à l'interface Li / gel est interprétée par le modèle “couche polymère solide" (SPL).

  8. Dual approximations in optimal control

    NASA Technical Reports Server (NTRS)

    Hager, W. W.; Ianculescu, G. D.

    1984-01-01

    A dual approximation for the solution to an optimal control problem is analyzed. The differential equation is handled with a Lagrange multiplier while other constraints are treated explicitly. An algorithm for solving the dual problem is presented.

  9. Modeling of plasma-target interaction during reactive magnetron sputtering of TiN

    NASA Astrophysics Data System (ADS)

    Möller, W.; Güttler, D.

    2007-11-01

    The nitrogen incorporation at the target during reactive magnetron sputtering of TiN is described by a simple stationary global model of the magnetron plasma, in combination with an analytical two-layer stationary surface model or dynamic collisional computer simulation (TRIDYN) of the surface processes. Results are shown for different nitrogen gas additions in Ar /N2 and Xe /N2 gas mixtures at a total pressure of 0.3Pa and a magnetron current of 0.3A. The nitrogen incorporation predicted by the analytical model is significantly less than obtained from computer simulation. The computer simulation yields nitrogen depth profiles which extend to about 2.5nm, exhibiting a quasirectangular shape in case of stoichiometric saturation with an integrated nitrogen areal density of ˜1.25×1016N/cm2. The stationary-state nitrogen incorporation results from the balance of surface adsorption in connection with recoil implantation, direct ion implantation, and resputtering. The most relevant species are nitrogen gas molecules for adsorption, molecular nitrogen ions for implantation, and inert gas ions for recoil implantation and sputtering. The model results are in good agreement with experiment provided that nonzero sticking of nitrogen gas molecules is assumed on the unsaturated surface. The analytical surface model is preferable, which favors the picture of a continuous transition to bulk and surface saturation rather than discrete local saturation which is inherent in TRIDYN. Also the relative nitrogen incorporation for Xe /N2 versus Ar /N2 gas mixtures is well described.

  10. Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Corbella, C.; Maszl, C.; Breilmann, W.; von Keudell, A.

    2017-05-01

    Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.

  11. Localized traveling ionization zones and their importance for the high power impulse magnetron sputtering process

    NASA Astrophysics Data System (ADS)

    Maszl, Christian

    2016-09-01

    High power impulse magnetron sputtering (HiPIMS) is a technique to deposit thin films with superior quality. A high ionization degree up to 90% and the natural occurence of high energetic metal ions are the reason why HiPIMS exceeds direct current magnetron sputtering in terms of coating quality. On the other hand HiPIMS suffers from a reduced efficiency, especially if metal films are produced. Therefore, a lot of research is done by experimentalists and theoreticians to clarify the transport mechanisms from target to substrate and to identify the energy source of the energetic metal ions. Magnetron plasmas are prone to a wide range of wave phenomena and instabilities. Especially, during HiPIMS at elevated power/current densities, symmetry breaks and self-organization in the plasma torus are observed. In this scenario localized travelling ionization zones with certain quasi-mode numbers are present which are commonly referred to as spokes. Because of their high rotation speed compared to typical process times of minutes their importance for thin film deposition was underestimated at first. Recent investigations show that spokes have a strong impact on particle transport, are probably the source of the high energetic metal ions and are therefore the essence of HiPIMS plasmas. In this contribution we will describe the current understanding of spokes, discuss implications for thin film synthesis and highlight open questions. This project is supported by the DFG (German Science Foundation) within the framework of the Coordinated Research Center SFB-TR 87 and the Research Department ``Plasmas with Complex Interactions'' at Ruhr-University Bochum.

  12. Tailoring of antibacterial Ag nanostructures on TiO2 nanotube layers by magnetron sputtering.

    PubMed

    Uhm, Soo-Hyuk; Song, Doo-Hoon; Kwon, Jae-Sung; Lee, Sang-Bae; Han, Jeon-Geon; Kim, Kyoung-Nam

    2014-04-01

    To reduce the incidence of postsurgical bacterial infection that may cause implantation failure at the implant-bone interface, surface treatment of titanium implants with antibiotic materials such as silver (Ag) has been proposed. The purpose of this work was to create TiO2 nanotubes using plasma electrolytic oxidation (PEO), followed by formation of an antibacterial Ag nanostructure coating on the TiO2 nanotube layer using a magnetron sputtering system. PEO was performed on commercially pure Ti sheets. The Ag nanostructure was added onto the resulting TiO2 nanotube using magnetron sputtering at varying deposition rates. Field emission scanning electron microscopy and transmission electron microscopy were used to characterize the surface, and Ag content on the TiO2 nanotube layer was analyzed by X-ray diffraction and X-ray photoelectron spectroscopy. Scanning probe microscopy for surface roughness and contact angle measurement were used to indirectly confirm enhanced TiO2 nanotube hydrophilicity. Antibacterial activity of Ag ions in solution was determined by inductively coupled plasma mass spectrometry and antibacterial testing against Staphylococcus aureus (S. aureus). In vitro, TiO2 nanotubes coated with sputtered Ag resulted in significantly reduced S. aureus. Cell viability assays showed no toxicity for the lowest sputtering time group in the osteoblastic cell line MC3T3-E1. These results suggest that a multinanostructured layer with a biocompatible TiO2 nanotube and antimicrobial Ag coating is a promising biomaterial that can be tailored with magnetron sputtering for optimal performance.

  13. Transport of ionized metal atoms in high-power pulsed magnetron discharges assisted by inductively coupled plasma

    SciTech Connect

    Konstantinidis, S.; Dauchot, J.P.; Ganciu, M.; Hecq, M.

    2006-01-09

    Transporting metallic ions from the magnetron cathode to the substrate is essential for an efficient thin-film deposition process. This letter examines how inductively coupled plasma superimposed onto a high-power pulsed magnetron discharge can influence the mobility of titanium ions. To this effect, time-resolved optical emission and absorption spectrometry are conducted and the current at the substrate is measured. With this new hybrid technique, ions are found to reach the substrate in two successive waves. Metal ions, only present in the second wave, are found to accelerate proportionally to the power supplied to the inductively coupled plasma. All the measurements in this study are made at 10 and 30 mTorr, with 10 {mu}s long pulses at the magnetron cathode.

  14. Characteristic Features of the Formation of a Combined Magnetron-Laser Plasma in the Processes of Deposition of Film Coatings

    NASA Astrophysics Data System (ADS)

    Burmakov, A. P.; Kuleshov, V. N.; Prokopchik, K. Yu.

    2016-09-01

    A block diagram of a facility for combined magnetron-laser deposition of coatings and of the systems of controlling and managing this process is considered. The results of analysis of the influence of the gas medium and of laser radiation parameters on the emission-optical properties of laser plasma are considered. The influence of the laser plasma on the electric characteristics of a magnetron discharge is analyzed. The formation of the laser plasma-initiated pulse arc discharge has been established and the influence of the laser radiation parameters on the electric characteristics of this discharge has been determined. The emission optical spectra of the magnetron discharge plasma and of erosion laser plasma are compared separately and in combination.

  15. In situ stress evolution during magnetron sputtering of transition metal nitride thin films

    SciTech Connect

    Abadias, G.; Guerin, Ph.

    2008-09-15

    Stress evolution during reactive magnetron sputtering of TiN, ZrN, and TiZrN layers was studied using real-time wafer curvature measurements. The presence of stress gradients is revealed, as the result of two kinetically competing stress generation mechanisms: atomic peening effect, inducing compressive stress, and void formation, leading to a tensile stress regime predominant at higher film thickness. No stress relaxation is detected during growth interrupt in both regimes. A change from compressive to tensile stress is evidenced with increasing film thickness, Ti content, sputtering pressure, and decreasing bias voltage.

  16. Texture evolution in nanocrystalline iron films deposited using biased magnetron sputtering

    SciTech Connect

    Vetterick, G.; Taheri, M. L.; Baldwin, J. K.; Misra, A.

    2014-12-21

    Fe thin films were deposited on sodium chloride (NaCl) substrates using magnetron sputtering to investigate means of texture control in free standing metal films. The Fe thin films were studied using transmission electron microscopy equipped with automated crystallographic orientation microscopy. Using this technique, the microstructure of each film was characterized in order to elucidate the effects of altering deposition parameters. The natural tendency for Fe films grown on (100) NaCl is to form a randomly oriented nanocrystalline microstructure. By careful selection of substrate and deposition conditions, it is possible to drive the texture of the film toward a single (100) orientation while retaining the nanocrystalline microstructure.

  17. Development of high-vacuum planar magnetron sputtering using an advanced magnetic field geometry

    SciTech Connect

    Ohno, Takahiro; Yagyu, Daisuke; Saito, Shigeru Ohno, Yasunori; Itoh, Masatoshi; Uhara, Yoshio; Miura, Tsutomu; Nakano, Hirofumi

    2015-11-15

    A permanent magnet in a new magnetic field geometry (namely, with the magnetization in the radial direction) was fabricated and used for high-vacuum planar magnetron sputtering using Penning discharge. Because of the development of this magnet, the discharge current and deposition rate were increased two to three times in comparison with the values attainable with a magnet in the conventional geometry. This improvement was because the available space for effective discharge of the energetic electrons for the ionization increased because the magnetic field distribution increased in both the axial and radial directions of discharge.

  18. Use of Multiple DC Magnetron Deposition Sources for Uniform Coating of Large Areas (Preprint)

    DTIC Science & Technology

    2009-06-01

    2005- 1 June 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER FA9451-04-C-0067 DF297548 Use of multiple DC magnetron deposition sources for...thickness at some point on the substrate plane to yield a relative thickness distribution or it can be used to find the ratio Mlm which will be useful... Mlm of the material deposited in each area, is shown in columns 3 though 5, for the three sources.. For example, within the area from the center of the

  19. Characteristics of the magnetron discharge plasma at large distances from the cathode

    SciTech Connect

    Pashentsev, V. N.

    2010-12-15

    The parameters of the magnetron plasma at distances several times larger than the cathode diameter were measured. The plasma temperature and density measured by the probe technique were found to be 1.4 eV and 6 x 10{sup 10} cm{sup -3}, respectively. The dependences of the plasma density and temperature on the argon flow rate in the course of TiAlN coating deposition were determined. Before deposition of the coating, the substrate was cleaned by ion sputtering at substrate bias voltages higher than 200 V.

  20. ZnO thin film synthesis by reactive radio frequency magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Aydoğmuş, Tuna; Elmas, Saliha; Özen, Soner; Ekem, Naci; Balbağ, M. Zafer

    2014-11-01

    In this study, ZnO thin films were deposited on glass substrates by reactive RF magnetron sputtering method at argon-oxygen gas mixing (1:1) atmosphere. Some properties of the synthesized films were investigated by interferometry, UV-vis spectrophotometer, atomic force microscopy, and tensiometer. Tauc method was adopted to estimate the optical band gaps. The band gaps of the deposited films were affected by film thickness. We concluded that the surface composition plays a substantial role in the values of the band gaps. Nanocrystalline structures were detected in all produced samples.

  1. Hydrogen and Cesium Monitor for H- Magnetron Sources

    SciTech Connect

    Tan, Cheng-Yang; Bollinger, Dan; Schupbach, Brian; Seiya, Kiyomi

    2014-07-01

    The relative concentration of cesium to hydrogen in the plasma of a H- magnetron source is an important parameter for reliable operations. If there is too much cesium, the surfaces of the source become contaminated with it and sparking occurs. If there is too little cesium then the plasma cannot be sustained. In order to monitor these two elements, a spectrometer has been built and installed on a test and operating source that looks at the plasma. It is hypothesized that the concentration of each element in the plasma is proportional to the intensity of their spectral lines.

  2. Spoke rotation reversal in magnetron discharges of aluminium, chromium and titanium

    NASA Astrophysics Data System (ADS)

    Hecimovic, A.; Maszl, C.; Schulz-von der Gathen, V.; Böke, M.; von Keudell, A.

    2016-06-01

    The rotation of localised ionisation zones, i.e. spokes, in magnetron discharge are frequently observed. The spokes are investigated by measuring floating potential oscillations with 12 flat probes placed azimuthally around a planar circular magnetron. The 12-probe setup provides sufficient temporal and spatial resolution to observe the properties of various spokes, such as rotation direction, mode number and angular velocity. The spokes are investigated as a function of discharge current, ranging from 10 mA (current density 0.5 mA cm-2) to 140 A (7 A cm-2). In the range from 10 mA to 600 mA the plasma was sustained in DC mode, and in the range from 1 A to 140 A the plasma was pulsed in high-power impulse magnetron sputtering mode. The presence of spokes throughout the complete discharge current range indicates that the spokes are an intrinsic property of a magnetron sputtering plasma discharge. The spokes may disappear at discharge currents above 80 A for Cr, as the plasma becomes homogeneously distributed over the racetrack. Up to discharge currents of several amperes (the exact value depends on the target material), the spokes rotate in a retrograde \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 0.2-4 km s-1. Beyond a discharge current of several amperes, the spokes rotate in a \\mathbf{E}× \\mathbf{B} direction with angular velocity in the range of 5-15 km s-1. The spoke rotation reversal is explained by a transition from Ar-dominated to metal-dominated sputtering that shifts the plasma emission zone closer to the target. The spoke itself corresponds to a region of high electron density and therefore to a hump in the electrical potential. The electric field around the spoke dominates the spoke rotation direction. At low power, the plasma is further away from the target and it is dominated by the electric field to the anode, thus retrograde \\mathbf{E}× \\mathbf{B} rotation. At high power, the plasma is closer to the target and it is

  3. Structural, electrical, and optical properties of diamondlike carbon films deposited by dc magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Broitman, E.; Lindquist, O. P. A.; Hellgren, N.; Hultman, L.; Holloway, B. C.

