Science.gov

Sample records for pvp

  1. Synthesis and characterization of micrometer Cu/PVP architectures

    SciTech Connect

    Luo, Huajuan; Zhao, Yanbao; Sun, Lei

    2011-08-15

    Graphical abstract: A simple method for the synthesis of novel micrometer flower-like Cu/PVP architectures was introduced. Highlights: {yields} Micrometer flower-like copper/polyvinylpyrrolidone architectures were obtained by a simple chemical route. {yields} The amount of N{sub 2}H{sub 4}{center_dot}H{sub 2}O, the reaction temperature, the molar ratio of CuCl{sub 2} to PVP and different molecular weights of PVP play an important role in the controlling the morphology of the Cu/PVP architectures. {yields} A possible mechanism of the formation of Cu/PVP architectures was discussed. -- Abstract: Micrometer-sized flower-like Cu/polyvinylpyrrolidone (PVP) architectures are synthesized by the reduction of copper (II) salt with hydrazine hydrate in aqueous solution in the presence of PVP capping agent. The resulting Cu/PVP architectures are investigated by UV-vis spectroscopy, transmission electron microscopy (TEM), X-ray powder diffraction (XRD), and scanning electron microscopy (SEM). The Cu/PVP flowers have uniform morphologies with an average diameter of 10 {mu}m, made of several intercrossing plates. The formation of Cu/PVP flowers is a new kinetic control process, and the factors such as the amount of N{sub 2}H{sub 4}{center_dot}H{sub 2}O, reaction temperature, molar ratio of CuCl{sub 2} to PVP and molecular weight of PVP have significant effect on the morphology of Cu/PVP architectures. A possible mechanism of the formation of micrometer Cu/PVP architectures was discussed.

  2. Gelation of PAAm-PVP composites: A fluorescence study

    NASA Astrophysics Data System (ADS)

    Evingür, Gülşen Akin; Kaygusuz, Hakan; Erim, F. Bedia; Pekcan, Önder

    2014-05-01

    Hybrid hydrogels are a new class of composite materials. Polyacrylamide (PAAm) hydrogels are mainly produced by free radical crosslinking copolymerization (FCC) of AAm in the presence of N, N‧-methylene bis (acrylamide) (BIS) as the crosslinker. Pyranine doped PAAm-poly (N-vinyl pyrrolidone) (PVP) composite were prepared with different amounts of PVP varying in the range between 0.0015 and 0.1 gr. It was observed that pyranine molecules as a fluoroprobe bind to AAm and PVP chains upon the initiation of the polymerization, causing the fluorescence spectra of the bonded pyranines shift to the shorter wavelengths. The sol-gel phase transition and its universality were monitored and tested as a function of PVP contents. Observations around the critical point show that the gel fraction exponent, β, agreed with the percolation result for below 0.025 gr PVP contents. However, classical result was observed above 0.0125 gr PVP content.

  3. Composites for the pressure vessel industry. PVP-Volume 302

    SciTech Connect

    Bees, W.J.; Newaz, G.M.; Narita, Yoshihiro; Takezono, S.; Qatu, M.S.; Hirano, T.; Miyazaki, N.; Nakagaki, M.

    1995-11-01

    The topics included in this volume are: (1) design and analysis of composite shell and plate components in PVP; (2) design and analysis of composite material and adhesive structures; (3) analysis of different material application in PVP; and (4) composites and functionally gradient material. Separate abstracts were prepared for most papers in this book.

  4. PVP-CA composite preparation and its characteristics

    NASA Astrophysics Data System (ADS)

    Cui, Ruiyao

    Polyvinylpyrrolidone (PVP) is a commonly used polymer that has some excellent properties, such as great strength and biocompatibility. Cellulose Acetate (CA) is another excellent polymer that has been employed in many applications, including drug. PVP-CA composite has both strength and flexible properties that can be used as ultrafiltration membranes or the drug release system. PVP-CA composites comprise a new class of materials that have been the scope of this work. In this research, the electrospun PVP-CA composites were prepared under different concentrations. Then, the impact of different electrospinning parameters on fiber diameters was investigated. Moreover, acetic acid and acetone were used as solvents for dissolving PVP, CA respectively. For comparison, PVP in water and CA in acetone was each deposited on the aluminum foil by electrospinning, forming a two-layer structure. Scanning electron microscopy(SEM) and Raman spectroscopy test were carried out. From the test results, fibers with 200nm to 1um diameter were prepared and the interaction between PVP and CA were proved. Then the oil absorption testing was carried out. The membrane structure of the electrospun composite fibers showed good oil absorption capacity, that was twice higher than the 2-layer PVP-CA fibers.

  5. Continuous manufacturing of delta mannitol by cospray drying with PVP.

    PubMed

    Vanhoorne, V; Van Bockstal, P-J; Van Snick, B; Peeters, E; Monteyne, T; Gomes, P; De Beer, T; Remon, J P; Vervaet, C

    2016-03-30

    Mannitol is a frequently used diluent in the production of tablets due to its non-hygroscopic character and low drug interaction potential. Although the δ-polymorph of mannitol has superior tabletability in comparison to α- and β-mannitol, the latter are most commonly used because large-scale production of δ-mannitol is difficult. Therefore, a continuous method for production of δ-mannitol was developed in the current study. Spray drying an aqueous solution of mannitol and PVP in a ratio of 4:1 resulted in formation of δ-mannitol. The tabletability of a physical mixture of spray dried δ-mannitol with PVP (5%) and paracetamol (75%) was clearly superior to the tabletability of physical mixtures consisting of spray dried α- and β-mannitol with PVP (5%) and paracetamol (75%) which confirmed the excellent tableting properties of the δ-polymorph. In addition, a coprocessing method was applied to coat paracetamol crystals with δ-mannitol and PVP. The tabletability of the resulting coprocessed particles consisting of 5% PVP, 20% δ-mannitol and 75% paracetamol reached a maximal tensile strength of 2.1 MPa at a main compression pressure of 260 MPa. Moreover the friability of tablets compressed at 184 MPa was only 0.5%. This was attributed to the excellent compression properties of δ-mannitol and the coating of paracetamol crystals with δ-mannitol and PVP during coprocessing. PMID:26851355

  6. Continuous manufacturing of delta mannitol by cospray drying with PVP.

    PubMed

    Vanhoorne, V; Van Bockstal, P-J; Van Snick, B; Peeters, E; Monteyne, T; Gomes, P; De Beer, T; Remon, J P; Vervaet, C

    2016-03-30

    Mannitol is a frequently used diluent in the production of tablets due to its non-hygroscopic character and low drug interaction potential. Although the δ-polymorph of mannitol has superior tabletability in comparison to α- and β-mannitol, the latter are most commonly used because large-scale production of δ-mannitol is difficult. Therefore, a continuous method for production of δ-mannitol was developed in the current study. Spray drying an aqueous solution of mannitol and PVP in a ratio of 4:1 resulted in formation of δ-mannitol. The tabletability of a physical mixture of spray dried δ-mannitol with PVP (5%) and paracetamol (75%) was clearly superior to the tabletability of physical mixtures consisting of spray dried α- and β-mannitol with PVP (5%) and paracetamol (75%) which confirmed the excellent tableting properties of the δ-polymorph. In addition, a coprocessing method was applied to coat paracetamol crystals with δ-mannitol and PVP. The tabletability of the resulting coprocessed particles consisting of 5% PVP, 20% δ-mannitol and 75% paracetamol reached a maximal tensile strength of 2.1 MPa at a main compression pressure of 260 MPa. Moreover the friability of tablets compressed at 184 MPa was only 0.5%. This was attributed to the excellent compression properties of δ-mannitol and the coating of paracetamol crystals with δ-mannitol and PVP during coprocessing.

  7. Emission Analysis Of Pr{sup 3+}: PVP And Nd{sup 3+}: PVP Films

    SciTech Connect

    Sivaiah, K.; Buddhudu, S.

    2010-12-01

    Here we report on the results concerning the absorption and emission spectra of RE{sup 3+} (Pr{sup 3+} or Nd{sup 3+}) doped PVP polymer films. The absorption spectrum of Pr{sup 3+}: PVP polymer film has shown three absorption bands at 444 nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 2}), 469nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 1}) and 481nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 0}). From the Pr{sup 3+}: PVP polymer film, an emission at 603 nm ({sup 1}D{sub 2{yields}}{sup 3}H{sub 4}) has been observed with an excitation at 443 nm ({sup 3}H{sub 4{yields}}{sup 3}P{sub 2}). The absorption spectrum of Nd{sup 3+}: PVP polymer film has exhibited eleven absorption bands at 324 nm, 383 nm, 432 nm, 462 nm, 511 nm, 526 nm, 580 nm, 686 nm, 746 nm, 799 nm, and 869 nm which are assigned to the electronic transitions of {sup 4}I{sub 9/2{yields}}{sup 4}D{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 2}D{sub 3/2}, {sup 4}I{sub 9/2{yields}}{sup 4}P{sub 1/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 11/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 9/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 4}G{sub 5/2}, {sup 4}I{sub 9/2{yields}}{sup 2}F{sub 9/2}, {sup 4}I{sub 9/2{yields}}{sup 2}F{sub 7/2}, {sup 4}I{sub 9/2{yields}}{sup 2}H{sub 9/2} and {sup 4}I{sub 9/2{yields}}{sup 4}F{sub 3/2} respectively. From the Nd{sup 3+}: PVP polymer film, an emission transition has been measured at 1055 nm ({sup 4}F{sub 3/2{yields}}{sup 4}I{sub 11/2}) with an excitation at 324 nm ({sup 4}I{sub 9/2{yields}}{sup 4}D{sub 7/2}). For the host polymer film, structural properties have been studied from the measurement of XRD, FTIR, Raman spectra. For this film thermal properties have also been investigated from the measured profiles of TGA-DTA.

  8. Induction of IgG memory responses with polyvinylpyrrolidone (PVP) is antigen dose dependent

    SciTech Connect

    Lite, H.S.; Braley-Mullen, H.

    1981-03-01

    Irradiated recipients of spleen cells from mice primed with a very low dose (0.0025 ..mu../g) of the thymus-independent (TI) antigen polyvinylpyrrolidone (PVP) produced PVP-specific IgG memory responses after secondary challenge with a T-dependent (TD) form of PVP, PVP-HRBC. The IgG memory responses induced by low doses of PVP were similar in magnitude to those induced by the TD antigen PVP-HRBC. The induction of IgG memory by the TI form of antigen was markedly dependent on the dose of PVP used to prime donor mice. Spleen cells from mice primed with an amount of PVP (0.25 ..mu..g) that induces an optimal primary IgM response did not produce significant IgG antibody after challenge with PVP-HRBC. The inability of higher doses of PVP to induce IgG memory may be due, at least in part, to the fact that such doses of PVP were found to induce tolerance in PVP-specific B cells and could suppress the induction of memory induced by PVP-HRBC. Low doses of PVP did not interfere with the induction of memory by PVP-HRBC. Expression of IgG memory responses in recipients of PVP-HRBC or low-dose PVP-primed cells was found to be T cell dependent. Moreover, only primed T cells could reconstitute the respnse of recipients of primed B cells, suggesting that the ability of PVP to induce IgG memory may be related to its ability to prime T helper cells. Expression of the IgG memory response in recipient mice also required the use of a TD antigen for secondary challenge, i.e., mice challenged with PVP did not develop IgG.

  9. Optical properties of PbS/PVP nanocomposites films

    NASA Astrophysics Data System (ADS)

    Patel, Mitesh H.; Chaudhuri, Tapas K.; Patel, Vaibhav K.; Shripathi, T.; Deshpande, U.

    2016-05-01

    PbS/Polyvinylpyrrolidone (PVP) nanocomposites films with different volume fraction of PbS have been deposited from single molecular precursors. X-ray diffraction patterns conforms the formation of PbS nanocrystals in PVP matrix. The transmission spectra of the films in the wavelength range of 300 to 2400 nm show the absorption edges are blue shifted due to formation of PbS Nanoparticles. The band gap determined are 2.4, 1.5 and 1.25 eV for PbS volume fraction of 8.5, 16, 27%, respectively. The corresponding refractive indices, n determined from Fresnel relation are 1.8, 2, and 2.35 which are in between that of PbS (4.2) and PVP (1.48).

  10. Formation of gold and silver nanostructures within polyvinylpyrollidone (PVP) gel

    SciTech Connect

    Kan Caixia; Wang Changshun; Zhu Jiejun; Li Hongchen

    2010-04-15

    Study on reduction of Au(III) and Ag(I) and the formation of Au and Ag nanostructures was performed on the gels of metal precursor and PVP polymer mixture. Some comparing samples were prepared for better understanding the role of reactants on the reduction of metal ions and further growth of nanocrystals. The results suggest that, in addition to its function of generating stable colloids, PVP not only has a reducing effect on metal ions, but also acts as a crystal growth modifier. At low temperatures, the reducing effect of PVP is strong on Ag(I) ions in AgNO{sub 3}, while the reduction of complex Au(III) ions in HAuCl{sub 4} is slow, involving two steps of Au(III)->Au(I)->Au. In the study of temperature disturbance on crystal growth, Au nanoplates of new and well-defined star shape were observed. The differences in the size and shape of nanoparticles are discussed from the colloid chemistry. - Graphical abstract: If a temperature difference was introduced to the gel of Au{sup 3+}(H{sub 2}O)-PVP, large sized Au nanoplates with new and well-defined star shape were observed.

  11. Synthesis and Conductometric Property of Sol-Gel-Derived ZnO/PVP Nano Hybrid Films

    NASA Astrophysics Data System (ADS)

    Ilegbusi, Olusegun J.; Trakhtenberg, Leonid

    2013-03-01

    ZnO nanoparticles immobilized in polyvinylpyrrolidone (PVP) were prepared using sol-gel dip-coating technique with varying Zn2+/PVP ratios. The films were characterized using atomic force microscopy, x-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy for chemical analysis. The size and concentration of ZnO particles decreased as the Zn/PVP ratio decreased. Under low Zn2+/PVP molar ratios, ZnO particles were clearly well separated and capped in the PVP polymer matrix. Electrical resistivity of 108 Ω cm was achieved under these deposition conditions.

  12. Biomimetic Branched Hollow Fibers Templated by Self-assembled Fibrous Polyvinylpyrrolidone (PVP) Structures in Aqueous Solution

    PubMed Central

    Qiu, Penghe; Mao, Chuanbin

    2010-01-01

    Branched hollow fibers are common in nature, but to form artificial fibers with a similar branched hollow structure is still a challenge. We discovered that polyvinylpyrrolidone (PVP) could self-assemble into branched hollow fibers in an aqueous solution after aging the PVP solution for about two weeks. Based on this finding, we demonstrated two approaches by which the self-assembly of PVP into branched hollow fibers could be exploited to template the formation of branched hollow inorganic fibers. First, inorganic material such as silica with high affinity against the PVP could be deposited on the surface of the branched hollow PVP fibers to form branched hollow silica fibers. To extend the application of PVP self-assembly in templating the formation of hollow branched fibers, we then adopted a second approach where the PVP molecules bound to inorganic nanoparticles (using gold nanoparticles as a model) co-self-assemble with the free PVP molecules in an aqueous solution, resulting in the formation of the branched hollow fibers with the nanoparticles embedded in the PVP matrix constituting the walls of the fibers. Heating the resultant fibers above the glass transition temperature of PVP led to the formation of branched hollow gold fibers. Our work suggests that the self-assembly of the PVP molecules in the solution can serve as a general method for directing the formation of branched hollow inorganic fibers. The branched hollow fibers may find potential applications in microfluidics, artificial blood vessel generation, and tissue engineering. PMID:20158250

  13. Polysulfone membranes. III. Performance evaluation of polyethersulfone-PVP membranes

    SciTech Connect

    Tam, C.M.; Matsuura, T.; Tweddle, T.A. ); Hazlett, J.D. )

    1993-12-01

    The performance of membranes produced from casting solutions consisting of polyethersulfone (PES), poly-(N-vinyl-pyrrolidone) (PVP), and N-methyl-2-pyrrolidinone (NMP) were systematically studied. Zero-shear casting solution viscosities for these polymer solutions were determined as a function of PES and PVP concentrations. Ultrafiltration membranes were then cast using the phase inversion technique and characterized by separation experiments using polyethylene glycols of various molecular weights as test solutes. A pore flow model was fitted to the resulting separation data to provide estimates of the average pore radius and membrane porosity. These parameters were used to compare laboratory results for this membrane casting solution system with performance data for commercially available polyethersulfone membranes. 15 refs., 4 figs., 1 tab.

  14. Synthesis of BiOBr-PVP hybrids with enhanced adsorption-photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Li, Yanqing; Wang, Zeyan; Huang, Baibiao; Dai, Ying; Zhang, Xiaoyang; Qin, Xiaoyan

    2015-08-01

    We synthesized BiOBr-PVP hybrids by a simple solvothermal process, and investigated the adsorption and photocatalytic properties. Due to the presence of PVP, the thickness of the BiOBr nanosheets in BiOBr-PVP hybrids can be greatly reduced, which increased the percentage of highly reactive (0 0 1) facets exposed. And PVP was found to be adsorbed on the surface of BiOBr nanosheets by a strong donor-acceptor interactions via Cdbnd O bonds, which lead to an enhanced zeta potential and stronger adsorption capacity of cationic RhB molecules on the surface of BiOBr-PVP hybrids. And due to the synergistic effects of both high percentage of reactive (0 0 1) crystal facets and strong adsorption capacity, BiOBr-PVP hybrids exhibit excellent activities and stabilities on RhB dye degradation, which could be potentially used for practical waste water treatments.

  15. Influence of PVP in magnetic properties of NiSn nanoparticles prepared by polyol method

    NASA Astrophysics Data System (ADS)

    Bobadilla, L. F.; García, C.; Delgado, J. J.; Sanz, O.; Romero-Sarria, F.; Centeno, M. A.; Odriozola, J. A.

    2012-11-01

    The influence of PVP on the magnetic properties of NiSn nanoparticles prepared by polyol method has been studied. NiSn nanoparticles exhibit superparamagnetic behavior although there is a ferromagnetic contribution due to particles agglomerated below the blocking temperature. The particle size is controlled by the addiction of PVP in varying amounts. The addition of PVP also favours the particles isolation, narrow the particle size distribution and decrease the interparticle interaction strength increasing the superparamagnetic contribution.

  16. Electrospinning of PCL/PVP blends for tissue engineering scaffolds.

    PubMed

    Kim, Gyeong-Man; Le, Kim Huyen Trang; Giannitelli, Sara Maria; Lee, Yu Jin; Rainer, Alberto; Trombetta, Marcella

    2013-06-01

    Currently, one of the main drawbacks of using poly(ε-caprolactone) in the biomedical and pharmaceutical fields is represented by its low biodegradation rate. To overcome this limitation, electrospinning of PCL blended with a water-soluble poly(N-vinyl-2-pyrrolidone) was used to fabricate scaffolds with tunable fiber surface morphology and controllable degradation rates. Electrospun scaffolds revealed a highly immiscible blend state. The incorporated PVP phase was dispersed as inclusions within the electrospun fibers, and then easily extracted by immersing them in cell culture medium, exhibiting nanoporosity on the fiber surface. As a striking result, nanoporosity facilitated not only fiber biodegradation rates, but also improved cell attachment and spreading on the blend electrospun scaffolds. The present findings demonstrate that simultaneous electrospinning technique for PCL with water-soluble PVP provides important insights for successful tuning biodegradation rate for the PCL electrospun scaffolds but not limited to expand other high valuable biocompatible polymers for the future biomedical applications, ranging from tissue regeneration to controlled drug delivery. PMID:23468162

  17. Preparation of antifouling polyvinylpyrrolidone (PVP 40K) modified polyethersulfone (PES) ultrafiltration (UF) membrane for water purification

    NASA Astrophysics Data System (ADS)

    Vatsha, Banele; Ngila, Jane Catherine; Moutloali, Richard M.

    This study reports the fabrication of polyethersulfone (PES) membrane using the phase inversion method in the presence of polyvinylpyrrolidone (PVP, 40K) as pore-forming agent. The membranes were made from two PES concentration types, i.e. 16 and 18 wt.%. The effect of high molecular weight PVP concentration (2-10%) was examined in order to obtain a membrane with good performance, i.e. high water flux and reasonable Bovine Serum Albumin (BSA, protein model solution) rejection. The optimised membranes were characterised by ATR-FTIR, AFM, SEM, contact angle and dead-end membrane filtration tests. It was found that PVP moieties have positive influence in the prepared PES membranes. SEM surface and cross-sectional images were used to observed morphological changes as PVP content was varied. The pore sizes increased with PVP content for membranes prepared from 16 wt.% PES polymer, whereas at the higher PVP content in 18 wt.% PES membrane, pore sizes tend to decrease or completely disappear. The CA decreased gradually for the 16 wt.% PES with increasing PVP content whereas in the 18 wt.% PES the CA decreased initially before tapering off or increasing slightly. The rejection of BSA solution by both neat PES and PVP-containing PES membrane was above 85%. AFM surface topography exhibited increase in roughness value with PVP content. FTIR/ATR spectra corroborated the functional composition of neat PES and PVP molecule dispersed on PES membrane backbone. The results attained confirmed the potential industrial application of PVP molecule to minimise fouling tendencies.

  18. Magnetic properties of Mn2+: PEO+PVP polymer films

    NASA Astrophysics Data System (ADS)

    Kumar, K. Naveen; Sivaiah, K.; Buddhudu, S.

    2014-04-01

    Polymer blended films of PEO+PVP:Mn2+ ions at in varied concentrations have been synthesized by solution casting method. For these films, structural, thermal & magnetic properties have been carried out successfully and a semicrystalline nature of the polymer films has been confirmed from their XRD. Thermal stability of the films has been investigated based on TG-DTA profiles. Superparamagnetic nature with a weak ferromagnetic signal has been explained using VSM & EPR. The EPR spectra of polymer samples with Mn2+ have exhibited resonance signals. The number of spins and also Zero-field splitting parameter (ZFP) (D) at RT have been evaluated from the intensities of the allowed hyperfine(hf) lines. These polymer films have revealed superparamagnetic nature from their profiles.

  19. Twenty-One Cases Involving Alpha-Pyrrolidinovalerophenone (α-PVP).

    PubMed

    Wright, Trista Haupt; Harris, Chad

    2016-06-01

    Twenty-one cases involving alpha-pyrrolidinovalerophenone (α-PVP) were submitted between 2012 and 2015 to the Western Department of Forensic Science Laboratory. Eighteen suspected impaired driving cases were determined to have α-PVP concentrations <0.005-0.09 mg/L. Three fatalities during this period were determined to have α-PVP concentrations ranging from 0.03 to >20 mg/L. Human use of synthetic cathinones like α-PVP has been reported to induce psychological effects such as delusions, paranoia, hallucinations and deleterious cardiovascular effects. Quantitation was performed using a liquid-liquid extraction with detection by liquid chromatography triple quadrupole mass spectrometry using electrospray ionization in a multiple reaction monitoring mode. The reported behaviors in the 18 suspected impaired driving cases ranged from central nervous system depression to eluding officers in a high speed chase. The mean and median DUID α-PVP concentrations were both 0.030 mg/L. The α-PVP concentrations in the three fatalities were determined to be 0.033, 0.054 and present >20 mg/L. In 18 DUID cases, only 4 cases reported side effects consistent with synthetic cathinones. Two of the three fatalities indicated histories of bath salt and/or recreational drug use. At this time, no correlation can be determined between side effects and α-PVP concentrations. PMID:27185821

  20. A new approach to the management of burn injuries using PVP + neosporin.

    PubMed

    Sinha, R; Swaroop, S

    1988-01-01

    Treating superficial burns by forming a "crust" using povidone iodine (PVP) lotion and neosporin powder (N) is markedly superior to other known methods as shown by the minimal infection rate and markedly reduced healing time. This is basically because of the wide spectrum of action, tenning effect of PVP and attainment of a dry burn surface. At the same time the subescharal injection of PVP shows a distinct reduced septicaemia and local infection rates, early escharolysis followed by early graft take up and subsequent healing. In addition being an open method of treatment psychological advantage is also notable in the absence of pain during dressing.

  1. Friction properties of novel PVP/PVA blend hydrogels as artificial cartilage.

    PubMed

    Ma, Ruyin; Xiong, Dangsheng; Miao, Feng; Zhang, Jinfeng; Peng, Yan

    2010-06-01

    In this work, novel polyvinylpyrrolidone (PVP)/polyvinylalcohol (PVA) blend hydrogels were prepared by repeated freezing-thawing cycles. The factors that influenced friction properties of blend hydrogels, such as PVP content, contact load, sliding speed, and lubrication condition, were mainly studied by sliding with stainless steel ball. The results showed that friction coefficients of the PVP/PVA blend hydrogels were definitely dependent on such influence factors. The friction system consisting of blend hydrogel and stainless steel ball nearly exhibited a mixed lubrication regime especially under bovine serum lubrication, and it can be proposed as a promising method to reduce wear of the prosthesis.

  2. Effect of solvent and PVP on electrode conductivity in laser-induced reduction process

    NASA Astrophysics Data System (ADS)

    Lee, Huseung; Yang, Minyang

    2015-04-01

    Laser sintering process is a promising technique which can sinter an electrode pattern selectively without mask. In this study, metal oxide nanoparticle with several solvents and various molar ratio of polyvinylpyrrolidone (PVP) is prepared to optimize a fabrication of a copper electrode pattern. As a result, the solvent with exothermic heat flow and low absorption cross-section shows better pattern shape and higher conductivity in selective laser sintering. Additionally, PVP, a reductant, affects to the quality of electrode, too. High molar ratio and large amount of PVP make the laser sintering process window broad and the specific resistivity low.

  3. DBS investigation on films of cobalt chloride doped PVA-PVP blend

    NASA Astrophysics Data System (ADS)

    Hammannavar, Preeti B.; Baraker, Basavarajeshwari M.; Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise

    2015-06-01

    Films of Cobalt Chloride (CoCl2) doped polyvinylalcohol(PVA)- polyvinylpyrrolidone(PVP) blend (doped from 0.5 wt% up to 28 wt%) were prepared by solution casting, and characterized by XRD, DSC, UV-Visible Spectrometry TGA, FTIR and electrical measurements. In this paper, the results of Doppler Broadening Spectroscopy (DBS) in CoCl2 doped PVA-PVP blend is discussed. An increase in crystallinity of PVA-PVP blend, is observed, on doping it with CoCl2. The DBS results are complemented by XRD and DSC scans.

  4. Thermally stimulated nonlinear refraction in gelatin stabilized Cu-PVP nanocomposite thin films

    NASA Astrophysics Data System (ADS)

    Tamgadge, Y. S.; Atkare, D. V.; Pahurkar, V. G.; Talwatkar, S. S.; Sunatkari, A. L.; Muley, G. G.

    2016-05-01

    This article illustrates investigations on thermally stimulated third order nonlinear refraction of Cu-PVP nanocomposite thin films. Cu nanoparticles have been synthesized using chemical reduction method and thin films in PVP matrix have been obtained using spin coating technique. Thin films have been characterized by X-ray diffraction (XRD) and Ultraviolet-visible (UV-vis) spectroscopyfor structural and linear optical studies. Third order nonlinear refraction studies have been performed using closed aperture z-scan technique under continuous wave (CW) He-Ne laser. Cu-PVP nanocomposites are found to exhibit strong nonlinear refractive index stimulated by thermal lensing effect.

  5. Structural dependence of silver nanowires on polyvinyl pyrrolidone (PVP) chain length

    NASA Astrophysics Data System (ADS)

    Zeng, Xiping; Zhou, Bingpu; Gao, Yibo; Wang, Cong; Li, Shunbo; Yeung, Chau Yeung; Wen, WeiJia

    2014-12-01

    The effect of the chain length of polyvinyl pyrrolidone (PVP) on the structures of silver nanowires (AgNWs) is explored in this study. It was found in the experiments that PVP, when serving as a capping agent, has a great impact on the morphology and structure of AgNWs. By means of a series of experiments and the inquiry of the growth mechanism, the critical minimum PVP chain length for the successful formation of uniform nanowires was discovered, below which only nanoparticles or short nanorods can be obtained. Surprisingly, a core-shell structure of a nanowire with a polycrystal was observed when PVP with a very long chain length was employed in the processing.

  6. Influence of chitosan/clay in drug delivery of glucantime from PVP membranes

    NASA Astrophysics Data System (ADS)

    Oliveira, Maria J. A.; Estefânia, O. Silva; Lúcia, M. A. Braz; Regina, Maia; Amato, Valdir S.; Lugão, Ademar B.; Parra, Duclerc F.

    2014-01-01

    Polymeric hydrogels are receiving much attention in the past few years, as intelligent materials due to their properties for biomaterials. In this work, hydrogels of poly(N-2-vinil-pirrolidone) (PVP) containing chitosan and clay nanoparticles were obtained and characterized for glucantime drug delivery. The matrixes were crosslinked by gamma irradiation process with doses of 25 kGy. Hydrogels morphologies were observed by a Scanning Electron Microscope (SEM). The structural properties of the network were determined by gel fraction and swelling kinetic at 22 °C to study the capacity of water retention and, finally, drug delivery tests were performed "in vitro". The system showed higher gel fraction for the matrix with 1.0% of clay. In this case, besides the interactions of clay ions with PVP, there were interactions of chitosan with PVP. The results of glucantime delivery at the chitosan/PVP and clay system were discussed.

  7. One step synthesis of the smallest photoluminescent and paramagnetic PVP-protected gold atomic clusters.

    PubMed

    Santiago González, Beatriz; Rodríguez, María J; Blanco, Carmen; Rivas, José; López-Quintela, M Arturo; Gaspar Martinho, José M

    2010-10-13

    Gold atomic clusters of only two and three atoms were prepared by a simple electrochemical technique based on the anodic dissolution of a gold electrode in the presence of PVP, and subsequent electroreduction of the Au-PVP complexes. These clusters show stable photoluminescent and magnetic properties, which make them the smallest and most elemental gold (0) building blocks in nature (after atoms) bringing new possibilities to construct novel nano/microstructures with large potential interest in biomedicine, catalysis, and so forth.

  8. Comparing various techniques to produce micro/nanoparticles for enhancing the dissolution of celecoxib containing PVP.

    PubMed

    Homayouni, Alireza; Sadeghi, Fatemeh; Varshosaz, Jaleh; Garekani, Hadi Afrasiabi; Nokhodchi, Ali

    2014-09-01

    One of the major challenges in pharmaceutical development is the poor dissolution performance of drugs. Celecoxib (CLX) is a poorly water soluble drug with its bioavailability being limited by its poor dissolution. In this study several particle engineering methods were employed on CLX using various ratios of CLX:PVP-K30. Micro/nanoparticles of CLX:PVP were prepared by using spray drying (SD), antisolvent crystallization followed by freeze drying (CRS-FD) and spray drying (CRS-SD) techniques. The suspension obtained through antisolvent crystallization was also subjected to high pressure homogenization followed by freeze drying (HPH-FD). Particle size measurements, saturation solubility, optical and scanning electron microscopy, DSC, XRPD, FT-IR and dissolution test were performed to characterize the physicochemical and pharmaceutical properties of the samples. The results showed that spray dried samples in the presence of (50%) PVP produced spherical particles and exhibited a high dissolution rate. Interestingly in the antisolvent crystallization technique, spherical nanoparticles of drug-PVP were obtained in the range of 291-442 nm. The average particle size was dependent on the concentration of the PVP used during the crystallization process. Solid state analysis showed that these particles were completely amorphous in nature. Also interesting to note was that at concentration of 5% PVP, when the suspension of nanoparticles was subjected to the high pressure homogenization process, the crystallinity of CLX increased. Despite the partial crystallinity of particles produced, they showed excellent dissolution behavior. It can thus be concluded that the method of preparation of CLX micro/nanoparticles had a big impact on the dissolution rate when the concentration of PVP was low (e.g., 5%). At high PVP concentration (e.g., 50%) all methods used to prepare engineered CLX particles showed better dissolution with no significant differences in their dissolution

  9. Synthesis and fabrication of silver nanowires embedded in PVP fibers by near-field electrospinning process

    NASA Astrophysics Data System (ADS)

    Yang, T. L.; Pan, C. T.; Chen, Y. C.; Lin, L. W.; Wu, I. C.; Hung, K. H.; Lin, Y. R.; Huang, H. L.; Liu, C. F.; Mao, S. W.; Kuo, S. W.

    2015-01-01

    In this study, polyol process was used to synthesize anisotropic silver nanowires (AgNWs). The ranges of synthesis temperature from 100 to 200 degrees were explored, and the ranges from 4.53 to 13.75 wt% Polyvinylpyrrolidone (PVP) were investigated. The lengths and diameters of AgNWs from 15 to 30 μm and from 10 to 50 nm can be obtained, respectively. Then, the AgNWs embedded in PVP fibers (PVP/AgNWs) were fabricated by the near-field electrospinning (NFES) process. The AgNWs were broken down into nanoparticles when the applied electric field was over 1.4 × 107 V/m. However, the AgNWs could remain undamaged when the electric field was controlled between 8 × 106 and 1.2 × 107 V/m. Therefore, the threshold electric field can be determined and the diameter of the PVP/AgNWs fibers from 500 nm to 10 μm can be obtained. Next, the characteristics of the PVP/AgNWs were examined by N&K analyzer, four-point probe, EDS and FTIR. The transmittance of PVP/AgNWs films was 51.29-68.97% and the sheet resistance of purified AgNWs was 0.125 Ω/sq which was superior to that of commercial ITO. In addition, the haze of PVP/AgNWs with 30-90 nm thick was from 11.5% to 13.3%. In the near future, the PVP/AgNWs fibers can be used as transparent conductive electrodes.

  10. Radiation synthesis of PVP/alginate hydrogel containing nanosilver as wound dressing.

    PubMed

    Singh, Rita; Singh, Durgeshwer

    2012-11-01

    Hydrogels with polyvinyl pyrrolidone (PVP) and alginate were synthesized and silver nanoparticles were incorporated in hydrogel network using gamma radiation. PVP (10 and 15 %) in combination with 0.5 and 1 % alginate was gamma irradiated at different doses of 25 and 40 kGy. Maximum gel percent was obtained with 15 % PVP in combination with 0.5 % alginate. The fluid absorption capacity for the PVP/alginate hydrogels was about 1881-2361 % at 24 h. Moisture vapour transmission rate (MVTR) of hydrogels containing nanosilver at 24 h was 278.44 g/(m(2)h). The absorption capacity and moisture permeability of the PVP/alginate-nanosilver composite hydrogel dressings show the ability of the hydrogels to prevent fluid accumulation in exudating wound. The hydrogels containing nanosilver demonstrated strong antimicrobial effect and complete inhibition of microbial growth was observed with 70 ppm nanosilver dressings. PVP/alginate hydrogels containing nanosilver with efficient fluid handling capacity and antimicrobial activity was found suitable for use as wound dressing.

  11. Synthesis and characterization of pectin/PVP hydrogel membranes for drug delivery system.

    PubMed

    Mishra, Rakesh K; Datt, Mahesh; Banthia, Ajit K

    2008-01-01

    The purpose of the present study was to develop and design pectin and polyvinyl pyrrolidone (PVP) blended hydrogel membranes (PEVP), with different pectin: PVP ratios (1:0.2, 1:0.4, 1:0.6, 1:0.8 and 1:1 w/w), which were prepared by using a conventional solution casting technique. An attempt has been made to characterize the hydrogel membranes by various instrumental techniques like, FTIR (Fourier transform infrared) spectroscopy, X-ray diffraction (XRD), Differential scanning calorimetry (DSC), tensile strength test and scanning electron microscopy (SEM). The release patterns of the drug (salicylic acid) from the hydrogel membrane were done in three different release mediums (pH 1.4, pH 7.4 and distilled water) and samples were analyzed spectrophotometrically at 294 nm wavelength on a UV Vis spectrophotometer. MTT assay was done to ensure cytocompatibility of the pectin/PVP hydrogel membranes using B16 melanoma cells. FTIR spectroscopy indicated the presence of secondary amide (I) absorption bands. The XRD study shows decrease in crystallinity of the hydrogel membranes with increase in PVP ratio. DSC study shows an increase in T(g) of pectin after blending with PVP. It was found that tensile strength increases with increasing PVP ratios in the hydrogel membranes. The prepared hydrogel membranes were found to be biocompatible with B16 melanoma cells.

  12. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods.

    PubMed

    Sethia, S; Squillante, E

    2004-03-19

    This study compares the physicochemical properties of carbamazepine (CBZ) solid dispersions prepared by either a conventional solvent evaporation versus a supercritical fluid process. Solid dispersions of carbamazepine in polyvinylpyrrolidone (PVP) K30 with either Gelucire 44/14 or Vitamin E TPGS, NF (d-alpha-tocopheryl polyethylene glycol 1000 succinate) were prepared and characterized by intrinsic dissolution, differential scanning calorimetry, powder X-ray diffraction and Fourier transform infrared spectroscopy. CBZ/PVP K30 and CBZ/PVP K30/TPGS solid dispersions showed increased dissolution rate. The best intrinsic dissolution rate (IDR) was obtained for supercritically processed CBZ/PVP K30 that was four-fold higher than pure CBZ. Thermograms of various solid dispersions did not show the melting peak of CBZ, indicating that CBZ was in amorphous form inside the carrier system. This was further confirmed by X-ray diffraction studies. Infrared spectroscopic studies showed interaction between CBZ and PVP K30 in solid dispersions. The amorphous state of CBZ coupled with presence of interaction between drug and PVP K30 suggests fewer, if any, stability problems. Because the supercritical-based process produced solid dispersions with IDR better than conventional solid dispersions augmented with amphiphilic carriers, stability issues associated with lipid carriers do not apply, which, in turn, implies easier scale up under current Good Manufacturing Practice for this technique.

  13. Solubilities of crystalline drugs in polymers: an improved analytical method and comparison of solubilities of indomethacin and nifedipine in PVP, PVP/VA, and PVAc.

    PubMed

    Sun, Ye; Tao, Jing; Zhang, Geoff G Z; Yu, Lian

    2010-09-01

    A previous method for measuring solubilities of crystalline drugs in polymers has been improved to enable longer equilibration and used to survey the solubilities of indomethacin (IMC) and nifedipine (NIF) in two homo-polymers [polyvinyl pyrrolidone (PVP) and polyvinyl acetate (PVAc)] and their co-polymer (PVP/VA). These data are important for understanding the stability of amorphous drug-polymer dispersions, a strategy actively explored for delivering poorly soluble drugs. Measuring solubilities in polymers is difficult because their high viscosities impede the attainment of solubility equilibrium. In this method, a drug-polymer mixture prepared by cryo-milling is annealed at different temperatures and analyzed by differential scanning calorimetry to determine whether undissolved crystals remain and thus the upper and lower bounds of the equilibrium solution temperature. The new annealing method yielded results consistent with those obtained with the previous scanning method at relatively high temperatures, but revised slightly the previous results at lower temperatures. It also lowered the temperature of measurement closer to the glass transition temperature. For D-mannitol and IMC dissolving in PVP, the polymer's molecular weight has little effect on the weight-based solubility. For IMC and NIF, the dissolving powers of the polymers follow the order PVP > PVP/VA > PVAc. In each polymer studied, NIF is less soluble than IMC. The activities of IMC and NIF dissolved in various polymers are reasonably well fitted to the Flory-Huggins model, yielding the relevant drug-polymer interaction parameters. The new annealing method yields more accurate data than the previous scanning method when solubility equilibrium is slow to achieve. In practice, these two methods can be combined for efficiency. The measured solubilities are not readily anticipated, which underscores the importance of accurate experimental data for developing predictive models.

  14. Cysteine could change the transport mechanism of PVP-coated silver nanoparticles in porous media

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lin, S.; Wiesner, M.

    2012-12-01

    Silver nanoparticles (AgNPs) can hardly be removed by wastewater treatment plant and have big potential to enter groundwater, jeopardizing the water quality & aquatic ecosystem. Most AgNPs have surface coatings such as polyvinylpyrrolidone (PVP) which dominate their transport in porous media. Our previous study shows that PVP may promote the deposition of AgNPs on silica surface by a bridging mechanism. This study further explored how cysteine, a natural organic matter type, may influence the role of the PVP coating on AgNP translocation. Dynamic Light Scattering (DLS) measurement (Figure 1A) shows that the PVP coating rendered the AgNP dispersion high stability during the measuring period (3hrs). Addition of 100 ppm cysteine to the dispersion resulted in a rapid decrease in particle size from 100nm to 52nm within one hour, following which no further decline in particle size occurred. Column experiment results (Figure 1B) show that corresponding to the particle size change was a substantial decrease in particle deposition rates: introduction of 100 ppm cysteine into the particle dispersion resulted in a decrease in AgNP attenuation by the porous medium from 67% to 26%. The decline in particle size suggested that cysteine may have displaced the macromolecular PVP from the particle surface. Desorption of PVP resulted in a weakening or vanish of polymer bridging effect which in turn lowered the deposition rates substantially. This study demonstrated an implication of environmental transformation of coated AgNPs to their mobility in saturated sand aquifers. Acknowledgment Xinyao Yang appreciates the Natural Science Foundation of China (Grant No.:41101475) for covering the registration fee and traveling costs.igure 1 Particle size measurement (A) and breakthrough curves (B) of PVP-coated silver nanoparticle in the absence and presence of cysteine: pH=7.0, ionic strength=1mM, flow rate=1ml/min.

  15. Measurement of clay surface areas by polyvinylpyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance

    USGS Publications Warehouse

    Blum, A.E.; Eberl, D.D.

    2004-01-01

    A new method has been developed for quantifying smectite abundance by sorbing polyvinylpyrrolidone (PVP) on smectite particles dispersed in aqueous solution. The sorption density of PVP-55K on a wide range of smectites, illites and kaolinites is ???0.99 mg/m2, which corresponds to ???0.72 g of PVP-55K per gram of montmorillonite. Polyvinylpyrrolidone sorption on smectites is independent of layer charge and solution pH. PVP sorption on Si02, Fe 2O3 and ZnO normalized to the BET surface area is similar to the sorption densities on smectites. ??-Al 2O3, amorphous Al(OH)3 and gibbsite have no PVP sorption over a wide range of pH, and sorption of PVP by organics is minimal. The insensitivity of PVP sorption densities to mineral layer charge, solution pH and mineral surface charge indicates that PVP sorption is not localized at charged sites, but is controlled by more broadly distributed sorption mechanisms such as Van der Waals' interactions and/or hydrogen bonding. Smectites have very large surface areas when dispersed as single unit-cell-thick particles (???725 m2/g) and usually dominate the total surface areas of natural samples in which smectites are present. In this case, smectite abundance is directly proportional to PVP sorption. In some cases, however, the accurate quantification of smectite abundance by PVP sorption may require minor corrections for PVP uptake by other phases, principally illite and kaolinite. Quantitative XRD can be combined with PVP uptake measurements to uniquely determine the smectite concentration in such sample. ?? 2004, The Clay Minerals Society.

  16. Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants.

    PubMed

    Zhang, Quanyuan; Su, Kai; Chan-Park, Mary B; Wu, Hong; Wang, Dongan; Xu, Rong

    2014-03-01

    A series of high refractive index (RI) ZnS/PVP/PDMAA hydrogel nanocomposites containing ZnS nanoparticles (NPs) were successfully synthesized via a simple ultraviolet-light-initiated free radical co-polymerization method. The average diameter of the ZnS NPs is ∼ 3 nm and the NPs are well dispersed and stabilized in the PVP/PDMAA hydrogel matrix up to a high content of 60 wt.% in the hydrogel nanocomposites. The equilibrium water content of ZnS/PVP/PDMAA hydrogel nanocomposites varied from 82.0 to 66.8 wt.%, while the content of mercaptoethanol-capped ZnS NPs correspondingly varied from 30 to 60 wt.%. The resulting nanocomposites are clear and transparent and their RIs were measured to be as high as 1.58-1.70 and 1.38-1.46 in the dry and hydrated states, respectively, which can be tuned by varying the ZnS NPs content. In vitro cytotoxicity assays suggested that the introduction of ZnS NPs added little cytotoxicity to the PVP/PDMAA hydrogel and all the hydrogel nanocomposites exhibited minimal cytotoxicity towards common cells. The hydrogel nanocomposites implanted in rabbit eyes can be well tolerated over 3 weeks. Hence, the high RI ZnS/PVP/PDMAA hydrogel nanocomposites with adjustable RIs developed in this work might potentially be a candidate material for artificial corneal implants. PMID:24374324

  17. PVP and G1.5 PAMAM dendrimer co-mediated synthesis of silver nanoparticles

    SciTech Connect

    Li Guoping; Luo Yunjun . E-mail: yjluo@bit.edu.cn; Tan Huimin

    2005-04-15

    PVP and G1.5 PAMAM dendrimer co-mediated silver nanoparticles of smaller than 5nm in diameter were prepared using H{sub 2} as reducing agent. With the TEM micrograph, it was found that the molar ratios of PVP and G1.5 PAMAM dendrimer have significant effect in the morphology and size distribution of silver nanoparticles. The reaction rate (fitting a first-order equation) was strongly influenced by the molar ratios of PVP and G1.5 PAMAM dendrimer and the reaction temperature. From the UV-Vis spectra of an aqueous solution of silver nanoparticles, they could be stored for at least 2 months without coagulation at room temperature.

  18. Bromide ion induced formation of PVP-capped anisotropic gold nanoplates/nanotriangles

    NASA Astrophysics Data System (ADS)

    Verma, Manoj; Kedia, Abhitosh; Kumar, P. Senthil

    2014-04-01

    Anisotropic gold nanoparticles are particularly important owing to their exciting applications in plasmonics as well as nanophotonics and biosensing. Herein, we have synthesized gold nanoplates/nanotriangles with an average side-length varying from 80 to 150 nm via a single step room-temperature solution-phase chemical reduction method utilizing predominantly the PVP-bromine interaction. The concentration of bromine as well as the surrounding reaction medium/environment plays an important role in determining the yield of gold nanoplates/nanotriangles at a given PVP to metal ratio. In the presence of bromine ions, the distinctive binding of PVP with metal salt changes owing to its conformational variations, as illustrated successfully through FTIR, optical absorption and TEM, leading to the formation of anisotropic gold nanoplates/nanotriangles.

  19. Cloning the PvP5CS gene from common bean (Phaseolus vulgaris) and its expression patterns under abiotic stresses.

    PubMed

    Chen, Ji-Bao; Wang, Shu-Min; Jing, Rui-Lian; Mao, Xin-Guo

    2009-01-01

    A full-length cDNA denominated PvP5CS for Delta(1)-pyrroline-5-carboxylate synthetase (P5CS), an enzyme involved in the biosynthesis of proline, was cloned from common bean using a candidate gene approach. PvP5CS contains an open reading frame encoding a 716 amino acid polypeptide. Sequence analysis showed that PvP5CS shares 95.1% homology in nucleotide sequence and 93.2% identity in amino acid sequence with the mothbean (Vigna aconitifolia) P5CS. The expression patterns of PvP5CS in common bean treated with drought, cold (4 degrees C), and salt (200 mM NaCl) stresses were examined using real-time quantitative PCR. These abiotic stresses caused significant up-regulation of the expression of PvP5CS in leaves. The PvP5CS mRNA transcript increased to 2.5 times the control level after 4d drought stress. A rapid up-regulation of PvP5CS, to about 16.3 times the control at 2h post-treatment was observed under salt stress. A significant increase in PvP5CS expression (11.7-fold) was detected after 2h of cold stress. The peaks of proline accumulation appeared at 8d for drought, 24h for cold and 9h for salt stress, somewhat later than the peaks of PvP5CS expression. These results suggest that PvP5CS was a stress-inducible gene regulating the accumulation of proline in plants subjected to stress. Finally, subcellular localization assays showed that the PvP5CS protein was present in the nucleus and at the plasmalemma.

  20. Transparent conductive PVP/AgNWs films for flexible organic light emitting diodes by spraying method

    NASA Astrophysics Data System (ADS)

    Hu, Jun-tao; Mei, Wen-juan; Ye, Kang-li; Wei, Qing-qing; Hu, Sheng

    2016-05-01

    In this study, a simple spraying method is used to prepare the transparent conductive films (TCFs) based on Ag nanowires (AgNWs). Polyvinylpyrrolidone (PVP) is introduced to modify the interface of substrate. The transmittance and bending performance are improved by optimizing the number of spraying times and the solution concentration and controlling the annealing time. The spraying times of 20, the concentration of 2 mg/mL and the annealing time of 10 min are chosen to fabricate the PVP/AgNWs films. The transmittance of PVP/AgNWs films is 53.4%—67.9% at 380—780 nm, and the sheet resistance is 30 Ω/□ which is equivalent to that of commercial indium tin oxide (ITO). During cyclic bending tests to 500 cycles with bending radius of 5 mm, the changes of resistivity are negligible. The performance of PVP/AgNW transparent electrodes has little change after being exposed to the normal environment for 1 000 h. The adhesion to polymeric substrate and the ability to endure bending stress in AgNWs network films are both significantly improved by introducing PVP. Spraying method makes AgNWs form a stratified structure on large-area polymer substrates, and the vacuum annealing method is used to weld the AgNWs together at junctions and substrates, which can improve the electrical conductivity. The experimental results indicate that PVP/AgNW transparent electrodes can be used as transparent conductive electrodes in flexible organic light emitting diodes (OLEDs).

  1. Physical stability of solid dispersions with respect to thermodynamic solubility of tadalafil in PVP-VA.

    PubMed

    Wlodarski, K; Sawicki, W; Kozyra, A; Tajber, L

    2015-10-01

    The aim of this paper was to evaluate physical stability of solid dispersions in respect to the drug, tadalafil (Td), in vinylpyrrolidone and vinyl acetate block copolymer (PVP-VA). Nine solid dispersions of Td in PVP-VA (Td/PVP-VA) varied in terms of quantitative composition (1:9-9:1, w/w) were successfully produced by spray-drying. Their amorphous nature, supersaturated character and molecular level of mixing (a solid solution structure) were subsequently confirmed using DSC, PXRD, SEM and calculation of Hansen total solubility parameters. Due to thermal degradation of both components before the melting point of Td (302.3°C), an approach based on the drug crystallization from the supersaturated solid dispersion was selected to calculate the solubility of Td in the polymer. Annealing of the Td/PVP-VA solid dispersion (1:1, w/w) at selected temperatures above its Tg resulted in different stable solid dispersions. According to the Gordon-Taylor equation their new Tgs gave the information about the quantitative composition which corresponded to the thermodynamic solubility of Td in PVP-VA at given temperatures of annealing. The obtained relationship was fitted to the exponential function, with the calculated solubility of Td of 20.5% at 25°C. This value was in accordance with the results of hot stage polarizing light microscopy as well as stability tests carried out at 80°C and 0% RH, in which Td solid dispersions containing 10-20% of the drug were the only systems that did not crystallize within two months. A thermal analysis protocol utilizing a fast heating rate was shown to generate Td solubility data complementing the solid dispersion method. The Flory-Huggins model applied for the Td/PVP-VA system yielded the solubility value of 0.1% at 25°C, showing the lack of applicability in this case.

  2. PVP capped CdS nanoparticles for UV-LED applications

    SciTech Connect

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-24

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  3. PVP capped CdS nanoparticles for UV-LED applications

    NASA Astrophysics Data System (ADS)

    Sivaram, H.; Selvakumar, D.; Jayavel, R.

    2015-06-01

    Polyvinlypyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles are synthesized by wet chemical method. The powder X-ray diffraction (XRD) result indicates that the nanoparticles are crystallized in cubic phase. The optical properties are characterized by UV-Vis absorption. The morphology of CdS nanoparticles are studied using Scanning electron microscope (SEM). The thermal behavior of the as prepared nanoparticles has been examined by Thermo gravimetric analysis (TGA). The optical absorption study of pvp capped CdS reveal a red shift confirms the UV-LED applications.

  4. Effects of Nanoparticle Size on Cellular Uptake and Liver MRI with PVP-Coated Iron Oxide Nanoparticles

    PubMed Central

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-01-01

    The effect of nanoparticle size (30–120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T2 relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics. PMID:21043459

  5. Optical, magnetic and electrical properties of multifunctional Cr3+: Polyethylene oxide (PEO) + polyvinylpyrrolidone (PVP) polymer composites

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Rao, J. L.; Ratnakaram, Y. C.

    2015-11-01

    Multifunctional polymer composite films of PEO + PVP and also doped with Cr3+ ions in different concentrations have been synthesized by a solution casting method. The semi-crystalline nature of the polymer films was confirmed by XRD studies. Raman spectral analysis confirms the complex formation of the polymer with dopant ions. The optical absorption spectrum of Cr3+ doped polymer exhibits three absorption bands pertaining to Cr3+ ions in octahedral symmetry. From the absorption spectrum, Racah parameters were evaluated. The red emission at 614 nm (4T2g→4A2g) has been observed for the Cr3+: PEO + PVP polymer under the UV excitation. EPR spectra of Cr3+ ions doped polymers at different concentrations of Cr3+ ions exhibit resonance signals which are characteristic of Cr3+ ions in the octahedral symmetry. Cr3+: PEO + PVP revealed the superparamagnetic nature based on the trends on Vibrational Sample Magnetometer profiles. Cr3+(0.1 wt%): PEO + PVP polymer reveals high ionic conductivity in the order of 1.14 × 10-5 S/cm at 373 K. Dielectric constant behaviour has also been analysed with respect to frequency.

  6. Photoluminescence study of PVP capped CdS nanoparticles embedded in PVA matrix

    SciTech Connect

    Pattabi, Manjunatha . E-mail: manjupattabi@yahoo.com; Saraswathi Amma, B.; Manzoor, K.

    2007-05-03

    Photoluminescence properties of polyvinyl pyrrolidone (PVP) capped cadmium sulphide (CdS) nanoparticles embedded in polyvinyl alcohol matrix (PVA) are reported. The PVP-CdS nanoparticles are prepared by non-aqueous method wherein cadmium nitrate is used as the cadmium source and hydrogen sulphide as the sulphur source. The synthesized nanoparticles are dispersed in polyvinyl alcohol (PVA) matrix and cast as self-standing flexible (PVP-CdS)-PVA films. The nanocomposites are characterized by optical absorption spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM) studies. XRD and TEM studies show the formation of cubic CdS particles with average size {approx}3-5 nm. Thermal studies, carried out to observe the changes in PVA matrix due to the incorporation of PVP-CdS nanoparticles show strong interaction between the polymer matrix and nanoparticles. The photoluminescence emission spectra of the nanocomposites show two peaks, at 502 and 636 nm, which are attributed to the band edge and surface defects respectively, of CdS nanoparticles. Effective surface capping with optimum concentration of polyvinyl pyrrolidone leads to the quenching of surface defect-related emission.

  7. First-Principles Calculations of the Role of PVP in the Controlled Synthesis of Au Nanostructures

    NASA Astrophysics Data System (ADS)

    Liu, Shih-Hsien; Al-Saidi, Wissam; Fichthorn, Kristen

    2013-03-01

    Structure-directing agents such as PVP play an important role in determining the shape of metal nanostructures in solution-phase syntheses. It is usually hypothesized that structure-directing molecules bind more strongly to certain crystal facets, which grow at the expense of facets on which they are less strongly bound. In this study, we use dispersion-corrected density functional theory to resolve the role of PVP in the shape-selective synthesis of Au nanostructures. We calculate binding energies for the 2-pyrrolidone ring of PVP on Au(111), (5 × 1) Au(100)-hex, and Au(100) slabs in vacuum. The results show that there is no significant difference between the binding of 2-pyrrolidone to Au(111) and Au(100)-hex, while 2-pyrrolidone binds more strongly to Au(111) than to Au(100). We discuss the origins of these trends. Our results are consistent with experiments, in which (111)-faceted Au nanostructures are formed with the assistance of PVP. Support by the US Dept. of Energy DE-FG0207ER46414

  8. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP. PMID:23483432

  9. Solid-state characterization and dissolution properties of meloxicam-moringa coagulant-PVP ternary solid dispersions.

    PubMed

    Noolkar, Suhail B; Jadhav, Namdeo R; Bhende, Santosh A; Killedar, Suresh G

    2013-06-01

    The effect of ternary solid dispersions of poor water-soluble NSAID meloxicam with moringa coagulant (obtained by salt extraction of moringa seeds) and polyvinylpyrrolidone on the in vitro dissolution properties has been investigated. Binary (meloxicam-moringa and meloxicam-polyvinylpyrrolidone (PVP)) and ternary (meloxicam-moringa-PVP) systems were prepared by physical kneading and ball milling and characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffractometry. The in vitro dissolution behavior of meloxicam from the different products was evaluated by means of United States Pharmacopeia type II dissolution apparatus. The results of solid-state studies indicated the presence of strong interactions between meloxicam, moringa, and PVP which were of totally amorphous nature. All ternary combinations were significantly more effective than the corresponding binary systems in improving the dissolution rate of meloxicam. The best performance in this respect was given by the ternary combination employing meloxicam-moringa-PVP ratio of [1:(3:1)] prepared by ball milling, with about six times increase in percent dissolution rate, whereas meloxicam-moringa (1:3) and meloxicam-PVP (1:4) prepared by ball milling improved dissolution of meloxicam by almost 3- and 2.5-folds, respectively. The achieved excellent dissolution enhancement of meloxicam in the ternary systems was attributed to the combined effects of impartation of hydrophilic characteristic by PVP, as well as to the synergistic interaction between moringa and PVP.

  10. Studies on electrical and optical properties of PVP:KIO4 complexed polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Ravi, M.; Kiran Kumar, K.; Narasimha Rao, V. V. R.

    2015-02-01

    Solid polymer electrolytes based on poly (vinyl pyrrolidone) (PVP) complexed with potassium periodate (KIO4) salt at different weight percent ratios were prepared using solution- cast technique. X- ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. Electrical conductivity was measured with an AC impedance analyzer in the frequency and temperature range 1 Hz-1 MHz and 303 K-373 K respectively. The maximum ionic conductivity 1.421×10-4Scm-1 was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. Optical absorption studies were performed in the wavelength range 200-600 nm and the absorption edge, direct band gap and indirect band gap values were evaluated.

  11. Synthesis and characterization of Sm3+:PEO+PVP polymer film

    NASA Astrophysics Data System (ADS)

    Kumar, K. Naveen; Buddhudu, S.

    2013-06-01

    Sm3+:PEO+PVP polymer films have successfully been synthesized by employing solution casting method and for these polymer films their XRD. TG-DTA profiles have been measured for an analysis. A bright orange luminescent color has been observed from them under an UV source. Besides the measurement of their absorption spectra, excitation and emission spectra have also been measured to evaluate emission performance at 600nm (4G5/2→6H7/2) of Sm3+ polymer films in the form of an energy level diagram. Such a detailed study on Sm3+:PEO+PVP polymer film has enabled to suggest this film as a orange luminescent optical material.

  12. Electrical and optical properties of ferric doped PVA-PVP-PPy composite films

    NASA Astrophysics Data System (ADS)

    Patil, Ravikumar V.; Ranganath, M. R.; Lobo, Blaise

    2013-02-01

    The analysis of experimental optical spectra & electrical properties of PVA-PVP-PPy composite films is discussed in this paper. The optical parameters like activation energy of optical transitions and the optical band gap for direct and indirect allowed transitions were determined for PVA-PVP-PPy composite films doped with different concentrations of ferric chloride. The optical band gap showed best fit for indirect allowed transitions, and there is a decrease in the optical band gap with increase in concentration of ferric chloride. The DC electrical properties of these films indicated agreement with Mott's Variable Range Hopping Model in three dimensions. The width of the forbidden band gap was determined from the Arrhenius relation after experimentally studying in-situ, the variation of DC electrical conductivity with temperature.

  13. Microstructural and electrical properties of PVA/PVP polymer blend films doped with cupric sulphate

    NASA Astrophysics Data System (ADS)

    Hemalatha, K.; Mahadevaiah, Gowtham, G. K.; Urs, G. Thejas; Somashekarappa, H.; Somashekar, R.

    2016-05-01

    A series of polyvinyl alcohol (PVA)/polyvinyl pyrrolidone (PVP) polymer blends added with different concentrations of cupric sulphate (CuSO4) were prepared by solution casting method and were subjected to X-ray diffraction (XRD) and Ac conductance measurements. An attempt has been made to study the changes in crystal imperfection parameters in PVA/PVP blend films with the increase in concentration of CuSO4. Results show that decrease in micro crystalline parameter values is accompanied with increase in the amorphous content in the film which is the reason for film to have more flexibility, biodegradability and good ionic conductivity. AC conductance measurements in these films show that the conductivity increases as the concentration of CuSO4 increases. These films were suitable for electro chemical applications.

  14. Novel GQD-PVP-CdS composite with enhanced visible-light-driven photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Fan, Tao; Li, Yinle; Shen, Jianfeng; Ye, Mingxin

    2016-03-01

    A facile one-step hydrothermal method to synthesize graphene quantum dots (GQDs)-polyvinyl pyrrolidone (PVP)-CdS nanocomposite was reported. The nanocomposite was thoroughly characterized with X-ray diffraction, transmission electron microscopy, scanning electron microscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and ultraviolet-visible spectroscopy. The results confirmed the formation of GQD-PVP-CdS composite with a uniform size (5-10 nm) and a relatively low band gap (Eg = 2.23 eV). Moreover, the as-prepared composite exhibited enhanced photocatalytic activity toward the degradation of organic contaminants, with 92.3% of methyl orange (10 mg/L) removed after 3 hours of visible light illumination. This enhancement in photocatalytic activity was postulated to be attributed to the upconversion property of GQDs and a more efficient charge distribution between GQDs and CdS particles.

  15. Pharmacological effects of methamphetamine and alpha-PVP vapor and injection.

    PubMed

    Marusich, Julie A; Lefever, Timothy W; Blough, Bruce E; Thomas, Brian F; Wiley, Jenny L

    2016-07-01

    Vaporizing drugs in e-cigarettes is becoming a common method of administration for synthetic cathinones and classical stimulants. Heating during vaporization can expose the user to a cocktail of parent compound and thermolytic degradants, which could lead to different toxicological and pharmacological effects compared to ingesting the parent compound alone via injection or nasal inhalation. This study examined the in vivo toxicological and pharmacological effects of vaporized and injected methamphetamine (METH) and α-pyrrolidinopentiophenone (α-PVP). Male and female ICR mice were administered METH or α-PVP through vapor or i.p. injection. Dose-effect curves were determined for locomotor activity and a functional observational battery (FOB). METH and α-PVP vapor were also evaluated for place preference in male mice. Vapor exposure and injection led to more similarities than differences in toxicological and pharmacological effects. In the FOB, both routes of administration produced typical stimulant effects, and injection also increased some bizarre behaviors (e.g. licking, teeth chattering, darting). Both METH and α-PVP vapor exposure produced conditioned place preference. The two routes of administration had comparable efficacy in locomotor activation, with vapor producing longer lasting effects than injection. Females showed greater METH-induced locomotor activity, and greater incidence of a few somatic signs in the FOB than males. These results explore the toxicology of stimulant vapor inhalation in mice using an e-cigarette device. Despite the current technological and methodological difficulties, studying drug vapor promises to allow determination of toxicological effects of thermolytic products and flavor additives. PMID:27237056

  16. Synthesis of PVP-stabilized ruthenium colloids with low boiling point alcohols.

    PubMed

    Zhang, Yuqing; Yu, Jiulong; Niu, Haijun; Liu, Hanfan

    2007-09-15

    A route to the preparation of poly(N-vinyl-2-pyrrolidone) (PVP)-stabilized ruthenium colloids by refluxing ruthenium(III) chloride in low boiling point alcohols was developed. Deep purple colloids with shuttle-like ruthenium particles were also synthesized. XPS measurement verified the nanoparticles were in the metallic state. The morphology of metal nanoparticles was characterized by UV-visible absorption spectrophotometry, TEM and XRD.

  17. Effects of sodium hypochlorite exposure mode on PES/PVP ultrafiltration membrane degradation.

    PubMed

    Causserand, Christel; Pellegrin, Bastien; Rouch, Jean-Christophe

    2015-11-15

    Drinking water production plants using membrane filtration processes report membrane failure issues. According to the literature, membrane degradation is often induced by exposure to sodium hypochlorite, an oxidant widely used during in-place cleanings. The present study focused on quantifying the effect of membrane exposure mode to hypochlorite on properties modifications of a PES/PVP ultrafiltration membrane widely used for drinking water production. For this purpose effects of sodium hypochlorite concentration, contact duration and exposure mode (static or dynamic) were investigated. The pH of the hypochlorite solution was set to 8 as it was demonstrated in numerous previous works that the pH range 7-8 leads to the most severe modification in the membrane characteristics. Membrane degradation was monitored at molecular scale by attenuated total reflectance infrared spectroscopy and at macroscopic scale by pure water permeability and elongation at break measurements. The results obtained in static (soaking) and dynamic (filtration and filtration/backwashing cycles) hypochlorite exposure modes indicated that PES/PVP membrane degradation progress was predominantly governed by hypochlorite oxidation rate. In the tested conditions, mechanical stress (pressure differentials) did not significantly contribute to membrane ageing. The correlation between molecular and macroscopic characterizations demonstrated that PVP degradation is responsible for the membrane integrity loss. A linear relationship between the loss of ductility of the membrane and the progress of the PVP degradation was obtained whatever the exposure mode. Thanks to experiments conducted at various hypochlorite concentrations and exposure durations, the hypochlorite dose parameter (hypochlorite concentration times contact time), widely used in the literature, was demonstrated to be inappropriate to describe the degradation rate: the hypochlorite concentration impact was shown to be dominating the

  18. Thermal Processing of PVP- and HPMC-Based Amorphous Solid Dispersions.

    PubMed

    LaFountaine, Justin S; Prasad, Leena Kumari; Brough, Chris; Miller, Dave A; McGinity, James W; Williams, Robert O

    2016-02-01

    Thermal processing technologies continue to gain interest in pharmaceutical manufacturing. However, the types and grades of polymers that can be utilized in common thermal processing technologies, such as hot-melt extrusion (HME), are often limited by thermal or rheological factors. The objectives of the present study were to compare and contrast two thermal processing methods, HME and KinetiSol® Dispersing (KSD), and investigate the influence of polymer type, polymer molecular weight, and drug loading on the ability to produce amorphous solid dispersions (ASDs) containing the model compound griseofulvin (GRIS). Dispersions were analyzed by a variety of imaging, solid-state, thermal, and solution-state techniques. Dispersions were prepared by both HME and KSD using polyvinylpyrrolidone (PVP) K17 or hydroxypropyl methylcellulose (HPMC) E5. Dispersions were only prepared by KSD using higher molecular weight grades of HPMC and PVP, as these could not be extruded under the conditions selected. Powder X-ray diffraction (PXRD) analysis showed that dispersions prepared by HME were amorphous at 10% and 20% drug load; however, it showed significant crystallinity at 40% drug load. PXRD analysis of KSD samples showed all formulations and drug loads to be amorphous with the exception of trace crystallinity seen in PVP K17 and PVP K30 samples at 40% drug load. These results were further supported by other analytical techniques. KSD produced amorphous dispersions at higher drug loads than could be prepared by HME, as well as with higher molecular weight polymers that were not processable by HME, due to its higher rate of shear and torque output.

  19. PEDOT gate electrodes with PVP/Al2O3 dielectrics for stable high-performance organic TFTs

    NASA Astrophysics Data System (ADS)

    Lee, Young Kyu; Maniruzzaman, Md.; Lee, Chiyoung; Lee, Mi Jung; Lee, Eun-Gu; Lee, Jaegab

    2013-11-01

    A poly(3,4-ethylenedioxythiophene) (PEDOT) gate electrode on a polyestersulfone (PES) substrate was used to fabricate inverted staggered pentacene organic thin film transistors (OTFTs). The PEDOT gate formed on the PES substrate exhibited semi-transparency, high conductivity, and excellent adhesion to the substrate. Prior to the deposition of poly-4-vinyl phenol (PVP) dielectrics, a thin Al2O3 layer (12 nm) was coated onto a PEDOT electrode, providing an effective barrier against inter-diffusion between the PVP dielectrics and the underlying PEDOT gate electrode, and against moisture penetration through the PES substrate. This led to stable high-performance OTFTs consisting of a PEDOT gate electrode and PVP/Al2O3 dielectrics. The combined PVP/Al2O3 dielectrics with PEDOT gate electrodes were successfully implemented in flexible organic TFTs that exhibit excellent compatibility with flexible electronics.

  20. Production of Prednisolone by Pseudomonas oleovorans Cells Incorporated Into PVP/PEO Radiation Crosslinked Hydrogels.

    PubMed

    Abd El-Hady, Abeer; Abd El-Rehim, Hassan A

    2004-01-01

    In order to rise the yield of prednisolone from hydrocortisone, the Pseudomonas oleovorans cells were entrapped into radiation crosslinked poly (vinyl pyrrolidone)/poly(ethylene oxide) (PVP/PEO) hydrogel of different gel contents. The factors affecting the gel content and swelling behavior of the polymeric gel, such as polymer composition, polymer blend concentration, and irradiation doses, were investigated. The formation of gels having a good strength with the ability to retain a desirable amount of water in their three-dimensional network can be achieved by using PVP/PEO copolymer of composition $(90:10)$ and concentration of 15% prepared at 20 kGy irradiation dose. At these conditions the prepared hydrogel is considered the most favorable one that gave the highest hydrocortisone bioconversion and prednisolone yield, 81% and 62.8%, respectively. The improvement of prednisolone yield was also achieved by increasing substrate concentration. Maximum hydrocortisone bioconversion (86.44) was obtained at 18 hours by using substrate concentration of 30 mg. Reusability of immobilized Pseudomonas oleovorans entrapped into PVP/PEO copolymer hydrogel was studied. The results indicated that the transformation capacity of hydrocortisone to prednisolone highly increased by the repeated use of copolymer for 4 times. This was accompanied by an increase in prednisolone yield to 89% and the bioconversion of hydrocortisone was 98.8%. PMID:15467162

  1. Morphology, absorptivity and viscoelastic properties of mineralized PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Saha, Nabanita; Shah, Rushita; Vyroubal, Radek; Kitano, Takeshi; Saha, Petr

    2013-04-01

    A simple liquid diffusion mineralization technique was applied for the incorporation of calcium carbonate (CaCO3) in PVP-CMC hydrogel. The hydrogel was prepared 6.5 mm thick to achieve around 1 mm thick sample after mineralization of hydrogel matrix with calcite. The calcite crystals were round shaped and organized as building blocks inside the porous three dimensional cross linked structure of the PVP-CMC hydrogel. The present study was designed to evaluate the properties of mineralized (calcite) hydrogel with respect to freshly prepared hydrogel and those swelled in water (H2O) after drying. The viscoelastic properties of swelled and mineralized samples were reported though the dry PVP-CMC hydrogel were swelled and mineralized with calcite until 150 min. It is observed that there is not much difference in elastic property of fresh and 60 min mineralized hydrogels but the values of elastic property are decreased in the case of swelled hydrogels. It is interesting that in case of swelled samples the values of complex viscosity (η*) are increased with the increase of swelling time after 90 min but in case of calcite hydrogel the values (η*) are gradually decreased with the increase of time.

  2. Synthesis of antibacterial film CTS/PVP/TiO2/Ag for drinking water system.

    PubMed

    Zhang, Liang; Bai, Xue; Tian, Hua; Zhong, Lvling; Ma, Cailian; Zhou, Yuanzhen; Chen, Shuangli; Li, Dongliang

    2012-08-01

    A CTS/PVP/TiO2/Ag functional film was prepared as an antibacterial composite used in storing drinking water. The orthogonal experiment showed that the optimal conditions for preparing membranes with best antibacterial activity and tensile strength are c(AgNO3)=0.08%, c(TiO2)=0.20%, c(CTS)=2.25%, and c(PVP)=3.00%. The FT-IR spectrum implies that hydrogen bands are formed between acetyl in PVP and hydroxyl in CTS molecule, and -NH and -OH of CTS have some interactions with sliver nano-particles (nano-Ags) which were reduced in situ. The SEM images show that the TiO2 particles are displayed on the surface and embedded in the film. And nano-Ags are further proved through XRD and SEM images. The DSC curves show that the film has a favorable compatibility and heat stability. In application study, it is proved that this film has sustainable antibacterial activity and is safe in use.

  3. Characterization and physical stability of tolfenamic acid-PVP K30 solid dispersions.

    PubMed

    Thybo, Pia; Kristensen, Jakob; Hovgaard, Lars

    2007-01-01

    Obtaining a stable formulation with high bioavailability of a poorly water-soluble drug often presents a challenge to the formulation scientist. Transformation of the drug into its more soluble high-energy amorphous form is one method used for improving the dissolution rate of such compounds. The present study uses the spray-drying technique for preparation of solid dispersions (SDs) of tolfenamic acid (TA) and polyvinylpyrrolidone K-30 (PVP). The SDs and TA in the form of a spray-dried powder were initially characterized and compared with a physical mixture and starting materials. Stability of the SDs was monitored over 12 weeks at 25 degrees C and 60% RH. XRPD studies revealed changes in solid state during the formation of the SDs and indicated the presence of TA in the amorphous state. FTIR, together with TGA, suggested molecular interactions (hydrogen-bonding) in the SDs. Dissolution studies proved an increase in the dissolution rate of TA from all SDs. The SDs with higher content of PVP retained TA in the amorphous state throughout the stability study. However, SDs with lower content showed recrystallization of TA after 1 week. Thus, this study reveals the possibility of preparing stable SDs of amorphous TA in PVP with improved dissolution rate.