    2003-11-01

    The electrical and optical properties of diamondlike carbon films deposited by direct current magnetron sputtering on Si substrates at room temperature have been measured as a function of the ion energy (Eion) and ion-to-carbon flux (Jion/JC). The results show that, in the ranges of 5 eV<=Eion<=85 eV and 1.1<=Jion/JC<=6.8, the presence of defective graphite formed by subplanted C and Ar atoms, voids, and the surface roughness, are the dominant influences on the resistivity and optical absorption.

  4. Drifting potential humps in ionization zones: The ``propeller blades'' of high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Anders, André; Panjan, Matjaž; Franz, Robert; Andersson, Joakim; Ni, Pavel

    2013-09-01

    Ion energy distribution functions measured for high power impulse magnetron sputtering show features, such as a broad peak at several 10 eV with an extended tail, as well as asymmetry with respect to E ×B, where E and B are the local electric and magnetic field vectors, respectively. Here it is proposed that those features are due to the formation of a potential hump of several 10 V in each of the traveling ionization zones. Potential hump formation is associated with a negative-positive-negative space charge that naturally forms in ionization zones driven by energetic drifting electrons.

  5. Crystallization Kinetics Study on Magnetron-Sputtered Amorphous TiAl Alloy Thin Films

    NASA Astrophysics Data System (ADS)

    Shui, Lu-Yu; Yan, Biao

    2014-04-01

    Crystallization kinetics of magnetron-sputtered amorphous TiAl alloy thin films is investigated by differential scanning calorimetry through isothermal analysis and non-isothermal analysis. In non-isothermal analysis, the Kissinger method and the Ozawa method are used to calculate the apparent activation energy and local activation energy, respectively, in the crystallization processes of amorphous TiAl thin films. Furthermore, the crystallization mechanism is discussed from the investigation of the Avrami exponent by isothermal analysis. In addition, x-ray diffraction is utilized to reveal the grain orientation and evolution during the crystallization of TiAl thin films.

  6. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  7. A study of the transient plasma potential in a pulsed bi-polar dc magnetron discharge

    NASA Astrophysics Data System (ADS)

    Bradley, J. W.; Karkari, S. K.; Vetushka, A.

    2004-05-01

    The temporal evolution of the plasma potential, Vp, in a pulsed dc magnetron plasma has been determined using the emissive probe technique. The discharge was operated in the 'asymmetric bi-polar' mode, in which the discharge voltage changes polarity during part of the pulse cycle. The probe measurements, with a time-resolution of 20 ns or better, were made along a line above the racetrack, normal to the plane of the cathode target, for a fixed frequency (100 kHz), duty cycle (50%), argon pressure (0.74 Pa) and discharge power (583 W). At all the measured positions, Vp was found to respond to the large and rapid changes in the cathode voltage, Vd, during the different phases of the pulse cycle, with Vp always more positive than Vd. At a typical substrate position (>80 mm from the target), Vp remains a few volts above the most positive surface in the discharge at all times. In the 'on' phase of the pulse, the measurements show a significant axial electric field is generated in the plasma, with the plasma potential dropping by a total of about 30 V over a distance of 70 mm, from the bulk plasma to a position close to the beginning of the cathode fall. This is consistent with measurements made in the dc magnetron. During the stable 'reverse' phase of the discharge, for distances greater than 18 mm from the target, the axial electric field is found to collapse, with Vp elevated uniformly to about 3 V above Vd. Between the target and this field-free region an ion sheath forms, and the current flowing to the target is still an ion current in this 'reverse' period. During the initial 200 ns of the voltage 'overshoot' phase (between 'on' and 'reverse' phases), Vd reached a potential of +290 V; however, close to the target, Vp was found to attain a much higher value, namely +378 V. Along the line of measurement, the axial electric field reverses in direction in this phase, and an electron current of up to 9 A flows to the target. The spatial and temporal measurements of Vp

  8. Determine the Dispersion Relation of an A6 Magnetron Using Conformal Finite Difference Time Domain Method

    NASA Astrophysics Data System (ADS)

    Lin, M. C.; Nieter, C.; Stoltz, P. H.; Smithe, D. N.

    2009-05-01

    This work introduces a conformal finite difference time domain (CFDTD) method to accurately determine the dispersion relation of an A6 relativistic magnetron. The accuracy is measured by comparing with accurate SUPERFISH calculations based on finite element method. The results show that an accuracy of 99.4% can be achieved by using only 10,000 mesh points with Dey-Mittra algorithm. By comparison, a mesh number of 360,000 is needed to preserve 99% accuracy using conventional FDTD method. This suggests one can efficiently and accurately study the hot tests of microwave tubes using CFDTD particle-in-cell method instead of conventional FDTD one.

  9. Magnetron sputtering system for fabrication of X-ray multilayer optics

    SciTech Connect

    Nayak, M.; Rao, P. N.; Lodha, G. S.

    2012-06-25

    A specially designed DC/RF magnetron sputtering system has been installed for the development of large area x-ray multilayer (ML) optics at Indus synchrotron radiation facility. A brief description of the system configuration, automation and operating conditions are presented. The system has the capability of fabricating large area (300 Multiplication-Sign 100-mm{sup 2}) X-ray MLs with required accuracy, uniformity and reproducibility. Thin film growth suitable for fabrication of X-ray ML optics has achieved by optimizing the sputtering process parameters. The representative results are presented.

  10. Use of an Injection Locked Magnetron to Drive a Superconducting RF Cavity

    SciTech Connect

    Haipeng Wang, Robert Rimmer, G. Davis, Imran Tahir, Amos Dexter, Greame Burt, Richard Carter

    2010-05-01

    The use of an injection locked CW magnetron to drive a 2.45 GHz superconducting RF cavity has been successfully demonstrated. With a locking power less than -27 dB with respect to the output and with a phase control system acting on the locking signal, cavity phase was accurately controlled for hours at a time without loss of lock whilst suppressing microphonics. The phase control accuracy achieved was 0.8 deg. r.m.s. The main contributing disturbance limiting ultimate phase control was power supply ripple from the low specification switch mode power supply used for the experiment.

  11. Different properties of aluminum doped zinc oxide nanostructured thin films prepared by radio frequency magnetron sputtering

    SciTech Connect

    Bidmeshkipour, Samina Shahtahmasebi, Nasser

    2013-06-15

    Aluminium doped zinc oxide (AZO) nanostructured thin films are prepared by radio frequency magnetron sputtering on glass substrate using specifically designed ZnO target containing different amount of Al{sub 2}O{sub 3} powder as the Al doping source. The optical properties of the aluminium doped zinc oxide films are investigated. The topography of the deposited films were investigated by Atomic Force Microscopy. Variation of the refractive index by annealing temperature are considered and it is seen that the refractive index increases by increasing the annealing temperature.

  12. Study on mixed vanadium oxide thin film deposited by RF magnetron sputtering and its application

    NASA Astrophysics Data System (ADS)

    Ling, Zhang; Jianhui, Tu; Hao, Feng; Jingzhong, Cui

    Vanadium oxide (VOx) thin films were deposited on fused quartz using a pure metal vanadium target by RF reactive magnetron sputtering technique. Film microstructure, valence state, optical transmittance properties were studied. The mixed valence VOx thin films deposited with different thickness were found to be amorphous. And the optical transmittance curves are flatness in certain wavelength region. These films can be used to control the relative light intensity of the rubidium light beam between the rubidium lamp and the vapor cell, in order to optimize the working parameters of the rubidium frequency standard (RAFS).

  13. Ion energies in high power impulse magnetron sputtering with and without localized ionization zones

    SciTech Connect

    Yang, Yuchen; Tanaka, Koichi; Liu, Jason; Anders, André

    2015-03-23

    High speed imaging of high power impulse magnetron sputtering discharges has revealed that ionization is localized in moving ionization zones but localization disappears at high currents for high yield targets. This offers an opportunity to study the effect ionization zones have on ion energies. We measure that ions have generally higher energies when ionization zones are present, supporting the concept that these zones are associated with moving potential humps. We propose that the disappearance of ionization zones is caused by an increased supply of atoms from the target which cools electrons and reduces depletion of atoms to be ionized.

  14. Characteristics of Cu-doped amorphous NiO thin films formed by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Sato, Kazuya; Kim, Sangcheol; Komuro, Shuji; Zhao, Xinwei

    2016-06-01

    Transparent conducting Cu-doped NiO thin films were deposited on quartz glass substrates by radio frequency magnetron spattering. The fabricated thin films were all in amorphous phase. A relatively high transmittance of 73% was achieved. The density ratio of Ni3+/(Ni2+ + Ni3+) ions in the films decreased with increasing O2 gas pressure in the fabrication chamber, which caused a decrease in the carrier concentration of the films. The increasing pressure also led to the increase in Hall mobility. By controlling the chamber pressure and substrate temperature, p-type transparent conducting NiO films with reasonable electrical properties were obtained.

  15. Ground state atomic oxygen in high-power impulse magnetron sputtering: a quantitative study

    NASA Astrophysics Data System (ADS)

    Britun, Nikolay; Belosludtsev, Alexandr; Silva, Tiago; Snyders, Rony

    2017-02-01

    The ground state density of oxygen atoms in reactive high-power impulse magnetron sputtering discharges has been studied quantitatively. Both time-resolved and space-resolved measurements were conducted. The measurements were performed using two-photon absorption laser-induced fluorescence (TALIF), and calibrated by optical emission actinometry with multiple Ar emission lines. The results clarify the dynamics of the O ground state atoms in the discharge afterglow significantly, including their propagation and fast decay after the plasma pulse, as well as the influence of gas pressure, O2 admixture, etc.

  16. Reduction of Beam Current Noise in the FNAL Magnetron Ion Source

    SciTech Connect

    Bollinger, D. S.; Karns, P. R.; Tan, C. Y.

    2014-01-01

    The new FNAL Injector Line with a circular dimple magnetron ion source has been operational since December of 2013. Since the new injector came on line there have been variations in the H- beam current flattop observed near the downstream end of the linac. Several different cathode geometries including a hollow cathode suggested by Dudnikov [1] were tried. We expanded on those studies by trying mixtures ranging from 0.25%N, 99.75%H to 3%N, 97%H. The results of these studies in our test stand will be presented in this paper.

  17. Group III Impurity Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Minami, Tadatsugu; Sato, Hirotoshi; Nanto, Hidehito; Takata, Shinzo

    1985-10-01

    The detailed study of electrical properties in group III impurity doped ZnO thin films prepared by rf magnetron sputtering is described. The resistivity is lowered by doping of B, Al, Ga and In into ZnO films. The characteristic features of ZnO films doped with group III elements except for B are their high carrier concentration and low mobility. Variation of the mobility with the impurity content is roughly governed by the ionized impurity scattering. It is shown that the doped ZnO films exhibit the resistivity dependence on film thickness below 300 nm.

  18. Thin-film TiPbO3 varistors obtained by two-source magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Ziaja, J.; Lewandowski, M.

    2016-02-01

    The paper presents the method of obtaining thin films of TiPbO3 by two-source magnetron sputtering DC-M. The films were obtained in a reactive process of sputtering metallic targets of titanium (Ti) and lead (Pb). The research involved the impact of the time of sputtering of the respective targets on voltage-dependent resistance of the obtained films for different power conditions, pressures of process gases and the powers provided on the targets. The obtained nonlinearity coefficients and the current-voltage I(U) characteristics were within the following range.

  19. Studies of PMMA sintering foils with and without coating by magnetron sputtering Pd

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Mackova, A.; Torrisi, L.; Vad, K.; Csik, A.; Ando', L.; Svecova, B.

    2017-09-01

    Polymethylmethacrylate thin foils were prepared by using physical and chemical processes aimed at changing certain properties. The density and the optical properties were changed obtaining clear and opaque foils. DC magnetron sputtering method was used to cover the foils with thin metallic palladium layers. The high optical absorbent foils were obtained producing microstructured PMMA microbeads with and without thin metallic coatings. Rutherford Backscattering Spectroscopy, optical investigation and microscopy were employed to characterize the prepared foils useful in the field study of laser-matter interaction.

  20. Direct-current magnetron fabrication of indium tin oxide/InP solar cells

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Wu, X.; Gessert, T. A.; Li, X.

    1988-01-01

    Efficient solar cells of indium tin oxide (ITO)/InP have been fabricated using dc magnetron deposition of the ITO into single-crystal InP substrates. Efficiencies of over 16.5 percent have been achieved, the highest ever recorded for devices of this construction. The results of studies of the annealing behavior of the cells and observations of interfacial changes using Raman spectroscopy and secondary ion mass spectroscopy, together with measurements of light and dark current/voltage and quantum efficiency characteristics, are used to model the behavior of the cells and explain their lack of sensitivity to fabrication conditions.

  1. Spectroscopic imaging of self-organization in high power impulse magnetron sputtering plasmas

    SciTech Connect

    Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, 117543 Singapore, Singapore; Andersson, Joakim; Ni, Pavel; Anders, Andre

    2013-07-17

    Excitation and ionization conditions in traveling ionization zones of high power impulse magnetron sputtering plasmas were investigated using fast camera imaging through interference filters. The images, taken in end-on and side on views using light of selected gas and target atom and ion spectral lines, suggest that ionization zones are regions of enhanced densities of electrons, and excited atoms and ions. Excited atoms and ions of the target material (Al) are strongly concentrated near the target surface. Images from the highest excitation energies exhibit the most localized regions, suggesting localized Ohmic heating consistent with double layer formation.

  2. Plasma reactivity in high-power impulse magnetron sputtering through oxygen kinetics

    SciTech Connect

    Vitelaru, Catalin; Lundin, Daniel; Brenning, Nils; Minea, Tiberiu

    2013-09-02

    The atomic oxygen metastable dynamics in a Reactive High-Power Impulse Magnetron Sputtering (R-HiPIMS) discharge has been characterized using time-resolved diode laser absorption in an Ar/O{sub 2} gas mixture with a Ti target. Two plasma regions are identified: the ionization region (IR) close to the target and further out the diffusion region (DR), separated by a transition region. The μs temporal resolution allows identifying the main atomic oxygen production and destruction routes, which are found to be very different during the pulse as compared to the afterglow as deduced from their evolution in space and time.

  3. Friction characteristics of r. f. magnetron sputtered C and C:N thin films.

    NASA Astrophysics Data System (ADS)

    Sobota, Jaroslav

    Carbon and C:N layers were prepared using the commercially available Leybold-Heraeus Z 550 radio frequency magnetron sputtering plant. A graphite target of high purity (99.999 % C) was used. The tribological testing was performed with a reciprocating ball-on-disc tribometer. The sliding distance on the coating was defined as the time at which a scoring occurs, and the friction coefficient exhibits an abrupt increase. From this, and from the known amplitude of the reciprocating ball, the sliding distance was evaluated.

  4. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  5. Surface functionalization of nanostructured LaB6-coated Poly Trilobal fabric by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Zhang, Lin; Min, Guanghui; Yu, Huashun; Gao, Binghuan; Liu, Huihui; Xing, Shilong; Pang, Tao

    2016-10-01

    Nanostructured LaB6 films were deposited on flexible Poly Trilobal substrates (PET textiles) through direct current magnetron sputtering in order to broaden its applications and realize surface functionalization of polyester fabrics. Characterizations and performances were investigated by employing a scanning electron microscope (SEM), Fourier transformation infrared spectroscopy (FT-IR) and ultraviolet-visible (UV-vis) spectrophotometer. Ultraviolet Protection Factor (UPF) conducted by the integral conversion was employed to measure the ultraviolet protection ability. As expected, the growth of LaB6 film depending on the pressure variation enhanced UV-blocking ability (UPF rating at 30.17) and absorption intensity of the textiles.

  6. Pulsed DC magnetron sputtered piezoelectric thin film aluminum nitride – Technology and piezoelectric properties

    SciTech Connect

    Stoeckel, C. Kaufmann, C.; Hahn, R.; Schulze, R.; Billep, D.; Gessner, T.

    2014-07-21

    Pulsed DC magnetron sputtered aluminum nitride (AlN) thin films are prepared on several seed layers and at different sputtering conditions. The piezoelectric c-axis (002) orientation of the AlN is analyzed with X-ray diffraction method. The transverse piezoelectric coefficient d{sub 31} is determined with a Laser-Doppler-Vibrometer at cantilevers and membranes by analytical calculations and finite element method. Additionally, thin film AlN on bulk silicon is used to characterize the longitudinal piezoelectric charge coefficient d{sub 33}.

  7. Direct-current magnetron fabrication of indium tin oxide/InP solar cells

    NASA Technical Reports Server (NTRS)

    Coutts, T. J.; Wu, X.; Gessert, T. A.; Li, X.

    1988-01-01

    Efficient solar cells of indium tin oxide (ITO)/InP have been fabricated using dc magnetron deposition of the ITO into single-crystal InP substrates. Efficiencies of over 16.5 percent have been achieved, the highest ever recorded for devices of this construction. The results of studies of the annealing behavior of the cells and observations of interfacial changes using Raman spectroscopy and secondary ion mass spectroscopy, together with measurements of light and dark current/voltage and quantum efficiency characteristics, are used to model the behavior of the cells and explain their lack of sensitivity to fabrication conditions.

  8. In situ preparation of Y-Ba-Cu-O superconducting thin films by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Li, H. C.; Linker, G.; Ratzel, F.; Smithey, R.; Geerk, J.

    1988-03-01

    Thin superconducting films of YBa2Cu3O7 have been prepared by magnetron sputtering from targets of sintered material in an oxygen-argon atmosphere. The compositional and structural properties were studied by Rutherford backscattering and X-ray diffraction. The films were deposited at substrate temperatures between 580 and 800 C. It was found that the material grows in the oxygen-deficient tetragonal phase. In situ heat treatment at 430 C in pure O2 atmosphere generates the orthorhombic structure, and the films on sapphire and SrTiO3-coated sapphire substrates show the full superconducting transition at 83 K.

  9. Anomalous transmission of Ag/ZnO nanocomposites prepared by a magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Machnev, Andrey A.; Shuliatjev, Alexei S.; Mironov, Andrey E.; Gromov, Dmitry G.; Mitrokhin, Vladimir; Mel'nikov, Igor V.; Haus, Joseph W.

    2014-03-01

    Single layer and double layer thin ZnO films with Ag nano-clusters on top and between them are fabricated by magnetron sputtering with subsequent annealing procedures. Transmission spectra measurements of the Ag/ZnO nanocomposite shows that a disordering (yet controllable) annealing modification, leads to a high transmission in the near- to the mid-IR spectral regimes. The spectra also show oscillations in the visible wavelength regime due to the excitation of surface plasmons that propagate along the surface of the nano-cluster. The behavior reported here is of interest for future implementation of new sub-wavelength, nanoplasmonic devices.

  10. Surface passivation of gallium nitride by ultrathin RF-magnetron sputtered Al2O3 gate.

    PubMed

    Quah, Hock Jin; Cheong, Kuan Yew

    2013-08-14

    An ultrathin RF-magnetron sputtered Al2O3 gate on GaN subjected to postdeposition annealing at 800 °C in O2 ambient was systematically investigated. A cross-sectional energy-filtered transmission electron microscopy revealed formation of crystalline Al2O3 gate, which was supported by X-ray diffraction analysis. Various current conduction mechanisms contributing to leakage current of the investigated sample were discussed and correlated with metal-oxide-semiconductor characteristics of this sample.

  11. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    SciTech Connect

    Yang, Yuchen; Zhou, Xue; Liu, Jason X.; Anders, André

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  12. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-01-01

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature Tv, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that Tv has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  13. Venting temperature determines surface chemistry of magnetron sputtered TiN films

    SciTech Connect

    Greczynski, G.; Mráz, S.; Schneider, J. M.; Hultman, L.

    2016-01-25

    Surface properties of refractory ceramic transition metal nitride thin films grown by magnetron sputtering are essential for resistance towards oxidation necessary in all modern applications. Here, typically neglected factors, including exposure to residual process gases following the growth and the venting temperature T{sub v}, each affecting the surface chemistry, are addressed. It is demonstrated for the TiN model materials system that T{sub v} has a substantial effect on the composition and thickness-evolution of the reacted surface layer and should therefore be reported. The phenomena are also shown to have impact on the reliable surface characterization by x-ray photoelectron spectroscopy.

  14. Dual Coding in Children.

    ERIC Educational Resources Information Center

    Burton, John K.; Wildman, Terry M.

    The purpose of this study was to test the applicability of the dual coding hypothesis to children's recall performance. The hypothesis predicts that visual interference will have a small effect on the recall of visually presented words or pictures, but that acoustic interference will cause a decline in recall of visually presented words and…

  15. Dual beam optical interferometer

    NASA Technical Reports Server (NTRS)

    Gutierrez, Roman C. (Inventor)

    2003-01-01

    A dual beam interferometer device is disclosed that enables moving an optics module in a direction, which changes the path lengths of two beams of light. The two beams reflect off a surface of an object and generate different speckle patterns detected by an element, such as a camera. The camera detects a characteristic of the surface.

  16. Self-Injection-Locked Magnetron as an Active Ring Resonator Side Coupled to a Waveguide With a Delayed Feedback Loop

    NASA Astrophysics Data System (ADS)

    Bliokh, Y. P.; Krasik, Y. E.; Felsteiner, J.

    2012-01-01

    The theoretical analysis and numerical simulations of the magnetron operation with a feedback loop were performed assuming that the delay of the electromagnetic wave propagating in the loop is constant whereas the phase of the complex feedback reflection coefficient is varied. Results of simulations showed that by a proper adjustment of values of the time delay and phase of reflection coefficient that determines phase matching between the waves in the resonator and feedback loop, one can increase the magnetron's output power significantly without any other additional measures.

  17. Orbital motion of dust particles in an rf magnetron discharge. Ion drag force or neutral atom wind force

    SciTech Connect

    Pal, A. F.; Ryabinkin, A. N.; Serov, A. O.; Dyatko, N. A.; Starostin, A. N.; Filippov, A. V.

    2012-03-15

    Microparticles with sizes up to 130 {mu}m have been confined and the velocity and diameter of particles in a plasma trap of an rf magnetron discharge with an arc magnetic field have been simultaneously measured. The motion of the gas induced by electron and ion cyclotron currents has been numerically simulated using the Navier-Stokes equation. The experimental and numerical results confirm the mechanism of the orbital motion of dust particles in the magnetron discharge plasma that is associated with the orbital motion of the neutral gas accelerated by electron and ion drift flows in crossed electric and magnetic fields.

  18. Thermal Processes and Emission of Atoms from the Liquid Phase Target Surface of a Magnetron Sputtering System

    NASA Astrophysics Data System (ADS)

    Bleykher, G. A.; Krivobokov, V. P.; Yuryeva, A. V.

    2015-08-01

    Mathematical models of thermal and erosion processes in the thermally insulated target of a magnetron sputtering system are constructed. With their help, the special features of forming the emission flux of atoms from the surface of the target whose material experiences first order phase transformations are obtained. The influence of the power density deposited into the magnetron discharge is investigated, the inhomogeneity of its distribution over the target surface is considered, and the special features of atom emission in pulsed-periodic plasma generation regimes are studied. The efficiency of the models is confirmed by a comparison of the calculated results with experimental measurements.

  19. Thin film transistor based on TiOx prepared by DC magnetron sputtering.

    PubMed

    Chung, Sung Mook; Shin, Jae-Heon; Hong, Chan-Hwa; Cheong, Woo-Seok

    2012-07-01

    This paper reports on the thin film transistor (TFT) based on TiOx prepared by direct current (DC) magnetron sputtering for the application of n-type channel transparent TFTs. A ceramic TiOx target was prepared for the sputtering of the TiO2 films. The structural, optical, and electrical properties of the TiO2 films were investigated after their heat treatment. It is observed from XRD measurement that the TiO2 films show anatase structure having (101), (004), and (105) planes after heat treatment. The anatase-structure TiO2 films show a band-gap energy of approximately 3.20 eV and a transmittance of approximately 91% (@550 nm). The bottom-gate TFTs fabricated with the TiO2 film as an n-type channel layer. These devices exhibit the on-off ratio, the field-effect mobility, and the threshold voltage of about 10(4), 0.002 cm2/Vs, and 6 V, respectively. These results indicate the possibility of applying TiO2 films depositied by DC magnetron sputtering to TiO2-based opto-electronic devices.

  20. Magnetron sputtering of metallic coatings onto elastomeric substrates for a decrease in fuel permeation rate

    NASA Astrophysics Data System (ADS)

    Myntti, Matthew F.

    The purpose of this research was to investigate the application of a metallic coating by magnetron sputtering onto elastomeric substrates, as an inhibiting layer to permeation transport. The metallic coatings which were deposited were aluminum, titanium, and copper. The substrates used were NBR, FVMQ, and FKM elastomers. The permeating fluids were ASTM Fuel C, isooctane, and toluene. The magnetron sputtering properties of these metallic elements were unique to each material, with the titanium sputtering rate being very low. The sputtering rates of these materials correlated well with their sublimation temperature. It was found that some of the metallic particles which were sputtered onto the substrates, implanted into the surface of the elastomeric membranes, with the total amount and distance of implantation being related to the density of the substrate material. The permeation of these solvents through the composite materials was reduced by the presence of these coatings with the reduction in permeation rate ranging from 12 to 25% for Fuel C. The pervaporation properties of these substrates were also evaluated. It was found from this analysis that for the FVMQ and NBR substrates, the permeation rate of the permeating solute molecules was proportional to the size of the permeation molecule. The substrate materials were not significantly stiffened by the addition of the thin metallic coatings. The coated materials were cohesive and well adhered, as determined by stretching of the substrate materials with the metallic layer in place. Upon stretching, there was no evidence of damage to the metallic coating.