  4. Exploring the synergetic effects of graphene oxide (GO) and polyvinylpyrrodione (PVP) on poly(vinylylidenefluoride) (PVDF) ultrafiltration membrane performance

    NASA Astrophysics Data System (ADS)

    Chang, Xiaojing; Wang, Zhenxing; Quan, Shuai; Xu, Yanchao; Jiang, Zaixing; Shao, Lu

    2014-10-01

    Membrane surface and cross-sectional morphology created during membrane formation is one of the most essential factors determining membrane separation performance. However, the complicated interactions between added nanoparticles and additives influencing membrane morphology and performance during building membrane architectures had been generally neglected. In this study, asymmetric PVDF composite ultrafiltration (UF) membranes containing graphene oxides (GO) were prepared by using N-methyl pyrrolidone (NMP) as solvent and polyvinylpyrrodione (PVP) as the pore forming reagent. In the first time, the effects of mutual interactions between GO and PVP on membranes surface compositions, morphology and performance were investigated in detail. The variation in chemical properties of different membranes and hydrogen bonds in the membrane containing GO and PVP were confirmed by X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR). Atomic force microscopy (AFM), scanning electron microscopy (SEM), and contact angle (CA) were utilized to clarify the synergetic effects of GO and PVP on morphologies and surface hydrophilicity of membranes. Besides, water flux, bovine serum albumin (BSA) rejection and attenuate coefficient were also determined to investigate filtration performance of various membranes. Compared with pure PVDF membrane, the comprehensive performance of PVDF/GO/PVP membrane has been obviously improved. The surface hydrophilicity and anti-fouling performance were enhanced by the synergistic effects of incorporated GO and PVP. When the PVP content was 0.25 wt.% and the GO content was 0.5 wt.%, the optimized performance can be obtained due to the formation of hydrogen bonds between GO and PVP.

  5. PVP formulated Fullerene (C60) increases Rho-kinase dependent Vascular Tissue Contractility in Pregnant Sprague Dawley Rats

    PubMed Central

    Vidanapathirana, Achini K.; Thompson, Leslie C.; Mann, Erin. E.; Odom, Jillian T.; Holland, Nathan A.; Sumner, Susan J.; Han, Li; Lewin, Anita H.; Fennell, Timothy R.; Brown, Jared M.; Wingard, Christopher J.

    2014-01-01

    Pregnancy is a unique physiological state, in which C60 fullerene is reported to be distributed in both maternal and fetal tissues. Tissue distribution of C60 differs between pregnant and non-pregnant states, presumably due to functional changes in vasculature during pregnancy. We hypothesized that, polyvinylpyrorrolidone (PVP) formulated C60 (C60/PVP) increases vascular tissue contractility during pregnancy by increasing Rho-kinase activity. C60/PVP was administered intravenously to pregnant and non-pregnant female Sprague Dawley rats. Vascular responses were assessed using wire myography 24 hours post-exposure. Increased stress generation was observed in uterine artery, thoracic aorta and umbilical vein. Rho-Rho-kinase mediated force maintenance was increased in arterial segments from C60/PVP exposed pregnant rats when compared to PVP exposed rats. Our findings suggest that intravenous exposure to C60/PVP during pregnancy increases vascular tissue contractility of the uterine artery through elements of Rho-Rho-kinase signaling during late stages of pregnancy. PMID:25088243

  6. Synthesis and characterization of PVP-coated large core iron oxide nanoparticles as an MRI contrast agent

    NASA Astrophysics Data System (ADS)

    Lee, Ha-Young; Lee, Sang-Hoon; Xu, Chenjie; Xie, Jin; Lee, Jin-Hyung; Wu, Bing; Leen Koh, Ai; Wang, Xiaoying; Sinclair, Robert; Wang, Shan X.; Nishimura, Dwight G.; Biswal, Sandip; Sun, Shouheng; Cho, Sun Hang; Chen, Xiaoyuan

    2008-04-01

    The purpose of this study was to synthesize biocompatible polyvinylpyrrolidone (PVP)-coated iron oxide (PVP-IO) nanoparticles and to evaluate their efficacy as a magnetic resonance imaging (MRI) contrast agent. The PVP-IO nanoparticles were synthesized by a thermal decomposition method and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering (DLS), and a superconducting quantum interface device (SQUID). The core size of the particles is about 8 10 nm and the overall size is around 20 30 nm. The measured r2 (reciprocal of T2 relaxation time) and r2* (reciprocal of T2* relaxation time) are 141.2 and 338.1 (s mM)-1, respectively. The particles are highly soluble and stable in various buffers and in serum. The macrophage uptake of PVP-IO is comparable to that of Feridex as measured by a Prussian blue iron stain and phantom study. The signal intensity of a rabbit liver was effectively reduced after intravenous administration of PVP-IO. Therefore PVP-IO nanoparticles are potentially useful for T2-weighted MR imaging.

  7. A novel catalyst containing palladium nanoparticles supported on PVP composite nanofiber films: Synthesis, characterization and efficient catalysis

    NASA Astrophysics Data System (ADS)

    Guo, Liping; Bai, Jie; Li, Chunping; Meng, Qingrun; Liang, Haiou; Sun, Weiyan; Li, Hongqiang; Liu, Huan

    2013-10-01

    This paper studied the preparation of Pd nanoparticles/PVP composite nanofiber membranes catalyst. In the experiment, reductant was ethanol and PVP (polyvinyl pyrrolidone) served as the protecting agent as well as supporter of palladium nanoparticles. Pd nanoparticles/PVP sol was examined by UV-vis absorbance spectra (UV-vis); Pd NPs/PVP nanofibers were characterized by scanning electron microscope (SEM) and transmission electron microscope (TEM). The Pd NPs/PVP nanofibers films catalyst was applied to catalytic hydrogenation of aryl nitro compounds reduction and Heck reactions to test the catalytic activity, products were characterized by gas chromatograph (GC) and gas chromatograph mass spectrometer (GC-MS). Results showed that the diameters of Pd NPs were 3-10 nm and the Pd NPs/PVP nanofibers films catalyst possessed high-activity, improved the selectivity and yield, the conversion rate of paratoluidine was 74.36%, N-butyl cinnamate esters conversion rate still exceed 99% after catalyst be used three times. It overcomes the problems that palladium has leached badly and recovery difficultly in conventional homogeneous palladium catalyst field, and have a broad foreground of catalyst applications.

  8. Energy transfer based photoluminescence properties of (Sm3+ + Eu3+):PEO + PVP polymer films for Red luminescent display device applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Vijayalakshmi, L.; Ratnakaram, Y. C.

    2015-07-01

    Eu3+:PEO + PVP, Sm3+:PEO + PVP and co-doped Sm3+ + Eu3+:PEO + PVP polymer films have successfully been synthesized by solution casting method. For these polymer films, their XRD, FTIR and RAMAN spectral profiles were studied systematically. Both absorption and photoluminescence spectra have been assessed by evaluating their optical properties. The Sm3+:PEO + PVP and Eu3+:PEO + PVP polymer film has displayed a reddish-orange and red emissions at 596 nm and 619 nm respectively under an UV lamp. A reddish-orange emission was found for Sm3+:PEO + PVP polymer film at 596 nm (4G5/2 → 6H7/2) and its lifetime has also been evaluated suitably. Red emission at 619 nm (4G5/2 → 6H7/2) of Eu3+ has been identified for Eu3+:PEO + PVP polymer film and its lifetime are also evaluated. The photoluminescence efficiency of Eu3+ ion has been enhanced due to the addition of Sm3+ by means of an energy transfer process. The energy transfer mechanism, from Sm3+ to Eu3+ has been clearly established. At 0.1 wt% concentration of Sm3+ ions (sensitizer), the photoluminescence efficiency of the Eu3+ ion (activator) has been significantly enhanced in co-doped sample through energy transfer from Sm3+ to Eu3+ in the polymer matrix. The energy transfer process has been analyzed using lifetime decay dynamics. From the obtained results, these polymer materials could be proposed as potential Red luminescent optical materials.

  9. Effect of antigravity suit inflation on cardiovascular, PRA, and PVP responses in humans.

    PubMed

    Kravik, S E; Keil, L C; Geelen, G; Wade, C E; Barnes, P R; Spaul, W A; Elder, C A; Greenleaf, J E

    1986-08-01

    Blood pressure, pulse rate (PR), serum osmolality and electrolytes, as well as plasma vasopressin (PVP) and plasma renin activity (PRA), were measured in five men and two women [mean age 38.6 +/- 3.9 (SE) yr] before, during, and after inflation of an antigravity suit that covered the legs and abdomen. After 24 h of fluid deprivation the subjects stood quietly for 3 h: the 1st h without inflation, the 2nd with inflation to 60 Torr, and the 3rd without inflation. A similar control noninflation experiment was conducted 10 mo after the inflation experiment using five of the seven subjects except that the suit was not inflated during the 3-h period. Mean arterial pressure increased by 14 +/- 4 (SE) Torr (P less than 0.05) with inflation and decreased by 15 +/- 5 Torr (P less than 0.05) after deflation. Pulse pressure (PP) increased by 7 +/- 2 Torr (P less than 0.05) with inflation and PR decreased by 11 +/- 5 beats/min (P less than 0.05); PP and PR returned to preinflation levels after deflation. Plasma volume decreased by 6.1 +/- 1.5% and 5.3 +/- 1.6% (P less than 0.05) during hours 1 and 3, respectively, and returned to base line during inflation. Inflation decreased PVP from 6.8 +/- 1.1 to 5.6 +/- 1.4 pg/ml (P less than 0.05) and abolished the significant rise in PRA during hour 1. Both PVP and PRA increased significantly after deflation: delta = 18.0 +/- 5.1 pg/ml and 4.34 +/- 1.71 ng angiotensin I X ml-1 X h-1, respectively. Serum osmolality and Na+ and K+ concentrations were unchanged during the 3 h of standing.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Characterization and physical stability of spray dried solid dispersions of probucol and PVP-K30.

    PubMed

    Thybo, Pia; Pedersen, Betty L; Hovgaard, Lars; Holm, Rene; Mullertz, Anette

    2008-01-01

    The main purpose of this study was to obtain stable, well-characterized solid dispersions (SDs) of amorphous probucol and polyvinylpyrrolidone K-30 (PVP-K30) with improved dissolution rates. A secondary aim was to investigate the flow-through dissolution method for in-vitro dissolution measurements of small-sized amorphous powders dispersed in a hydrophilic polymer. SDs were prepared by spray drying solutions of probucol and different amounts of PVP-K30. The obtained SDs were characterized by dissolution rate measurements in a flow-through apparatus, X-ray Powder Diffraction (XRPD), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM), particle sizing (laser diffraction) and Brunauer-Emmett-Teller Method (BET) and results were compared with starting material and a physical mixture. The physical stability was monitored after storage at 25 degrees C and 60% RH for up to 12 weeks. The flow-through method was found suitable as dissolution method. All SDs showed improved in-vitro dissolution rates when compared to starting material and physical mixtures. The greatest improvement in the in-vitro dissolution rate was observed for the highest polymer to drug ratio. By means of the results from XRPD and DSC, it was argued that the presence of amorphous probucol improved the dissolution rate, but the amorphous state could not fully account for the difference in dissolution profiles between the SDs. It was suggested that the increase in surface area due to the reduction in particle size contributed to an increased dissolution rate as well as the presence of PVP-K30 by preventing aggregation and drug re-crystallization and by improving wettability during dissolution. The stabilizing effect of the polymer was verified in the solid state, as all the SDs retained probucol in the amorphous state throughout the entire length of the stability study.

  11. Polyvinylpyrrolidone (PVP) mitigates the damaging effects of intracellular ice formation in adult stem cells.

    PubMed

    Guha, Avishek; Devireddy, Ram

    2010-05-01

    The objective of this work was to assess the effect of 10% (w/v) polyvinylpyrrolidone (PVP) on the pattern of intracellular ice formation (IIF) in human adipose tissue derived adult stem cells (ASCs) in the absence of serum and other cryoprotective agents (CPAs). The freezing experiments were carried out using a fluorescence microscope equipped with a Linkam cooling stage using two cooling protocols. Both the cooling protocols had a common cooling ramp: cells were cooled from 20 degrees C to -8 degrees C at 20 degrees C/min and then further cooled to -13 degrees C at 1 degrees C/min. At this point we employed either cooling protocol 1: the cells were cooled from -13 degrees C to -40 degrees C at a pre-determined cooling rate of 1, 5, 10, 20, or 40 degrees C/min and then thawed back to 20 degrees C at 20 degrees C/min; or cooling protocol 2: the cells were re-warmed from -13 degrees C to -5 degrees C at 20 degrees C/min and then re-cooled at a pre-determined rate of 1, 5, 10, 20, or 40 degrees C/min to -40 degrees C. Almost all (>95%) of the ASCs frozen in 1x PBS and protocol 1 exhibited IIF. However, almost none (<5%) of the ASCs frozen in 1x PBS and protocol 2 exhibited IIF. Similarly, almost all (>95%) of the ASCs frozen in 10% PVP in PBS and protocol 1 exhibited IIF. However, ~0, ~40, ~47, ~67, and ~100% of the ASCs exhibited IIF when frozen in 10% PVP in PBS and utilizing protocol 2 at a cooling rate of 1, 5, 10, 20, or 40 degrees C/min, respectively.

  12. A PVA/PVP hydrogel for human lens substitution: Synthesis, rheological characterization, and in vitro biocompatibility.

    PubMed

    Leone, Gemma; Consumi, Marco; Greco, Giuseppe; Bonechi, Claudia; Lamponi, Stefania; Rossi, Claudio; Magnani, Agnese

    2011-05-01

    To overcome opacification and absence of accommodation of human lens substitutes a new poly(vinyl alcohol) (PVA)/poly(N-vinyl-2- pyrrolidinone) (PVP) based hydrogel (PPS31075) was realised. The Infrared Spectroscopy and the mechanical spectra confirmed the successful occurrence of crosslinking reaction. The rheological analysis pointed out a behavior comparable with that of young human lens in terms of complex shear modulus and accommodation capability. Further analysis in terms of optical properties, water content measurements, diffusion coefficient, cytotoxicity, and human capsular cell adhesion confirmed the applicability of such a hydrogel as potential human lens substitute.

  13. PVP induce self-seeding process for growth of Au@Ag core@shell nanocomposites

    NASA Astrophysics Data System (ADS)

    Eisa, Wael H.; Al-Ashkar, Emad; El-Mossalamy, S. M.; Ali, Safaa S. M.

    2016-05-01

    A novel self-seeding route is developed for fabrication of metallic nanocomposites of gold (core) and silver (shell) (Au@Ag core@shell). Herein, polyvinylpyrrolidone (PVP) is used as both reducing and stabilizing agent. The surface plasmon resonance (SPR) of Au@Ag core@shell can be tuned by controlling the thickness of the Ag shell. The different growth stages of the Au@Ag core@shell have been traced by in situ UV-vis absorption spectra. Transmission electron microscopy (TEM), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy are used for the characterization of the prepared samples.

  14. High-energy radiation processing, a smart approach to obtain PVP-graft-AA nanogels

    NASA Astrophysics Data System (ADS)

    Grimaldi, N.; Sabatino, M. A.; Przybytniak, G.; Kaluska, I.; Bondì, M. L.; Bulone, D.; Alessi, S.; Spadaro, G.; Dispenza, C.

    2014-01-01

    Poly(N-vinylpyrrolidone)-grafted-acrylic acid biocompatible nanogels (NGs) were prepared using an exiting industrial-type electron accelerator and setups, starting from semi-dilute aqueous solutions of a commercial PVP and the acrylic acid monomer. As a result, NGs with tunable size and structure can be obtained quantitatively. Sterility was also imparted at the integrated dose absorbed. The chemical structure of the NGs produced was confirmed through Fourier Transformer Infrared Spectroscopy (FT-IR). The molecular and physico-chemical properties of NGs, such as the hydrodynamic dimensions and surface charge densities, for various polymer and monomer concentrations in the irradiated solutions, are discussed here.

  15. Effectiveness of nondestructive examination systems and performance demonstration. PVP-Volume 317, NDE-Volume 14

    SciTech Connect

    Spanner, J. Jr.; Doctor, S.

    1995-12-01

    The primary objective of the NDE Division is to provide a forum for the dissemination of information and the advancement of the effectiveness of NDE procedures and techniques for the inspection of pressure vessel and piping components. This is achieved largely through presentations and discussions at the annual PVP Conference, as well as through encouragement and sponsorship for publication of the technical literature. This conference is divided into the following sections: effectiveness of NDE procedures and performance demonstration; effectiveness of inspection procedures for cast and wrought austenitic welds; and effectiveness of inspection procedures and performance demonstration for wrought austenitic welds and ferritic pipe. Separate abstracts were prepared for 12 papers in this book.

  16. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    NASA Astrophysics Data System (ADS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-02-01

    An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU-PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU-PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU-PVP (6.0 h) film reduced greatly to 0.08 μg/cm2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  17. Improved electrical properties of Fe nanofiller impregnated PEO + PVP:Li+ blended polymer electrolytes for lithium battery applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Saijyothi, K.; Kang, Misook; Ratnakaram, Y. C.; Hari Krishna, K.; Jin, Dahee; Lee, Yong Min

    2016-07-01

    Solid polymer-blended electrolyte films of polyethylene oxide (PEO) + polyvinyl pyrrolidone (PVP)/lithium perchlorate embedded with iron (Fe) nanofiller in different concentrations have been synthesized by a solution casting method. The semicrystalline nature of these polymer electrolyte films has been confirmed from their XRD profiles. Polymer complex formation and ion-polymer interactions are systematically studied by FTIR and laser Raman spectral analysis. Surface morphological studies are carried out from SEM analysis. Dispersed Fe nanofiller size evaluation study has been carried out using transmission electron microscopy (TEM). In order to evaluate the thermal stability, decomposition temperature, and thermogravimetric dynamics, we carried out the TG/DTA measurement. Upon addition of Fe nanofiller to the PEO + PVP/Li+ electrolyte system, it was found to result in the enhancement of ionic conductivity. The maximum ionic conductivity has been set up to be 1.14 × 10-4 Scm-1 at the optimized concentration of 4 wt% Fe nanofiller-embedded PEO + PVP/Li+ polymer electrolyte nanocomposite at an ambient temperature. PEO + PVP/Li+ + Fe nanofiller (4 wt%) cell exhibited better performance in terms of cell parameters. Based on the cell parameters, the 4 wt% Fe nanofiller-dispersed PEO + PVP/Li+ polymer electrolyte system could be suggested as a perspective candidate for solid-state battery applications.

  18. Size Control of (99m)Tc-tin Colloid Using PVP and Buffer Solution for Sentinel Lymph Node Detection.

    PubMed

    Kim, Eun-Mi; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2015-06-01

    Colloidal particle size is an important characteristic that allows mapping sentinel nodes in lymphoscintigraphy. This investigation aimed to introduce different ways of making a (99m)Tc-tin colloid with a size of tens of nanometers. All agents, tin fluoride, sodium fluoride, poloxamer-188, and polyvinylpyrrolidone (PVP), were mixed and labeled with (99m)Tc. Either phosphate or sodium bicarbonate buffers were used to adjust the pH levels. When the buffers were added, the size of the colloids increased. However, as the PVP continued to increase, the size of the colloids was controlled to within tens of nanometers. In all samples, phosphate buffer added PVP (30 mg) stabilized tin colloid ((99m)Tc-PPTC-30) and sodium bicarbonate solution added PVP (50 mg) stabilized tin colloid ((99m)Tc-BPTC-50) were chosen for in vitro and in vivo studies. (99m)Tc-BPTC-50 (<20 nm) was primarily located in bone marrow and was then secreted through the kidneys, and (99m)Tc-PPTC-30 (>100 nm) mainly accumulated in the liver. When a rabbit was given a toe injection, the node uptake of (99m)Tc-PPTC-30 decreased over time, while (99m)Tc-BPTC-50 increased. Therefore, (99m)Tc-BPTC-50 could be a good candidate radiopharmaceutical for sentinel node detection. The significance of this study is that nano-sized tin colloid can be made very easily and quickly by PVP.

  19. The labeling of stem cells by superparamagnetic iron oxide nanoparticles modified with PEG/PVP or PEG/PEI.

    PubMed

    Yang, Gao; Ma, Weiqiong; Zhang, Baolin; Xie, Qi

    2016-05-01

    Poly(ethylene glycol) (PEG) and poly(vinyl pyrrolidone) (PVP) co-modified superparamagnetic iron oxide nanoparticles (SPIONs) (PEG/PVP-SPIONs), and PEG and poly(ethylene imine) (PEI) co-modified SPIONs (PEG/PEI-SPIONs) synthesized by thermal decomposition have been used as magnetic resonance imaging (MRI) contrast agents to label adipose-derived stem cells (ADSCs). Efficient cell labeling was achieved after incubation with PEG/PVP-SPIONs and PEG/PEI-SPIONs for 12h, and the MRI of labeled cells was evaluated. The cell viability tests showed the low cytotoxicity of PEG/PVP-SPIONs and PEG/PEI-SPIONs. The cellular iron content incubated with PEG/PVP-SPIONs at a concentration of 25 μg/ml was 6.96 pg/cell, the cellular iron contents incubated with PEG/PEI-SPIONs at concentrations of 12 and 25 μg/ml were 20.16, 35.4 pg/cell, respectively. The SPIONs were located predominantly in the intracellular vesicles. The cellular iron oxide uptake was significantly high after incubation with PEG/PEI-SPIONs as compared with the commercial iron oxide agents (Feridex, Feridex@PLL, Resovist and Resovist@PLL) reported. This work demonstrates that PEG/PEI-SPIONs are the competent agents for the labeling of ADSCs. PMID:26952437

  20. Encapsulation of plai oil/2-hydroxypropyl-β-cyclodextrin inclusion complexes in polyvinylpyrrolidone (PVP) electrospun nanofibers for topical application.

    PubMed

    Tonglairoum, Prasopchai; Chuchote, Tudduo; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Opanasopit, Praneet

    2014-06-01

    The aim of this study was to prepare electrospun polyvinylpyrrolidone (PVP)/2-hydroxypropyl-β-cyclodextrin (HPβCD) nanofiber mats and to incorporate plai oil (Zingiber Cassumunar Roxb.). The plai oil with 10, 20 and 30% wt to polymer were incorporated in the PVP/HPβCD solution and electrospun to obtain nanofibers. The morphology and structure of the PVP and PVP/HPβCD nanofiber mats with and without the plai oil were analyzed using scanning electron microscopy (SEM). The thermal behaviors of the nanofiber mats were characterized using differential scanning calorimeter (DSC). Terpinen-4-ol was used as a marker of the plai oil. The amount of plai oil remaining in the PVP/HPβCD nanofiber mats was determined using gas chromatography-mass spectoscopy (GC-MS). The SEM images revealed that all of the fibers were smooth. The average diameter of fibers was 212-450 nm, and decreased with the increasing of plai oil content. The release characteristics of plai oil from the fiber showed the fast release followed by a sustained release over the experimental time of 24 h. The release rate ranged was in the order of 10% > 20% ∼ 30% plai oil within 24 h. Electrospun fibers with 20% plai oil loading provided the controlled release and also showed the highest plai oil content. Hence, this electrospun nanofiber has a potential for use as an alternative topical application.

  1. Swelling, mechanical and friction properties of PVA/PVP hydrogels after swelling in osmotic pressure solution.

    PubMed

    Shi, Yan; Xiong, Dangsheng; Liu, Yuntong; Wang, Nan; Zhao, Xiaoduo

    2016-08-01

    The potential of polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) hydrogels as articular cartilage replacements was in vitro evaluated by using a macromolecule-based solution to mimic the osmotic environment of cartilage tissue. The effects of osmotic pressure solution on the morphology, crystallinity, swelling, mechanical and friction properties of PVA/PVP hydrogels were investigated by swelling them in non-osmotic and osmotic pressure solutions. The results demonstrated that swelling ratio and equilibrium water content were greatly reduced by swelling in osmotic solution, and the swelling process was found to present pseudo-Fickian diffusion character. The crystallization degree of hydrogels after swelling in osmotic solution increased more significantly when it compared with that in non-osmotic solution. After swelling in osmotic solution for 28days, the compressive tangent modulus and storage modulus of hydrogels were significantly increased, and the low friction coefficient was reduced. However, after swelling in the non-osmotic solution, the compressive tangent modulus and friction coefficient of hydrogels were comparable with those of as-prepared hydrogels. The better material properties of hydrogels in vivo than in vitro evaluation demonstrated their potential application in cartilage replacement.

  2. Optical, electrical, thermal properties of cadmium chloride doped PVA - PVP blend

    NASA Astrophysics Data System (ADS)

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise

    2015-06-01

    Films of polyvinylalcohol (PVA) - polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl2) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl2). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.

  3. Electrical Properties of PVP-SiO2-TMSPM Hybrid Thin Films as OFET Gate Dielectric

    NASA Astrophysics Data System (ADS)

    Bahari, A.; Shahbazi, M.

    2016-02-01

    Organic-inorganic polyvinylpyrrolidone-silicon dioxide-3-(trimethoxysilyl)propyl methacrylate (PVP-SiO2-TMSPM) hybrid solutions have been synthesized using the sol-gel process with different amounts of TMSPM as coupling agent and equivalent amounts of PVP and SiO2. Hybrid solutions were deposited on p-type Si(111) substrates using the spin coating technique, as a gate dielectric material for use in thin-film transistors. The structural properties of the samples were investigated using Fourier-transform infrared spectroscopy and x-ray diffraction analysis. Atomic force microscopy and scanning electron microscopy techniques were applied to study the topography and morphology of the hybrid thin-film samples. Current-voltage ( I- V) curves, capacitance-voltage ( C- V) measurements, and the electrical properties of the organic hybrid thin-film gate dielectrics were also studied in a metal-insulator/polymer-semiconductor structure. According to the results, the J GS curves in terms of V GS showed gate leakage current densities small enough for use as gate dielectric material at interface layers. At V DS = 30 V, in the saturation region, I DS curves in terms of V GS presented higher charge carrier mobility ( μ FET,S = 0.0584 cm2 s-1 V-1) due to lower dielectric constant ( k = 11.43) in the sample with 0.05 weight ratio of TMSPM compared with other samples with different weight ratios of TMSPM.

  4. Measurement of fundamental illite particle thicknesses by X-ray diffraction using PVP-10 intercalation

    USGS Publications Warehouse

    Eberl, D.D.; Nuesch, R.; Sucha, V.; Tsipursky, S.

    1998-01-01

    The thicknesses of fundamental illite particles that compose mixed-layer illite-smectite (I-S) crystals can be measured by X-ray diffraction (XRD) peak broadening techniques (Bertaut-Warren-Averbach [BWA] method and integral peak-width method) if the effects of swellinf and XRD background noise are eliminated from XRD patterns of the clays. Swelling is eliminated by intercalating Na-saturated I-S with polyvinylpyrrolidone having a molecular weightof 10,000 (PVP-10). Background is minimized by using polished metallic silicon wafers cut perpendicular to (100) as a substrate for XRD specimens, and by using a single-crystal monochromator. XRD measurements of PVP-intercalated diagenetic, hydro-thermal and low-grade metamorphic I-S indicate that there at least 2 type of crystallite thickness distribution shapes for illite fundamental particles, lognormal and asymptotic; that measurements of mean fundamental illite particle thicknesses made by various techniques (Bertaut-Warren-Averbach, integral peak width, fixed cation content, and transmission electron microscopy [TEM]) give comparable results; and that strain (small difference in layer thicknesses) generally has a Gaussian distribution in the lognormal-type illites, but is often absent in the asymptotic-type illites.

  5. Optical, electrical, thermal properties of cadmium chloride doped PVA – PVP blend

    SciTech Connect

    Baraker, Basavarajeshwari M.; Hammannavar, Preeti B.; Lobo, Blaise

    2015-06-24

    Films of polyvinylalcohol (PVA) – polyvinylpyrrolidone (PVP) blend doped with Cadmium Chloride (CdCl{sub 2}) in the doping range 1 wt% to 40 wt% were prepared by solution casting technique. These films were characterized using optical/UV-Vis- NIR spectroscopy, Differential Scanning Calorimetry (DSC) and DC electrical measurements. The UV-Visible spectra were quantitatively analyzed to yield the optical parameters. The UV-Visible Spectra show intermediate absorption bands (before the final absorption edge) due to formation of energy bands in the forbidden gap of PVA-PVP. There is a prominent absorption band at 2.9 eV, from 0.5 wt% up to 1.8 wt% doping level (DL) caused by the dopant (CdCl{sub 2}). The DC electrical studies showed an increase in activation energy from 2.8 eV at 0.5 wt% DL up to 3.5 eV at 4.4 wt% DL, reaching a low of 2.4 eV at 11.2 wt% DL. DSC scans show evidence of formation of chain fragments, at doping levels beyond 8 wt%.

  6. Influence of morphology on the emissive properties of dye-doped PVP nanofibers produced by electrospinning

    NASA Astrophysics Data System (ADS)

    Enculescu, Monica; Evanghelidis, Alex; Enculescu, Ionut

    2014-12-01

    Dye-doped polymer micro- and nanofibers with tailored light emission properties have great potential for applications in optical, optoelectronic, or photonic devices. In this study, these types of structures were obtained by electrospinning rhodamine 6 G-doped polyvinylpyrrolidone (PVP) using a polymer solution of 10% (mass) concentration in ethanol. Polymer nanofibers with different morphologies (smooth and beaded) and diameters of about 500 nm were obtained using different electrospinning conditions with the same solutions. Fluorescence optical microscopy observations showed that the dye was distributed uniformly in the doped PVP nanofibers. Different shifts were observed when we compared the wavelength of the dye emission band peak of the smooth nanofibers (566 nm) and the wavelength of the dye emission band peak of the beaded fibers (561.5 nm) produced by electrospinning in different conditions with the wavelength of the emission band peak for transparent thin films produced by spin coating (558 nm) using the same polymer solution. This demonstrates that it is possible to tune the optical properties of electrospun dye-doped polymer nanofibers simply by modifying the morphology of the material, i.e., the parameters of the electrospinning process.

  7. Investigations on electrical properties of PVP:KIO4 polymer electrolyte films

    NASA Astrophysics Data System (ADS)

    Ravi, M.; Bhavani, S.; Kiran Kumar, K.; Narasimaha Rao, V. V. R.

    2013-05-01

    Solid polymer electrolytes based on poly(vinyl pyrrolidone) (PVP) complexed with potassium periodide (KIO4) salt at different weight percent ratios were prepared using solution-cast technique. X-ray diffraction (XRD) results revealed that the amorphous nature of PVP polymer matrix increased with the increase of KIO4 salt concentration. The complexation of the salt with the polymer was confirmed by Fourier transform infrared (FTIR) spectroscopy studies. The ionic conductivity was found to increase with the increase of temperature as well as dopant concentration. The maximum ionic conductivity (1.421 × 10-4 S cm-1) was obtained for 15 wt% KIO4 doped polymer electrolyte at room temperature. The variation of ac conductivity with frequency obeyed Jonscher power law. The dynamical aspects of electrical transport process in the electrolyte were analyzed using complex electrical modulus. The peaks found in the electric modulus plots have been characterized in terms of the stretched exponential parameter. Optical absorption studies were performed in the wavelength range 200-600 nm and the absorption band energies (direct band gap and indirect band gap) values were evaluated. Using these polymer electrolyte films electrochemical cells were fabricated and their discharge characteristics were studied.

  8. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media.

    PubMed

    Tejamaya, Mila; Römer, Isabella; Merrifield, Ruth C; Lead, Jamie R

    2012-07-01

    Silver nanoparticles (AgNPs) are present in the environment and a number of ecotoxicology studies have shown that AgNPs might be highly toxic. Nevertheless, there are little data on their stability in toxicology media. This is an important issue as such dynamic changes affect exposure dose and the nature of the toxicant studied and have a direct impact on all (eco)toxicology data. In this study, monodisperse citrate, PVP, and PEG coated AgNPs with a core size of approximately 10 nm were synthesized and characterized; their behavior was examined in standard OECD media used for Daphnia sp. acute and chronic tests (in the absence of Daphnia). Surface plasmon resonance, size, aggregation, and shape were monitored over 21 days, comparable to a chronic exposure period. Charge stabilized particles (citrate) were more unstable than sterically stabilized particles. Replacement of chloride in the media (due to concerns over chloride-silver interactions) with either nitrate or sulfate resulted in increased shape and dissolution changes. PVP-stabilized NPs in a 10-fold diluted OECD media (chloride present) were found to be the most stable, with only small losses in total concentration over 21 days, and no shape, aggregation, or dissolution changes observed and are recommended for exposure studies.

  9. Evaluation of PVP/Au Nanocomposite Fibers as Heterogeneous Catalysts in Indole Synthesis.

    PubMed

    Savva, Ioanna; Kalogirou, Andreas S; Achilleos, Mariliz; Vasile, Eugenia; Koutentis, Panayiotis A; Krasia-Christoforou, Theodora

    2016-01-01

    Electrospun nanocomposite fibers consisting of crosslinked polyvinylpyrrolidone (PVP) chains and gold nanoparticles (Au NPs) were fabricated, starting from highly stable PVP/Au NP colloidal solutions with different NP loadings, followed by thermal treatment. Information on the morphological characteristics of the fibers and of the embedded Au NPs was obtained by electron microscopy. Cylindrical, bead-free fibers were visualized by Scanning Electron Microscopy (SEM) while Transmission Electron Microscopy (TEM) and Energy Diffraction X-ray (EDX) analysis supported the presence of Au NPs within the fibers and gave information on their morphologies and average diameters. These materials were briefly evaluated as heterogeneous catalytic supports for the gold-catalyzed intramolecular cyclisation of 2‑(phenylethynyl)aniline to form 2-phenyl-1H-indole. The performance of the gold catalyst was strongly dependent on the Au NP size, with the system containing the smallest Au NPs being the more effective. Moreover, a slight drop of their catalytic efficiency was observed after three consecutive reaction runs, which was attributed to morphological changes as a consequence of fiber merging. PMID:27626399

  10. Gamma-irradiation synthesis of iron oxide nanoparticles in the presence of PEO, PVP or CTAB

    NASA Astrophysics Data System (ADS)

    Jurkin, Tanja; Gotić, Marijan; Štefanić, Goran; Pucić, Irina

    2016-07-01

    Black hydrogels were synthesized using γ-irradiation of poly(ethylene oxide) (PEO)/iron(III) chloride precursor solutions. The magnetic properties of such hydrogels were improved by adding 2-propanol as a hydroxyl scavenger and/or NaBH4 as a strong chemical reducing agent; however, the rigidity and compactness of thus synthesized PEO hydrogels deteriorated. The magnetic suspension containing pure magnetite nanoparticles was obtained using γ-irradiation of an Fe(III)/PEO deoxygenated aqueous solution in the presence of 2-propanol and NaBH4. The γ-irradiation of an iron(III) chloride aqueous precursor solution in the presence of PVP produced a magnetic suspension due to the formation of a small amount of δ-FeOOH (feroxyhyte). The γ-irradiation of Fe(III)/CTAB (cetyltrimethylammonium bromide) aqueous solutions favored the formation of goethite. γ-irradiation in the presence of 2-propanol increased the yield of rod-like goethite nanoparticles. A small amount of δ-FeOOH found in the Fe(III)/PVP and Fe(III)/CTAB suspensions suggests the formation of Fe(OH)2upon γ-irradiation, which then under atmospheric conditions rapidly oxidized into δ-FeOOH.

  11. Functional fiber mats with tunable diffuse reflectance composed of electrospun VO2/PVP composite fibers.

    PubMed

    Li, Shaotang; Li, Yamei; Qian, Kun; Ji, Shidong; Luo, Hongjie; Gao, Yanfeng; Jin, Ping

    2014-01-01

    Thermochromic VO2 nanoparticles have been dispersed into polyvinyl pyrrolidone (PVP) fibers by electrospinning of a VO2-PVP blend solution. The structure and optical properties of the obtained composite fiber mat were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) spectrophotometry, and Fourier transform infrared (FT-IR) spectroscopy. The fiber mat revealed two diffuse reflectance states in infrared spectral region at temperatures under and above the phase transition temperature of VO2 and its IR reflectance is smaller in high temperature. The difference of diffuse reflectance between the two states (ΔRdif) was obvious to be more than 25% in the wavelengths from 1.5 μm to 6 μm. The diffuse reflectance of the fiber mat could be controlled by adjusting the diameter of the fiber or the content of VO2 in the fibers and this particular optical property was explained by a multiple scattering-absorbing process.

  12. Rapid microwave-assisted synthesis of PVP-coated ultrasmall gadolinium oxide nanoparticles for magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Vahdatkhah, Parisa; Madaah Hosseini, Hamid Reza; Khodaei, Azin; Montazerabadi, Ali Reza; Irajirad, Rasoul; Oghabian, Mohamad Ali; Delavari H., Hamid

    2015-05-01

    Synthesis of polyvinyl pyrrolidone (PVP) coated ultrasmall Gd2O3 nanoparticles (NPs) with enhanced T1-weighted signal intensity and r2/r1 ratio close to unity is performed by a microwave-assisted polyol process. PVP coated Gd2O3NPs with spherical shape and uniform size of 2.5 ± 0.5 nm have been synthesized below 5 min and structure and morphology confirmed by HRTEM, XRD and FTIR. The longitudinal (r1) and transversal relaxation (r2) of Gd2O3NPs is measured by a 3 T MRI scanner. The results showed considerable increasing of relaxivity for Gd2O3NPs in comparison to gadolinium chelates which are commonly used for clinical magnetic resonance imaging. In addition, a mechanism for Gd2O3NPs formation and in situ surface modification of PVP-grafted Gd2O3NPs is proposed.

  13. Radiation preparation of drug carriers based polyacrylic acid (PAAc) using poly(vinyl pyrrolidone) (PVP) as a template polymer

    NASA Astrophysics Data System (ADS)

    Abd El-Rehim, H. A.; Hegazy, E. A.; Khalil, F. H.; Hamed, N. A.

    2007-01-01

    The present study deals with the radiation synthesis of stimuli response hydrophilic polymers from polyacrylic acid (PAAc). To maintain the property of PAAc and control the water swellibility for its application as a drug delivery system, radiation polymerization of AAc in the presence of poly(vinyl pyrrolidone) (PVP) as a template polymer was carried out. Characterization of the prepared PAA/PVP inter-polymer complex was investigated by determining gel content, swelling property, hydrogel microstructure and the release rate of caffeine as a model drug. The release rate of caffeine from the PAA/PVP inter-polymer complexes showed pH-dependency, and seemed to be mainly controlled by the dissolution rate of the complex above a p Ka of PAAc. The prepared inter-polymer complex could be used for application as drug carriers.

  14. The role of the prostatic median lobe in urinary symptoms following photoselective vaporization of the prostate (PVP)

    NASA Astrophysics Data System (ADS)

    Berry, Tristan T.; Nseyo, Unyime O.

    2004-07-01

    Introduction and Objective: Photoselective vaporization of the prostate (PVP) remains a relatively new addition to our armamentarium of minimally invasive surgical treatments for symptomatic benign prostatic hypertrophy/enlargement. Early favorable reports of the safety and efficacy of PVP do not alleviate the need to investigate factors that may further improve the safety margin and efficacy outcomes of PVP in the management of symptomatic benign prostatic enlargement (BPE). Consequently, we investigated the role of enlarged or prominent intravesical median/middle lobe of the prostate in mediating urinary symptoms following PVP. Materials and Methods: Forty-one non-consecutive patients diagnosed with BPE were enrolled under an Institutional Review Board approved multi-center protocol at the Hunter McGuire Veterans Administration Medical Center, Richmond, Virginia, for PVP treatment using the 80W quasi-continuous wave KTP laser. Perioperative and postoperative complications/adverse events were assessed. Urodynamic parameters: AUA-SI, QOL, Qmax and PVR; and PSA were assessed at baseline, 1, 3, 6 and 12 months postoperatively. Results: The forty-one patients were sub-stratified based on cystoscopic evidence of prominent median/middle lobe (n=17)(Study Group), and absence of median lobe (n = 24). Seven of seventeen (41.1%) patients with and 10/24 (41.7%) patients without median lobes experienced adverse urinary symptoms, which resolved within 7-8 months. All 41 patients have demonstrated significant improvements in urodynamic, that is, flow rates, post void residual volumes and clinical (QOL) outcome measures. Conclusion: Niagara Green Light PVP procedure did not result in heightened severity of voiding symptoms in those BPE patients with prominent intravesical median lobes.

  15. Improvement in latent fingerprint detection on thermal paper using a one-step ninhydrin treatment with polyvinylpyrrolidones (PVP).

    PubMed

    Schwarz, Lothar; Klenke, Inga

    2010-07-01

    Most thermosensitive surfaces of thermal paper turn black when they come into contact with polar organic solvents such as are used in ninhydrin petroleum benzin solution. This dark staining reduces the contrast between the developed fingerprint and the background to such an extent that the identification process becomes very difficult. Integrating polyvinylpyrrolidones (PVP) into a ninhydrin solution prevents the black staining, and the developed fingerprints appear in clear contrast to the background. The new ninhydrin solution containing PVP is successful compared to the two-step ninhydrin-acetone washing method for thermal paper which is popular in Germany.

  16. Influence of PVP/VA copolymer composition on drug-polymer solubility.

    PubMed

    Rask, Malte Bille; Knopp, Matthias Manne; Olesen, Niels Erik; Holm, René; Rades, Thomas

    2016-03-31

    In this study, the influence of copolymer composition on drug-polymer solubility was investigated. The solubility of the model drug celecoxib (CCX) in various polyvinylpyrrolidone/vinyl acetate (PVP/VA) copolymer compositions (70/30, 60/40, 50/50 and 30/70 w/w) and the pure homopolymers polyvinylpyrrolidone (PVP) and polyvinyl acetate (PVA) was predicted at 25 °C using a thermal analysis method based on the recrystallization of a supersaturated amorphous dispersion (recrystallization method). These solubilities were compared with a prediction based on the solubility of CCX in the liquid monomeric precursors of PVP/VA, N-vinylpyrrolidone (NVP) and vinyl acetate (VA), using the Flory-Huggins lattice theory (liquid monomer solubility approach). The solubilities predicted from the liquid monomer solubility approach increased linearly with increasing VP/VA ratio from 0.03-0.60 w/w. Even though the solubilities predicted from the recrystallization method also increased with increasing VP/VA ratio from 0.02-0.40 w/w, the predicted solubility seemed to approach a plateau at high VP/VA ratios. Increasing positive deviations from the Gordon-Taylor equation with increasing VP/VA ratio indicated strong interactions between CCX and the VP repeat unit, which was in accordance with the relatively high solubilities predicted using both methods. As the solubility plateau may be a consequence of steric hindrance caused by the size differences between CCX and the VP repeat units, it is likely that a CCX molecule interacting with a VP repeat unit hinders another CCX molecule from binding to the neighboring repeat units in the polymer chain. Therefore, it is possible that replacing these neighboring hygroscopic VP repeat units with hydrophobic VA repeat units, could increase the physical stability of an amorphous solid dispersion without compromising the drug-polymer solubility. This knowledge could be used advantageously in future development of amorphous drug delivery systems as

  17. Effect of strain on viscoelastic behavior of fresh, swelled and mineralized PVP-CMC hydrogel

    NASA Astrophysics Data System (ADS)

    Saha, Nabanita; Vyroubal, Radek; Shah, Rushita; Kitano, Takeshi; Saha, Petr

    2013-04-01

    Mineralization of calcium carbonate (CaCO3) in hydrogel matrix is one of the most interesting topics of research by material scientists for the development of bio-inspired polymeric biomaterial for biomedical applications especially for bone tissue regeneration. As per our knowledge there was no work reported about rheological properties of CaCO3 mineralized hydrogel though some works have done on mineralization of CaCO3 in various gel membranes, and also it was reported about the viscoelastic properties of Agarose, Cellulose, PVA and PVPCMC hydrogels. This paper mainly focuses about the effect of strain on viscoelastic properties of fresh, swelled and mineralized (CaCO3) PVP-CMC hydrogel. All these three types of hydrogel sustain (or keep) strictly the elastic properties when low strain (1%) is applied, but at higher strain (10%) the viscoelastic moduli (G' and G") show significant change, and the nature of these materials turned from elastic to viscous.

  18. Transport and storage of radioactive materials 1995. PVP-Volume 307

    SciTech Connect

    Carlson, R.W.; Hafner, R.S.; Lake, W.H.

    1995-11-01

    The design of packaging for the transport of radioactive materials is a constantly evolving activity due primarily to new materials, new design approaches, and a better understanding of the regulations. As a consequence, the Operations, Applications and Components Committee organizes several sessions at the annual ASME PVP Division Conference to provide a forum for the discussion of the most recent trends in the transport and storage of radioactive materials. This publication is composed of technical papers that have been prepared for presentation at the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference (July 23--27, Honolulu, Hawaii) during the sessions addressing the transport and storage of radioactive materials. The papers included were prepared to address engineering or regulatory issues associated with the transport or storage of radioactive materials. However, the subject matter can also have applications to solutions for problems in other areas. Individual paper have been processed separately for inclusion in the appropriate data bases.

  19. PLT and DBAR Investigations on MPDMAPP Doped PVA/PVP Blend

    NASA Astrophysics Data System (ADS)

    Bhajantri, R. F.; Ravindrachary, V.; Lobo, Blaise; Pujari, P. K.; Rathod, Sunil G.; Naik, Jagadish; Hebbar, Vidyashree; H, Chandrappa

    2015-06-01

    Poly(vinylalcohol) (PVA)/Poly(vinylpyrrolidone) (PVP) blend films, doped with chalcone derivative (1-(4-methylphenyl)-3-(4-N,N,dimethylaminophenyl)-2-propen-1-one) (MPDMAPP) from 0.025 wt% up to 1 wt% were prepared using solution casting technique. The o-Ps lifetime τ3 is found to change little, from 1.61 ns at 0.025 wt% dopant concentration to 1.63 ns at 0.5 wt% dopant level, but drops to 1.4 ns at 1 wt% dopant concentration, indicating the onset of phase separation. The S-parameter of DBAR was found to be linearly related to the ortho-Positronium(o-Ps) intensity I3. The S-parameter drops significantly from 0.1 wt% up to 1 wt% doping concentration. This is supported by the XRD scans.

  20. Genetic diversity of Mycoplasma gallisepticum field isolates using partial sequencing of the pvpA gene fragment in Russia.

    PubMed

    Sprygin, A V; Andreychuk, D B; Elatkin, N P; Zinyakov, N G; Kolosov, S N; Mudrak, N S; Irza, V N; Drygin, V V; Borisov, A V; Perevozchikova, N A

    2010-06-01

    The genetic diversity of the pvpA gene of Mycoplasma gallisepticum (MG) samples originating from commercial chickens was investigated. In the present study, we evaluated the genetic variability of 26 field samples of MG detected in commercial chickens and turkeys from 18 regions of Russia and compared them to the reference strains of MG available in GenBank. Genetic variability was evaluated by partial nucleotide sequencing of the pvpA gene, which encodes a putative cytadhesin protein. Comparisons with MG strains and isolates from the United States, Australia, China, and Iran using sequence analysis of PCR products showed that Russian MG field samples clustered more closely to each other than to the international reference MG strains. The MG pvpA sequences were found to be highly variable with a discrimination index of 0.975 for Russian field samples. No apparent cluster was found using the criteria of year or location of detection. DNA sequence polymorphism and size variation in the pvpA gene were shown among the Russian MG field samples and could be used for MG typing. These findings might help better understand the relationship among MG isolates from Russia and other countries.

  1. Physicochemical characterization and in vitro dissolution studies of solid dispersions of ketoprofen with PVP K30 and d-mannitol.

    PubMed

    Yadav, Pankajkumar S; Kumar, Vikas; Singh, Udaya Pratap; Bhat, Hans Raj; Mazumder, B

    2013-01-01

    Aim of the present study was to improve the solubility and dissolution rate of poorly water soluble, BCS class-II drug Ketoprofen (KETO) by solid-dispersion approach. Solid dispersions were prepared by using polyvinylpyrrolidone K30 (PVP K30) and d-mannitol in different drugs to carrier ratios. Dispersions with PVP K30 were prepared by kneading and solvent evaporation techniques, whereas solid dispersions containing d-mannitol were prepared by kneading and melting techniques. These formulations were characterized in the liquid state by phase-solubility studies and in the solid state by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). The aqueous solubility of KETO was favored by the presence of both carriers. The negative values of Gibbs free energy illustrate the spontaneous transfer from pure water to the aqueous polymer environment. Solid state characterization indicated KETO was present as fine particles in d-mannitol solid dispersions and entrapped in carrier matrix of PVP K30 solid dispersions. In contrast to the very slow dissolution rate of pure KETO, dispersions of drug in carriers considerably improved the dissolution rate. This can be attributed to increased wettability and dispersibility, as well as decreased crystallinity and increase in amorphous fraction of drug. Solid dispersions prepared with PVP K30 showed the highest improvement in dissolution rate of KETO. Even physical mixtures of KETO prepared with both carriers also showed better dissolution profiles than those of pure KETO. PMID:24109206

  2. Water-soluble and biocompatible MnO@PVP nanoparticles for MR imaging in vitro and in vivo.

    PubMed

    Hu, Xiaoqing; Ji, Yuxuan; Wang, Mingliang; Miao, Fei; Ma, Hongmei; Shen, Hebai; Jia, Nengqin

    2013-06-01

    The uniform-sized manganese oxide nanoparticles (the oleic-capped MnO NPs) were synthesized by the thermal decomposition of Mn-oleate complex and were transferred into water with the help of cationic surfactant of cetyltrimethyl ammonium bromide (CTAB), then the poly(vinylpyrrolidone) (PVP) membrane was further coated on to them with the aid of anionic dispersant of poly(styrenesulfonate) (PSS) by layer-by-layer electrostatic assembly to render them water soluble and biocompatible. They were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) and MTT assay. In vitro cellular uptake test revealed the MnO@PVP NPs were low cytotoxic, biocompatible and could be used as a T,-positive contrast agent for passive targeting magnetic resonance imaging (MRI). Interestingly, signal enhancement in cerebral spinal fluid (CSF) spaces in vivo experiment suggested that the MnO@PVP NPs can pass through the blood brain barrier (BBB). These results show that MnO@PVP NPs are good candidates as MRI contrast agents with the lack of cytotoxicity and have great potential applications in magnetic nano-device and biomagnetic field. PMID:23858961

  3. PVP- coated naringenin nanoparticles for biomedical applications - In vivo toxicological evaluations.

    PubMed

    Kumar, R Pradeep; Abraham, Annie

    2016-09-25

    Naringenin (NAR) is one of the naturally occurring flavonoids found in citrus fruits and exerts a wide variety of pharmacological activities. The clinical relevance of naringenin is limited by its low solubility and minimal bioavailability, owing to its largely hydrophobic ring structure. The aim of the present study is to develop a novel naringenin nanoparticle system (NAR NP) using simple nanoprecipitation technique with polyvinylpyrrolidone (PVP) as the hydrophilic carrier. The synthesized nanoparticles were characterized using XRD, FTIR, SEM and EDX. The characterization study revealed the nanoscale properties and the interactions between NAR and PVP. In vivo toxicological evaluations were carried out at various doses (1, 5, 10 & 50 mg/kg body wt) in male Sprague-Dawley rats in comparison with silver nanoparticle (AgNP) at toxic concentration (50 mg/kg body wt). The altered hepatotoxicity markers, hematology parameters and antioxidant defense system were observed in AgNP- treated rats. But NAR NP - treated rats did not show any biochemical alterations and improved the antioxidant defense indices when compared to control group, by virtue of the pharmacological properties exerted by NAR. The modulatory effect of NAR NP over inflammatory and stress signaling cascades were confirmed by the normalized mRNA expressions of NF-κB, TNF-α and IL-6. The histopathological analysis of liver, kidney and heart reinforce our findings. These studies provide preliminary answers to some of the key biological issues raised over the use and safety of nanoparticles for diagnostic and therapeutic applications. Consequently, we suggest that the safe NAR NP can be used to reduce the dosage of NAR, improve its bioavailability and merits further investigation for therapeutic applications. PMID:27417253

  4. Polyvinylpyrrolidone (PVP)-assisted solvothermal synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors

    SciTech Connect

    Xue, Yannan; Ren, Xiaolei; Zhai, Xuefeng; Yu, Min

    2012-02-15

    Graphical abstract: A simple solvothermal method for the synthesis of flower-like SrCO{sub 3}:Tb{sup 3+} phosphors with the assistance of polyvinylpyrrolidone (PVP, K30). Highlights: Black-Right-Pointing-Pointer Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors could be easily prepared by a simple solvothermal method with the assistance of polyvinylpyrrolidone (PVP). Black-Right-Pointing-Pointer The amount of PVP and the reaction time have a strong effect on controlling the morphology and optical properties of SrCO{sub 3}:Tb{sup 3+} particles. Black-Right-Pointing-Pointer The main synthesizing process and the growth mechanism for the formation of final samples were proposed. -- Abstract: Well-crystallized flower-like SrCO{sub 3}:Tb{sup 3+} phosphors have been synthesized by an inexpensive and friendly solvothermal process using polyvinylpyrrolidone (PVP, K30) as an additive without further annealing treatment. X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), and field emission scanning electron microscopy (FESEM) as well as photoluminescence spectroscopy (PL) were used to characterize the resulting samples. The amount of PVP and the reaction time have strong effect on the morphology of the SrCO{sub 3}:Tb{sup 3+} particles. The results of XRD confirm the formation of a well-crystallized SrCO{sub 3} phase with an orthorhombic structure. The possible formation mechanism for flower-like SrCO{sub 3}:Tb{sup 3+} phosphor is proposed. The SrCO{sub 3}:Tb{sup 3+} phosphors show the characteristic {sup 5}D{sub 4}-{sup 7}F{sub J} (J = 6, 5, 4, 3) emission lines with green emission {sup 5}D{sub 4}-{sup 7}F{sub 5} (544 nm) as the most prominent group under ultraviolet excitation.

  5. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation

    NASA Astrophysics Data System (ADS)

    Devlin, J. F.

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ± 15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  6. Sensitivity analyses of the theoretical equations used in point velocity probe (PVP) data interpretation.

    PubMed

    Devlin, J F

    2016-09-01

    Point velocity probes (PVPs) are dedicated, relatively low-cost instruments for measuring groundwater speed and direction in non-cohesive, unconsolidated porous media aquifers. They have been used to evaluate groundwater velocity in groundwater treatment zones, glacial outwash aquifers, and within streambanks to assist with the assessment of groundwater-surfaced water exchanges. Empirical evidence of acceptable levels of uncertainty for these applications has come from both laboratory and field trials. This work extends previous assessments of the method by examining the inherent uncertainties arising from the equations used to interpret PVP datasets. PVPs operate by sensing tracer movement on the probe surface, producing apparent velocities from two detectors. Sensitivity equations were developed for the estimation of groundwater speed, v∞, and flow direction, α, as a function of the apparent velocities of water on the probe surface and the α angle itself. The resulting estimations of measurement uncertainty, which are inherent limitations of the method, apply to idealized, homogeneous porous media, which on the local scale of a PVP measurement may be approached. This work does not address experimental sources of error that may arise from the presence of cohesive sediments that prevent collapse around the probe, the effects of centimeter-scale aquifer heterogeneities, or other complications related to borehole integrity or operator error, which could greatly exceed the inherent sources of error. However, the findings reported here have been shown to be in agreement with the previous empirical work. On this basis, properly installed and functioning PVPs should be expected to produce estimates of groundwater speed with uncertainties less than ±15%, with the most accurate values of groundwater speed expected when horizontal flow is incident on the probe surface at about 50° from the active injection port. Directions can be measured with uncertainties less than

  7. Quantitative PVP mapping in PVDF hollow fiber membranes by using Raman spectroscopy coupled with spectral chemiometrics analysis

    NASA Astrophysics Data System (ADS)

    Dufour, E.; Gassara, S.; Petit, E.; Pochat-Bohatier, C.; Deratani, A.

    2015-07-01

    Fabrication of fouling resistant UF membranes requires the use of hydrophilic polymer additives that must be trapped in the polymer matrix during the phase separation processing. The knowledge of the polymeric additive distribution across the whole thickness should help to the design of more efficient membranes. This paper aims at developing a new methodology based on Raman microscopy spectroscopy owing to its high spatial resolution. A UF hollow fiber made from a blend of PVDF as polymer matrix and PVP as additive was chosen as a model membrane for this study. The PVP concentration profile along the cross-section radial axis was determined by using two ways of spectrum treatment including the analytical method by the peak intensity ratio calculation and a multivariate analysis with a partial least-squares regression model. The feasibility of the two approaches was discussed.

  8. Enhanced photoluminescence spectra of Sm3+ Co-doped with Tb3+ in PEO+PVP blended polymer films

    NASA Astrophysics Data System (ADS)

    Kumar, K. Naveen; Buddhudu, S.

    2015-06-01

    Sm3++Tb3+: PEO+PVP blended polymer films have successfully been synthesized by solution casting method. Structural and Optical analysis have been analyzed based on their XRD, optical absorption and photoluminescence spectral profiles. Semicrystalline nature has been confirmed by XRD analysis. Both optical absorption and photoluminescence spectra have been measured in evaluating their optical properties. The Sm3+: PEO+PVP polymer film has displayed a reddish-orange emission at 600 nm under UV lamp and its absorption and emission spectra have also been measured to evaluate its optical characteristics. The photoluminescence efficiency of Sm3+ ion has been enhanced due to the addition of Tb3+ by means of an energy transfer process. The energy transfer mechanism, from Tb3+ to Sm3+ has been explained clearly with Life time decay analysis. From these results, these films could be suggested as potential reddish-orange luminescent optical materials.

  9. Physiochemical Characterization and Release Rate Studies of SolidDispersions of Ketoconazole with Pluronic F127 and PVP K-30

    PubMed Central

    Kumar, Pankaj; Mohan, Chander; KanamSrinivasan Uma Shankar, Mara; Gulati, Monica

    2011-01-01

    In the present study solid dispersions of the antifungal drug Ketoconazole were prepared with Pluronic F-127 and PVP K-30 with an intention to improve its dissolution properties. Investigations of the properties of the dispersions were performed using release studies, Differential scanning calorimetery (DSC), X-ray powder diffraction (XRD) and Fourier transform infrared (FTIR). The results obtained showed that the rate of dissolution of Ketoconazole was considerably improved when formulated in solid dispersions with PVP K-30 and Pluronic F-127 as compared with pure drug and physical mixtures. The results from DSC and XRD studies showed the transition of crystalline nature of drug to amorphous form, while FTIR studies demonstrated the absence of drug-carriers interaction. PMID:24250403

  10. The electrochemical oxidation of troxerutin and its sensitive determination in pharmaceutical dosage forms at PVP modified carbon paste electrode.

    PubMed

    Yang, Xiaofeng; Wang, Fang; Hu, Shengshui

    2006-09-01

    The voltammetric responses of troxerutin were investigated at polyvinylpyrrolidone (cross-linked) (PVP) modified carbon paste electrode (CPE) in 0.1 mol/L KCl by several electrochemical techniques. A well-defined oxidation peak was observed at about 0.97 V. Compared with poor responses of troxerutin at bare electrode that at this modified electrode has been greatly improved. It is PVP that enhances the adsorption of troxerutin to electrode surface based on their hydrophobic property. Under some optimized experimental conditions, a simple and sensitive electroanalytical method was developed for the quantitative analysis of troxerutin. A very low detection limit of 5.0 x 10(-9)mol/L was obtained for 5 min accumulation at open circuit (S/N=3). This proposed method was successfully applied to the detection of troxerutin in pharmaceutical dosage forms and satisfying results had been obtained.

  11. Synthesis and Raman analysis of SnS nanoparticles synthesized by PVP assisted polyol method

    SciTech Connect

    Baby, Benjamin Hudson; Mohan, D. Bharathi

    2015-06-24

    SnS film was prepared by a simple drop casting method after synthesizing SnS nanoparticles by using PVP assisted polyol method. Confocal Raman study was carried out for the as deposited and annealed (150, 300 and 400 °C) films at two different excitation wavelengths 514 and 785 nm. At the excitation wavelength of 514 nm, the Raman modes showed for a mixed phase of SnS and SnS{sub 2} up to 150 °C and then only a pure SnS phase was observed up to 400 °C due to the dissociation of SnS{sub 2} in to SnS by releasing S. The increase in intensity of Raman (A{sub g} and B{sub 3g}) as well as IR (B{sub 3u}) active modes of SnS are observed with increasing annealing temperature at excitation wavelength 785 nm due to the increased crystallinity and inactiveness of SnS{sub 2} modes. X-ray diffraction confirming the formation of a single phase of SnS while the greater homogeneity in both size and shape of SnS nanoparticles were confirmed through surface morphology from SEM.

  12. Fitness-for-service and decisions for petroleum and chemical equipment. PVP-Volume 315

    SciTech Connect

    Prager, M.; Becht, C. IV; Depadova, T.A.; Okazaki, M.; Onyewuenyi, O.A.; Smith, J.P.; Takezono, S.; Weingart, L.J.; Yagi, K.

    1995-12-31

    This volume is part of a series of publications intended to present the technical foundation for broadly accepted practices to establish the mechanical integrity of equipment in service. A focal point for this activity has been a Materials Properties Council program on fitness-for-service (FSS) reported in earlier PVP volumes. Work reported here covers the full range of equipment of interest to petroleum and chemical companies from LNG to creep service and provides a snapshot of current Codes, methods, concerns, and problems. It encompasses crack-like flaws and local thinning situations, welds, clad vessels, storage tanks, and pressure vessels. The work in progress is only a start, and the papers herein should be viewed as part of the process of validating the techniques used. While most of the applications are to petroleum refineries and natural gas processing plants, some papers deal with fossil-fuel power plants, nuclear power plants, synthetic fuels refineries, and materials for high-temperature applications. Papers have been processed separately for inclusion on the data base.

  13. Synthesis and Raman analysis of SnS nanoparticles synthesized by PVP assisted polyol method

    NASA Astrophysics Data System (ADS)

    Baby, Benjamin Hudson; Mohan, D. Bharathi

    2015-06-01

    SnS film was prepared by a simple drop casting method after synthesizing SnS nanoparticles by using PVP assisted polyol method. Confocal Raman study was carried out for the as deposited and annealed (150, 300 and 400 °C) films at two different excitation wavelengths 514 and 785 nm. At the excitation wavelength of 514 nm, the Raman modes showed for a mixed phase of SnS and SnS2 up to 150 °C and then only a pure SnS phase was observed up to 400 °C due to the dissociation of SnS2 in to SnS by releasing S. The increase in intensity of Raman (Ag and B3g) as well as IR (B3u) active modes of SnS are observed with increasing annealing temperature at excitation wavelength 785 nm due to the increased crystallinity and inactiveness of SnS2 modes. X-ray diffraction confirming the formation of a single phase of SnS while the greater homogeneity in both size and shape of SnS nanoparticles were confirmed through surface morphology from SEM.

  14. Impact of in situ preparation of CdS filled PVP nano-composite

    NASA Astrophysics Data System (ADS)

    Abdelghany, A. M.; Abdelrazek, E. M.; Rashad, D. S.

    2014-09-01

    Cadmium sulfide nanoparticles filled polyvinyl pyrrolidone (PVP) were prepared by in situ wet chemical precipitation technique. X-ray diffraction (XRD), Fourier transforms infrared spectra (FTIR), transmission electron microscopy (TEM) and ultraviolet-visible (UV/Vis) were used to characterize the prepared nano-composites. Density Function Theory (DFT) was used to approve the complexation process. XRD results indicate appearance of two peaks at about 28.1°, 27.4° corresponds to (1 0 1) and (0 0 2) planes which suggest hexagonal phase of CdS with lattice constants of 4.14, 6.72 Å in the polymeric matrix. UV/Vis spectra reveal that nano-composite films show quantum confinement effect. The absorption showed a shift toward the shorter wavelength (blue shift) with decrease in the concentration of Cd+ ions. Optical band gap and particle size were calculated and is in agreement with the results obtained from TEM data. Transmission electron microscopy shows that the prepared CdS nanoparticles were dispersed and nearly uniform in diameter within the polymeric matrix.

  15. Sulfidation processes of PVP-coated silver nanoparticles in aqueous solution: impact on dissolution rate.

    PubMed

    Levard, Clément; Reinsch, Brian C; Michel, F Marc; Oumahi, Camella; Lowry, Gregory V; Brown, Gordon E

    2011-06-15

    Despite the increasing use of silver nanoparticles (Ag-NPs) in nanotechnology and their toxicity to invertebrates, the transformations and fate of Ag-NPs in the environment are poorly understood. This work focuses on the sulfidation processes of PVP-coated Ag-NPs, one of the most likely corrosion phenomena that may happen in the environment. The sulfur to Ag-NPs ratio was varied in order to control the extent of Ag-NPs transformation to silver sulfide (Ag₂S). A combination of synchrotron-based X-ray Diffraction (XRD) and Extended X-ray Absorption Fine Structure spectroscopy shows the increasing formation of Ag₂S with an increasing sulfur to Ag-NPs ratio. TEM observations show that Ag₂S forms nanobridges between the Ag-NPs leading to chain-like structures. In addition, sulfidation strongly affects surface properties of the Ag-NPs in terms of surface charge and dissolution rate. Both may affect the reactivity, transport, and toxicity of Ag-NPs in soils. In particular, the decrease of dissolution rate as a function of sulfide exposure may strongly limit Ag-NPs toxicity since released Ag⁺ ions are known to be a major factor in the toxicity of Ag-NPs.

  16. Preparation and characterization of PVP-PVA-ZnO blend polymer nano composite films

    NASA Astrophysics Data System (ADS)

    Divya, S.; Saipriya, G.; Hemalatha, J.

    2016-05-01

    Flexible self-standing films of PVP-PVA blend composites are prepared by using ZnO as a nano filler at different concentrations. The structural, compositional, morphological and optical studies made with the help of X-ray diffraction (XRD), Fourier Transform Infra-Red spectroscopy (FTIR), Scanning electron microscope (SEM), Atomic Force Microscopy (AFM), Ultraviolet-visible spectroscopy (UV-vis) and Photoluminescence (PL) spectra are presented in this paper. The results of XRD indicate that ZnO nanoparticles are formed with hexagonal phase in the polymeric matrix. SEM images show the dispersion of ZnO nano filler in the polymer matrix. UV-vis spectra reveal that the absorption peak is centered around 235nm and 370nm for the nano composite films. The blue shift is observed with decrease in the concentration of the nano filler. PL spectra shows the excitation wavelength is given at 320nm.The emission peaks were observed at 383 nm ascribing to the electronic transitions between valence band and conduction band and the peak at 430 nm.

  17. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam.

    PubMed

    Samprasit, Wipada; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-06-20

    Fast release and taste masking of meloxicam (MX)-loaded polyvinylpyrrolidone (PVP)/cyclodextrin (CD) nanofiber mats were developed using an electrospinning process. CDs were blended to improve the stability of the mats. The morphology and diameter of the mats were determined using scanning electron microscopy (SEM); physical and mechanical properties were also studied. The MX content, disintegration time, MX release and cytotoxicity of the mats were investigated. In vivo studies were also performed in healthy human volunteers. The results indicated that the mats were successfully prepared with fiber in the nanometer range. MX was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength. CDs improved the physical stability by their cage-like supramolecular structure to protect from humidity and moisture, and create bead free nanofiber mats. The nanofiber mats with CDs were physically stable without any hygroscopicity and fusion. A fast disintegration and release of MX was achieved. Moreover, this mat released MX faster than the MX powder and commercial tablets. The cytotoxicity test revealed that mats were safe for a 5-min incubation. The disintegration studies indicated that in vivo disintegration agreed with the in vitro studies; the mat rapidly disintegrated in the mouth. The less bitter of MX was occurred in the mats that incorporated CD, menthol and aspartame. In addition, this mat was physical stable for 6 months. The results suggest that these mats may be a good candidate for fast dissolving drug delivery systems of bitter drugs to increase the palatability of dosage forms.

  18. Evaluation of the of antibacterial efficacy of polyvinylpyrrolidone (PVP) and tri-sodium citrate (TSC) silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Dey, Arindam; Dasgupta, Abhirup; Kumar, Vijay; Tyagi, Aakriti; Verma, Anita Kamra

    2015-09-01

    We present silver nanoparticles as the new age broad spectrum antibiotic. Siver nanoparticles exhibit unique physical and chemical properties that make them suitable for understanding their biological potential as antimicrobials. In this study, we explored the antibacterial activity of silver nanoparticles (TSC-AgNPs) and silver nanoparticles doped with polyvinylpyrrolidone (PVP-AgNPs) against Gram-negative and Gram-positive bacteria, Escherichia coli (DH5α) and Staphylococcus aureus, (ATCC 13709). Nucleation and growth kinetics during the synthesis process of AgNPs were precisely controlled using citrate (TSC) and further doped with polyvinylpyrrolidone (PVP). This resulted in the formation of two different sized nanoparticles 34 and 54 nm with PDI of 0.426 and 0.643. The physical characterization was done by nanoparticle tracking analysis and scanning electron microscopy, the results of which are in unison with the digital light scattering data. We found the bactericidal effect for both TSC-AgNPs and PVP-AgNPs to be dose-dependent as determined by the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) against E. coli and S. aureus. Interestingly, we also observed that AgNPs showed enhanced antimicrobial activity with a MIC of 26.75 and 13.48 µg/ml for E. coli and S. aureus, respectively, while MBC for AgNPs are 53.23 and 26.75 µg/ml for E. coli and S. aureus, respectively. Moreover, AgNPs showed increased DNA degradation as observed confirming its higher efficacy as antibacterial agent than the PVP doped AgNPs.

  19. Optical investigation of various morphologies of ZnO nanostructures prepared by PVP-assisted wet chemical method

    NASA Astrophysics Data System (ADS)

    Ramzan Parra, M.; Haque, F. Z.

    2015-05-01

    Various morphologies of zinc oxide have been successfully synthesized via simple poly-vinylpyrrolidone (PVP) assisted wet chemical method. Herein, a comparative study between three different morphologies of ZnO, namely nanoparticles (NP's), nanowalls (NW's) and nanorods (NR's) has been presented. The structural and spectroscopic results reveal that the addition of PVP as capping agent greatly influences the structural and optical behavior of ZnO. X-ray diffraction (XRD) results confirmed pure phase ZnO nanostructures with well crystallinity. It was observed from results that increasing concentration of poly-vinylpyrrolidone from half to equimolar ratio lattice imperfections decrease. ZnO nanorods have biggest crystallite size compared with nanowalls and nanoparticles, confirmed through X-ray diffraction study. The formation of three different morphologies was observed through scanning electron microscopy (SEM). The FTIR and Raman spectroscopic results reveal significant shifts for these ZnO nanostructures in the typical modes assigned to Zn-O, which intercorrelated with the XRD results. The optical band gap energies were found to be decreased from ˜3.22 eV for ZnO nanoparticles to 3.14 eV for ZnO nanorods. It was investigated from photoluminescence study that PVP capped ZnO nanostructures have reduced surface trap states and therefore the UV emission and visible emission regions overlap to form a single band. The physical properties and optical behavior realized that, as prepared samples might be applied in energy storage devices and solar cells.

  20. Influence of PVP template on the formation of porous TiO2 nanofibers by electrospinning technique for dye-sensitized solar cell

    NASA Astrophysics Data System (ADS)

    Elayappan, Vijayakumar; Panneerselvam, Pratheep; Nemala, Sivasankar; Nallathambi, Karthick S.; Angaiah, Subramania

    2015-09-01

    The porous TiO2 nanofibers were prepared by electrospinning technique using polyvinylpyrrolidone (PVP) as template as well as pore-forming agent at the calcination temperature of 475 °C for 5 h. The influence of various concentrations of PVP (5, 8 and 10 wt%) on the surface area and porosity of the prepared TiO2 nanofibers (NFs) were studied by using BET-specific surface area analyzer. The TiO2 NFs obtained by using 5 wt% of PVP had higher surface area and porosity than those obtained by using 8 and 10 wt% of PVP. The prepared electrospun TiO2 NFs were characterized by using TG analysis, X-ray diffraction, FTIR, FE-SEM and TEM studies. Finally, dye-sensitized solar cells were assembled using the prepared TiO2 NFs as the photoanode, Pt as the cathode and 0.5 M 1-butyl-3-methylimidazolium iodide, 0.5 M LiI, 0.05 M I2, 0.5 M 4-tertbutylpyridine in acetonitrile as an electrolyte. Among the three photoanodes, the cell assembled using porous TiO2 NFs obtained by using 5 wt% of PVP showed higher power conversion efficiency (PCE) of 4.81 % than those obtained by using 8 and 10 wt% of PVP, which showed the lower PCE of 4.13 and 3.42 %, respectively.

  1. Synthesis and characterization of PVP-coated Co0.3 Zn0.7 Fe2 O4 ferrite nanoparticles

    NASA Astrophysics Data System (ADS)

    Jaberolansar, E.; Kameli, P.; Ahmadvand, H.; Salamati, H.