  1. ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques

    SciTech Connect

    Purandare, Yashodhan Ehiasarian, Arutiun; Hovsepian, Papken; Santana, Antonio

    2014-05-15

    Zirconium nitride (ZrN) coatings were deposited on 1 μm finish high speed steel and 316L stainless steel test coupons. Cathodic Arc (CA) and High Power Impulse Magnetron Sputtering (HIPIMS) + Unbalanced Magnetron Sputtering (UBM) techniques were utilized to deposit coatings. CA plasmas are known to be rich in metal and gas ions of the depositing species as well as macroparticles (droplets) emitted from the arc sports. Combining HIPIMS technique with UBM in the same deposition process facilitated increased ion bombardment on the depositing species during coating growth maintaining high deposition rate. Prior to coating deposition, substrates were pretreated with Zr{sup +} rich plasma, for both arc deposited and HIPIMS deposited coatings, which led to a very high scratch adhesion value (L{sub C2}) of 100 N. Characterization results revealed the overall thickness of the coatings in the range of 2.5 μm with hardness in the range of 30–40 GPa depending on the deposition technique. Cross-sectional transmission electron microscopy and tribological experiments such as dry sliding wear tests and corrosion studies have been utilized to study the effects of ion bombardment on the structure and properties of these coatings. In all the cases, HIPIMS assisted UBM deposited coating fared equal or better than the arc deposited coatings, the reasons being discussed in this paper. Thus H+U coatings provide a good alternative to arc deposited where smooth, dense coatings are required and macrodroplets cannot be tolerated.

  2. Highly adherent bioactive glass thin films synthetized by magnetron sputtering at low temperature.

    PubMed

    Stan, G E; Pasuk, I; Husanu, M A; Enculescu, I; Pina, S; Lemos, A F; Tulyaganov, D U; El Mabrouk, K; Ferreira, J M F

    2011-12-01

    Thin (380-510 nm) films of a low silica content bioglass with MgO, B(2)O(3), and CaF(2) as additives were deposited at low-temperature (150°C) by radio-frequency magnetron sputtering onto titanium substrates. The influence of sputtering conditions on morphology, structure, composition, bonding strength and in vitro bioactivity of sputtered bioglass films was investigated. Excellent pull-out adherence (~73 MPa) was obtained when using a 0.3 Pa argon sputtering pressure (BG-a). The adherence declined (~46 MPa) upon increasing the working pressure to 0.4 Pa (BG-b) or when using a reactive gas mixture (~50 MPa). The SBF tests clearly demonstrated strong biomineralization features for all bioglass sputtered films. The biomineralization rate increased from BG-a to BG-b, and yet more for BG-c. A well-crystallized calcium hydrogen phosphate-like phase was observed after 3 and 15 days of immersion in SBF in all bioglass layers, which transformed monotonously into hydroxyapatite under prolonged SBF immersion. Alkali and alkali-earth salts (NaCl, KCl and CaCO(3)) were also found at the surface of samples soaked in SBF for 30 days. The study indicated that features such as composition, structure, adherence and bioactivity of bioglass films can be tailored simply by altering the magnetron sputtering working conditions, proving that this less explored technique is a promising alternative for preparing implant-type coatings.

  3. Electrical and structural properties of the Ta/Ag thin films prepared by DC magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Moghri Moazzen, M. A.; Taiebyzadeh, P.; Borghei, S. M.

    2017-07-01

    Tantalum on silver (Ta/Ag) thin films have quickly increased into high research for applied science with the promise of suitable for high temperatures environments and microsystems for electronics applications. Ag and Ta/Ag thin films were deposited on silicon substrates by dc magnetron sputtering method. We choose the dc magnetron sputtering method because it has many advantages, such as high growth rate, the possibility of large area deposition, and low cost. X-ray diffraction (XRD) analysis and four point probe (FPP) were used for determining the prepared samples. For Ag thin film deposited in room temperature, there are no peaks corresponding to Ag in the XRD pattern which demonstrates amorphous structure. Also, the XRD pattern of Ta/Ag thin film illustrates that the peak of Ta has grown to the crystal direction (002), which shows that the structure of deposited Ta layer on Ag thin film becomes a crystalline state from amorphous state. The relationship between thin film resistivity and Ta/Ag film thicknesses are investigated in this paper.

  4. Perspective: Is there a hysteresis during reactive High Power Impulse Magnetron Sputtering (R-HiPIMS)?

    NASA Astrophysics Data System (ADS)

    Strijckmans, K.; Moens, F.; Depla, D.

    2017-02-01

    This paper discusses a few mechanisms that can assist to answer the title question. The initial approach is to use an established model for DC magnetron sputter deposition, i.e., RSD2013. Based on this model, the impact on the hysteresis behaviour of some typical HiPIMS conditions is investigated. From this first study, it becomes clear that the probability to observe hysteresis is much lower as compared to DC magnetron sputtering. The high current pulses cannot explain the hysteresis reduction. Total pressure and material choice make the abrupt changes less pronounced, but the implantation of ionized metal atoms that return to the target seems to be the major cause. To further substantiate these results, the analytical reactive sputtering model is coupled with a published global plasma model. The effect of metal ion implantation is confirmed. Another suggested mechanism, i.e., gas rarefaction, can be ruled out to explain the hysteresis reduction. But perhaps the major conclusion is that at present, there are too little experimental data available to make fully sound conclusions.

  5. Continuous and nanostructured TiO2 films grown by dc sputtering magnetron.

    PubMed

    Sánchez, O; Vergara, L; Font, A Climent; de Melo, O; Sanz, R; Hernández-Vélez, M

    2012-12-01

    The growth of Anatase nanostructured films using dc reactive magnetron sputtering and post-annealing treatment is reported. TiO2 has been deposited on Porous Anodic Alumina Films used as templates which were previously grown in phosphoric acid solution and etched to modify their pore diameters. This synthesis via results in the formation of vertically aligned and spatially ordered TiO2 nanostructures replicating the underlying template. Previously, the growth optimization of TiO2 thin films deposited by dc magnetron sputtering on flat silicon substrates was done. The crystalline structure and Ti in-depth concentration profile were determined by grazing incidence X-ray diffraction and Rutherford backscattering spectrometry, respectively. The surface morphology of the samples was explored by mean of a Field Emission Gun scanning electron microscope. Optical properties of the nanostructured samples were studied by using the reflectance spectra received in the UV-visible range. In these spectra different band gap values and complex light absorption features were observed.

  6. Argon–oxygen dc magnetron discharge plasma probed with ion acoustic waves

    SciTech Connect

    Saikia, Partha Saikia, Bipul Kumar; Goswami, Kalyan Sindhu; Phukan, Arindam

    2014-05-15

    The precise determination of the relative concentration of negative ions is very important for the optimization of magnetron sputtering processes, especially for those undertaken in a multicomponent background produced by adding electronegative gases, such as oxygen, to the discharge. The temporal behavior of an ion acoustic wave excited from a stainless steel grid inside the plasma chamber is used to determine the relative negative ion concentration in the magnetron discharge plasma. The phase velocity of the ion acoustic wave in the presence of negative ions is found to be faster than in a pure argon plasma, and the phase velocity increases with the oxygen partial pressure. Optical emission spectroscopy further confirms the increase in the oxygen negative ion density, along with a decrease in the argon positive ion density under the same discharge conditions. The relative negative ion concentration values measured by ion acoustic waves are compared with those measured by a single Langmuir probe, and a similarity in the results obtained by both techniques is observed.

  7. Species transport on the target during high power impulse magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Layes, V.; Monje, S.; Corbella, C.; Trieschmann, J.; de los Arcos, T.; von Keudell, A.

    2017-02-01

    High Power Impulse Magnetron Sputtering (HiPIMS) is a prominent technique to deposit superior materials due to the very energetic growth flux. The origin of this energetic growth flux is believed to be an electric potential structure inside localized ionization zones, the so-called spokes, in the HiPIMS plasma, which rotate in the E × B direction along the racetrack. The measurement of this electric potential or of the electric fields surrounding this ionization zone is extremely challenging due to the very high local power density that obstructs any traditional probe diagnostics. Here, we use a marker technique on the magnetron target to analyze the lateral transport of a target material on a HiPIMS target. We show that the target material is predominantly transported in the E × B direction irrespective of the presence of spokes. However, only when spokes are present, we observe also an enhanced transport in the opposite E × B direction. This is explained by the large electric field at the trailing edges of spokes.

  8. Structural and electronic characterization of antimonide films made by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Giulian, R.; Manzo, D. J.; Salazar, J. B.; Just, W.; de Andrade, A. M. H.; Schoffen, J. R.; Niekraszewicz, L. A. B.; Dias, J. F.; Bernardi, F.

    2017-02-01

    AlSb, GaSb and InSb films were deposited by magnetron sputtering on Si and SiO2/Si substrates and their electronic and structural properties were investigated as a function of film thickness and deposition temperature. Elemental composition and thickness were investigated by Rutherford backscattering spectrometry and particle induced x-ray emission analysis, while x-ray diffraction provided information about phase and structure. Surface chemical composition was investigated by x-ray photoelectron spectroscopy. Here we demonstrate that polycrystalline AlSb films can be produced by magnetron sputtering, where films deposited at 550 °C attain a zincblende phase and exhibit the smallest amount of oxygen (compared to other deposition temperatures). GaSb grown by this technique at room temperature holds an amorphous structure, with excess Sb, but for films deposited at 400 °C the structure is polycrystalline, stoichiometric with a zincblende phase. InSb films with a thickness of 75 nm and thinner, deposited at room temperature, are amorphous and for increasing thickness the films attain a zincblende phase with polycrystalline structure. Sputtering performed at elevated temperatures yields films with improved crystalline quality.

  9. Corrosion and Nano-mechanical Behaviors of Magnetron Sputtered Al-Mo Gradient Coated Steel

    NASA Astrophysics Data System (ADS)

    Venugopal, A.; Srinath, J.; Ramesh Narayanan, P.; Sharma, S. C.; Venkitakrishnan, P. V.

    2017-01-01

    A gradient three-layer Al-Mo coating was deposited on steel using magnetron sputtering method. The corrosion and nano-mechanical properties of the coating were examined by electrochemical impedance spectroscopy and nano-indentation tests and compared with the conventional electroplated cadmium and IVD aluminum coatings. Electrochemical impedance spectroscopy was performed by immersing the coated specimens in 3.5% NaCl solution, and the impedance behavior was recorded as a function of immersion time. The mechanical properties (hardness and elastic modulus) were obtained from each indentation as a function of the penetration depth across the coating cross section. The adhesion resistance of the coatings was evaluated by scratch tests on the coated surface using nano-indentation method. The results show that the gradient Al-Mo coating exhibits better corrosion resistance than the other coatings in view of the better microstructure. The impedance results were modeled using appropriate electrical equivalent circuits for all the coated systems. The uniform, smooth and dense Al-Mo coating obtained by magnetron sputtering exhibits good adhesion with the steel substrate as per scratch test method. The poor corrosion resistance of the later coatings was shown to be due to the defects/cracks as well as the lesser adhesion of the coatings with steel. The hardness and elastic modulus of the Al-Mo coating are found to be high when compared to the other coatings.

  10. Codeposition of amorphous zinc tin oxide using high power impulse magnetron sputtering: characterisation and doping

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Mayes, E. L. H.; Murdoch, B. J.; McCulloch, D. G.; McKenzie, D. R.; Bilek, M. M. M.; Holland, A. S.; Partridge, J. G.

    2017-04-01

    Thin film zinc tin oxide (ZTO) has been energetically deposited at 100 °C using high power impulse magnetron sputtering (HiPIMS). Reactive co-deposition from Zn (HiPIMS mode) and Sn (DC magnetron sputtering mode) targets yielded a gradient in the Zn:Sn ratio across a 4-inch diameter sapphire substrate. The electrical and optical properties of the film were studied as a function of composition. As-deposited, the films were amorphous, transparent and semi-insulating. Hydrogen was introduced by post-deposition annealing (1 h, 500 °C, 100 mTorr H2) and resulted in significantly increased conductivity with no measurable structural alterations. After annealing, Hall effect measurements revealed n-type carrier concentrations of ˜1 × 1017 cm-3 and mobilities of up to 13 cm2 V-1 s-1. These characteristics are suitable for device applications and proved stable. X-ray photoelectron spectroscopy was used to explore the valence band structure and to show that downward surface band-bending resulted from OH attachment. The results suggest that HiPIMS can produce dense, high quality amorphous ZTO suitable for applications including transparent thin film transistors.

  11. Study of cobalt mononitride thin films prepared using DC and high power impulse magnetron sputtering

    SciTech Connect

    Gupta, Rachana; Pandey, Nidhi; Behera, Layanta; Gupta, Mukul

    2016-05-23

    In this work we studied cobalt mononitride (CoN) thin films deposited using dc magnetron sputtering (dcMS) and high power impulse magnetron sputtering (HiPIMS). A Co target was sputtered using pure N{sub 2} gas alone as the sputtering medium. Obtained long-range structural ordering was studies using x-ray diffraction (XRD), short-range structure using Co L{sub 2,3} and N K absorption edges using soft x-ray absorption spectroscopy (XAS) and the surface morphology using atomic force microscopy (AFM). It was found that HiPIMS deposited films have better long-range ordering, better stoichiometric ratio for mononitride composition and smoother texture as compared to dcMS deposited films. In addition, the thermal stability of HiPIMS deposited CoN film seems to be better. On the basis of different type of plasma conditions generated in HiPIMS and dcMS process, obtained results are presented and discussed.

  12. Formation of sensor array on the AFM chip surface by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Shumov, I. D.; Kanashenko, S. L.; Ziborov, V. S.; Ivanov, Yu D.; Archakov, A. I.; Pleshakova, T. O.

    2017-01-01

    Development of atomic force microscopy (AFM)-based nanotechnological approaches to highly sensitive detection of proteins is a perspective direction in biomedical research. These approaches use AFM chips to concentrate the target proteins from the test solution volume (buffer solution, diluted biological fluid) onto the chip surface for their subsequent registration on the chip surface by AFM. Atomic force microscope is a molecular detector that enables protein detection at ultra-low (subfemtomolar) concentrations in single-molecule counting mode. Due to extremely high sensitivity of AFM, its application for multiplexed protein detection is of great interest for use in proteomics and diagnostic applications. In this study, AFM chips containing an array of sensor areas have been fabricated. Magnetron sputtering of chromium and tungsten nanolayers has been used to form optically visible metallic marks on the AFM chip surface to provide necessary precision of AFM probe positioning against each sensor area for scanning. It has been demonstrated that the marks formed by magnetron sputtering of Cr and W are stable on the surface of the AFM chips during the following activation and intensive washing of this surface. The results obtained in our present study allow application of the developed chips for multiplexed protein analysis by AFM.

  13. Characteristics of CdS: Cu Photosensitive Films Obtatined by Magnetron Sputtering Method

    NASA Astrophysics Data System (ADS)

    Guseinov, Emil; Jafarov, Maarif; Gasanov, Ilham; Nasibov, Ilgar

    1997-02-01

    In2O3-CdS sandwich structures with thickness 0,5-1,5 mm have been obtained by magnetron sputtering method on glass substrates. Investigations of dark and light conductivity, the spectrum and kinetics of photoconductivity of CdS films have been carried out. The studies of the current-voltage characteristics of In2O3-CdS have been performed based on the generalized approximate theory of injection contact phenomena in semiconductors. The volume (n0) and precontact (nc) change carrier concentration, recombination (Nrec) and trapping (Ncn) center concentration, the absorption edge and the transmission coefficient, the region and the maximum of the photocurrent spectral dependence, the life time of nonequilibrium and minority carriers have been determined. With increasing the annealed sample thickness the conductivity has been shown to decrease as L-3, and the voltage at transition from the Ohm's law to a quadratic law increases as L2. It has been found that the In2O3 contact is close to a neutral one as a methalic transparent electrode than In. The CdS films obtained by magnetron sputtering method are characterized by high reproducibility, sensitivity, electric strength (106 V/cm), high resistivity (r˜ 109-1010 Ohm. cm), optical transmission (more than 60%). The In2O3-CdS structure is useful as the basic material of an image converter.

  14. Structure and morphology of magnetron sputter deposited ultrathin ZnO films on confined polymeric template

    NASA Astrophysics Data System (ADS)

    Singh, Ajaib; Schipmann, Susanne; Mathur, Aakash; Pal, Dipayan; Sengupta, Amartya; Klemradt, Uwe; Chattopadhyay, Sudeshna

    2017-08-01

    The structure and morphology of ultra-thin zinc oxide (ZnO) films with different film thicknesses on confined polymer template were studied through X-ray reflectivity (XRR) and grazing incidence small angle X-ray scattering (GISAXS). Using magnetron sputter deposition technique ZnO thin films with different film thicknesses (<10 nm) were grown on confined polystyrene with ∼2Rg film thickness, where Rg ∼ 20 nm (Rg is the unperturbed radius of gyration of polystyrene, defined by Rg = 0.272 √M0, and M0 is the molecular weight of polystyrene). The detailed internal structure, along the surface/interfaces and the growth direction of the system were explored in this study, which provides insight into the growth procedure of ZnO on confined polymer and reveals that a thin layer of ZnO, with very low surface and interface roughness, can be grown by DC magnetron sputtering technique, with approximately full coverage (with bulk like electron density) even in nm order of thickness, in 2-7 nm range on confined polymer template, without disturbing the structure of the underneath template. The resulting ZnO-polystyrene hybrid systems show strong ZnO near band edge (NBE) and deep-level (DLE) emissions in their room temperature photoluminescence spectra, where the contribution of DLE gets relatively stronger with decreasing ZnO film thickness, indicating a significant enhancement of surface defects because of the greater surface to volume ratio in thinner films.

  15. Experimental Study of Axial Plasma Parameter Variations in the Cylindrical Magnetron Discharge

    NASA Astrophysics Data System (ADS)

    Kudrna, P.; Holik, M.; Bilyk, O.; Porokhova, I. A.; Golubovskii, Yu. B.; Tichy, M.; Behnke, J. F.

    2003-06-01

    In the cylindrical magnetron the electric field is applied in radial direction and the magnetic field in axial direction. In this paper we present a study of the variations of plasma parameters in both the axial as well as in radial directions in the novel construction of cylindrical magnetron developed in the University of Greifswald, FRG. Six evenly distributed coils create the axial magnetic field. The homogeneity of the magnetic field ±0.2 % has been achieved over the whole discharge vessel length 300 mm (vessel diameter 58 mm). The system is equipped with three cylindrical Langmuir probes movable in radial direction, placed in ports located in between each couple of coils in distance 60 mm from each other. In order to measure the axial variations of the discharge current, one half of the cathode length is segmented into 14 segments, i.e. one segment has a length of about 10 mm. This enables the measurement of the axial variations of the discharge current. We present measurements of the axial distribution of the discharge current at different magnetic fields. We also demonstrate measurements of the axial and radial variations of the plasma density.

  16. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2016-11-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  17. Facing-target mid-frequency magnetron reactive sputtered hafnium oxide film: Morphology and electrical properties

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Xu, Jun; Wang, You-Nian; Choi, Chi Kyu; Zhou, Da-Yu

    2016-03-01

    Amorphous hafnium dioxide (HfO2) film was prepared on Si (100) by facing-target mid-frequency reactive magnetron sputtering under different oxygen/argon gas ratio at room temperature with high purity Hf target. 3D surface profiler results showed that the deposition rates of HfO2 thin film under different O2/Ar gas ratio remain unchanged, indicating that the facing target midfrequency magnetron sputtering system provides effective approach to eliminate target poisoning phenomenon which is generally occurred in reactive sputtering procedure. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the gradual reduction of oxygen vacancy concentration and the densification of deposited film structure with the increase of oxygen/argon (O2/Ar) gas flow ratio. Atomic force microscopy (AFM) analysis suggested that the surface of the as-deposited HfO2 thin film tends to be smoother, the root-meansquare roughness (RMS) reduced from 0.876 nm to 0.333 nm while O2/Ar gas flow ratio increased from 1/4 to 1/1. Current-Voltage measurements of MOS capacitor based on Au/HfO2/Si structure indicated that the leakage current density of HfO2 thin films decreased by increasing of oxygen partial pressure, which resulted in the variations of pore size and oxygen vacancy concentration in deposited thin films. Based on the above characterization results the leakage current mechanism for all samples was discussed systematically.

  18. Substrate Frequency Effects on Cr x N Coatings Deposited by DC Magnetron Sputtering

    NASA Astrophysics Data System (ADS)

    Obrosov, Aleksei; Naveed, Muhammad; Volinsky, Alex A.; Weiß, Sabine

    2017-01-01

    Controlled ion bombardment is a popular method to fabricate desirable coating structures and modify their properties. Substrate biasing at high frequencies is a possible technique, which allows higher ion density at the substrate compared with DC current bias. Moreover, high ion energy along with controlled adatom mobility would lead to improved coating growth. This paper focuses on a similar type of study, where effects of coating growth and properties of DC magnetron-sputtered chromium nitride (Cr x N) coatings at various substrate bias frequencies are discussed. Cr x N coatings were deposited by pulsed DC magnetron sputtering on Inconel 718 and (100) silicon substrates at 110, 160 and 280 kHz frequency at low duty cycle. Coating microstructure and morphology were studied by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), scratch adhesion testing and nanoindentation. Results indicate a transformation of columnar into glassy structure of Cr x N coatings with the substrate bias frequency increase. This transformation is attributed to preferential formation of the Cr2N phase at high frequencies compared with CrN at low frequencies. Increase in frequency leads to an increase in deposition rate, which is believed to be due to increase in plasma ion density and energy of the incident adatoms. An increase in coating hardness along with decrease in elastic modulus was observed at high frequencies. Scratch tests show a slight increase in coating adhesion, whereas no clear increase in coating roughness can be found with the substrate bias frequency.

  19. Comprehensive computer model for magnetron sputtering. I. Gas heating and rarefaction

    SciTech Connect

    Jimenez, Francisco J.; Dew, Steven K.

    2012-07-15

    The complex interaction between several variables in magnetron sputtering discharges is a challenge in developing engineering design tools for industrial applications. For instance, at high pressures, rarefaction and gas heating should no longer be neglected for determining several parameters of the process. In this article, we use a comprehensive 3D reactor-scale simulator that incorporates most phenomena of interest in a self-consistent manner to simulate the transport of sputtered particles over a wide range of pressures and powers. Calculations of aluminum deposition rates and metal vapor densities are in reasonable agreement with experiments over a wide range of pressures and powers. Of the elements investigated (Al, Ti, and Cu), copper showed the greatest rarefaction (30%) due to its higher sputtering yield. Titanium, despite a slightly lower sputtering yield than Al, shows a greater rarefaction than aluminum as more particles are reflected from the target as high energy neutrals. In this case, a more efficient energy transfer process is responsible for the higher rarefaction observed in Ti sputtering when compared to Al. The authors also observed that by sputtering at a higher pressure, the probability of electron impact ionization of sputtered particles is increased and speculate about the role of this process in contrast to penning ionization, which is believed to be the dominant ionization mechanism in magnetron sputtering.

  20. Operation of cold-cathode magnetron gauges in high magnetic fields

    SciTech Connect

    Thomas, S.R. Jr.; Goerz, D.A.; Pickles, W.L.

    1986-05-01

    The Mirror Fusion Test Facility (MFTF-B), under construction at LLNL, requires measurement of the neutral gas density in high magnetic fields near the plasma at several axial regions. This background gas pressure (BGP) diagnostic will help us understand the role of background neutrals in particle and power balance, particularly in the maintenance of the cold halo plasma that shields the hot core plasma from the returning neutrals. The BGP consists of several cold-cathode, magnetron-type gauges stripped of their permanent magnets, and utilizes the MFTF-B ambient B-field in strengths of 5--25 kG. Similar gauges have operated in TMX-U in B-fields up to 3 kG. To determine how well the gauges will perform, we assembled a test stand which operated magnetron gauges in an external, uniform magnetic field of up to 30 kG, over a pressure range of 10/sup -8/--10/sup -5/ Torr, at several cathode voltages. This paper describes the test stand and presents the results of the tests.

  1. Study on nitrogenated amorphous carbon films prepared by unbalanced magnetron sputtering

    SciTech Connect

    Shi, J.R.

    2006-02-01

    Nitrogenated amorphous carbon (a-CN{sub x}) films were prepared by unbalanced magnetron sputtering (UBMS) at different N{sub 2}/Ar gas flow rate ratios and different bias voltages. The films were characterized using x-ray photoelectron spectroscopy, Raman scattering, nanoindenter, atomic force microscopy nanoscratch, and contact angle measurement. It was found that a negative bias of 150 V is the optimal condition for the formation of sp{sup 3} bonded carbon atoms. As the N{sub 2}/Ar flow rate ratio changes from 0 to 0.47, the nitrogen to carbon ratio in deposited films increases from 0 to 0.22, and the sp{sup 3} fraction of carbon atoms decreases from 0.51 to 0.28. The pure carbon film has the highest sp{sup 3} faction of carbon atoms and therefore the highest hardness and the lowest scratching depth. Comparing to the films prepared by conventional magnetron sputtering, all the a-CN{sub x} films prepared by UBMS show a lower scratching depth. The a-CN{sub x} films have a hydrophilic characteristic with a surface free energy from 56.6 to 65.6 mN/m and a predominant polar component.

  2. Deposition Rates of High Power Impulse Magnetron Sputtering: Physics and Economics

    SciTech Connect

    Anders, Andre

    2009-11-22

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase of the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes to due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes of the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction of the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits considered.

  3. Deposition rates of high power impulse magnetron sputtering: Physics and economics

    SciTech Connect

    Anders, Andre

    2010-07-15

    Deposition by high power impulse magnetron sputtering (HIPIMS) is considered by some as the new paradigm of advanced sputtering technology, yet this is met with skepticism by others for the reported lower deposition rates, if compared to rates of more conventional sputtering of equal average power. In this contribution, the underlying physical reasons for the rate changes are discussed, including (i) ion return to the target and self-sputtering, (ii) the less-than-linear increase in the sputtering yield with increasing ion energy, (iii) yield changes due to the shift of species responsible for sputtering, (iv) changes due to greater film density, limited sticking, and self-sputtering on the substrate, (v) noticeable power losses in the switch module, (vi) changes in the magnetic balance and particle confinement of the magnetron due to self-fields at high current, and (vii) superposition of sputtering and sublimation/evaporation for selected materials. The situation is even more complicated for reactive systems where the target surface chemistry is a function of the reactive gas partial pressure and discharge conditions. While most of these factors imply a reduction in the normalized deposition rate, increased rates have been reported for certain conditions using hot targets and less poisoned targets. Finally, some points of economics and HIPIMS benefits are considered.

  4. Characteristics of end Hall ion source with magnetron hollow cathode discharge

    NASA Astrophysics Data System (ADS)

    Tang, Deli; Wang, Lisheng; Pu, Shihao; Cheng, Changming; Chu, Paul K.