    2016-04-01

    Co0.3 Zn0.7 Fe2 O4 nanoparticles coated with polyvinylpirrolydone (PVP) were synthesized using the two-step chemical method. The structural and magnetic properties of uncoated and PVP -coated nanoparticles were studied by X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), transmission electron microscopy (TEM), ac susceptibility, and vibrating sample magnetometry (VSM). The XRD patterns revealed a single phase cubic spinel structure in both types of nanoparticles. Average crystallite size of the samples decreased from 35 to 16 nm after PVP coating. VSM results indicated no hysteresis in any of the samples, which suggested their supreparamagnetic behaviour at room temperature. Ac susceptibility measurements showed that strong inter-particle magnetic interactions led to a superspin glass-like behaviour at low temperatures. Moreover, inter-particle interactions were found to decrease with increasing PVP content as a result of surface coating of the magnetic nanoparticles. The same measurements showed that the relative sensitivity of the samples to applied frequency increased with increasing PVP content to reach its maximum for a PVP to Co0.3 Zn0.7 Fe2O4 nanoparticle ratio of 0.75.

  2. Influence of polymer molecular weight on in vitro dissolution behavior and in vivo performance of celecoxib:PVP amorphous solid dispersions.

    PubMed

    Knopp, Matthias Manne; Nguyen, Julia Hoang; Becker, Christian; Francke, Nadine Monika; Jørgensen, Erling B; Holm, Per; Holm, René; Mu, Huiling; Rades, Thomas; Langguth, Peter

    2016-04-01

    In this study, the influence of the molecular weight of polyvinylpyrrolidone (PVP) on the non-sink in vitro dissolution and in vivo performance of celecoxib (CCX):PVP amorphous solid dispersions were investigated. The dissolution rate of CCX from the amorphous solid dispersions increased with decreasing PVP molecular weight and crystallization inhibition was increased with increasing molecular weight of PVP, but reached a maximum for PVP K30. This suggested that the crystallization inhibition was not proportional with molecular weight of the polymer, but rather there was an optimal molecular weight where the crystallization inhibition was strongest. Consistent with the findings from the non-sink in vitro dissolution tests, the amorphous solid dispersions with the highest molecular weight PVPs (K30 and K60) resulted in significantly higher in vivo bioavailability (AUC0-24h) compared with pure amorphous and crystalline CCX. A linear relationship between the in vitro and in vivo parameter AUC0-24h indicated that the simple non-sink in vitro dissolution method used in this study could be used to predict the in vivo performance of amorphous solid dispersion with good precision, which enabled a ranking between the different formulations. In conclusion, the findings of this study demonstrated that the in vitro and in vivo performance of CCX:PVP amorphous solid dispersions were significantly controlled by the molecular weight of the polymer.

  3. Fast releasing oral electrospun PVP/CD nanofiber mats of taste-masked meloxicam.

    PubMed

    Samprasit, Wipada; Akkaramongkolporn, Prasert; Ngawhirunpat, Tanasait; Rojanarata, Theerasak; Kaomongkolgit, Ruchadaporn; Opanasopit, Praneet

    2015-06-20

    Fast release and taste masking of meloxicam (MX)-loaded polyvinylpyrrolidone (PVP)/cyclodextrin (CD) nanofiber mats were developed using an electrospinning process. CDs were blended to improve the stability of the mats. The morphology and diameter of the mats were determined using scanning electron microscopy (SEM); physical and mechanical properties were also studied. The MX content, disintegration time, MX release and cytotoxicity of the mats were investigated. In vivo studies were also performed in healthy human volunteers. The results indicated that the mats were successfully prepared with fiber in the nanometer range. MX was well incorporated into the mats, with an amorphous form. The mats showed suitable tensile strength. CDs improved the physical stability by their cage-like supramolecular structure to protect from humidity and moisture, and create bead free nanofiber mats. The nanofiber mats with CDs were physically stable without any hygroscopicity and fusion. A fast disintegration and release of MX was achieved. Moreover, this mat released MX faster than the MX powder and commercial tablets. The cytotoxicity test revealed that mats were safe for a 5-min incubation. The disintegration studies indicated that in vivo disintegration agreed with the in vitro studies; the mat rapidly disintegrated in the mouth. The less bitter of MX was occurred in the mats that incorporated CD, menthol and aspartame. In addition, this mat was physical stable for 6 months. The results suggest that these mats may be a good candidate for fast dissolving drug delivery systems of bitter drugs to increase the palatability of dosage forms. PMID:25899284

  4. Synthesis and structure characterization of Ru nanoparticles stabilized by PVP or {gamma}-Al{sub 2}O{sub 3}

    SciTech Connect

    Zawadzki, Miroslaw Okal, Janina

    2008-11-03

    Uniform and stable Ru nanoparticles were synthesized by reduction of RuCl{sub 3} in ethylene glycol (EG) in the presence of poly(N-vinyl-2-pyrrolidone) by using microwave-assisted solvothermal method. The obtained materials were characterized by UV-vis, FT-IR, XPS, XRD and TEM techniques, and used as precursors of heterogeneous metal colloid catalysts. Characterization by TEM showed that as-prepared PVP-stabilized Ru nanoparticles have small average diameters (below 2 nm) and narrow size distributions (1-3 nm). Diffraction data confirmed that a crystallite size is around 2.0 nm. A colloidal Ru/{gamma}-Al{sub 2}O{sub 3} catalyst was obtained by two different methods: immobilization of the PVP-stabilized Ru colloid on the support or by in situ deposition of Ru colloid, e.g., reduction of RuCl{sub 3} with EG in the presence of the {gamma}-alumina. It was found that both synthesis methods produced the Ru/{gamma}-Al{sub 2}O{sub 3} catalysts with narrow size distributions of metallic nanoparticles, that are distributed uniformly over the support. However, only in situ preparation of the colloidal Ru/{gamma}-Al{sub 2}O{sub 3} catalyst results in chlorine free system with high activity for hydrogen chemisorption. The H{sub 2} uptake on the Ru(PVP)/{gamma}-Al{sub 2}O{sub 3} catalyst was very low because the ruthenium surface was strongly occluded with a thin layer of polymer molecules.

  5. The optical band gap investigation of PVP-capped ZnO nanoparticles synthesized by sol-gel method

    NASA Astrophysics Data System (ADS)

    Yuliah, Yayah; Bahtiar, Ayi; Fitrilawati, Siregar, Rustam E.

    2016-02-01

    ZnO Nanoparticles (NPs) has unique natures on their crystal structure, direct band gap and high exciton binding energy, consequently applied in optoelectronic devices such as solar cells, optical wave guide and light emitting diodes (LED). However the drawback was ZnO NPs tend to agglomerate and turn to nano-structured materials with poor properties. Effort to avoid agglomerations generally resolved by surface modification of ZnO NPs to obtain well-dispersed suspension. However changes in the surface of ZnO NPs may change the electronic structure and density of states of ZnO NPs, in turn may change the optical band gap. Thus, the objective of current research is investigation of optical band gap of ZnO NPs due to surface modification by capping agent of poly-4-vinylpyrrolidone (PVP) molecules. Uncapped and PVP-capped ZnO nanoparticles were prepared by sol-gel method. The characteristics of surface modifications were investigated by UV-Vis and Photo Luminescence spectroscopy and Transmission Electron Microscope (TEM). The results shows the surface modification has change the band gap of ZnO NPs obtained at second precipitated stage. In contrast, the change of the optical band gap did not observe due to the surface modification of ZnO NPs obtained at the first stage. It was concluded that PVP capping on ZnO NPs did not affect on the band gap when the capping was performed on first stage. It is emphasized that this statement also supported by TEM images observations.

  6. PVP-Assisted Solvothermal Synthesis of High-Yielded Bi2Te3 Hexagonal Nanoplates: Application in Passively Q-Switched Fiber Laser.

    PubMed

    He, Xin; Zhang, Hang; Lin, Wei; Wei, Rongfei; Qiu, Jianrong; Zhang, Mei; Hu, Bin

    2015-01-01

    High-yielded Bi2Te3 hexagonal nanoplates were fabricated via a facile solvothermal method with the assistance of poly (vinyl pyrrolidone) (PVP). Effects of PVP molecular weight and concentration on the morphology and size distribution of the products were illustrated in this study. Molecular weight of PVP is significant for determining the morphology of Bi2Te3. The hexagonal nanoplates with high yield were obtained in the presence of PVP with molecular weight of 40000-45000. The average size and size distribution of Bi2Te3 nanoplates can be slightly varied by controlling concentration of PVP. High-yielded Bi2Te3 nanoplates exhibit characteristics of saturable absorption, identified by open-aperture Z-scan technique. The synthesized Bi2Te3 nanoplates with large saturation intensity of 4.6 GW/cm(2) and high modulation depth of 45.95% generated a stable passively Q-switched fiber laser pulse at 1.5 μm. In comparison with recently reported Q-switched fiber lasers utilizing exfoliated Bi2Te3 nanosheets, our passive Q-switching operations could be conducted at a relatively low threshold power of 30.2 mW or a quite high output power of 99.45 mW by tuning the cavity parameters. PMID:26511763

  7. PVP-Assisted Solvothermal Synthesis of High-Yielded Bi2Te3 Hexagonal Nanoplates: Application in Passively Q-Switched Fiber Laser

    PubMed Central

    He, Xin; Zhang, Hang; Lin, Wei; Wei, Rongfei; Qiu, Jianrong; Zhang, Mei; Hu, Bin

    2015-01-01

    High-yielded Bi2Te3 hexagonal nanoplates were fabricated via a facile solvothermal method with the assistance of poly (vinyl pyrrolidone) (PVP). Effects of PVP molecular weight and concentration on the morphology and size distribution of the products were illustrated in this study. Molecular weight of PVP is significant for determining the morphology of Bi2Te3. The hexagonal nanoplates with high yield were obtained in the presence of PVP with molecular weight of 40000–45000. The average size and size distribution of Bi2Te3 nanoplates can be slightly varied by controlling concentration of PVP. High-yielded Bi2Te3 nanoplates exhibit characteristics of saturable absorption, identified by open-aperture Z-scan technique. The synthesized Bi2Te3 nanoplates with large saturation intensity of 4.6 GW/cm2 and high modulation depth of 45.95% generated a stable passively Q-switched fiber laser pulse at 1.5 μm. In comparison with recently reported Q-switched fiber lasers utilizing exfoliated Bi2Te3 nanosheets, our passive Q-switching operations could be conducted at a relatively low threshold power of 30.2 mW or a quite high output power of 99.45 mW by tuning the cavity parameters. PMID:26511763

  8. Preparation and in-vitro in-vivo evaluation of sustained release matrix diclofenac sodium tablets using PVP-K90 and natural gums.

    PubMed

    Iqbal, Zafar; Khan, Raza; Nasir, Fazli; Khan, Jamshaid Ali; Rashid, Abdur; Khan, Abbas; Khan, Abad

    2011-10-01

    Conventional dosage form is nowadays mostly replaced by sustained release formulation in order to increase drug efficacy and patient compliance. The sustained release properties of the PVP K90 alone and in combination with guar gum, xanthan gum and gum tragacanth were evaluated using diclofenac sodium (100 mg/tablet) as a model drug. Tablets were processed using wet granulation method and evaluated for sustained drug release properties. The drug release from the formulations was studied in relationship with Commercially available Diclofenac Sodium SR, used as a reference tablets and results were expressed as similarity (f1) and differential factor (f2). The tablets prepared using PVP K90 160 mg/tablet sustained the release of diclofenac sodium for 12 hours. Formulations where the PVP K90 was partially replaced with different gums also sustained the release of drug for 12 hours. The release of the drug from these formulations mainly followed Higuchi model and super case-II and Non-Fickian diffusion. The in-vivo drug release was studied in healthy human volunteers using non-blinded cross over, two period design using Diclofenac Sodium SR Tablets as a reference drug. The relative bioavailability of the formulation containing PVP K90 and gum tragacanth was 0.91. The studies showed that the use of the PVP K90 in combination with gum tragacanth both in-vitro and in-vivo sustained the release of the drug.

  9. Energy transfer based photoluminescence properties of co-doped (Er3+ + Pr3+): PEO + PVP blended polymer composites for photonic applications

    NASA Astrophysics Data System (ADS)

    Naveen Kumar, K.; Kang, Misook; Bhaskar Kumar, G.; Ratnakaram, Y. C.

    2016-04-01

    Er3+, Pr3+ singly doped and co-doped PEO + PVP polymer composites have been synthesized by conventional solution casting method. The structural analysis has been carried out for all these polymer composites from XRD analysis. Raman spectral studies confirm the ion-polymer interactions and polymer complex formation. Thermal properties of pure polymer film has also been clearly elucidated by TG/DTA profiles. Well defined optical absorption bands pertaining to Er3+ and Pr3+ are observed in the absorption spectral profile and these bands are assigned with corresponding electronic transitions. The polymer films containing singly doped Er3+ and Pr3+ ions have displayed green and red emissions at 510 nm (2H11/2 → 4I15/2) and 688 nm (3P0 → 3F3) respectively under UV excitation source. Comparing the emission spectra of singly Er3+ and co-doped Er3+ + Pr3+: PEO + PVP polymer films, a significant red emission pertaining to Pr3+ions is remarkably enhanced in co-doped polymer system. This could be ascribed to possible energy transfer from Er3+ to Pr3+ in co-doped polymer system. The energy transfer mechanism is clearly demonstrated using their emission performances, overlapped spectral profiles and also life time decay dynamics. Thus, it could be suggested that Er3+: PEO + PVP, Pr3+: PEO + PVP and (Er3+ + Pr3+): PEO + PVP blended polymer films are potential materials for several photonic applications.

  10. PVP-Assisted Solvothermal Synthesis of High-Yielded Bi2Te3 Hexagonal Nanoplates: Application in Passively Q-Switched Fiber Laser

    NASA Astrophysics Data System (ADS)

    He, Xin; Zhang, Hang; Lin, Wei; Wei, Rongfei; Qiu, Jianrong; Zhang, Mei; Hu, Bin

    2015-10-01

    High-yielded Bi2Te3 hexagonal nanoplates were fabricated via a facile solvothermal method with the assistance of poly (vinyl pyrrolidone) (PVP). Effects of PVP molecular weight and concentration on the morphology and size distribution of the products were illustrated in this study. Molecular weight of PVP is significant for determining the morphology of Bi2Te3. The hexagonal nanoplates with high yield were obtained in the presence of PVP with molecular weight of 40000-45000. The average size and size distribution of Bi2Te3 nanoplates can be slightly varied by controlling concentration of PVP. High-yielded Bi2Te3 nanoplates exhibit characteristics of saturable absorption, identified by open-aperture Z-scan technique. The synthesized Bi2Te3 nanoplates with large saturation intensity of 4.6 GW/cm2 and high modulation depth of 45.95% generated a stable passively Q-switched fiber laser pulse at 1.5 μm. In comparison with recently reported Q-switched fiber lasers utilizing exfoliated Bi2Te3 nanosheets, our passive Q-switching operations could be conducted at a relatively low threshold power of 30.2 mW or a quite high output power of 99.45 mW by tuning the cavity parameters.

  11. Using DVS-NIR to assess the water sorption behaviour and stability of a griseofulvin/PVP K30 solid dispersion.

    PubMed

    Li, Wanjing; Buckton, Graham

    2015-11-30

    The purpose of this work was to investigate the distribution of water in a physically unstable amorphous solid dispersion (polyvinylpyrrolidone (PVP) and griseofulvin (as a model hydrophobic drug)), both as the sample absorbs water and during prolonged exposure to elevated humidity by use of dynamic vapour sorption combined with near infrared (DVS-NIR). The solid dispersion absorbed much less water than the sum of the water sorption of the individual components. This suggests that griseofulvin hindered PVP from absorbing water through the formation of the solid dispersion. Prolonged storage of the solid dispersion at 75% RH resulted in no significant mass change. Whilst this would usually be interpreted as the absence of crystallization, the NIR spectra demonstrated that crystallization occurred. The reason for the lack of a weight loss was that the expelled water from amorphous griseofulvin was sorbed by PVP, meaning that as the dispersion was broken by the crystallisation of griseofulvin, the PVP was once again free to sorb water (in line with the higher water sorption shown by PVP alone, and in contrast with the lower sorption of water by the solid dispersion). As water is a key factor in the physical stability of amorphous systems, understanding how and where water is absorbed and how this is liable to change is an important advance and offers promise in understanding the mechanism of stabilisation of solid dispersions, and therefore may be useful to predict the stability of new API dispersions.

  12. Using DVS-NIR to assess the water sorption behaviour and stability of a griseofulvin/PVP K30 solid dispersion.

    PubMed

    Li, Wanjing; Buckton, Graham

    2015-11-30

    The purpose of this work was to investigate the distribution of water in a physically unstable amorphous solid dispersion (polyvinylpyrrolidone (PVP) and griseofulvin (as a model hydrophobic drug)), both as the sample absorbs water and during prolonged exposure to elevated humidity by use of dynamic vapour sorption combined with near infrared (DVS-NIR). The solid dispersion absorbed much less water than the sum of the water sorption of the individual components. This suggests that griseofulvin hindered PVP from absorbing water through the formation of the solid dispersion. Prolonged storage of the solid dispersion at 75% RH resulted in no significant mass change. Whilst this would usually be interpreted as the absence of crystallization, the NIR spectra demonstrated that crystallization occurred. The reason for the lack of a weight loss was that the expelled water from amorphous griseofulvin was sorbed by PVP, meaning that as the dispersion was broken by the crystallisation of griseofulvin, the PVP was once again free to sorb water (in line with the higher water sorption shown by PVP alone, and in contrast with the lower sorption of water by the solid dispersion). As water is a key factor in the physical stability of amorphous systems, understanding how and where water is absorbed and how this is liable to change is an important advance and offers promise in understanding the mechanism of stabilisation of solid dispersions, and therefore may be useful to predict the stability of new API dispersions. PMID:26456266

  13. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater. PMID:25540826

  14. Preparation and characterization of poly(AA co PVP)/PGS composite and its application for methylene blue adsorption.

    PubMed

    Yang, Cai-xia; Lei, Lei; Zhou, Peng-xin; Zhang, Zhe; Lei, Zi-qiang

    2015-04-01

    Poly (AA co PVP)/PGS (PAPP) composite adsorbent was prepared by radical polymerization from Acrylic acid (AA), Polyvinylpyrrolidone (PVP) and Palygorskite (PGS), using N,N-methylenebisacrylamide (MBA) as cross-linker and potassium persulfate (KPS) as initiator. The PAPP was characterized with Fourier transform infrared (FT-IR), thermogravimetric analysis (TG), scanning electron microscope (SEM) and transmission electron microscopy (TEM). PAPP was used as adsorbent for the removal of methylene blue from aqueous solutions. The influences of pH, adsorption temperature and adsorption time on the adsorption properties of the composite to the dye were also investigated. Meanwhile, the adsorption rate data and adsorption equilibrium date were analyzed based on the pseudo-first-order and pseudo-second-order kinetic model, Langmuir and Freundlich isotherm models, respectively. The results indicating that the kinetic behavior better fit with the pseudo-second-order kinetic model. The maximum equilibrium adsorption capacity (q(m)) is 1815 mg/g at 289 K. The isotherm behavior can be explained by the Langmuir isotherm models. The activation energy was also evaluated for the removal of methylene blue onto PAPP. These results demonstrate that this composite material could be used as a good adsorbent for the removal of cationic dyes from wastewater.

  15. Study on characteristics of PVDF/nano-clay composite polymer electrolyte using PVP as pore-forming agent

    NASA Astrophysics Data System (ADS)

    Dyartanti, Endah R.; Purwanto, Agus; Widiasa, I. Nyoman; Susanto, Heru

    2016-02-01

    Polyvinylidene fluoride (PVDF) based polymer electrolytes have a high dielectric constant, which can assist in greater ionization of lithium salts. The main advantages of PVDF are its durability in long battery operation and its ability to be a good ion conductor. However, the limitation of this polymer is its crystalline molecular structure. Dispersing nano-particles in the polymer matrix may improve the characteristics of the PVDF polymer. This paper aims to investigate the impact of nano-clay addition on the characteristics of PVDF polymer to be used as a polymer electrolyte membrane. In addition, the effect of poly(vinyl pyrrolidone) (PVP) is also investigated. The membrane was prepared by phase separation method whereas the polymer electrolyte membranes was prepared by immersing into 1 M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) electrolytes for 1 h. The membranes were characterized by scanning electron microscope (SEM), porosity and electrolyte uptake and performance in battery cell. The results showed that both nano-clay and PVP have significant impacts on the improvement of PVDF membranes to be used as polymer electrolyte.

  16. Preparation of lutein-loaded particles for improving solubility and stability by Polyvinylpyrrolidone (PVP) as an emulsion-stabilizer.

    PubMed

    Zhao, Changdong; Cheng, Hui; Jiang, Pengfei; Yao, Yijing; Han, Jing

    2014-08-01

    Lutein, a non-provitamin A carotenoid, possesses multiple valuable physiological functions. Unfortunately, its application is limited due to its poor water solubility and instability under adverse conditions. To expand the applied range of lutein, we developed lutein-loaded particles and characterized by differential scanning calorimetry, X-ray powder diffraction and Fourier transformed infrared spectroscopy and investigated the encapsulation efficiency, aqueous saturation solubility and stability. The results showed that the lutein-loaded particles possessed high encapsulation efficiency (93.8±0.35%) and good water solubility (158μg/ml). Compared with free lutein, the stability of the lutein-loaded particles against heat, light and oxygen was improved by 1.7 times, 3.3 times and 4.0 times, respectively. The results also indicated that lutein was embedded in PVP matrix in an amorphous state, and intermolecular hydrogen bonding was in existence between PVP, lutein and Tween 80, forming the main force assembling the lutein-loaded particles.

  17. Polyvinylphenol (PVP) microcapacitors printed by laser-induced forward transfer (LIFT): multilayered pixel design and thermal analysis investigations

    NASA Astrophysics Data System (ADS)

    Constantinescu, C.; Rapp, L.; Rotaru, P.; Delaporte, P.; Alloncle, A. P.

    2016-04-01

    Highlights • Laser-induced transfer is used for the printing of multilayered microcapacitors • The dielectric film is made of PVP, and the electrodes are made of Ag • Thermal behaviour of the polymer is discussed with respect to the laser processing • The structure and electrical properties of the capacitors are discussed Ag/polyvinylphenol (PVP) multilayered pixels are printed by laser-induced forward transfer (LIFT) technique for thin film microcapacitor applications. The third harmonic (3ω/355 nm, τ  =  50 ps) of a solid state neodymium-doped yttrium aluminium garnet (Nd:YAG) laser source is employed throughout our LIFT experiments. By selecting adequate printing parameters (e.g. donor thickness, laser fluence, background pressure), we show how functional microcapacitors are fabricated. At ~350 μm in lateral size and 300 nm thickness of the dielectric film, the pixels have capacities in the picofarad range. We discuss the laser influence during the pixel transfer process and highlight the polymer’s thermal behaviour.

  18. In situ FTIR spectroscopic study of the effect of CO2 sorption on H-bonding in PEG-PVP mixtures.

    PubMed

    Labuschagne, Philip W; Kazarian, Sergei G; Sadiku, Rotimi E

    2011-05-01

    A study of the H-bonding between poly(ethylene glycol) (PEG) and polyvinylpyrrolidone (PVP) in the presence of supercritical carbon dioxide at various temperatures, pressures, different M(w) of PEG and PVP and different PEG/PVP ratios is presented. In situ attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was used to investigate H-bonding by examining changes in the relative intensities and positions of peak maxima of the 2nd derivative ν(C=O) bands associated with 'free' and H-bonded C=O groups. In general, relative intensities of bands associated with H-bonded CO groups decreased upon CO(2) sorption and was accompanied by an increase in intensity of bands associated with 'free' C=O groups. At the same time, these bands were shifted to higher wavenumbers. These shifts were attributed to the shielding effect of CO(2) molecules on H-bonding interactions between PEG and PVP. The magnitude of the effects of CO(2) shielding generally increased with decreasing polymer M(w) and increasing CO(2) content. However, upon CO(2) venting the extent of the H-bonding between PEG and PVP reappeared. The extent of H-bonding recovery was greatest for blends with low M(w) PEG (M(w): 4×10(2)) and PVP (M(w): 9×10(3)) and PEG content ≥0.54 wt% under mild conditions of pressure (80 bar) and temperature (35°C). For the same low M(w) blends, increasing pressure to 150 bar, or temperature to 50°C, showed poor H-bond recovery upon CO(2) venting. Overall, it was shown that supercritical CO(2)-induced shielding of H-bonding interactions in polymer blends is reversible upon CO(2) venting, and the magnitude of both was influenced by processing conditions and blend composition.

  19. Comparative physicochemical properties of hydrocortisone-PVP composites prepared using supercritical carbon dioxide by the GAS anti-solvent recrystallization process, by coprecipitation and by spray drying.

    PubMed

    Corrigan, Owen I; Crean, Abina M

    2002-10-01

    Hydrocortisone-PVP composites were successfully prepared using the supercritical fluid gas anti-solvent method (GAS). Analysis by differential scanning calorimetry DSC and powder X-ray diffraction (XRD) indicated that these systems were more crystalline than corresponding systems prepared by spray drying. These systems, prepared by the GAS method were more similar in physicochemical properties to coprecipitates prepared by conventional solvent evaporation. Compressed composites of hydrocortisone-PVP systems, prepared by the GAS method, had dissolution rates lower than those of corresponding systems prepared by the other processing methods but equivalent to those of corresponding physical mixtures.

  20. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    PubMed Central

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-01-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free–modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells. PMID:27143126

  1. Enhanced DSSCs efficiency via Cooperate co-absorbance (CdS QDs) and plasmonic core-shell nanoparticle (Ag@PVP)

    NASA Astrophysics Data System (ADS)

    Amiri, Omid; Salavati-Niasari, Masoud; Bagheri, Samira; Yousefi, Amin Termeh

    2016-05-01

    This paper describes cooperate the co-absorbance (CdS QDs) and the plasmonic core-shell nanoparticles (Ag@PVP) of dye synthesized solar cells in which CdS QDs and Ag@PVP are incorporated into the TiO2 layer. Cooperative nanoparticles show superior behavior on enhancing light absorption in comparison with reference cells. Cooperated DSSC exhibits the best performance with the power conversion efficiency of 7.64% which is superior to that of the free-modified DSSC with the PCE of 5%. Detailed studies offer an effective approach to enhance the efficiency of dye synthesized solar cells.

  2. Anti-inflammatory effects of silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles in mouse macrophages infected with live Chlamydia trachomatis

    PubMed Central

    Yilma, Abebayehu N; Singh, Shree R; Dixit, Saurabh; Dennis, Vida A

    2013-01-01

    Chlamydia trachomatis is a very common sexually transmissible infection in both developing and developed countries. A hallmark of C. trachomatis infection is the induction of severe inflammatory responses which play critical roles in its pathogenesis. Antibiotics are the only treatment option currently available for controlling C. trachomatis infection; however, they are efficacious only when administered early after an infection. The objectives of this study are to explore alternative strategies in the control and regulation of inflammatory responses triggered by a C. trachomatis infection. We employed silver-polyvinyl pyrrolidone (Ag-PVP) nanoparticles, which have been shown to possess anti-inflammatory properties, as our target and the in vitro mouse J774 macrophage model of C. trachomatis infection. Our hypothesis is that small sizes of Ag-PVP nanoparticles will control inflammatory mediators triggered by a C. trachomatis infection. Cytotoxicity studies using Ag-PVP nanoparticles of 10, 20, and 80 nm sizes revealed >80% macrophage viability up to a concentration of 6.25 μg/mL, with the 10 nm size being the least toxic. All sizes of Ag-PVP nanoparticles, especially the 10 nm size, reduced the levels of the prototypic cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, as elicited from C. trachomatis infected macrophages. Additionally, Ag-PVP nanoparticles (10 nm) selectively inhibited a broad spectrum of other cytokines and chemokines produced by infected macrophages. Of significance, Ag-PVP nanoparticles (10 nm) caused perturbations in a variety of upstream (toll like receptor 2 [TLR2], nucleotide-binding oligomerization-protein 2 [NOD2], cluster of differentiation [CD]40, CD80, and CD86) and downstream (IL-1 receptor-associated kinase 3 [IRAK3] and matrix metallopeptidase 9 [MMP9]) inflammatory signaling pathways by downregulating their messenger ribonucleic acid (mRNA) gene transcript expressions as induced by C. trachomatis in macrophages

  3. Acid and base recovery from brine solution using PVP intermediate-based bipolar membrane through water splitting technology

    NASA Astrophysics Data System (ADS)

    Venugopal, Krishnaveni; Murugappan, Minnoli; Dharmalingam, Sangeetha

    2015-10-01

    Potable water has become a scarce resource in many countries. In fact, the world is not running out of water, but rather, the relatively fixed quantity is becoming too contaminated for many applications. Hence, the present work was designed to evaluate the desalination efficiency of resin and glass fiber-reinforced Polysulfone polymer-based monopolar and bipolar (BPM) ion exchange membranes (with polyvinyl pyrrolidone as the intermediate layer) on a real sample brine solution for 8 h duration. The prepared ion exchange membranes (IEMs) were characterized using FTIR, SEM, TGA, water absorption, and contact angle measurements. The BPM efficiency, electrical conductivity, salinity, sodium, and chloride ion concentration were evaluated for both prepared and commercial-based IEM systems. The current efficiency and energy consumption values obtained during BPMED process were found to be 45 % and 0.41 Wh for RPSu-PVP-based IEM system and 38 % and 1.60 Wh for PSDVB-based IEM system, respectively.

  4. Increased photocatalytic activity of tube-brush-like ZnO nanostructures fabricated by using PVP nanofibers as templates

    NASA Astrophysics Data System (ADS)

    Chen, Xinying; Zhai, Yingjiao; Li, Jinhua; Fang, Xuan; Fang, Fang; Chu, Xueying; Wei, Zhipeng; Wang, Xiaohua

    2014-11-01

    The tube-brush-like ZnO nanostructures were synthesized by hydrothermal method using electrospinning polyvinylpyrrolidone (PVP) nanofibers as templates. The photocatalytic activity of as-grown samples was investigated by photo-degradation of Rhodamine B (RhB). The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), UV/visible absorption spectroscopy (UV-vis) and photoluminescence (PL) spectroscopy. It was found that the morphologies of the prepared ZnO were tube-brush-like nanostructures. With the grown time increasing, the crystal and the optical properties were improved. In the photocatalytic experiment, the tube-brush-like ZnO nanostructures photocatalytic activity was enhanced the degradation of RhB was up to 98% after 2 h of irradiation. The tube-brush-like ZnO nanostructures showed higher photocatalytic activity because of the special surface morphology.

  5. Preparation of Size-tunable, Highly Monodisperse PVP-Protected Pt-nanoparticles by Seed-mediated Growth

    SciTech Connect

    Koebel, Matthias Michael; Jones, Louis C.; Somorjai, Gabor A.

    2008-04-02

    We demonstrate a preparative method which produces highly-monodisperse Pt-nanoparticles of tunable size without the external addition of seed particles. Hexachloroplatinic acid is dosed slowly to an ethylene glycol solution at 120 C and reduced in the presence of a stabilizing polymer poly-N-vinylpyrollidone (PVP). Slow addition of the Pt-salt first will first lead to the formation of nuclei (seeds) which then grow further to produce larger particles of any desired size between 3 and 8nm. The amount of added hexachloroplatinic acid precursor controls the size of the final nanoparticle product. TEM was used to determine size and morphology and to confirm the crystalline nature of the nanoparticles. Good reproducibility of the technique was demonstrated. Above 7nm, the particle shape and morphology changes suddenly indicating a change in the deposition selectivity of the Pt-precursor from (100) towards (111) crystal faces and breaking up of larger particles into smaller entities.

  6. Influence of Polymer Molecular Weight on Drug-Polymer Solubility: A Comparison between Experimentally Determined Solubility in PVP and Prediction Derived from Solubility in Monomer.

    PubMed

    Knopp, Matthias Manne; Olesen, Niels Erik; Holm, Per; Langguth, Peter; Holm, René; Rades, Thomas

    2015-09-01

    In this study, the influence of polymer molecular weight on drug-polymer solubility was investigated using binary systems containing indomethacin (IMC) and polyvinylpyrrolidone (PVP) of different molecular weights. The experimental solubility in PVP, measured using a differential scanning calorimetry annealing method, was compared with the solubility calculated from the solubility of the drug in the liquid analogue N-vinylpyrrolidone (NVP). The experimental solubility of IMC in the low-molecular-weight PVP K12 was not significantly different from that in the higher molecular weight PVPs (K25, K30, and K90). The calculated solubilities derived from the solubility in NVP (0.31-0.32 g/g) were found to be lower than those experimentally determined in PVP (0.38-0.40 g/g). Nevertheless, the similarity between the values indicates that the analogue solubility can provide valuable indications on the solubility in the polymer. Hence, if a drug is soluble in an analogue of the polymer, it is most likely also soluble in the polymer. In conclusion, the solubility of a given drug-polymer system is determined by the strength of the drug-polymer interactions rather than the molecular weight of the polymer. Therefore, during the first screenings for drug solubility in polymers, only one representative molecular weight per polymer is needed.

  7. Synthesis and comparative study on the antimicrobial activity of hybrid materials based on silver nanoparticles (AgNps) stabilized by polyvinylpyrrolidone (PVP).

    PubMed

    Bryaskova, Rayna; Pencheva, Daniela; Nikolov, Stanislav; Kantardjiev, Todor

    2011-10-01

    Hybrid materials based on polyvinylpyrrolidone (PVP) with silver nanoparticles (AgNps) were synthesized applying two different strategies based on thermal or chemical reduction of silver ions to silver nanoparticles using PVP as a stabilizer. The formation of spherical silver nanoparticles with diameter ranging from 9 to 16 nm was confirmed by TEM analysis. UV-vis and FTIR spectroscopy were also applied to confirm the successful formation of AgNps. The antibacterial activity of the synthesized AgNPs/PVP against etalon strains of three different groups of bacteria-Staphylococcus aureus (S. aureus; gram-positive bacteria), Escherichia coli (E. coli; gram-negative bacteria), Pseudomonas aeruginosa (P. aeruginosa; non-ferment gram-negative bacteria), as well as against spores of Bacillus subtilis (B. subtilis) was studied. AgNps/PVP were tested for the presence of fungicidal activity against different yeasts and mold such as Candida albicans, Candida krusei, Candida tropicalis, Candida glabrata, and Aspergillus brasiliensis. The hybrid materials showed a strong antimicrobial effect against the tested bacterial and fungal strains and therefore have potential applications in biotechnology and biomedical science.

  8. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated. PMID:26014283

  9. Study of surface-modified PVP gate dielectric in organic thin film transistors with the nano-particle silver ink source/drain electrode.

    PubMed

    Yun, Ho-Jin; Ham, Yong-Hyun; Shin, Hong-Sik; Jeong, Kwang-Seok; Park, Jeong-Gyu; Choi, Deuk-Sung; Lee, Ga-Won

    2011-07-01

    We have fabricated the flexible pentacene based organic thin film transistors (OTFTs) with formulated poly[4-vinylphenol] (PVP) gate dielectrics treated by CF4/O2 plasma on poly[ethersulfones] (PES) substrate. The solution of gate dielectrics is made by adding methylated poly[melamine-co-formaldehyde] (MMF) to PVP. The PVP gate dielectric layer was cross linked at 90 degrees under UV ozone exposure. Source/drain electrodes are formed by micro contact printing (MCP) method using nano particle silver ink for the purposes of low cost and high throughput. The optimized OTFT shows the device performance with field effect mobility of the 0.88 cm2/V s, subthreshold slope of 2.2 V/decade, and on/off current ratios of 1.8 x 10(-6) at -40 V gate bias. We found that hydrophobic PVP gate dielectric surface can influence on the initial film morphologies of pentacene making dense, which is more important for high performance OTFTs than large grain size. Moreover, hydrophobic gate dielelctric surface reduces voids and -OH groups that interrupt the carrier transport in OTFTs.

  10. Spectroscopic Study of the Thermal Degradation of PVP-capped Rh and Pt Nanoparticles in H2 and O2 Environments

    SciTech Connect

    Borodko, Yuri; Lee, Hyun Sook; Joo, Sang Hoon; Zhang, Yawen; Somorjai, Gabor A.

    2009-09-15

    Poly(N-vinylpyrrolidone) (PVP) capped platinum and rhodium nanoparticles (7-12 nm) have been studied with UV-VIS, FTIR and Raman spectroscopy. The absorption bands in the region 190-900 nm are shown to be sensitive to the electronic structure of surface Rh and Pt atoms as well as to the aggregation of the nanoparticles. In-situ FTIR-DRIFT spectroscopy of the thermal decay of PVP stabilized Rh and Pt nanoparticles in H{sub 2} and O{sub 2} atmospheres in temperatures ranging from 30 C-350 C reveal that decomposition of PVP above 200 C, PVP transforms into a 'polyamidpolyene' - like material that is in turn converted into a thin layer of amorphous carbon above 300 C. Adsorbed carbon monoxide was used as a probing molecule to monitor changes of electronic structure of surface Rh and Pt atoms and accessible surface area. The behavior of surface Rh and Pt atoms with ligated CO and amide groups of pyrrolidones resemble that of surface coordination compounds.

  11. Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures

    NASA Astrophysics Data System (ADS)

    Bandekar, Gauri; Rajurkar, N. S.; Mulla, I. S.; Mulik, U. P.; Amalnerkar, D. P.; Adhyapak, P. V.

    2013-01-01

    In the present study, ZnO nanostructures have been successfully synthesized by hydrothermal, sonochemical and precipitation methods using polyvinyl pyrrolidone (PVP) as the capping agent. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), UV-Visible spectroscopy and photoluminescence (PL) techniques. The XRD results revealed the hexagonal wurtzite structure of the ZnO nanostructures for all the samples. Furthermore, the morphology of the ZnO particles was obtained from FESEM micrographs. Particles prepared by hydrothermal method were found to be rice grain shaped and that prepared by precipitation and sonochemical methods were spherical shaped. Sunlight driven photocatalytic degradation of methylene blue (MB) was studied for ZnO nanostructures synthesized by various methods. The ZnO nanostructures were further decorated with Ag nanoparticles to enhance its dye degradation efficiency. The Ag decorated ZnO nanoparticles exhibited a higher degradation rate as compared to pure ZnO nanoparticles which was independent of pH. Since this process of dye degradation relies on the degradation of dye due to oxidation by highly reactive hydroxyl radicals, there are many factors which affect the efficiency of this process. Hence a study was conducted on the effect of various parameters on ZnO viz amount of catalyst, reaction pH and concentration of MB dye.

  12. Phase constituents and magnetic properties of the CoFe2O4 nanoparticles prepared by polyvinylpyrrolidone (PVP)-assisted hydrothermal route

    NASA Astrophysics Data System (ADS)

    Jalalian, M.; Mirkazemi, S. M.; Alamolhoda, S.

    2016-09-01

    In this research, nanoparticles of cobalt ferrite were synthesized by a simple hydrothermal process at 190 °C using different treatment durations with the assistance of polyvinylpyrrolidone (PVP) surfactant. The synthesized powders were characterized using X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscope and vibration sample magnetometer techniques. The quantitative values of phase constituents and also inversion parameter of cobalt ferrite spinel structure were calculated by Rietveld method using XRD results. XRD results show formation of cobalt ferrite as the main phase in all samples and also the presence of small amounts of Co3O4 lateral phase in some cases. Raman spectroscopies also confirm the presence of this lateral phase. Microstructural studies represent formation of nanoparticles with a narrow particle size distribution. Magnetic measurements represent that maximum magnetization ( M max) values are in the range of 25-57 emu/g with changes in the hydrothermal treatment duration. Intrinsic coercivity force values ( i H c ) change from 0 to 487 Oe in different samples. The highest M max value of 57 emu/g was obtained in the sample after 3 h of hydrothermal treatment with PVP addition. The i H c value of this sample was 35 Oe, while without PVP addition, the high M max value of 60 emu/g is observed in a sample that has i H c value equal to 320 Oe.

  13. Sol–gel auto-combustion synthesis of PVP/CoFe{sub 2}O{sub 4} nanocomposite and its magnetic characterization

    SciTech Connect

    Kurtan, U.; Topkaya, R.; Baykal, A.

    2013-11-15

    Graphical abstract: - Highlights: • The Poly(vinyl pyrrolidone) (PVP) was used as a surface capping agent. • PVP/CoFe{sub 2}O{sub 4} nanocomposite was synthesized by a sol-gel auto-combustion method. • The existence of the spin-disordered surface layer was established. - Abstract: Poly(vinyl pyrrolidone)/CoFe{sub 2}O{sub 4} nanocomposite has been fabricated by a sol–gel auto-combustion method. Poly(vinyl pyrrolidone) was used as a reducing agent as well as a surface capping agent to prevent particle aggregation and stabilize the particles. The average crystallite size estimated from X-ray line profile fitting was found to be 20 ± 7 nm. The high field irreversibility and unsaturated magnetization behaviours indicate the presence of the core–shell structure in the sample. The exchange bias effect observed at 10 K suggests the existence of the magnetically aligned core surrounded by spin-disordered surface layer. The reduced remanent magnetization value of 0.6 at 10 K (higher than the theoretical value of 0.5) shows the PVP/CoFe{sub 2}O{sub 4} nanocomposite to have cubic magnetocrystalline anisotropy according to the Stoner–Wohlfarth model.

  14. Effect of reductant and PVP on morphology and magnetic property of ultrafine Ni powders prepared via hydrothermal route

    SciTech Connect

    Zhang, Jun Wang, Xiucai; Li, Lili; Li, Chengxuan; Peng, Shuge

    2013-10-15

    Graphical abstract: The ultrafine Ni powders with the shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using different reductants. Their saturation magnetization, remanent magnetization and coercivity sequentially increase, and the coercivity of hexagonal sheet-like Ni powders increases by 25% compared with the Ni bulk counterpart. - Highlights: • The ultrafine Ni powders with various shapes of sphere, fish-bone, hexagonal sheet, etc. • Facile and one-step hydrothermal reduction using three reductants and PVP additive was developed. • Magnetic properties of the ultrafine Ni powders with different shapes were measured. • Compared with bulk Ni material, coercivity of hexagonal sheet Ni increases by 25%. • The formation mechanism of the shapes was suggested. - Abstract: The ultrafine nickel particles with different shapes including sphere, pearl-string, leaf, fish-bone, hexagonal sheet and silknet were prepared through one-step hydrothermal reduction using hydrazine hydrate, sodium hypophosphite and ethylene glycol as reductants, polyvinylpyrrolidone as structure-directing agent. It has been verified with the characterization of X-ray powder diffraction and transmission/scanning electronic microscopy that as-prepared products belong to face-centered cubic structure of nickel microcrystals with high purity and fine dispersity. The magnetic hysteresis loops measured at room temperature reveal that the values of saturation magnetization, remanent magnetization and coercivity rise sequentially from silknet, sphere to hexagonal sheet. In comparison with nickel bulk counterpart, the coercivity of the hexagonal sheet nickel powders increases by 25%.

  15. Effects of reaction time and citric acid contents on the morphologies of BaCO{sub 3} via PVP-assisted method

    SciTech Connect

    Lv Sa; Sheng Jie; Zhang Shuang; Sun Wendong

    2008-05-06

    BaCO{sub 3} with different morphologies, such as dumbbell-like, pillar-like, peanut-like and ellipsoid-like have been successfully synthesized using citric acid (CA) as chelating ligand via a simple polyvinylpyrrolidone (PVP)-assisted method. The effects of the pH of the starting solutions, reaction time and the molar ratio of CA/Ba{sup 2+} on the morphologies of BaCO{sub 3} were investigated. X-ray diffraction (XRD), transmission electron microscope (TEM) and the infrared (IR) spectrum of the sample are used to characterize the obtained products.

  16. Rapid transformation from spherical nanoparticles, nanorods, cubes, or bipyramids to triangular prisms of silver with PVP, citrate, and H2O2.

    PubMed

    Tsuji, Masaharu; Gomi, Satoshi; Maeda, Yoshinori; Matsunaga, Mika; Hikino, Sachie; Uto, Keiko; Tsuji, Takeshi; Kawazumi, Hirofumi

    2012-06-19

    Rapid sphere-to-prism (STP) transformation of silver was studied in aqueous AgNO(3)/NaBH(4)/polyvinylpyrrolidone (PVP)/trisodium citrate (Na(3)CA)/H(2)O(2) solutions by monitoring time-dependent surface plasmon resonance (SPR) bands in the UV-vis region, by examining transmission electron microscopic (TEM) images, and by analyzing emitted gases during fast reaction. Roles of PVP, Na(3)CA, and H(2)O(2) were studied without addition of a reagent, with different timing of each reagent's addition, and with addition of H(2)O(2) to mixtures of spheres and prisms. Results show that prisms can be prepared without addition of PVP, although it is useful to synthesize smaller monodispersed prisms. A new important role of citrate found in this study, besides a known role as a protecting agent of {111} facets of plates, is an assistive agent for shape-selective oxidative etching of Ag nanoparticles by H(2)O(2). The covering of Ag nanoparticles with carboxylate groups is necessary to initiate rapid STP transformation by premixing citrate before H(2)O(2) addition. Based on our data, rapid prism formation starts from the consumption of spherical Ag particles because of shape-selective oxidative etching by H(2)O(2). Oxidative etching of spherical particles by H(2)O(2) is faster than that of prisms. Therefore, spherical particles are selectively etched and dissolved, leaving only seeds of prisms to grow into triangular prisms. When pentagonal Ag nanorods and a mixture of cubes and bipyramids were used as sources of prisms, rod-to-prism (RTP), cube-to-prism (CTP), and bipyramid-to-prism (BTP) transformations were observed in Ag nanocrystals/NaBH(4)/PVP/Na(3)CA/H(2)O(2) solutions. Shape-selective oxidative etching of rods was confirmed using flag-type Ag nanostructures consisting of a triangular plate and a side rod. These data provide useful information for the size-controlled synthesis of triangular Ag prisms, from various Ag nanostructures and using a chemical reduction method

  17. Photoselective vaporization of the prostate (PVP) with green light KTP laser in the management of symptomatic benign prostatic enlargement (BPE): does the anatomy of the TURP-like cavity predict the clinical outcome?

    NASA Astrophysics Data System (ADS)

    Nseyo, Unyime

    2005-04-01

    Photoselective vaporization of the prostate (PVP) is evolving as an alternative outpatient surgical treatment to transurethral resection of the prostate (TURP) in the management of patients with symptomatic benign prostatic hypertrophy/enlargement (BPH/BPE). The purported benefits of PVP include rapid vaporization of the prostate with an instant creation of TURP-like anatomic defect, an excellent hemostasis, shorter (<24 hours) duration of catheterization, short (< 24 hours) hospital stay, and quick return to work. We retrospectively reviewed the video clips of our cases to determine whether or not the anatomic appearance of the post-PVP prostatic cavity per se could predict clinical outcome. Forty-three, non-consecutive patients, diagnosed with symptomatic BPH have been treated with PVP using the 80W KTP laser and followed for at least 18 months (range 18-24). A majority (N=32) of the patients was enrolled under an Institutional Review Board approved multi-center protocol at the Hunter McGuire Veterans Administration Medical Center, Richmond, Virginia. We reviewed the urodynamic parameters: AUA-SI, QOL, Qmax and PVR at 3, 6, 12, 18 and 24 months postoperatively. We plan to present video documentations of the various anatomic appearances of the TURP-like prostatic cavity at the conclusion of the PVP treatment along with summaries of the short and long term clinical outcomes.

  18. PVP Assisted Shape-Controlled Synthesis of Self-Assembled 1D ZnO and 3D CuO Nanostructures

    NASA Astrophysics Data System (ADS)

    Haque, Fozia Z.; Parra, Mohammad Ramzan; Siddiqui, Hafsa; Singh, Neha; Singh, Nitu; Pandey, Padmini; Mishra, K. M.

    2016-03-01

    Self-assembled one-dimensional (1D) zinc oxide (ZnO) rods and three-dimensional (3D) cupric oxide (CuO) cubes like nanostructures with a mean crystallite size of approximately 33 and 32 nm were synthesized through chemical route in the presence of polyvinylpyrrolidone (PVP) under mild synthesis conditions. The technique used for the synthesis of nanoparticles seems to be an efficient, inexpensive and easy method. X-Ray diffraction patterns confirmed well crystallinity and phase purity of the as prepared samples, followed by the compositional investigation using Fourier Transform Infrared (FT-IR) spectroscopy. The formation of ZnO nanorods and CuO nanocubes like structures were through Scanning Electron Microscopy (SEM) images. The mechanism and the formation factors of the self-assembly were discussed in detail. It was clearly observed from results that the concentration of precursors and PVP were important factors in the synthesis of self-assembly ZnO and CuO nanostructures. These self-assembly nanostructures maybe used as novel materials in various potential applications.

  19. Characterization of CH3SO3H-doped PMMA/PVP blend-based proton-conducting polymer electrolytes and its application in primary battery

    NASA Astrophysics Data System (ADS)

    Ambika, C.; Hirankumar, G.

    2016-02-01

    Various compositions of solid blend polymer electrolytes based on poly(methyl methacrylate) (PMMA)/poly(vinyl pyrrolidone) (PVP) complexed with methanesulfonic acid (MSA) as proton donor were prepared by solution casting technique. The complex nature of polymer blend with MSA was confirmed by Fourier transform infrared spectroscopy. Good thermal stability of PMMA/PVP blend polymer electrolyte was identified by thermogravimetric analysis. The surface morphology of the prepared electrolytes was studied through optical microscopy. Ion transport number was determined in the range of 0.93-0.97 for proton-conducting blend polymer electrolytes. The maximum conductivity value was calculated as 2.51 × 10-5 S/cm at 303 K for 14.04 mol% MSA-doped polymer electrolytes. Dielectric studies were also carried out. The electrochemical stability window of blend polymer electrolyte was found to be 1.82 V. Primary proton battery was fabricated with Zn + ZnSO4·7H2O/solid polymer electrolytes/MnO2. The discharge characteristics were studied at constant current drain of 5, 20 and 50 μA. The energy and power density were calculated as 0.27 W h kg-1 and 269.23 mW kg-1 for 20 μA of discharge, respectively.

  20. Novel strategy for f-HAp/PVP/Ag nanocomposite synthesis from fluoro based ionic liquid assistance: Systematic investigations on its antibacterial and cytotoxicity behaviors.

    PubMed

    Jegatheeswaran, S; Selvam, S; Sri Ramkumar, V; Sundrarajan, M

    2016-10-01

    A novel biomimetic f-HAp/PVP/Ag nanocomposite was synthesized under the ionic liquid medium, which was composed of inorganic and organic nanofillers like fluor-hydroxyapatite, silver nanoparticles and polyvinyl pyrrolidone. In composite synthesis, the first time we were used fluorine based ionic liquid for the fluorine contents on the fluor-hydroxyapatite nanoparticles which were resulting in very good crosslinking and interfacial bonding with the PVP and Ag nanoparticles. Ionic liquid has assisted good morphological structure of both inorganic materials. The chemical interaction and crystallinity changes of the nanocomposite were evaluated by FTIR and XRD studies. The surface morphology and composition of the samples were observed by FE-SEM, HR-TEM and EDS analyses. This report reveals that the greener approach for synthesis of fluor-hydroxyapatite nanocomposite and sustained delivery of silver and fluorine ions from the fluor-hydroxyapatite surface to the bacterial surface have been reducing the bacterial growth rate which was evaluated by different pathogenic bacterial strains via different methods and it also favourable cytotoxicity effect with human osteosarcoma (MG-63) cells. PMID:27287093

  1. Microwave irradiation induced modifications on the interfaces in SAN/EVA/PVC and PVAc/BPA/PVP ternary polymer blends: Positron lifetime study

    NASA Astrophysics Data System (ADS)

    Dinesh, Meghala; Chikkakuntappa, Ranganathaiah

    2013-09-01

    Ternary polymer blends of poly(styrene-co-acrylonitrile)/poly(ethylene-co-vinylacetate)/poly(vinyl chloride) (SAN/EVA/PVC) and poly(vinyl acetate)/bisphenol A/polyvinylpyrrolidone (PVAc/BPA/PVP) with different compositions have been prepared by solvent casting method and characterized by positron lifetime spectroscopy and differential scanning calorimetry DSC. Phase modifications have been induced by irradiating the blends with microwave radiation. These changes have been monitored by measuring the free-volume content in the blends. The results clearly show improved interactions between the constituent polymers of the blends upon microwave irradiation. However, the free-volume data and DSC measurements are found to be inadequate to reveal the changes at the interfaces and the interfaces determine the final properties of the blend. For this we have used hydrodynamic interaction (αij) approach developed by us to measure strength of hydrodynamic interaction at the interfaces. These results show that microwave irradiation stabilizes the interfaces if the blend contains strong polar groups. SAN/EVA/PVC blend shows an increased effective hydrodynamic interaction from -3.18 to -4.85 at composition 50/35/15 upon microwave irradiation and PVAc/BPA/PVP blend shows an increased effective hydrodynamic interaction from -3.81 to -7.57 at composition 20/50/30 after irradiation.

  2. An investigation into the effect of spray drying temperature and atomizing conditions on miscibility, physical stability, and performance of naproxen-PVP K 25 solid dispersions.

    PubMed

    Paudel, Amrit; Loyson, Yves; Van den Mooter, Guy

    2013-04-01

    The present study investigates the effect of changing spray drying temperature (40°C-120°C) and/or atomizing airflow rate (AR; 5-15 L/min) on the phase structure, physical stability, and performance of spray-dried naproxen-polyvinylpyrrolidone (PVP) K 25 amorphous solid dispersions. The modulated differential scanning calorimetry, attenuated total internal reflectance-Fourier transform infrared, and powder X-ray diffractometry (pXRD) studies revealed that higher inlet temperature (IT) or atomization airflow leads to the formation of amorphous-phase-separated dispersions with higher strongly H-bonded and free PVP fractions, whereas that prepared with the lowest IT was more homogeneous. The dispersion prepared with the lowest atomization AR showed trace crystallinity. Upon exposure to 75% relative humidity (RH) for 3 weeks, the phase-separated dispersions generated by spray drying at higher temperature or higher atomization airflow retained relatively higher amorphous drug fraction compared with those prepared at slow evaporation conditions. The humidity-controlled pXRD analysis at 98% RH showed that the dispersion prepared with highest atomization AR displayed the slowest kinetics of recrystallization. The molecular-level changes occurring during recrystallization at 98% RH was elucidated by spectroscopic monitoring at the same humidity. The rate and extent of the drug dissolution was the highest for dispersions prepared at the highest atomizing AR and the lowest for that prepared with the slowest atomizing condition. PMID:23359268

  3. TiO2 nanowire and TiO2 nanowire doped Ag-PVP nanocomposite for antimicrobial and self-cleaning cotton textile.

    PubMed

    Hebeish, A A; Abdelhady, M M; Youssef, A M

    2013-01-16

    The TiO(2) nanowire (TiO(2) Nw) was successfully prepared via hydrothermal method through TiO(2) nanoparticle (TiO(2) Np). TiO(2) Np doped silver and TiO(2) Nw doped silver were prepared via photo-reducing Ag(+) ions to Ag metal on the TiO(2) Np or TiO(2) Nw surfaces. The prepared nanomaterials were evaluated using X-ray (XRD) diffraction pattern, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Bleached untreated cotton fabric and PVP treated cotton fabrics were coated with the synthesized nanomaterials using pad-dry-cure method. Photocatalytic activity of untreated and coated cotton fabrics with TiO(2) nanomaterials was investigated through the fabric self cleaning of MB dye stains. Also, the PVP finished cotton fabric modified by nanomaterials demonstrated antimicrobial activity against Gram positive bacteria, Gram negative bacteria and fungi. The mechanical properties of coated cotton fabric (tear strength, surface roughness, tensile strength and elongation at break) were examined.

  4. Characterisation of the Poly-(Vinylpyrrolidone)-Poly-(Vinylacetate-Co-Crotonic Acid) (PVP:PVAc-CA) Interpolymer Complex Matrix Microparticles Encapsulating a Bifidobacterium lactis Bb12 Probiotic Strain.

    PubMed

    Mamvura, C I; Moolman, F S; Kalombo, L; Hall, A N; Thantsha, M S

    2011-06-01

    The method of producing poly-(vinylpyrrolidone)-poly-(vinylacetate-co-crotonic acid) (PVP:PVAc-CA) interpolymer complex matrix microparticles in supercritical carbon dioxide (scCO2), encapsulating bacteria, has recently been developed. This study was aimed at probing the external and internal structure of these microparticles, which can be used in food. The encapsulation efficiency and distribution of encapsulated Bifidobacterium lactis Bb12 within these microparticles were also investigated. Scanning electron microscopy (SEM) revealed irregular, mostly small, smooth microparticles with no visible bacterial cells on the surface. However, some of the microparticles appeared to have porous surfaces. The results of a Microtrac S3500 particle size analyzer showed that the PVP:PVAc-CA interpolymer complex matrix microparticles encapsulating B. lactis Bb12 had an average particle size of 166.1 μm (<350 μm designated standard size for microparticles). The D 10, D 50 and D 90 values for these microparticles were 48.16, 166.06 and 382.55 μm, respectively. Both SEM and confocal laser scanning microscopy showed a high density of bacterial cells within the microparticles. An average encapsulation efficiency of 96% was achieved. Consequently, the microparticles have the potential to be evenly distributed in foods, deliver adequate amounts of probiotics and produce minimal adverse effects on the texture and mouth feel of the foods into which they are incorporated. PMID:26781573

  5. Novel strategy for f-HAp/PVP/Ag nanocomposite synthesis from fluoro based ionic liquid assistance: Systematic investigations on its antibacterial and cytotoxicity behaviors.

    PubMed

    Jegatheeswaran, S; Selvam, S; Sri Ramkumar, V; Sundrarajan, M

    2016-10-01

    A novel biomimetic f-HAp/PVP/Ag nanocomposite was synthesized under the ionic liquid medium, which was composed of inorganic and organic nanofillers like fluor-hydroxyapatite, silver nanoparticles and polyvinyl pyrrolidone. In composite synthesis, the first time we were used fluorine based ionic liquid for the fluorine contents on the fluor-hydroxyapatite nanoparticles which were resulting in very good crosslinking and interfacial bonding with the PVP and Ag nanoparticles. Ionic liquid has assisted good morphological structure of both inorganic materials. The chemical interaction and crystallinity changes of the nanocomposite were evaluated by FTIR and XRD studies. The surface morphology and composition of the samples were observed by FE-SEM, HR-TEM and EDS analyses. This report reveals that the greener approach for synthesis of fluor-hydroxyapatite nanocomposite and sustained delivery of silver and fluorine ions from the fluor-hydroxyapatite surface to the bacterial surface have been reducing the bacterial growth rate which was evaluated by different pathogenic bacterial strains via different methods and it also favourable cytotoxicity effect with human osteosarcoma (MG-63) cells.

  6. Amorphous drug-PVP dispersions: application of theoretical, thermal and spectroscopic analytical techniques to the study of a molecule with intermolecular bonds in both the crystalline and pure amorphous state.

    PubMed

    Tobyn, Michael; Brown, Jonathan; Dennis, Andrew B; Fakes, Michael; Gao, Qi; Gamble, John; Khimyak, Yaroslav Z; McGeorge, Gary; Patel, Chhaya; Sinclair, Wayne; Timmins, Peter; Yin, Shawn

    2009-09-01

    We report the case of BMS-488043-PVP solid dispersions which when analysed using modulated DSC showed compliance with the Gordon-Taylor model, confirming ideal mixing behaviour of the two components. The nature or presence of stabilising interactions between drug and PVP could not be confirmed using this technique. Use of FT-IR, Raman and solid-state NMR spectroscopy confirmed the presence of stabilising hydrogen bond interactions between the drug and PVP. Similar interactions are present as intermolecular bonds in the crystalline and pure amorphous drug system. The Gordon-Taylor equation, as it is not predictive of the presence of intermolecular bonds such as hydrogen bonding in an amorphous dispersion, may underestimate the likely physical stability of solid dispersions which are produced and stabilised by these interactions.

  7. A simple, fast, and inexpensive CTAB-PVP-silica based method for genomic DNA isolation from single, small insect larvae and pupae.

    PubMed

    Huanca-Mamani, W; Rivera-Cabello, D; Maita-Maita, J

    2015-01-01

    In this study, we report a modified CTAB-PVP method combined with silicon dioxide (silica) treatment for the extraction of high quality genomic DNA from a single larva or pupa. This method efficiently obtains DNA from small specimens, which is difficult and challenging because of the small amount of starting tissue. Maceration with liquid nitrogen, phenol treatment, and the ethanol precipitation step are eliminated using this methodology. The A260/A280 absorbance ratios of the isolated DNA were approximately 1.8, suggesting that the DNA is pure and can be used for further molecular analysis. The quality of the isolated DNA permits molecular applications and represents a fast, cheap, and effective alternative method for laboratories with low budgets.

  8. Characterization and nonlinear optical properties of PVP/TiO2 nano-fibers doping with Ag colloid nano-particles

    NASA Astrophysics Data System (ADS)

    Majles Ara, M. H.; Naderi, H.; Mobasheri, A.; Rajabi, M. H.; Malekfar, R.; Koushki, E.

    2013-02-01

    We synthesized PVP/TiO2 nano-fibers doping with Ag colloid nano-particles by electro-spinning method. These nano-fibers were characterized by UV/visible/NIR spectroscopy, SEM and XRD. The image of SEM showed that the synthesized nano-fibers were monotonous and without knot and had a diameter about 150 nm. We also measured the nonlinear refractive and absorption indexes of the sample in three different intensities using the single beam Z-scan method by a continuous wave (CW) He-Ne laser at 632.8 nm wavelength. The nonlinear refraction indexes of these nano-fibers were measured in order of 10-7 (cm2/W) with negative sign and the nonlinear absorption coefficient was obtained in order of 10-3 (cm/W).

  9. Synthesis and characterization of PVP-capped ZnO particles and its blend with poly(3-hexylthiophene) for hybrid solar cells application

    NASA Astrophysics Data System (ADS)

    Yuliah, Yayah; Bahtiar, Ayi

    2013-09-01

    ZnO nanoparticles (ZnO-NPs) agglomeration has been a long main problem on its utilization as acceptor materials of hybrid solar cell using blend of conjugated polymer poly(3-hexylthiophene) or P3HT and ZnO-NPs. Numbers of ZnO nanoparticle agglomeration lead to inhomogeneity of blend film morphology. This agglomeration causes ineffective electron transport within ZnO-NP, and thus lowers power conversion efficiency of hybrid solar cell. In this work, the ZnO particles were capped by PVP (poly-4-vinylpyrrolidone) to reduce agglomeration of ZnO particle and to improve homogeneity of blend P3HTZnO particles film. We used two different type of capping; first capping was applied during the synthesis of ZnO and second the capping was carried out after synthesis of ZnO. The ZnO particles were synthesized using sol-gel method at low temperature (27°C). We have found that the surface morphology of blend films which was ZnO-capped after synthesis is more homogeneous than that of during synthesis.

  10. Freeze-dried PVP-Ag+ precursors to novel AgBr/AgCl-Ag hybrid nanocrystals for visible-light-driven photodegradation of organic pollutants

    NASA Astrophysics Data System (ADS)

    Chen, Deliang; Chen, Qianqian; Zhang, Wenjie; Ge, Lianfang; Shao, Gang; Fan, Bingbing; Lu, Hongxia; Zhang, Rui; Yang, Daoyuan; Shao, Guosheng

    2015-04-01

    AgBr/AgCl-Ag nanocrystals with various molar Br-to-Ag ratios (RBr/Ag = 0, 1/3, 1/2, 2/3, 1) and different photoreduction times (0-20 min) were synthesized via stepwise liquid-solid reactions using the freeze-dried PVP-Ag+ hybrid as the Ag source, followed by a photoreduction reaction. The AgBr/AgCl-Ag7.5(1:2) nanocrystals obtained take on a spherical morphology with a particle-size range of 58 ± 15 nm. The photocatalytic performance of AgBr/AgCl-Ag nanocrystals was evaluated by photodegrading organic dyes, 4-chlorophenol and isopropanol under artificial visible light (λ ⩾ 420 nm, 100 mW cm-2). For the decomposition of rhodamine B, the AgBr/AgCl-Ag7.5(1:2) nanocrystals has a photodegradation rate of ∼0.87 min-1, ∼159 times higher than that (∼0.0054 min-1) of TiO2 (P25), whereas the AgCl-Ag and AgBr-Ag nanocrystals have photodegradation rates of 0.35 min-1 and 0.45 min-1, respectively. The efficient separation of photogenerated electron-hole pairs in the ternary system consisting of AgBr, AgCl and Ag species plays a key role in the enhancement of photocatalytic performance.

  11. Bioevaluation of novel anti-biofilm coatings based on PVP/Fe3O4 nanostructures and 2-((4-ethylphenoxy)methyl)-N- (arylcarbamothioyl)benzamides.

    PubMed

    Limban, Carmen; Missir, Alexandru Vasile; Grumezescu, Alexandru Mihai; Oprea, Alexandra Elena; Grumezescu, Valentina; Vasile, Bogdan Stefan; Socol, Gabriel; Trușcă, Roxana; Caproiu, Miron Teodor; Chifiriuc, Mariana Carmen; Gălățeanu, Bianca; Costache, Marieta; Morușciag, Laurențiu; Pîrcălăbioru, Grațiela; Nuță, Diana Camelia

    2014-01-01

    Novel derivatives were prepared by reaction of aromatic amines with 2-(4-ethylphenoxymethyl)benzoyl isothiocyanate, affording the N-[2-(4-ethylphenoxymethyl) benzoyl]-Nꞌ-(substituted phenyl)thiourea. Structural elucidation of these compounds was performed by IR, NMR spectroscopy and elemental analysis. The new compounds were used in combination with Fe3O4 and polyvinylpyrrolidone (PVP) for the coating of medical surfaces. In our experiments, catheter pieces were coated by Matrix Assisted Pulsed Laser Evaporation (MAPLE) technique. The microbial adherence ability was investigated in 6 multi-well plates by using culture based methods. The obtained surfaces were also assessed for their cytotoxicity with respect to osteoblast cells, by using fluorescence microscopy and MTT assay. The prepared surfaces by advanced laser processing inhibited the adherence and biofilm development ability of Staphylococcus aureus and Pseudomonas aeruginosa tested strains while cytotoxic effects on the 3T3-E1 preosteoblasts embedded in layer shaped alginate hydrogels were not observed. These results suggest that the obtained medical surfaces, based on the novel thiourea derivatives and magnetic nanoparticles with a polymeric shell could represent a promising alternative for the development of new and effective anti-infective strategies. PMID:25120054

  12. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Lin; Liu, Yuzi; Zhang, Fan; Liu, Caihong; Shaw, Leon L

    2015-11-25

    The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries. PMID:26529481

  13. PVP-Assisted Synthesis of Uniform Carbon Coated Li2S/CB for High-Performance Lithium-Sulfur Batteries.

    PubMed

    Chen, Lin; Liu, Yuzi; Zhang, Fan; Liu, Caihong; Shaw, Leon L

    2015-11-25

    The lithium-sulfur (Li-S) battery is a great alternative to the state-of-the-art lithium ion batteries due to its high energy density. However, low utilization of active materials, the insulating nature of sulfur or lithium sulfide (Li2S), and polysulfide dissolution in organic liquid electrolyte lead to low initial capacity and fast performance degradation. Herein, we propose a facile and viable approach to address these issues. This new approach entails synthesis of Li2S/carbon black (Li2S/CB) cores encapsulated by a nitrogen-doped carbon shell with polyvinylpyrrolidone (PVP) assistance. Combining energy-filtered transmission electron microscopy (EFTEM) elemental mappings, XPS and FTIR measurements, it is confirmed that the as-synthesized material has a structure of a Li2S/CB core with a nitrogen-doped carbon shell (denoted as Li2S/CB@NC). The Li2S/CB@NC cathode yields an exceptionally high initial capacity of 1020 mAh/g based on Li2S mass at 0.1 C with stable Coulombic efficiency of 99.7% over 200 cycles. Also, cycling performance shows the capacity decay per cycle as small as 0.17%. Most importantly, to further understand the materials for battery applications, field emission transmission electron microscopy (FETEM) and elemental mapping tests without exposure to air for Li2S samples in cycled cells are reported. Along with the first ever FETEM and field emission scanning electron microscopy (FESEM) investigations of cycled batteries, Li2S/CB@NC cathode demonstrates the capability of robust core-shell nanostructures for different rates and improved capacity retention, revealing Li2S/CB@NC designed here as an outstanding system for high-performance lithium-sulfur batteries.

  14. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

    PubMed Central

    Ahlberg, Sebastian; Antonopulos, Alexandra; Diendorf, Jörg; Dringen, Ralf; Flöck, Rebekka; Goedecke, Wolfgang; Graf, Christina; Haberl, Nadine; Helmlinger, Jens; Herzog, Fabian; Heuer, Frederike; Hirn, Stephanie; Johannes, Christian; Kittler, Stefanie; Köller, Manfred; Korn, Katrin; Kreyling, Wolfgang G; Krombach, Fritz; Lademann, Jürgen; Loza, Kateryna; Luther, Eva M; Malissek, Marcelina; Meinke, Martina C; Nordmeyer, Daniel; Pailliart, Anne; Raabe, Jörg; Rancan, Fiorenza; Rothen-Rutishauser, Barbara; Rühl, Eckart; Schleh, Carsten; Seibel, Andreas; Sengstock, Christina; Treuel, Lennart; Vogt, Annika; Weber, Katrin; Zellner, Reinhard

    2014-01-01

    Summary PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful

  15. PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments.

    PubMed

    Ahlberg, Sebastian; Antonopulos, Alexandra; Diendorf, Jörg; Dringen, Ralf; Epple, Matthias; Flöck, Rebekka; Goedecke, Wolfgang; Graf, Christina; Haberl, Nadine; Helmlinger, Jens; Herzog, Fabian; Heuer, Frederike; Hirn, Stephanie; Johannes, Christian; Kittler, Stefanie; Köller, Manfred; Korn, Katrin; Kreyling, Wolfgang G; Krombach, Fritz; Lademann, Jürgen; Loza, Kateryna; Luther, Eva M; Malissek, Marcelina; Meinke, Martina C; Nordmeyer, Daniel; Pailliart, Anne; Raabe, Jörg; Rancan, Fiorenza; Rothen-Rutishauser, Barbara; Rühl, Eckart; Schleh, Carsten; Seibel, Andreas; Sengstock, Christina; Treuel, Lennart; Vogt, Annika; Weber, Katrin; Zellner, Reinhard

    2014-01-01

    PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of -20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as demonstrated for hMSC, primary T-cells, primary monocytes, and astrocytes. A visualization of particles inside cells is possible by X-ray microscopy, fluorescence microscopy, and combined FIB/SEM analysis. By staining organelles, their localization inside the cell can be additionally determined. While primary brain astrocytes are shown to be fairly tolerant toward silver nanoparticles, silver nanoparticles induce the formation of DNA double-strand-breaks (DSB) and lead to chromosomal aberrations and sister-chromatid exchanges in Chinese hamster fibroblast cell lines (CHO9, K1, V79B). An exposure of rats to silver nanoparticles in vivo induced a moderate pulmonary toxicity, however, only at rather high concentrations. The same was found in precision-cut lung slices of rats in which silver nanoparticles remained mainly at the tissue surface. In a human 3D triple-cell culture model consisting of three cell types (alveolar epithelial cells, macrophages, and dendritic cells), adverse effects were also only found at high silver concentrations. The silver ions that are released from silver nanoparticles may be harmful to skin

  16. The effect of pressurized carbon dioxide as a temporary plasticizer and foaming agent on the hot stage extrusion process and extrudate properties of solid dispersions of itraconazole with PVP-VA 64.

    PubMed

    Verreck, Geert; Decorte, Annelies; Heymans, Koen; Adriaensen, Jef; Cleeren, Dirk; Jacobs, Adri; Liu, Dehua; Tomasko, David; Arien, Albertina; Peeters, Jef; Rombaut, Patrick; Van den Mooter, Guy; Brewster, Marcus E

    2005-11-01

    The aim of the current research project was to explore the possibilities of combining pressurized carbon dioxide with hot stage extrusion during manufacturing of solid dispersions of itraconazole and polyvinylpyrrolidone-co-vinyl acetate 64 (PVP-VA 64) and to evaluate the ability of the pressurized gas to act as a temporary plasticizer as well as to produce a foamed extrudate. Pressurized carbon dioxide was injected into a Leistritz Micro 18 intermeshing co-rotating twin-screw melt extruder using an ISCO 260D syringe pump. The physicochemical characteristics of the extrudates with and without injection of carbon dioxide were evaluated with reference to the morphology of the solid dispersion and dissolution behaviour and particle properties. Carbon dioxide acted as plasticizer for itraconazole/PVP-VA 64, reducing the processing temperature during the hot stage extrusion process. Amorphous dispersions were obtained and the solid dispersion was not influenced by the carbon dioxide. Release of itraconazole from the solid dispersion could be controlled as a function of processing temperature and pressure. The macroscopic morphology changed to a foam-like structure due to expansion of the carbon dioxide at the extrusion die. This resulted in increased specific surface area, porosity, hygroscopicity and improved milling efficiency.

  17. Suicide attempt with a mix of synthetic cannabinoids and synthetic cathinones: Case report of non-fatal intoxication with AB-CHMINACA, AB-FUBINACA, alpha-PHP, alpha-PVP and 4-CMC.

    PubMed

    Klavž, Janez; Gorenjak, Maksimiljan; Marinšek, Martin

    2016-08-01

    We report on a case of intoxication with a mix of new psychoactive substances. A 38-year-old male was brought to the emergency department (ED) following the ingestion of an unknown drug in a suicide attempt. During the transport, he became progressively more somnolent and unresponsive to painful stimuli. Urine and stomach content were collected on admission to be screened for drugs of abuse and medicinal drugs. After admission, the patient's next of kin presented five small grip seal plastic bags containing different powders/crystals, and they were sent for analysis along with urine and stomach content to the toxicology laboratory. An easy and rapid sample preparation technique was applied for the extraction of urine and stomach content. Samples were extracted with liquid-liquid extraction (LLE) technique and analysed using gas chromatography-mass spectrometry (GC-MS). A small amount of powder material from the bags was diluted in methanol and injected directly into the GC-MS instrument. Obtained spectra (EI) were evaluated against SWGDRUG library. Five different designer drugs were identified in the powder material, including synthetic cannabinoids (AB-CHMINACA, AB-FUBINACA) and synthetic cathinones (alpha-PHP, alpha-PVP and 4-CMC). With the exception of 4-CMC, all of these substances were also detected in the stomach content along with the prescription drugs. This is the first time that a positive identification of these five drugs has been made by a clinical laboratory in Slovenia.

  18. Seismic engineering 1995. PVP-Volume 312

    SciTech Connect

    Ma, D.C.; Suzuki, K.; Aggrawal, M.L.

    1995-12-31

    The 55 papers contained in this volume are divided into the following topical sections: Plastic response of piping and components; International symposium on seismic engineering; Advanced seismic analysis methods; Appropriate criteria and methods for seismic design of nuclear piping (forum); Structural reliability, PRA, and seismic adequacy; and Seismic response control and damping technologies in Japan. Papers have been processed separately for inclusion on the data base.

  19. Seismic engineering -- 1996. PVP-volume 340

    SciTech Connect

    Saleem, M.A.; Aggarwal, M.C.

    1996-12-01

    The 37 papers in this volume have been arranged under the following topical sections: advanced methods in seismic engineering (7 papers); high level dynamic response of piping systems (5); equipment seismic qualification (6); soil structure interaction (3); advanced seismic technology in Asian countries (8); developments in seismic codes and standards (8); and a panel discussion on the review of current issues by the Special Working Group on seismic rules. Papers have been processed separately for inclusion on the data base.

  20. Fatigue and fracture -- 1996: Volume 2. PVP-Volume 324

    SciTech Connect

    Yoon, K.K.; Bhandari, S.; Bloom, J.M.; Mehta, H.; Wilkowski, G.

    1996-12-01

    Fatigue and fracture mechanics are very important topics in addressing aging and maintenance aspects of power plants where pressure vessels and piping technologies are applied most. The papers contained in this volume deal primarily with fracture mechanics. This volume has four sections. The section on basic fracture covers new areas of fracture mechanics. There is also a section on material fracture toughness, a section on failure assessment diagram method user experience with four application-type papers, and finally a section on vessels, which contains a large number of papers on subjects such as the master curve method, the shallow flaw, the local approach, Alloy 600 cracking issue, and validation of the fracture mechanics method by large experiments. Separate abstracts were prepared for 30 papers in this volume.

  1. Structures under extreme loading conditions -- 1996. PVP-Volume 325

    SciTech Connect

    Shin, Y.S.; Zukas, J.A.

    1996-12-31

    High-energy excitations are a continuing challenge to experimental, analytical, and computational approaches for learning the behavior of materials and structures under extreme loading conditions. Problems involving underwater explosions and their effects on structures lead off this volume. These are followed by problems traditionally falling in the category of structural dynamics: the buckling and large plastic deformation of structures and structural elements subjected to intense, short-duration distributed or localized loads. As load intensity increases and both load duration and response times decrease, analyses using wave propagation concepts become important. The focus shifts to the local response of the material at the load point rather than the global response of the structure. Many papers herein present experimental, analytical, and numerical solutions to problems of blast and impact loading on diverse structures or structural elements. Others deal with techniques required to generate such loading in the laboratory and the instrumentation required to establish loading conditions and measure response characteristics. This broad coverage of topics should make this a valuable volume for those working in shock and impact loading, high rate material behavior, penetration and perforation, and also hypervelocity impact. Separate abstracts were prepared for some papers in this volume.

  2. Natural hazard phenomena and mitigation -- 1996. PVP-Volume 330

    SciTech Connect

    Chang, S.J.; Wang, C.Y.; Chen, W.W.; Mok, G.C.; Lin, C.W.

    1996-12-01

    This volume contains paper to be presented in five sessions under the title Natural Hazard Phenomena and Mitigation at the 1996 Joint ASME/ICPVT Pressure vessel and Piping Conference held July 21--26, 1996 in Montreal, Quebec, Canada. Three areas are presented in this volume: seismic design and design criteria, impact and dynamic load designs, and structural designs. Papers have been processed separately for inclusion on the data base.

  3. Flow-induced vibration -- 1996. PVP-Volume 328

    SciTech Connect

    Pettigrew, M.J.; Paidoussis, M.P.; Weaver, D.S.; Au-Yang, M.K.

    1996-12-01

    Although much progress has been made in the last three decades, flow-induced vibration is still the cause of many costly failures in nuclear power plants and process industries. Reasonable design guidelines have been developed to avoid flow-induced problems at the design stage of some areas. However, much work remains to be done in other areas such as two-phase flow-induced vibration, fretting-wear damage prediction, and acoustically induced piping vibration. Hopefully, this Symposium is a significant contribution to understanding vibration excitation mechanisms and to avoiding flow-induced vibration problems. Separate abstracts were prepared for all 45 papers in this volume.

  4. Fluid-structure interaction -- 1996. PVP-Volume 337

    SciTech Connect

    Wang, C.Y.; Ma, D.C.; Shin, Y.W.; Kulak, R.F.; Chang, F.C.; Kaneko, S.; Brochard, D.; Moody, F.J.

    1996-12-01

    This special volume contains papers on various topics of interest to the pressure vessel and piping industries. These papers are presented in nine sessions covering three topics. The titles of these three sessions are: (1) fluid-structure interaction and structural mechanics; (2) sloshing and fluid-structure interaction; and (3) transient thermal hydraulics, heat transfer, and coupled vessel-piping structural response. Separate abstracts were prepared for most of the papers in this volume.

  5. Flow-induced vibration -- 1994. PVP-Volume 273

    SciTech Connect

    Au-Yang, M.K.; Fujita, K.

    1994-01-01

    Flow-induced vibration is a subject of practical interest to many engineering disciplines, including the power generation, process, and petrochemical industries. In the nuclear industry, flow-induced vibration reaches a higher level of concern because of safety issues and the huge cost associated with down time and site repair. Not surprisingly, during the last 25 years a tremendous amount of effort has been spent in the study of flow-induced vibration phenomena related to nuclear plant components, notably nuclear steam generator tube banks and nuclear fuel bundles. Yet, in spite of this concentrated effort, the industry is still not free from flow-induced vibration-related problems. This explains why in this volume almost half of the papers address the issue of cross-flow induced vibration in tube bundles, with applications to the nuclear steam generator and nuclear fuel bundles in mind. Unlike 10 or 15 years ago, when flow-induced vibration studies almost always involved experimentation and empirical studies, the advent of high-speed computers has enabled numerical calculation and simulation of this complex phenomenon to take place. Separate abstracts were prepared for 27 papers in this volume.

  6. Flow-induced vibration 1995. PVP-Volume 298

    SciTech Connect

    Pettigrew, M.J.; Au-Yang, M.K.; Fujita, K.

    1995-12-01

    Flow-induced vibration is still the cause of many costly component failures in both nuclear power plants and process industries. Although much progress has been made in the last 30 years, much work remains to be done in such areas as two-phase flow-induced vibration and fretting-wear damage prediction. Many problems can now be avoided at the design stage, others are still elusive. Better understanding of fluid-structure interactions and appropriate design tools are required. The content of this volume is hopefully another significant step in this direction. The study of flow-induced vibration involves many disciplines, such as dynamics, fluid mechanics, experimental techniques, numerical analysis, and data processing. Most papers are concerned with either tube arrays or piping systems. Separate abstracts were prepared for most of the papers in the book.

  7. Fatigue and fracture -- 1996: Volume 1. PVP-Volume 323

    SciTech Connect

    Mehta, H.S.; Bhandari, S.; Jones, D.; Rahman, S.; Wilkowski, G.; Yoon, K.K.

    1996-12-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The papers presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in five sections: (1) fatigue and fracture: piping and components; (2) fatigue and fracture: environmental cracking; (3) leak-before-break analyses; (4) fatigue testing and analyses; and (5) probabilistic fracture mechanics analyses in pressure boundary components. Separate abstracts were prepared for most of the papers in this volume.

  8. Seismic, shock, and vibration isolation 1995. PVP-Volume 319

    SciTech Connect

    Mok, G.C.; Chung, H.H.; Lin, C.W.; Fujita, S.; Ishida, K.; Suzuki, K.; Karim-Panahi, K.

    1995-12-01

    The papers in this publication cover a wide range of subjects: reviews of the current state of the art practice and regulations of seismic isolation; analyses of measured and predicted isolated-structure response to real and hypothetical earthquake; the development, testing, and quality control of isolators; the determination of seismic loadings for the design and analysis of isolated structures; and the application of isolation for seismic protection of civil structures, industrial facilities, and nuclear power plants. As an indication of the increasing acceptance of seismic isolation in the building industry, a large number of applications to buildings appear in this publication. There are also a few papers describing new isolation system designs. The experiences and information described in this publication about well-established isolation system designs will guide the future development of the new systems. The editors believe that seismic isolation is an emerging technology which has not yet realized its` full potential. Through such exchanges, new ideas and new consensus will form to advance the state of the technology. Papers have been processed separately for inclusion on the data base.

  9. Recertification and stress classification issues. PVP-Vol. 277

    SciTech Connect

    Petrinec, J.N. Jr.; Garic, G.; Jones, D.P.; Becht, C. IV

    1994-01-01

    A primary objective of the Design and Analysis Committee of the ASME Pressure Vessels and Piping Division is to disseminate information and advance current theories and practices in design and analysis of pressure vessels and components. This volume includes the following topics: (1) maintenance issues in aerospace ground support systems; (2) space flight pressure vessel issues; (3) stress classification for code primary stress limits; and (4) inelastic and severe accident analysis. Separate abstracts were prepared for 13 papers in this volume.

  10. Dynamic fracture, failure, and deformation. PVP-Volume 300

    SciTech Connect

    Nishioka, T.; Epstein, J.S.

    1995-11-01

    The papers in this volume represent the state of the art in the dynamic response of solids, theoretically, computationally, and experimentally. Separate abstracts were prepared for 21 paper in this book.

  11. Computer technology -- 1996: Applications and methodology. PVP-Volume 326

    SciTech Connect

    Hulbert, G.M.; Hsu, K.H.; Lee, T.W.; Nicholas, T.

    1996-12-01

    The primary objective of the Computer Technology Committee of the ASME Pressure Vessels and Piping Division is to promote interest and technical exchange in the field of computer technology, related to the design and analysis of pressure vessels and piping. The topics included in this volume are: analysis of bolted joints; nonlinear analysis, applications and methodology; finite element analysis and applications; and behavior of materials. Separate abstracts were prepared for 23 of the papers in this volume.

  12. High pressure technology 1995. PVP-Volume 297

    SciTech Connect

    Lees, W.A.; Picqueur, L.

    1995-11-01

    The ASME conferences and in particular, the High Pressure sessions, have always encouraged participation from overseas contributors. This has greatly assisted the development of high pressure technology. This book is divided into the following topical sections: (1) design; (2) materials and testing; (3) applications and analysis; and (4) failure analysis and testing safety. Separate abstracts were prepared for some of the papers in this book.

  13. Measurement of Ultraviolet Radiation Exposure Using Methylene Blue and PvP

    NASA Astrophysics Data System (ADS)

    Deantonio, Michael

    2004-10-01

    This study was performed to create a device that can detect UV radiation levels in an attempt to lower the skin cancer rates in the Southwest United States. An Ultraviolet sensitive dye was combined with a polymer and the absorption was measured. With the help of Dr. Mike DeAntonio and Dr. Amanda Ellis, the students at Mesilla Valley Christain School did the experiments and recorded data on the UV absorption. This method was found to enable the public to monitor Ultraviolet absorption on the skin. And so, it is expected to reduce the rate of skin cancer. The students entered this project into a nation-wide competition called E-Cybermission and received a prize for second place in the Southwest Region.

  14. Electromechanical resonator based on electrostatically actuated graphene-doped PVP nanofibers

    NASA Astrophysics Data System (ADS)

    Fardindoost, S.; Mohammadi, S.; Iraji zad, A.; Sarvari, R.; Shariat Panahi, S. P.; Jokar, E.

    2013-04-01

    In this paper we present experimental results describing electrical readout of the mechanical vibratory response of graphene-doped fibers by employing electrical actuation. For a fiber resonator with an approximate radius of 850 nm and length of 100 μm, we observed a resonance frequency around 580 kHz with a quality factor (Q) of about 2511 in air at ambient conditions. Through the use of finite element simulations, we show that the reported frequency of resonance is relevant. We also show that the resonance frequency of the fiber resonators decreases as the bias potential is increased due to the electrostatic spring-softening effect.

  15. Light responsive thin films of micelles of PS-b-PVP complexed with diazophenol chromophore

    NASA Astrophysics Data System (ADS)

    Saiz, Luciana M.; Oyanguren, Patricia A.; José Galante, María; Zucchi, Ileana A.

    2014-02-01

    We have incorporated push-pull azobenzene units into diblock-copolymer micelles by supramolecular assembly. Specifically, we encapsulated a phenol-functionalized chromophore, DO13, within PS-b-P4VP micelles in toluene by means of H-bond interactions developed between DO13 molecules and pyridine groups of P4VP block. The solutions were spin-coated onto glass substrates resulting in multi- or mono-layered thin films of micelles with P4VP(DO13) core and PS corona. We show that the use of DO13 as a building block of micellar aggregates allowed us to manipulate the developed nanostructures. Spherical to cylindrical micellar transition was found when we increased the degree of chromophore complexation. Also, it was found that the polymer concentration in the solution plays an important role in determining the micellar nanostructures. The chain extension and change in composition of the P4VP core in the presence of the chromophore may be responsible for the structural changes observed in the micelles. The optical properties of the thin films have been investigated focusing on the effect of the micellar morphology over the photoinduced birefringence. The optical anisotropy (Δn) increased with respect to the analogous homogeneous system P4VP(DO13), indicating that the protective micelle environment can enhance the optical properties of the embedded chromophores significantly. Furthermore, we show very interesting new results in which we have related changes in optical properties to the film morphology (spheres to cylinders). This can be exploited for producing optical devices having improved optoelectronic properties and stability.

  16. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-6. Structural dynamics

    SciTech Connect

    Chen, S.S.

    1985-01-01

    Structural dynamics is important in the design and assessment of pressure vessels and piping components. Extensive studies on the subject are being continued to enhance understanding of response characteristics, develop new/improved analytical, numerical and experimental techniques, and provide more reliable design guidelines. This volume contains thirty-seven papers covering a wide variety of topics. The structural components considered vary from fueling machines to snubbers; the excitation studied include seismic, acoustic, jet impact, etc.; and the advanced methods presented cover system identification, probabilistic techniques, nonlinear analysis, and novel experimental techniques.

  17. Developments in pressure vessels and piping 1995. PVP-Volume 301

    SciTech Connect

    Petrinec, J.N. Jr.; Aggarwal, M.; Becht, C. IV; Bond, C.B.; Dermenjian, A.A.; Fisher, H.D.; Kobayashi, H.; Williams, D.K.

    1995-11-01

    A primary objective of the Design and Analysis Committee of the ASME Pressure Vessels and Piping Division is to disseminate information and advanced current theories and practices in design and analysis of pressure vessels and components. This volume is comprised of papers presented at the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference, July 23--27 in Honolulu, Hawaii. The topics included are: power plant piping and supports; piping dynamics; expansion joints; dynamic response of structures; and stress intensification factors and stress classification. Papers have been processed separately for inclusion on the data base.

  18. Plant systems/components aging management 1995. PVP-Volume 316

    SciTech Connect

    Kisisel, I.T.; Narayanan, T.V.; Sinnappan, J.; Bond, C.B.

    1995-12-01

    The range of subjects covered by this volume is indicative of the multi-dimensional nature of the aging management concept. The contents encompass programmatic aspects in relation to maintenance management, reactor pressure vessel life topics, condition monitoring, material testing, thermal stratification effects, and specific component related issues. The failure modes considered include erosion, corrosion, fatigue, fracture, creep and creep rupture. These topics should be of interest to many branches of plant engineering and management, as well as to research and development groups. Separate abstracts were prepared for individual papers.

  19. Plant systems/components aging management -- 1996. PVP-Volume 332

    SciTech Connect

    Kisisel, I.T.; Peterson, D.; Sinnappan, J.

    1996-12-31

    The range of subjects covered by this volume is indicative of the multidimensional nature of the aging management concept. The contents encompass programmatic aspects in relation to maintenance management and optimization, failure assessment and life prediction methods, quantification of effects of reduced inspection and surveillance, pressure vessel life topics, probabilistic approaches applicable to aging and life prediction, material testing, and specific component-related issues. The failure modes considered include fatigue, fracture, creep, and creep rupture. These topics should be of interest to many branches of plant engineering and management, as well as to research and development groups. Separate abstracts were prepared for all papers in this volume.

  20. Fatigue and fracture mechanics in pressure vessels and piping. PVP-Volume 304

    SciTech Connect

    Mehta, H.S.; Wilkowski, G.; Takezono, S.; Bloom, J.; Yoon, K.; Aoki, S.; Rahman, S.; Nakamura, T.; Brust, F.; Yoshimura, S.

    1995-11-01

    Fracture mechanics and fatigue evaluations are an important part of the structural integrity analyses to assure safe operation of pressure vessels and piping components during their service life. The paper presented in this volume illustrate the application of fatigue and fracture mechanics techniques to assess the structural integrity of a wide variety of Pressure Vessels and Piping components. The papers are organized in six sections: (1) fatigue and fracture--vessels; (2) fatigue and fracture--piping; (3) fatigue and fracture--material property evaluations; (4) constraint effects in fracture mechanics; (5) probabilistic fracture mechanics analyses; and (6) user`s experience with failure assessment diagrams. Separate abstracts were prepared for most of the papers in this book.

  1. Structural integrity, NDE, risk and material performance for petroleum, process and power. PVP-Volume 336

    SciTech Connect

    Prager, M.; Bagnoli, D.L.; Warke, W.R.; Anyewuenyi, O.A.; Smith, J.P.; Chen, M.; DePadova, T.A.; Weingart, L.J.

    1996-12-01

    This volume continues a series at the 1996 Pressure Vessels and Piping Conference on the theme Service Experience in the Petroleum Industry. There is much to be gained from evaluating the performance of components after service in hostile environments. The lessons learned relate to the adequacy of design margins. Where deterioration is attributed to wet hydrogen sulfide, hydrogen attack of high temperature, the suitability of degraded materials for continuing service must be closely monitored and or life prediction tools enhanced. This volume provides numerous case histories, strategies, practical examples and theoretical approaches. For example, work on elevated temperature behavior herein discloses principles for establishing design margins and also, how off-nominal conditions in tubes and piping may shorten life. Papers in this volume are arranged under the following topics: service experience in petrochemical plants; risk-based inspection; NDE issues in the petroleum industry; high temperature service in the petroleum industry; tankage analysis and standards; and finite element analysis applications for the process industries. Most papers have been processed separately for inclusion on the data base.

  2. Transport and storage of radioactive materials -- 1996. PVP-Volume 334

    SciTech Connect

    Carlson, R.W.; Hafner, R.S.; Lake, W.H.

    1996-12-01

    The design of packagings for the transport of radioactive materials is a constantly evolving activity due primarily to new materials, new design approaches, and a better understanding of the regulations. The papers included here were prepared to address engineering or regulatory issues associated with the transport or storage of radioactive materials. However, the subject matter can also have applications to solutions for problems in other areas. Separate abstracts were prepared 6 papers.

  3. NDE engineering codes and standards and materials characterization. PVP-Volume 322; NDE-Volume 15

    SciTech Connect

    Cook, J.F. Sr.; Cowfer, D.C.; Monahan, C.C.

    1996-12-31

    The primary objective of the NDE Engineering Division is to provide a forum for the dissemination of information on advances in NDE and the effectiveness of NDE as applied to engineering components and structures. This volume is divided into the following sections: Codes and Standards and NDE; nondestructive evaluation of physical attributes; and nondestructive evaluation of materials degradation. Separate abstracts were prepared for most papers in this volume.

  4. Pressure vessel fracture, fatigue, and life management: PVP-Volume 233

    SciTech Connect

    Bhandari, S.; Milella, P.P.; Pennell, W.E.

    1992-01-01

    This volume contains papers relating to the structural integrity assessment of pressure vessels and piping, with special emphasis on the effects of aging. The papers are organized in the following five areas: (1) pressure vessel life management; (2) fracture characterization using local and dual-parameter approaches; (3) stratification and thermal fatigue; (4) creep, fatigue, and fracture; and (5) integrated approach to integrity assessment of pressure components. Separate abstracts were prepared for 39 papers in this conference.

  5. Pressure vessels and piping codes and standards: Volume 1. PVP-Volume 338

    SciTech Connect

    Esselman, T.C.; Adams, T.M.; Bhavnani, D.; Cofie, N.G.; Jones, D.P.; Olson, D.E.; Thailer, H.J.

    1996-12-01

    The role of Codes and Standards for pressure vessels and piping has increased significantly over the past decade. More and more, developments in Codes and Standards are accommodating the increasing sophistication of analysis methods, the need to address post-construction and operating plant issues, and the efficiencies that may be gained by focusing codes and standards on the areas that present the greatest risk. Codes and Standards for new construction also have had to accommodate greater challenges and more extreme environments imposed by more escalating requirements on piping and pressure vessel design and fabrication. This volume on Codes and Standards has focused on these challenges faced by Codes and Standards development. The topics in this volume include: (1) Socket Welds and Stress Intensification Factors; (2) Developments in Piping Code and Standards; (3) Root Cause Analysis; (4) B31.1 Code Developments and Applications; (5) Flow-Accelerated Corrosion Developments and Applications; (6) Advanced Analysis Methods and the ASME Code; and (7) Application of Advanced Analysis Methods for ASME Code Evaluation. Separate abstracts were prepared for most of the papers in this volume.

  6. Transient thermal hydraulics, heat transfer, and coupled vessel and piping responses. PVP-Volume 311

    SciTech Connect

    Shin, Y.W.; Chang, F.C.; Madarame, H.; Moody, F.J.; Katze, D.

    1995-12-01

    This symposium addresses subjects involving transient fluid dynamics and heat transfer, their effects on structural responses, and fluid-structure interactions. The papers presented in this symposium discuss fluid transients, shock pressures, fluid forces giving rise to structural vibrations, chaotic system of two-phase flows, heat transfer, and other related subjects. Periodic or oscillating flows leading to steady as well as unstable vibrations are discussed. Analytical methods, including simple models suitable for conservative safety analyses, are presented. In addition, papers discussing experimental as well as numerical results are presented. Separate abstracts were prepared for most of the papers in this conference.

  7. Pressure vessels and piping codes and standards: Volume 2. PVP-Volume 339

    SciTech Connect

    Esselman, T.C.; Balkey, K.; Chao, K.K.N.; Gosselin, S.; Hollinger, G.; Lubin, B.T.; Mohktarain, K.; O`Donnell, W.; Rao, K.R.

    1996-12-01

    The role of Codes and Standards for pressure vessels and piping has increased significantly over the past decade. More and more, developments in Codes and Standards are accommodating the increasing sophistication of analysis methods, the need to address post-construction and operating plant issues, and the efficiencies that may be gained by focusing codes and standards on the areas that present the greatest risk. Codes and Standards for new construction also have had to accommodate greater challenges and more extreme environments imposed by more escalating requirements on piping and pressure vessel design and fabrication. This volume has focused on these challenges faced by Codes and Standards development. The topics in this volume include: (1) International Code Developments; (2) Seismic Developments in Codes and Standards; (3) Fabrication, Repairs, and Installation Issues Relating to Codes and Standards; (4) Application of Risk Based Criteria to In-Service Inspections; (5) Risk Based Codes and Standards; (6) The Code--Then and Now; (7) Reactor Water Fatigue: Fitness for Service; and (8) Two ASME Pressure Technology Code Issues: Post-Construction Codes and Metrication. Separate abstracts were prepared for most of the papers in this volume.

  8. Aging management of fossil-fired plants of Electricite de France: PVP maintenance aspects

    SciTech Connect

    Thoraval, G.

    1995-12-01

    The generation mix of EDF comprises 17,000 MW of fossil-fired units, the ages of which go from 10 to 32 years. Extensive studies have been launched in 1994, inside the Company, to determine: (1) prospects of needs of the grid (domestic/exports); (2) prospects of possible competition in generation field; (3) environmental aspects and possible evolution; (4) adaptation of management of men and organizations; and (5) management of condition of equipment through maintenance policy. This paper focuses on the last item, spotted on pressure vessels and piping. The question is: How to conserve the ``patrimony`` for very long term, with lowest costs to keep it competitive in its very specific role? Several items are examined: (1) the background, the different programs of retrofitting, refurbishment and life extension; (2) conservation during outages, and mothballing procedures and experience; (3) design review, actual design life expectancy; (4) analysis of aging mechanisms through experience feedback; (5) determination of critical components, analysis of their condition, periodical updating; (6) maintenance adaptation, extensive condition-monitored maintenance approach: use of existing probes and data, development of new devices and skills; (7) policy of progressive replacement of worn-out and potentially dangerous components; examples concerning generic problems; (8) management of requirements of pressure vessels regulations; (9) adaptation of spare parts policy; and (10) research and development needed by life management.

  9. Transient thermal hydraulics, heat transfer, fluid-structure interaction, and structural dynamics. PVP-Vol. 270

    SciTech Connect

    Shin, Y.W.; Wang, C.Y.; Chang, F.C. ); Katze, D.; Moody, F.J.

    1994-01-01

    This symposium addresses transient effects of thermal-hydraulics and heat transfer on structural responses and fluid-structure interactions. Thermal hydraulics, or simply fluid dynamics and heat transfer, in industrial process systems will, in general, generate loads on the structures. Depending on the magnitude and how the structures respond, the feedback effects on the thermal hydraulics may become significant and special consideration would be required. In such situations, thermal hydraulics analysis, independent of the structural dynamics analysis, or vice versa, would be undesirable and often the fluid-structure interaction becomes a necessary consideration. This publication volume presents a collection of papers addressing various aspects of these topics. Separate abstracts were prepared for 21 papers in this conference.

  10. Residual stresses in design, fabrication, assessment and repair. PVP-Volume 327

    SciTech Connect

    Warke, R.W.; Dong, P.; Dermenjian, A.

    1996-12-01

    Residual stresses introduced during fabrication, particularly those induced by welding processes, are often a significant concern in the structural integrity of pressure vessels and piping. They are rarely treated explicitly in design, and unrealistically conservative assumptions regarding their distribution are commonly adopted in flaw assessment practice. In recent years there has been renewed interest in understanding their development and true influence on structural integrity. This has been enabled by increases in computational power and innovations in modeling and measurement. Improvements in the sophistication and accuracy of traditional methods (e.g., sectioning and hole-drilling) have also been observed. Recent progress in the application of these techniques and new insights into the mechanisms of residual stress development are reflected by the various papers in this volume. The subject matter has been categorized as follows: (1) modeling techniques; (2) measurement techniques; (3) structural integrity effects; (4) residual stresses in repair welds; and (5) residual stresses in pressure vessels. Separate abstracts were prepared for most papers in this volume.

  11. Pressure vessels and piping design, analysis, and severe accidents. PVP-Volume 331

    SciTech Connect

    Dermenjian, A.A.

    1996-12-31

    The primary objective of the Design and Analysis Committee of the ASME Pressure Vessels and Piping Division is to provide a forum for the dissemination of information and the advancement of current theories and practices in the design and analysis of pressure vessels, piping systems, and components. This volume is divided into the following six sections: power plant piping and supports 1--3; applied dynamic response analysis; severe accident analysis; and student papers. Separate abstracts were prepared for 22 papers in this volume.

  12. Structural integrity of pressure vessels, piping, and components -- 1995. PVP-Volume 318

    SciTech Connect

    Chung, H.H.; Ezekoye, L.I.; Fujita, K.; Garic, G.; Goodling, E.C.

    1995-11-01

    The following subjects are covered in this book: pressure vessels and storage tanks; pipes and piping systems; structural design, analysis, and integrity assessment; pipe supports and restraints; pumps and valves; and aerospace pressure systems. Separate abstracts were prepared for most of the individual papers.

  13. Fluid sloshing and fluid-structure interaction 1995. PVP-Volume 314

    SciTech Connect

    Ma, D.C.; Tani, J.; Brochard, D.; Fujita, K.

    1995-11-01

    In recognition of the importance of fluid sloshing and fluid-structure interaction, the 1995 Joint ASME/JSME Pressure Vessels and Piping Conference, held July 23--27 in Honolulu, Hawaii, has organized five technical sessions in various technical areas of fluid sloshing and fluid-structure interaction. This volume contains the twenty-one papers presented in the five sessions. The subjects cover sloshing suppression submerged components, flow-induced sloshing, waste storage tanks, spent fuel facilities, fluid-piping interaction, added mass, etc. This publication is a direct result of continuing interests and cooperation in the research and development concerning fluid sloshing and fluid-structure interaction between the American and Japanese Society of Mechanical Engineers. Papers have been processed separately for inclusion on the database.

  14. Single molecule detection using SERS study in PVP functionalized Ag nanoparticles

    NASA Astrophysics Data System (ADS)

    Garg, Parul; Dhara, S.

    2013-02-01

    Non-spherical functionalized Ag nanoparticles (NPs) with homogenous size ˜ 40 nm have been grown using soft chemical route. Solution of silver nitrate and polyvinylpyrrolidone is reduced in excess of ethylene glycol for the preparation of the NPs. Substrates has been prepared by dip coating of the NPs on c-Si for Raman studies. Rhodamine (R6G) is used as a test molecule to study the surface enhanced Raman spectroscopy (SERS) effect. A single molecule detection of R6G along with an enhancement factor of ˜ 4×103 orders of magnitude in the intensity, for the concentration as low as 10-12 M using polymer coated Ag NPs as SERS substrates, has been achieved.

  15. Fatigue and crack growth: Environmental effects, modeling studies, and design considerations. PVP-Volume 306

    SciTech Connect

    Yukawa, S.; Jones, D.P.; Mehta, H.S.

    1995-12-31

    The papers in this volume are divided into two sections. Section one papers focus on recent test and evaluation results pertaining to the effect of light-water reactor (LWR)-type water environments on fatigue and crack growth properties of pressure boundary materials. Section two papers include consideration of other aspects of fatigue behavior and the characterization and the determination of the effects of aging and degradation in materials. Separate abstracts were prepared for most of the individual papers.

  16. Effect of Hemorrhage on Cardiac Output, PVP, Alodosterone and Diuresis during Immersion in Men

    NASA Technical Reports Server (NTRS)

    Simanonok, K.; Greenleaf, John E.; Bernauer, E. M.; Wade, C. E.; Keil, L. C.

    1990-01-01

    The purpose of this study was to test the hypothesis that a reduction in blood volume would attenuate or eliminate immersion-induced increases in cardiac output (Q (sup dot) sub co)) and urine excretion, and to investigate accompanying vasoactive and fluid-electrolyte hormonal responses.

  17. Nanostructured Drugs Embedded into a Polymeric Matrix: Vinpocetine/PVP Hybrids Investigated by Debye Function Analysis.

    PubMed

    Hasa, Dritan; Giacobbe, Carlotta; Perissutti, Beatrice; Voinovich, Dario; Grassi, Mario; Cervellino, Antonio; Masciocchi, Norberto; Guagliardi, Antonietta

    2016-09-01

    Microcrystalline vinpocetine, coground with cross-linked polyvinylpyrrolidone, affords hybrids containing nanosized drug nanocrystals, the size and size distributions of which depend on milling times and drug-to-polymer weight ratios. Using an innovative approach to microstructural characterization, we analyzed wide-angle X-ray total scattering data by the Debye function analysis and demonstrated the possibility to characterize pharmaceutical solid dispersions obtaining a reliable quantitative view of the physicochemical status of the drug dispersed in an amorphous carrier. The microstructural properties derived therefrom have been successfully employed in reconciling the enigmatic difference in behavior between in vitro and in vivo solubility tests performed on nanosized vinpocetine embedded in a polymeric matrix. PMID:27428180

  18. Structural and optical properties of PVP-capped nanocrystalline ZnxCd1-xS solid solutions

    NASA Astrophysics Data System (ADS)

    Askari, Mina; Soltani, Nayereh; Saion, Elias; Yunus, W. Mahmood Mat; Maryam Erfani, H.; Dorostkar, Mahdi

    2015-05-01

    Nanocrystalline ZnxCd1-xS solid solutions were prepared in a microwave-assisted hydrothermal process with gradient distribution of components (x = 0.1, 0.3, 0.5, 0.7, and 0.9). The growth of the cubic-structured quantum dots was observed for all component stoichiometries with the crystallite size between 4.5 and 5.7 nm. The obvious peak shifts have been found in the XRD patterns and the lattice parameters showed linear variation with x increasing. The evolution of the optical properties of obtained solid solutions including absorption and photoemission was also monitored in detail. The solid solutions show a considerable shift in the nanoparticle optical absorption edge from 482 to 343 nm with the increasing of Zn fraction. The band gaps of the solid solutions were estimated to be between 2.94 and 3.40 eV and the position of conduction band was shifted toward more negative potential with x increasing. The photoluminescence spectra showed a broad blue-green emission spreading up to 600 nm with emergence of three dominant peaks belong to sulfur, zinc, and cadmium vacancies.

  19. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-9. Piping, feedwater heater operations and pumps

    SciTech Connect

    Hollinger, G.L.

    1985-01-01

    This Volume, Piping, Feedwater Heater Operation, and Pumps is the ninth of nine Proceedings Volumes of technical papers published for the Pressure Vessels and Piping Conference, held June 23 through 27, 1985 in New Orleans, Louisiana. The contributions are made through the Presssure Vessel and Piping Operations, Application, and Components Committee and the Nuclear Engineering Pressure Vessels and Piping Committee. Albeit absent from the title of the volume, the common theme is the industrial application of design, analysis, and testing of pressure vessel and piping components. Each of the papers in this volume focuses upon practical application of design, analysis, operation, maintenance, and testing of specific components - this is not to imply that all else is impractical. Rather, the important concept is the link that must exist between the design and analysis of a component and its operation, maintenance, and testing. Three components are represented in this manner herein: Piping, with 22 papers in three session. Feedwater Heaters, with 11 papers in two sessions. Pumps, with 5 papers in one session.

  20. Service experience, structural integrity, severe accidents, and erosion in nuclear and fossil plants. PVP-Volume 303

    SciTech Connect

    Paterson, S.R.; Bamford, W.H; Geraets, L.H.; Okazaki, M.; Cipolla, R.C.; Cowfer, C.D.; Means, K.H.

    1995-12-01

    The objective of this symposium was to disseminate information on service degradation and its prevention. Papers have been divided into the following topical sections: Service experience in nuclear plants; DOE high-level waste tank structural integrity panel--Summary reports; Severe accidents; Service experience in operating fossil power plants; and Erosion. Papers have been processed separately for inclusion on the data base.

  1. Service experience and design in pressure vessels and piping (including high pressure technology). PVP-Volume 335

    SciTech Connect

    Bamford, W.H.; Cohn, M.J.; Cipolla, R.C.; Swindeman, R.W.; Nickel, H.; Burns, D.J.

    1996-12-01

    This volume is divided into the following four sessions: (1) Service Experience in Nuclear Plants; (2) Service Experience in Fossil Plants; (3) High Temperature Structural Materials; and (4) Design and Analysis of High Pressure Vessels. Separate abstracts were prepared for most of the papers in this volume.

  2. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-8. Fracture, fatigue and advanced mechanics

    SciTech Connect

    Short, W.E.; Zamrik, S.Y.

    1985-01-01

    State-of-the-art engineering practices in pressure vessel and piping technology are the result of continual efforts in the evaluation of problems which have been experienced and the development of appropriate design and analysis methods for those applications. The resulting advances in technology benefit industry with properly engineered, safe, cost-effective pressure vessels and piping systems. To this end, advanced study continues in specialized areas of mechanical engineering such as fracture mechanics, experimental stress analysis, high pressure applications and related material considerations, as well as advanced techniques for evaluation of commonly encountered design problems. This volume is comprised of current technical papers on various aspects of fracture, fatigue and advanced mechanics as related to the design and analysis of pressure vessels and piping.

  3. International pressure vessels and piping codes and standards. Volume 2: Current perspectives; PVP-Volume 313-2

    SciTech Connect

    Rao, K.R.; Asada, Yasuhide; Adams, T.M.

    1995-12-01

    The topics in this volume include: (1) Recent or imminent changes to Section 3 design sections; (2) Select perspectives of ASME Codes -- Section 3; (3) Select perspectives of Boiler and Pressure Vessel Codes -- an international outlook; (4) Select perspectives of Boiler and Pressure Vessel Codes -- ASME Code Sections 3, 8 and 11; (5) Codes and Standards Perspectives for Analysis; (6) Selected design perspectives on flow-accelerated corrosion and pressure vessel design and qualification; (7) Select Codes and Standards perspectives for design and operability; (8) Codes and Standards perspectives for operability; (9) What`s new in the ASME Boiler and Pressure Vessel Code?; (10) A look at ongoing activities of ASME Sections 2 and 3; (11) A look at current activities of ASME Section 11; (12) A look at current activities of ASME Codes and Standards; (13) Simplified design methodology and design allowable stresses -- 1 and 2; (14) Introduction to Power Boilers, Section 1 of the ASME Code -- Part 1 and 2. Separate abstracts were prepared for most of the individual papers.

  4. Sloshing, fluid-structure interaction and structural response due to shock and impact loads 1994. PVP-Vol. 272

    SciTech Connect

    Ma, D.C. ); Shin, Y.S.; Brochard, D.; Fujita, K.

    1994-01-01

    This volume is comprised of papers presented in two symposia at the 1994 ASME Pressure Vessels and Piping Conference. These sessions, sponsored by the Fluid-Structure Interaction and Seismic Engineering Technical Committees, provided a forum for the discussion of recent advances in sloshing, fluid-structure interaction, and structural dynamics produced by high energy excitations. The papers presented at the four technical sessions on Sloshing and Fluid-Structure Interaction represent a broad spectrum of fluid-structure systems: sloshing, fluid-structure interaction, and dynamic and seismic response of various fluid-structure systems such as reactor components, liquid storage tanks, submerged structures and piping systems, etc. The paper presented at the session on Structural Dynamics Produced by High-Energy Excitations cover underwater explosion effects on submerged structures, bubble loading phenomena, finite element mesh refinements on failure predictions, penetration and impact problems, and dynamic design of blast containment vessels. Also included are numerical analysis, design, and testing to understand difficult transient response phenomena. Separate abstracts were prepared for 24 papers in this volume.

  5. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-2. Pressure vessel components design and analysis

    SciTech Connect

    Gawaltney, R.C.

    1985-01-01

    There are seven sessions covered in this book on Pressure Vessel Components Design and Analysis. The papers are divided into the following six subject areas: composites, valves, tubesheets, pressure vessels and piping, bolted flanges, and nonlinear computational methods. The design procedures and analysis methods described in this book are not discussed previously. The engineers working in the field of pressure vessel design can only keep up with current developments in these areas by reviewing a substantial amount of technical literature. A goal of this book is to help in this endeavor by offering selected papers in the area by authors who are experienced and distinguished workers in their fields.

  6. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-7. Fluid-structure dynamics

    SciTech Connect

    Ma, D.C.; Moody, F.J.

    1985-01-01

    Fluid-structure dynamics is an important subject in various fields such as nuclear power, petrochemical, offshore, and aerospace industries. The term ''fluid-structure dynamics'' covers the structural response, fluid transients and their interactions (fluid-structure interactions) of fluid-structure systems can be either: (1) fluid contained within structures; or (2) structures surrounded by fluid. Examples of (1) are pressure waves in piping and seismic response of liquid-storage tanks. Examples of (2) are fluid-induced vibration and dynamic response of submerged components. The response of fluid-structure systems can be either vibrational in nature or highly transient depending on the characteristics of external loadings. The aim of this volume is to provide a forum for bringing together recent research activities in various areas of fluid-structure dynamics. It is hoped that this volume will be beneficial for future research and upgrade the current analysis and design methodology of fluid-structure systems under dynamic loadings.

  7. International pressure vessels and piping codes and standards. Volume 1: Current applications; PVP-Volume 313-1

    SciTech Connect

    Rao, K.R.; Asada, Yasuhide; Brown, J.

    1995-12-01

    The topics in this volume include: (1) water hammer and other transient loads: causes and prevention; (2) thermal stratification; (3) fatigue, fracture, and stress intensification factors; (4) leak before break technology: international applications; (5) failure/fracture mechanics; (6) crack growth and fatigue in reactor water; (7) improvement of manufacturing and maintenance technology; and (8) advanced analysis methods and the ASME Code. Separate abstracts were prepared for individual papers in this book.

  8. Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing

    PubMed Central

    Adomavičiūtė, Erika; Stanys, Sigitas; Žilius, Modestas; Juškaitė, Vaida; Pavilonis, Alvydas; Briedis, Vitalis

    2016-01-01

    Antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anticancer activities of propolis and its ability to stimulate the immune system and promote wound healing make it a proper component for wound dressing materials. Silver nanoparticles are recognized to demonstrate strong antiseptic and antimicrobial activity; thus, it also could be considered in the development of products for wound healing. Combining propolis and silver nanoparticles can result in improved characteristics of products designed for wound healing and care. The aim of this study was to formulate electrospun fast dissolving mats for wound dressing containing propolis ethanolic extract and silver nanoparticles. Produced electrospun nano/microfiber mats were evaluated studying their structure, dissolution rate, release of propolis phenolic compounds and silver nanoparticles, and antimicrobial activity. Biopharmaceutical characterization of electrospun mats demonstrated fast release of propolis phenolic compounds and silver nanoparticles. Evaluation of antimicrobial activity on Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Bacillus cereus, and Candida albicans strains confirmed the ability of electrospun mats to inhibit the growth of the tested microorganisms. PMID:26981531

  9. Transformation of PVP coated silver nanoparticles in a simulated wastewater treatment process and the effect on microbial communities

    PubMed Central

    2013-01-01

    Background Manufactured silver nanoparticles (AgNPs) are one of the most commonly used nanomaterials in consumer goods and consequently their concentrations in wastewater and hence wastewater treatment plants are predicted to increase. We investigated the fate of AgNPs in sludge that was subjected to aerobic and anaerobic treatment and the impact of AgNPs on microbial processes and communities. The initial identification of AgNPs in sludge was carried out using transmission electron microscopy (TEM) with energy dispersive X-ray (EDX) analysis. The solid phase speciation of silver in sludge and wastewater influent was then examined using X-ray absorption spectroscopy (XAS). The effects of transformed AgNPs (mainly Ag-S phases) on nitrification, wastewater microbial populations and, for the first time, methanogenesis was investigated. Results Sequencing batch reactor experiments and anaerobic batch tests, both demonstrated that nitrification rate and methane production were not affected by the addition of AgNPs [at 2.5 mg Ag L-1 (4.9 g L-1 total suspended solids, TSS) and 183.6 mg Ag kg -1 (2.9 g kg-1 total solids, TS), respectively]. The low toxicity is most likely due to AgNP sulfidation. XAS analysis showed that sulfur bonded Ag was the dominant Ag species in both aerobic (activated sludge) and anaerobic sludge. In AgNP and AgNO3 spiked aerobic sludge, metallic Ag was detected (~15%). However, after anaerobic digestion, Ag(0) was not detected by XAS analysis. Dominant wastewater microbial populations were not affected by AgNPs as determined by DNA extraction and pyrotag sequencing. However, there was a shift in niche populations in both aerobic and anaerobic sludge, with a shift in AgNP treated sludge compared with controls. This is the first time that the impact of transformed AgNPs (mainly Ag-S phases) on anaerobic digestion has been reported. Conclusions Silver NPs were transformed to Ag-S phases during activated sludge treatment (prior to anaerobic digestion). Transformed AgNPs, at predicted future Ag wastewater concentrations, did not affect nitrification or methanogenesis. Consequently, AgNPs are very unlikely to affect the efficient functioning of wastewater treatment plants. However, AgNPs may negatively affect sub-dominant wastewater microbial communities. PMID:23497481

  10. Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing.

    PubMed

    Adomavičiūtė, Erika; Stanys, Sigitas; Žilius, Modestas; Juškaitė, Vaida; Pavilonis, Alvydas; Briedis, Vitalis

    2016-01-01

    Antibacterial, antiviral, antifungal, antioxidant, anti-inflammatory, and anticancer activities of propolis and its ability to stimulate the immune system and promote wound healing make it a proper component for wound dressing materials. Silver nanoparticles are recognized to demonstrate strong antiseptic and antimicrobial activity; thus, it also could be considered in the development of products for wound healing. Combining propolis and silver nanoparticles can result in improved characteristics of products designed for wound healing and care. The aim of this study was to formulate electrospun fast dissolving mats for wound dressing containing propolis ethanolic extract and silver nanoparticles. Produced electrospun nano/microfiber mats were evaluated studying their structure, dissolution rate, release of propolis phenolic compounds and silver nanoparticles, and antimicrobial activity. Biopharmaceutical characterization of electrospun mats demonstrated fast release of propolis phenolic compounds and silver nanoparticles. Evaluation of antimicrobial activity on Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Proteus vulgaris, Bacillus subtilis, Bacillus cereus, and Candida albicans strains confirmed the ability of electrospun mats to inhibit the growth of the tested microorganisms.

  11. The role of physico-chemical and bulk characteristics of co-spray dried L-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures.

    PubMed

    Mangal, Sharad; Meiser, Felix; Lakio, Satu; Morton, David; Larson, Ian

    2015-02-20

    In this study, polyvinylpyrrolidone (PVP) was spray dried with l-leucine (PVP-Leu) to create a prototype multifunctional interactive excipient. The physico-chemical and bulk properties such as particle size, surface composition, surface energy and bulk cohesion of PVP-Leu was measured and compared against pure spray dried PVP (PVP-SD). The mixing behaviour of these excipients and their effect on flow and binder activity of paracetamol was assessed. The mean particle sizes of PVP-Leu PVP-SD and PVP were 2.5, 2.1 and 21.9μm, respectively. Surface composition characterization indicated that l-leucine achieved higher concentrations on the surface compared to the bulk of the PVP-Leu particles. The surface energy of PVP-Leu was significantly lower compared to PVP-SD. In addition, PVP-Leu exhibited a significantly lower bulk cohesion compared PVP-SD. The excipients were blended with paracetamol and qualitative characterization indicated that PVP-Leu blended more homogeneously with paracetamol compared to PVP-SD. Both PVP-Leu and PVP-SD then exhibited a significantly improved binder activity compared to PVP. The flow of the paracetamol was markedly improved with PVP-Leu while PVP-SD and PVP had negligible effect on its flow. This study reveals how physico-chemical and bulk properties of such prototype interactive excipients can play a key role in determining multi-factorial excipient performance.

  12. Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts.

    PubMed

    Domingues, Joana A L; Bonelli, Nicole; Giorgi, Rodorico; Fratini, Emiliano; Gorel, Florence; Baglioni, Piero

    2013-02-26

    Water-based detergent systems offer several advantages, over organic solvents, for the cleaning of cultural heritage artifacts in terms of selectivity and gentle removal of grime materials or aged varnish, which are known to alter the readability of the painting. Unfortunately, easel paintings present specific characteristics that make the usage of water-based systems invasive. The interaction of water with wood or canvas support favors mechanical stresses between the substrate and the paint layers leading to the detachment of the pictorial layer. In order to avoid painting loss and to ensure a fine control (layer by layer) of grime removal, water-based cleaning systems have been confined into innovative chemical hydrogels, specifically designed for cleaning water-sensitive cultural heritage artifacts. The synthesized hydrogels are based on semi-interpenetrating chemical poly(2-hydroxyethyl methacrylate)/poly(vinylpyrrolidone) networks with suitable hydrophilicity, water retention properties, and required mechanical strength to avoid residues after the cleaning treatment. Three different compositions were selected. Water retention and release properties have been studied by quantifying the amount of free and bound water (from differential scanning calorimetry); mesoporosity was obtained from scanning electron microscopy; microstructure from small angle X-ray scattering. To demonstrate both the efficiency and versatility of the selected hydrogels in confining and modulating the properties of cleaning systems, a representative case study is presented. PMID:23331023

  13. 3D Hierarchical Bi2S3 Nanostructures by Polyvinylpyrrolidone (PVP) and Chloride Ion-Assisted Synthesis and Their Photodetecting Properties

    NASA Astrophysics Data System (ADS)

    Ding, Taotao; Dai, Jiangnan; Xu, Juan; Wang, Jin; Tian, Wu; Huo, Kaifu; Fang, Yanyan; Chen, Changqing

    2015-07-01

    A solvothermal method has been employed to synthesize bismuth sulfide (Bi2S3) with three-dimensional (3D) hierarchical architectures. The influences of different types of surfactants and Cl- species on the size and morphology were investigated. A possible formation mechanism was also proposed on the basis of time-dependent experiments. The photoresponse properties show that the conductivity of Bi2S3 micro-flowers is significantly enhanced and the photocurrent is approximately two orders of magnitude larger than the dark current. The response and decay times are estimated to be 142 and 151 ms, respectively. It is expected that hierarchical architectures Bi2S3 may provide a new pathway to develop advanced nanomaterial for high-speed and high-sensitivity photoelectrical switches and photodetecting devices.

  14. Anti-leukemia activity of PVP-coated silver nanoparticles via generation of reactive oxygen species and release of silver ions.

    PubMed

    Guo, Dawei; Zhu, Lingying; Huang, Zhihai; Zhou, Haixia; Ge, Yue; Ma, Wenjuan; Wu, Jie; Zhang, Xiuyan; Zhou, Xuefeng; Zhang, Yu; Zhao, Yun; Gu, Ning

    2013-10-01

    Silver nanoparticles (AgNPs) have anti-cancer effect. However, whether and how these particles could inhibit the growth of acute myeloid leukemia (AML) cells is unclear. In the present study, we prepared AgNPs with various sizes and investigated their cytotoxic effect on AML cells. We found that AgNPs could inhibit the viability of AML cells including the isolates from AML patients. AgNPs caused the production of reactive oxygen species (ROS), losses of mitochondrial membrane potential (MMP), DNA damage and apoptosis. Both vitamin C (Vit C) and N-acetyl-L-cysteine (NAC) could completely reverse the generation of ROS upon AgNPs, however only NAC but not Vit C could protect the cells from losses of MMP, DNA damage and apoptosis thoroughly. Similar results were obtained when cells were treated with silver ions alone. As NAC was not only an antioxidant to scavenge ROS but also a silver ion chelator, these data supported the model that both generation of ROS and release of silver ions played critical roles in the AgNPs-induced cytotoxic effect against AML cells. Taken together, this work elucidated the cytotoxic effect of AgNPs on AML cells and their underlying mechanism and might have significant impact on AML treatment.

  15. The amazing effects and role of PVP on the crystallinity, phase composition and morphology of nickel ferrite nanoparticles prepared by thermal treatment method

    NASA Astrophysics Data System (ADS)

    Goodarz Naseri, Mahmoud; Saion, Elias; Khalil Zadeh, Nasrin

    2013-04-01

    Nickel ferrite nanocrystals were prepared from an aqueous solution containing metal nitrates and various concentrations of poly(vinylpyrrolidone) followed by calcination temperature. X-ray diffraction (XRD) analysis was performed to determine the degree of crystallinity of the ferrite nanoparticles. By transmission electron microscopy, the morphology and average particle size of the nickel ferrite nanoparticles were evaluated which had good agreement with the XRD results. Fourier transform infrared spectroscopy suggested the presence of metal oxide bands in all samples as well as the effective elimination of organic constituents after calcinations. Measurements of the extent of magnetization of the nickel ferrite nanoparticles synthesized in different concentrations were obtained at room temperature using a vibrating sample magnetometer.

  16. Natural hazard phenomena and mitigation -- 1995; PVP-Volume 308. DOE facilities programs/design criteria and methods for: Impact, wave, high frequency, and seismic loads

    SciTech Connect

    Lin, C.W.; Wang, C.Y; Chang, S.J.; Chen, W.W.; Mok, G.C.; Murray, R.C.

    1995-12-01

    The intent of this volume is to carry forward the tradition of publishing a single bound volume in each Pressure Vessel and Piping Conference to serve as the focal point for researchers and engineers in state-of-the-art development in natural hazard phenomena and mitigation, particularly relating to the engineering activities conducted at various waste facilities. There are 45 papers in this volume, the majority being contributed by the National Laboratories. Topics include: codes and standards requirements for seismic evaluation and isolation of DOE facilities; response functions of mechanical structures to dynamic loading, including reactors, safety systems, radioactive waste tanks, steam generators, pipelines, offshore platforms, and power transmission lines; seismology; soil-structure interactions; methods for seismic analysis; and neural networks for seismic control. Papers have been processed separately for inclusion on the data base.

  17. Symposium on ASME codes and recent advances in PVP and valve technology including a survey of operations research methods in engineering

    SciTech Connect

    Fong, J.T.; Hollinger, G.L.; Gowda, B.; Ezekoye, L.I.; Levary, R.R.

    1986-01-01

    This book presents the papers given at a symposium on the design and engineering of reactor pressure vessels, pipes and valves. Topics considered at the symposium included computer-aided fatigue design methods for weldments, the propagation of defects under PWR loading conditions, the fatigue of welded joints in elevated-temperature nuclear components, the design of a bolted flange subjected to severe nuclear system thermal transients, and operations research methods.

  18. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-1. Residual-life assessment, nondestructive examination, and nuclear heat exchanger materials

    SciTech Connect

    Jaske, C.E.

    1985-01-01

    This volume contains a series of related papers that are part of a Symposium on Residual-Life Assessment in Pressure Vessels and Piping Systems, papers from two sessions on nondestructive examination and inspection of pressure vessel and piping systems, and papers from a session on materials for use in nuclear heat exchangers. The papers discuss important issues that must be addressed in using pressure vessel and piping materials and in fabricating pressure vessel and piping components. Materials properties - creep strength, fracture toughness, tensile strength, fatigue strength, and crack-growth rate - are covered both from the viewpoint of initial design and from the viewpoint of assessment of remaining operational life. The relationship of microstructural constituents to those properties as a function of service exposure is included. New methods for nondestructive examination and field inspection of pressure-boundary components are described, with emphasis on automated and microprocessor controlled inspection equipment. The importance of designing pressure vessel and piping systems for inspection and reliability as part of an overall ''retirement-for-cause'' approach is emphasized.

  19. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-4. Seismic performances of pipelines and storage tanks

    SciTech Connect

    Singhal, A.C.; Ariman, T.

    1985-01-01

    The seismic performance of lifeline components is a relatively new area of interest which has attracted an ever increasing number of researchers in the past few years. Lifelines are critical systems used to transport energy, water, power and to provide voice and data communications. This publication deals primarily with the seismic performance of buried pipelines and storage tanks. The purpose of this section of the Pressure Vessels and Piping Division Conference is to provide a forum for the discussion of the recent developments in lifeline earthquake engineering related to pipelines and storage used for water, chemicals, oil and gas. Papers are presented in the following topics: (i) Pipeline Response to Large Ground Movements; (ii) Seismic Performance of Lifeline Components; (iii) Lifeline Systems Response to Earthquake; (iv) Dynamic Soil-Structure Interaction; (v) Seismic Response and Analysis of Pipelines.

  20. Proceedings of the 1985 pressure vessels and piping conference. Volume PVP-98-3. Recent advances in seismic design of piping and components

    SciTech Connect

    Liu, T.H.

    1985-01-01

    In the past fifteen years, seismic design of systems and components has drawn a lot of attention. This is particularly true in the case of nuclear power plant applications. This attention, in many cases, has been translated into a rather conservative and strict design practice so that the system or components have an ample reserve margins. However, the pendulum of the increasing restrictive design has been swinging back in the last few years, with respect to piping system design. Conservatively generated seismic loads, conservative analysis models, and conservative criteria and methods have led to a more rigid system design, which has been found to be not only very costly, but also less reliable. With this in mind, the industry is motivated to seek new alternatives in the seismic design. A great deal of effort has been devoted in finding the answers to the following questions: Is the operating basis earthquake necessary. Where can we remove the unnecessary conservatism in the current design practice. How realistic is the current design in comparison with the field observed test data. What new criteria and/or methods should be developed in order to achieve more realistic and balanced design. This volume of proceedings represents some 38 selected papers which provides most of the discussions to the above questions.

  1. Integrity of structures, and fluid systems, hazardous release protection, piping and pipe supports, and pumps and valves. PVP-Volume 333

    SciTech Connect

    Chung, H.H.; Brown, S.J.; Goodling, E.C. Jr.; Ezekoye, L.I.

    1996-12-01

    A primary objective of the Operations, Applications, and Components (OAC) Committee of the ASME Pressure Vessels and Piping Division is to disseminate information and advance current theories and practices in pressure vessels, steam generators, heat exchangers, piping and pipe supports, pump and valves, and other components. The topics included in this volume are: (1) integrity of structures and fluid systems; (2) pipe supports, restraints, and other pressure piping components; (3) hazardous release protection; and (4) pumps and valves. Separate abstracts were prepared for most of the papers in this volume.

  2. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea.

  3. Virus-induced gene silencing of PEAM4 affects floral morphology by altering the expression pattern of PsSOC1a and PsPVP in pea.

    PubMed

    Chen, Zhe-Hao; Jia, Fei-Fei; Hu, Jiang-Qin; Pang, Ji-Liang; Xu, Lei; Wang, Li-Lin

    2014-01-15

    pea-MADS4 (PEAM4) regulates floral morphology in Pisum sativum L., however, its molecular mechanisms still remain unclear. Virus-induced gene silencing (VIGS) is a recently developed reverse genetic approach that facilities an easier and more rapid study of gene functions. In this study, the PEAM4 gene was effectively silenced by VIGS using a pea early browning virus (PEBV) in wild type pea JI992. The infected plants showed abnormal phenotypes, as the floral organs, especially the sepals and petals changed in both size and shape, which made the corolla less closed. The petals changed in morphology and internal symmetry with, the stamens reduced and carpel dehisced. Larger sepals and longer tendrils with small cauline leaves appeared, with some sepals turning into bracts, and secondary inflorescences with fused floral organs were formed, indicating a flower-to-inflorescence change. The infected plants also displayed a delayed and prolonged flowering time. The PEAM4-VIGS plants with altered floral morphology were similar to the pim (proliferating inflorescence meristem) mutant and also mimicked the phenotypes of ap1 mutants in Arabidopsis. The expression pattern of the homologous genes PsSOC1a and PsSVP, which were involved in flowering time and florescence morphological control downstream of PEAM4, were analyzed by real-time RT-PCR and mRNA in situ hybridization. PsSOC1a and PsSVP were ectopically expressed and enhanced in the floral meristems from PEAM4-silenced plants. Our data suggests that PEAM4 may have a similar molecular mechanism as AtAP1, which inhibits the expression of PsSOC1a and PsSVP in the floral meristem from the early stages of flower development. As such, in this way PEAM4 plays a crucial role in maintaining floral organ identity and flower development in pea. PMID:24331430

  4. Innovative hydrogels based on semi-interpenetrating p(HEMA)/PVP networks for the cleaning of water-sensitive cultural heritage artifacts.

    PubMed

    Domingues, Joana A L; Bonelli, Nicole; Giorgi, Rodorico; Fratini, Emiliano; Gorel, Florence; Baglioni, Piero

    2013-02-26

    Water-based detergent systems offer several advantages, over organic solvents, for the cleaning of cultural heritage artifacts in terms of selectivity and gentle removal of grime materials or aged varnish, which are known to alter the readability of the painting. Unfortunately, easel paintings present specific characteristics that make the usage of water-based systems invasive. The interaction of water with wood or canvas support favors mechanical stresses between the substrate and the paint layers leading to the detachment of the pictorial layer. In order to avoid painting loss and to ensure a fine control (layer by layer) of grime removal, water-based cleaning systems have been confined into innovative chemical hydrogels, specifically designed for cleaning water-sensitive cultural heritage artifacts. The synthesized hydrogels are based on semi-interpenetrating chemical poly(2-hydroxyethyl methacrylate)/poly(vinylpyrrolidone) networks with suitable hydrophilicity, water retention properties, and required mechanical strength to avoid residues after the cleaning treatment. Three different compositions were selected. Water retention and release properties have been studied by quantifying the amount of free and bound water (from differential scanning calorimetry); mesoporosity was obtained from scanning electron microscopy; microstructure from small angle X-ray scattering. To demonstrate both the efficiency and versatility of the selected hydrogels in confining and modulating the properties of cleaning systems, a representative case study is presented.

  5. Effect of antigravity suit inflation on cardiovascular, PRA, and PVP responses in humans. [Plasma Renin Activity and Plasma VasoPressin

    NASA Technical Reports Server (NTRS)

    Kravik, S. E.; Keil, L. C.; Geelen, G.; Wade, C. E.; Barnes, P. R.

    1986-01-01

    The effects of lower body and abdominal pressure, produced by antigravity suit inflation, on blood pressure, pulse rate, fluid and electrolyte shift, plasma vasopressin and plasma renin activity in humans in upright postures were studied. Five men and two women stood upright for 3 hr with the suit being either inflated or uninflated. In the control tests, the suit was inflated only during the latter part of the trials. Monitoring was carried out with a sphygnomanometer, with sensors for pulse rates, and using a photometer and osmometer to measure blood serum characteristics. The tests confirmed earlier findings that the anti-g suit eliminates increases in plasma renin activity. Also, the headward redistribution of blood obtained in the tests commends the anti-g suit as an alternative to water immersion or bed rest for initial weightlessness studies.

  6. Efficacy of a Solution Composed by Verbascoside, Polyvinylpyrrolidone (PVP) and Sodium Hyaluronate in the Treatment of Chemotherapy-induced Oral Mucositis in Children With Acute Lymphoblastic Leukemia.

    PubMed

    Bardellini, Elena; Amadori, Francesca; Schumacher, Richard Fabian; D'Ippolito, Carmelita; Porta, Fulvio; Majorana, Alessandra

    2016-10-01

    The aim of this study was to assess the efficacy of a solution composed by verbascoside, polyvinylpyrrolidone, and sodium hyaluronate (Mucosyte) in the treatment of chemotherapy-induced oral mucositi (OM). Patients between 5 and 18 years receiving chemotherapy for acute lymphoblastic leukemia and with OM grade 1 or 2 were randomized in group A (treated with Mucosyte, 3 mouthwashes/d per 8 d) and group B (treated with placebo, ie, an inert water-based solution, 3 mouthwashes/d per 8 d). The OM scoring was performed at day 1 (diagnosis of OM-T0), after 3 days of treatment (T1), and at day 8 (T2). Pain was evaluated through the visual analog scale with the same timing of OM measurement. A total of 56 patients were included (28 patients per group). Group A experienced a statistically significant decline of OM at T2 (P=0.0038); a statistically significant difference in pain reduction between 2 groups both at T1 and at T2 (P<0.005) was observed. The use of Mucosyte mouthwashes in children with chemotherapy-induced OM may be recommended as supportive therapy. PMID:27571124

  7. Complications in Percutaneous Vertebroplasty Associated with Puncture or Cement Leakage

    SciTech Connect

    Baumann, Clemens Fuchs, Heiko; Kiwit, Juergen; Westphalen, Kerstin; Hierholzer, Johannes

    2007-04-15

    Due to the minimally invasive character and excellent clinical outcome of percutaneous vertebroplasty (PVP), the procedure is being performed in greatly increasing numbers. While PVP has a low complication rate in general, severe complications can occur. We focus on the imaging appearance of complications of PVP associated with puncture or cement leakage-from harmless to life-threatening.

  8. Enhancing the quality of transferred single-layer graphene with poly(4-vinylphenol) interlayer on flexible substrates

    NASA Astrophysics Data System (ADS)

    Choi, Yeonhoi; Chun, Sungwoo; Hong, Ahyoung; Ha, Chunho; Park, Wanjun

    2016-06-01

    We report the use of poly(4-vinylphenol) (PVP) as a promising contact surface of transferred graphene, capable of sustaining the original performance found in as-grown graphene. Enhancement of surface tension obtained by O2 plasma treatment of the PVP surface also increases transferred graphene quality. With an easy coating method, PVP can be applied to any flexible substrate as the interlayer to increase transferred graphene quality. Owing to the mechanical flexibility and chemical inertness of PVP, the introduction of a PVP interlayer provides a general method for graphene soft electronics to be integrated into any flexible substrate.

  9. Polyvinylpyrrolidone adsorption effects on the morphologies of synthesized platinum particles and its catalytic activity

    SciTech Connect

    Ooi, Mahayatun Dayana Johan; Aziz, Azlan Abdul

    2015-04-24

    Flower-like Platinum micro-structures were synthesized from different concentration of the PVP using solvothermal method. At 5.0×10{sup −3} mmol of PVP, well-defined flower-like pattern consists of triangular petals radiating from the centre were produced whereas larger flower network developed at higher PVP concentration. High degree of crystallinity was obtained upon each increment of PVP. The well defined flower like pattern synthesized using 5.0×10{sup −3} mmol PVP exhibit the highest catalytic activity and stability towards electro-oxidation of formic acid.

  10. Characteristics of hydrogen bond formation between sugar and polymer in freeze-dried mixtures under different rehumidification conditions and its impact on the glass transition temperature.

    PubMed

    Imamura, Koreyoshi; Asano, Yoko; Maruyama, Yoshinobu; Yokoyama, Tohru; Nomura, Mayo; Ogawa, Seiji; Nakanishi, Kazuhiro

    2008-03-01

    The characteristics of hydrogen bond formation between trehalose and polyvinylpyrrolidone (PVP) in amorphous mixtures at different hydration states were quantitatively investigated. Amorphous trehalose-PVP mixtures were prepared by freeze-drying and equilibrated at different relative humidities (RH). Infrared (IR) spectra of the trehalose-PVP mixtures were obtained by Fourier transform IR spectroscopy,(FTIR) and the IR band corresponding to C=O groups of PVP was deconvolved into the component bands responsible for C=O groups that were free and restricted by hydrogen bonds, to estimate the degree of the trehalose-PVP interactions. The FTIR analysis indicated that approximately 80% of the C=O groups of PVP formed hydrogen bonds with trehalose in the presence of more than 3 g of trehalose per gramme of PVP, independent of the RH. IR analysis of the O--H stretching vibration of the sugar demonstrated that the presence of PVP lead to an increase in the free hydroxyl groups of trehalose that did not form hydrogen bonds at RH 0%. On the other hand, the water sorption behavior of the trehalose-PVP mixtures suggested that rehumidification diminished the effect of PVP on increasing the free OH groups. Thus a peculiar relationship may exist between Tg, RH and the composition of the mixture: The presence of PVP increased Tg at RHs 0 and above 23% but decreased Tg at 11%.

  11. Water vapor absorption into amorphous hydrophobic drug/poly(vinylpyrrolidone) dispersions.

    PubMed

    Crowley, Kieran J; Zografi, George

    2002-10-01

    Water vapor absorption isotherms were measured for three amorphous hydrophobic drug/poly(vinylpyrrolidone) (PVP) dispersions in the concentration range 10-90% w/w PVP. Experimental isotherms were compared to predicted isotherms calculated using each individual component isotherm multiplied by its weight fraction. Indomethacin (IMC)/PVP, ursodeoxycholic acid (UDCA)/PVP and indapamide (IDP)/PVP amorphous dispersions all exhibited experimental isotherms reduced relative to predicted isotherms indicating that dispersion formation altered the water vapor absorption properties of the individual components. For all three drug/PVP systems, deviation from predicted water uptake was greatest close to the 1:1 drug:PVP monomer composition, indicating that intermolecular interaction in amorphous dispersions affects the water uptake properties of the individual components. Using dry glass transition temperature (T(g)) data, the extent of drug/PVP interaction was shown to be greatest in the IDP/PVP system, which could explain why the largest reduction in water vapor absorption was found in this system. The plasticizing effect of absorbed water varied according to dry dispersion PVP content in all systems and the resulting nonideal changes in free volume, calculated using the Vrentas model, were greatest close to the 1:1 drug:PVP monomer composition. A three-component Flory-Huggins model successfully predicted isotherms for IMC/PVP compositions from 60 to 90% w/w PVP and identified an IMC-PVP interaction parameter chi in the range 1.27-1.49, values that suggest poor homogeneity of mixing in the dry system. These data indicate that amorphous dispersion formation causes both chemical and physical changes in the individual amorphous components that can have a significant effect on their water vapor absorption properties.

  12. Surface-enhanced Raman scattering of 4-mercaptobenzoic acid and hemoglobin adsorbed on self-assembled Ag monolayer films with different shapes

    NASA Astrophysics Data System (ADS)

    Zhu, Shuangmei; Fan, Chunzhen; Wang, Junqiao; He, Jinna; Liang, Erjun

    2014-06-01

    Polyvinylpyrrolidone (PVP)-protected silver nanostructures of various shapes, including nanocubes, nanospheres, and hybrid shapes with nanospheres and nanorods, on the surface of glass or Si substrates (PVP-Ag films) are prepared by using electrostatic self-assembly. With 4-mercaptobenzoic acid (4-MBA) as a probe molecule, it is demonstrated that the PVP-protected silver nanocubes films (PVP-Ag NCs) have better surface-enhanced Raman scattering (SERS) activity with an order of magnitude larger enhancement factors (EF) than the PVP-protected silver nanospheres films and the PVP-protected silver hybrid shapes films, which is confirmed by our numerical simulations. The EF of 4-MBA on the PVP-Ag NCs film are up to ~5.38 × 106, and the detection limit is at least down to ~10-8 M. The uniformity and reproducibility of the SERS signals on PVP-Ag NCs film are tested by point-to-point and batch-to-batch measurements. Meanwhile, the PVP-Ag films are also shown to be an excellent SERS substrate with good biocompatibility for hemoglobin detection. It is shown that the PVP-Ag NCs films can be used as excellent SERS substrate with good activity, uniformity, reproducibility, and biocompatibility and are promising for a myriad of chemical and biochemical sensing applications.

  13. Predicting kinetic nanocrystal shapes through multi-scale theory and simulation: Polyvinylpyrrolidone-mediated growth of Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Balankura, Tonnam; Qi, Xin; Zhou, Ya; Fichthorn, Kristen A.

    2016-10-01

    In the shape-controlled synthesis of colloidal Ag nanocrystals, structure-directing agents, particularly polyvinylpyrrolidone (PVP), are known to be a key additive in making nanostructures with well-defined shapes. Although many Ag nanocrystals have been successfully synthesized using PVP, the mechanism by which PVP actuates shape control remains elusive. Here, we present a multi-scale theoretical framework for kinetic Wulff shape predictions that accounts for the chemical environment, which we used to probe the kinetic influence of the adsorbed PVP film. Within this framework, we use umbrella-sampling molecular dynamics simulations to calculate the potential of mean force and diffusion coefficient profiles of Ag atom deposition onto Ag(100) and Ag(111) in ethylene glycol solution with surface-adsorbed PVP. We use these profiles to calculate the mean-first passage times and implement extensive Brownian dynamics simulations, which allows the kinetic effects to be quantitatively evaluated. Our results show that PVP films can regulate the flux of Ag atoms to be greater towards Ag(111) than Ag(100). PVP's preferential binding towards Ag(100) over Ag(111) gives PVP its flux-regulating capabilities through the lower free-energy barrier of Ag atoms to cross the lower-density PVP film on Ag(111) and enhanced Ag trapping by the extended PVP film on Ag(111). Under kinetic control, {100}-faceted nanocrystals will be formed when the Ag flux is greater towards Ag(111). The predicted kinetic Wulff shapes are in agreement with the analogous experimental system.

  14. Interaction between water and poly(vinylpyrrolidone) containing polyethylene glycol.

    PubMed

    Hamaura, T; Newton, J M

    1999-11-01

    Information on the interaction between water and polymers is indispensable for manufacturing solid dispersion of a drug by hot-melt extrusion because this interaction affects various properties of the water-polymer mixtures, such as their viscoelastic properties. In this study, poly(vinylpyrrolidone) K30 (PVP) containing 0%, 10%, and 20% poly(ethylene glycol) 400 (PEG) was used as model amorphous polymers. The interaction of water with these polymers was assessed by the evaluation of the glass transition temperature (Tg), the point on the isotherm corresponding to the weight of sorbed water required to form a complete monolayer on the solid surface (apparent Wm), and the maximal amount of nonfreezing water, which were measured by differential scanning calorimetry and water sorption isotherms. In all of the systems with a water content below a certain water fraction (0.1 for PVP, 0.12 for PVP-PEG 10%, and 0.16 for PVP-PEG 20%), the Tg values were successfully predicted using theoretical equations, whereas the experimental Tg values were higher than predicted for those with a water content above these water fraction levels. In addition, these values of water fraction are similar to the apparent W(m) values determined using the Guggenheim-Anderson-DeBoer (GAB) equation (0.110, 0.117, and 0.147 weight fraction of water for PVP, PVP-PEG 10%, and PVP-PEG 20%, respectively). Nonfreezing water is detected above 0.47, 0.49, and 0.51 weight fraction of water for PVP, PVP-PEG 10%, and PVP-PEG 20%, respectively. Miscibility between water and PVP or PVP-PEG seems to change according to the water content in the system. All parameters increase with the concentration of PEG in the sample. This may be explained by the fact that PEG has a larger number of polymer repeating units, which may therefore interact with water more than PVP.