    2007-04-01

    An end Hall ion source with magnetron hollow cathode discharge is described. The source is suitable for high current, low energy ion beam applications such as Hall current plasma accelerators. The end Hall ion source is based on an anode layer thruster with closed drift electrons that move in a closed path in the E × B field. Only a simple magnetron power supply is used in the ion source. The special configuration enables uninterrupted and expanded operation with oxygen as well as other reactive gases because of the absence of an electron source in the ion source. In our evaluation, the ion beam current was measured by a circular electrostatic probe and the energy distribution of the ion beam was measured by a retarding potential analyzer (RPA). An ion beam current density of up to 10 mA/cm2 was obtained at a mean ion energy of 100-250 eV using Ar or O2. The ion source can be operated in a stable fashion at a discharge voltage between 200 and 500 V and without additional electron triggering. The discharge power of the ion source can be easily changed by adjusting the gas flow rate and anode voltage. No water cooling is needed for power from 500 W to 2 kW. The simple and rugged ion source is suitable for industrial applications such as deposition of thin films with enhanced adhesion. The operational characteristics of the ion source are experimentally determined and discussed.

  5. Full System Model of Magnetron Sputter Chamber - Proof-of-Principle Study

    SciTech Connect

    Walton, C; Gilmer, G; Zepeda-Ruiz, L; Wemhoff, A; Barbee, T

    2007-05-04

    The lack of detailed knowledge of internal process conditions remains a key challenge in magnetron sputtering, both for chamber design and for process development. Fundamental information such as the pressure and temperature distribution of the sputter gas, and the energies and arrival angles of the sputtered atoms and other energetic species is often missing, or is only estimated from general formulas. However, open-source or low-cost tools are available for modeling most steps of the sputter process, which can give more accurate and complete data than textbook estimates, using only desktop computations. To get a better understanding of magnetron sputtering, we have collected existing models for the 5 major process steps: the input and distribution of the neutral background gas using Direct Simulation Monte Carlo (DSMC), dynamics of the plasma using Particle In Cell-Monte Carlo Collision (PIC-MCC), impact of ions on the target using molecular dynamics (MD), transport of sputtered atoms to the substrate using DSMC, and growth of the film using hybrid Kinetic Monte Carlo (KMC) and MD methods. Models have been tested against experimental measurements. For example, gas rarefaction as observed by Rossnagel and others has been reproduced, and it is associated with a local pressure increase of {approx}50% which may strongly influence film properties such as stress. Results on energies and arrival angles of sputtered atoms and reflected gas neutrals are applied to the Kinetic Monte Carlo simulation of film growth. Model results and applications to growth of dense Cu and Be films are presented.

  6. Boron ion beam generation utilizing lanthanum hexaboride cathodes: Comparison of vacuum arc and planar magnetron glow

    SciTech Connect

    Nikolaev, A. G.; Vizir, A. V.; Yushkov, G. Yu. Frolova, V. P.; Oks, E. M.

    2016-02-15

    Boron ion beams are widely used for semiconductor ion implantation and for surface modification for improving the operating parameters and increasing the lifetime of machine parts and tools. For the latter application, the purity requirements of boron ion beams are not as stringent as for semiconductor technology, and a composite cathode of lanthanum hexaboride may be suitable for the production of boron ions. We have explored the use of two different approaches to boron plasma production: vacuum arc and planar high power impulse magnetron in self-sputtering mode. For the arc discharge, the boron plasma is generated at cathode spots, whereas for the magnetron discharge, the main process is sputtering of cathode material. We present here the results of comparative test experiments for both kinds of discharge, aimed at determining the optimal discharge parameters for maximum yield of boron ions. For both discharges, the extracted ion beam current reaches hundreds of milliamps and the fraction of boron ions in the total extracted ion beam is as high as 80%.

  7. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature

    NASA Astrophysics Data System (ADS)

    Majumdar, Abhijit; Köpp, Daniel; Ganeva, Marina; Datta, Debasish; Bhattacharyya, Satyaranjan; Hippler, Rainer

    2009-09-01

    A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M /ΔM˜25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.

  8. Development of metal nanocluster ion source based on dc magnetron plasma sputtering at room temperature.

    PubMed

    Majumdar, Abhijit; Köpp, Daniel; Ganeva, Marina; Datta, Debasish; Bhattacharyya, Satyaranjan; Hippler, Rainer

    2009-09-01

    A simple and cost effective nanocluster ion source for the deposition of size selected metal nanocluster has been developed based on the dc magnetron discharge (including pulsed dc discharge). The most important and interesting feature of this cluster source is that it is working at room temperature, cooled by chilled water during the experiment. There is no extraction unit in this device and the cluster streams flow only due to the pressure gradient from source chamber to substrate via quadrupole mass filter. It has provision of multiple substrate holders in the deposition chamber, which can be controlled manually. The facility consists of quadrupole mass filter (QMF 200), which can select masses in the range of 2-125 000 atoms depending on the target materials, with a constant mass resolution (M/DeltaM approximately 25). The dc magnetron discharge at a power of about 130 W with Ar as feed/buffer gas was used to produce the Cu nanocluster in an aggregation tube and deposited on Si (100) wafer temperature.

  9. A Proven, Industrial Magnetron Sputtering System With Excellent Expansion And Scale-Up Capabilities

    NASA Astrophysics Data System (ADS)

    Griffin, D.

    1987-11-01

    Airco Solar Products began as a business unit of Airco Temescal in the early 1970's. The first large area magnetron sputtering deposition occurred in 1974, and the first large area magnetron sputtering system was built and operated under contract to Guardian Industries in Carleton, Michigan in 1977, and was later sold to Guardian. This system continues in three-shift production today. A smaller development system, designed for use in the architectural glass coating industry, was introduced in parallel with the large area coaters. There are now over seventeen of these systems, called the ILS-1600, in use or on order throughout the world. This is a proven, industrial-style development sputter deposition system and has an excellent field record in the areas of versatility and low maintenance requirements. Airco Solar Products has recently begun to market this system into other applications such as the photovoltaics industry, the flat panel display industry and other specialty industries. The features of this system such as overall design, expandability, process scale-up and available options will be discussed. Expanded versions of this system currently in the field will be reviewed, and future applications will be discussed.

  10. Tribological properties, corrosion resistance and biocompatibility of magnetron sputtered titanium-amorphous carbon coatings

    NASA Astrophysics Data System (ADS)

    Dhandapani, Vishnu Shankar; Subbiah, Ramesh; Thangavel, Elangovan; Arumugam, Madhankumar; Park, Kwideok; Gasem, Zuhair M.; Veeraragavan, Veeravazhuthi; Kim, Dae-Eun

    2016-05-01

    Amorphous carbon incorporated with titanium (a-C:Ti) was coated on 316L stainless steel (SS) by magnetron sputtering technique to attain superior tribological properties, corrosion resistance and biocompatibility. The morphology, topography and functional groups of the nanostructured a-C:Ti coatings in various concentrations were analyzed using atomic force microscopy (AFM), Raman, X-Ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Raman and XPS analyses confirmed the increase in sp2 bonds with increasing titanium content in the a-C matrix. TEM analysis confirmed the composite nature of the coating and the presence of nanostructured TiC for Ti content of 2.33 at.%. This coating showed superior tribological properties compared to the other a-C:Ti coatings. Furthermore, electrochemical corrosion studies were performed against stimulated body fluid medium in which all the a-C:Ti coatings showed improved corrosion resistance than the pure a-C coating. Preosteoblasts proliferation and viability on the specimens were tested and the results showed that a-C:Ti coatings with relatively high Ti (3.77 at.%) content had better biocompatibility. Based on the results of this work, highly durable coatings with good biocompatibility could be achieved by incorporation of optimum amount of Ti in a-C coatings deposited on SS by magnetron sputtering technique.

  11. Performance in Dual Tasks.

    DTIC Science & Technology

    1984-02-29

    Continue on reverse aide it neceeay and identify by block nualtber) Problem solving, attention , computer simulation, choice reaction time ...construct a single theoretical framework for the analysis of problem solving and real time 4attention and performance’ behavior. Such a model has been...the "production system * approach. The program has been used to simulate results from choice reaction time , stimulus repetition, dual channel

  12. Unintentional carbide formation evidenced during high-vacuum magnetron sputtering of transition metal nitride thin films

    NASA Astrophysics Data System (ADS)

    Greczynski, G.; Mráz, S.; Hultman, L.; Schneider, J. M.

    2016-11-01

    Carbide signatures are ubiquitous in the surface analyses of industrially sputter-deposited transition metal nitride thin films grown with carbon-less source materials in typical high-vacuum systems. We use high-energy-resolution photoelectron spectroscopy to reveal details of carbon temporal chemical state evolution, from carbide formed during film growth to adventitious carbon adsorbed upon contact with air. Using in-situ grown Al capping layers that protect the as-deposited transition metal nitride surfaces from oxidation, it is shown that the carbide forms during film growth rather than as a result of post deposition atmosphere exposure. The XPS signature of carbides is masked by the presence of adventitious carbon contamination, appearing as soon as samples are exposed to atmosphere, and eventually disappears after one week-long storage in lab atmosphere. The concentration of carbon assigned to carbide species varies from 0.28 at% for ZrN sample, to 0.25 and 0.11 at% for TiN and HfN, respectively. These findings are relevant for numerous applications, as unintentionally formed impurity phases may dramatically alter catalytic activity, charge transport and mechanical properties by offsetting the onset of thermally-induced phase transitions. Therefore, the chemical state of C impurities in PVD-grown films should be carefully investigated.

  13. The DUAL mission concept

    NASA Astrophysics Data System (ADS)

    von Ballmoos, Peter; Alvarez, Jose; Barriere, Nicolas; Boggs, Steve; Bykov, Andrei; Del Cura Velayos, Juan Manuel; Frontera, Filippo; Hanlon, Lorraine; Hernanz, Margarita; Hinglais, Emmanuel; Isern, Jordi; Jean, Pierre; Knödlseder, Jürgen; Kuiper, Lucien; Leising, Mark; Pirard, Benoît; Prost, Jean-Pierre; da Silva, Rui; Takahashi, Tadayuki; Tomsick, John; Walter, Roland; Zoglauer, Andreas

    2011-09-01

    DUAL will study the origin and evolution of the elements and explores new frontiers of physics: extreme energies that drive powerful stellar explosions and accelerate particles to macroscopic energies; extreme densities that modify the laws of physics around the most compact objects known; and extreme fields that influence matter in a way that is unknown on Earth. The variability of these extreme objects requires continuous all-sky coverage, while detailed study demands an improvement in sensitivity over previous technologies by at least an order of magnitude. The DUAL payload is composed of an All-Sky Compton Imager (ASCI), and two optical modules, the Laue-Lens Optic (LLO) and the Coded-Mask Optic (CMO). The ASCI serves dual roles simultaneously, both as an optimal focal-plane sensor for deep observations with the optical modules and as a sensitive true all-sky telescope in its own right for all-sky surveys and monitoring. While the optical modules are located on the main satellite, the All-Sky Compton Imager is situated on a deployable structure at a distance of 30 m from the satellite. This configuration not only permits to maintain the less massive payload at the focal distance, it also greatly reduces the spacecraft-induced detector background, and, above all it provides ASCI with a continuous all-sky exposure.

  14. Dual-Schemata Model

    NASA Astrophysics Data System (ADS)

    Taniguchi, Tadahiro; Sawaragi, Tetsuo

    In this paper, a new machine-learning method, called Dual-Schemata model, is presented. Dual-Schemata model is a kind of self-organizational machine learning methods for an autonomous robot interacting with an unknown dynamical environment. This is based on Piaget's Schema model, that is a classical psychological model to explain memory and cognitive development of human beings. Our Dual-Schemata model is developed as a computational model of Piaget's Schema model, especially focusing on sensori-motor developing period. This developmental process is characterized by a couple of two mutually-interacting dynamics; one is a dynamics formed by assimilation and accommodation, and the other dynamics is formed by equilibration and differentiation. By these dynamics schema system enables an agent to act well in a real world. This schema's differentiation process corresponds to a symbol formation process occurring within an autonomous agent when it interacts with an unknown, dynamically changing environment. Experiment results obtained from an autonomous facial robot in which our model is embedded are presented; an autonomous facial robot becomes able to chase a ball moving in various ways without any rewards nor teaching signals from outside. Moreover, emergence of concepts on the target movements within a robot is shown and discussed in terms of fuzzy logics on set-subset inclusive relationships.

  15. A cookbook for building a high-current dimpled H magnetron source for accelerators

    SciTech Connect

    Bollinger, Daniel S.; Karns, Patrick R.; Tan, Cheng -Yang

    2015-10-30

    A high-current (>50 mA) dimpled H magnetron source has been built at Fermilab for supplying H beam to the entire accelerator complex. Despite many decades of expertise with slit H magnetron sources at Fermilab, we were faced with many challenges from the dimpled H magnetron source, which needed to be overcome in order to make it operational. Dimpled H sources for high-energy physics are not new: Brookhaven National Laboratory has operated a dimpled H- source for more than two decades. However, the transference of that experience to Fermilab took about two years because a cookbook for building this type of source did not exist and seemingly innocuous or undocumented choices had a huge impact on the success or failure for this type of source. Moreover, it is the goal of this paper to document the reasons for these choices and to present a cookbook for building and operating dimpled H magnetron sources.

  16. A re-examination of the Buneman-Hartree condition in a cylindrical smooth-bore relativistic magnetron

    SciTech Connect

    Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Luginsland, J. W.; Cartwright, K. L.; Tang, W.; Hoff, B. W.