  15. Chitosan/poly (vinyl pyrollidone) coatings improve the antibacterial properties of poly(ethylene terephthalate)

    NASA Astrophysics Data System (ADS)

    Wang, Bai-liang; Wang, Jin-lei; Li, Dan-dan; Ren, Ke-feng; Ji, Jian

    2012-08-01

    Chitosan/poly (vinyl pyrollidone) (CHI/PVP) coatings were prepared to improve the antibacterial properties of poly (ethylene terephthalate) (PET) by a simple dip-coating method. The binding capability of CHI/PVP coatings was enhanced by successively pretreatment of PET by polyetherimide and polyacrylic acid and crosslinking. Measurements of water contact angle and atomic force microscope revealed that the coatings created a highly hydrophilic surface with low roughness. Adherences of Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) on PET with CHI/PVP coating were significantly reduced. Bactericidal activity of CHI/PVP coatings was good against E. coli and S. aureus and the adding of PVP obviously increased its antiadhesion property. In vitro cytotoxicity tests, cell morphology and activity evaluation of human umbilical vein endothelial cells showed that CHI/PVP coatings had good biocompatibility.

  16. The behavior of acoustic bubbles in aqueous solutions containing soluble polymers.

    PubMed

    Tronson, Rohan; Tchea, Michelle F; Ashokkumar, Muthupandian; Grieser, Franz

    2012-11-26

    The effects of the water-soluble polymer polyvinylpyrrolidone (PVP) on the multibubble sonoluminescence (MBSL) intensity generated in aqueous solutions exposed to ultrasound at the two ultrasound frequencies of 20 and 363 kHz have been examined. In both cases, the presence of PVP, at concentrations of up to 2 g/100 mL, was found to enhance the MBSL intensity emitted from the solutions. On the basis of the intensity behavior of the SL observed from aqueous solutions containing PVP/surfactant and PVP/alcohol mixtures, it is suggested that PVP enhances MBSL by increasing the number of active bubbles in the system by hindering bubble-bubble coalescence processes and probably also by changing the structure of the bubble "clouds" formed at the acoustic antinodes in solution. The influence of PVP on bubble-bubble coalescence rates was also measured to support the interpretation of the MBSL emission experiments.

  17. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications.

    PubMed

    Sun, Wenchao; Araci, Zeynep; Inayathullah, Mohammed; Manickam, Sathish; Zhang, Xuexiang; Bruce, Marc A; Marinkovich, M Peter; Lane, Alfred T; Milla, Carlos; Rajadas, Jayakumar; Butte, Manish J

    2013-08-01

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy.

  18. The permeability of the plasma-lymph barrier of the small intestine of various species to macromolecules.

    PubMed

    Vogel, G; Martensen, I

    1982-03-01

    The filtration coefficients of polyvinylpyrrolidone (PVP) of molecular weight 10,000-110,000 were measured at the plasma-lymph barrier of the upper small intestine of rabbits, rats and cats. For this purpose the animals were given intravenous injections or infusions of PVP in such a way as to produce a constant blood level; PVP concentrations were measured in lymph obtained by cannulating the mesenteric duct and also in the plasma. In these species low molecular weight PVP had a filtration coefficient of 0.85-0.64, while high molecular weight PVP (MW 110,000) either had a very low filtration coefficient - 0.22 - or was not detectable in the intestinal lymph. The three species, representing herbivores, omnivores and carnivores, showed no differences in the penetration behavior of PVP, i.e., in the permeability of the plasma-lymph barrier to macromolecules.

  19. Structural and optical characteristics of silver/poly(N-vinyl-2-pyrrolidone) nanosystems synthesized by γ-irradiation

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Radosavljević, Aleksandra; Šiljegović, Milorad; Bibić, Nataša; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2012-11-01

    Silver nanoparticles (AgNPs) were synthesized in situ by γ-irradiation using poly(N-vinyl-2-pyrrolidone) (PVP) as a capping agent. The concentration, molecular weight and the structure (crosslinked and interpenetrated network) of PVP were varied, in order to determine the influence of the capping agent in the radiolytic synthesis of the Ag/PVP nanosystems. Transmission electron microscopy (TEM) showed that AgNPs obtained from the solutions containing higher PVP concentration and higher molecular weight were spherical in shape, with narrow size distribution and a diameter of˜6 nm, while slightly larger rod-shaped silver agglomerates, with bimodal nanoparticle size distribution and diameters of ˜10 nm and ˜20 nm were obtained from the solutions containing lower PVP concentration and lower molecular weight. Strong plasmon coupling and extending of plasmon resonance was observed by UV-vis spectroscopy, as a result of formation of nanorod-like agglomerates. Crosslinked and interpenetrated network did not affect the structure of synthesized AgNPs. Ag/PVP nanocomposite, in the form of thin film, was obtained by solvent evaporation from Ag/PVP colloid solution with 10 wt% of PVP, and characterized by FTIR spectroscopy. The interactions in Ag/PVP nanocomposite are shown to be the result of the coordination bonding between AgNPs and nitrogen from pyrrolidone ring of PVP. The optical properties of investigated Ag/PVP nanosystems, as measured by the values of optical band gap, Eg, are mainly the consequence of the interparticle distance as a result of the concentration and the structure of surrounding PVP macromolecules.

  20. Harnessing nonlinear rubber swelling for bulk synthesis of anisotropic hybrid nanoparticles† †Electronic supplementary information (ESI) available: The TEM images of control Au–PDVB hybrid nanoparticles formed without the presence of PVP and Au–PS hybrid nanoparticles. See DOI: 10.1039/c4tc01660b Click here for additional data file.

    PubMed Central

    Baumberg, Jeremy J.

    2014-01-01

    Asymmetric hybrid nanoparticles are at the forefront of colloidal chemistry as building blocks for novel structures and applications, as well as for exploring fundamental ways of breaking symmetry in physical systems. Current methods of synthesis have significant limitations in terms of control over synthesis, particle size ranges and polydispersity. We report a facile and scalable synthesis based on the anisotropic swelling of rubber to obtain metal–(polymer rubber) hybrid nanoparticles. Initial Au nanoparticle (NP) seeds are grown larger by reducing HAuCl4 with divinyl benzene (DVB), while simultaneous radical polymerization of DVB forms a cross-linked rubber layer of PDVB on the Au NP surface. The propensity of rubber to swell nonlinearly in the presence of DVB monomers amplifies initial asymmetries to break the symmetry of the PDVB shell, causing growth of asymmetric protrusions on one side of the core–shell particles, which are fixed by further polymerization. Plasmonic absorption of Au allows us to follow the Au reduction reaction and also suggests potential applications of some of the asymmetric particles in plasmon-enhanced sensing. The polydispersity, determined statistically from TEM and SEM images, of the resulting particles is low (<10%) and their sizes, shapes and metal–polymer ratios are easily tunable. PMID:27358735

  1. Polyvinyl pyrrolidone capped fluorescent anthracene nanoparticles for sensing fluorescein sodium in aqueous solution and analytical application for ophthalmic samples.

    PubMed

    Bhopate, Dhanaji P; Mahajan, Prasad G; Garadkar, Kalyanrao M; Kolekar, Govind B; Patil, Shivajirao R

    2015-11-01

    Based on the known complexation ability between polyvinyl pyrrolidone (PVP) and fluorescein sodium (FL Na(+)), fluorescent PVP capped anthracene nanoparticles (PVP-ANPs) were prepared using a reprecipitation method for detection of fluorescein in aqueous solution using the fluorescence resonance energy transfer (FRET) approach. A dynamic light scattering histogram of PVP-ANPs showed narrower particle size distribution and the average particle size was 15 nm. The aggregation-induced enhanced emission (AIEE) of PVP-ANPs was red shifted from its monomer by 1087.22 cm(-1). The maximum emission was seen to occur at 420 nm. The presence of FL Na(+) in the vicinity of PVP-ANPs quenched the fluorescence of PVP-ANPs because of its adsorption on the surface of PVP-ANPs in aqueous suspension. The FL Na(+) and PVP-ANPs were brought close enough, typically to 7.89 nm, which was less than the distance of 10 nm that is required between the energy donor-acceptor molecule for efficient FRET. The quenching results fit into the Stern-Volmer relationship even at temperatures greater than ambient temperatures. The thermodynamic parameters determined from FRET results helped to propose binding mechanisms involving hydrophobic and electrostatic molecular interaction. The fluorescence quenching results were used further to develop an analytical method for estimation of fluorescein sodium from ophthalmic samples available commercially in the market.

  2. Electrospun polyvinyl alcohol-polyvinyl pyrrolidone nanofibrous membranes for interactive wound dressing application.

    PubMed

    Shankhwar, Nisha; Kumar, Manishekhar; Mandal, Biman B; Robi, P S; Srinivasan, A

    2016-01-01

    Cross-linked polyvinyl alcohol (PVA) and polyvinyl pyrrolidone (PVP) composite nanofibrous membranes have been prepared by electrospinning. Mechanical properties of the membranes improved significantly with PVP addition. PVP improved hydrophilicity and sustainable degradation of the membranes. Biocompatibility of the membranes was assessed by in vitro culture of native skin cells (L929 fibroblast and HaCaT keratinocytes). Tests showed sustained release of the antibiotic ciprofloxacin hydrochloride monohydrate by the membranes. Further, zone of inhibition study against Staphylococcus aureus growth demonstrated protective action against external pathogenic microbes. These studies show these simple PVA-PVP nanofibrous membranes are promising interactive antibiotic-eluting wound dressing materials.

  3. Polyvinylpyrrolidone/reduced graphene oxide nanocomposites thin films coated on quartz crystal microbalance for NO2 detection at room temperature

    NASA Astrophysics Data System (ADS)

    Huang, Junlong; Xie, Guangzhong; Zhou, Yong; Xie, Tao; Tai, HuiLing; Yang, Guangjin

    2014-08-01

    Polyvinylpyrrolidone (PVP)/reduced graphene oxide (RGO) nanocomposites are sprayed on quartz crystal microbalance (QCM) for NO2 sensing. The thin films are characterized by Fourier transform infrared spectroscopy (FTIR) and ultraviolet-visible spectroscopy (UV-VIS). The experimental results reveal that PVP/RGO sensor exhibits higher sensitivity and shorter recovery time than those of PVP. Besides, the response to 20 ppm NO2 is higher than other gases such as CO, CO2 and NH3 even at 100ppm. When the PVP/RGO sensor is exposed to these gases, the good selectivity to NO2 makes the sensor ideal for NO2 detection.

  4. Influence of solvent evaporation rate and formulation factors on solid dispersion physical stability.

    PubMed

    Wu, Jian X; Yang, Mingshi; Berg, Frans van den; Pajander, Jari; Rades, Thomas; Rantanen, Jukka

    2011-12-18

    New chemical entities (NCEs) often show poor water solubility necessitating solid dispersion formulation. The aim of the current study is to employ design of experiments in investigating the influence of one critical process factor (solvent evaporation rate) and two formulation factors (PVP:piroxicam ratio (PVP:PRX) and PVP molecular weight (P(MW))) on the physical stability of PRX solid dispersion prepared by the solvent evaporation method. The results showed the rank order of an increase in factors contributing to a decrease in the extent of PRX nucleation being evaporation rate>PVP:PRX>P(MW). The same rank order was found for the decrease in the extent of PRX crystal growth in PVP matrices from day 0 up to day 12. However, after 12days the rank became PVP:PRX>evaporation rate>P(MW). The effects of an increase in evaporation rate and PVP:PRX ratio in stabilizing PRX were of the same order of magnitude, while the effect from P(MW) was much smaller. The findings were confirmed by XRPD. FT-IR showed that PRX recrystallization in the PVP matrix followed Ostwald's step rule, and an increase in the three factors all led to increased hydrogen bonding interaction between PRX and PVP. The present study showed the applicability of the Quality by Design approach in solid dispersion research, and highlights the need for multifactorial analysis. PMID:22024381

  5. Chitosan-cross-linked osmium polymer composites as an efficient platform for electrochemical biosensors.

    PubMed

    Jirimali, Harishchandra Digambar; Nagarale, Rajaram Krishna; Lee, Jong Myung; Saravanakumar, Durai; Shin, Woonsup

    2013-07-22

    A new family of chitosan-cross-linked osmium polymer composites was prepared and its electrochemical properties were examined. The composites were prepared by quaternization of the poly(4-vinylpyridine) osmium bipyridyl polymer (PVP-Os) which was then cross-linked with chitosan, yielding PVP-Os/chitosan. Films made of the composites showed improved mass and electron transport owing to the porous and hydrophilic structure which is derived from the cross-links between the Os polymer and chitosan. The rate for glucose oxidation was enhanced four times when glucose oxidase (GOx) was immobilized on PVP-Os/chitosan compared immobilization on PVP-Os.

  6. Physicochemical and functional characterization of the collagen-polyvinylpyrrolidone copolymer.

    PubMed

    Leyva-Gómez, Gerardo; Lima, Enrique; Krötzsch, Guillermo; Pacheco-Marín, Rosario; Rodríguez-Fuentes, Nayeli; Quintanar-Guerrero, David; Krötzsch, Edgar

    2014-08-01

    Collagen-polyvinylpyrrolidone (C-PVP) is a copolymer that is generated from the γ irradiation of a mixture of type I collagen and low-molecular-weight PVP. It is characterized by immunomodulatory, fibrolytic, and antifibrotic properties. Here, we used various physicochemical and biological strategies to characterize the structure, biochemical susceptibility, as well as its effects on metabolic activity in fibroblasts. C-PVP contained 16 times more PVP than collagen, but only 55.8% of PVP was bonded. Nevertheless, the remaining PVP exerted strong structural activity due to the existence of weak bonds that provided shielding in the NMR spectra. On SEM and AFM, freeze-dried C-PVP appeared as a film that uniformly covered the collagen fibers. Size analysis revealed the presence of abundant PVP molecules in the solution of the copolymer with a unique dimension related to macromolecular combinations. Calorimetric analysis showed that the copolymer in solution exhibited structural changes at 110 °C, whereas the lyophilized form showed such changes at temperatures below 50 °C. The copolymer presented a rheopectic behavior, with a predominant effect of the collagen. C-PVP had biological effects on the expression of integrin α2 and prolyl-hydroxylase but did not interact with cells through the collagen receptors because it did not inhibit or slow contraction.

  7. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    PubMed Central

    Uppalapati, Suji; Kong, Na; Norberg, Oscar; Ramström, Olof; Yan, Mingdi

    2015-01-01

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surface followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution. PMID:26097271

  8. Photovoltaic water pumps, an attractive tool for rural drinking water supply

    SciTech Connect

    Posorski, R.

    1996-10-01

    Photovoltaic water pumps (PVP) are an attractive tool for a rural drinking water supply. An international field testing programme verified the technical maturity of PVP and their reliable field operation. Within well defined site selection criteria, the PVP are competitive with or the least-cost option for replacing small diesel-driven pumps. Introduced to the users through an appropriate community participation concept, the PVP achieved a high level of acceptance by the users, as evidenced by their willingness to pay for the consumed water. 10 refs., 6 figs.

  9. Ionization of covalent immobilized poly(4-vinylphenol) monolayers measured by ellipsometry, QCM and SPR

    NASA Astrophysics Data System (ADS)

    Uppalapati, Suji; Kong, Na; Norberg, Oscar; Ramström, Olof; Yan, Mingdi

    2015-07-01

    Covalently immobilized poly(4-vinylphenol) (PVP) monolayer films were fabricated by spin coating PVP on perfluorophenyl azide (PFPA)-functionalized surfaces followed by UV irradiation. The pH-responsive behavior of these PVP ultrathin films was evaluated by ellipsometry, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR). By monitoring the responses of these films to pH in situ, the ionization constant of the monolayer thin films was obtained. The apparent pKa value of these covalently immobilized PVP monolayers, 13.4 by SPR, was 3 units higher than that of the free polymer in aqueous solution.

  10. Synthesis, characterization and chemistry of platinum and iridium nanoparticles in solution and nanoporous silicas

    NASA Astrophysics Data System (ADS)

    Jagassar, Parbatee Samaroo

    This project focuses on the synthesis of catalytically-active, transition-metal nanoparticles, their adsorption into porous Vycor glass (PVG), the removal of the poly(vinylpyrrolidone) (PVP) surfactant employed in their synthesis and their chemistry with Ru(II) diimine complexes. Platinum and iridium nanoparticles with a narrow size distribution were prepared by the alcohol reduction method with poly(vinylpyrrolidone) (PVP) as the size limiting surfactant. PVP/Pt nanoparticles adsorb into PVG and as much as 46 ± 4% of the PVP can be removed without further nanoparticle aggregation. XANES spectra show that removal of the PVP surfactant occurs without oxidation of the Pt nanoparticle. EXAFS of the adsorbed Pt nanoparticles after removal of the PVP yield a Pt-Pt bond length of 2.74 ± 0.01 Å which is slightly shorter than the Pt-Pt bond length measured in Pt foil, 2.78 Å. We have shown that the Pt nanoparticles, both the stripped and the unstripped of PVP in porous Vycor glass, does not influence their reactivity with either the [Ru(bpy)2 dpp]2+ or the [Ru(bpy)2ppz]2+ complexes. The addition of PVP/Pt or PVP/Ir nanoparticles to aqueous-ethanol solutions of [Ru(bpy)2ppz]2+ (ppz denotes 4,7-phenanthro-lino-5:6,5'6'pyrazine) leads to the spontaneous aggregation of the nanoparticles about the complex. A comparison of the aggregation about different Ru(II) diimines indicates aggregation initiates at the heteroleptic ligand. Although initiating at the ppz ligand, continued aggregation of the nanoparticles about the complex dilutes the specificity of the initial interaction leading to larger aggregates of differing shape. TEM analyses of the aggregates indicate the volume occupied by the individual nanoparticles is a small fraction of the total volume of the aggregate suggesting a somewhat open structure interlaced with the solvent. Correlating TEM analyses of the aggregation with the electronic spectra of the solutions reveals a new absorption assigned to the formation

  11. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    SciTech Connect

    Zhang, Jinyu; Zhou, Guowei Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d{sub 100}), and cell parameter (a{sub 0}) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d{sub 100} and a{sub 0} continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%. - Graphical abstract: Curved rod-shaped mesoporous silica can be obtained at low and the highest PVP concentration, while straight rod-shaped mesoporous silica can be obtained at higher PVP concentration. - Highlights: • Mesoporous silica with morphology evolution from CRMS to SRMS were prepared. • Effects of PVP molecular weight and concentration on silica morphology were studied. • A possible mechanism for the formation of morphology evolution SiO{sub 2} was proposed. • Esterification of lauric acid with 1-butanol catalyzed by immobilized PPL.

  12. Removal of polyvinylpyrrolidone from wastewater using different methods.

    PubMed

    Julinová, Markéta; Kupec, Jan; Houser, Josef; Slavík, Roman; Marusincová, Hana; Cervenáková, Lenka; Klívar, Stanislav

    2012-12-01

    Polyvinylpyrrolidone (PVP) is a frequently used polymer in the pharmaceutical and foodstuff industries. Because it is not subject to metabolic changes and is virtually nondegradable, trace concentrations of PVP are often found in community wastewaters. The literature finds that the partial removal of PVP in wastewater treatment plants probably occurs through sorption. The primary objective of this study was to find an effective method to remove PVP from wastewaters. In this regard, the literature indicates the theoretical potential to use specific enzymes (e.g., gamma-lactamases, amidases) to gradually degrade PVP molecules. Polyvinylpyrrolidone biodegradability tests were conducted using suitable heterogeneous cultures (activated sludge) collected from a conventional wastewater treatment plant, treatment plants connected to a pharmaceutical factory, and using select enzymes. Aerobic biodegradation of PVP in a conventional wastewater environment was ineffective, even after adaptation of activated sludge using the nearly identical monomer 1-methyl-2-pyrrolidone. Another potential method for PVP removal involves pretreating the polymer prior to biological degradation. Based on the results (approximately 10 to 15% biodegradation), pretreatment was partially effective, realistically, it could only be applied with difficulty at wastewater treatment plants. Sorption of PVP to an active carbon sorbent (Chezacarb S), which corresponded to the Langmuir isotherm, and sorption to activated sludge, which corresponded to the Freundlich isotherm, were also evaluated. From these sorption tests, it can be concluded that the considerable adsorption of PVP to activated sludge occurred primarily at low PVP concentrations. Based on the test results, the authors recommend the following methods for PVP removal from wastewater: (1) sorption; (2) application of specific microorganisms; and (3) alkaline hydrolysis, which is the least suitable of the three for use in wastewater treatment

  13. Low dielectric constant-based organic field-effect transistors and metal-insulator-semiconductor capacitors

    NASA Astrophysics Data System (ADS)

    Ukah, Ndubuisi Benjamin

    This thesis describes a study of PFB and pentacene-based organic field-effect transistors (OFET) and metal-insulator-semiconductor (MIS) capacitors with low dielectric constant (k) poly(methyl methacrylate) (PMMA), poly(4-vinyl phenol) (PVP) and cross-linked PVP (c-PVP) gate dielectrics. A physical method -- matrix assisted pulsed laser evaporation (MAPLE) -- of fabricating all-polymer field-effect transistors and MIS capacitors that circumvents inherent polymer dissolution and solvent-selectivity problems, is demonstrated. Pentacene-based OFETs incorporating PMMA and PVP gate dielectrics usually have high operating voltages related to the thickness of the dielectric layer. Reduced PMMA layer thickness (≤ 70 nm) was obtained by dissolving the PMMA in propylene carbonate (PC). The resulting pentacene-based transistors exhibited very low operating voltage (below -3 V), minimal hysteresis in their transfer characteristics, and decent electrical performance. Also low voltage (within -2 V) operation using thin (≤ 80 nm) low-k and hydrophilic PVP and c-PVP dielectric layers obtained via dissolution in high dipole moment and high-k solvents -- PC and dimethyl sulfoxide (DMSO), is demonstrated to be a robust means of achieving improved electrical characteristics and high operational stability in OFETs incorporating PVP and c-PVP dielectrics.

  14. A facile soft template synthesis and characterization of PbHAsO{sub 4} nanocrystals

    SciTech Connect

    Xiu Zhiliang; Lue Mengkai . E-mail: mklu@icm.sdu.edu.cn; Zhou Guangjun; Gu Feng; Zhang Haiping; Xu Dong; Yuan Duorong

    2004-11-02

    Monoclinic lead hydrogen arsenate (LHA) nanocrystals with different crystallization morphologies and crystallite sizes were prepared successfully by a soft template synthesis method in the presence of sodium dodecylbenzenesulfonate (SDBS) or polyvinylpyrrolidone (PVP). The products were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The possible mechanism of SDBS and PVP in the experiment was briefly illustrated.

  15. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) capped silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) and titanium dioxide (TiO2) NPs in marine organisms via marine sediment exposure were investigated. Results from 7-d sedimen...

  16. Toxicity, Bioaccumulation and Biotransformation of Silver Nanoparticles in Marine Organisms.

    EPA Science Inventory

    The toxicity, bioaccumulation and biotransformation of citrate and polyvinylpyrrolidone (PVP) coated silver nanoparticles (NPs) (AgNP-citrate and AgNP-PVP) in marine organisms via marine sediment exposure was investigated. Results from 7-d sediment toxicity tests indicate that Ag...

  17. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/ polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study poly(lactic acid)(PLA) and polyvinylpyrrolidone (PVP) micro and nanofibers mats loaded with copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/ PVP blends contain...

  18. Preparation of an oral acetaminophen film that is expected to improve medication administration: Effect of polyvinylpyrrolidone on physical properties of the film.

    PubMed

    Ito, Ikumi; Ito, Akihiko; Unezaki, Sakae

    2016-01-01

    This study investigated the effect of polyvinylpyrrolidone (PVP) on a film containing carboxymethyl cellulose sodium (CMC) as a matrix to improve surface roughness caused by drug recrystallization. Acetaminophen (AA) was used as the model drug. Recrystallization is a problem encountered during the preparation of films that contain high drug doses, making them difficult to take. A film that does not disintegrate for clinical applications requires a smooth surface, moderate strength and elasticity, and a low level of adhesiveness to facilitate taking of the medication. Addition of PVP to the film formulation made the surface significantly smoother, and it was independent of the compounding method. Smooth films were obtained when the CMC concentration was kept constant and the amount of PVP was increased, but it also increased the adhesiveness and strength, and decreased the elasticity of the films. When high polymer concentration was kept constant and the ratio of CMC and PVP was varied, the films with smaller amounts of PVP tended to have a smoother surface and less adhesiveness. However, when the amount of PVP was reduced, the film strength increased and elasticity decreased. The amount of PVP had a negligible effect on drug dissolution behavior, making it useful for preparation of the AA film. However, it is necessary to determine the compounding method and the PVP load considering the adhesiveness, strength, and elasticity of the films. PMID:27301710

  19. Complexes of poly-N-vinylpyrrolidone with sulfonated tetraphenylporphins

    SciTech Connect

    Kulvelis, Yu. V. Lebedev, V. T.; Toeroek, Gy.; Klyubin, V. V.

    2007-05-15

    The interaction of sulfonated tetraphenylporphins H{sub 2}TPPS{sub 4}(HCl){sub 2} and in CuTPPS{sub 4} with poly-N-vinylpyrrolidone (PVP) is studied using small-angle neutron scattering, dynamic light scattering, visible spectrophotometry, and viscometry. It is shown that porphyrin molecules form complexes with PVP, thus charging the polymeric chain.

  20. Effect of polyvinylpyrrolidone on mesoporous silica morphology and esterification of lauric acid with 1-butanol catalyzed by immobilized enzyme

    NASA Astrophysics Data System (ADS)

    Zhang, Jinyu; Zhou, Guowei; Jiang, Bin; Zhao, Minnan; Zhang, Yan

    2014-05-01

    Mesoporous silica materials with a range of morphology evolution, i.e., from curved rod-shaped mesoporous silica to straight rod-shaped mesoporous silica, were successfully prepared using polyvinylpyrrolidone (PVP) and triblock copolymer as dual template. The effects of PVP molecular weight and concentration on mesoporous silica structure parameters were studied. Results showed that surface area and pore volume continuously decreased with increased PVP molecular weight. Mesoporous silica prepared with PVP K30 also possessed larger pore diameter, interplanar spacing (d100), and cell parameter (a0) than that prepared with PVP K15 and PVP K90. In addition, with increased PVP concentration, d100 and a0 continuously decreased. The mechanism of morphology evolution caused by the change in PVP concentration was investigated. The conversion rate of lauric acid with 1-butanol catalyzed by immobilized Porcine pancreatic lipase (PPL) was also evaluated. Results showed that PPL immobilized on amino-functionalized straight rod-shaped mesoporous silica maintained 50% of its esterification conversion rate even after five cycles of use with a maximum conversion rate was about 90.15%.

  1. Blends and Iodine complexes of starch with other water-soluble polymers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this work, we studied the viscosity and gel formation in the tri-component system, starch/poly(acrylic acid) (PAA), poly(N-vinyl pyrrolidone) (PVP). Starch and poly(acrylic acid) at 5% aqueous solution formed a synergistic mixture at 60/40 ratio. The addition of a small amount of PVP caused the...

  2. Interference of Cerebrospinal Fluid Total Protein Measurement by Povidone-Iodine Contamination

    PubMed Central

    Gounden, Verena; Sacks, David B; Zhao, Zhen

    2014-01-01

    Background A falsely high cerebrospinal fluid (CSF) total protein (TP) result measured by pyrogallol red (PGR) method was suspected to be caused by preparation of the collection site with povidone-iodine (PVP-iodine) solution. Methods CSF TP was evaluated for interference in samples with different final concentrations of PVP-iodine (up to 0.25% PVP and 0.025% iodine) or iodine alone (up to 0.025% iodine) using three methods: PGR, modified biuret and benzethonium chloride (BZTC). Interference exceeding ±20% of the baseline value is considered clinically significant according the criterion defined by College of American Pathologists. Results There was a positive interference with the PGR method and a negative inference for the BZTC method in CSF samples spiked with PVP-iodine. The PVP-iodine (up to 0.25% PVP and 0.025% iodine) did not cause a clinically significant interference with the modified biuret method. PVP alone without iodine caused a positive interference with the PGR method but did not interfere with the modified biuret or the BZTC method. When the samples were spiked with iodine alone, none of the three methods was affected (change < 20%) by iodine concentration up to 0.025%. Conclusions Contamination of CSF specimens with PVP-iodine can lead to interference with CSF TP measurements using PGR or BZTC methods. PMID:25446880

  3. Development and optimization of micro/nanoporous osmotic pump tablets.

    PubMed

    Tuntikulwattana, Siracha; Mitrevej, Ampol; Kerdcharoen, Teerakiat; Williams, Desmond B; Sinchaipanid, Nuttanan

    2010-06-01

    Micro/nanoporous osmotic pump tablets coated with cellulose acetate containing polyvinylpyrolidone (PVP) as pore formers were fabricated. Propranolol hydrochloride was used as a model drug in this study. Formulation optimization based on USP 31 requirements was conducted following a central composite design using a two-level factorial plan involving two membrane variables (pore former and coating levels). Effect of molecular weight of pore former (PVP K30 and PVP K90) was also evaluated. Responses of drug release to the variables were analyzed using statistical software (MINITAB 14). Scanning electron microscopy and atomic force microscopy showed that the pores formed by PVP. The drug release was dependent on the molecular weight and concentration of PVP and the level of coating. The results showed that acceptable 12-h profile could be achieved with only specific range of PVP K30-containing membrane at the defined membrane thickness. However, satisfactory 24-h profile could be accomplished by both PVP K30 and PVP K90-containing membrane at the range and membrane thickness tested. Preparation and testing of the optimized formulation showed a good correlation between predicted and observed values.

  4. Polyvinylpyrrolidone storage disease presenting as pathologic fracture and anemia: report of a case with imprint cytology.

    PubMed

    Huang, Wen-Chih; Chang, Chih-Hung; Tsai, Chien-Chen

    2012-01-01

    Polyvinylpyrrolidone (PVP) storage disease can be caused by local injection and systemic parenteral administration of PVP-containing solutions. PVP has been used as plasma expander, a retardant in certain medicines, components of food additive, and hair care products. High-molecular-weight PVP polymers are prevented from renal excretion and are retained in the reticuloendothelial system. The clinical manifestations include skin lesions and hematologic and orthopedic complications because of bone marrow failure and bony destruction with infiltration of PVP storage histiocytes. Herein, we report a 65-year-old female patient with PVP storage disease presenting as femoral fracture and anemia. In our case, some gelatinous material was noted atthe fracture site, and the initial clinical impression was bony tumor or metastatic lesion. Imprint cytology showed some atypical cells exhibiting foamy cytoplasm and vacuoles. The biopsy specimen revealed that some blue-grayish, vacuolated cells infiltrate in the bone marrow spaces and regional soft tissue near fracture site. The unusual morphology caused a diagnostic dilemma, with the differential diagnosis, including metastatic carcinoma, chordoma, liposarcoma, and hereditary storage disease. The vacuolated cells were positive for CD68, mucicarmine, and Congo red stains, but negative for CK (AE1/AE3) and S-100 protein. Combing the patient's history with long-term intravenous supplement of PVP-containing blood solutions, PVP storage disease involving the bone and regional soft tissue was diagnosed.

  5. Interactions of Polyvinylpyrrolidone with Chlorin e6-Based Photosensitizers Studied by NMR and Electronic Absorption Spectroscopy.

    PubMed

    Hädener, Marianne; Gjuroski, Ilche; Furrer, Julien; Vermathen, Martina

    2015-09-10

    Polyvinylpyrrolidone (PVP) can act as potential drug delivery vehicle for porphyrin-based photosensitizers in photodynamic therapy (PDT) to enhance their stability and prevent porphyrin self-association. In the present study the interactions of PVP (MW 10 kDa) were probed with five different derivatives of chlorin e6 (CE6) bearing either one of the amino acids serine, lysine, tyrosine or arginine, or monoamino-hexanoic acid as substituent. All derivatives of CE6 (xCE) formed aggregates of a similar structure in aqueous buffer in the millimolar range. In the presence of PVP monomerization of all xCE aggregates could be proved by (1)H NMR spectroscopy. xCE-PVP complex formation was confirmed by (1)H NMR T2 relaxation and diffusion ordered spectroscopy (DOSY). (1)H(1)H-NOESY data suggested that the xCE uptake into the PVP polymer matrix is governed by hydrophobic interactions. UV-vis absorption and fluorescence emission bands of xCE in the micromolar range revealed characteristic PVP-induced bathochromic shifts. The presented data point out the potential of PVP as carrier system for amphiphilic derivatives of chlorin e6. The capacity of PVP to monomerize xCE aggregates may enhance their efficiency as possible photosensitizers in PDT.

  6. Adsorption of Polyvinylpyrrolidone and its Impact on Maintenance of Aqueous Supersaturation of Indomethacin via Crystal Growth Inhibition.

    PubMed

    Patel, Dhaval D; Anderson, Bradley D

    2015-09-01

    This study explored the adsorption and crystal growth inhibitory effects of polyvinylpyrrolidone (PVP) on indomethacin crystals in an aqueous medium. A solution depletion method was used to construct adsorption isotherms of PVPs with different molecular weights and N-vinylpyrrolidone onto indomethacin crystals. The affinity for and extent of maximum adsorption of PVP on indomethacin crystals were significantly higher than that of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and the surface of indomethacin. The extent of PVP adsorption onto indomethacin crystals in terms of mg/m(2) was greater for higher molecular weight PVP but less on a molar basis indicating an increased percentage of loops and tails for the higher molecular weight PVP. PVP significantly inhibited the crystal growth of indomethacin at a high degree of supersaturation as compared with N-vinylpyrrolidone, which was attributed to a change in indomethacin crystal growth mechanism leading to a change in the rate limiting step from bulk diffusion to surface integration. Higher molecular weight PVPs are better inhibitors of the crystal growth of indomethacin than lower molecular weight PVPs, which was attributed in part to a greater barrier for surface diffusion of indomethacin provided by a thicker adsorption layer of PVP.

  7. Effects of nanoparticle size on cellular uptake and liver MRI with polyvinylpyrrolidone-coated iron oxide nanoparticles.

    PubMed

    Huang, Jing; Bu, Lihong; Xie, Jin; Chen, Kai; Cheng, Zhen; Li, Xingguo; Chen, Xiaoyuan

    2010-12-28

    The effect of nanoparticle size (30-120 nm) on magnetic resonance imaging (MRI) of hepatic lesions in vivo has been systematically examined using polyvinylpyrrolidone (PVP)-coated iron oxide nanoparticles (PVP-IOs). Such biocompatible PVP-IOs with different sizes were synthesized by a simple one-pot pyrolysis method. These PVP-IOs exhibited good crystallinity and high T(2) relaxivities, and the relaxivity increased with the size of the magnetic nanoparticles. It was found that cellular uptake changed with both size and surface physiochemical properties, and that PVP-IO-37 with a core size of 37 nm and hydrodynamic particle size of 100 nm exhibited higher cellular uptake rate and greater distribution than other PVP-IOs and Feridex. We systematically investigated the effect of nanoparticle size on MRI of normal liver and hepatic lesions in vivo. The physical and chemical properties of the nanoparticles influenced their pharmacokinetic behavior, which ultimately determined their ability to accumulate in the liver. The contrast enhancement of PVP-IOs within the liver was highly dependent on the overall size of the nanoparticles, and the 100 nm PVP-IO-37 nanoparticles exhibited the greatest enhancement. These results will have implications in designing engineered nanoparticles that are optimized as MR contrast agents or for use in therapeutics.

  8. A comparison of spray drying and milling in the production of amorphous dispersions of sulfathiazole/polyvinylpyrrolidone and sulfadimidine/polyvinylpyrrolidone.

    PubMed

    Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Healy, Anne Marie

    2011-04-01

    Formulations containing amorphous active pharmaceutical ingredients (APIs) present great potential to overcome problems of limited bioavailability of poorly soluble APIs. In this paper, we directly compare for the first time spray drying and milling as methods to produce amorphous dispersions for two binary systems (poorly soluble API)/excipient: sulfathiazole (STZ)/polyvinylpyrrolidone (PVP) and sulfadimidine (SDM)/PVP. The coprocessed mixtures were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and intrinsic dissolution tests. PXRD and DSC confirmed that homogeneous glassy solutions (mixture with a single glass transition) of STZ/PVP were obtained for 0.05 ≤ X(PVP) (PVP weight fraction) < 1 by spray drying and for 0.6 ≤ X(PVP) < 1 by milling (at 400 rpm), and homogeneous glassy solutions of SDM/PVP were obtained for 0 < X(PVP) < 1 by spray drying and for 0.7 ≤ X(PVP) < 1 by milling. For these amorphous composites, the value of T(g) for a particular API/PVP ratio did not depend on the processing technique used. Variation of T(g) versus concentration of PVP was monotonic for all the systems and matched values predicted by the Gordon-Taylor equation indicating that there are no strong interactions between the drugs and PVP. The fact that amorphous SDM can be obtained on spray drying but not amorphous STZ could not be anticipated from the thermodynamic driving force of crystallization, but may be due to the lower molecular mobility of amorphous SDM compared to amorphous STZ. The solubility of the crystalline APIs in PVP was determined and the activities of the two APIs were fitted to the Flory-Huggins model. Comparable values of the Flory-Huggins interaction parameter (χ) were determined for the two systems (χ = -1.8 for SDM, χ = -1.5 for STZ) indicating that the two APIs have similar miscibility with PVP. Zones of stability and instability of the amorphous dispersions

  9. Preparation of poly(N-vinylpyrrolidone)-stabilized ZnO colloid nanoparticles

    PubMed Central

    Gutul, Tatyana; Condur, Nadejda; Ursaki, Veaceslav; Goncearenco, Evgenii; Vlazan, Paulina

    2014-01-01

    Summary We propose a method for the synthesis of a colloidal ZnO solution with poly(N-vinylpyrrolidone) (PVP) as stabilizer. Stable colloidal solutions with good luminescence properties are obtained by using PVP as stabilizer in the synthesis of ZnO nanoparticles by a sol–gel method assisted by ultrasound. Nanoparticles with sizes of 30–40 nm in a PVP matrix are produced as a solid product. The colloidal ZnO/PVP/methanol solution, apart from the most intense PL band at 356 nm coming from the PVP, exhibits a strong PL band at 376 nm (3.30 eV) which corresponds to the emission of the free exciton recombination in ZnO nanoparticles. PMID:24778966

  10. Genistein Modified Polymer Blends for Hemodialysis Membranes

    NASA Astrophysics Data System (ADS)

    Chang, Teng; Kyu, Thein; Define, Linda; Alexander, Thomas

    2012-02-01

    A soybean-derived phytochemical called genistein was used as a modifying agent to polyether sulfone/polyvinyl pyrrolidone (PES/PVP) blends to produce multi-functional hemodialysis membranes. With the aid of phase diagrams of PES/PVP/genistein blends, asymmetric porous membranes were fabricated by coagulating in non-solvent. Both unmodified and genistein modified PES/PVP membranes were shown to be non-cytotoxic to the blood cells. Unmodified PES/PVP membranes were found to reduce reactive oxygen species (ROS) levels, whereas the genistein modified membranes exhibited suppression for ˜60% of the ROS levels. Also, the genistein modified membranes revealed significant suppression of pro-inflammatory cytokines: IL-1β, IL-6, and TNF-α. Moreover, addition of PVP to PES showed the reduced trend of platelet adhesion and then leveled off. However, the modified membranes exhibited suppression of platelet adhesion at low genistein loading, but beyond 15 wt%, the platelet adhesion level rised up.

  11. Fabrication of Pt nanoparticle incorporated polymer nanowires by high energy ion and electron beam irradiation

    NASA Astrophysics Data System (ADS)

    Tsukuda, Satoshi; Takahasi, Ryouta; Seki, Shu; Sugimoto, Masaki; Idesaki, Akira; Yoshikawa, Masahito; Tanaka, Shun-Ichiro

    2016-01-01

    Polyvinylpyrrolidone (PVP)-Pt nanoparticles (NPs) hybrid nanowires were fabricated by high energy ion beam irradiation to PVP thin films including H2PtCl6. Single ion hitting caused crosslinking reactions of PVP and reduction of Pt ions within local cylindrical area along an ion trajectory (ion track); therefore, the PVP nanowires including Pt NPs were formed and isolated on Si substrate after wet-development procedure. The number of Pt NPs was easily controlled by the mixed ratio of PVP and H2PtCl6. However, increasing the amount of H2PtCl6 led to decreasing the radial size and separation of the hybrid nanowires during the wet-development. Additional electron beam irradiation after ion beam improved separation of the nanowires and controlled radial sizes due to an increase in the density of crosslinking points inner the nanowires.

  12. Regulation of the reaction of N-polyvinylpyrrolidone with iodine

    SciTech Connect

    Trubitsyna, S.N.

    1985-09-01

    The route chosen for modification of the sorption capacity of N -polyvinylpyrrolidone (PVP) was stabilization of its polymer skeleton by the action of intermolecular hydrogen bonds. The secondary supermolecular formations were regulated by introduction into aqueous solution polyvinylpyrrolidone at room temperature of substances containing active groups tending to form intermolecular H bonds with electron donors-oxygen atoms of carbonyl groups in PVP. Figures show IR absorption spectra of aqueous solutions of PVP, and dependence of the conductivity of aqueous solutions. It was concluded that preliminary addition both of monomeric and polymeric compounds, causing fromation of H bonds in the system, to PVP solutions causes significant changes in the structural organization of the PVP macromolecular chains, as the result of which the polymer acquires high sorption capacity for iodine.

  13. Recent Developments in Shape-Controlled Synthesis of Silver Nanocrystals

    PubMed Central

    Xia, Xiaohu; Zeng, Jie; Zhang, Qiang; Moran, Christine H.; Xia, Younan

    2012-01-01

    This feature article introduces our recent work on understanding the roles played by citrate and poly(vinyl pyrrolidone) (PVP) as capping agents in seed-mediated syntheses of Ag nanocrystals with controlled shapes. We have demonstrated that citrate and PVP selectively bind to Ag(111) and Ag(100) surfaces, respectively, and thus favor the formation of Ag nanocrystals enclosed preferentially by {111} or {100} facets. In addition, we have quantified the coverage density of PVP adsorbed on the surface of Ag nanocubes. Based on the mechanistic understanding, a series of Ag nanocrystals with controlled shapes and sizes have been successfully synthesized by using different combinations of seeds and capping agents: single-crystal spherical/cubic seeds with citrate for cuboctahedrons and octahedrons or with PVP for cubes and bars; and plate-like seeds with citrate for enlarged thin plates or with PVP for thickened plates. PMID:23105955

  14. Preliminary results in surgery of Parkinson's disease.

    PubMed

    Nasser, J A; Confort, C I; Ferraz, A; Bouza, A A

    1998-09-01

    The authors present the preliminary results of 20 patients selected to be operated on between January 1996 and April 1997. These patients presented one of the present indications for stereotactic posteroventral pallidotomy (PVP), such as: rigidity, akinesia/bradykinesia, gait dysfunction, drug induced dyskinesias and tremor. Every patient of this protocol was evaluated by: UPDRS score, Schwab and England scale, Hoehn and Yahr Staging Scale before and after surgery. The results in 3 months showed a remarkable improvement after PVP (P < 0.01) in all functional assessments, except for facial expression, speech and posture. The morbidity was 5%. 5 patients (25%) who were in Hoehn and Yahr 5 underwent a bilateral simultaneous PVP. In 5 patients (25%), who had tremor, during the PVP, VIM thalamotomy was added. These preliminary results, suggest that PVP is highly effective for PD symptoms.

  15. Synthesis and characterization of silver/poly( N-vinyl-2-pyrrolidone) hydrogel nanocomposite obtained by in situ radiolytic method

    NASA Astrophysics Data System (ADS)

    Jovanović, Željka; Krklješ, Aleksandra; Stojkovska, Jasmina; Tomić, Simonida; Obradović, Bojana; Mišković-Stanković, Vesna; Kačarević-Popović, Zorica

    2011-11-01

    This work describes radiolytic synthesis of silver nanoparticles (Ag NPs) within the poly( N-vinyl-2-pyrrolidone) (PVP) hydrogel. The hydrogel matrix was obtained by gamma irradiation-induced crosslinking, while the in situ reduction of Ag + ions was performed using strong reducing species formed under water radiolysis. Absorption spectrum of the Ag/PVP nanocomposite confirmed the formation of Ag NPs, showing the surface plasmon band maxima at 405 nm. Ag/PVP nanocomposites were characterized by XRD and TEM analysis, accompanied with investigations of swelling and diffusion properties in the simulated body fluid at 37 °C, and mechanical properties in bioreactor conditions. It was shown that Ag/PVP nanocomposite exhibited higher values of equilibrium swelling degree, Young's modulus, and molar mass between crosslinks, while lower values of the diffusion coefficient and effective crosslink density were obtained, as compared to the pure PVP.

  16. Polyvinylpyrrolidone-sodium dodecylsulfate complex is a family of pseudo-polyanions with different charge densities: Evidence from capillary electrophoresis, capillary viscosimetry and conductometry.

    PubMed

    Wu, Yefan; Chen, Jie; Fang, Yun; Zhu, Meng

    2016-10-01

    Accordance with the previously supposed polyelectrolyte-like behaviour of neutral polymer-anionic surfactant complexes, direct evidence for the formation of the pseudo-polyanions in polyvinylpyrrolidone (PVP)-sodium dodecylsulfate (SDS) solution is put forward in this paper by capillary electrophoresis (CE) experiments in assistance with capillary viscosimetry and conductometry. The contradictory phenomena of the absolute value of relative electrophoretic mobility (re) increasing while the ionization degree (α) decreasing with the increasing specific clusterization [Г] in aqueous PVP-SDS solution are explained by the finding that the PVP-SDS complex is eventually a family of PVP-SDS pseudo-polyanions with different charge densities. And it is found countercations playing an important role in the formation of the PVP-SDS pseudo-polyanions in virtue of bridge effect.

  17. A novel phosphoric acid doped poly(ethersulphone)-poly(vinyl pyrrolidone) blend membrane for high-temperature proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Wang, Haining; Lu, Shanfu; Guo, Zhibin; Rao, Siyuan; Xiu, Ruijie; Xiang, Yan

    2015-07-01

    A high-temperature proton exchange membrane, poly(ethersulphone)-poly(vinyl pyrrolidone) (PES-PVP) blend membrane is successfully prepared by scalable polymer blending method. The physical properties of blend membrane are characterized by DSC, TG and tensile strength test. The DSC and TG results indicate PES-PVP blend membranes possess excellent thermal stability. After phosphoric acid (PA) doping treatment, the blend membrane shows enhanced proton conductivity. PA doping level and volume swelling ratio of the blend membrane are found to be positively related to the PVP content. A high proton conductivity of 0.21 S/cm is achieved at 180 °C for PA doped PES-PVP 80% with a PA doping level of 9.1. PEM fuel cell based on PA doped PES-PVP 80% membrane shows a high power density of 850 mW/cm2 and outstanding stability at 180 °C without extra humidification.

  18. A survey of parametrized variational principles and applications to computational mechanics

    NASA Technical Reports Server (NTRS)

    Felippa, Carlos A.

    1993-01-01

    This survey paper describes recent developments in the area of parametrized variational principles (PVP's) and selected applications to finite-element computational mechanics. A PVP is a variational principle containing free parameters that have no effect on the Euler-Lagrange equations. The theory of single-field PVP's based on gauge functions (also known as null Lagrangians) is a subset of the inverse problem of variational calculus that has limited value. On the other hand, multifield PVP's are more interesting from theoretical and practical standpoints. Following a tutorial introduction, the paper describes the recent construction of multifield PVP's in several areas of elasticity and electromagnetics. It then discusses three applications to finite-element computational mechanics: the derivation of high-performance finite elements, the development of element-level error indicators, and the constructions of finite element templates. The paper concludes with an overview of open research areas.

  19. Preliminary results in surgery of Parkinson's disease.

    PubMed

    Nasser, J A; Confort, C I; Ferraz, A; Bouza, A A

    1998-09-01

    The authors present the preliminary results of 20 patients selected to be operated on between January 1996 and April 1997. These patients presented one of the present indications for stereotactic posteroventral pallidotomy (PVP), such as: rigidity, akinesia/bradykinesia, gait dysfunction, drug induced dyskinesias and tremor. Every patient of this protocol was evaluated by: UPDRS score, Schwab and England scale, Hoehn and Yahr Staging Scale before and after surgery. The results in 3 months showed a remarkable improvement after PVP (P < 0.01) in all functional assessments, except for facial expression, speech and posture. The morbidity was 5%. 5 patients (25%) who were in Hoehn and Yahr 5 underwent a bilateral simultaneous PVP. In 5 patients (25%), who had tremor, during the PVP, VIM thalamotomy was added. These preliminary results, suggest that PVP is highly effective for PD symptoms. PMID:9850746

  20. Polyvinylpyrrolidone-sodium dodecylsulfate complex is a family of pseudo-polyanions with different charge densities: Evidence from capillary electrophoresis, capillary viscosimetry and conductometry.

    PubMed

    Wu, Yefan; Chen, Jie; Fang, Yun; Zhu, Meng

    2016-10-01

    Accordance with the previously supposed polyelectrolyte-like behaviour of neutral polymer-anionic surfactant complexes, direct evidence for the formation of the pseudo-polyanions in polyvinylpyrrolidone (PVP)-sodium dodecylsulfate (SDS) solution is put forward in this paper by capillary electrophoresis (CE) experiments in assistance with capillary viscosimetry and conductometry. The contradictory phenomena of the absolute value of relative electrophoretic mobility (re) increasing while the ionization degree (α) decreasing with the increasing specific clusterization [Г] in aqueous PVP-SDS solution are explained by the finding that the PVP-SDS complex is eventually a family of PVP-SDS pseudo-polyanions with different charge densities. And it is found countercations playing an important role in the formation of the PVP-SDS pseudo-polyanions in virtue of bridge effect. PMID:27348481

  1. Effect of body temperature on peripheral venous pressure measurements and its agreement with central venous pressure in neurosurgical patients.

    PubMed

    Sahin, Altan; Salman, M Alper; Salman, A Ebru; Aypar, Ulka

    2005-04-01

    Previous studies suggest a correlation of central venous pressure (CVP) with peripheral venous pressure (PVP) in different clinical settings. The effect of body temperature on PVP and its agreement with CVP in patients under general anesthesia are investigated in this study. Fifteen American Society of Anesthesiologists I-II patients undergoing elective craniotomy were included in the study. CVP, PVP, and core (Tc) and peripheral (Tp) temperatures were monitored throughout the study. A total of 950 simultaneous measurements of CVP, PVP, Tc, and Tp from 15 subjects were recorded at 5-minute intervals. The measurements were divided into low- and high-Tc and -Tp groups by medians as cutoff points. Bland-Altman assessment for agreement was used for CVP and PVP in all groups. PVP measurements were within range of +/-2 mm Hg of CVP values in 94% of the measurements. Considering all measurements, mean bias was 0.064 mm Hg (95% confidence interval -0.018-0.146). Corrected bias for repeated measurements was 0.173 +/- 3.567 mm Hg (mean +/- SD(corrected)). All of the measurements were within mean +/- 2 SD of bias, which means that PVP and CVP are interchangeable in our setting. As all the measurements were within 1 SD of bias when Tc was > or = 35.8 degrees C, even a better agreement of PVP and CVP was evident. The effect of peripheral hypothermia was not as prominent as core hypothermia. PVP measurement may be a noninvasive alternative for estimating CVP. Body temperature affects the agreement of CVP and PVP, which deteriorates at lower temperatures.

  2. Formulation and characterisation of tetracycline-containing bioadhesive polymer networks designed for the treatment of periodontal disease.

    PubMed

    Jones, David S; Lawlor, Michelle S; Woolfson, A David

    2004-01-01

    This study described the drug release, rheological (dynamic and flow) and textural/mechanical properties of a series of formulations composed of 15% w/w polymethylvinylether-co-maleic anhydride (PMVE-MA), 0-9% w/w polyvinylpyrrolidone (PVP) and containing 1-5% w/w tetracycline hydrochloride, designed for the treatment of periodontal disease. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing the concentration of PVP sequentially increased the zero-rate viscosity (derived from the Cross model) and the hardness and compressibility of the formulations (derived from texture profile analysis). These affects may be accredited to increased polymer entanglement and, in light of the observed synergy between the two polymers with respect to their textural and rheological properties, interaction between PVP and PMVE-MA. Increasing the concentration of PVP increased the storage and loss moduli yet decreased the loss tangent of all formulations, indicative of increased elastic behaviour. Synergy between the two polymers with respect to their viscoelastic properties was observed. Increased adhesiveness, associated with increased concentrations of PVP was ascribed to the increasing bioadhesion and tack of the formulations. The effect of increasing drug concentration on the rheological and textural properties was dependent on PVP concentration. At lower concentrations (0, 3% w/w) no effect was observed whereas, in the presence of 9% w/w PVP, increasing drug concentration increased formulation elasticity, zero rate viscosity, hardness and compressibility. These observations were ascribed to the greater mass of suspended drug in formulations containing the highest concentration of PVP. Drug release from formulations containing 6 and 9% PVP (and 5% w/w drug) was prolonged and swelling/diffusion controlled. Based on the drug release, rheological and textural properties, it is suggested that the formulation containing 15% w/w PMVE-MA, 6% w/w PVP and

  3. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    PubMed Central

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  4. Molecular dynamics simulation of amorphous indomethacin-poly(vinylpyrrolidone) glasses: solubility and hydrogen bonding interactions.

    PubMed

    Xiang, Tian-Xiang; Anderson, Bradley D

    2013-03-01

    Amorphous drug dispersions are frequently employed to enhance solubility and dissolution of poorly water-soluble drugs and thereby increase their oral bioavailability. Because these systems are metastable, phase separation of the amorphous components and subsequent drug crystallization may occur during storage. Computational methods to determine the likelihood of these events would be very valuable, if their reliability could be validated. This study investigates amorphous systems of indomethacin (IMC) in poly(vinylpyrrolidone) (PVP) and their molecular interactions by means of molecular dynamics (MD) simulations. IMC and PVP molecules were constructed using X-ray diffraction data, and force-field parameters were assigned by analogy with similar groups in Amber-ff03. Five assemblies varying in PVP and IMC composition were equilibrated in their molten states then cooled at a rate of 0.03 K/ps to generate amorphous glasses. Prolonged aging dynamic runs (100 ns) at 298 K and 1 bar were then carried out, from which solubility parameters, the Flory-Huggins interaction parameter, and associated hydrogen bonding properties were obtained. Calculated glass transition temperature (T(g)) values were higher than experimental results because of the faster cooling rates in MD simulations. Molecular mobility as characterized by atomic fluctuations was substantially reduced below the T(g) with IMC-PVP systems exhibiting lower mobilities than that found in amorphous IMC, consistent with the antiplasticizing effect of PVP. The number of IMC-IMC hydrogen bonds (HBs) formed per IMC molecule was substantially lower in IMC-PVP mixtures, particularly the fractions of IMC molecules involved in two or three HBs with other IMC molecules that may be potential precursors for crystal growth. The loss of HBs between IMC molecules in the presence of PVP was largely compensated for by the formation of IMC-PVP HBs. The difference (6.5 MPa(1/2)) between the solubility parameters in amorphous IMC

  5. Bactericidal activities of povidone-iodine against Mycobacterium.

    PubMed

    Rikimaru, T; Kondo, M; Kondo, S; Oizumi, K

    1997-01-01

    Three standard strains of Mycobacterium (M. tuberculosis H37Rv, M. avium ATCC15769 and M. kansasii ATCC12478) and 15 clinical isolates of Mycobacterium (7 M. tuberculosis, 2 M. avium, 3 M. kansasii, 1 M. intracellulare, 1 M. chelonae subsp. abscessus and 1 M. gordonae) were selected in order to study the bactericidal activities of povidone-iodine (PVP-I) drug substance and a commercially available PVP-I solution (Isodine solution) against Mycobacterium. After the bacilli had been exposed to the disinfectant solution at concentrations of 0.1 or 0.02% with 2% human serum for various incubation periods from 30 to 120 s, the PVP-I drug substance was inactivated by addition of 0.5% sodium thiosulfate. In the case of the commercially available PVP-I solution, a mixture of 10% Tween 80, 3% soybean lecithin and 0.5% sodium thiosulfate was used as inactivator. It was demonstrated that the 3 standard strains were completely inactivated within 30 s by 0.1% PVP-I drug substance and that the 15 clinical isolates were almost killed by 0.1% commercially available PVP-I solution within 60 s. As a result, the commercially available PVP-I product appeared to be a useful agent as disinfectant against all the tested species of Mycobacterium. PMID:9403266

  6. Safety and Efficacy Studies of Vertebroplasty, Kyphoplasty, and Mesh-Container-Plasty for the Treatment of Vertebral Compression Fractures: Preliminary Report.

    PubMed

    Chen, Chen; Li, Donghua; Wang, Zhiguo; Li, Tong; Liu, Xunwei; Zhong, Jian

    2016-01-01

    To evaluate the clinical safety and efficacies of percutaneous vertebroplasty (PVP), percutaneous kyphoplasty (PKP), and percutaneous mesh-container-plasty (PMCP) for the treatment of vertebral compression fractures (VCFs), a retrospective study of 90 patients with VCFs who had been treated by PVP (n = 30), PKP (n = 30), and PMCP (n = 30) was conducted. The clinical efficacies of these three treatments were evaluated by comparing their PMMA cement leakages, cement patterns, height restoration percentages, wedge angles, visual analogue scales (VAS), and oswestry disability index (ODI) at the pre- and post-operative time points. 6.67%, 3.33%, and 0% of patients had PMMA leakage in PVP, PKP, and PMCP groups, respectively. Three (solid, trabecular, and mixed patterns), two (solid and mixed patterns), and one (mixed patterns) types of cement patterns were observed in PVP, PKP, and PMCP groups, respectively. PKP and PMCP treatments had better height restoration ability than PVP treatment. PVP, PKP, and PMCP treatments had significant and similar ability in pain relief and functional recovery ability for the treatment of VCFs. These results indicate minimally invasive techniques were effective methods for the treatment of VCFs. Moreover, these initial outcomes suggest PMCP treatment may be better than both PVP treatment and PKP treatment.

  7. Size control of semimetal bismuth nanoparticles and the UV-visible and IR absorption spectra.

    PubMed

    Wang, Y W; Hong, Byung Hee; Kim, Kwang S

    2005-04-21

    We introduced a simple chemical method to synthesize semimetal bismuth nanoparticles in N,N-dimethylformamide (DMF) by reducing Bi(3+) with sodium borohydride (NaBH(4)) in the presence of poly(vinylpyrroldone) (PVP) at room temperature. The size and dispersibility of Bi nanoparticles can be easily controlled by changing the synthetic conditions such as the molar ratio of PVP to BiCl(3) and the concentration of BiCl(3). The UV-visible absorption spectra of Bi nanoparticles of different diameters are systematically studied. The surface plasmon peaks broaden with the increasing molar ratio of PVP to BiCl(3) as the size of bismuth nanoparticles decreases. Infrared (IR) spectra of the complexes with different molar ratios of PVP/BiCl(3) show a strong interaction between the carboxyl oxygen (C=O) of PVP and Bi(3+) ion and a weak interaction between the carboxyl oxygen (C=O) of PVP and the Bi atom in nanoparticles. This indicates that PVP serves as an effective capping ligand, which prevents the nanoparticles from aggregation.

  8. Photoalignment of a Bisazodioxodibenzothiophene in a Polyvinylpyrrolidone Matrix

    NASA Astrophysics Data System (ADS)

    Chaplanova, J. D.; Larykava, S. N.; Agabekov, V. E.; Mikulich, V. S.; Gracheva, E. A.

    2016-09-01

    Photoalignment of thin films of dipotassium 3,7-bis[1-(4-hydroxy-3-carboxylate)phenylazo]-5,5'-dioxodibenzothiophene (AtA-2) that were prepared by spin-coating of dye solutions in H2O and DMF and aqueous solutions of polyvinylpyrrolidone (PVP) was studied. The UV absorption band of the dye cis-isomer, the position and intensity of which depended on the PVP concentration in the stock solutions, was recorded upon irradiation of films of AtA-2 in a PVP matrix [AtA-2(PVP)] with unfi ltered light from a DRT-1000 lamp in a vacuum or an Ar atmosphere. PVP facilitated trans-cis isomerization of AtA-2 and increased the stability of the cis-isomer with respect to thermal relaxation into the initial trans-isomer. The dichroic ratio (DR) of AtA-2(PVP) films irradiated with linearly polarized light (blue LED with λ = 450 nm, I = 15 mW/cm2) increased by 1.5 times as the PVP concentration in the stock solutions increased from 1.0 to 10.0 mass%. The morphology and roughness of the films depended on the nature of the solvents used to prepare them.

  9. Friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement.

    PubMed

    Katta, Jayanth K; Marcolongo, Michele; Lowman, Anthony; Mansmann, Kevin A

    2007-11-01

    Many hydrogels have been proposed as articular cartilage replacements as an alternative to partial or total joint replacements. In the current study, poly(vinyl alcohol)/poly(vinyl pyrrolidone) (PVA/PVP) hydrogels were investigated as potential cartilage replacements by investigating their in vitro wear and friction characteristics in a pin-on-disk setup. A three-factor variable-level experiment was designed to study the wear and friction characteristics of PVA/PVP hydrogels. The three different factors studied were (a) polymer content of PVA/PVP hydrogels, (b) load, and (c) effect of lubricant. Twelve tests were conducted, with each lasting 100,000 cycles against Co-Cr pins. The average coefficient of friction for synovial fluid lubrication was a low 0.035 compared with 0.1 for bovine serum lubrication. Frictional behavior of PVA/PVP hydrogels did not follow Amonton's law of friction. Wear of the hydrogels was quantified by measuring their dry masses before and after the tests. Higher polymer content significantly reduced the wear of hydrogel samples with 15% PVA/PVP samples, showing an average dry polymer loss of 4.74% compared with 6.05% for 10% PVA/PVP samples. A trend change was observed in both the friction and wear characteristics of PVA/PVP hydrogels at 125 N load, suggesting a transition in the lubricating mechanism at the pin-hydrogel interface at the critical 125 N load.

  10. Aligned Electrospun Polyvinyl Pyrrolidone/Poly ɛ-Caprolactone Blend Nanofiber Mats for Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Charernsriwilaiwat, Natthan; Rojanarata, Theerasak; Ngawhirunpat, Tanasait; Opanasopit, Praneet

    2016-02-01

    Electrospun nanofibrous materials are widely used in medical applications such as tissue engineering scaffolds, wound dressing material and drug delivery carriers. For tissue engineering scaffolds, the structure of the nanofiber is similar to extracellular matrix (ECM) which promotes the cell growth and proliferation. In the present study, the aligned nanofiber mats of polyvinyl pyrrolidone (PVP) blended poly ɛ-caprolactone (PCL) was successfully generated using electrospinning technique. The morphology of PVP/PCL nanofiber mats were characterized by scanning electron microspore (SEM). The chemical and crystalline structure of PVP/PCL nanofiber mats were analyzed using Fourier transform infrared spectroscopy (FTIR) and powder X-ray diffactometer (PXRD). The water contact angle of mats was investigated. Cell culture studies using normal human fibroblasts (NHF) were performed to assess cell morphology, cell alignment and cell proliferation. The results indicated that the fiber were in nanometer range. The PVP/PCL was well dispersed in nanofiber mats and was in amorphous form. The water contact angle of PVP/PCL nanofiber mats was lower than PCL nanofiber mats. The PVP/PCL nanofiber mats exhibited good biocompatibility with NHF cells. In summary, the PVP/PCL nanofiber mats had potential to be used in tissue engineering and regenerative medicine.

  11. Synthesis of PbS/poly (vinyl-pyrrolidone) nanocomposite

    SciTech Connect

    Patel, Jayesh D.; Chaudhuri, Tapas K.

    2009-08-05

    A simple solution growth method for synthesis of nanocomposite of PbS nanoparticles in poly(vinyl-pyrrolidone) (PVP) polymer is described. The nanocomposite is prepared from methanolic solution of lead acetate (PbAc), thiourea (TU) and PVP at room temperature ({approx}27 deg. C). Optical absorption spectrum of PbS/PVP nanocomposite solution shows strong absorption from 300 to 650 nm with significant bands at 400 and 590 nm which is characteristic of nanoscale PbS. Spin-coated nanocomposite films on glass have an absorption edge at {approx}650 nm with band gap of 2.55 eV. Fourier transform infrared (FTIR) spectroscopy of PbS/PVP nanocomposite and PVP shows strong chemical bond between PbS nanoparticles and host PVP polymer. The transmission electron microscope (TEM) images reveal that 5-10 nm PbS particles are evenly embedded in PVP polymer. The formation of PbS is confirmed by selective area electron diffraction (SAED) of a typical nanoparticle.

  12. Inductive effect of poly(vinyl pyrrolidone) on morphology and photocatalytic performance of Bi2WO6

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Chen, Jinxing; Xie, Yunyun; Wang, Mozhen; Ge, Xuewu

    2016-04-01

    Bi2WO6 has great potential applications in the field of photocatalyst due to its excellent visible-light photocatalytic performance. This work studied the detailed morphological evolution of Bi2WO6 particles synthesized in a simple hydrothermal system induced by the stabilizer poly(vinyl pyrrolidone) (PVP). The XRD and HRTEM results show PVP would not change the crystal structure of Bi2WO6, but the distribution of PVP on the initially formed Bi2WO6 nanosheets will induce the crystal growth, resulting in a distinct morphology evolution of Bi2WO6 with the increase of the concentration of PVP. At the same time, with the increase of the molecular weight of PVP, the morphology of Bi2WO6 varied from simple sheet-like (S-BWO) to some complicated morphology, such as flower-like (F-BWO), red blood cell-like (B-BWO), and square-pillar-like (SP-BWO). The photocatalytic performances of Bi2WO6 with various morphologies on the decomposition of RhB under visible light irradiation reveal that S-BWO has the best photocatalytic performance, while SP-BWO has the worst. This work not only gives the explanation of the inductive effect of PVP molecular chains on the morphological formation of Bi2WO6 particles, but also provides the controllable way to the preparation of Bi2WO6 with various morphologies taking advantage of the stabilizer PVP.

  13. Influence of Sterilization and Storage Period on Elution of Polyvinylpyrrolidone from Wet-Type Polysulfone Membrane Dialyzers.

    PubMed

    Miyata, Masahiro; Konishi, Shuji; Shimamoto, Yoshimasa; Kamada, Aki; Umimoto, Koichi

    2015-01-01

    The objectives of this study were to investigate the influence of the sterilization and storage period on elution of polyvinylpyrrolidone (PVP) from wet-type polysulfone (PSu) membrane dialyzers. APS-15SA (APS) dialyzers sterilized by gamma-radiation and RENAK PS-1.6 (RENAK) dialyzers sterilized by autoclaving were compared in this study. Each dialyzer was washed with physiological saline and the amount of PVP eluted from the PSu membrane was measured. Then, experimental use of each dialyzer was performed by circulating physiological saline for 4 hours, after which the PVP eluted from the PSu membrane was measured. As the results, the amount of PVP eluted by washing was positively correlated with the storage period for both dialyzers (APS: rs = 0.958; RENAK: rs = 0.952). In the experimental circuit, the amount of PVP eluted from the RENAK dialyzer was positively correlated with the storage period (rs = 0.810), whereas the amount of PVP eluted from the APS dialyzer was negatively correlated with the storage period (rs = -0.833). We found that the amount of PVP eluted from PSu membrane is quite different by the sterilization and storage period of dialyzers. PMID:25851313

  14. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel.

    PubMed

    Ma, Yahui; Bai, Tongchun; Wang, Fei

    2016-02-01

    A hydrogel of polyvinylalcohol (PVA)/polyvinylpyrrolidone (PVP)/hydroxyapatite (HA) was prepared by a repeated freezing and thawing technique. The effect of HA on the hydrogel was evaluated by comparing the physical and chemical properties of PVA/PVP/HA and PVA/PVP hydrogels. By using theoretical models, the information about the swelling kinetics and the dehydration kinetics have been obtained. From the analysis of structure, mechanical properties, and molecular interaction, the application of PVA/PVP/HA hydrogel as a biomaterial has been evaluated. Relative to PVA/PVP, the PVA/PVP/HA hydrogel is of denser network structure, lower water content, larger storage modulus, and higher dehydration activation energy. These results reveal that, as HA fills in the hydrogel, the molecular interaction is enhanced, the free space of network is compressed, and the diffusion activation energy of water is increased. In spite of its water content being decreased, it is still in the range of meeting the requirement of bio-application. When the hydrogel is subjected to external forces, the matrix will transfer the load to the HA powder, thus enhance the strength of the hydrogel. For application in bio-materials, HA will still have osteoinductivity because its crystalline structure is not interrupted in PVA/PVP/HA hydrogel environment. PMID:26652452

  15. Safety and Efficacy Studies of Vertebroplasty, Kyphoplasty, and Mesh-Container-Plasty for the Treatment of Vertebral Compression Fractures: Preliminary Report

    PubMed Central

    Chen, Chen; Li, Donghua; Wang, Zhiguo; Li, Tong; Liu, Xunwei; Zhong, Jian

    2016-01-01

    To evaluate the clinical safety and efficacies of percutaneous vertebroplasty (PVP), percutaneous kyphoplasty (PKP), and percutaneous mesh-container-plasty (PMCP) for the treatment of vertebral compression fractures (VCFs), a retrospective study of 90 patients with VCFs who had been treated by PVP (n = 30), PKP (n = 30), and PMCP (n = 30) was conducted. The clinical efficacies of these three treatments were evaluated by comparing their PMMA cement leakages, cement patterns, height restoration percentages, wedge angles, visual analogue scales (VAS), and oswestry disability index (ODI) at the pre- and post-operative time points. 6.67%, 3.33%, and 0% of patients had PMMA leakage in PVP, PKP, and PMCP groups, respectively. Three (solid, trabecular, and mixed patterns), two (solid and mixed patterns), and one (mixed patterns) types of cement patterns were observed in PVP, PKP, and PMCP groups, respectively. PKP and PMCP treatments had better height restoration ability than PVP treatment. PVP, PKP, and PMCP treatments had significant and similar ability in pain relief and functional recovery ability for the treatment of VCFs. These results indicate minimally invasive techniques were effective methods for the treatment of VCFs. Moreover, these initial outcomes suggest PMCP treatment may be better than both PVP treatment and PKP treatment. PMID:26963808

  16. Characterization of poly(4-vinylpyridine 1-oxide) by free-solution capillary electrophoresis and micellar electrokinetic chromatography.

    PubMed

    Beneito-Cambra, Miriam; Herrero-Martínez, José M; Ramis-Ramos, Guillermo

    2008-08-01

    The migration characteristics of poly(4-vinylpyridine 1-oxide) (PVP-NO) in phosphate buffers of acidic pH (20 mM H3PO4 or NaH2PO4) have been studied using both free-solution capillary electrophoresis (FSCE) and MEKC. To inhibit adsorption, 250 mM o-phosphoethanolamine (2-aminoethyl dihydrogen phosphate) was used. In FSCE, PVP-NO showed a narrow peak and a broader band, both having anionic behavior. These peak and band were attributed to the free and aggregated or micellized PVP-NO forms, respectively. According to surface tension measurements, the CMC of SDS in the BGE was 1.8 and 0.48 mM in the absence and in the presence of 1000 microg/mL PVP-NO, respectively, and the association of the polymer with SDS was completed at 9.7 mM SDS. Using MEKC, a narrow peak and a broader band also appeared at SDS concentrations of ca. 1 mM, and their intensity increased with the SDS concentration. These peak and band were attributed to the formation of mixed micelles constituted by both free PVP-NO/SDS and aggregated PVP-NO/SDS, respectively. The determination of PVP-NO by FSCE in commercial additives for laundry was demonstrated.

  17. Sperm selection based on motility in polyvinylpyrrolidone is associated with successful pregnancy and embryo development.

    PubMed

    Irez, T; Ocal, P; Guralp, O; Kaleli, S; Ocer, F; Sahmay, S

    2013-08-01

    The aim of this study was to investigate whether spermatozoon motility in polyvinylpyrrolidone (PVP) is associated with better embryo development and pregnancy rates in ICSI cycles. A total of 123 primary ICSI treatment cycles were included in this study. Semen samples were tested for motility before ICSI procedure in PVP. Within 3 min, the presence or absence of motility was recorded. Sperm functions were examined by the aniline blue (AB) chromatin condensation test and the hypoosmotic swelling test, and the chromatin stability was evaluated by inducing its decondensation with sodium dodecyl sulphate and ethylenediaminetetraacetic acid (EDTA). Fertilisation and embryo scoring were evaluated. Fifty (64%) of 78 women conceived in the PVP (+) group; and 12 (26%) of 45 women conceived in the PVP (-) group; the pregnancy rate was significantly higher in the PVP (+) group (P = 0.003). Semen parameters were observed to be similar in both groups. The mean number of total embryos obtained in ICSI procedure and transferred grade 1 embryos were significantly higher in PVP (+) group (P = 0.01 and P = 0.003 respectively). The presence of sperm motility in PVP is associated with increased pregnancy rate, higher percentage of good quality embryos, sperm chromatin condensation and decondensation.

  18. Influence of Sterilization and Storage Period on Elution of Polyvinylpyrrolidone from Wet-Type Polysulfone Membrane Dialyzers.

    PubMed

    Miyata, Masahiro; Konishi, Shuji; Shimamoto, Yoshimasa; Kamada, Aki; Umimoto, Koichi

    2015-01-01

    The objectives of this study were to investigate the influence of the sterilization and storage period on elution of polyvinylpyrrolidone (PVP) from wet-type polysulfone (PSu) membrane dialyzers. APS-15SA (APS) dialyzers sterilized by gamma-radiation and RENAK PS-1.6 (RENAK) dialyzers sterilized by autoclaving were compared in this study. Each dialyzer was washed with physiological saline and the amount of PVP eluted from the PSu membrane was measured. Then, experimental use of each dialyzer was performed by circulating physiological saline for 4 hours, after which the PVP eluted from the PSu membrane was measured. As the results, the amount of PVP eluted by washing was positively correlated with the storage period for both dialyzers (APS: rs = 0.958; RENAK: rs = 0.952). In the experimental circuit, the amount of PVP eluted from the RENAK dialyzer was positively correlated with the storage period (rs = 0.810), whereas the amount of PVP eluted from the APS dialyzer was negatively correlated with the storage period (rs = -0.833). We found that the amount of PVP eluted from PSu membrane is quite different by the sterilization and storage period of dialyzers.

  19. Effects of polyvinylpyrrolidone both as a binder and pore-former on the release of sparingly water-soluble topiramate from ethylcellulose coated pellets.

    PubMed

    Yang, Meiyan; Xie, Si; Li, Qiu; Wang, Yuli; Chang, Xinyi; Shan, Li; Sun, Lei; Huang, Xiaoli; Gao, Chunsheng

    2014-04-25

    Delivering sparingly water-soluble drugs from ethylcellulose (EC) coated pellets with a controlled-release pattern remains challenging. In the present study, hydrophilic polyvinylpyrrolidone (PVP) was used both as a binder and a pore-former in EC coated pellets to deliver sparingly water-soluble topiramate, and the key factors that influenced drug release were identified. When the binder PVP content in drug layers below 20% w/w was decreased, the physical state of topiramate changed from amorphous to crystalline, making much difference to drug solubility and dissolution rates while modifying the drug release profile from first-order to zero-order. In addition, without PVP in drug layering solution, drug layered particles were less sticky during layering process, thus leading to a shorter process and higher loading efficiency. Furthermore, PVP level as a pore-former in EC coating layers mainly governed drug release from the coated pellets with the sensitivity ranging from 23% to 29%. PVP leaching rate and water permeability from EC/PVP film increased with the PVP level, which was perfectly correlated with drug release rate. Additionally, drug release from this formulation was independent of pH of release media or of the paddle mixing speed, but inversely proportional to the osmolality of release media above the physiological range.

  20. The physical and chemical properties of the polyvinylalcohol/polyvinylpyrrolidone/hydroxyapatite composite hydrogel.

    PubMed

    Ma, Yahui; Bai, Tongchun; Wang, Fei

    2016-02-01

    A hydrogel of polyvinylalcohol (PVA)/polyvinylpyrrolidone (PVP)/hydroxyapatite (HA) was prepared by a repeated freezing and thawing technique. The effect of HA on the hydrogel was evaluated by comparing the physical and chemical properties of PVA/PVP/HA and PVA/PVP hydrogels. By using theoretical models, the information about the swelling kinetics and the dehydration kinetics have been obtained. From the analysis of structure, mechanical properties, and molecular interaction, the application of PVA/PVP/HA hydrogel as a biomaterial has been evaluated. Relative to PVA/PVP, the PVA/PVP/HA hydrogel is of denser network structure, lower water content, larger storage modulus, and higher dehydration activation energy. These results reveal that, as HA fills in the hydrogel, the molecular interaction is enhanced, the free space of network is compressed, and the diffusion activation energy of water is increased. In spite of its water content being decreased, it is still in the range of meeting the requirement of bio-application. When the hydrogel is subjected to external forces, the matrix will transfer the load to the HA powder, thus enhance the strength of the hydrogel. For application in bio-materials, HA will still have osteoinductivity because its crystalline structure is not interrupted in PVA/PVP/HA hydrogel environment.

  1. Bilateral pallidotomy for treatment of Parkinson's disease induced corticobulbar syndrome and psychic akinesia avoidable by globus pallidus lesion combined with contralateral stimulation

    PubMed Central

    Merello, M; Starkstein, S; Nouzeilles, M; Kuzis, G; Leiguarda, R

    2001-01-01

    OBJECTIVE—Posteroventral pallidotomy (PVP) has proved to be an effective method for the treatment of Parkinson's disease. However, data on bilateral procedures are still limited. To assess the effects of bilateral globus pallidus (GPi) lesion and to compare it with a combination of unilateral GPi lesion plus contralateral GPi stimulation (PVP+PVS), an open blind randomised trial was designed.
METHODS—A prospective series of patients with severe Parkinson's disease refractory to medical treatment, and severe drug induced dyskinesias, were randomised either to simultaneous bilateral PVP or simultaneous PVP+PVS. All patients were assessed with the core assessment programme for intracerebral transplantation (CAPIT), and a comprehensive neuropsychological and neuropsychiatric battery both before surgery and 3 months later.
RESULTS—The severe adverse effects found in the first three patients subjected to bilateral PVP led to discontinuation of the protocol. All three patients developed depression and apathy. Speech, salivation, and swallowing, as well as freezing, walking, and falling, dramatically worsened. By contrast, all three patients undergoing PVP+PVS had a significant motor improvement.
CONCLUSION—Bilateral simultaneous lesions within the GPi may produce severe motor and psychiatric complications. On the other hand, a combination of PVP+ PVS significantly improves parkinsonian symptoms not associated with the side effects elicited by bilateral lesions.

 PMID:11606671

  2. A Systematic Review and Meta-Analysis of Functional Outcomes and Complications Following the Photoselective Vaporization of the Prostate and Monopolar Transurethral Resection of the Prostate

    PubMed Central

    Kang, Dong Hyuk; Cho, Kang Su; Ham, Won Sik; Choi, Young Deuk

    2016-01-01

    Purpose To perform a systematic review and meta-analysis of randomized controlled trials (RCTs) comparing monopolar transurethral resection of the prostate (MTURP) and photoselective vaporization of the prostate (PVP) in order to provide the most up-to-date and reliable recommendations possible. Materials and Methods Relevant RCTs were identified from electronic databases for meta-analysis of the surgical outcomes and complications of MTURP and PVP. Meta-analytical comparisons were made using qualitative and quantitative syntheses. The outcome variables are presented as odds ratios with 95% confidence intervals (CIs). Results In total, 11 articles were included in this comparative analysis of PVP versus MTURP. Most of the recently published studies exhibited low risk in terms of quality assessment. MTURP was superior to PVP regarding operative time; however, with regard to catheterization and hospitalization time, the mean differences were -1.39 (95% CI=-1.83~-0.95, p<0.001) and -2.21 (95% CI=-2.73~-1.69, p<0.001), respectively, in favor of PVP. PVP was superior to MTURP with regard to transfusion rate and clot retention, but no statistically significant differences were found with regard to acute urinary retention and urinary tract infection. The long-term complications of bladder neck contracture and urethral stricture showed no statistically significant differences between PVP and MTURP. Long-term functional outcomes, including the International Prostate Symptom Score and maximum flow rate, likewise did not display statistically significant differences between PVP and MTURP. Conclusions Based on our findings, we believe that PVP should be considered as an alternative surgical procedure for treating male lower urinary tract symptoms secondary to benign prostatic hyperplasia. PMID:27574594

  3. Antioxidation Properties and Surface Interactions of Polyvinylpyrrolidone-Capped Zerovalent Copper Nanoparticles Synthesized in Supercritical Water.

    PubMed

    Morioka, Takuya; Takesue, Masafumi; Hayashi, Hiromichi; Watanabe, Masaru; Smith, Richard L

    2016-01-27

    Zerovalent copper nanoparticles (CuNPs) (diameter, 26.5 ± 9 nm) capped with polyvinylpyrrolidone (PVP) were synthesized in supercritical water at 400 °C and 30 MPa with a continuous flow reactor. The PVP-capped CuNPs were dispersed in distilled water, methanol, ethanol, 1-propanol, 2-propanol, butanol, and their mixed solvents to study their long-term stability. Temporal variation of UV-vis spectra and surface plasmon resonance were measured and showed that ethanol, the propanols, and butanol solvents provided varying degrees of oxidative protection for Cu(0). Fourier transform infrared spectroscopy showed that PVP adsorbed onto the surface of the CuNPs with a pyrrolidone ring of PVP even if the CuNPs were oxidized. Intrinsic viscosities of PVP were higher for solvents that provided antioxidation protection than those that give oxidized CuNPs. In solvents that provided Cu(0) with good oxidative protection (ethanol, the propanols, and butanol), PVP polymer chains formed large radii of gyration and coil-like conformations in the solvents so that they were arranged uniformly and orderly on the surface of the CuNPs and could provide protection of the Cu(0) surface against dissolved oxygen. In solvents that provided poor oxidative protection for Cu(0) (water, alcohol-water mixed solvents with 30% water), PVP polymer chains had globular-like conformations due to their relatively high hydrogen-bonding interactions and sparse adsorption onto the CuNP surface. Antioxidative properties of PVP-capped CuNPs in a solvent can be ascribed to the conformation of PVP polymer chains on the Cu(0) particle surface that originates from the interaction between polymer chains and its interaction with the solvent. PMID:26716468

  4. Anti-tack action of polyvinylpyrrolidone on hydroxypropylmethylcellulose solution.

    PubMed

    Chan, Lai Wah; Wong, Tin Wui; Chua, Pih Chng; York, Peter; Heng, Paul Wan Sia

    2003-02-01

    The anti-tack action of polyvinylpyrrolidone (PVP) on hydroxypropylmethylcellulose (HPMC) solution was elucidated using a probe test method. The influence of PVP of varying molecular weights at various PVP concentrations and solution temperatures on the tackiness of HPMC solution was studied. The viscosity, surface tension, cloud point and solution spectroscopy of HPMC solutions and glass transition temperature of HPMC films, with and without PVP, were investigated. The tackiness of HPMC solutions in response to the addition of PVP, at different concentrations of HPMC and using HPMC with varying contents of hydroxypropyl/methoxyl substitution, was also evaluated. PVP is a commonly used binder and adhesive. However, it reduced the tack of the HPMC solution when used at low concentrations, without affecting the state of hydration of HPMC. Lower molecular weight PVP was more effective as an anti-tack agent owing to suitable hydrodynamic size to intersperse among the HPMC chains. The degree of reduction in tack values was more pronounced for HPMC that showed a greater extent of interaction between polymer chains such as when high concentration of HPMC or low solution temperature was employed. This indicated that the tack reduction property of PVP relied on its ability to interact with the HPMC chains. The profile of reduction in tack values was affected by the contents of HPMC substitution and was a result of net reduction in the extent of hydrogen bonding between HPMC chains. It was significantly correlated to the changes of viscosity and surface tension of the HPMC solutions but not to the glass transition temperatures of the polymers prepared as solid films. The results suggested that the anti-tack action of PVP was attributed to its ability to interact with HPMC chains in the aqueous medium and consequently to reduce the extent of HPMC-HPMC bonding. PMID:12576641

  5. Anti-tack action of polyvinylpyrrolidone on hydroxypropylmethylcellulose solution.

    PubMed

    Chan, Lai Wah; Wong, Tin Wui; Chua, Pih Chng; York, Peter; Heng, Paul Wan Sia

    2003-02-01

    The anti-tack action of polyvinylpyrrolidone (PVP) on hydroxypropylmethylcellulose (HPMC) solution was elucidated using a probe test method. The influence of PVP of varying molecular weights at various PVP concentrations and solution temperatures on the tackiness of HPMC solution was studied. The viscosity, surface tension, cloud point and solution spectroscopy of HPMC solutions and glass transition temperature of HPMC films, with and without PVP, were investigated. The tackiness of HPMC solutions in response to the addition of PVP, at different concentrations of HPMC and using HPMC with varying contents of hydroxypropyl/methoxyl substitution, was also evaluated. PVP is a commonly used binder and adhesive. However, it reduced the tack of the HPMC solution when used at low concentrations, without affecting the state of hydration of HPMC. Lower molecular weight PVP was more effective as an anti-tack agent owing to suitable hydrodynamic size to intersperse among the HPMC chains. The degree of reduction in tack values was more pronounced for HPMC that showed a greater extent of interaction between polymer chains such as when high concentration of HPMC or low solution temperature was employed. This indicated that the tack reduction property of PVP relied on its ability to interact with the HPMC chains. The profile of reduction in tack values was affected by the contents of HPMC substitution and was a result of net reduction in the extent of hydrogen bonding between HPMC chains. It was significantly correlated to the changes of viscosity and surface tension of the HPMC solutions but not to the glass transition temperatures of the polymers prepared as solid films. The results suggested that the anti-tack action of PVP was attributed to its ability to interact with HPMC chains in the aqueous medium and consequently to reduce the extent of HPMC-HPMC bonding.

  6. Radiological Follow-up of New Compression Fractures Following Percutaneous Vertebroplasty

    SciTech Connect

    Tanigawa, Noboru Komemushi, Atsushi; Kariya, Shuji; Kojima, Hiroyuki; Shomura, Yuzo; Sawada, Satoshi

    2006-02-15

    The purpose of the present study was to ascertain chronological changes in the analgesic effects of percutaneous vertebroplasty (PVP) on osteoporotic vertebral compression factures and to radiologically follow new compression fractures after PVP. Seventy-six patients (206 vertebral bodies) were followed radiologically for a mean of 11.5 months. A visual analog scale (VAS; 0-10) was used to assess pain severity, and frontal and lateral plain radiographs of the thoracic and lumbar vertebrae were taken 1-3 days and 1, 4, 10, and 22 months after PVP.The average VAS score was 7.2 {+-} 2.0 (mean pain score {+-} standard deviation) before PVP, 2.5 {+-} 2.3 at 1-3 days after PVP, 2.2 {+-} 2.3 at 1 month, 1.9 {+-} 2.2 at 4 months, 1.8 {+-} 2.4 at 10 months, and 1.0 {+-} 0.2 at 22 months. A new compression fracture was confirmed in 56 vertebral bodies in 28 patients (36.8%), affecting 38 adjacent vertebral bodies (67.8%), 17 nonadjacent vertebral bodies (30.4%), and 1 treated vertebral body (1.8%). A new compression fracture occurred within 1 week of PVP in 2 vertebral bodies (3.6%), between 1 week and 1 month after PVP in 22 (39.3%), between 1 and 3 months in 12 (21.4%), between 3 and 6 months in 12 (21.4%), and after more than 6 months in 8 (14.3%). PVP was highly effective in relieving the pain associated with osteoporosis-induced vertebral compression fractures, and this analgesia was long lasting. Radiological follow-up observation revealed new compression fractures in about one-third of patients. More than half of these new compression fractures occurred in adjacent vertebral bodies within 3 months of PVP.

  7. Electrospinning of artemisinin-loaded core-shell fibers for inhibiting drug re-crystallization.

    PubMed

    Shi, Yongli; Zhang, Jianhua; Xu, Shuxin; Dong, Anjie

    2013-01-01

    The main aim of this study was to inhibit the re-crystallization of a potent antimalarial drug, artemisinin (ART), by encapsulating it in core-shell fibers via a coaxially electrospun method. The ART-infiltrated cellulose acetate (CA) solution as the core material and poly(vinyl pyrrolidone) (PVP) solution as the shell material were used to prepared ART-loaded core-shell fibers ([ART/CA]/PVP). Transmission electron microscopy images confirmed the core-shell structures of the coaxially electrospun fibers. The scanning electron microscope (SEM), X-ray diffraction, and differential scanning calorimetry were performed to characterize the physical states of ART in the fibers. It was observed that ART crystals were formed in the ART-loaded CA/PVP composite fibers (ART/CA/PVP) during the electrospinning process and increased during storage duration. While ART crystals hardly were observed in the fresh core-shell [ART/CA]/PVP fibers with high ART entrapped amount (20 wt.%) and a little was detected after 6-month storage. Fourier transform infrared spectroscopy (FTIR) results illustrated the hydrogen bonding interaction between ART and CA in the core-shell [ART/CA]/PVP fibers mainly contributed to the amorphous state of ART. Importantly, combination of the hydrophilic PVP shell and the amorphous ART in CA core, the core-shell [ART/CA]/PVP fibers provided a continued and stable ART release manner. Ex vivo permeation studies suggested the amorphous ART in the medicated core-shell fibers could permeate through the stratum corneum smoothly. Hence, the core-shell [ART/CA]/PVP fiber matrix could provide a potential application in transdermal patches.

  8. Comparison of percutaneous vertebroplasty and percutaneous kyphoplasty for the management of Kümmell's disease: A retrospective study

    PubMed Central

    Zhang, Guang-Quan; Gao, Yan-Zheng; Chen, Shu-Lian; Ding, Shuai; Gao, Kun; Wang, Hong-Qiang

    2015-01-01

    Background: Post traumatic osteonecrosis of a vertebral body occurring in a delayed fashion was first described by the German doctor Kümmell in 1895. Several studies have reported percutaneous vertebroplasty (PVP), or percutaneous kyphoplasty (PKP) for Kümmell's disease achieves good outcomes. However, it is unknown whether a technique is superior for the treatment of this disease. The objective of the study is to compare the efficacy of PVP and PKP for the treatment of Kümmell's disease. Materials and Methods: A retrospective review was conducted for 73 patients with Kümmell's disease. PVP was performed in 38 patients and PKP in 35 patients. Visual analogue score (VAS) was used to evaluate pain. The anterior vertebral height was measured. The operative time, the incidence of cement leakage and the costs were recorded. Results: In both PVP group and PKP group, the VAS and anterior vertebral height significantly improved at 1-day postoperatively (P < 0.05), and the improvement sustained at the final followup (P > 0.05). Between the PVP and PKP groups, there were no significant differences in VAS and the anterior vertebral height at 1-day postoperatively and at the final followup (P > 0.05). The operating time and expense in the PKP group were higher than the PVP group (P < 0.001). Cement leakages in the PKP group were fewer than PVP group (P < 0.05). Conclusions: PVP is a faster, less expensive option that still provides a comparable pain relief and restoration of vertebral height to PKP for the treatment of Kümmell's disease. PKP has a significant advantage over PVP in term of the fewer cement leakages. PMID:26806962

  9. Molecular composites via ionic interactions and their deformation/fracture properties

    SciTech Connect

    Parker, G.; Chen, W.; Hara, M.

    1995-12-01

    Homogeneous molecular composites have been made from ionic PPTA and PVP, in which a good dispersion of rod molecules is achieved via ion-dipole interactions. Appearance of a single T{sub g} as well as morphological observations by TEM have indicated good dispersion of the rigid-rod PPTA molecules. The deformation mode of the matrix polymer is modified significantly with the addition of rod molecules: while crazing is the only deformation mechanism of PVP, an addition of ionic PPTA molecules into the PVP matrix induces shear deformation. This suggests better fracture properties of these molecular composites. Initial studies have indicated significant enhancement in mechanical properties.

  10. Characteristic time scales of coalescence of silver nanocomposite and nanoparticle films induced by continuous wave laser irradiation

    SciTech Connect

    Paeng, Dongwoo; Grigoropoulos, Costas P.; Lee, Daeho

    2014-08-18

    In-situ optical probing has been performed to analyze and compare the characteristic coalescence time scales of silver ion-doped polyvinylalcohol nanocomposite (Ag-PVA NC) and polyvinylpyrrolidone-capped silver nanoparticle (Ag-PVP NP) films subjected to continuous wave laser irradiation. The Ag-PVA NC yielded conductive metallic patterns by photothermal reduction of PVA, formation of nanoparticles from silver ions and their subsequent coalescence. On the other hand, Ag-PVP NP thin films produced conductive patterns through only coalescence of nanoparticles. Upon laser irradiation, Ag-PVA NC and Ag-PVP NP films exhibited different coalescence characteristics.

  11. Polyvinylpyrrolidone/Multiwall Carbon Nanotube Composite Based 36 deg. YX LiTaO{sub 3} Surface Acoustic Wave For Hydrogen Gas Sensing Applications

    SciTech Connect

    Chee, Pei Song; Arsat, Rashidah; He Xiuli; Arsat, Mahyuddin; Wlodarski, Wojtek; Kalantar-zadeh, Kourosh

    2011-05-25

    Poly-vinyl-pyrrolidone (PVP)/Multiwall Carbon Nanotubes (MWNTs) based Surface Acoustic Wave (SAW) sensors are fabricated and characterized, and their performances towards hydrogen gas are investigated. The PVP/MWNTs fibers composite are prepared by electrospinning of the composite aqueous solution deposited directly onto the active area of SAW transducers. Via scanning electron microscopy (SEM), the morphology of the deposited nanostructure material is observed. From the dynamic response, frequency shifts of 530 Hz (1%H{sub 2}) and 11.322 kHz (0.25%H{sub 2}) are recorded for the sensors contain of 1.525 g and 1.025 g PVP concentrations, respectively.

  12. Poly(4-vinylphenol) gate insulator with cross-linking using a rapid low-power microwave induction heating scheme for organic thin-film-transistors

    NASA Astrophysics Data System (ADS)

    Fan, Ching-Lin; Shang, Ming-Chi; Hsia, Mao-Yuan; Wang, Shea-Jue; Huang, Bohr-Ran; Lee, Win-Der

    2016-03-01

    A Microwave-Induction Heating (MIH) scheme is proposed for the poly(4-vinylphenol) (PVP) gate insulator cross-linking process to replace the traditional oven heating cross-linking process. The cross-linking time is significantly decreased from 1 h to 5 min by heating the metal below the PVP layer using microwave irradiation. The necessary microwave power was substantially reduced to about 50 W by decreasing the chamber pressure. The MIH scheme is a good candidate to replace traditional thermal heating for cross-linking of PVP as the gate insulator for organic thin-film-transistors.

  13. Tageted bipolar radiofrequency decompression with vertebroplasty for intractable radicular pain due to spinal metastasis: a case report

    PubMed Central

    Baek, Seong Jin; Lee, Eun Young

    2016-01-01

    Metastatic spinal tumors are usually quite difficult to treat. In patients with metastatic spinal tumors, conventional radiotherapy fails to relieve pain in 20–30% of cases and open surgery often causes considerable trauma and complications, which delays treatment of the primary disease. Percutaneous vertebroplasty (PVP) is considered to be useful in achieving rapid pain control and preventing further vertebral collapse due to spinal metastasis. However, symptoms of intraspinal neural compression can be contraindications to PVP. To overcome this problem, we performed PVP following targeted bipolar radiofrequency decompression, and examined the effect of the combined treatment in relieving severe radicular pain related to spinal cord compression caused by malignant metastatic tumors. PMID:27482319

  14. Poly(anhydride-ester) and poly(N-vinyl-2-pyrrolidone) blends: salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation.

    PubMed

    Ouimet, Michelle A; Fogaça, Renata; Snyder, Sabrina S; Sathaye, Sameer; Catalani, Luiz H; Pochan, Darrin J; Uhrich, Kathryn E

    2015-03-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3-4 d in contrast to 3 h, and that blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly the inflammatory cytokine, TNF-α, in vitro without negative effects. PMID:25333420

  15. Facile one-pot synthesis of a polyvinylpyrrolidone-based self-crosslinked fluorescent film.

    PubMed

    Yin, Meizhen; Ye, Yong; Sun, Mengmeng; Kang, Naiwen; Yang, Wantai

    2013-04-12

    A polyvinylpyrrolidone (PVP)-based fluorescent film with stable optical properties is successfully prepared in one pot without any additive. The reaction mechanism of ring-opening and self-crosslinking of linear PVP is proposed and demonstrated. The morphologies and the nanostructures of the fluorescent film as well as the unmodified film are investigated. The dye is incorporated into the film networks via covalent linkages, thus leading to the highly stable optical properties. The facile and effective synthesis approach opens a new way for the design of other multi-functional composite materials based on linear PVP.

  16. Prostate resection - minimally invasive

    MedlinePlus

    Laser prostatectomy; Transurethral needle ablation; TUNA; Transurethral incision; TUIP; Holmium laser enucleation of the prostate; HoLep; Interstitial laser coagulation; ILC; Photoselective vaporization of the prostate; PVP; Transurethral ...

  17. Integrated antifouling and bactericidal polymer membranes through bioinspired polydopamine/poly(N-vinyl pyrrolidone) coating

    NASA Astrophysics Data System (ADS)

    Wang, Xianghong; Yuan, Shuaishuai; Shi, Dean; Yang, Yingkui; Jiang, Tao; Yan, Shunjie; Shi, Hengchong; Luan, Shifang; Yin, Jinghua

    2016-07-01

    Polypropylene (PP) non-woven has been widely used as wound dressing; however, the hydrophobic nature of PP can initiate bacterial attachment and subsequent biofilm formation. Herein, we propose a facile approach to functionalize PP non-woven with poly(ethylene glycol) (PEG) and poly(N-vinyl pyrrolidone)-iodine complex (PVP-I). PVP and PEG were successively tethered onto PP non-woven surface via versatile bioinspired dopamine (DA) chemistry, followed by complexing iodine with PVP moieties. It was demonstrated through the field emission scanning electron microscope (SEM) and spread plate method that the as-modified PP non-woven integrated both antifouling property of PEG for suppressing bacterial adhesion, and bactericidal property of PVP-I for killing the few adherent bacteria. Meanwhile, it could greatly resist platelet and red blood cell adhesion. The integrated antifouling and bactericidal PP non-woven surfaces might have great potential in various wound dressing applications.

  18. Hydrophilic polymer composites synthesized by electrospinning under dense carbon dioxide

    NASA Astrophysics Data System (ADS)

    Wahyudiono, Okamoto, Koichi; Machmudah, Siti; Kanda, Hideki; Goto, Motonobu

    2015-12-01

    Electrospinning technique is feasible in some applications, it has attracted more attention in recent years. Various polymers have been successfully electrospun into ultrafine fibers in solvent solution and some in melt form. In this work, polyvinylpyrrolidone (PVP) as a hydrophilic polymer would be synthesized by electrospinning under dense carbon dioxide (CO2). The experiments were performed at 40 °C and ˜ 5 MPa. During the electrospinning process, the applied voltage was 10-17 kV and the distance of nozzle and collector was 8 cm. The concentration of PVP solution as a major component was 4 wt%. The results showed that the fibers surface morphology from PVP which blended with poly L-lactide acid (PLLA) were smooth with hollow core fibers at 5 MPa. At the same conditions, PVP-carbon nanotube was also successfully generated into electrospun fiber products with diameter ˜ 2 μm.

  19. Allergic contact dermatitis to copolymers in cosmetics--case report and review of the literature.

    PubMed

    Quartier, Sarah; Garmyn, Marjan; Becart, Sophie; Goossens, An

    2006-11-01

    Copolymers or heteropolymers are large molecules with high molecular weights (>1000 D). They have been underestimated for a long time as to their sensitizing capacities. Allergic contact dermatitis to 6 copolymers in cosmetics and 1 in a medical dressing has been described; however, the nature of the hapten is still unknown. We report a case of allergic contact dermatitis to polyvinylpyrrolidone (PVP)/hexadecene copolymer in a purple-colored lipstick and review the literature on allergic contact dermatitis to 7 copolymers: PVP/hexadecene, PVP/eicosene, PVP/1-triacontene, methoxy polyethyleneglycol (PEG)-22/dodecyl glycols, methoxy PEG-17/dodecyl glycols, phthalic anhydride/trimellitic anhydride/glycols, and polyvinyl methyl/maleic acid anhydride. PMID:17026690

  20. High efficiency polymer light-emitting diodes using ternary electron injection layers

    NASA Astrophysics Data System (ADS)

    Wen, Ten-Chin; Tsai, Kai-Wei; Jan, Jiun-Yun; Guo, Tzung-Fang

    2016-02-01

    The high efficiency of polymer light-emitting diodes (PLED) with ternary electron injection layers (EILs) including tetraoctylammonium bromide (TOAB), poly (vinylpyrrolidone) (PVP) and polyethylenimine (PEIE) to comprise PEIE-PVP-TOAB (E-P-T) EIL that has been achieved and well-studied via mixture design. In the unary system, TOAB can construct interfacial dipole via self-assembly crystallization atop various conjugated polymer surfaces to elevate the vacuum level of cathode. When employing three EILs as ternary system, the electrical property of PLED was further improved. The optimum luminescence efficiency respectively are 13.4 cd/A and 13.5 cd/A for T-P-D and E-P-T based PLED. In the ternary system (E-P-T), PEIE , PVP, and TOAB respectively provides electron injection, hole blocking, and polymer intersecting in the ternary based devices. The intersecting between PEIE and PVP by TOAB was evidenced by roughness change from AFM images.

  1. Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics

    NASA Astrophysics Data System (ADS)

    Lim, Sang Chul; Kim, Seong Hyun; Koo, Jae Bon; Lee, Jung Hun; Ku, Chan Hoe; Yang, Yong Suk; Zyung, Taehyoung

    2007-04-01

    The authors report the effects of hydroxyl groups (OH bonds) on the electrical reliabilities of pentacene organic thin-film transistors (OTFTs) with poly-4-vinylphenol (PVP) gate dielectrics. PVP gate dielectric films mixed with different concentrations of methylated poly(melamine-co-formaldehyde) (MMF) were fabricated, and experiments on the hysteresis behavior of the OTFT device were conducted. Pentacene TFTs with the PVP (MMF 0wt.%) exhibited a large hysteresis, while in the PVP (MMF 125wt.%), nearly no hysteresis was observed. Large hysteresis observed in OTFT devices was confirmed to be strongly related to the hydroxyl groups existing inside of the polymeric dielectrics and could reduced by the decrease of OH group.

  2. Nanocomposites with fumed silica/poly(vinyl pyrrolidone) prepared at a low content of solvents

    NASA Astrophysics Data System (ADS)

    Gun'ko, V. M.; Voronin, E. F.; Nosach, L. V.; Pakhlov, E. M.; Voronina, O. E.; Guzenko, N. V.; Kazakova, O. A.; Leboda, R.; Skubiszewska-Zięba, J.

    2006-12-01

    Highly disperse nanocomposites with fumed silica/poly(vinyl pyrrolidone) (PVP) prepared using different methods were studied by infrared spectroscopy, adsorption, and quantum chemistry methods. Low amounts of water or ethanol (30 wt.% with respect to the silica content) promote appropriate distribution of PVP on silica particles. The use of ethanol leads to a smaller loss of the specific surface area ( SBET) than in the case of water used as a solvent. On PVP distribution on a silica surface, treatment of the system in a pseudo-liquid state reactor (PLSR) provides slightly better results (a lower loss in SBET) in comparison with mechanochemical activation (MCA) in a ball mill at the PVP monolayer coverage. An increase in the activation time to 6-9 h leads to an increase in the |Δ SBET/ SBET| value to 0.29-0.35 for both treatment methods.

  3. A thermostable vacuolar-type membrane pyrophosphatase from the archaeon Pyrobaculum aerophilum: implications for the origins of pyrophosphate-energized pumps.

    PubMed

    Drozdowicz, Y M; Lu, Y P; Patel, V; Fitz-Gibbon, S; Miller, J H; Rea, P A

    1999-11-01

    Vacuolar-type H(+)-translocating pyrophosphatases (V-PPases) have been considered to be restricted to plants, a few species of phototrophic proteobacteria and protists. Here, we describe PVP, a thermostable, sequence-divergent V-PPase from the facultatively aerobic hyperthermophilic archaeon Pyrobaculum aerophilum. PVP shares only 38% sequence identity with both the prototypical V-PPase from Arabidopsis thaliana and the H(+)-PPi synthase from Rhodospirillum rubrum, yet possesses most of the structural features characteristic of V-PPases. Heterologous expression of PVP in Saccharomyces cerevisiae yields a M(r) 64¿ omitted¿000 membrane polypeptide that specifically catalyzes Mg(2+)-dependent PPi hydrolysis. The existence of PVP implies that PPi-energized H(+)-translocation is phylogenetically more deeply rooted than previously thought.

  4. Effects of video games on adolescents and adults.

    PubMed

    Hart, Gordon M; Johnson, Bryan; Stamm, Brian; Angers, Nick; Robinson, Adam; Lally, Tara; Fagley, William H

    2009-02-01

    The present study compared a sample of American adolescents with a Spanish sample on a measure of video game addiction, the Problem Video Game Playing (PVP) survey developed in Spain. In addition, the study examined excessive video game playing and reported distress in social life, occupational activities, and school among high school students, college students, and adults. Samples taken from a large Eastern university, two suburban high schools, and an Internet survey were surveyed with an instrument developed by the authors and the PVP. Results show support for the PVP and a similarity between the Spanish and American samples but not for relationships between the PVP and assessments of distress in areas of daily functioning.

  5. Evaluation of the separation performance of polyvinylpyrrolidone as a virtual stationary phase for chromatographic NMR.

    PubMed

    Huang, Shaohua; Wu, Rui; Bai, Zhengwu; Yang, Ying; Li, Suying; Dou, Xiaowei

    2014-09-01

    Polyvinylpyrrolidone (PVP) was used as a virtual stationary phase to separate p-xylene, benzyl alcohol, and p-methylphenol by the chromatographic NMR technique. The effects of concentration and weight-average molecular weight (Mw) of PVP, solvent viscosity, solvent polarity, and sample temperature on the resolution of these components were investigated. It was found that both higher PVP concentration and higher PVP Mw caused the increase of diffusion resolution for the three components. Moreover, the diffusion resolution did not change at viscosity-higher solvents. Moreover, the three components showed different resolution at different solvents. As temperature increased, the diffusion resolution between p-xylene and benzyl alcohol gradually increased, and the one between p-xylene and p-methylphenol slightly increased from 278 to 298 K and then decreased above 298 K. It was also found that the polarity of the analytes played an important role for the separation by affecting the diffusion coefficient.

  6. Fabrication and oil adsorption of carbon nanotube/polyvinylpyrrolidone surface composite.

    PubMed

    Nan, Dou; Wei, Jinquan; Guo, Fengmei; Fan, Guozhong; Xu, Fu; Li, Luming; Zhu, Hongwei; Wang, Kunlin; Wu, Dehai

    2014-08-01

    It needs to assemble the industrial CNT powders into macroscopic porous surface composite to utilize the surface properties of CNTs, as well as to prevent them entering into environments. We demonstrate a method to fabricate the surface composites from CNTs and polyvinylpyrrolidone (PVP) by electrospinning, where CNTs distribute firmly and mainly on the surface PVP nanofibers. The CNTs/PVP surface composites have high pore volume of 10 cc/g and remarkable CNTs load of 98%. Thus the surface composites show high oil adsorption capacity of 0.9~1.1 g/cm3. It can absorb more oil than commercial sponges due to the surface composite swells after absorbing oil. It shows attractive potential application of the CNT/PVP surface composite in oil spill cleanup.

  7. Laser bladder perforation from photoselective vaporization of prostate resulting in rhabdomyolysis induced acute renal failure.

    PubMed

    Farag, E; Baccala, A A; Doutt, R F; Ulchaker, J; O'Hara, J

    2008-06-01

    Hyponatremia and its related comorbidities remain a concern after traditional transurethral resection of the prostrate (TURP). Photoselective vaporization of the prostate (PVP) laser coagulation therapy is a new, relatively bloodless procedure for treatment of benign prostatic hyperplasia (BPH). Perceived benefits with PVP laser TURP include excellent visualization of the operative field during urethral prostatic tissue vaporization and the reduced incidence of laser penetration through the prostatic capsular fibers once the capsule is reached. Theoretically, this would provide a low risk method of perforation during laser TURP. After literature review, we report this as the first case of laser bladder perforation as a complication arising from PVP therapy. This case report discusses the management of acute hyponatremic induced rhabdomyolysis with acute renal failure (ARF) and the recommendation to use sodium chloride vs. sterile water for bladder irrigation during PVP TURP procedures. PMID:18327155

  8. Preparation and Characterization of Coaxial Electrospun Fibers Containing Triclosan for Comparative Study of Release Properties with Amoxicillin and Epicatechin.

    PubMed

    Rodríguez-Félix, D E; Castillo-Ortega, M M; Nájera-Luna, A L; Montaño-Figueroa, A G; López-Peña, I Y; Del Castillo-Castro, T; Rodríguez-Félix, F; Quiroz-Castilloc, J M; Herrera-Franco, P J

    2016-01-01

    The optimal conditions for the fibers preparation of cellulose acetate (CA) and poly(vinyl pyrrolidone) (PVP) containing triclosan within the fiber were successfully found; the physicochemical characteristics of these fibrous membranes were corroborated by FTIR spectroscopy, thermal analysis, mechanical tests, SEM , and TEM analysis. The formation of composite fibers of CA and PVP containing triclosan at the core of the fiber was evidenced. A comparative study of the release properties of amoxicillin, epicatechin or triclosan embedded into fibers CA/PVP/CA was performed. As more interactions of the drug with CA or PVP occur, slower release of the drug into the release medium takes place. Regarding the drug delivery system design, it is important to consider the possible molecular interactions between the material components and predict how fast or slow the drug will be delivered into the corresponding medium. PMID:26634788

  9. Electrophoretic deposition of titanium dioxide films on copper in aqueous media.

    PubMed

    Laamari, M; Ben Youssef, A; Bousselmi, L

    2016-01-01

    Electrophoretic deposition was used to produce titanium dioxide (TiO2) nanostructured films on copper substrate in aqueous media for photocatalytic application. Polyvinyl pyrrolidone (PVP) with a weight rate from 0 to 15% was added to TiO2 P25 suspension in order to enhance film adhesion. The films were characterized by X-ray diffraction, optical microscopy, contact angle measurement, nanoindentation, scratch test and photoluminescence. The photocatalytic activity of the films was tested with amido black 10B under UV irradiation. The results indicated that the morphology and the mechanical properties of films depended on the added PVP amount. Scratch test showed that adhesion strength rose with increased PVP amount. The photocatalytic activity indicated that TiO2 film synthesized with 13% PVP had the highest efficiency. PMID:27438247

  10. Distribution of binder in granules produced by means of twin screw granulation.

    PubMed

    Fonteyne, Margot; Fussell, Andrew Luke; Vercruysse, Jurgen; Vervaet, Chris; Remon, Jean Paul; Strachan, Clare; Rades, Thomas; De Beer, Thomas

    2014-02-28

    According to the quality by design principle processes may not remain black-boxes and full process understanding is required. The granule size distribution of granules produced via twin screw granulation is often found to be bimodal. The aim of this study was to gain a better understanding of binder distribution within granules produced via twin screw granulation in order to investigate if an inhomogeneous spread of binder is causing this bimodal size distribution. Theophylline-lactose-polyvinylpyrrolidone K30 (PVP) (30-67.5-2.5%, w/w) was used as a model formulation. The intra-granular distribution of PVP was evaluated by means of hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy. For the evaluated formulation, no PVP rich zones were detected when applying a lateral spatial resolution of 0.5 μm, indicating that PVP is homogenously distributed within the granules. PMID:24361911

  11. The cellular and genomic response of rat dopaminergic neurons (N27) to coated nanosilver.

    PubMed

    Chorley, Brian; Ward, William; Simmons, Steven O; Vallanat, Beena; Veronesi, Bellina

    2014-12-01

    This study examined if nanosilver (nanoAg) of different sizes and coatings were differentially toxic to oxidative stress-sensitive neurons. N27 rat dopaminergic neurons were exposed (0.5-5 ppm) to a set of nanoAg of different sizes (10nm, 75 nm) and coatings (PVP, citrate) and their physicochemical, cellular and genomic response measured. Both coatings retained their manufactured sizes in culture media, however, the zeta potentials of both sizes of PVP-coated nanoAg were significantly less electronegative than those of their citrate-coated counterparts. Markers of oxidative stress, measured at 0.5-5 ppm exposure concentrations, indicated that caspase 3/7 activity and glutathione levels were significantly increased by both sizes of PVP-coated nanoAg and by the 75 nm citrate-coated nanoAg. Both sizes of PVP-coated nanoAg also increased intra-neuronal nitrite levels and activated ARE/NRF2, a reporter gene for the oxidative stress-protection pathway. Global gene expression on N27 neurons, exposed to 0.5 ppm for 8h, indicated a dominant effect by PVP-coated nanoAg over citrate. The 75 nm PVP-coated material altered 196 genes that were loosely associated with mitochondrial dysfunction. In contrast, the 10nm PVP-coated nanoAg altered 82 genes that were strongly associated with NRF2 oxidative stress pathways. Less that 20% of the affected genes were shared by both sizes of PVP-coated nanoAg. These cellular and genomic findings suggest that PVP-coated nanoAg is more bioactive than citrate-coated nanoAg. Although both sizes of PVP-coated nanoAg altered the genomic expression of N27 neurons along oxidative stress pathways, exposure to the 75 nm nanoAg favored pathways associated with mitochondrial dysfunction, whereas the 10nm PVP-coated nanoAg affected NRF2 neuronal protective pathways.

  12. pH-sensitive hydrogels

    SciTech Connect

    Jing-Fun, Yaung.

    1993-01-01

    This work dealt with the diffusant release from the polyvinyl-pyrrolidone-polyacrylic acid (PVP-PAA) semi-interpenetrating network (semi-IPN) film when the film was placed in separate aqueous dissolution media with various pH values. The pH effect on the swelling behavior of the film and the rates of diffusant release from the film were studied. The PVP-PAA semi-IPN films and the PVP-PAA complexes were prepared from photopolymerization of the mixture of PVP and acrylic acid, in the presence of benzin methyl ether. The PVP-PAA complexes were characterized by means of DSC and FT-IR. The PVP-PAA semi-IPN films with various percentages of a crosslinking agent were investigated. The study of pH effect on the swelling of the semi-IPN film was carried out in 0.1 N HCl solution, pH 3.0 and 6.0 buffers. The swelling rate of PVP-PAA semi-IPN film in pH 6.0 buffer was much higher than the rates in 0.1 N HCl and pH 3.0 buffer. The chemical to be released from the film was incorporated during the film preparation and the diffusant used was either caffeine (hydrogen-bonding-acceptor) or salicylamide (hydrogen-bonding-donator). The diffusant release from the PVP-PAA semi-IPN in 0.1 N HCl solution and in the phosphate buffers with various pH values was investigated. Release rate was faster in high pH media. The chemical valve function of the PVP-PAA semi-IPN film in controlling release rate was studied by alternating the dissolution medium between 0.1N HCl solution and pH 6.0 buffer. Consistently, the release rate increased when the dissolution medium was changed from 0.1 N HCl solution to pH 6.0 buffer, and the rate dropped while the medium was was switched from pH 6.0 buffer to 0.1 N HCl solution. Finally, the effects of the type of crosslinking agent, the percentage of crosslinking agent used, and the molar ratio of PVP/AA on the diffusant release from the PVP-PAA semi-IPN film were explored.

  13. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    PubMed

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the

  14. Improving Oral Bioavailability of Sorafenib by Optimizing the "Spring" and "Parachute" Based on Molecular Interaction Mechanisms.

    PubMed

    Liu, Chengyu; Chen, Zhen; Chen, Yuejie; Lu, Jia; Li, Yuan; Wang, Shujing; Wu, Guoliang; Qian, Feng

    2016-02-01

    Sorafenib is a clinically important oral tyrosine kinase inhibitor for the treatment of various cancers. However, the oral bioavailability of sorafenib tablet (Nexavar) is merely 38-49% relative to the oral solution, due to the low aqueous solubility of sorafenib and its relatively high daily dose. It is desirable to improve the oral bioavailability of sorafenib to expand the therapeutic window, reduce the drug resistance, and enhance patient compliance. In this study, we observed that the solubility of sorafenib could be increased ∼50-fold in the coexistence of poly(vinylpyrrolidone-vinyl acetate) (PVP-VA) and sodium lauryl sulfate (SLS), due to the formation of PVP-VA/SLS complexes at a lower critical aggregation concentration. The enhanced solubility provided a faster initial sorafenib dissolution rate, analogous to a forceful "spring" to release drug into solution, from tablets containing both PVP-VA and SLS. However, SLS appears to impair the ability of PVP-VA to act as an efficient "parachute" to keep the drug in solution and maintain drug supersaturation. Using 2D (1)H NMR, (13)C NMR, and FT-IR analysis, we concluded that the solubility enhancement and supersaturation of sorafenib were achieved by PVP-VA/SLS complexes and PVP-VA/sorafenib interaction, respectively, both through molecular interactions hinged on the PVP-VA VA groups. Therefore, a balance between "spring" and "parachute" must be carefully considered in formulation design. To confirm the in vivo relevance of these molecular interaction mechanisms, we prepared three tablet formulations containing PVP-VA alone, SLS alone, and PVP-VA/SLS in combination. The USP II in vitro dissolution and dog pharmacokinetic in vivo evaluation showed clear differentiation between these three formulations, and also good in vitro-in vivo correlation. The formulation containing PVP-VA alone demonstrated the best bioavailability with 1.85-fold and 1.79-fold increases in Cmax and AUC, respectively, compared with the

  15. Low-temperature sintering behavior of nanocrystalline indium tin oxide prepared from polymer-containing sols

    SciTech Connect

    Koroesi, Laszlo; Papp, Szilvia; Oszko, Albert; Dekany, Imre

    2012-04-15

    Highlights: Black-Right-Pointing-Pointer The synthesis of ITO powders and thin films from PVP-containing sols is presented. Black-Right-Pointing-Pointer The nano- and microstructures of ITO are more compact when PVP is used. Black-Right-Pointing-Pointer PVP acts both as a steric stabilizer of the sol and as a pre-sintering agent. Black-Right-Pointing-Pointer The PVP-induced enhanced sintering results in ITO with lower electrical resistance. Black-Right-Pointing-Pointer The surface composition of the ITO films is independent of the initial PVP content. -- Abstract: Indium tin hydroxide (ITH) xerogel powders and thin films with different polyvinylpyrrolidone (PVP) contents (0-22%, w/w) were prepared by a classical sol-gel method. To obtain nanocrystalline indium tin oxide (ITO), the ITH xerogels were calcined at 550 Degree-Sign C. The effect of the initial polymer content on the structure of the ITO powders was studied by means of N{sub 2}-sorption measurements, small-angle X-ray scattering (SAXS), transmission and scanning electron microscopy. The N{sub 2}-sorption measurements revealed that the ITO powders obtained contained micropores and both their porosity and specific surface area decreased with increasing PVP content of the ITH xerogels. The SAXS measurements confirmed the enhanced sintering of the particles in the presence of PVP. The calculated mass fractal dimensions of the ITO powders increased significantly, indicating a significant compaction in structure. The pre-sintered structure could be achieved at relatively low temperature, which induced a significant decreasing (three orders of magnitude) in the electrical resistance of the ITO films.

  16. Evaluation of binding properties of Plantago psyllium seed mucilage.

    PubMed

    Saeedi, Majid; Morteza-Semnani, Katayoun; Ansoroudi, Farshad; Fallah, Saeed; Amin, Gholamreza

    2010-09-01

    Mucilage extracted from Plantago psyllium seeds was evaluated for inertness and safety parameters. The suitability of psyllium mucilage for a pharmaceutical binder was assessed in paracetamol tablets. Properties of the granules prepared using different concentrations of psyllium mucilage was compared with PVP and tragacanth. Psyllium mucilage at 5 % (m/m) was found to be comparable with 3 % (m/m) of PVP. Investigated paracetamol tablets indicated that psyllium mucilage can retard the drug release. PMID:21134867

  17. A Quantitative Analysis of the Role Played by Poly(vinyl pyrrolidone) in Seed-mediated Growth of Ag Nanocrystals

    PubMed Central

    Xia, Xiaohu; Zeng, Jie; Oetjen, L. Kyle; Li, Qingge; Xia, Younan

    2012-01-01

    This article presents a quantitative analysis of the role played by poly(vinyl pyrrolidone) (PVP) in seed-mediated growth of Ag nanocrystals. Starting from Ag nanocubes encased by {100} facets as the seeds, the resultant nanocrystals could take different shapes depending on the concentration of PVP in the solution. If the concentration was above a critical value, the seeds simply grew into larger cubes still enclosed by {100} facets. When the concentration fell below a critical value, the seeds would evolve into cuboctahedrons enclosed by a mix of {100} and {111} facets and eventually octahedrons completely covered by {111} facets. We derived the coverage density of PVP on Ag(100) surface by combining the results from two measurements: i) cubic seeds were followed to grow at a fixed initial concentration of PVP to find out when {111} facets started to appear on the surface; and ii) cubic seeds were allowed to grow at reduced initial concentrations of PVP to see at which concentration {111} facets started to appear from the very beginning. We could calculate the coverage density of PVP from the differences in PVP concentration and the total surface area of Ag nanocubes between these two samples. The coverage density was found to be 140 and 30 repeating units per nm2 for PVP of 55,000 and 10,000 g/mol in molecular weight, respectively, for cubic seeds of 40 nm in edge length. These values dropped slightly to 100 and 20 repeating units per nm2, respectively, when 100-nm Ag cubes were used as the seeds. PMID:22206387

  18. Prominent periventricular fiber system related to ganglionic eminence and striatum in the human fetal cerebrum.

    PubMed

    Vasung, L; Jovanov-Milošević, N; Pletikos, M; Mori, S; Judaš, M; Kostović, Ivica

    2011-01-01

    Periventricular pathway (PVP) system of the developing human cerebrum is situated medial to the intermediate zone in the close proximity to proliferative cell compartments. In order to elucidate chemical properties and developing trajectories of the PVP we used DTI in combination with acetylcholinesterase histochemistry, SNAP-25 immunocytochemistry and axonal cytoskeletal markers (SMI312, MAP1b) immunocytochemistry on postmortem paraformaldehyde-fixed brains of 30 human fetuses ranging in age from 10 to 38 postconceptional weeks (PCW), 2 infants (age 1-3 months) and 1 adult brain. The PVP appears in the early fetal period (10-13 PCW) as two defined fibre bundles: the corpus callosum (CC) and the fetal fronto-occipital fascicle (FOF). In the midfetal period (15-18 PCW), all four components of the PVP can be identified: (1) the CC, which at rostral levels forms a voluminous callosal plate; (2) the FOF, with SNAP-25-positive fibers; (3) the fronto-pontine pathway (FPP) which for a short distance runs within the PVP; and (4) the subcallosal fascicle of Muratoff (SFM) which contains cortico-caudate projections. The PVPs are situated medial to the internal capsule at the level of the cortico-striatal junction; they remain prominent during the late fetal and early preterm period (19-28 PCW) and represent a portion of the wider periventricular crossroad of growing associative, callosal and projection pathways. In the perinatal period, the PVPs change their topographical relationships, decrease in size and the FOF looses its SNAP-25-reactivity. In conclusion, the hitherto undescribed PVP of the human fetal cerebrum contains forerunners of adult associative and projection pathways. Its transient chemical properties and relative exuberance suggest that the PVP may exert influence on the development of cortical connectivity (intermediate targeting) and other neurogenetic events such as neuronal proliferation. The PVP's topographical position also indicates that it is a major

  19. Antisolvent precipitation technique: A very promising approach to crystallize curcumin in presence of polyvinyl pyrrolidon for solubility and dissolution enhancement.

    PubMed

    Sadeghi, Fatemeh; Ashofteh, Mohammad; Homayouni, Alireza; Abbaspour, Mohammadreza; Nokhodchi, Ali; Garekani, Hadi Afrasiabi

    2016-11-01

    Curcumin with a vast number of pharmacological activities is a poorly water soluble drug which its oral bioavailability is profoundly limited by its dissolution or solubility in GI tract. Curcumin could be a good anticancer drug if its solubility could be increased. Therefore, the aim of the present study was to increase the dissolution rate of curcumin by employing antisolvent crystallization technique and to investigate the effect of polyvinyl pyrrolidone K30 (PVP) as colloidal particles in crystallization medium on resultant particles. Curcumin was crystalized in the presence of different amounts of PVP by antisolvent crystallization method and their physical mixtures were prepared for comparison purposes. The samples were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FT-IR). The solubility and dissolution of the treated and untreated curcumin were also determined. Antisolvent crystallization of curcumin led to the formation of particles with no definite geometric shape. It was interesting to note that the DSC and XRPD studies indicated the formation of a new polymorph and less crystallinity for particles crystallized in the absence of PVP. However, the crystallized curcumin in the presence of PVP was completely amorphous. All crystalized curcumin samples showed much higher dissolution rate compared to untreated curcumin. The amount of curcumin dissolved within 10 for treated curcumin in the presence of PVP (1:1 curcumin:PVP) was 7 times higher than untreated curcumin and this enhancement in the dissolution for curcumin samples crystallized in the absence of PVP was around 5 times. Overall' the results of this study showed that antisolvent crystallization method in the absence or presence of small amounts of PVP is very efficient in increasing the dissolution rate of curcumin to achieve better efficiency for curcumin. PMID:27518458

  20. Enzyme-free Detection of Hydrogen Peroxide from Cerium Oxide Nanoparticles Immobilized on Poly(4-vinylpyridine) Self-Assembled Monolayers

    SciTech Connect

    Gaynor, James D.; Karakoti, Ajay S.; Inerbaev, Talgat; Sanghavi, Shail P.; Nachimuthu, Ponnusamy; Shutthanandan, V.; Seal, Sudipta; Thevuthasan, Suntharampillai

    2013-05-02

    A single layer of oxygen-deficient cerium oxide nanoparticles (CNPs) are immobilized on microscopic glass slide using poly(4-vinylpyridine) (PVP) self-assembled monolayers (SAMs). A specific colorimetric property of CNPs when reacted with hydrogen peroxide allows for the direct, single-step peroxide detection which can be used in medical diagnosis and explosives detection. Multiple PVP-CNP immobilized layers improve sensitivity of detection and the sensor can be regenerated for reuse.

  1. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.

    PubMed

    Su, Hua; Liu, Dan-Dan; Zhao, Meng; Hu, Wei-Liang; Xue, Shan-Shan; Cao, Qian; Le, Xue-Yi; Ji, Liang-Nian; Mao, Zong-Wan

    2015-04-22

    Polyvinylpyrrolidone-stabilized iridium nanoparticles (PVP-IrNPs), synthesized by the facile alcoholic reduction method using abundantly available PVP as protecting agents, were first reported as enzyme mimics showing intrinsic catalase- and peroxidase-like activities. The preparation procedure was much easier and more importantly, kinetic studies found that the catalytic activity of PVP-IrNPs was comparable to previously reported platinum nanoparticles. Transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) characterization indicated that PVP-IrNPs had the average size of approximately 1.5 nm and mainly consisted of Ir(0) chemical state. The mechanism of PVP-IrNPs' dual-enzyme activities was investigated using XPS, Electron spin resonance (ESR) and cytochrome C-based electron transfer methods. The catalase-like activity was related to the formation of oxidized species Ir(0)@IrO2 upon reaction with H2O2. The peroxidase-like activity originated from their ability acting as electron transfer mediators during the catalysis cycle, without the production of hydroxyl radicals. Interestingly, the protective effect of PVP-IrNPs against H2O2-induced cellular oxidative damage was investigated in an A549 lung cancer cell model and PVP-IrNPs displayed excellent biocompatibility and antioxidant activity. Upon pretreatment of cells with PVP-IrNPs, the intracellular reactive oxygen species (ROS) level in response to H2O2 was decreased and the cell viability increased. This work will facilitate studies on the mechanism and biomedical application of nanomaterials-based enzyme mimic.

  2. A novel solution process for the synthesis of VO2 thin films with excellent thermochromic properties.

    PubMed

    Kang, Litao; Gao, Yanfeng; Luo, Hongjie

    2009-10-01

    This article describes a novel and simple route to preparing VO(2) thermochromic films by using a VOCl(2) solution with poly(vinylpyrrolidone) (PVP). X-ray diffraction and Raman spectra showed that the VO(2) films deposited with PVP consisted of a nearly pure monoclinic/rutile (M/R) phase. Conversely, films prepared without PVP contained obviously impure crystalline phases. The as-prepared films with PVP showed excellent optical properties compared to those prepared by common gas-phase methods: an integral visible transmittance of 54.5% and an IR reduction (change in transmittance) of 41.5% at 2000 nm. The phase-transition temperatures were adjusted from 69 to 54 degrees C by tungsten doping. Equipment analyses revealed that PVP plays two roles in the film formation. First, it fundamentally acts as a film-forming promoter to improve physical gelation via interactions among oppositely charged carbonyl groups and amine groups of the polymer. Second, the negatively charged carbonyl groups can interact with VO(2+) to form a uniform mixed-gel film after solvent evaporation. Thus, the addition of PVP can stabilize the solution and improve the as-prepared film quality and phase purity. The current study suggests that the process has promise in applications of smart windows. PMID:20355855

  3. Macrophage function as studied by the clearance of /sup 125/I-labeled polyvinylpyrrolidone in iron-deficient and iron-replete mice

    SciTech Connect

    Kuvibidila, S.; Wade, S.

    1987-01-01

    This study evaluated the effects of iron deficiency and iron repletion on in vivo macrophage function determined by the clearance of /sup 125/I-labeled polyvinylpyrrolidone (PVP). Two experiments were done. There were four groups of C57BL/6 female mice in experiment 1: the iron-deficient (ID), pair-fed (PF), control (C) and the high iron (HI) groups. In experiment 2, there were three ID groups (severe to moderate anemia), three PF, one C and four ID groups that were fed adequate iron for 14 (R-14), 7 (R-7), 3 (R-3) days before or on the day of PVP injection (R-0). The overall rate of PVP clearance from blood was lower in ID than in C or PF groups. This clearance is expressed by a constant, K, calculated from natural log (ln) of the cpm and the time postadministration of PVP that blood was drawn. The theoretical individual macrophages function (alpha PVP), derived from K and the weights of body, spleen and liver, was also lower in ID than in C or PF groups. The impairment was most severe with the most severe iron deficiency. Repletion for 7 to 15 d before PVP administration resulted in a partial correction of the clearance. Moderate undernutrition in the PF group had no effect.

  4. Correlation between lead retention and intestinal pinocytosis in the suckling mouse

    SciTech Connect

    Keller, C.A.; Doherty, R.A.

    1980-01-01

    Young animals absorb and retain a greater fraction of an oral dose of lead than do adult animals. It has been proposed that pinocytotic activity in young animals is partially responsible for the increased lead retention and absorption. Radiolabeled lead (5 mg/kg) and polyvinylpyrrolidone (PVP, 50 mg/kg) were administered orally to 12-day-old suckling mice and to adult mice, and the uptake of lead and PVP was determined periodically during a 6-day interval. Intestinal tissue from the distal jejunum and ileum were found to contain the greatest quantities of both lead and PVP. Pretreatment of suckling mice with cortisone acetate resulted in decreased content of lead and PVP within tissue of the intestine, and decreased whole-body lead retention. Cortisone pretreatment produced lower lead concentrations in blood, brain, kidney, and liver. Lead and PVP uptake into intestinal tissue of adult mice was much less than uptake in suckling pups. Cortisone pretreatment of adult mice had no effect on whole-body lead retention or intestinal tissue content of lead or PVP.

  5. Monodisperse polyvinylpyrrolidone-coated CoFe2O4 nanoparticles: Synthesis, characterization and cytotoxicity study

    NASA Astrophysics Data System (ADS)

    Wang, Guangshuo; Ma, Yingying; Mu, Jingbo; Zhang, Zhixiao; Zhang, Xiaoliang; Zhang, Lina; Che, Hongwei; Bai, Yongmei; Hou, Junxian; Xie, Hailong

    2016-03-01

    In this study, monodisperse cobalt ferrite (CoFe2O4) nanoparticles were prepared successfully with various additions of polyvinylpyrrolidone (PVP) by sonochemical method, in which PVP served as a stabilizer and dispersant. The effects and roles of PVP on the morphology, microstructure and magnetic properties of the obtained CoFe2O4 were investigated in detail by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) and superconducting quantum interference device (SQUID). It was found that PVP-coated CoFe2O4 showed relatively well dispersion with narrow size distribution. The field-dependent magnetization curves indicated superparamagnetic behavior of PVP-coated CoFe2O4 with moderate saturation magnetization and hydrophilic character at room temperature. More importantly, the in vitro cytotoxicity testing exhibited negligible cytotoxicity of as-prepared PVP-CoFe2O4 even at the concentration as high as 150 μg/mL after 24 h treatment. Considering the superparamagnetic properties, hydrophilic character and negligible cytotoxicity, the monodisperse CoFe2O4 nanoparticles hold great potential in a variety of biomedical applications.

  6. Percutaneous vertebroplasty: the radiologist’s point of view

    PubMed Central

    Masala, Salvatore; Mammucari, Matteo; Fucci, Francesco Paolo Maria; Massari, Francesco; Simonetti, Giovanni

    2010-01-01

    Introduction: Vertebral compression fractures (VCFs), usually caused by osteoporosis, is a disabling pathology associated with back pain, low quality of life and high costs. We report a retrospective study of 852 patients who underwent Percutaneous Vertebroplasty (PVP) in our department, for treatment of refractory back pain caused by osteoporotic vertebral fractures. Objectives: To evaluate the safety and the helpfulness of the PVP in vertebral osteoporotic fractures treatment and, particularly on durable pain reduction, mobility improvement and analgesic drugs need. Materials and Methods: Follow-up analysis was made through a questionnaire filled by the patients before and after PVP (1-6 months), designed to measure pain, ambulation capacity, ability to perform activities of daily living (ADL) and analgesic drugs administration. Results: A statistically significant difference between visual analogue scale (VAS) values before and after treatment has been observed. No difference between VAS values were observed at 1 and 6 months post-treatment period. The treated vertebrae number did not influence post-treatment VAS values during all the follow-up. Ambulation capacity and the ability to perform ADL have been improved following PVP. Patients also reported significant reduction in administration of medications after PVP. Conclusions: PVP is a safe and useful procedure in painful osteoporotic VCFs treatment, able to reduce pain, improve patients mobility and decrease analgesic drugs need. PMID:22461290

  7. Hydrothermal effect and mechanical stress properties of carboxymethylcellulose based hydrogel food packaging.

    PubMed

    Gregorova, Adriana; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2015-03-01

    The PVP-CMC hydrogel film is biodegradable, transparent, flexible, hygroscopic and breathable material which can be used as a food packaging material. The hygroscopic character of CMC and PVP plays a big role in the changing of their mechanical properties where load carrying capacity is one of important criteria for packaging materials. This paper reports about the hydrothermal effect on the mechanical and viscoelastic properties of neat CMC, and PVP-CMC (20:80) hydrogel films under the conditions of combined multiple stress factors such as temperature, time, load, frequency and humidity. The dry films were studied by transient and dynamic oscillatory experiments using dynamic mechanical analyser combined with relative humidity chamber (DMA-RH). The mechanical properties of PVP-CMC hydrogel film at room temperature (25 °C), in the range of 0-30%RH remain steady. The 20 wt% of PVP in PVP-CMC hydrogel increases the stiffness of CMC from 2940 to 3260 MPa at 25 °C and 10%RH.

  8. Silver polyvinyl pyrrolidone nanoparticles exhibit a capsular polysaccharide influenced bactericidal effect against Streptococcus pneumoniae

    PubMed Central

    Bibbs, Ronda K.; Harris, Rhonda D.; Peoples, Veolanda A.; Barnett, Cleon; Singh, Shree R.; Dennis, Vida A.; Coats, Mamie T.

    2014-01-01

    Streptococcus pneumoniae remains a leading cause of morbidity and mortality worldwide. The highly adaptive nature of S. pneumoniae exemplifies the need for next generation antimicrobials designed to avoid high level resistance. Metal based nanomaterials fit this criterion. Our study examined the antimicrobial activity of gold nanospheres, silver coated polyvinyl pyrrolidone (AgPVP), and titanium dioxide (TiO2) against various serotypes of S. pneumoniae. Twenty nanometer spherical AgPVP demonstrated the highest level of killing among the tested materials. AgPVP (0.6 mg/mL) was able to kill pneumococcal serotypes 2, 3, 4, and 19F within 4 h of exposure. Detailed analysis of cultures during exposure to AgPVP showed that both the metal ions and the solid nanoparticles participate in the killing of the pneumococcus. The bactericidal effect of AgPVP was lessened in the absence of the pneumococcal capsular polysaccharide. Capsule negative strains, JD908 and RX1, were only susceptible to AgPVP at concentrations at least 33% higher than their respective capsule expressing counterparts. These findings suggest that mechanisms of killing used by nanomaterials are not serotype dependent and that the capsular polysaccharide participates in the inhibition. In the near future these mechanisms will be examined as targets for novel antimicrobials. PMID:25520713

  9. Poly(vinyl pyrrolidone): a dual functional reductant and stabilizer for the facile synthesis of noble metal nanoplates in aqueous solutions.

    PubMed

    Xiong, Yujie; Washio, Isao; Chen, Jingyi; Cai, Honggang; Li, Zhi-Yuan; Xia, Younan

    2006-09-26

    Poly(vinyl pyrrolidone) (PVP) has been extensively used in the solution-phase synthesis of many types of colloidal particles, where it is mainly considered as a steric stabilizer or capping agent with a major role to protect the product from agglomeration. In a recent study, we discovered that the hydroxyl end groups of PVP could also serve as a very mild reductant for kinetically controlled synthesis of Ag nanoplates with yields as high as 75%. Here we further demonstrate that hydroxyl-terminated PVP is also a well-suited reductant for the aqueous synthesis of circular, triangular, and hexagonal nanoplates made of other noble metals including Pd, Au, and Pt. The reduction kinetics of a metal salt by the hydroxyl end groups of PVP can be maneuvered in at least two different ways to facilitate the evolution of plate morphology: (i) by adjusting the molar ratio of PVP to the salt precursor and (ii) by altering the molecular weight of PVP. Unlike previously reported studies of Ag and Au thin plates, light was found to have a negligible role in the present synthesis. PMID:16981776

  10. Protective effects of polyvinylpyrrolidone-wrapped fullerene against intermittent ultraviolet-A irradiation-induced cell injury in HaCaT cells.

    PubMed

    Saitoh, Yasukazu; Ohta, Hiroaki; Hyodo, Sayuri

    2016-10-01

    To identify compounds that suppress UV irradiation-induced oxidative stress in the skin, various types of antioxidants have been studied. Polyvinylpyrrolidone-entrapped fullerene (C60/PVP) is known as a powerful antioxidant that exerts a cytoprotective effect against UV irradiation-induced cell injury in human skin cells and skin models. However, the effects of the alternate attractive C60/PVP feature, persistent antioxidant ability, on cytoprotection have rarely been ascertained. In this study we therefore investigated the efficacies of C60/PVP using an intermittently repeated UVA irradiation model wherein human keratinocytes were repeatedly exposed to UVA five times every 1h and compared the cytoprotective effects with those provided by ascorbic acid-2-O-phosphate-disodium salt (APS) and α-tocopherol (α-Toc). Our results demonstrated that C60/PVP yielded prominent cytoprotective effects against intermittently repeated UVA irradiation-induced injuries in a dose-dependent manner and suppressed intracellular superoxide anion radical (O2(-)) generation both during and after the repeated UVA irradiation. Additionally, C60/PVP also repressed the intermittent UVA irradiation-induced apoptosis via suppression of chromatin condensation and caspase-3/7 activation. Furthermore, the observed cytoprotective effects were superior to the effects of the typical antioxidants APS and α-Toc. These data suggest that C60/PVP might function as a potent cosmetic antioxidant against the effects of repeated and prolonged UVA irradiation through its persistent antioxidative property. PMID:27522271

  11. Polyvinylpyrrolidone microneedles enable delivery of intact proteins for diagnostic and therapeutic applications

    PubMed Central

    Sun, Wenchao; Araci, Zeynep; Inayathullah, Mohammed; Manickam, Sathish; Zhang, Xuexiang; Bruce, Marc A.; Marinkovich, M. Peter; Lane, Alfred T.; Milla, Carlos; Rajadas, Jayakumar; Butte, Manish J.

    2013-01-01

    We present a method of fabricating microneedles from polyvinylpyrrolidone (PVP) that enables delivery of intact proteins (or peptides) to the dermal layers of the skin. PVP is known to self-assemble into branched hollow fibers in aqueous and alcoholic solutions; we utilized this property to develop dissolvable patches of microneedles. Proteins were dissolved in concentrated PVP solution in both alcohol and water, poured into polydimethylsiloxane templates shaped as microneedles and, upon evaporation of solvent, formed into concentric, fibrous, layered structures. This approach of making PVP microneedles overcomes problems in dosage, uniform delivery and stability of protein formulation as compared to protein-coated metallic microneedles or photopolymerized PVP microneedles. Here we characterize the PVP microneedles and measure the delivery of proteins into skin. We show that our method of fabrication preserves the protein conformation. These microneedles can serve as a broadly useful platform for delivering protein antigens and therapeutic proteins to the skin, for example for allergen skin testing or immunotherapy. PMID:23648574

  12. A Fatal Case of Pentedrone and α-Pyrrolidinovalerophenone Poisoning.

    PubMed

    Sykutera, Marzena; Cychowska, Magdalena; Bloch-Boguslawska, Elżbieta

    2015-05-01

    We report a fatal case of combined α-pyrrolidinovalerophenone (α-PVP) and 2-(methylamino)-1-phenylpentan-1-one (pentedrone) poisoning. A 28-year-old man was taken to hospital in asystole. Despite resuscitation efforts over 30 min, he died. The forensic autopsy showed pulmonary edema and moderately advanced atherosclerotic lesions of the arteries. Microscopic observation revealed chronic changes in the heart. Confirmation of the presence of pentedrone, α-PVP, and its metabolite 1-phenyl-2-(pyrrolidin-1-yl)pentan-1-ol (OH-α-PVP) in tissues and fluids were achieved using gas chromatography-mass spectrometry analysis after liquid-liquid extraction. A quantitative validated liquid chromatography-mass spectrometry method was used to determine the concentrations of the above designer drugs in postmortem samples. Pentedrone, α-PVP, and OH-α-PVP concentrations were 8,794, 901 and 185 ng/mL in whole blood, respectively; 100,044, 2,610 and 2,264 ng/g in the liver, respectively; 22,102, 462 and 294 ng/g in the kidney, respectively; 13,248, 120 and 91 ng/g in the brain, respectively and 500,534, 4,190 and 47 ng/g in the stomach contents, respectively. This is the first known reported death attributed to the combined use of α-PVP and pentedrone. Additionally, this article is the first to report the distribution of pentedrone in postmortem human samples.

  13. Polymer combination increased both physical stability and oral absorption of solid dispersions containing a low glass transition temperature drug: physicochemical characterization and in vivo study.

    PubMed

    Sakurai, Atsushi; Sakai, Toshiro; Sako, Kazuhiro; Maitani, Yoshie

    2012-01-01

    The purpose of this study was establishing a solid dispersion formulation containing a low glass transition temperature (T(g)) and poorly water-soluble drug. Drug/polymer blends with differing physicochemical stabilities and oral absorption were prepared from copolyvidone (PVP-VA), polyvinylpyrrolidone (PVP) or hydroxypropylmethylcellulose (HPMC) by a hot melt extrusion. HPMC drastically increased the drug oral absorption property, while PVP-VA or PVP stabilized solid dispersions during storage by increasing the T(g) in proportion to polymer concentration. Experimental T(g) values corresponded closely with theoretical T(g) values; indeed, the T(g) values of solid dispersion with HPMC did not increase significantly compared to the T(g) value for the drug alone. A solid dispersion formulation incorporating two different polymers-HPMC and either PVP-VA or PVP-maintained increased T(g), physicochemical stability, solubility, and bioavailability of the solid dispresions owing to each polymer. These findings suggested that both oral absorption and physicochemical stability of low-T(g) drug will be improved using less amount of solid dispersion of combined two polymers than polymer alone.

  14. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites.

  15. Electrophoretic deposition of tannic acid-polypyrrolidone films and composites.

    PubMed

    Luo, Dan; Zhang, Tianshi; Zhitomirsky, Igor

    2016-05-01

    Thin films of polyvinylpyrrolidone (PVP)-tannic acid (TA) complexes were prepared by a conceptually new strategy, based on electrophoretic deposition (EPD). Proof of concept investigations involved the analysis of the deposition yield, FTIR and UV-vis spectroscopy of the deposited material, and electron microscopy studies. The analysis of the deposition mechanism indicated that the limitations of the EPD in the deposition of small phenolic molecules, such as TA, and electrically neutral polymers, similar to PVP, containing hydrogen-accepting carbonyl groups, can be avoided. The remarkable adsorption properties of TA and film forming properties of the PVP-TA complexes allowed for the EPD of materials of different types, such as huntite mineral platelets and hydrotalcite clay particles, TiO2 and MnO2 oxide nanoparticles, multiwalled carbon nanotubes, TiN and Pd nanoparticles. Moreover, PVP-TA complexes were used for the co-deposition of different materials and formation of composite films. In another approach, TA was used as a capping agent for the hydrothermal synthesis of ZnO nanorods, which were then deposited by EPD using PVP-TA complexes. The fundamental adsorption and interaction mechanisms of TA involved chelation of metal atoms on particle surfaces with galloyl groups, π-π interactions and hydrogen bonding. The films prepared by EPD can be used for various applications, utilizing functional properties of TA, PVP, inorganic and organic materials of different types and their composites. PMID:26878711

  16. Hydrogen Bonding Interactions in Amorphous Indomethacin and Its Amorphous Solid Dispersions with Poly(vinylpyrrolidone) and Poly(vinylpyrrolidone-co-vinyl acetate) Studied Using (13)C Solid-State NMR.