    2010-03-15

    The Buneman-Hartree condition is re-examined in a cylindrical, smooth-bore, relativistic magnetron using both the conventional, single particle model, and the Brillouin flow model. These two models yield the same result for the Buneman-Hartree condition only in the limit of a planar magnetron. When b/a=1.3, where a is the cathode radius and b (>a) is the anode radius, the difference in the two models becomes significant. When b/a=4 the difference is acute, the Buneman-Hartree magnetic field at a given voltage in the Brillouin flow model exceeds four times that in the single particle model. Such a difference is always present, whether the voltage is relativistic or not. These results are quantified for b/a>>1 using Davidson's model, conveniently cast in terms of the normalized gap voltage and normalized magnetic flux imposed on the cylindrical magnetron. A comparison with the University of Michigan/L-3 relativistic magnetron experiment is given.

  17. The effect of magnetron pulsing on the structure and properties of tribological Cr-Al-N coatings.

    PubMed

    Lin, Jianliang; Moore, John J; Mishra, Brajendra; Sproul, Williams D; Rees, John A

    2010-02-01

    The paper will discuss the effect of pulsing single or two unbalanced magnetrons in a closed magnetic field configuration on the structure and properties of tribological Cr-Al-N coatings. Nanocrystalline Cr-Al-N coatings were reactively deposited from Cr and Al elemental targets using two unbalanced magnetrons, which were powered in both dc, pulsing only Al target and asynchronously pulsing both Cr and Al targets at 100 kHz and 50% duty cycle conditions. The ion energy distributions of these deposition and pulsing conditions were characterized using a Hiden Electrostatic QuadruPole Plasma Analyzer. It was found that pulsing two magnetrons asynchronously at 100 kHz and 50% duty cycle produced higher ion energies and significant increased ion fluxes than pulsing none or pulsing only one (Al) target. The structure and properties of Cr-Al-N coatings synthesized under different dc and pulsing conditions were investigated using X-ray diffraction, scanning electron microscopy, nanoindentation and ball-on-disk wear test, and were correlated with the effects of ion energies and ion flux regimes observed in the plasma diagnostics. The advantages of using pulsed magnetron sputtering producing different energetic ion regimes to enhance the ion bombardment on the growing films and therefore achieving the improved density, refinement of grain size and properties are illustrated.

  18. The temperature dependence of the electrical conductivity in Cu2O thin films grown by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Kudryashov, D.; Gudovskikh, A.; Zelentsov, K.; Mozharov, A.; Babichev, A.; Filimonov, A.

    2016-08-01

    The temperature dependence of the electrical conductivity in Cu2O thin films grown by magnetron sputtering at room temperature under different rf-power was investigated. Calculated activation energy of the conductivity for copper oxide (I) films linearly increases with increase in sputtering power reflecting an increasing in concentration of gap states.

  19. Optical and electrical properties of thin NiO films deposited by reactive magnetron sputtering and spray pyrolysis

    NASA Astrophysics Data System (ADS)

    Parkhomenko, H. P.; Solovan, M. N.; Mostovoi, A. I.; Orletskii, I. G.; Parfenyuk, O. A.; Maryanchuk, P. D.

    2017-06-01

    Thin NiO films are deposited by reactive magnetron sputtering and spray pyrolysis. The main optical constants, i.e., refractive index n(λ), absorption coefficient α(λ), extinction coefficient k(λ), and thickness d, are determined. The temperature dependence of the resistance of thin films is found, and the activation energy of films deposited by different methods is determined.

  20. The influence of N2 flow rate on Ar and Ti Emission in high-pressure magnetron sputtering system plasma

    NASA Astrophysics Data System (ADS)

    How, Soo Ren; Nayan, Nafarizal; Lias, Jais

    2017-03-01

    For ionized physical vapor deposition (known as IPVD) technique, investigation on the ionization mechanism of titanium atoms is very important during the deposition of titanium nitride (TiN) thin film using reactive magnetron sputtering plasma. The introduction of nitrogen gas into the chamber discharge leads to modifications of plasma parameters and ionization mechanism of transition species. In this work, an investigation on the influence of nitrogen flow rate on spectrum properties of argon and titanium during the deposition process have been carried out. The experimental configuration consists of OES and structure of magnetron sputtering device with the turbo molecular pump. A high-pressure magnetron sputtering plasma was used as plasma discharge chamber with various flow rate of nitrogen gas. Optical emission spectroscopy (OES) measurements were employed as plasma diagnostics tool in magnetron sputtering plasma operated at relatively high pressure. OES is a non-invasive plasma diagnostics method and that can detect the atomic and ionic emission during plasma discharge. The flow rate of the Ar and N2 gas are controlled by mass flow controller. The changes of relative emission for both neutral and ionic of argon as well as titanium were observed using optical spectrometer when the nitrogen gas is introduced into the discharged chamber. We found that the titanium emission decreased very rapidly with the flow rate of nitrogen. In addition, the argon emission slightly decreased with the flow rate of nitrogen.

  1. Experimental study on an S-band near-field microwave magnetron power transmission system on hundred-watt level

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Jiang, Wan; Yang, Yang; Yu, Chengyang; Huang, Kama; Liu, Changjun

    2015-11-01

    A multi-magnetron microwave source, a metamaterial transmitting antenna, and a large power rectenna array are presented to build a near-field 2.45 GHz microwave power transmission system. The square 1 m2 rectenna array consists of sixteen rectennas with 2048 Schottky diodes for large power microwave rectifying. It receives microwave power and converts them into DC power. The design, structure, and measured performance of a unit rectenna as well as the entail rectenna array are presented in detail. The multi-magnetron microwave power source switches between half and full output power levels, i.e. the half-wave and full-wave modes. The transmission antenna is formed by a double-layer metallic hole array, which is applied to combine the output power of each magnetron. The rectenna array DC output power reaches 67.3 W on a 1.2 Ω DC load at a distance of 5.5 m from the transmission antenna. DC output power is affected by the distance, DC load, and the mode of microwave power source. It shows that conventional low power Schottky diodes can be applied to a microwave power transmission system with simple magnetrons to realise large power microwave rectifying.

  2. Antibacterial properties of nano-silver coated PEEK prepared through magnetron sputtering.

    PubMed

    Liu, Xiuju; Gan, Kang; Liu, Hong; Song, Xiaoqing; Chen, Tianjie; Liu, Chenchen

    2017-09-01

    We aimed to investigate the cytotoxicity and antibacterial properties of nano-silver-coated polyetheretherketone (PEEK) produced through magnetron sputtering and provide a theoretical basis for its use in clinical applications. The surfaces of PEEKs were coated with nano-silver at varying thicknesses (3, 6, 9, and 12nm) through magnetron sputtering technology. The resulting coated PEEK samples were classified into the following groups according to the thickness of the nano-silver coating: PEEK-3 (3nm), PEEK-6 (6nm), PEEK-9 (9nm), PEEK-12 (12nm), and PEEK control group. The surface microstructure and composition of each sample were observed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and energy dispersive spectrum (EDS) analysis. The water contact angle of each sample was then measured by contact angle meters. A cell counting kit (CCK-8) was used to analyze the cytotoxicity of the mouse fibroblast cells (L929) in the coated groups (n=5) and group test samples (n=6), negative control (polyethylene, PE) (n=6), and positive control group (phenol) (n=6). The antibacterial properties of the samples were tested by co-culturing Streptococcus mutans and Straphylococcus aureus. The bacteria that adhered to the surface of samples were observed by SEM. The antibacterial adhesion ability of each sample was then evaluated. SEM and AFM analysis results showed that the surfaces of control group samples were smooth but compact. Homogeneous silver nano-particles (AgNPs) and nano-silver coating were uniformly distributed on the surface of the coated group samples. Compared with the control samples, the nano-silver coated samples had a significant increase in surface roughness (P<0.05) as the thickness of their nano-silver coating increased. EDS analysis showed that not only C and O but also Ag were present on the surface of the coated samples. Moreover, the water contact angle of modified samples significantly increased after nano-silver coating modification

  3. Nanoscale and macroscale aluminum nitride deposition via reactive magnetron sputtering method

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghai

    The growth of group III nitrides is receiving a great deal of attention due to their potential as materials for optoelectronic devices in the blue to ultraviolet spectral range. This dissertation is primarily focused on deposition of aluminum nitride thin films on both nanofibers and macroscale silicon substrates via reactive magnetron sputtering. The objectives include investigating the feasibility of coating nanofibers to prepare high quality (smooth and crystalline) nanotubes, nanofiber hetero structures and using buffer layers to improve the quality of macroscale AlN thin films. To satisfy the need of nanoscale semiconductor materials, deposition of AlN on poly (meta-phenylene isophthalamide) MPD-I nano-fiber (template) was investigated via reactive magnetron sputtering. The electrospun high-temperature nanofibers with uniform dimensions were heated up to 300°C or higher. The coatings on the fibers were continuous and their morphology and crystal structure (either hexagonal wurtzite structure or cubic zinc-blende structure) were controlled by changing the deposition conditions. After removing the fiber core with organic solvent or by pyrolysis, AlN nanotubes (hollow structures) with inner diameter of 50--100 nm were achieved. As the nanoscale building blocks, nanoscale semiconductor heterostructures with modulated composition can facilitate the generation of devices with various functions. In this work, SiO2-AlN core-shell nanofiber heterostructures with SiO2 core and AlN shell were created by electro-spinning and reactive magnetron sputtering methods. Also the AlN coating (shell) was designed with different morphologies and crystalline properties by controlling the deposition conditions. The critical operating parameters for the formation of different morphologies of AlN shells were investigated. In practice, AlN thin film materials are still widely used for microelectronic and optoelectronic devices. To investigate and develop semiconducting AlN films, the

  4. Electrostatic quadrupole plasma mass spectrometer measurements during thin film depositions using simultaneous matrix assisted pulsed laser evaporation and magnetron sputtering

    SciTech Connect

    Hunter, C. N.; Check, M. H.; Muratore, C.; Voevodin, A. A.

    2010-05-15

    A hybrid plasma deposition process, combining matrix assisted pulsed laser evaporation (MAPLE) of carbon nanopearls (CNPs) with magnetron sputtering of gold was investigated for growth of composite films, where 100 nm sized CNPs were encapsulated into a gold matrix. Composition and morphology of such composite films was characterized with x-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy (TEM) analysis. Carbon deposits on a gold magnetron sputter target and carbon impurities in the gold matrices of deposited films were observed while codepositing from gold and frozen toluene-CNP MAPLE targets in pure argon. Electrostatic quadrupole plasma analysis was used to determine that a likely mechanism for generation of carbon impurities was a reaction between toluene vapor generated from the MAPLE target and the argon plasma originating from the magnetron sputtering process. Carbon impurities of codeposited films were significantly reduced by introducing argon-oxygen mixtures into the deposition chamber; reactive oxygen species such as O and O+ effectively removed carbon contamination of gold matrix during the codeposition processes. Increasing the oxygen to argon ratio decreased the magnetron target sputter rate, and hence hybrid process optimization to prevent gold matrix contamination and maintain a high sputter yield is needed. High resolution TEM with energy dispersive spectrometry elemental mapping was used to study carbon distribution throughout the gold matrix as well as embedded CNP clusters. This research has demonstrated that a hybrid MAPLE and magnetron sputtering codeposition process is a viable means for synthesis of composite thin films from premanufactured nanoscale constituents, and that cross-process contaminations can be overcome with understanding of hybrid plasma process interaction mechanisms.

  5. Microstructure and temperature coefficient of resistance of thin cermet resistor films deposited from CrSi{sub 2}-Cr-SiC targets by S-gun magnetron

    SciTech Connect

    Felmetsger, Valery V.

    2010-01-15

    Technological solutions for producing nanoscale cermet resistor films with sheet resistances above 1000 {Omega}/{open_square} and low temperature coefficients of resistance (TCR) have been investigated. 2-40 nm thick cermet films were sputter deposited from CrSi{sub 2}-Cr-SiC targets by a dual cathode dc S-gun magnetron. In addition to studying film resistance versus temperature, the nanofilm structural features and composition were analyzed using scanning electron microscopy, atomic force microscopy, high-resolution transmission electron microscopy, energy-dispersive x-ray spectroscopy, and electron energy loss spectroscopy. This study has revealed that all cermet resistor films deposited at ambient and elevated temperatures were amorphous. The atomic ratio of Si to Cr in these films was about 2 to 1. The film TCR displayed a significant increase when the deposited film thickness was reduced below 2.5 nm. An optimized sputter process consisting of wafer degassing, cermet film deposition at elevated temperature with rf substrate bias, and a double annealing in vacuum, consisting of in situ annealing following the film sputtering and an additional annealing following the exposure of the wafers to air, has been found to be very effective for the film thermal stabilization and for fine tuning the film TCR. Cermet films with thicknesses in the range of 2.5-4 nm deposited using this technique had sheet resistances ranging from 1800 to 1200 {Omega}/{open_square} and TCR values from -50 ppm/ deg. C to near zero, respectively. A possible mechanism responsible for the high efficiency of annealing the cermet films in vacuum (after preliminary exposure to air), resulting in resistance stabilization and TCR reduction, is also discussed.