    PubMed

    Yuan, Xiaoda; Xiang, Tian-Xiang; Anderson, Bradley D; Munson, Eric J

    2015-12-01

    Hydrogen bonding interactions in amorphous indomethacin and amorphous solid dispersions of indomethacin with poly(vinylpyrrolidone), or PVP, and poly(vinylpyrrolidone-co-vinyl acetate), or PVP/VA, were investigated quantitatively using solid-state NMR spectroscopy. Indomethacin that was (13)C isotopically labeled at the carboxylic acid carbon was used to selectively analyze the carbonyl region of the spectrum. Deconvolution of the carboxylic acid carbon peak revealed that 59% of amorphous indomethacin molecules were hydrogen bonded through carboxylic acid cyclic dimers, 15% were in disordered carboxylic acid chains, 19% were hydrogen bonded through carboxylic acid and amide interactions, and the remaining 7% were free of hydrogen bonds. The standard dimerization enthalpy and entropy of amorphous indomethacin were estimated to be -38 kJ/mol and -91 J/(mol · K), respectively, using polystyrene as the "solvent". Polymers such as PVP and PVP/VA disrupted indomethacin self-interactions and formed hydrogen bonds with the drug. The carboxylic acid dimers were almost completely disrupted with 50% (wt) of PVP or PVP/VA. The fraction of disordered carboxylic acid chains also decreased as the polymer content increased. The solid-state NMR results were compared with molecular dynamics (MD) simulations from the literature. The present work highlights the potential of (13)C solid-state NMR to detect and quantify various hydrogen bonded species in amorphous solid dispersions as well as to serve as an experimental validation of MD simulations.

  17. A co-immobilized mediator and microorganism mediated method combined pretreatment by TiO2 nanotubes used for BOD measurement.

    PubMed

    Liu, Ling; Zhang, Shengsen; Xing, Li; Zhao, Huijun; Dong, Shaojun

    2012-05-15

    In this paper, we proposed a method by using co-immobilized Escherichia coli (E. coli) as a biocatalyst and neutral red (NR) as an artificial electronic acceptor to modify glassy carbon electrode (GCE) for biochemical oxygen demand (BOD) measurement. Two different modification approaches of GCE were utilized and compared. In one approach, NR was electropolymerized on the surface of GCE, and E. coli cells were mixed with grafting copolymer PVA-g-PVP (briefly gPVP) and covered on NR polymer film to obtain a (gPVP/E. coli)/PNR/GCE. In the second approach, both NR and E. coli cells were mixed with the copolymer gPVP and modified GCE, after drying, which was electrochemically treated similar as above for obtaining a (gPVP/E. coli/NR)p/GCE. Based on the electrochemical evaluation, the performance of the latter was better, which may be caused by that the NR deposited on the surface of E. coli resulting in a good electron transport and permeability of cells membrane. To develop the results obtained at (gPVP/E. coli/NR)p/GCE further, the pretreatment by TiO(2) nanotubes arrays (TNTs) was employed, and different effects on samples of GGA, OECD, urea and real wastewater were evaluated. These results suggest that the present method holds a potential application for rapid BOD biosensor.

  18. Management of pterygoid venous plexus hemorrhage during resection of a large juvenile nasopharyngeal angiofibroma: a review of 27 cases.

    PubMed

    Chang, Lin; Zixiang, Yi; Zheming, Fang; Gongbiao, Lin; Zhichun, Li; Rong, Zhang; Aidong, Zhou; Shuzhan, Lan

    2013-01-01

    We retrospectively reviewed the cases of 27 patients who experienced intraoperative bleeding during resection of a large (Fisch type III or IV) juvenile nasopharyngeal angiofibroma (JNA). Of this group, 16 patients had a type III JNA and 11 had a type IV tumor. The degree of hemorrhaging during excision of these JNAs varied greatly among individual patients. The amount of blood lost ranged from 200 to 5,000 ml (mean: 1,800) in the type III cases and from 700 to 8,000 ml (mean: 2,850) in the type IV cases. In 5 of these cases, both intraoperative observations and imaging data suggested that an important factor in the blood loss was damage to the pterygoid venous plexus (PVP). The PVP communicates with the cavernous sinus, ophthalmic vein, maxillary vein, and facial vein; no valve exists between these veins. In patients with a large JNA, the PVP is usually compressed by or adherent to the tumor. When a PVP is seriously damaged during removal of a JNA, hemorrhaging can be very profuse. Therefore, a suitable surgical approach and appropriate hemostatic procedures should be used to prevent or manage PVP hemorrhage as effectively as possible. We also describe in greater detail 5 typical cases of JNA excision that did (n = 3) and did not (n = 2) involve PVP damage.

  19. Preparation and characterization of cefuroxime axetil solid dispersions using hydrophilic carriers

    PubMed Central

    Gorajana, Adinarayana; Rajendran, Adhiyaman; Yew, Lee Mun; Dua, Kamal

    2015-01-01

    Aim: The objective of the current study is to increase the dissolution rate of cefuroxime axetil (CA) by formation of binary CA solid dispersion using water soluble carriers such as polyvinylpyrrolidone (PVP K30) and polyethylene glycol (PEG 4000). Methods: Solid dispersions (SDs) between CA and PVP K30/PEG 4000 were formed by dissolving both compounds in a common solvent, methanol, which were rotary evaporated at 40°C for 12 h. Physical mixtures between CA and PVP K30/PEG 4000 were also formulated as to compare the efficiency of SDs. The physicochemical properties of CA and all its formulations were then characterized using differential scanning calorimetric analysis (DSC), powder X-ray diffraction studies (PXRD), and Fourier transform infrared spectroscopy (FTIR). Results: All SD formulations were found to have a higher dissolution rate comparatively to pure CA, while only physical mixtures of PVP K30 were found having a significantly higher dissolution rate. The enhancement of dissolution rate SD by PVP K30 may be caused by increase wettability, solubility, reduction in particle size or the formation of CA β crystalline. Increment of dissolution rate of CA SDs by PEG 4000 similarly may be caused by increase wettability, solubility, and reduction in particle size. This phenomenon may also be caused by amorphization as suggested by DSC and PXRD. Conclusions: The SD of CA with PVP K30 and PEG 4000, lends an ample credence for better therapeutic efficacy. PMID:26258059

  20. Evolution of structure and properties of granules containing microcrystalline cellulose and polyvinylpyrrolidone during high-shear wet granulation.

    PubMed

    Osei-Yeboah, Frederick; Feng, Yushi; Sun, Changquan Calvin

    2014-01-01

    Granulation behavior of microcrystalline cellulose (MCC) in the presence of 2.5% polyvinylpyrrolidone (PVP) was systematically studied. Complex changes in flowability and tabletability of lubricated MCC granules are correlated to changes in intragranular porosity, morphology, surface smoothness, size distribution, and specific surface area (SSA). With 2.5% PVP, the use of 45% granulation water leads to 84% reduction in tablet tensile strength and 76% improvement in powder flow factor. The changes in powder performance are explained by granule densification and surface smoothing. The granulating water level corresponding to the onset of overgranulation, 45%, is significantly lower than the 70% water required for unlubricated MCC granules without PVP. At more than 45% water levels, MCC-PVP granules flow well but cannot be compressed into intact tablets. Such changes in powder performance correspond to the rapid growth into large and dense spheres with smooth surface. Compared with MCC alone, the onset of the phase of fast granule size enlargement occurs at a lower water level when 2.5% PVP is used. Although the use of 2.5% PVP hastens granule nucleation and growth rate, the mechanisms of overgranulation are the same, that is, size enlargement, granule densification, surface smoothing, and particle rounding in both systems.

  1. Artemisinin-Polyvinylpyrrolidone Composites Prepared by Evaporative Precipitation of Nanosuspension for Dissolution Enhancement.

    PubMed

    Kakran, M; Sahoo, N G; Li, L; Judeh, Z; Panda, P

    2011-01-01

    Nanoparticles of a poorly water-soluble anti-malarial drug, artemisinin (ART), and its composite particles with a hydrophilic polymer, polyvinylpyrrolidone (PVP), were synthesized using a nanofabrication method called the evaporative precipitation of nanosuspension (EPN). ART nanoparticles and ART/PVP composite particles containing ART nanoparticles coated with PVP were successfully prepared with the aim of improving the dissolution rate of ART. The effect of polymer concentration on the physical and morphological properties, and dissolution rate of the EPN-prepared ART/PVP composite particles was investigated. The crystallinity of ART nanoparticles decreased with increasing polymer concentration, as suggested by the differential scanning calorimetry and X-ray diffraction studies. The phase solubility studies revealed an AL-type of curve, indicating a linear increase in the drug solubility with PVP concentration. The dissolution of the ART nanoparticles and ART/PVP composite particles markedly increased as compared to that of the original ART powder due to lower particle size and reduced crystallinity of the drug particles. The percent dissolution efficiency (DE), relative dissolution (RD), t 75% and similarity factor (f 2) were calculated for the statistical analysis. Various mathematical models, viz., zero-order, first-order, Korsemeyer-Peppas and Higuchi, were applied to fit the experimental drug-dissolution data and diffusion was found to be the drug release mechanism.

  2. Stability and antioxidant activity of gossypol derivative immobilized on N-polyvinylpyrrolidone.

    PubMed

    Ionov, Maksim; Gordiyenko, Nataliya V; Zukowska, Izabela; Tokhtaeva, Elmira; Mareninova, Olga A; Baram, Nina; Ziyaev, Khairulla; Rezhepov, Kuralbay; Zamaraeva, Maria

    2012-12-01

    The objective of this study is analysis of stability and antioxidant and antiradical activities of the gossypol derivative - megosin conjugated with N-polyvinylpyrrolidone (PVP). The results of study have shown the greater stability of megosin+PVP than megosin in aqueous solution of wide range of pH. Here we also demonstrated that megosin+PVP, named rometin, possess high antioxidant activity in the same range as well known antioxidant trolox as determined by its ability to scavenge free ABTS(+) and DPPH radicals in vitro. In addition, megosin+PVP was able to prevent accumulation of products of lipid peroxidation (thiobarbituric acid reactive substances and diene conjugates) and lysophospholipids formation in mitochondria membranes caused by CCl(4)-induced oxidative stress in rat liver in vivo. Furthermore, megosin+PVP rescued mitochondrial functions, such as respiration and oxidative phosphorylation, which declined after CCl(4) administration. Thus we present that the conjugation of megosin to PVP increase its stability and remain antioxidant activity in vivo and in vitro.

  3. DISSOLUTION AND COMPATIBILITY STUDY OF BINARY AND TERNARY INTERACTIVE MIXTURES OF INDOMETHACIN: COMPARISON WITH COMMERCIALLY AVAILABLE CAPSULES.

    PubMed

    Maswadeh, Hamzah M

    2016-01-01

    The main objective of this work was to use Weibull distribution function and Baker-Lonsdale models to study the dissolution kinetics of prepared binary and ternary interactive mixtures containing indomethacin in comparison with three commercially available capsules of indomethacin, namely, Rothacin®, Indomin® and Indylon®. Differential scanning calorimetry (DSC) in conjunction with cloud point method was used to study the compatibility of indomethacin with polyvinylpyrrolidone (PVP) and lactose and to provide an explanation(s) for the insignificant increase in dissolution rate observed in the ternary interactive mixture as well as for the reduction in the dissolution rate observed from the binary system in our previous study. Results showed that the Weibull distribution function equation was the best fit to the dissolution data for all formulations used in this study. DSC curves showed that the decrease in dissolution rate from the binary and ternary interactive mixtures was due to incompatibility of indomethacin with PVP. Also DSC curves showed that lactose was compatible with indomethacin and that lactose was used as excipient in two commercial products (Rothacin® and Indylon®). Results from the cloud point method showed that the addition of indomethacin to 1% PVP solution containing ammonium sulfate (with cloud point at 76°C) reduces the cloud point of PVP indicating that there is an interaction between indomethacin and PVP, while the cloud point of 1% PVP containing ammonium sulfate was not affected by the addition of lactose. PMID:27476292

  4. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.

    PubMed

    Wang, Dengjun; Ge, Liqiang; He, Jianzhou; Zhang, Wei; Jaisi, Deb P; Zhou, Dongmei

    2014-08-01

    The increasing application of engineered nanoparticles (ENPs) has heightened the concern that these ENPs would eventually be released to the environment and may enter into life cycle of living beings. In this regard, it is essential to understand how these ENPs transport and retain in natural soils because they are considered to be a major repository for ENPs. Herein, transport and retention of polyvinylpyrrolidone (PVP)-coated silver nanoparticles (PVP-AgNPs) were investigated over a wide range of physicochemical factors in water-saturated columns packed with an Ultisol rich in clay-size particles. Higher mobility of PVP-AgNPs occurred at larger soil grain size, lower solution ionic strength and divalent cation concentration, higher flow rate, and greater PVP concentrations. Most breakthrough curves (BTCs) for PVP-AgNPs exhibited significant amounts of retardation in the soil due to its large surface area and quantity of retention sites. In contrast to colloid filtration theory, the shapes of retention profiles (RPs) for PVP-AgNPs were either hyperexponential or nonmonotonic (a peak in particle retention down-gradient from the column inlet). The BTCs and hyperexponential RPs were successfully described using a 1-species model that considered time- and depth-dependent retention. Conversely, a 2-species model that included reversibility of retained PVP-AgNPs had to be employed to better simulate the BTCs and nonmonotonic RPs. As the retained concentration of species 1 approached the maximum solid-phase concentration, a second mobile species (species 2, i.e., the same PVP-AgNPs that are reversibly retained) was released that could be retained at a different rate than species 1 and thus yielded the nonmonotonic RPs. Some retained PVP-AgNPs were likely to irreversibly deposit in the primary minimum associated with microscopic chemical heterogeneity (favorable sites). Transmission electron microscopy and energy-dispersive X-ray spectroscopy analysis suggested that these

  5. Assemblies of polyvinylpyrrolidone-capped tetrahedral and spherical Pt nanoparticles in polyelectrolytes: hydrogen underpotential deposition and electrochemical characterization.

    PubMed

    Jaber, Sarah; Nasr, Pamela; Xin, Yan; Sleem, Fatima; Halaoui, Lara I

    2013-09-28

    Polyvinylpyrrolidone (PVP)-capped Pt nanoparticles (NPs) were synthesized in mostly tetrahedral (TH-Pt, [edge] = 4.3 ± 0.7 nm) or spherical (S-Pt, [d] = 3.4 ± 0.8 nm) shapes and assembled layer-by-layer in poly(diallyldimethylammonium) chloride on electrodes driven by electrostatic and hydrophobic interactions. The nanostructured Pt electrodes were characterized using hydrogen underpotential deposition (H(upd)) in 1 M H2SO4. The H(upd) charge increased linearly with the PDDA-Pt NP adsorption cycle measured up to 10 cycles revealing a linear incorporation of Pt NPs per cycle, indicative of reproducible surface charge reversal despite the submonolayer NP coverage imaged by TEM on a PDDA layer, and showing the feasibility of charge and mass transport in the thickness of the films. H(upd) at both PVP-TH-Pt and PVP-S-Pt occurred in two states, a major weak-adsorption H(W) peak, and a minor strong-adsorption state H(S) appearing as a shoulder. H(upd) features and other electrochemical processes at assemblies of PVP-Pt NP in PDDA were compared to assemblies of 2.5 nm polyacrylate-capped Pt NPs in PDDA and to polycrystalline Pt. Results indicated that H(W) adsorption likely occurs on a PVP-modified Pt NP surface without being accompanied by PVP desorption, while H(S) occurs on free (100) sites. The PVP-Pt NPs were resistant to surface oxidation and were stable against usual surface restructuring when scanned into the Pt-oxide potential region as they remained modified with PVP. O2 evolution was also suppressed by PVP-capping compared to PAC-Pt NPs and polycryst-Pt, but the assemblies were electrocatalytic for hydrogen evolution, hydrogen oxidation, and oxygen reduction. Increasing anodic polarization increased the H(W) charge but without causing a potential shift, indicating absence of PVP decapping or Pt surface restructuring, but possibly some structural polymer rearrangement increasing the accessibility of buried sites for H-adsorption.

  6. Hyperexponential and nonmonotonic retention of polyvinylpyrrolidone-coated silver nanoparticles in an Ultisol.

    PubMed

    Wang, Dengjun; Ge, Liqiang; He, Jianzhou; Zhang, Wei; Jaisi, Deb P; Zhou, Dongmei

    2014-08-01

    The increasing application of engineered nanoparticles (ENPs) has heightened the concern that these ENPs would eventually be released to the environment and may enter into life cycle of living beings. In this regard, it is essential to understand how these ENPs transport and retain in natural soils because they are considered to be a major repository for ENPs. Herein, transport and retention of polyvinylpyrrolidone (PVP)-coated silver nanoparticles (PVP-AgNPs) were investigated over a wide range of physicochemical factors in water-saturated columns packed with an Ultisol rich in clay-size particles. Higher mobility of PVP-AgNPs occurred at larger soil grain size, lower solution ionic strength and divalent cation concentration, higher flow rate, and greater PVP concentrations. Most breakthrough curves (BTCs) for PVP-AgNPs exhibited significant amounts of retardation in the soil due to its large surface area and quantity of retention sites. In contrast to colloid filtration theory, the shapes of retention profiles (RPs) for PVP-AgNPs were either hyperexponential or nonmonotonic (a peak in particle retention down-gradient from the column inlet). The BTCs and hyperexponential RPs were successfully described using a 1-species model that considered time- and depth-dependent retention. Conversely, a 2-species model that included reversibility of retained PVP-AgNPs had to be employed to better simulate the BTCs and nonmonotonic RPs. As the retained concentration of species 1 approached the maximum solid-phase concentration, a second mobile species (species 2, i.e., the same PVP-AgNPs that are reversibly retained) was released that could be retained at a different rate than species 1 and thus yielded the nonmonotonic RPs. Some retained PVP-AgNPs were likely to irreversibly deposit in the primary minimum associated with microscopic chemical heterogeneity (favorable sites). Transmission electron microscopy and energy-dispersive X-ray spectroscopy analysis suggested that these

  7. A surface epitope undergoing high-frequency phase variation is shared by Mycoplasma gallisepticum and Mycoplasma bovis.

    PubMed Central

    Yogev, D; Menaker, D; Strutzberg, K; Levisohn, S; Kirchhoff, H; Hinz, K H; Rosengarten, R

    1994-01-01

    We have recently reported that three distinct size- and phase-variable surface lipoproteins (Vsps) of the bovine pathogen Mycoplasma bovis possess a common epitope recognized by monoclonal antibody 1E5. In the present study, we show that this epitope is also present on a size-variant protein (PvpA) of the avian pathogen Mycoplasma gallisepticum. Application of monoclonal antibody 1E5 in Western immunoblot analysis of Triton X-114 phase-fractionated proteins and in colony immunoblots, as well as in trypsin and carboxypeptidase digestion experiments, has demonstrated that (i) PvpA is an integral membrane protein with a free C terminus, (ii) the shared epitope is surface exposed, and (iii) PvpA is subjected to high-frequency phase variation in expression. By using serum antibodies from M. gallisepticum-infected chickens, we were able to demonstrate the immunogenic nature of PvpA and identify three additional highly immunogenic Triton X-114 phase proteins (p67, p72, and p75) also undergoing high-frequency phase variation spontaneously and independently. Metabolic labeling experiments with [14C]palmitate and [14C]oleate revealed that PvpA, in contrast to p67, p72, and p75, is not lipid modified. Southern blot hybridization with restriction fragments carrying the pvpA gene of M. gallisepticum or the vspA gene of M. bovis against digested genomic DNA of the two Mycoplasma species indicated the absence of genetic relatedness between the pvpA and vspA genes. The apparent complexity of the antigenic variation phenomenon in M. gallisepticum is discussed. Images PMID:7523302

  8. Mechanochemical activation of vincamine mediated by linear polymers: assessment of some "critical" steps.

    PubMed

    Hasa, Dritan; Perissutti, Beatrice; Grassi, Mario; Chierotti, Michele R; Gobetto, Roberto; Ferrario, Valerio; Lenaz, Davide; Voinovich, Dario

    2013-09-27

    The aim of the research was to investigate three "critical steps" that deserve particular attention during the mechanochemical activation of vincamine. The first step consisted in the selection of the best polymeric carrier/most affine stabiliser between linear PVP and NaCMC by using the GRID and the GRID based AutoDock software packages which permit to calculate their surface features and interactions. Moreover, the calculation of the partial and total solubility parameters supported the results obtained by GRID and AutoDock software. Then, after the selection of linear PVP-K30 as the suitable carrier, the influence of process and formulation variables on the amorphisation degree and solubility enhancement was studied, to select the most suitable process conditions and formulation parameters. Subsequently, the best performing samples were widely characterised using XRPD, TEM and SSNMR (including the proton relaxation ((1)H T1 NMR) time) techniques. These studies highlighted that all the coground samples were nanocrystalline solid dispersions indicating a dramatic difference between the amorphisation capacities of linear PVP-K30 and cross-linked PVP, used in previous analogous experiences. In particular, (13)C, (15)N and (1)H T1 NMR data point to a description of the system as a dispersion of nanocrystals in the polymer. In these dispersions vincamine is in a disordered crystalline state due to extensive interactions and contacts with PVP-K30 but the main hydrogen bonding motif characterising its packing remains. Again, differently from cross-linked PVP, dissolution studies revealed that linear PVP-K30 was able to promote a complete in vitro solubilisation of vincamine in some coground samples. What is more important, by using a linear polymer, drug-to-polymer and milling time variables appeared less influent on the solid state and in vitro properties of the composites. Finally, stability studies conducted for a period of 1year highlighted the high physical

  9. Comparison of two generalized transfer functions for measuring central systolic blood pressure by an oscillometric blood pressure monitor.

    PubMed

    Shih, Y-T; Cheng, H-M; Sung, S-H; Hu, W-C; Chen, C-H

    2013-03-01

    Central aortic systolic blood pressure (SBP-C) can be estimated from a cuff oscillometric waveform derived during the pulse volume plethysmography (PVP) by applying a device-specific aortic pressure-to-PVP waveform-generalized transfer function (A2P(GTF)). The present study compared the performance of an aortic-to-brachial pressure waveforms generalized transfer function (A2B(GTF)), which is independent of any PVP devices, with an A2P(GTF). Generalized transfer function of aortic-to-brachial (A2B(GTF)) and aortic-to-PVP (A2P(GTF)) were generated from the simultaneously obtained central aortic and brachial pressure waveforms recorded by a high-fidelity dual pressure sensor catheter, and the PVP waveform recorded by a customized noninvasive blood pressure monitor during cardiac catheterization in 40 patients, and were then applied in another 100 patients with simultaneously recorded invasive aortic pressure and noninvasively calibrated (using cuff SBP and diastolic blood pressures) PVP waveforms. The mean difference±s.d. between the noninvasively estimated and invasively recorded SBP-C was -2.1±7.7 mm Hg for A2B(GTF), which was not greater than that of -3.0±7.7 mm Hg for A2P(GTF) (P<0.01). In conclusion, SBP-C can be measured reliably using a noninvasive blood pressure monitor by applying either an A2P(GTF) or A2B(GTF) to a noninvasively calibrated PVP waveform. The performance of an A2B(GTF) is not inferior to that of an A2P(GTF).

  10. Controllable synthesis and growth mechanism of {alpha}-Co(OH){sub 2} nanorods and nanoplates by a facile solution-phase route

    SciTech Connect

    Wang Wenzhong; Feng Kai; Wang Zhi; Ma Yunyan; Zhang Suyun; Liang Yujie

    2011-12-15

    A facile chemical precipitation route has been developed to control synthesis of {alpha}-cobalt hydroxide nanostructures with rod-like and plate-like morphologies. The {alpha}-Co(OH){sub 2} nanorods were achieved in large quantity when the experiments were carried out in the presence of a suitable shape-controlling reagent polyvinyl pyrrolidone (PVP), while the {alpha}-Co(OH){sub 2} nanoplates were obtained when the experiments were conducted in the absence of PVP, whilst keeping other experimental conditions constant. The chemical composition and morphologies of the as-prepared {alpha}-Co(OH){sub 2} nanoparticles were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The effect of polymer PVP on the morphologies of {alpha}-Co(OH){sub 2} nanoparticles were discussed in detail. The results indicated that PVP played a key role for the formation of {alpha}-Co(OH){sub 2} nanorods. The growth mechanism of the as-synthesized nanorods and nanoplates were discussed in detail based on the experimental results. A possible growth mechanism has been proposed to illustrate the growth of {alpha}-Co(OH){sub 2} nanorods. - Graphical abstract: A facile solution-phase route has been developed to synthesize {alpha}-Co(OH){sub 2} nanorods and nanoplates. The possible growth mechanism of nanorods and nanoplates was proposed. Highlights: Black-Right-Pointing-Pointer A facile controllable route was described for {alpha}-Co(OH){sub 2} nanowires and nanoplates. Black-Right-Pointing-Pointer The {alpha}-Co(OH){sub 2} nanowires were achieved in the presence of shape controller PVP. Black-Right-Pointing-Pointer The {alpha}-Co(OH){sub 2} nanoplates were obtained in the absence of shape controller PVP. Black-Right-Pointing-Pointer The shape controller PVP played a key role in the formation of {alpha}-Co(OH){sub 2} nanowires.

  11. In vivo potency and efficacy of the novel cathinone α-pyrrolidinopentiophenone and 3,4-methylenedioxypyrovalerone: Self-administration and locomotor stimulation in male rats

    PubMed Central

    Aarde, Shawn M.; Creehan, Kevin M.; Vandewater, Sophia A.; Dickerson, Tobin J.; Taffe, Michael A.

    2015-01-01

    Rationale Numerous substituted cathinone drugs have appeared in recreational use. This variety is often a response to legal actions; the scheduling of 3,4-methylenedioxypyrovalerone (MDPV; “bath salts”) in the U.S.A. was followed by the appearance of the closely related drug α-pyrrolidinopentiophenone (alpha-PVP; “flakka”). Objectives To directly compare the efficacy and potency of alpha-PVP with that of MDPV. Methods Groups of male Wistar rats were trained in the intravenous self-administration (IVSA) alpha-PVP or MDPV under a fixed-ratio 1 schedule of reinforcement. An additional group was examined for locomotor and body temperature responses to non-contingent administration of MDVP or alpha-PVP (1.0, 5.6, 10.0 mg/kg, i.p.). Results Acquisition of alpha-PVP (0.1 mg/kg/infusion) IVSA resulted in low, yet consistent drug intake and excellent discrimination for the drug-paired lever. Dose-substitution (0.05-0.25 mg/kg/infusion) under a fixed-ratio 1 schedule confirmed potency is similar to MDPV in prior studies. In direct comparison to MDPV (0.05 mg/kg/infusion), rats trained on alpha-PVP (0.05 mg/kg/infusion) responded for more infusions but demonstrated similar drug-lever discrimination by the end of acquisition. However, the dose-response (0.018-0.56 mg/kg/inf) functions of these drugs under a progressive-ratio schedule of reinforcement reflected identical efficacy and potency. Peak locomotor responses to MDPV or alpha-PVP were observed after the 1.0 mg/kg, i.p. dose and lasted ~2 hours. Modest body temperature decreases were of similar magnitude (~0.75°C) for each compound. Conclusions The potency and efficacy of MDPV and alpha-PVP were very similar across multiple assays, predicting that the abuse liability of alpha-PVP will be significant and similar to that of MDPV. PMID:25925780

  12. Kinetics and mechanisms of crystal growth inhibition of indomethacin by model precipitation inhibitors

    NASA Astrophysics Data System (ADS)

    Patel, Dhaval

    Supersaturating Drug Delivery Systems (SDDS) could enhance oral bioavailability of poorly water soluble drugs (PWSD). Precipitation inhibitors (PIs) in SDDS could maintain supersaturation by inhibiting nucleation, crystal growth, or both. The mechanisms by which these effects are realized are generally unknown. The goal of this dissertation was to explore the mechanisms underpinning the effects of model PIs including hydroxypropyl beta-cyclodextrins (HP-beta-CD), hydroxypropyl methylcellulose (HPMC), and polyvinylpyrrolidone (PVP) on the crystal growth of indomethacin, a model PWSD. At high degrees of supersaturation (S), the crystal growth kinetics of indomethacin was bulk diffusion-controlled, which was attributed to a high energy form deposited on the seed crystals. At lower S, indomethacin growth kinetics was surface integration-controlled. The effect of HP-beta-CD at high S was successfully modeled using the reactive diffusion layer theory. The superior effects of PVP and HPMC as compared to HP-beta-CD at high S were attributed to a change in the rate limiting step from bulk diffusion to surface integration largely due to prevention of the high energy form formation. The effects of PIs at low S were attributed to significant retardation of the surface integration rate, a phenomenon that may reflect the adsorption of PIs onto the growing surface. PVP was selected to further understand the relationship between adsorption and crystal growth inhibition. The Langmuir adsorption isotherm model fit the adsorption isotherms of PVP and N-vinylpyrrolidone well. The affinity and extent of adsorption of PVP were significantly higher than those of N-vinylpyrrolidone, which was attributed to cooperative interactions between PVP and indomethacin. The extent of PVP adsorption on a weight-basis was greater for higher molecular weight PVP but less on a molar-basis indicating an increased percentage of loops and tails for higher molecular weight PVPs. PVP significantly inhibited

  13. Enhanced Cyclability of Li/Polysulfide Batteries by a Polymer-Modified Carbon Paper Current Collector.

    PubMed

    Cui, Yi; Fu, Yongzhu

    2015-09-16

    Lithium-sulfur (Li-S) batteries are considered to be the next-generation rechargeable systems due to their high energy densities and low cost. However, significant capacity decay over cycling is a major impediment for their practical applications. Polysulfides Li2Sx (3PVP) current collector in Li/polysulfide cells. PVP is soluble in the electrolyte solvent, but shows strong affinity with lithium polysulfides. The retention of polysulfides in the CP-PVP current collector is improved by ∼50%, which is measured by a linear sweep voltammetry method. Without LiNO3 additive in the electrolyte, the CP-PVP current collector with 50 μg of PVP can significantly improve cycling stability with a capacity retention of >90% over 50 cycles at C/10 rate. With LiNO3 additive in the electrolyte, the cell shows a reversible capacity of >1000 mAh g(-1) and a capacity retention of >80% over 100 cycles at C/5 rate. PMID:26305234

  14. Preparation and stabilization of heparin/gelatin complex coacervate microcapsules.

    PubMed

    Tsung, M; Burgess, D J

    1997-05-01

    The aims of this study are to optimize conditions for the preparation, stabilization, and harvesting of heparin/gelatin microcapsules prepared by complex coacervation. Microelectrophoresis and dry coacervate weight were used to determine the optimum conditions of pH and ionic strength for maximum heparin/gelatin coacervate yield. Heparin/gelatin microcapsules were formed by complex coacervation in the presence and absence of poly(1-vinyl-2-pyrrolidone) (PVP), which was used as a stabilizer. The microcapsules were collected using a spray-drying technique. Microcapsule particle size was analyzed using an AccuSizer optical sizer. Optimized conditions for maximum coacervate yield were pH 2.6, ionic strength 10 mM, and a 1:2 heparin/gelatin A ratio. PVP stabilized the heparin/gelatin coacervate droplets and reduced droplet aggregation during spray-drying. The mean particle diameter of the spray-dried coacervate droplets was lower in the presence of PVP and was unaffected by PVP concentration (in the range 0.5-2.0% w/w). Heparin/gelatin microcapsules, prepared under conditions optimized for maximum coacervate yield, were stabilized without the use of chemical cross-linking agents. Stabilization was achieved by a combination of the addition of PVP and spray-drying.

  15. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN)6] nanoparticles

    NASA Astrophysics Data System (ADS)

    Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Mallah, Talal

    2015-09-01

    Prussian blue analogues magnetic nanoparticles (of radius R0 = 2.4-8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA+ (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a "single-particle" spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective "mean-field" model. A new length scale R* ≈ 3R0, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA+, electrostatic interactions play a crucial role and lead to a dense layer of CTA+ around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA+ are best described by a core-shell model without visible inter-particle structure factor.

  16. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries

    NASA Astrophysics Data System (ADS)

    Zeng, L.; Zhao, T. S.; Wei, L.; Zeng, Y. K.; Zhang, Z. H.

    2016-09-01

    Vanadium redox flow batteries (VRFBs) with their high flexibility in configuration and operation, as well as long cycle life are competent for the requirement of future energy storage systems. Nevertheless, due to the application of perfluorinated membranes, VRFBs are plagued by not only the severe migration issue of vanadium ions, but also their high cost. Herein, we fabricate semi-interpenetrating polymer networks (SIPNs), consisting of cross-linked polyvinylpyrrolidone (PVP) and polysulfone (PSF), as alternative membranes for VRFBs. It is demonstrated that the PVP-based SIPNs exhibit extremely low vanadium permeabilities, which contribute to the well-established hydrophilic/hydrophobic microstructures and the Donnan exclusion effect. As a result, the coulombic efficiencies of VRFBs with PVP-based SIPNs reach almost 100% at 40 mA cm-2 to 100 mA cm-2; the energy efficiencies are more than 3% higher than those of VRFBs with Nafion 212. More importantly, the PVP-based SIPNs exhibit a superior chemical stability, as demonstrated both by an ex situ immersion test and continuously cycling test. Hence, all the characterizations and performance tests reported here suggest that PVP-based SIPNs are a promising alternative membrane for redox flow batteries to achieve superior cell performance and excellent cycling stability at the fraction of the cost of perfluorinated membranes.

  17. Small-angle neutron scattering study of the short-range organization of dispersed CsNi[Cr(CN){sub 6}] nanoparticles

    SciTech Connect

    Ridier, Karl; Gillon, Béatrice; André, Gilles; Chaboussant, Grégory; Catala, Laure; Mazérat, Sandra; Mallah, Talal

    2015-09-21

    Prussian blue analogues magnetic nanoparticles (of radius R{sub 0} = 2.4–8.6 nm) embedded in PVP (polyvinylpyrrolidone) or CTA{sup +} (cetyltrimethylammonium) matrices have been studied using neutron diffraction and small angle neutron scattering (SANS) at several concentrations. For the most diluted particles in neutral PVP, the SANS signal is fully accounted for by a “single-particle” spherical form factor with no structural correlations between the nanoparticles and with radii comparable to those inferred from neutron diffraction. For higher concentration in PVP, structural correlations modify the SANS signal with the appearance of a structure factor peak, which is described using an effective “mean-field” model. A new length scale R{sup * }≈ 3R{sub 0}, corresponding to an effective repulsive interaction radius, is evidenced in PVP samples. In CTA{sup +}, electrostatic interactions play a crucial role and lead to a dense layer of CTA{sup +} around the nanoparticles, which considerably alter the SANS patterns as compared to PVP. The SANS data of nanoparticles in CTA{sup +} are best described by a core-shell model without visible inter-particle structure factor.

  18. A liposome hydrogel with polyvinyl-pyrrolidone iodine in the local treatment of partial-thickness burn wounds.

    PubMed

    Homann, Heinz-Herbert; Rosbach, Oliver; Moll, Wiebke; Vogt, Peter Maria; Germann, Guenter; Hopp, Michael; Langer-Brauburger, Birgit; Reimer, Karen; Steinau, Hans-Ulrich

    2007-10-01

    Local treatment of burn injuries with conventional anti-infective preparations does not provide the moist environment that promotes fast wound healing. In a randomized controlled trial the effects of liposome polyvinyl-pyrrolidone-iodine (PVP-I) hydrogel, a novel formulation of PVP-I in a liposome hydrogel with high water-binding capacity, were investigated in 43 patients with partial-thickness burn wounds in an intraindividual comparison with a conventional silver-sulfadiazine cream. Treatment with liposome PVP-I hydrogel resulted in significantly faster complete healing of the burn wounds compared with silver-sulfadiazine cream (9.9 +/- 4.5 days versus 11.3 +/- 4.9; P < 0.015). The cosmetic result (smoothness, elasticity, appearance) was rated as excellent for 37.0% of study wounds with liposome PVP-I hydrogel compared with 13.0% of wounds treated with silver-sulfadiazine cream. Local tolerability was good; handling and change of dressing were rated as easy. Local treatment with liposome PVP-I hydrogel thus provides fast wound healing with a favorable cosmetic result.

  19. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; Creamer, Courtney; McLaughlin, Mike J; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R; Bertsch, Paul M

    2015-11-01

    We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs. PMID:26196315

  20. Antibacterial effects of the povidone-iodine vacuum impregnation technique in expanded polytetrafluoroethylene augmentation rhinoplasty.

    PubMed

    Lee, Jung Min; Lee, Joong Seob; Kim, Dong-Kyu; Lee, Jun Ho; Park, Hae Sang; Lee, Ho Jun; Bae, Sung Hee; Jang, Ji Su; Lee, Jae Jun; Park, Chan Hum

    2016-06-01

    Expanded polytetrafluoroethylene (e-PTFE) is a popular graft material for augmentation rhinoplasty. Gore-Tex and Surgiform are two types of e-PTFE; Surgiform has thicker fibrils and is more compact than Gore-Tex. We conducted an ex vivo study to evaluate the ability of povidone-iodine (PVP-I) vacuum pretreatment to prevent infection with these two types of e-PTFE. Gore-Tex and Surgiform specimens were cut into 2-mm(3) pieces, which were separated into two groups. One group for each e-PTFE was disinfected with vacuum PVP-I impregnation and the other group was not disinfected. Using the pieces of implant material, swabs were obtained from the nasal cavities of 20 healthy adults, and the specimens were incubated on agar plates and viewed by scanning electron microscopy (SEM). We found that PVP-I treatment significantly reduced the bacterial colony counts in both the Gore-Tex and Surgiform groups. In the SEM images, bacterial colonies were observed both inside and outside the untreated Gore-Tex; on the untreated Surgiform, they were found primarily on the surface. Few bacteria were detected in the PVP-I-treated Gore-Tex and Surgiform groups. Our findings suggest that PVP-I pretreatment can reduce the risk of infection associated with e-PTFE. PMID:27304448

  1. Correlation between central venous pressure and peripheral venous pressure with passive leg raise in patients on mechanical ventilation

    PubMed Central

    Kumar, Dharmendra; Ahmed, Syed Moied; Ali, Shahna; Ray, Utpal; Varshney, Ankur; Doley, Kashmiri

    2015-01-01

    Background: Central venous pressure (CVP) assesses the volume status of patients. However, this technique is not without complications. We, therefore, measured peripheral venous pressure (PVP) to see whether it can replace CVP. Aims: To evaluate the correlation and agreement between CVP and PVP after passive leg raise (PLR) in critically ill patients on mechanical ventilation. Setting and Design: Prospective observational study in Intensive Care Unit. Methods: Fifty critically ill patients on mechanical ventilation were included in the study. CVP and PVP measurements were taken using a water column manometer. Measurements were taken in the supine position and subsequently after a PLR of 45°. Statistical Analysis: Pearson's correlation and Bland–Altman's analysis. Results: This study showed a fair correlation between CVP and PVP after a PLR of 45° (correlation coefficient, r = 0.479; P = 0.0004) when the CVP was <10 cmH2O. However, the correlation was good when the CVP was >10 cmH2O. Bland–Altman analysis showed 95% limits of agreement to be −2.912–9.472. Conclusion: PVP can replace CVP for guiding fluid therapy in critically ill patients. PMID:26730115

  2. Influence of natural organic matter on transport and retention of polymer coated silver nanoparticles in porous media.

    PubMed

    Yang, Xinyao; Lin, Shihong; Wiesner, Mark R

    2014-01-15

    Interactions between organic matter (OM) and engineered polymer coatings as they affect the retention of polyvinylpyrrolidone (PVP) polymer-coated silver nanoparticles (AgNPs) were studied. Two distinct types of OM-cysteine representing low molecular weight multivalent functional groups, and Suwannee River Humic Acid (HA) representing high molecular weight polymers, were investigated with respect to their effects on particle stability in aggregation and deposition. Aggregation of the PVP coated AgNPs (PVP-AgNPs) was enhanced by cysteine addition at high ionic strengths, which was attributed to cysteine binding to the AgNPs and replacing the otherwise steric stabilizing agent PVP. In contrast the addition of HA did not increase aggregation rates and decreased PVP-AgNP deposition to the silica porous medium, consistent with enhanced electrosteric stabilization by the HA. Although cysteine also reduced deposition in the porous medium, the mechanisms of reduced deposition appear to be enhanced electric double layer (EDL) interaction at low ionic strengths. At higher ionic strengths, aggregation was favored leading to lower deposition due to smaller diffusion coefficients and single collector efficiencies despite the reduced EDL interactions. PMID:24295767

  3. Formation of core-shell-structured Zn2SnO4-carbon microspheres with superior electrochemical properties by one-pot spray pyrolysis.

    PubMed

    Hong, Young Jun; Kang, Yun Chan

    2015-01-14

    Core-shell structured Zn2SnO4-carbon microspheres with different carbon contents are prepared by one-pot spray pyrolysis without any further heating process. A Zn2SnO4-carbon composite microsphere is prepared from one droplet containing Zn and Sn salts and polyvinylpyrrolidone (PVP). Melted PVP moves to the outside of the composite microsphere during the drying stage of the droplet. In addition, melting of the phase separated metal salts forms the dense core. Carbonization of the phase separated PVP forms the textured and porous thick carbon shell. The discharge capacities of the core-shell structured Zn2SnO4-carbon microspheres for the 2(nd) and 120(th) cycles at a current density of 1 A g(-1) are 864 and 770 mA h g(-1), respectively. However, the discharge capacities of the bare Zn2SnO4 microspheres prepared by the same process without PVP for the 2(nd) and 120(th) cycles are 1106 and 81 mA h g(-1), respectively. The stable and reversible discharge capacities of the Zn2SnO4-carbon composite microspheres prepared from the spray solution with 15 g PVP decrease from 894 to 528 mA h g(-1) as current density increases from 0.5 to 5 A g(-1).

  4. The role of drug-polymer hydrogen bonding interactions on the molecular mobility and physical stability of nifedipine solid dispersions.

    PubMed

    Kothari, Khushboo; Ragoonanan, Vishard; Suryanarayanan, Raj

    2015-01-01

    We investigated the influence of drug-polymer hydrogen bonding interactions on molecular mobility and the physical stability in solid dispersions of nifedipine with each of the polymers polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMCAS), and poly(acrylic acid) (PAA). The drug-polymer interactions were monitored by FT-IR spectroscopy, the molecular mobility was characterized using broadband dielectric spectroscopy, and the crystallization kinetics was evaluated by powder X-ray diffractometry. The strength of drug-polymer hydrogen bonding, the structural relaxation time, and the crystallization kinetics were rank ordered as PVP > HPMCAS > PAA. At a fixed polymer concentration, the fraction of the drug bonded to the polymer was the highest with PVP. Addition of 20% w/w polymer resulted in ∼65-fold increase in the relaxation time in the PVP dispersion and only ∼5-fold increase in HPMCAS dispersion. In the PAA dispersions, there was no evidence of drug-polymer interactions and the polymer addition did not influence the relaxation time. Thus, the strongest drug-polymer hydrogen bonding interactions in PVP solid dispersions translated to the longest structural relaxation times and the highest resistance to drug crystallization.

  5. Effects of silver sulfide nanomaterials on mycorrhizal colonization of tomato plants and soil microbial communities in biosolid-amended soil.

    PubMed

    Judy, Jonathan D; Kirby, Jason K; Creamer, Courtney; McLaughlin, Mike J; Fiebiger, Cathy; Wright, Claire; Cavagnaro, Timothy R; Bertsch, Paul M

    2015-11-01

    We investigated effects of Ag2S engineered nanomaterials (ENMs), polyvinylpyrrolidone (PVP) coated Ag ENMs (PVP-Ag), and Ag(+) on arbuscular mycorrhizal fungi (AMF), their colonization of tomato (Solanum lycopersicum), and overall microbial community structure in biosolids-amended soil. Concentration-dependent uptake was measured in all treatments. Plants exposed to 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+) exhibited reduced biomass and greatly reduced mycorrhizal colonization. Bacteria, actinomycetes and fungi were inhibited by all treatment classes, with the largest reductions measured in 100 mg kg(-1) PVP-Ag ENMs and 100 mg kg(-1) Ag(+). Overall, Ag2S ENMs were less toxic to plants, less disruptive to plant-mycorrhizal symbiosis, and less inhibitory to the soil microbial community than PVP-Ag ENMs or Ag(+). However, significant effects were observed at 1 mg kg(-1) Ag2S ENMs, suggesting that the potential exists for microbial communities and the ecosystem services they provide to be disrupted by environmentally relevant concentrations of Ag2S ENMs.

  6. Development and Evaluation of Mouth Dissolving Films of Amlodipine Besylate for Enhanced Therapeutic Efficacy

    PubMed Central

    Maheswari, K. M.; Devineni, Pavan Kumar; Deekonda, Sravanthi; Shaik, Salma; Uppala, Naga Pravallika; Nalluri, Buchi N.

    2014-01-01

    The present investigation was undertaken with an objective of formulating mouth dissolving films (MDFs) of Amlodipine Besylate (AMLO) to enhance convenience and compliance of the elderly and pediatric patients for better therapeutic efficacy. Film formers like hydroxy propyl methyl cellulose (HPMC) and methyl cellulose (MC) along with film modifiers like poly vinyl pyrrolidone K30 (PVP K30), and sodium lauryl sulphate (SLS) as solubilizing agents were evaluated. The prepared MDFs were evaluated for in vitro dissolution characteristics, in vitro disintegration time, and their physicomechanical properties. All the prepared MDFs showed good mechanical properties like tensile strength, folding endurance, and % elongation. MDFs were evaluated by means of FTIR, SEM, and X-RD studies. MDFs with 7.5% (w/w) of HPMC E3 gave better dissolution properties when compared to HPMC E5, HPMC E15, and MC. MDFs with PVP K30 and SLS gave superior dissolution properties when compared to MDFs without PVP K30 and SLS. The dissolution properties of MDFs with PVP K30 were superior when compared to MDFs with SLS. In the case of F3 containing 7.5% of HPMC E3 and 0.04% of PVP K30, complete and faster release was observed within 60 sec when compared to other formulations. Release kinetics data reveals diffusion is the release mechanism. PMID:26556197

  7. New platforms for multi-functional ocular lenses: engineering double-sided functionalized nano-coatings.

    PubMed

    Mehta, Prina; Justo, Lucas; Walsh, Susannah; Arshad, Muhammad S; Wilson, Clive G; O'Sullivan, Ciara K; Moghimi, Seyed M; Vizirianakis, Ioannis S; Avgoustakis, Konstantinos; Fatouros, Dimitris G; Ahmad, Zeeshan

    2015-05-01

    A scalable platform to prepare multi-functional ocular lenses is demonstrated. Using rapidly dissolving polyvinylpyrrolidone (PVP) as the active stabilizing matrix, both sides of ocular lenses were coated using a modified scaled-up masking electrohydrodynamic atomization (EHDA) technique (flow rates variable between 5 and 10 µL/min, applied voltage 4-11 kV). Each side was coated (using a specially designed flip-able well) selectively with a pre-determined morphology and model drug substance. PVP nanoparticles (inner side, to be in contact with the cornea, mean size PVP nanofibres (outer side, to be exposed to air and eye lid, mean width size PVP). Release of the probe and anti-microbial activity (using Staphylococcus aureus NCTC 6571) were demonstrated based on rapid dissolution and contact of PVP model substance matrix. Adapting these findings further for advanced EHDA technologies (encapsulation layering, controllable size and deposition and multi-phase media deposition options) and intrinsic material properties (functional polymers/excipients and advanced controlled release strategies) suggests several therapeutic platforms for ocular lenses can be further developed at ambient temperature and pressure. These provide multi-functional properties (in personalized delivery, nanomedicine and nanosensors) from a single drug delivery device.

  8. Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics.

    PubMed

    Lee, In-yeal; Park, Hyung-Youl; Park, Jin-hyung; Yoo, Gwangwe; Lim, Myung-Hoon; Park, Junsung; Rathi, Servin; Jung, Woo-Shik; Kim, Jeehwan; Kim, Sang-Woo; Roh, Yonghan; Kim, Gil-Ho; Park, Jin-Hong

    2014-04-01

    Next generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature. The optimized PVP/PMF insulating layer not only removes the native -OH functional groups which work as electron-withdrawing agents on graphene (Dirac point close to zero) but also shows an excellent dielectric property (low hysteresis voltage). Finally, a flexible, wearable, and transparent (95.8%) graphene transistor with Dirac point close to zero is demonstrated on polyethylene terephthalate (PET) substrate by exploiting PVP/PMF layer which can be scaled down to 20 nm.

  9. Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics

    NASA Astrophysics Data System (ADS)

    Lee, In-Yeal; Park, Hyung-Youl; Park, Jin-Hyung; Yoo, Gwangwe; Lim, Myung-Hoon; Park, Junsung; Rathi, Servin; Jung, Woo-Shik; Kim, Jeehwan; Kim, Sang-Woo; Roh, Yonghan; Kim, Gil-Ho; Park, Jin-Hong

    2014-03-01

    Next generation graphene-based electronics essentially need a dielectric layer with several requirements such as high flexibility, high transparency, and low process temperature. Here, we propose and investigate a flexible and transparent poly-4-vinylphenol and poly(melamine-co-formaldehyde) (PVP/PMF) insulating layer to achieve intrinsic graphene and an excellent gate dielectric layer at sub 200 °C. Chemical and electrical effects of PVP/PMF layer on graphene as well as its dielectric property are systematically investigated through various measurements by adjusting the ratio of PVP to PMF and annealing temperature. The optimized PVP/PMF insulating layer not only removes the native -OH functional groups which work as electron-withdrawing agents on graphene (Dirac point close to zero) but also shows an excellent dielectric property (low hysteresis voltage). Finally, a flexible, wearable, and transparent (95.8%) graphene transistor with Dirac point close to zero is demonstrated on polyethylene terephthalate (PET) substrate by exploiting PVP/PMF layer which can be scaled down to 20 nm.

  10. Comparative Effectiveness of Dialyzers: A Longitudinal, Propensity Score-Matched Study of Incident Hemodialysis Patients

    PubMed Central

    Hunt, Abigail; Laplante, Suzanne; Beck, Werner; Gellens, Mary; Brunelli, Steven M.

    2016-01-01

    Differences in dialyzer design may have consequences for patient outcomes. We evaluated the comparative effectiveness of commonly used dialyzers with respect to measures of dialysis treatment, anemia management, inflammation, and dialyzer clotting. Patients receiving hemodialysis between January 1, 2009, and December 31, 2013, and using polyarylethersulfone–polyvinylpyrrolidone (PAS-PVP; Polyflux Revaclear) or polysulfone (PS; Optiflux 160 or Optiflux 180) dialyzers were followed for 1 year or until end of study or censoring for dialyzer switch, modality change, or loss to follow-up. For each comparison, eligible patients were propensity score-matched 1:1 on a range of baseline characteristics. Outcomes were assessed using generalized linear mixed models. Dialysis adequacy was similar in both dialyzer groups. Erythropoiesis-stimulating agent (ESA) doses were lower for patients using PAS-PVP versus patients using PS-160 (difference range: 75–589 units/treatment; statistically significant in months 1–5 and 7) and for patients using PAS-PVP versus patients using PS-180 (difference range: 27–591 unit/treatment; statistically significant in months 1–9). Intravenous iron doses trended lower for patients using PAS-PVP versus patients using PS, but hemoglobin concentrations were equivalent. In conclusion, use of PAS-PVP versus PS dialyzers was associated with equivalent dialysis adequacy, lower ESA doses, modestly lower Intravenous iron doses, and equivalent hemoglobin concentrations. PMID:27442860

  11. In situ gelling, bioadhesive nasal inserts for extended drug delivery: in vitro characterization of a new nasal dosage form.

    PubMed

    Bertram, Ulrike; Bodmeier, Roland

    2006-01-01

    The purpose of this study was the preparation and characterization of sponge-like, in situ gelling inserts based on bioadhesive polymers. Hydrophilic polymers (carrageenan, Carbopol, chitosan, hydroxypropyl methylcellulose (HPMC) K15M and E5, sodium alginate, sodium carboxy methylcellulose (NaCMC), polyvinyl pyrrolidone (PVP) 90, xanthan gum) were dissolved with/without the model drug oxymetazoline HCl in demineralized water and lyophilized into small inserts. The drug release, water uptake, mechanical properties, X-ray diffraction and bioadhesion potential of the nasal inserts were investigated. A sponge-like structure of nasal inserts was formed with amorphous, but not with crystalline polymers during the freeze-drying process. The insert hardness increased with the glass transition temperature of the polymer (PVP25<PVP30<PVP90). The bioadhesion potential was governed by the polymer ability to interact with mucin/agar (highest for carrageenan, Carbopol, xanthan gum and NaCMC). Inserts prepared from low molecular weight polymers resulted in polymer dissolution and fast drug release (HPMC E5, Na-alginate, PVP90). The drug release from inserts prepared from high molecular weight polymers (carrageenan, Carbopol, chitosan, HPMC K15M, NaCMC, xanthan gum) was a complex interplay of osmotic forces, water uptake and electrostatic interactions between drug and polymer. The drug release decreased with higher polymer content and increased drug loading of the insert. Bioadhesive nasal inserts have a high potential as new nasal dosage form for extended drug delivery.

  12. Degradation of poly(ether sulfone)/polyvinylpyrrolidone membranes by sodium hypochlorite: insight from advanced electrokinetic characterizations.

    PubMed

    Hanafi, Yamina; Szymczyk, Anthony; Rabiller-Baudry, Murielle; Baddari, Kamel

    2014-11-18

    Poly(ether sulfone) (PES)/polyvinylpyrrolidone (PVP) membranes are widely used in various industrial fields such as drinking water production and in the dairy industry. However, the use of oxidants to sanitize the processing equipment is known to impair the integrity and lifespan of polymer membranes. In this work we showed how thorough electrokinetic measurements can provide essential information regarding the mechanism of degradation of PES/PVP membranes by sodium hypochlorite. Tangential streaming current measurements were performed with ultrafiltration and nanofiltration PES/PVP membranes for various aging times. The electrokinetic characterization of membranes was complemented by FTIR-ATR spectroscopy. Results confirmed that sodium hypochlorite induces the degradation of both PES and PVP. This latter is easily oxidized by sodium hypochlorite, which leads to an increase in the negative charge density of the membrane due to the formation of carboxylic acid groups. The PVP was also found to be partly released from the membrane with aging time. Thanks to the advanced electrokinetic characterization implemented in this work it was possible for the first time to demonstrate that two different mechanisms are involved in the degradation of PES. Phenol groups were first formed as a result of the oxidation of PES aromatic rings by substitution of hydrogen by hydroxyl radicals. For more severe aging conditions, this membrane degradation mechanism was followed by the formation of sulfonic acid functions, thus indicating a second degradation process through scission of PES chains. PMID:25365117

  13. Effect of hydration on plasma vasopressin, renin, and aldosterone responses to head-up tilt

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.; Geelen, G.; Keil, L. C.; Wade, C. A.; Hill, L. C.

    1986-01-01

    If plasma vasopressin (PVP), plasma renin (PRA), and plasma aldosterone (PA) responses to change in posture are mediated only by alterations in intrathoracic baroreceptor activity hydration status should have minimal influence on these responses. To test this hypothesis, six male subjects underwent 45 min of 70 deg head-up tilt (HUT) following 26 h dehydration, and again, 105 min later, following rehydration. Compared with preceding supine hydrated control values, PVP, PRA, and PA increased (p less than 0.001) during dehydrated HUT, but only PVP and PRA increased during rehydrated HUT (p less than 0.001). The dissociation during rehydrated HUT of PRA and PA may have been related more to the reduction (p less than 0.001) in plasma potassium concentration than to the accompanying decrease (p less than 0.001) in plasma osmolality and sodium concentration. Although increases in PVP and PRA during HUT were attenuated (p less than 0.01) following rehydration, this attenuation was associated with the absence of symptoms of overt hypotension following rehydration. However, since rehydration did not abolish the increases in PVP and PRA induced by HUT, it is concluded that the present observations support the concept of intrathoracic baroreceptor involvement in the regulation of vasopressin secretion and renin release.

  14. Unexpected solvent impact in the crystallinity of praziquantel/poly(vinylpyrrolidone) formulations. A solubility, DSC and solid-state NMR study.

    PubMed

    Costa, Emanuel D; Priotti, Josefina; Orlandi, Silvina; Leonardi, Darío; Lamas, María C; Nunes, Teresa G; Diogo, Hermínio P; Salomon, Claudio J; Ferreira, M João

    2016-09-25

    The saturation solubility of PVP:PZQ physical mixtures (PMs) and solid dispersions (SDs) prepared from ethanol (E/E) or ethanol/water (E/W) by the solvent evaporation method at 1:1, 2:1 and 3:1 ratio (w/w) was determined. The presence of PVP improves the solubility of PZQ (0.31±0.01mg/mL). A maximum of 1.29±0.03mg/mL of PZQ in solution was achieved for the 3:1 SD (E/E). The amount of PZQ in solution depends on the amount of polymer and on the preparation method. Solid-state NMR (ssNMR) and DSC were used to understand this behavior. Results show that PMs are a mixture of crystalline PZQ with the polymer, while SDs show different degrees of drug amorphization depending on the solvent used. For E/W SDs, PZQ exists in amorphous and crystalline states, with no clear correlation between the amount of crystalline PZQ and the amount of PVP. For E/E SDs, formulations with a higher percentage of PZQ are amorphous with the components miscible in domains larger than 3nm ((1)H ssNMR relaxation measurements). Albeit its higher saturation solubility, the 3:1 E/E PVP:PZQ sample has a significant crystalline content, probably due to the water introduced by the polymer. High PVP content and small crystal size account for this result.

  15. Physicochemical characterisation and biological evaluation of polyvinylpyrrolidone-iodine engineered polyurethane (Tecoflex(®)).

    PubMed

    Khandwekar, Anand P; Doble, Mukesh

    2011-05-01

    Bacterial adhesion and encrustation are the known causes for obstruction or blockage of urethral catheters and ureteral stents, which often hinders their effective use within the urinary tract. In this in vitro study, polyvinylpyrrolidone-iodine (PVP-I) complex modified polyurethane (Tecoflex(®)) systems were created by physically entrapping the modifying species during the reversible swelling of the polymer surface region. The presence of the PVP-I molecules on this surfaces were verified by ATR-FTIR, AFM and SEM-EDAX analysis, while wettability of the films was investigated by water contact angle measurements. The modified surfaces were investigated for its suitability as a urinary tract biomaterial by comparing its lubricity and ability to resist bacterial adherence and encrustation with that of base polyurethane. The PVP-I modified polyurethane showed a nanopatterned surface topography and was highly hydrophilic and more lubricious than control polyurethane. Adherence of both the gram positive Staphylococcus aureus (by 86%; **P < 0.01) and gram-negative Pseudomonas aeruginosa (by 80%; *P < 0.05) was significantly reduced on the modified surfaces. The deposition of struvite and hydroxyapatite the major components of urinary tract encrustations were significantly less on PVP-I modified polyurethane as compared to base polyurethane, especially reduction in hydroxyapatite encrustation was particularly marked. These results demonstrated that the PVP-I entrapment process can be applied on polyurethane in order to reduce/lower complications associated with bacterial adhesion and deposition of encrustation on polyurethanes. PMID:21437640

  16. Radiation-induced synthesis of nanogels based on poly(N-vinyl-2-pyrrolidone)-A review

    NASA Astrophysics Data System (ADS)

    Kadlubowski, Slawomir

    2014-09-01

    Nanogels are nanometer-scale two-component systems consisting of a permanent three-dimensional network of linked polymer chains, and molecules of a solvent filling the pores of this network. A number of synthetic routes have been developed for nanogels. One of them is based on intramolecular cross-linking of individual polymer chains and ionizing radiation is a suitable tool for initiation of this process. Poly(N-vinyl-2-pyrrolidone)-PVP-was one of the first polymers used to obtain intramolecularly cross-linked macromolecules using this method called preparative pulse radiolysis. This review summarizes radiation-based techniques used for synthesis of PVP-derived nanogels starting from preparative pulse radiolysis, through irradiation of thermally collapsed PVP and cross-linking in microemulsion up to formation of PVP based interpolymer complexes. In addition, possible practical applications of PVP-based nanogels have been presented mainly in the biomedical field. Nanogels functionalized with (3-N-aminopropyl)methacrylamide hydrochloride may serve for bioconjugation and drug transportation into the cells. Nanogels of interpolymer complexes are expected to be mucoadhesive and be able to bind cationic drugs electrostatically and non-polar drugs via solubilization in the hydrophobic cores.

  17. A liposome hydrogel with polyvinyl-pyrrolidone iodine in the local treatment of partial-thickness burn wounds.

    PubMed

    Homann, Heinz-Herbert; Rosbach, Oliver; Moll, Wiebke; Vogt, Peter Maria; Germann, Guenter; Hopp, Michael; Langer-Brauburger, Birgit; Reimer, Karen; Steinau, Hans-Ulrich

    2007-10-01

    Local treatment of burn injuries with conventional anti-infective preparations does not provide the moist environment that promotes fast wound healing. In a randomized controlled trial the effects of liposome polyvinyl-pyrrolidone-iodine (PVP-I) hydrogel, a novel formulation of PVP-I in a liposome hydrogel with high water-binding capacity, were investigated in 43 patients with partial-thickness burn wounds in an intraindividual comparison with a conventional silver-sulfadiazine cream. Treatment with liposome PVP-I hydrogel resulted in significantly faster complete healing of the burn wounds compared with silver-sulfadiazine cream (9.9 +/- 4.5 days versus 11.3 +/- 4.9; P < 0.015). The cosmetic result (smoothness, elasticity, appearance) was rated as excellent for 37.0% of study wounds with liposome PVP-I hydrogel compared with 13.0% of wounds treated with silver-sulfadiazine cream. Local tolerability was good; handling and change of dressing were rated as easy. Local treatment with liposome PVP-I hydrogel thus provides fast wound healing with a favorable cosmetic result. PMID:17901735

  18. In-situ formation of silver nanoparticles on poly (lactic acid) film by γ-radiation induced grafting of N-vinyl pyrrolidone.

    PubMed

    Wang, Jingxia; Chen, Hao; Chen, Zhuping; Chen, Yuheng; Guo, Dan; Ni, Maojun; Liu, Siyang; Peng, Chaorong

    2016-06-01

    A fast, easy and novel method for preparing biodegradable polymer films with silver nanoparticles was investigated to endow the material with excellent biocompatibility and antibacterial property. Silver nanoparticles (Ag NPs) were immobilized on the surface of polylactic acid (PLA) film by gamma radiation induced grafting of N-vinyl pyrrolidone (NVP). In this method, poly (N-vinyl pyrrolidone) (PVP) was produced and grafted onto the surface of PLA film by gamma radiation polymerization of NVP. PVP acted as both a bridge to connect the Ag NPs with the PLA film, and a stabilizer to protect the Ag NPs from agglomeration. The effect of various reaction parameters, including NVP/Ag mole ratio and radiation dose, on the fabrication of PLA-g-NVP/Ag film was demonstrated. Moreover, the interaction between PVP and Ag NPs was studied by X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy, that revealed the Ag NPs coordinated through the oxygen atom on the carbonyl group of PVP at 15 kGy radiation dose, but through the nitrogen atom and the oxygen atom of the amide group of PVP at 1 kGy dose. PMID:27040205

  19. Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm.

    PubMed

    Xiao, Yao; Wiesner, Mark R

    2013-03-01

    Column experiments were conducted to investigate the transport of aqueous C60 (aqu-nC60), fullerol, silver nanoparticles (NPs) coated with polyvinylpyrrolidone (Ag-PVP) and stabilized by citrate (Ag-CIT) in biofilm-laden porous media. Gram-negative Pseudomonas aeruginosa (PA) and Gram-positive Bacillus cereus (BC) biofilm-laden glass beads were selected to represent the bacterial interfaces NPs might encounter in the natural aquatic environment. The biomass distribution, extracellular polymeric substances (EPS) components, electrokinetic property, and hydrophobicity of these interfaces were characterized, and the hydrophobicity was found to correlate with the quantity of proteins in EPS. The retention of NPs on glass beads coated with bovine serum albumin (BSA) and alginate were also studied. Except for Ag-PVP, the affinity of NPs for porous medium, indicated by attachment efficiency α, increased in the presence of biofilms, BSA and alginate. For hydrophobic aqu-nC60, the larger the proteins/polysaccharides ratio, the larger the α, suggesting the hydrophobic interaction determines the attachment of aqu-nC60 to the collector surface. Uncharged PVP stabilized Ag-PVP by steric repulsion, and the attachment to glass beads was not enhanced by biofilm. The presence of divalent ion Ca(2+) significantly hydrophobized biofilm, BSA, and alginate-coated glass beads and further retarded the mobility of aqu-nC60, fullerol, and Ag-CIT; while Ag-PVP was again sterically stabilized.

  20. Polyvinylpyrrolidone as binder for castable supercapacitor electrodes with high electrochemical performance in organic electrolytes

    NASA Astrophysics Data System (ADS)

    Aslan, M.; Weingarth, D.; Jäckel, N.; Atchison, J. S.; Grobelsek, I.; Presser, V.

    2014-11-01

    Polyvinylpyrrolidone (PVP) is presented as a "greener" alternative to commonly used supercapacitor binders, namely polyvinylidenedifluoride (PVDF) or polytetrafluoroethylene (PTFE). The key advantages of using PVP are that it is non-toxic and soluble in ethanol and it can be used to spray coat or drain cast activated carbon (AC) electrodes directly on a current collector such as aluminum foil - in contrast to PTFE that requires rolling or PVDF that requires toxic N-methylpyrrolidone (NMP). The electrodes with the best mechanical stability incorporated 3.5 mass% of 1.300.000 g mol-1 PVP. Compared to PTFE or PVDF, the resulting pore volume was significantly higher and the specific surface area significantly larger when using PVP (normalized to the amount of AC). A good electrochemical performance was observed in organic electrolytes for AC-PVP electrodes: 112 or 97 F g-1 at 0.1 A g-1 in 1 M TEA-BF4 in propylene carbonate or acetonitrile, respectively. The performance stability was comparable to PTFE-bound electrodes when adjusting the maximum cell voltage to 2.5 V while preserving the manufacturing features of PVDF-AC films. (Electro)chemical stability is shown by electrochemical testing and infrared vibrational spectroscopy for propylene carbonate and acetonitrile.

  1. In vitro antimicrobial activity of solution blow spun poly(lactic acid)/polyvinylpyrrolidone nanofibers loaded with Copaiba (Copaifera sp.) oil.

    PubMed

    Bonan, Roberta F; Bonan, Paulo R F; Batista, André U D; Sampaio, Fábio C; Albuquerque, Allan J R; Moraes, Maria C B; Mattoso, Luiz H C; Glenn, Gregory M; Medeiros, Eliton S; Oliveira, Juliano E

    2015-03-01

    In this study poly(lactic acid) (PLA) and polyvinylpyrrolidone (PVP) micro- and nanofiber mats loaded with Copaiba (Copaifera sp.) oil were produced by solution blow spinning (SBS). The Copaiba (Copaifera sp.) oil was characterized by gas chromatography (GC). Neat PLA and four PLA/PVP blends containing 20% (wt.%) oil were spun and characterized by scanning electron microscopy (SEM) and by studying the surface contact angle, in vitro release rate, and antimicrobial activity. All compositions evaluated were able to produce continuous and smooth fibers by SBS. The addition of PVP increased fiber diameter, and decreased the surface contact angle. GC analysis demonstrated that the main component of the Copaiba oil was β-caryophyllene, a known antimicrobial agent. In vitro release tests of Copaiba oil volatiles demonstrated a higher release rate in fibers containing PVP. Fiber mats made from blends containing higher amounts of PVP had greater antimicrobial action against Staphylococcus aureus. The results confirm the potential of the fiber mats for use in controlled drug release and could lead to promising applications in the biomedical field.

  2. Synergy Between Polyvinylpyrrolidone-Coated Silver Nanoparticles and Azole Antifungal Against Drug-Resistant Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Li, Yiping; Zhao, Lei; Liang, Sai; Guo, Dan; Hu, Jun; Wang, Dayong

    2016-03-01

    In the clinical practice, resistance of Candida albicans to antifungal agents has frequently emerged. Silver-nanoparticles (Ag-NPs) have been demonstrated to have the antifungal property. We investigated the potential for synergy between polyvinylpyrrolidone (PVP)-coated Ag-NPs and azole antifungal, such as fluconazole or voriconazole, against drug-resistant C. albicans strain CA10. When antifungal agent was examined alone, fluconazole and voriconazole did not kill drug-resistant C. albicans, and PVP-coated Ag-NPs had only the moderate killing ability. In contrast, the combinational treatment of PVP-coated Ag-NPs with fluconazole or voriconazole was effective in being against the drug-resistant C. albicans. After the combinational treatment, we detected the disruption of cell membrane integrity, the tendency of PVP-coated Ag-NPs to adhere to cell membrane, and the inhibition of budding process. Moreover, after the combinational treatment, the defects in ergosterol signaling and efflux pump functions were detected. Our results suggest that the combinational use of engineered nanomaterials (ENMs), such as PVP-coated Ag-NPs, with the conventional antifungal may be a viable strategy to combat drug-resistant fungal infection.

  3. Degradation of poly(ether sulfone)/polyvinylpyrrolidone membranes by sodium hypochlorite: insight from advanced electrokinetic characterizations.

    PubMed

    Hanafi, Yamina; Szymczyk, Anthony; Rabiller-Baudry, Murielle; Baddari, Kamel

    2014-11-18

    Poly(ether sulfone) (PES)/polyvinylpyrrolidone (PVP) membranes are widely used in various industrial fields such as drinking water production and in the dairy industry. However, the use of oxidants to sanitize the processing equipment is known to impair the integrity and lifespan of polymer membranes. In this work we showed how thorough electrokinetic measurements can provide essential information regarding the mechanism of degradation of PES/PVP membranes by sodium hypochlorite. Tangential streaming current measurements were performed with ultrafiltration and nanofiltration PES/PVP membranes for various aging times. The electrokinetic characterization of membranes was complemented by FTIR-ATR spectroscopy. Results confirmed that sodium hypochlorite induces the degradation of both PES and PVP. This latter is easily oxidized by sodium hypochlorite, which leads to an increase in the negative charge density of the membrane due to the formation of carboxylic acid groups. The PVP was also found to be partly released from the membrane with aging time. Thanks to the advanced electrokinetic characterization implemented in this work it was possible for the first time to demonstrate that two different mechanisms are involved in the degradation of PES. Phenol groups were first formed as a result of the oxidation of PES aromatic rings by substitution of hydrogen by hydroxyl radicals. For more severe aging conditions, this membrane degradation mechanism was followed by the formation of sulfonic acid functions, thus indicating a second degradation process through scission of PES chains.

  4. Novel paper-based cholesterol biosensor using graphene/polyvinylpyrrolidone/polyaniline nanocomposite.

    PubMed

    Ruecha, Nipapan; Rangkupan, Ratthapol; Rodthongkum, Nadnudda; Chailapakul, Orawon

    2014-02-15

    A novel nanocomposite of graphene (G), polyvinylpyrrolidone (PVP) and polyaniline (PANI) has been successfully prepared and used for the modification of paper-based biosensors via electrospraying. The droplet-like nanostructures of G/PVP/PANI-modified electrodes are obtained with an average size of 160 ± 1.02 nm. Interestingly, the presence of small amount of PVP (2 mg mL(-1)) in the nanocomposites can substantially improve the dispersibility of G and increase the electrochemical conductivity of electrodes, leading to enhanced sensitivity of the biosensor. The well-defined cyclic voltammogram of standard ferri/ferrocyanide is achieved on a G/PVP/PANI-modified electrode with a 3-fold increase in the current signal compared to an unmodified electrode. This modified electrode also exhibits excellent electrocatalytic activity towards the oxidation of hydrogen peroxide (H2O2). Furthermore, cholesterol oxidase (ChOx) is attached to G/PVP/PANI-modified electrode for the amperometric determination of cholesterol. Under optimum conditions, a linear range of 50 μM to 10mM is achieved and the limit of detection is found to be 1 μM for cholesterol. Finally, the proposed system can be applied for the determination of cholesterol in a complex biological fluid (i.e. human serum).

  5. Semi-IPN chitosan/polyvinylpyrrolidone microspheres and films: sustained release and property optimisation.

    PubMed

    Ozerkan, Taylan; Aydemir Sezer, Umran; Deliloglu Gurhan, İsmet; Gulce İz, Sultan; Hasirci, Nesrin

    2013-01-01

    A set of chitosan-polyvinylpyrrolidone (CH-PVP) microspheres were prepared as semi-inter penetrating networks (semi-IPN) and loaded with 5-fluorouracil. In vitro release studies showed faster release for semi-IPN microspheres compared to pure CH samples, and the total release was achieved in about 20-30 days, depending on the composition. In vitro cell studies were achieved against human breast adenocarcinoma cell line cells where adsorption of cells on microspheres with a significant decrease in their number was obtained. Meanwhile, the CH-PVP films, which were prepared with the same compositions as in the microspheres, demonstrated an increase in strength from 66 to 118 MPa as the PVP content was decreased. It can be concluded that the prepared CH-PVP semi-IPN microspheres are novel promising carriers compared to pure CH microspheres since it becomes possible to adjust stability and hydrophilicity of the microspheres as well as the release rates of the drugs from the microspheres by changing the ratio of CH/PVP composition.