  6. Design of a double-anode magnetron-injection gun for the W-band gyrotron

    NASA Astrophysics Data System (ADS)

    Jang, Kwang Ho; Choi, Jin Joo; So, Joon Ho

    2015-07-01

    A double-anode magnetron-injection gun (MIG) was designed. The MIG is for a W-band 10-kW gyrotron. Analytic equations based on adiabatic theory and angular momentum conservation were used to examine the initial design parameters such as the cathode angle, and the radius of the beam emitting surface. The MIG's performances were predicted by using an electron trajectory code, the EGUN code. The beam spread of the axial velocity, Δvz/vz, obtained from the EGUN code was observed to be 1.34% at α = 1.3. The cathode edge emission and the thermal effect were modeled. The cathode edge emission was found to have a major effect on the velocity spread. The electron beam's quality was significantly improved by affixing non-emissive cylinders to the cathode.

  7. Strong blue light emission from Eu-doped SiOC prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Lin, Zhenxu; Guo, Yanqing; Wang, Xiang; Song, Chao; Song, Jie; Zhang, Yi; Huang, Rui

    2015-08-01

    The Eu-doped SiOC films were prepared by magnetron sputtering technique at a low temperature of 250°C. The effects of the Eu2O3 deposited power and post-thermal annealing temperature on the PL characteristics of the Eu-doped SiOC films were investigated. It is found that the photoluminescence intensity could be enhanced by more than tenfold by increasing the Eu2O3 deposited power from 20W to 80W. Furthermore, very bright blue light emission can be clearly observed with the naked eye in a bright room for the Eu-doped SiOC films prepared at a Eu2O3 deposited power of 80 W. The improved PL intensity is attributed to the increasing number density of europium silicate clusters as a result of the increasing Eu2O3 deposited power as well as high annealing temperatures.

  8. Zinc Oxide Thin Films Fabricated with Direct Current Magnetron Sputtering Deposition Technique

    SciTech Connect

    Hoon, Jian-Wei; Chan, Kah-Yoong; Krishnasamy, Jegenathan; Tou, Teck-Yong

    2011-03-30

    Zinc oxide (ZnO) is a very promising material for emerging large area electronic applications including thin-film sensors, transistors and solar cells. We fabricated ZnO thin films by employing direct current (DC) magnetron sputtering deposition technique. ZnO films with different thicknesses ranging from 100 nm to 1020 nm were deposited on silicon (Si) substrate. The deposition pressure was varied from 12 mTorr to 25 mTorr. The influences of the film thickness and the deposition pressure on structural properties of the ZnO films were investigated using Mahr surface profilometer and atomic force microscopy (AFM). The experimental results reveal that the film thickness and the deposition pressure play significant role in the structural formation of the deposited ZnO thin films. ZnO films deposited on Si substrates are promising for variety of thin-film sensor applications.

  9. Charge Build-Up in Magnetron-Enhanced Reactive Ion Etching

    NASA Astrophysics Data System (ADS)

    Hoga, Hiroshi; Orita, Toshiyuki; Yokoyama, Takashi; Hayashi, Toshio

    1991-11-01

    Charge build-up in magnetron-enhanced reactive ion etching (MERIE) was evaluated with metal nitride oxide semiconductor (MNOS) capacitors. In static magnetic field, negative flat band voltage (Vfb) shifts of more than -1.5 V were observed in the area under high-density plasma, and more than 2-V Vfb shifts were observed at the edge of the wafer near the N and S poles. This distributed Vfb shift was considered to result from nonuniform plasma potential caused by secondary electron E× B drift motion. In rotated magnetic field, Vfb shifts were reduced. No significant Vfb shifts were observed when the magnet was rotated at 120 rpm. The Vfb shift reduction in rotated magnetic field was supposed to result from charge neutralization by alternate charge build-up.

  10. Hall mobility of cuprous oxide thin films deposited by reactive direct-current magnetron sputtering

    SciTech Connect

    Lee, Yun Seog; Winkler, Mark T.; Siah, Sin Cheng; Brandt, Riley; Buonassisi, Tonio

    2011-05-09

    Cuprous oxide (Cu{sub 2}O) is a promising earth-abundant semiconductor for photovoltaic applications. We report Hall mobilities of polycrystalline Cu{sub 2}O thin films deposited by reactive dc magnetron sputtering. High substrate growth temperature enhances film grain structure and Hall mobility. Temperature-dependent Hall mobilities measured on these films are comparable to monocrystalline Cu{sub 2}O at temperatures above 250 K, reaching 62 cm{sup 2}/V s at room temperature. At lower temperatures, the Hall mobility appears limited by carrier scattering from ionized centers. These observations indicate that sputtered Cu{sub 2}O films at high substrate growth temperature may be suitable for thin-film photovoltaic applications.

  11. Textured aluminium-doped ZnO thin films prepared by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Bose, Subhasis; Ray, Swati; Barua, A. K.

    1996-07-01

    The electrical properties of RF magnetron-sputtered aluminium-doped zinc oxide (AZO) films are studied. It is seen that the properties are closely related to their structural properties and doping incorporation. The highly conductive milky AZO films with a wedge-like surface consist of very small crystal grains. It is interesting to note that texturization is obtained in this case at a film thickness less than 0022-3727/29/7/022/img1. At a substrate temperature of 0022-3727/29/7/022/img2, texturization occurs and the resistivity obtained after hydrogen treatment is 0022-3727/29/7/022/img3. This result is very significant and it may accelerate the application of inexpensive AZO films in hydrogenated amorphous silicon solar cells.

  12. Control over the preferred orientation of CIGS films deposited by magnetron sputtering using a wetting layer

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Jiang, Fan; Liu, Lian; Yu, Zhou; Zhang, Yong; Zhao, Yong

    2016-01-01

    A growth method is presented to control the preferred orientation in chalcopyrite CuIn x Ga1- x Se2 (CIGS) thin films grown by magnetron sputtering. Films with (220/204) and (112) preferred orientation as well as randomly oriented films were prepared. The effects of an In2Se3 wetting layer and the working pressure on the texture transition phenomena were examined. A large-grained CIGS film with (220/204) texture was formed at 400°C with the inclusion of a thin (80 nm) In2Se3 layer and liquid phase (excess copper selenide phase) formation, and the reaction mechanism is proposed. The device deposited at 2.0 Pa on an In2Se3 layer exhibited the optimal electrical properties. [Figure not available: see fulltext.

  13. Coating multilayer material with improved tribological properties obtained by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Mateescu, A. O.; Mateescu, G.; Balasoiu, M.; Pompilian, G. O.; Lungu, M.

    2017-02-01

    This work is based on the Patent no. RO 128094 B1, granted by the Romanian State Office for Inventions and Trademarks. The goal of the work is to obtain for investigations tribological coatings with multilayer structure with improved tribological properties, deposited by magnetron sputtering process from three materials (sputtering targets). Starting from compound chemical materials (TiC, TiB2 and WC), as sputtering targets, by deposition in argon atmosphere on polished stainless steel, we have obtained, based on the claims of the above patent, thin films of multilayer design with promising results regarding their hardness, elastic modulus, adherence, coefficient of friction and wear resistance. The sputtering process took place in a special sequence in order to ensure better tribological properties to the coating, comparing to those of the individual component materials. The tribological properties, such as the coefficient of friction, are evaluated using the tribometer test.

  14. Optical properties study of silicon oxynitride films deposited by RF magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Zhu, Yong; Gu, Peifu; Ye, Hui; Shen, Weidong

    2004-12-01

    Graded refractive index Silicon Oxy-nitride thin films were deposited by RF magnetron reactive sputtering at different N2/O2 flow ratio. The effects of gas flow ratio on the refractive index, extinction coefficient and composition were studied using UV-VIS spectrophotometer, XPS and FTIR characterization methods. A simple and accurate method is presented for determination of the optical constants and physical thickness of thin films. Which was consisted in fitting the experimental transmission curve with the help of the physical model. The relationship between composition and optical gap and dispersion energy was analyzed using Wemple DiDomenico single-oscillator model. As a result, the samples" refractive index can be controlled from 1.92 to 1.46 by adjusting the gas flow ratio, and the optical gap lies between 5eV~6.5eV.

  15. Structural and optical properties of CdO thin films deposited by RF magnetron sputtering technique

    SciTech Connect

    Kumar, G. Anil Reddy, M. V. Ramana; Reddy, Katta Narasimha

    2014-04-24

    Cadmium oxide (CdO) thin films were deposited on glass substrate by r.f. magnetron sputtering technique using a high purity (99.99%) Cd target of 2-inch diameter and 3 mm thickness in an Argon and oxygen mixed atmosphere with sputtering power of 50W and sputtering pressure of 2×10{sup −2} mbar. The prepared films were characterized by X-ray diffraction (XRD), optical spectroscopy and scanning electron microscopy (SEM). The XRD analysis reveals that the films were polycrystalline with cubic structure. The visible range transmittance was found to be over 70%. The optical band gap increased from 2.7 eV to2.84 eV with decrease of film thickness.

  16. Research on the optical and electrical properties of ITO thin film using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Changlong; Zhai, Yujia; Huang, Jing; Yang, Xu; Liu, Weiguo; Gao, Aihua

    2009-12-01

    Due to excellent photoelectrical properties, ITO thin films become the indispensable flat transparent electrode for their practical applications in the flat-panel displays, touch screens, solar cells and electrochromic devices. Therefore, it's very necessary to study photoelectrical properties of ITO films. In this paper, ITO thin films were prepared on the glass substrates by DC magnetron sputtering technology, and measured the transmittance of ITO thin films in the visible region using the spectrophotometer; the resistivities were measured with the four-probe instrument. The effects of sputtering pressure, oxygen-argon flow ratio and sputtering power was researched on photoelectrical performance of ITO thin films. The results show that, the optimum parameters of ITO films prepared are: sputtering pressure 0.6Pa, oxygen-argon flow ratio 1:40, sputtering power 108W. The average transmittance in the visible area is 81.18%, resistivity is 8.9197 × 10-3Ω.cm.

  17. Research on the optical and electrical properties of ITO thin film using magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cai, Changlong; Zhai, Yujia; Huang, Jing; Yang, Xu; Liu, Weiguo; Gao, Aihua

    2010-03-01

    Due to excellent photoelectrical properties, ITO thin films become the indispensable flat transparent electrode for their practical applications in the flat-panel displays, touch screens, solar cells and electrochromic devices. Therefore, it's very necessary to study photoelectrical properties of ITO films. In this paper, ITO thin films were prepared on the glass substrates by DC magnetron sputtering technology, and measured the transmittance of ITO thin films in the visible region using the spectrophotometer; the resistivities were measured with the four-probe instrument. The effects of sputtering pressure, oxygen-argon flow ratio and sputtering power was researched on photoelectrical performance of ITO thin films. The results show that, the optimum parameters of ITO films prepared are: sputtering pressure 0.6Pa, oxygen-argon flow ratio 1:40, sputtering power 108W. The average transmittance in the visible area is 81.18%, resistivity is 8.9197 × 10-3Ω.cm.

  18. Microstructure and residual stress of magnetron sputtered nanocrystalline palladium and palladium gold films on polymer substrates

    SciTech Connect

    Castrup, Anna; Kuebel, Christian; Scherer, Torsten; Hahn, Horst

    2011-03-15

    The authors report the structural properties and residual stresses of 500-nm-thick nanocrystalline Pd and PdAu films on compliant substrates prepared by magnetron sputtering as a function of the pressure of the Ar-sputtering gas. Films were analyzed by x-ray diffraction, cross-sectional transmission electron microscopy, and x-ray photoelectron spectroscopy. At low pressures the metal films exhibit strong compressive stresses, which rapidly change to highly tensile with increasing pressure, and then gradually decrease. Along with this effect a change in microstructure is observed from a dense equiaxed structure at low pressures to distinctive columns with reduced atomic density at the column walls at higher pressures. The preparation of nearly stress-free dense nanocrystalline films is demonstrated.

  19. Cleaning of HT-7 Tokamak Exposed First Mirrors by Radio Frequency Magnetron Sputtering Plasma

    NASA Astrophysics Data System (ADS)

    Yan, Rong; Chen, Junling; Chen, Longwei; Ding, Rui; Zhu, Dahuan

    2014-12-01

    The stainless steel (SS) first mirror pre-exposed in the deposition-dominated environment of the HT-7 tokamak was cleaned in the newly built radio frequency (RF) magnetron sputtering plasma device. The deposition layer on the FM surface formed during the exposure was successfully removed by argon plasma with a RF power of about 80 W and a gas pressure of 0.087 Pa for 30 min. The total reflectivity of the mirrors was recovered up to 90% in the wavelength range of 300-800 nm, while the diffuse reflectivity showed a little increase, which was attributed to the increase of surface roughness in sputtering, and residual contaminants. The FMs made from single crystal materials could help to achieve a desired recovery of specular reflectivity in the future.

  20. A new solid state extractor pulser for the FNAL magnetron ion source

    SciTech Connect

    Bollinger, D. S. Lackey, J.; Larson, J.; Triplett, K.

    2016-02-15

    A new solid state extractor pulser has been installed on the Fermi National Accelerator Laboratory (FNAL) magnetron ion source, replacing a vacuum tube style pulser that was used for over 40 years. The required ion source extraction voltage is 35 kV for injection into the radio frequency quadrupole. At this voltage, the old pulser had a rise time of over 150 μs due to the current limit of the vacuum tube. The new solid state pulsers are capable of 50 kV, 100 A peak current pulses and have a rise time of 9 μs when installed in the operational system. This paper will discuss the pulser design and operational experience to date.