  6. Intra-operative power measurement of laser fibers during photoselective vaporization of the prostate using the 80W-KTP-Greenlight laser

    NASA Astrophysics Data System (ADS)

    Hermanns, Thomas; Sulser, Tullio; Baumgartner, Martin K.; Fatzer, Markus; Rey, Julien M.; Sigrist, Markus W.; Seifert, Hans-Helge

    2008-02-01

    Photoselective vaporization of the Prostate (PVP) using the 80W-Greenlight-PV (R) Laser System (Laserscope (R), San Jose, USA) has been established as a treatment option for patients suffering from obstructive symptoms caused by benign prostatic hyperplasia. However, longer operation time compared to standard trans-urethral resection of the prostate (TURP) and the high costs of the laser fibers are specific problems of this technique. In addition, many clinicians performing PVP complain about a reduced effectiveness of vaporization during treatment. Therefore, power measurement was performed during PVP using the 80W-Greenlight-PV (R) Laser System. Power output was measured at the beginning and also regularly throughout the operation. A total of 40 fibers were investigated in 35 patients. Damage to the tip of the fibers was regularly visible and increased as more energy was supplied. Additionally, in 90% of all fibers a decrease of power output was detectable during the operation. This became pronounced after the application of 200kJ, resulting in an end of lifespan (i.e. 275kJ) median power output of only 20% of the starting value. Corresponding to the clinical observations the impressive damage to the emission window was associated with a substantial decrease of power output during PVP. These observations might explain the impaired vaporization during PVP and a longer operation time compared to conventional TURP. Hence, improvements in the quality of the laser fibers are necessary to advance the efficiency of this promising technology.

  7. Comparative Effectiveness of Dialyzers: A Longitudinal, Propensity Score-Matched Study of Incident Hemodialysis Patients.

    PubMed

    Sibbel, Scott; Hunt, Abigail; Laplante, Suzanne; Beck, Werner; Gellens, Mary; Brunelli, Steven M

    2016-01-01

    Differences in dialyzer design may have consequences for patient outcomes. We evaluated the comparative effectiveness of commonly used dialyzers with respect to measures of dialysis treatment, anemia management, inflammation, and dialyzer clotting. Patients receiving hemodialysis between January 1, 2009, and December 31, 2013, and using polyarylethersulfone-polyvinylpyrrolidone (PAS-PVP; Polyflux Revaclear) or polysulfone (PS; Optiflux 160 or Optiflux 180) dialyzers were followed for 1 year or until end of study or censoring for dialyzer switch, modality change, or loss to follow-up. For each comparison, eligible patients were propensity score-matched 1:1 on a range of baseline characteristics. Outcomes were assessed using generalized linear mixed models. Dialysis adequacy was similar in both dialyzer groups. Erythropoiesis-stimulating agent (ESA) doses were lower for patients using PAS-PVP versus patients using PS-160 (difference range: 75-589 units/treatment; statistically significant in months 1-5 and 7) and for patients using PAS-PVP versus patients using PS-180 (difference range: 27-591 unit/treatment; statistically significant in months 1-9). Intravenous iron doses trended lower for patients using PAS-PVP versus patients using PS, but hemoglobin concentrations were equivalent. In conclusion, use of PAS-PVP versus PS dialyzers was associated with equivalent dialysis adequacy, lower ESA doses, modestly lower Intravenous iron doses, and equivalent hemoglobin concentrations. PMID:27442860

  8. Synergy Between Polyvinylpyrrolidone-Coated Silver Nanoparticles and Azole Antifungal Against Drug-Resistant Candida albicans.

    PubMed

    Sun, Lingmei; Liao, Kai; Li, Yiping; Zhao, Lei; Liang, Sai; Guo, Dan; Hu, Jun; Wang, Dayong

    2016-03-01

    In the clinical practice, resistance of Candida albicans to antifungal agents has frequently emerged. Silver-nanoparticles (Ag-NPs) have been demonstrated to have the antifungal property. We investigated the potential for synergy between polyvinylpyrrolidone (PVP)-coated Ag-NPs and azole antifungal, such as fluconazole or voriconazole, against drug-resistant C. albicans strain CA10. When antifungal agent was examined alone, fluconazole and voriconazole did not kill drug-resistant C. albicans, and PVP-coated Ag-NPs had only the moderate killing ability. In contrast, the combinational treatment of PVP-coated Ag-NPs with fluconazole or voriconazole was effective in being against the drug-resistant C. albicans. After the combinational treatment, we detected the disruption of cell membrane integrity, the tendency of PVP-coated Ag-NPs to adhere to cell membrane, and the inhibition of budding process. Moreover, after the combinational treatment, the defects in ergosterol signaling and efflux pump functions were detected. Our results suggest that the combinational use of engineered nanomaterials (ENMs), such as PVP-coated Ag-NPs, with the conventional antifungal may be a viable strategy to combat drug-resistant fungal infection. PMID:27455637

  9. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration

    NASA Astrophysics Data System (ADS)

    Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A.; Kotha, Shiva P.

    2013-02-01

    PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min-1. During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a

  10. Importance of Viscoelastic Property Measurement of a New Hydrogel for Health Care

    NASA Astrophysics Data System (ADS)

    Roy, Niladri; Saha, Nabanita; Kitano, Takeshi; Saha, Petr

    2009-07-01

    A simple technology based new hydrogel "PVP-CMC-BA" has been prepared by the scientists of Tomas Bata University in Zlin, Czech Republic. Its swelling property (in presence of water, human blood and different pH), antimicrobial property (in presence of skin infection causing agents like: Staphylococcus aureus; bacteria and Candida albicans; fungi) and viscoelastic properties such as storage modulus (G'), loss modulus (G") and complex viscosity (η*) were investigated at room temperature (25-28° C) which demonstrate that PVP-CMC-BA hydrogel is maintaining requisite properties for health care application, specially as a wound dressing material. The elasticity and antimicrobial property of PVP-CMC-BA is directly correlated with percentage of boric acid, an antiseptic agent. The consequential values of viscoelastic properties of the hydrogel (before drying) enable us to understand its specific flexible condition to apply on the surface of human body.

  11. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent.

    PubMed

    Hoppe, Cristina E; Lazzari, Massimo; Pardiñas-Blanco, Iván; López-Quintela, M Arturo

    2006-08-01

    Synthesis of gold and silver hydrosols was carried out in a one-step process by reduction of aqueous solutions of metal salts using poly(N-vinyl-2-pyrrolidone) (PVP). Both kinds of metal nanoparticles were obtained without the addition of any other reducing agent, at low temperatures and using water as the synthesis solvent. Shape, size, and optical properties of the particles could be tuned by changing the employed PVP/metal salt ratio. It is proposed that PVP acts as the reducing agent suffering a partial degradation during the nanoparticles synthesis. Two possible mechanisms are proposed to explain the reduction step: direct hydrogen abstraction induced by the metal ion and/or reducing action of macroradicals formed during degradation of the polymer. Initial formation of the macroradicals might be associated with the metal-accelerated decomposition of low amounts of peroxides present in the commercial polymer.

  12. Serial cultivation of suspended BHK 21/13 cells in serum-reduced and serum-free medium supplemented with various membrane protective agents.

    PubMed

    Gürhan, S I; Ozdural, N

    1990-01-01

    Suspended BHK 21/13 cells were cultivated in 6M medium supplemented with PVP, bovine serum, LAH, YE, choline chloride and inositol at several concentrations. The maximum working capacity of the bioreactors was 400 ml and the experiments were run for 40 days. The growth promoting effects of each substrate were determined by calculation of generation numbers (n) in each culture. Viability testing and morphological detection of the cells were realized by the trypan blue exclusion method. As a result, the membrane protective effect of PVP, as suggested by some authors, was confirmed and it was estimated that the positive effects of PVP on cell propagation in cultures were due to its protective activities.

  13. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities.

    PubMed

    Li, Ping; Wu, Longlong; Li, Binjie; Zhao, Yanbao; Qu, Peng

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus). PMID:26706506

  14. Room temperature optical and magnetic properties of polyvinylpyrrolidone capped ZnO nanoparticles

    SciTech Connect

    Chakrabarti, Mahuya; Chakrabarti, Keka R.; Sanyal, D.; Chakrabarti, A.

    2009-09-15

    Defect induced room temperature ferromagnetic properties of polyvinylpyrrolidone (PVP) capped nanocrystalline ZnO samples have been studied. Crystal phase and the lattice parameter of the synthesized nanocrystalline samples have been determined from X-ray diffraction spectra (XRD) and high-resolution transmission electron micrographs (HR-TEM). Room temperature photoluminescence (PL) spectrum for the bare ZnO sample shows a strong band at {approx} 379 nm and another band at {approx} 525 nm. The PL spectra also revealed that the number of oxygen vacancies in the uncapped sample is more than the PVP capped sample. Both sample exhibit ferromagnetic property at room temperature when annealed at 500 deg. C for 3 h, due to the formation of adequate oxygen vacancy related defects. The saturation magnetization for the annealed PVP capped sample is found to be larger compared to that for the uncapped sample.

  15. Synthesis, characterization and Monte Carlo simulation of CoFe2O4/Polyvinylpyrrolidone nanocomposites: The coercivity investigation

    NASA Astrophysics Data System (ADS)

    Mirzaee, Sh; Farjami shayesteh, S.; Mahdavifar, S.; Hekmatara, S. Hoda.

    2015-11-01

    To study the influence of polymer matrix on the effective magnetic anisotropy constant and coercivity of magnetic nanoparticles, we have synthesized the Cobalt ferrite/Polyvinylpyrrolidone (PVP) nanocomposites by co-precipitation method in four different processes. In addition the Monte Carlo simulation and law of approach to the saturation magnetization have been applied to achieve the anisotropy constants. The obtained experimental and theoretical results showed a decrease in anisotropy constant relative to the bulk cobalt ferrite. We have showed that the PVP matrix can interact with metal cations and made them approximately immobilized to participate in spinel structure. Hence different anisotropy constants or coercivity were obtained for synthesized nanocomposites. In addition, PVP matrix can attach to the surface of magnetic particles and make them approximately non-interacting. The synthesized samples have been characterized by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). Magnetic measurements were made at room temperature using a vibrating sample magnetometer (VSM).

  16. Morphology Control of FeCo Alloy Particles Synthesized by Polyol Process

    SciTech Connect

    Kodama, D.; Sato, Y.; Tohji, K.; Jeyadevan, B.; Shinoda, K.; Sato, K.

    2007-03-20

    FeCo alloy is a soft magnetic material that possesses the highest saturation magnetization of 2.4 T and crystallizes in bcc structure as in the case of {alpha}-Fe. However, the particles synthesized were highly agglomerated. Thus, in this paper, an attempt was made to control the morphology of the particles using different types and concentrations of surfactants such as oleic acid, oleyl amine, polyvinylpyrrolidone (PVP), etc., during the synthesis of the particles. Though all the surfactant experimented partially prevented the agglomeration, products had larger size distribution except for PVP, which provided nearly monodispersed particles. Furthermore, the FeCo particles synthesized in the presence of PVP were either cubic or nearly spherical depending on the concentration of Fe.

  17. Solvothermal synthesis of uniform bismuth nanospheres using poly(N-vinyl-2-pyrrolidone) as a reducing agent

    PubMed Central

    2011-01-01

    Uniform bismuth nanospheres were successfully prepared from bismuth nitrate in the presence of poly(N-vinyl-2-pyrrolidone) (PVP) by solvothermal process. The product was characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and energy-dispersive X-ray. PVP plays a critical role both as a reducing agent and a capping agent in the formation of bismuth nanospheres. Shape and size of bismuth nanospheres could be tuned by changing the employed PVP/bismuth salt ratio. It was also found the solvent had an effect on the morphologies of bismuth nanomaterials. The possible formation and growth mechanism of bismuth nanospheres were also discussed and proposed to explain the reduction step. PMID:21711606

  18. Effect of a weak magnetic field on the Mizoroki-Heck coupling reaction in the presence of wicker-like palladium-poly(N-vinylpyrrolidone)-iron nanocatalyst

    NASA Astrophysics Data System (ADS)

    Rafiee, Ezzat; Joshaghani, Mohammad; Abadi, Parvaneh Ghaderi-Shekhi

    2016-06-01

    The wicker-like Pd-PVP-Fe (palladium-poly(N-vinylpyrrolidone)-iron) was synthesized by the external magnetic field (EMF). The Pd-based catalyst with nano and the face-centered cubic (fcc) structure was obtained at room temperature without using any additive. The resulting composite was characterized. The results show that EMF has a great influence on morphology, particle size, and crystalline structure of the Pd-PVP-Fe composite. The resulting composite (Pd-PVP-Fe), was found to be an effective catalyst for the Mizoroki-Heck reaction while is exposed to EMF with the intensity at 486 μT. The reused catalyst for at least five repeating cycles, shows excellent activity.

  19. Highly water-dispersible silver sulfadiazine decorated with polyvinyl pyrrolidone and its antibacterial activities.

    PubMed

    Li, Ping; Wu, Longlong; Li, Binjie; Zhao, Yanbao; Qu, Peng

    2016-03-01

    Highly water-dispersible silver sulfadiazine (SSD) was prepared by liquid phase method with polyvinyl pyrrolidone (PVP) as a surface modification agent. The structure and morphology of the PVP-modified silver sulfadiazine (P-SSD) were investigated by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Fourier-transform infrared (FT-IR) spectrometry. The produced particles are ginkgo leaf-like architecture with the sizes of micron-nanometer. Due to hydrophilic PVP decorated on the surface, the P-SSD has excellent dispersion in water over a period of 24h, which is obviously stable by comparison to that of the commercial silver sulfadiazine (C-SSD). In addition, the P-SSD exhibits good antibacterial activities against Escherichia coli (E. coli), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus).

  20. Electrospun fluorescein/polymer composite nanofibers and their photoluminescent properties

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Hua; Long, Yun-Ze; Yin, Hong-Xin; Sun, Bin; Zheng, Jie; Zhang, Hong-Di; Ji, Xin-Ming; Gu, Chang-Zhi

    2012-09-01

    Fluorescein/polyvinyl pyrrolidone (PVP) composite nanofibers with different fluorescein loadings (with a weight concentration of 0-5.0%) are fabricated via electrospinning. Morphologies, structures and photoluminescent (PL) properties of these straight, helical or wavelike fibers are characterized by scanning electron microscopy (SEM), fluorescence microscopy and a spectrophotometer. It is found that the maximum emission of the as-spun fluorescein/PVP fibers occurs at 510 nm. The PL intensity of the composite fiber increases with fluorescein concentration, then fluorescence quenching appears when the concentration reaches 1.67%. The mechanism of fluorescence quenching of fluorescein is discussed. In addition, the composite fibers exhibit a much stronger PL intensity than fluorescein/PVP bulk film owing to larger specific surface area, which makes them promising materials for biomedical applications such as probes and sensors.

  1. Solid dispersion of quercetin in cellulose derivative matrices influences both solubility and stability.

    PubMed

    Li, Bin; Konecke, Stephanie; Harich, Kim; Wegiel, Lindsay; Taylor, Lynne S; Edgar, Kevin J

    2013-02-15

    Amorphous solid dispersions (ASD) of quercetin (Que) in cellulose derivative matrices, carboxymethylcellulose acetate butyrate (CMCAB), hydroxypropylmethylcellulose acetate succinate (HPMCAS), and cellulose acetate adipate propionate (CAAdP) were prepared with the goal of identifying an ASD that effectively increased Que aqueous solution concentration. Crystalline quercetin and Que/poly(vinylpyrrolidinone) (PVP) ASD were evaluated for comparison. Powder X-ray diffraction (XRPD) and differential scanning calorimetry (DSC) were used to examine the crystallinity of ASDs, physical mixtures (PM) and quercetin. ASDs were amorphous up to 50 wt% Que. Que stability against crystallization and solution concentrations from these ASDs were significantly higher than those observed for physical mixtures and crystalline Que. PVP stabilizes against both Que degradation and recrystallization; in contrast, these carboxylated cellulose derivatives inhibit recrystallization but release Que slowly. PVP ASDs afforded fast and complete drug release, while ASDs using these three cellulose derivatives provide slow, incomplete, pH-triggered drug release. PMID:23399255

  2. Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film.

    PubMed

    Deng, Peihong; Xu, Zhifeng; Zeng, Rongying; Ding, Chunxia

    2015-08-01

    The graphene-polyvinylpyrrolidone composite film modified acetylene black paste electrode (GR-PVP/ABPE) was fabricated and used to determine vanillin. In 0.1M H3PO4 solution, the oxidation peak current of vanillin increased significantly at GR-PVP/ABPE compared with bare ABPE, PVP/ABPE and GR/ABPE. The oxidation mechanism was discussed. The experimental conditions that exert influence on the voltammetric determination of vanillin, such as supporting electrolytes, pH values, accumulation potential and accumulation time, were optimized. Besides, the interference, repeatability, reproducibility and stability measurements were also evaluated. Under the optimal experimental conditions, the oxidation peak current was proportional to vanillin concentration in the range of 0.02-2.0 μM, 2.0-40 μM and 40-100 μM. The detection limit was 10nM. This sensor was used successfully for vanillin determination in various food samples.

  3. Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug-Polymer Systems.

    PubMed

    Knapik, J; Wojnarowska, Z; Grzybowska, K; Tajber, L; Mesallati, H; Paluch, K J; Paluch, M

    2016-06-01

    In this article we study the effectiveness of three well-known polymers: inulin, Soluplus, and PVP in stabilizing the amorphous form of nimesulide (NMS) drug. The recrystallization tendency of pure drug as well as measured drug-polymer systems were examined at isothermal conditions by broadband dielectric spectroscopy (BDS) and at nonisothermal conditions by differential scanning calorimetry (DSC). Our investigation has shown that the crystallization half-life time of pure NMS at 328 K is equal to 33 min. We found that this time can be prolonged to 40 years after adding 20% w/w PVP to NMS. This polymer proved to be the best NMS stabilizer, while the worst stabilization effect was exhibited by inulin. Additionally, our DSC, BDS, and FTIR studies indicate that for suppression of NMS recrystallization in the NMS-PVP system, the two mechanisms are responsible: the polymeric steric hindrances and the antiplastization effect exerted by the excipient. PMID:27149568

  4. Selective hydrogenation of m-chloronitrobenzene to m-chloroaniline over polyvinylpyrrolidone-stabilized Pt and Pt/Sn catalysts

    NASA Astrophysics Data System (ADS)

    Li, Feng; Ma, Rui; Song, Hualin; Song, Hua; Yu, Dezhi

    2015-05-01

    A Pt-polyvinylpyrrolidone (PVP) catalyst was synthesized via chemical reduction of platinum ions with hydrazine hydrate in a PVP/ n-butanol/H2PtCl6 aqueous solution. Its catalytic activity was evaluated by the liquid-phase hydrogenation of m-chloronitrobenzene ( m-CNB) to m-chloroaniline ( m-CAN) under mild conditions ( T = 303 K, p = 0.1 MPa). The as prepared catalyst exhibited higher activity and selectivity than prepared via conventional ethanol reduction with the same platinum load. The catalytic performance of PVP-Pt catalyst was remarkably improved by addition of 0.2 wt % Sn4+. The modification mechanism may be related with the interaction of Sn4+ with nitro group of m-CNB and -NH2 in m-CAN.

  5. A gold nanocomposite made soluble in both water and oil by the addition of a second adsorption layer of poly-N-vinyl-2-pyrrolidone on gold nanoparticles that have been made hydrophobic

    NASA Astrophysics Data System (ADS)

    Yang, Yun; Li, Jinru; Mu, Jin; Rong, Huilin; Jiang, Long

    2006-01-01

    A kind of nanocomposite with hydrophobic nanogold as the core and an absorption layer of poly-N-vinyl-2-pyrrolidone (PVP) molecules surrounding it has been prepared. The nanocomposite can be dispersed well in both water and organic solvent. In water media it disperses over a pH range from 1 to 14, while in organic media the desorption of PVP results in the nanoparticles becoming hydrophobic; the enhancement of the viscosity caused by the PVP solution causes the hydrophobic sol to have very good kinetic stability. The particles can be switched repeatedly between hydrophobic and hydrophilic states. Transmission electron microscopy, Fourier transform infrared spectroscopy and energy dispersive x-ray analysis have been used to study the multilayer protection mechanism.

  6. Transforming powder mechanical properties by core/shell structure: compressible sand.

    PubMed

    Shi, Limin; Sun, Changquan Calvin

    2010-11-01

    Some active pharmaceutical ingredients possess poor mechanical properties and are not suitable for tableting. Using fine sand (silicon dioxide), we show that a core/shell structure, where a core particle (sand) is coated with a thin layer of polyvinylpyrrolidone (PVP), can profoundly improve powder compaction properties. Sand coated with 5% PVP could be compressed into intact tablets. Under a given compaction pressure, tablet tensile strength increases dramatically with the amount of coating. This is in sharp contrast to poor compaction properties of physical mixtures, where intact tablets cannot be made when PVP content is 20% or less. The profoundly improved tabletability of core/shell particles is attributed to the formation of a continuous three-dimensional bonding network in the tablet.

  7. Translational and rotational diffusion of a small globular protein under crowded conditions.

    PubMed

    Li, Conggang; Wang, Yaqiang; Pielak, Gary J

    2009-10-01

    Protein-protein interaction is the fundamental step of biological signal transduction. Interacting proteins find each other by diffusion. To gain insight into diffusion under the crowded conditions found in cells, we used nuclear magnetic resonance spectroscopy (NMR) to measure the effects of solvent additives on the translational and rotational diffusion of the 7.4 kDa globular protein, chymotrypsin inhibitor 2. The additives were glycerol and the macromolecular crowding agent, polyvinyl pyrrolidone (PVP). Both translational diffusion and rotational diffusion decrease with increasing solution viscosity. For glycerol, the decrease obeys the Stokes-Einstein and Stokes-Einstein Debye laws. Three types of deviation are observed for PVP: the decrease in diffusion with increased viscosity is less than predicted, this negative deviation is greater for rotational diffusion, and the negative deviation increases with increasing PVP molecular weight. We discuss our results in terms of other studies on the effects of macromolecules on globular protein diffusion.

  8. Poly(anhydride-ester) and Poly(N-vinyl-2-pyrrolidone) Blends: Salicylic acid-releasing blends with hydrogel-like properties that reduce inflammation

    PubMed Central

    Ouimet, Michelle A.; Fogaça, Renata; Snyder, Sabrina S.; Sathaye, Sameer; Catalani, Luiz H.; Pochan, Darrin J.

    2015-01-01

    Polymers such as poly(N-vinyl-2-pyrrolidone) (PVP) have been used to prepare hydrogels for wound dressing applications but are not inherently bioactive. For enhanced healing, the release of physically admixed therapeutics from hydrogels has been evaluated, but with limited control over drug release profiles. To overcome these limitations, PVP was blended with salicylic acid-based poly(anhydride-esters) (SAPAE) and shown to exhibit hydrogel properties upon swelling. In vitro release studies demonstrated that the chemically incorporated drug (SA) was released from the polymer blends over 3–4 days in contrast to 3 hours, as observed with diffusion-controlled hydrogels. Generally, blends of higher PVP content displayed greater swelling values and faster SA release. The polymer blends significantly reduce the inflammatory cytokine, TNF-α, in vitro without cytotoxic or anti-proliferative effects, further demonstrating their potential as a wound dressing with enhanced healing and decreased scar tissue formation. PMID:25333420

  9. Influence of the electronic distribution of polymers in the spatial conformation of polymer grafted carbon nanotube composites

    NASA Astrophysics Data System (ADS)

    Garate, H.; De Falco, A.; Moreno, M. S.; Fascio, M. L.; Goyanes, S.; D'Accorso, N. B.

    2012-08-01

    In this work we report the covalent functionalization of multiwalled carbon nanotubes (MWCNTs) with polyacrylonitrile (PAN) and polyvinylpyridine (PVP) by the graft from method. Differences in the electronic distribution of both polymers resulted in different interaction between polymers and the nanotubes. It was found that PVP chains wrapped the nanotubes while nanotubes functionalized with PAN presented PAN chains forming amorphous entanglements on the nanoscale linked to the MWCNTs. Differences in the conformation between both polymers and the MWCNTs can be attributed to interactions between the aromatic groups in PVP and the MWCNTs through π-π stacking. The absence of aromatic groups in the case of the PAN chains favours the interaction between them. The functionalization efficiency was characterized using Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and UV-vis spectroscopy, while morphological changes were characterized by high resolution transmission electron microscopy.

  10. Control of self organization in conjugated polymer fibers.

    PubMed

    Chuangchote, Surawut; Fujita, Michiyasu; Sagawa, Takashi; Sakaguchi, Hiroshi; Yoshikawa, Susumu

    2010-11-01

    We propose new strategy to facilitate the fabrication of conjugated polymer fiber with higher oriented structures, which focused on electrospinning of a blend solution of regioregular poly(3-hexylthiophene) (rr-P3HT) and poly(vinyl pyrrolidone) (PVP). SEM observation revealed that the blend system forms homogeneous composite nanofibers. This system exhibits the specific feature of strong interchain contribution of P3HT from UV-vis absorption, fluorescence spectroscopic, XRD, and photoelectron spectrometric (for HOMO levels) investigations. We also demonstrate the removal of the PVP component from the P3HT/PVP composite fibers through the selective extraction and such strong interchain stacking of pristine P3HT fiber mat can be remarkably maintained.

  11. Sensitive and rapid determination of quinoline yellow in drinks using polyvinylpyrrolidone-modified electrode.

    PubMed

    Zhang, Shenghui; Shi, Zhen; Wang, Jinshou

    2015-04-15

    A novel electrochemical sensor using polyvinylpyrrolidone (PVP)-modified carbon paste electrode was developed for the sensitive and rapid determination of quinoline yellow. In 0.1M, pH 6.5 phosphate buffer, an irreversible oxidation wave at 0.97 V was observed for quinoline yellow. PVP exhibited strong accumulation ability to quinoline yellow, and consequently increased the oxidation peak current of quinoline yellow remarkably. The effects of pH value, amount of PVP, accumulation potential and time were studied on the oxidation signals of quinoline yellow. The linear range was from 5×10(-8) to 1×10(-6) M, and the limit of detection was evaluated to be 2.7×10(-8) M. It was used to detect quinoline yellow in different drink samples, and the results consisted with the values that obtained by high-performance liquid chromatography.

  12. Preparation of silver-coated glass frit and its application in silicon solar cells

    NASA Astrophysics Data System (ADS)

    Feng, Xiang; Biyuan, Li; Yingfen, Li; Jian, Zhou; Weiping, Gan

    2016-07-01

    A simple electroless plating process was employed to prepare silver-coated glass frits for solar cells. The surface of the glass frits was modified with polyvinyl-pyrrolidone (PVP) before the electroless plating process. Infrared (IR) spectroscopy, field emission scanning electron microscopy (FESEM), and x-ray diffraction (XRD) were used to characterize the PVP modified glass frits and investigate the mechanism of the modification process. It was found that the PVP molecules adsorbed on the glass frit surface and reduced the silver ions to the silver nanoparticles. Through epitaxial growth, these nanoparticles were uniformly deposited onto the surface of the glass frit. Silicon solar cells with this novel silver coating exhibited a photoelectric conversion efficiency increase of 0.33%. Compared with the electroless plating processes, this method provides a simple route to prepare silver-coated glass frits without introducing impurity ions.

  13. Blood pressure and plasma renin activity as predictors of orthostatic intolerance

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.; Kravik, S. E.; Geelen, G.; Keil, L.; Greenleaf, J. E.

    1985-01-01

    The effect of 3 h standing, followed by a period of head-up tilt (HUT) on physiological response (orthostatic tolerance, blood pressure and heart rate), as well as on plasma vasopressin (PVP) and renin activity (PRA) were studied in 13 dehydrated (to 2.4 pct loss of body weight) subjects. Seven subjects showed signs of orthostatic intolerance (INT), manifested by sweating, pallor, nausea and dizziness. Prior to these symptoms, the INT subjects exhibited lower systolic (SP) and pulse (PP) pressures, and an elevated PRA, compared to the tolerant (TOL) subjects. HUT has aggravated increases of RPA in the INT subjects and caused an increase, higher than in TOL subjects, in PVP, while rehydration has greatly attenuated the PVP response to the HUT and decreased the PRA response. It is concluded that dehydration, together with measurements of SP, PP and PRA, may serve as a means of predicting orthostatic intolerance and may provide a physiological model for studying the causes of intolerance.

  14. 80-W green KTP laser used in photoselective laser vaporization of the prostrate by frequency doubling of Yb 3+ -doped large-mode area fiber laser

    NASA Astrophysics Data System (ADS)

    Xia, Hongxing; Li, Zhengjia

    2007-05-01

    Photoselective laser vaporization of the prostate (PVP) is the most promising method for the treatment of benign prostatic hyperplasia (BPH), but KTP lasers used in PVP with lamp-pumped are low efficient .To increase the efficiency , we develop a 80-W, 400kHz, linearly polarized green laser based on a frequency-doubled fiber laser. A polarization-maintaining large-mode area (LMA) fiber amplifier generate polarized 1064nm fundamental wave by amplifying the seed signal from a composite Cr 4+:YAG-Nd 3+:YAG crystal fiber laser. The fundamental wave is injected into a KTP crystal with confined temperature management to achieve second harmonic generation (SHG). The overall electrical efficiency to the green portion of the spectrum is 10%.80-W maintenance-free long-lifetime KTP laser obtained can well satisfy the need of PVP.

  15. Preparation by coaxial electrospinning and characterization of membranes releasing (-) epicatechin as scaffold for tissue engineering.

    PubMed

    Castillo-Ortega, M M; Montaño-Figueroa, A G; Rodríguez-Félix, D E; Prado-Villegas, G; Pino-Ocaño, K P; Valencia-Córdova, M J; Quiroz-Castillo, J M; Herrera-Franco, P J

    2015-01-01

    Optimal conditions for the preparation of a composite material of fibers of cellulose acetate (CA) and poly(vinyl pyrrolidone) (PVP), containing epicatechin (Epic) within the fiber CA/PVP-Epic/CA, were found. The morphology and physical/chemical properties of the fibrous membranes containing CA, PVP, and epicatechin were characterized using FTIR spectroscopy, thermal analysis, SEM, TEM, and natural weathering. Also, mechanical characterization of the fibers showed that tensile strength of the membrane was not affected by the presence of epicatechin within the fiber as compared with fibers without epicatechin. The effect of the medium on the release rate of epicatechin was also studied. The amount of epicatechin release was higher in water, 79.6%, and 31% in MesenCult medium. These results showed that these composite materials are recommended for cardiac tissue engineering; furthermore, using these materials allows precise release of the epicatechin in the damaged tissue. PMID:25491975

  16. Spherically-clustered porous Au-Ag alloy nanoparticle prepared by partial inhibition of galvanic replacement and its application for efficient multimodal therapy.

    PubMed

    Jang, Hongje; Min, Dal-Hee

    2015-03-24

    The polyvinylpyrrolidone (PVP)-coated spherically clustered porous gold-silver alloy nanoparticle (PVP-SPAN) was prepared by low temperature mediated, partially inhibited galvanic replacement reaction followed by silver etching process. The prepared porous nanostructures exhibited excellent photothermal conversion efficiency under irradiation of near-infrared light (NIR) and allowed a high payload of both doxorubicin (Dox) and thiolated dye-labeled oligonucleotide, DNAzyme (FDz). Especially, PVP-SPAN provided 10 times higher loading capacity for oligonucleotide than conventional hollow nanoshells due to increased pore diameter and surface-to-volume ratio. We demonstrated highly efficient chemo-thermo-gene multitherapy based on codelivery of Dox and FDz with NIR-mediated photothermal therapeutic effect using a model system of hepatitis C virus infected human liver cells (Huh7 human hepatocarcinoma cell line containing hepatitis C virus NS3 gene replicon) compared to conventional hollow nanoshells.

  17. Effects of intrauterine infusion of povidone-iodine on endometrial cytology and bacteriology in dairy cows with clinical endometritis

    PubMed Central

    MIDO, Shogo; MURATA, Nozomu; RAWY, Mohamed Sadawy; KITAHARA, Go; OSAWA, Takeshi

    2015-01-01

    Endometritis is one of the major diseases causing infertility in the cow. Intrauterine infusion of povidone-iodine (PVP-I) is a common treatment. However, the optimal concentration of PVP-I for treating endometritis effectively remains unknown. We tested concentrations of 2.0% or 0.5% PVP-I for treating clinical endometritis in dairy cattle. In Experiment 1, bacteria isolated from the uterus were incubated with either 2.0% or 0.5% PVP-I, and the numbers of bacterial colonies were counted. In Experiment 2, 18 cows with clinical endometritis were treated with either 2.0% or 0.5% PVP-I (n=9 in each group). Cytology samples and bacteria were collected using a cytobrush on weeks 0 (W0), 1 (W1) and 2 (W2) after treatment. Subsequent reproductive performance was compared between the two groups. In Experiment 1, both concentrations had a similar antiseptic outcome. In Experiment 2, the percentage of polymorphonuclear neutrophils (PMN%) in the endometrial epithelium at W2 in the 2.0% group was significantly lower (P<0.05) than in the 0.5% group, although the PMN% decreased significantly from W0 to W2 (P<0.01) in both groups. Decreases in bacterial infection rates from W0 to W2 were similar in both groups. The first service conception rate was higher, numbers of services per conception were fewer, and time to conception was shorter in the 2.0% group than in the 0.5% group. Thus, an intrauterine infusion of 2.0% PVP-I was better than 0.5% in treating clinical endometritis in these dairy cattle. PMID:26655976

  18. Effects of intrauterine infusion of povidone-iodine on endometrial cytology and bacteriology in dairy cows with clinical endometritis.

    PubMed

    Mido, Shogo; Murata, Nozomu; Rawy, Mohamed Sadawy; Kitahara, Go; Osawa, Takeshi

    2016-05-01

    Endometritis is one of the major diseases causing infertility in the cow. Intrauterine infusion of povidone-iodine (PVP-I) is a common treatment. However, the optimal concentration of PVP-I for treating endometritis effectively remains unknown. We tested concentrations of 2.0% or 0.5% PVP-I for treating clinical endometritis in dairy cattle. In Experiment 1, bacteria isolated from the uterus were incubated with either 2.0% or 0.5% PVP-I, and the numbers of bacterial colonies were counted. In Experiment 2, 18 cows with clinical endometritis were treated with either 2.0% or 0.5% PVP-I (n=9 in each group). Cytology samples and bacteria were collected using a cytobrush on weeks 0 (W0), 1 (W1) and 2 (W2) after treatment. Subsequent reproductive performance was compared between the two groups. In Experiment 1, both concentrations had a similar antiseptic outcome. In Experiment 2, the percentage of polymorphonuclear neutrophils (PMN%) in the endometrial epithelium at W2 in the 2.0% group was significantly lower (P<0.05) than in the 0.5% group, although the PMN% decreased significantly from W0 to W2 (P<0.01) in both groups. Decreases in bacterial infection rates from W0 to W2 were similar in both groups. The first service conception rate was higher, numbers of services per conception were fewer, and time to conception was shorter in the 2.0% group than in the 0.5% group. Thus, an intrauterine infusion of 2.0% PVP-I was better than 0.5% in treating clinical endometritis in these dairy cattle. PMID:26655976

  19. Physicochemical properties of tadalafil solid dispersions - Impact of polymer on the apparent solubility and dissolution rate of tadalafil.

    PubMed

    Wlodarski, K; Sawicki, W; Haber, K; Knapik, J; Wojnarowska, Z; Paluch, M; Lepek, P; Hawelek, L; Tajber, L

    2015-08-01

    To improve solubility of tadalafil (Td), a poorly soluble drug substance (3μg/ml) belonging to the II class of the Biopharmaceutical Classification System, its six different solid dispersions (1:1, w/w) in the following polymers: HPMC, MC, PVP, PVP-VA, Kollicoat IR and Soluplus were successfully produced by freeze-drying. Scanning electron microscopy showed a morphological structure of solid dispersions typical of lyophilisates. Apparent solubility and intrinsic dissolution rate studies revealed the greatest, a 16-fold, increase in drug solubility (50μg/ml) and a significant, 20-fold, dissolution rate enhancement for the Td/PVP-VA solid dispersion in comparison with crystalline Td. However, the longest duration of the supersaturation state in water (27μg/ml) over 24h was observed for the Td solid dispersion in HPMC. The improved dissolution of Td from Td/PVP-VA was confirmed in the standard dissolution test of capsules filled with solid dispersions. Powder X-ray diffraction and thermal analysis showed the amorphous nature of these binary systems and indicated the existence of dispersion at the molecular level and its supersaturated character, respectively. Nevertheless, as evidenced by film casting, the greatest ability to dissolve Td in polymer was determined for PVP-VA. The crystallization tendency of Td dispersed in Kollicoat IR could be explained by the low Tg (113°C) of the solid dispersion and the highest difference in Hansen solubility parameters (6.8MPa(0.5)) between Td and the polymer, although this relationship was not satisfied for the partially crystalline dispersion in PVP. Similarly, no correlation was found between the strength of hydrogen bonds investigated using infrared spectroscopy and the physical stability of solid dispersions or the level of supersaturation in aqueous solution.

  20. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-01

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated.

  1. Effect of pH and biological media on polyvinylpyrrolidone-capped silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Lau, Chew Ping; Abdul-Wahab, Mohd Firdaus; Jaafar, Jafariah; Chan, Giek Far; Rashid, Noor Aini Abdul

    2016-07-01

    Toxicity and mobility of silver nanoparticles (AgNPs) vary in different surrounding environments. Surface coatings or functionalization, temperature, pH, dissolved oxygen concentration, nanoparticle concentration, the presence of organic matter, and ionic strength are factors which dictate the transformation of AgNPs in terms of aggregation and stabilization. Thus, the purpose of this study is to investigate the behavior of polyvinylpyrrolidone (PVP)-capped AgNPs at different pHs (pH 2 to 10) and in different biological media (0.1 M phosphate buffer, nutrient broth, P5 and modified P5 media) analyzed using UV-Vis spectroscopy and zeta potential analyzer. The PVP-capped AgNPs changed its behavior in the presence of varying media, after 24 h incubation with shaking at 200 rpm at 30°C. No aggregation was observed at pH 4 to 10, but distinctive at very low pH of 2. Low pH further destabilized PVP-capped AgNPs after 24 h of incubation. High ionic strength 0.1 M phosphate buffer also resulted in slow aggregation and eventually destabilized the nanoparticles. Biological media (nutrient broth, P5 and modified P5 media) containing organic components caused aggregation of the PVP-capped AgNPs. The increase in glucose and nutrient broth concentrations led to increased aggregation. However, PVP-capped AgNPs stabilized after 24 h incubation in media containing a high concentration of glucose and nutrient broth. The results demonstrate that low pH value, high ionic strength and the content of the biological media can influence the stability of AgNPs. This provides information on the aggregation behavior of PVP-capped AgNPs and can possibly further predict the fate, transport as well as the toxicity of silver nanoparticles after being released into the aquatic environment.

  2. Polyvinyl pyrrolidone/carrageenan blend hydrogels with nanosilver prepared by gamma radiation for use as an antimicrobial wound dressing.

    PubMed

    Singh, Durgeshwer; Singh, Antaryami; Singh, Rita

    2015-01-01

    Hydrogels were prepared using polyvinyl pyrrolidone (PVP) blended with carrageenan by gamma irradiation at different doses of 25 and 40 kGy. Gel fraction of hydrogels prepared using 10 and 15% PVP in combination with 0.25 and 0.5% carrageenan was evaluated. Based on gel fraction, 15% PVP in combination with 0.25% carrageenan and radiation dose of 25 kGy was selected for the preparation of hydrogels with nanosilver. Radiolytic synthesis of silver nanoparticles within the PVP hydrogel was carried out. The hydrogels with silver nanoparticles were assessed for antimicrobial effectiveness and physical properties of relevance to clinical performance. Fluid handling capacity (FHC) for PVP/carrageenan was 2.35 ± 0.39-6.63 ± 0.63 g/10 cm(2) in 2-24 h. No counts for Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli, and Candida albicans were observed in the presence of hydrogels containing 100 ppm nanosilver after 3-6 h. The release of silver from hydrogels containing 100 ppm nanosilver was 20.42 ± 1.98 ppm/100 cm(2) in 24 h. Hydrogels containing 100 ppm nanosilver with efficient FHC demonstrated potential microbicidal activity (≥3 log10 decrease in CFU/ml) against wound pathogens, P. aeruginosa, S. aureus, E. coli, and C. albicans. PVP/carrageenan hydrogels containing silver nanoparticles can be used as wound dressings to control infection and facilitate the healing process for burns and other skin injuries.

  3. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    PubMed

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra.

  4. Clinical Outcome and Safety of Multilevel Vertebroplasty: Clinical Experience and Results

    SciTech Connect

    Mailli, Leto Filippiadis, Dimitrios K.; Brountzos, Elias N.; Alexopoulou, Efthymia; Kelekis, Nikolaos; Kelekis, Alexios

    2013-02-15

    To compare safety and efficacy of percutaneous vertebroplasty (PVP) when treating up to three vertebrae or more than three vertebrae per session. We prospectively compared two groups of patients with symptomatic vertebral fractures who had no significant response to conservative therapy. Pathologic substrate included osteoporosis (n = 77), metastasis (n = 24), multiple myeloma (n = 13), hemangioma (n = 15), and lymphoma (n = 1). Group A patients (n = 94) underwent PVP of up to three treated vertebrae (n = 188). Group B patients (n = 36) underwent PVP with more than three treated vertebrae per session (n = 220). Decreased pain and improved mobility were recorded the day after surgery and at 12 and 24 months after surgery per clinical evaluation and the use of numeric visual scales (NVS): the Greek Brief Pain Inventory, a linear analogue self-assessment questionnaire, and a World Health Organization questionnaire. Group A presented with a mean pain score of 7.9 {+-} 1.1 NVS units before PVP, which decreased to 2.1 {+-} 1.6, 2.0 {+-} 1.5 and 2.0 {+-} 1.5 NVS units the day after surgery and at 12 and 24 months after surgery, respectively. Group B presented with a mean pain score of 8.1 {+-} 1.3 NVS units before PVP, which decreased to 2.2 {+-} 1.3, 2.0 {+-} 1.5, and 2.1 {+-} 1.6 NVS units the day after surgery and at 12 and 24 months after surgery, respectively. Overall pain decrease and mobility improvement throughout the follow-up period presented no statistical significance neither between the two groups nor between different underlying aetiology. Reported cement leakages presented no statistical significance between the two groups (p = 0.365). PVP is an efficient and safe technique for symptomatic vertebral fractures independently of the vertebrae number treated per session.

  5. Comparison of Photoselective Vaporization versus Holmium Laser Enucleation for Treatment of Benign Prostate Hyperplasia in a Small Prostate Volume

    PubMed Central

    Kim, Kang Sup; Choi, Jin Bong; Bae, Woong Jin; Kim, Su Jin; Cho, Hyuk Jin; Hong, Sung-Hoo; Lee, Ji Youl; Kim, Sang Hoon; Kim, Hyun Woo; Cho, Su Yeon; Kim, Sae Woong

    2016-01-01

    Objective Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Methods Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes < 40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters—such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications—were compared between the groups. Results PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at 1 month postoperatively (5.9 vs. 3.8, P< 0.001). There was no significant difference in postoperative complications between the two groups. Conclusion Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume. PMID:27227564

  6. [Role of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) in the obtaining of stabilized magnetite nanoparticles for biomedical application].

    PubMed

    Vazhnichaya, Ye M; Mokliak, Ye V; Kurapov, Yu A; Zabozlaev, A A

    2015-01-01

    Magnetite nanoparticles (NPs) are studied as agents for magnetic resonance imaging, hyperthermia of malignant tumors, targeted drug delivery as well as anti-anemic action. One of the main problems of such NPs is their aggregation that requires creation of methods for magnetite NPs stabilization during preparation of liquid medicinal forms on their basis. The present work is devoted to the possibility of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) use for solubilization of magnetite NPs in hydrophilic medium. For this purpose, the condensate produced by electron-beam evaporation and condensation, with magnetite particles of size 5-8 nm deposited into the crystals of sodium chloride were used in conjunction with substance of mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate), and low molecular weight polyvinylpyrrolidone (PVP). The NP condensate was dispersed in distilled water or PVP or mexidol solutions. NPs size distribution in the liquid phase of the systems was determined by photon correlation spectroscopy, iron (Fe) concentration was evaluated by atomic emission spectrometry. It is shown that in the dispersion prepared in distilled water, the major amount of NPs was of 13-120 nm in size, in mexidol solution - 270-1700 nm, in PVP solution - 30-900 nm. In the fluid containing magnetite NPs together with mexidol and PVP, the main fraction (99.9%) was characterized by the NPs size of 14-75 nm with maximum of 25 nm. This system had the highest iron concentration: it was similar to that in the sample with mexidol solution and 6.6-7.3 times higher than the concentration in the samples with distilled water or PVP. Thus, in the preparation of aqueous dispersions based on magnetite NPs condensate, mexidol provides a transition of Fe to the liquid phase in amount necessary to achieve its biological activity, and PVP stabilizes such modified NPs. PMID:26215417

  7. Electrospun Polymer Blend Nanofibers for Tunable Drug Delivery: The Role of Transformative Phase Separation on Controlling the Release Rate.

    PubMed

    Tipduangta, Pratchaya; Belton, Peter; Fábián, László; Wang, Li Ying; Tang, Huiru; Eddleston, Mark; Qi, Sheng

    2016-01-01

    Electrospun fibrous materials have a wide range of biomedical applications, many of them involving the use of polymers as matrices for incorporation of therapeutic agents. The use of polymer blends improves the tuneability of the physicochemical and mechanical properties of the drug loaded fibers. This also benefits the development of controlled drug release formulations, for which the release rate can be modified by altering the ratio of the polymers in the blend. However, to realize these benefits, a clear understanding of the phase behavior of the processed polymer blend is essential. This study reports an in depth investigation of the impact of the electrospinning process on the phase separation of a model partially miscible polymer blend, PVP K90 and HPMCAS, in comparison to other conventional solvent evaporation based processes including film casting and spin coating. The nanoscale stretching and ultrafast solvent removal of electrospinning lead to an enhanced apparent miscibility between the polymers, with the same blends showing micronscale phase separation when processed using film casting and spin coating. Nanoscale phase separation in electrospun blend fibers was confirmed in the dry state. Rapid, layered, macroscale phase separation of the two polymers occurred during the wetting of the fibers. This led to a biphasic drug release profile from the fibers, with a burst release from PVP-rich phases and a slower, more continuous release from HPMCAS-rich phases. It was noted that the model drug, paracetamol, had more favorable partitioning into the PVP-rich phase, which is likely to be a result of greater hydrogen bonding between PVP and paracetamol. This led to higher drug contents in the PVP-rich phases than the HPMCAS-rich phases. By alternating the proportions of the PVP and HPMCAS, the drug release rate can be modulated. PMID:26655957

  8. Host Proteolytic Activity Is Necessary for Infectious Bursal Disease Virus Capsid Protein Assembly*

    PubMed Central

    Irigoyen, Nerea; Castón, José R.; Rodríguez, José F.

    2012-01-01

    In many viruses, a precursor particle, or procapsid, is assembled and undergoes massive chemical and physical modification to produce the infectious capsid. Capsid assembly and maturation are finely tuned processes in which viral and host factors participate. We show that the precursor of the VP2 capsid protein (pVP2) of the infectious bursal disease virus (IBDV), a double-stranded RNA virus, is processed at the C-terminal domain (CTD) by a host protease, the puromycin-sensitive aminopeptidase (PurSA). The pVP2 CTD (71 residues) has an important role in determining the various conformations of VP2 (441 residues) that build the T = 13 complex capsid. pVP2 CTD activity is controlled by co- and posttranslational proteolytic modifications of different targets by the VP4 viral protease and by VP2 itself to yield the mature VP2-441 species. Puromycin-sensitive aminopeptidase is responsible for the peptidase activity that cleaves the Arg-452-Arg-453 bond to generate the intermediate pVP2-452 polypeptide. A pVP2 R453A substitution abrogates PurSA activity. We used a baculovirus-based system to express the IBDV polyprotein in insect cells and found inefficient formation of virus-like particles similar to IBDV virions, which correlates with the absence of puromycin-sensitive aminopeptidase in these cells. Virus-like particle assembly was nonetheless rescued efficiently by coexpression of chicken PurSA or pVP2-452 protein. Silencing or pharmacological inhibition of puromycin-sensitive aminopeptidase activity in cell lines permissive for IBDV replication caused a major blockade in assembly and/or maturation of infectious IBDV particles, as virus yields were reduced markedly. PurSA activity is thus essential for IBDV replication. PMID:22619177

  9. Cosolvency approach for assessing the solubility of drugs in poly(vinylpyrrolidone).

    PubMed

    Chen, Xin; Fadda, Hala M; Aburub, Aktham; Mishra, Dinesh; Pinal, Rodolfo

    2015-10-15

    The log-linear cosolvency model was applied for estimating the solubility of four drugs: ritonavir, griseofulvin, itraconazole and ketoconazole in poly(vinylpyrrolidone) (PVP). Cosolvent mixtures consisted of PVP mixed in different proportions with N-ethylpyrrolidone, which served as the monomeric analogue of the repeating unit of the polymer. Solubility in the monomer-polymer mixtures was determined by HPLC. As the configuration of the solvating unit in the solvent mixture changed from entirely monomeric to increasingly polymeric, the solubility of the drugs decreased in a fashion that follows the log-linear cosolvency model. The linear relationship was used to obtain estimates for the solubility of the drugs in the different grades of PVP. The solubility of the drugs in PVP is low (from <1% to ∼15% w/w). Among the set of drug solutes, ritonavir exhibited the highest solubility in PVP (w/w). Mixing with the monomer is most favorable for griseofulvin among the four drugs. However, the detrimental effect of polymerization on its solubility is more pronounced than for ritonavir. The mixing of itraconazole with the monomer is more favorable than the mixing of ketoconazole. However, despite the molecular similarity between ketaconazole and itraconazole, the solubility of the latter is particularly affected by the polymeric configuration of the solvating unit, to the point of exhibiting differences in solubility resulting from the chain length of the grade of PVP used. The log-linear cosolvency model is a useful tool for estimating the solubility of the drugs in the polymer at room temperature, while providing quantitative information on the differences in mixing behavior of the four model compounds.

  10. Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels.

    PubMed

    Iswarya, V; Manivannan, J; De, Arpita; Paul, Subhabrata; Roy, Rajdeep; Johnson, J B; Kundu, Rita; Chandrasekaran, N; Mukherjee, Anita; Mukherjee, Amitava

    2016-03-01

    In the present study, the toxicity of gold nanoparticles (Au NPs) was evaluated on various trophic organisms. Bacteria, algae, cell line, and mice were used as models representing different trophic levels. Two different sizes (CIT30 and CIT40) and surface-capped (CIT30-polyvinyl pyrrolidone (PVP)-capped) Au NPs were selected. CIT30 Au NP aggregated more rapidly than CIT40 Au NP, while an additional capping of PVP (CIT30-PVP capped Au NP) was found to enhance its stability in sterile lake water medium. Interestingly, all the forms of NPs evaluated were stable in the cell culture medium during the exposure period. Size- and dose-dependent cytotoxicities were observed in both bacteria and algae, with a strong dependence on reactive oxygen species (ROS) generation and lactate dehydrogenase (LDH) release. CIT30-PVP capped Au NP showed a significant decrease in toxicity compared to CIT30 Au NP in bacteria and algae. In the SiHa cell line, dose- and exposure-dependent decline in cell viability were noted for all three types of Au NPs. In mice, the induction of DNA damage was size and dose dependent, and surface functionalization with PVP reduced the toxic effects of CIT30 Au NP. The exposure to CIT30, CIT40, and CIT30-PVP capped Au NPs caused an alteration of the oxidative stress-related endpoints in mice hepatocytes. The toxic effects of the gold nanoparticles were found to vary in diverse test systems, accentuating the importance of size and surface functionalization at different trophic levels.

  11. Gold Nanocluster-Assisted Fluorescent Detection for Hydrogen Peroxide and Cholesterol Based on the Inner Filter Effect of Gold Nanoparticles.

    PubMed

    Chang, Heng-Chia; Ho, Ja-an Annie

    2015-10-20

    We developed a simple, sensitive inner filter effect (IFE)-based fluorescent assay for sensing H2O2 and cholesterol. In the process, poly(vinylpyrrolidone)-protected gold nanoparticles (PVP-AuNPs) and fluorescent BSA-protected gold nanoclusters (BSA-AuNCs) were used as an IFE absorber/fluorophore pair. PVP-AuNPs can be a powerful absorber to influence the emission of the fluorophore, BSA-AuNCs, in the IFE-based fluorescent assays. That is due to the high extinction coefficient of AuNPs and the complementary overlap between the surface plasmon resonance (SPR) absorption of PVP-AuNPs and the excitation of BSA-AuNCs. The PVP-Au seeds, produced by directly mixing PVP with HAuCl4, were able to catalyze H2O2 to enlarge AuNPs. The SPR absorption of PVP-AuNPs was enhanced with an increased concentration of H2O2 and, subsequently, induced significant fluorescence quenching of BSA-AuNCs. The IFE-based fluorescent assay enabled the detection of H2O2 and generation of H2O2 in the presence of O2/cholesterol and cholesterol oxidase (ChOx) by the fluorescence response of BSA-AuNCs. The present IFE-based approach can detect H2O2 ranging from 1 to 100 μM with a detection limit of 0.8 μM and cholesterol ranging from 1 to 100 μM with a detection limit of 1.4 μM.

  12. P31 - Long-Term Prospective Study of Osteoporotic Patients Treated with Percutaneous Vertebroplasty after Fragility Fractures

    PubMed Central

    Mazzantini, M.; Torre, C.; Di Munno, O.

    2010-01-01

    Introduction: The purpose of this study was to evaluate factors that could increase the occurrence of new vertebral fractures (VFx) after percutaneous vertebroplasty (PVP) procedures. Methods: In our prospective study, we included patients of both sexes with osteoporosis (OP) and at least one painful VFx. We performed a baseline biochemical evaluation (including vitamin D plasma levels) and collected demographic, BMD, and clinical data. One hundred and fifteen patients were treated with PVP and assigned to oral bisphosphonates plus Ca and vitamin D. The patients returned for follow-up visits after 1, 3, and 6 months, and every 6 months thereafter. X-rays of the dorsolumbar spine were repeated every 12 months, or in the event of pain that may indicate VFx occurrence. Results: The mean follow-up duration was 39 +/− 16 months (range, 15–79). Thirty-two patients (27.8%) sustained new fragility VFx, all symptomatic. All the fractured patients agreed to undergo a new PVP. We compared the patients who had sustained new VFx to those who had not, and found significantly lower BMI, total hip, and femoral neck T-scores in the group with new VFx. Furthermore, baseline plasma levels of 25(OH) vitamin D (25(OH)D) were significantly lower in this group. Analysis of plasma levels of 25(OH)D 12 months after PVP showed that a significant difference still persisted: 22 +/− 12 (group with new VFx) vs 41 +/− 22 ng/ml (group with no VFx; p < 0.01). Conclusions: We found that in patients with OP treated with PVP, the incidence of new VFx was 27.8% after 39 months; low BMI, BMD, and vitamin D are factors associated with increased risk of new VFx in patients treated with PVP.

  13. Rheological properties of reversible thermo-setting in situ gelling solutions with the methylcellulose-polyethylene glycol-citric acid ternary system (2): Effects of various water-soluble polymers and salts on the gelling temperature.

    PubMed

    Shimokawa, Ken-ichi; Saegusa, Katsuhiko; Ishii, Fumiyoshi

    2009-11-01

    The influences of various salts and water-soluble polymers on the phase transition temperature of thermo-setting gels prepared by combining methylcellulose (MC)-sodium citrate (SC)-polyethylene glycol (PEG) at appropriate ratios (the MC-SC-PEG system) were investigated. Concerning cations, comparison of the phase transition temperature between SC and tripotassium citrate (PC) showed a rapid increase in the viscosity of SC between 20 degrees C and 25 degrees C and an increase in the viscosity of PC between 30 degrees C and 35 degrees C. Concerning the valency of anions, comparisons among SC, disodium tartrate dihydrate (ST), disodium maleate hemihydrates (SM), and sodium sulfate (SS) showed a rapid increase in the viscosity of trivalent SC between 20 degrees C and 25 degrees C and changes in the viscosity of the three bivalent sodium salts (ST, SM, and SS) at > or =30 degrees C. Thus the phase transition temperature decreased with an increase in the valency of anions. Subsequently, the influences of various water-soluble polymers on the gelling temperature were compared. Using polyvinylpyrrolidone (PVP) instead of PEG, the gelling temperature decreased with an increase in the PVP concentration even without the addition of SC. Unlike PVP, the addition of xanthan gum as a viscosity-increasing polysaccharide did not reduce the gelling temperature irrespective of its concentration. Temperature-associated changes in viscosity were observed at a fixed SC concentration with changes in the concentration of PVP or PEG. The gel phase transition temperature increased from 46 degrees C to 50 degrees C in gels not containing PVP or PEG. The viscosity did not differ between the addition of PVP or PEG at a low concentration and its absence. However, the viscosity clearly changed after the addition of each agent at a high concentration.

  14. A comparative study of high-viscosity cement percutaneous vertebroplasty vs. low-viscosity cement percutaneous kyphoplasty for treatment of osteoporotic vertebral compression fractures.

    PubMed

    Sun, Kai; Liu, Yang; Peng, Hao; Tan, Jun-Feng; Zhang, Mi; Zheng, Xian-Nian; Chen, Fang-Zhou; Li, Ming-Hui

    2016-06-01

    The clinical effects of two different methods-high-viscosity cement percutaneous vertebroplasty (PVP) and low-viscosity cement percutaneous kyphoplasty (PKP) in the treatment of osteoporotic vertebral compression fractures (OVCFs) were investigated. From June 2010 to August 2013, 98 cases of OVCFs were included in our study. Forty-six patients underwent high-viscosity PVP and 52 patients underwent low-viscosity PKP. The occurrence of cement leakage was observed. Pain relief and functional activity were evaluated using the Visual Analog Scale (VAS) and Oswestry Disability Index (ODI), respectively. Restoration of the vertebral body height and angle of kyphosis were assessed by comparing preoperative and postoperative measurements of the anterior heights, middle heights and the kyphotic angle of the fractured vertebra. Nine out of the 54 vertebra bodies and 11 out of the 60 vertebra bodies were observed to have cement leakage in the high-viscosity PVP and low-viscosity PKP groups, respectively. The rate of cement leakage, correction of anterior vertebral height and kyphotic angles showed no significant differences between the two groups (P>0.05). Low-viscosity PKP had significant advantage in terms of the restoration of middle vertebral height as compared with the high-viscosity PVP (P<0.05). Both groups showed significant improvements in pain relief and functional capacity status after surgery (P<0.05). It was concluded that high-viscosity PVP and low-viscosity PKP have similar clinical effects in terms of the rate of cement leakage, restoration of the anterior vertebral body height, changes of kyphotic angles, functional activity, and pain relief. Low-viscosity PKP is better than high-viscosity PVP in restoring the height of the middle vertebra. PMID:27376809

  15. Large-scale and highly efficient synthesis of micro- and nano-fibers with controlled fiber morphology by centrifugal jet spinning for tissue regeneration.

    PubMed

    Ren, Liyun; Pandit, Vaibhav; Elkin, Joshua; Denman, Tyler; Cooper, James A; Kotha, Shiva P

    2013-03-21

    PLLA fibrous tissue scaffolds with controlled fiber nanoscale surface roughness are fabricated with a novel centrifugal jet spinning process. The centrifugal jet spinning technique is a highly efficient synthesis method for micron- to nano-sized fibers with a production rate up to 0.5 g min(-1). During the centrifugal jet spinning process, a polymer solution jet is stretched by the centrifugal force of a rotating chamber. By engineering the rheological properties of the polymer solution, solvent evaporation rate and centrifugal force that are applied on the solution jet, polyvinylpyrrolidone (PVP) and poly(l-lactic acid) (PLLA) composite fibers with various diameters are fabricated. Viscosity measurements of polymer solutions allowed us to determine critical polymer chain entanglement limits that allow the generation of continuous fiber as opposed to beads or beaded fibers. Above a critical concentration at which polymer chains are partially or fully entangled, lower polymer concentrations and higher centrifugal forces resulted in thinner fibers. Etching of PVP from the PLLA-PVP composite fibers doped with increasing PVP concentrations yielded PLLA fibers with increasing nano-scale surface roughness and porosity, which increased the fiber hydrophilicity dramatically. Scanning electron micrographs of the etched composite fibers suggest that PVP and PLLA were co-contiguously phase separated within the composite fibers during spinning and nano-scale roughness features were created after the partial etching of PVP. To study the tissue regeneration efficacy of the engineered PLLA fiber matrix, human dermal fibroblasts are used to simulate partial skin graft. Fibers with increased PLLA surface roughness and porosity demonstrated a trend towards higher cell attachment and proliferation.

  16. In vitro growth and development of bovine oocyte-granulosa cell complexes on the flat substratum: effects of high polyvinylpyrrolidone concentration in culture medium.

    PubMed

    Hirao, Yuji; Itoh, Takehiro; Shimizu, Manabu; Iga, Kosuke; Aoyagi, Kazushige; Kobayashi, Masato; Kacchi, Masayuki; Hoshi, Hiroyoshi; Takenouchi, Naoki

    2004-01-01

    The aim of this study was to establish a culture system to support the growth of bovine oocytes as enclosed in granulosa cell complexes that extend on a flat substratum. Such systems have been established for mouse oocytes but are not applicable to larger animals because it is difficult to maintain an appropriate association between the oocyte and companion somatic cells. Growing bovine oocytes with a mean diameter of 95 microm were isolated from early antral follicles: the growing stage corresponds to that of oocytes in preantral follicles of 12-day-old mice. Oocyte-granulosa cell complexes were cultured for 14 days in modified TCM199 medium supplemented with 5% fetal bovine serum, 4 mM hypoxanthine, and 0.1 microg/ml estradiol. The novel modification made for this medium was a high concentration, 4% (w/v), of polyvinylpyrrolidone (PVP; molecular weight of 360000). The flat substratum used was either an insert membrane fit in the culture plate or the bottom surface of the wells of 96-well culture plates. PVP influenced the organization of complexes, resulting in a firm association between the oocyte and the innermost layer of surrounding cells. More oocytes enclosed by a complete cell layer were recovered from the medium supplemented with 4% PVP than from the control medium. Similarly, of the oocytes initially introduced into the growth culture, a significantly larger proportion developed to the blastocyst stage from medium containing 4% PVP than from medium without PVP. When PVP medium was used, the overall yield of blastocysts was similar between the system with the insert membranes (12%) and that with the 96-well culture plates (9%). A calf was produced from one of four embryos derived from oocytes grown in 96-well culture plates, matured, and fertilized in vitro and then transferred to a recipient cow. PMID:12954724

  17. Investigation and Evaluation of an in Situ Interpolymer Complex of Carbopol with Polyvinylpyrrolidone as a Matrix for Gastroretentive Tablets of Ranitidine Hydrochloride.

    PubMed

    Yusif, Rehab Mohammad; Abu Hashim, Irhan Ibrahim; Mohamed, Elham Abdelmonem; El Rakhawy, Mohamed Magdy

    2016-01-01

    Carbopol (CP) is a biocompatible bioadhesive polymer used as a matrix for gastroretentive (GR) tablets, however, its rapid hydration shortens its bioadhesion and floating when incorporated in effervescent formulae. The interpolymer complexation of CP with polyvinylpyrrolidone (PVP) significantly reduced the excessive hydration of CP, prolonging floating and maintaining the mucoadhesiveness. In early attempts, a lengthy process was followed to prepare such an interpolymer complex. In this study, an in situ interpolymer complexation between CP and two grades of PVP (K25 and K90) in 0.1 N HCl was investigated and characterized by Fourier transform infrared spectroscopy (FT-IR) and differential scanning calorimetry (DSC). Hence, directly compressed GR tablets of different combinations of PVP and CP with sodium bicarbonate (SB) as an effervescent agent were examined for prolonged gastroretention and sustained release of ranitidine hydrochloride (RHCl) as a model drug. Tablets were evaluated for in vitro buoyancy, bioadhesiveness, swelling, and drug release in 0.1 N HCl. All GR tablets containing PVP-CP combinations achieved more prolonged floating (>24 h) than CP tablets (5.2 h). Their bioadhesiveness, swelling, and drug release were dependent on the PVP molecular weight and its ratio to CP. Drug release profiles of all formulae followed non-Fickian diffusion. Formula containing the PVP K90-CP combination at a respective ratio of 1 : 3 (P90C13) was a promising system, exhibiting good floating and bioadhesive properties as well as sustained drug release. Abdominal X-ray imaging of P90C13 formula, loaded with barium sulfate, in six healthy volunteers showed a mean gastric retention period of 6.8±0.3 h.

  18. Detection of viability of transplanted beta cells labeled with a novel contrast agent - polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles by magnetic resonance imaging.

    PubMed

    Zhang, Bo; Jiang, Biao; Chen, Ying; Huang, Hai; Xie, Qiuping; Kang, Muxing; Zhang, Hui; Zhai, Chuanxin; Wu, Yulian

    2012-01-01

    Islets can be visualized on MRI by labeling with superparamagnetic contrast agent during the transplantation procedure. However, whether the signal intensity reflects the cell number and cellular viability has not been determined. We used a self-synthesized novel superparamagnetic contrast agent -polyvinylpyrrolidone-coated superparamagnetic iron oxide nanoparticles (PVP-SPIO) - to label β-TC-6 cells (a mouse insulinoma cell line) or primary islets with commercial Feridex as a control. The labeling efficiency of two agents was compared by Prussian blue staining, intracellular iron content determination and MR scanning. Cells were exposed to hypoxia, high-glucose or exogenous H₂O₂ stimulation before/after PVP-SPIO labeling. Normal and injured cells were also transplanted into renal subcapsule. A clinically used 3.0 T MR scan was performed in vitro and 24 h post-transplantation to investigate the correlation between cellular viability and signal. Our PVP-SPIO displayed superior biocompatibility and magnetic properties. All of the cells could be labeled at 100 µg/ml iron concentration after 24 h incubation. At 100 µg/ml iron concentration, 1 × 10⁵ β cells labeled with PVP-SPIO could already be visualized in vitro by MRI, less than the detection threshold of Feridex. There existed a linear correlation between the number of labeled cells and R₂ value on the T₂ -weighted images. The signal intensity and the intracellular iron content declined along with the decreased viability of labeled cells. There was also a significant difference in signal intensity between injured and normal labeled cells after transplantation. From these results, we concluded that PVP-SPIO possessed superior cell labeling efficiency, and β cells could be labeled without compromising viability and function. The signal intensity on MRI might be a useful predictor to evaluate the number and the viability of PVP-SPIO-labeled cells.

  19. AB070. Comparison of photoselective vaporization versus holmium laser enucleation for treatment of benign prostate hyperplasia in a small prostate volume

    PubMed Central

    Bae, Woong Jin; Bashraheel, Fahad; Choi, Sae Woong; Kim, Su Jin; Yoon, Byung Il; Kim, Sae Woong

    2016-01-01

    Objective Photoselective vaporization of the prostate (PVP) using GreenLight and Holmium laser enucleation of the prostate (HoLEP) is an important surgical technique for management of benign prostate hyperplasia (BPH). We aimed to compare the effectiveness and safety of PVP using a 120 W GreenLight laser with HoLEP in a small prostate volume. Methods Patients who underwent PVP or HoLEP surgery for BPH at our institutions were reviewed from May 2009 to December 2014 in this retrospective study. Among them, patients with prostate volumes <40 mL based on preoperative trans-rectal ultrasonography were included in this study. Peri-operative and post-operative parameters—such as International Prostate Symptom Score (IPSS), quality of life (QoL), maximum urinary flow rate (Qmax), post-void residual urine volume (PVR), and complications—were compared between the groups. Results PVP was performed in 176 patients and HoLEP in162 patients. Preoperative demographic data were similar in both groups, with the exception of PVR. Operative time and catheter duration did not show significant difference. Significant improvements compared to preoperative values were verified at the postoperative evaluation in both groups in terms of IPSS, QoL, Qmax, and PVR. Comparison of the postoperative parameters between the PVP and HoLEP groups demonstrated no significant difference, with the exception of IPSS voiding subscore at one month postoperatively (5.9 vs. 3.8, P<0.001). There was no significant difference in postoperative complications between the two groups. Conclusions Our data suggest that PVP and HoLEP are efficient and safe surgical treatment options for patients with small prostate volume.

  20. The polyvinylpyrrolidone functionalized rGO/Bi2S3 nanocomposite as a near-infrared light-responsive nanovehicle for chemo-photothermal therapy of cancer

    NASA Astrophysics Data System (ADS)

    Dou, Ruixia; Du, Zhen; Bao, Tao; Dong, Xinghua; Zheng, Xiaopeng; Yu, Miao; Yin, Wenyan; Dong, Binbin; Yan, Liang; Gu, Zhanjun

    2016-06-01

    Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately resulting in the enhancement of the therapeutic efficacy of anticancer drugs. Here, we developed a novel system for synergistic cancer therapy based on bismuth sulfide (Bi2S3) nanoparticle-decorated graphene functionalized with polyvinylpyrrolidone (PVP) (named PVP-rGO/Bi2S3). The as-prepared PVP-rGO/Bi2S3 nanocomposite has a high storage capacity for anticancer drugs (~500% for doxorubicin (DOX)) and simultaneously has perfect photothermal conversion efficiency in the NIR region. The results of the in vitro accumulative drug release test manifests that the PVP-rGO/Bi2S3 nanocomposite could be applied as a dual pH- and NIR-responsive nanotherapeutic carrier for the controlled release of DOX from DOX-loaded PVP-rGO/Bi2S3 (PVP-rGO/Bi2S3@DOX). Moreover, the treatment of both cancer cells (including Hela, MCF-7, HepG2 and BEL-7402 cells) and BEL-7402 tumor-bearing mice with the PVP-rGO/Bi2S3@DOX complex followed by NIR laser irradiation produces significantly greater inhibition of cancer cell growth than the treatment with NIR irradiation alone or DOX alone, exhibiting a synergistic antitumor effect. Furthermore, due to the obvious NIR and X-ray absorption ability, the PVP-rGO/Bi2S3 nanocomposite could be employed as a dual-modal contrast agent for both photoacoustic tomography and X-ray computed tomography imaging. In addition to the good biocompatibility, the PVP-rGO/Bi2S3 nanocomposite paves a potential way for the fabrication of theranostic agents for dual-modal imaging-guided chemo-photothermal combined cancer therapy.Recently, a combination of chemotherapy with photothermal therapy (PTT) has received great attention for the construction of a near infrared (NIR)-controlled drug-delivery system for synergistic treatment of cancer, ultimately

  1. Identifying inhibitors of hydrate formation rate with viscometric experiments

    SciTech Connect

    Kalbus, J.S.; Christiansen, R.L.; Sloan, D. Jr.

    1995-12-31

    Inhibiting the rate of hydrate formation with low concentration additives is an economically and environmentally attractive alternative to prevention of hydrates with large doses of methanol. Here, a method for screening possible rate inhibitors is described. In the method, a viscometer is used to follow the development of hydrate formation for water-THF solutions and for water-gas solutions at conditions favoring hydrate formation. The method was applied to about 30 different chemicals, plus binary combinations of many of these chemicals. The best chemical additives included BASF F-127, Mirawet ASC, Surfynol-465, sodium dodecyl sulfate(SDS), Mirataine CBS with polyvinylpyrrolidone(PVP), and SDS with PVP.

  2. Effects of Polymer Wrapping and Covalent Functionalization on the Stability of MWCNT in Aqueous Dispersions

    PubMed Central

    Ntim, Susana Addo; Sae-Khow, Ornthida; Witzmann, Frank A.; Mitra, Somenath

    2011-01-01

    The colloidal behavior of aqueous dispersions of functionalized multiwall carbon nanotubes (F-CNTS) formed via carboxylation and polymer wrapping with polyvinyl pyrrolidone (PVP) is presented. The presence of polymer on the nanotube surface provided steric stabilization, and the aggregation behavior of the colloidal system was quite different from its covalently functionalized analog. Based on hydrophobicity index, particle size distribution, zeta potential as well as the aggregation kinetics studied using time-resolved dynamic light scattering, the PVP wrapped CNT was somewhat less prone to agglomeration. However, its long term stability was lower, and this was attributed to the partial unwrapping of the polyvinyl pyrrolidone layer on the CNT surface. PMID:21236442

  3. Photoinduced electron transfer reaction in polymer-surfactant aggregates: Photoinduced electron transfer between N,N-dimethylaniline and 7-amino coumarin dyes

    SciTech Connect

    Chakraborty, Anjan; Seth, Debabrata; Setua, Palash; Sarkar, Nilmoni

    2008-05-28

    Photoinduced electron transfer between coumarin dyes and N,N-dimethylaniline has been investigated by using steady state and picosecond time resolved fluorescence spectroscopy in sodium dodecyl sulphate (SDS) micelles and PVP-polyvinyl pyrrolidone (SDS) polymer-surfactant aggregates. A slower rate of electron transfer is observed in PVP-SDS aggregates than in polymer-free SDS micelles. A Marcus type inversion is observed in the correlation of free energy change in comparison with the electron transfer rate. The careful investigation reveals that C-151 deviates from the normal Marcus inverted region compared to its analogs C-152 and C-481 due to slower rotational relaxation and smaller translational diffusion coefficient.

  4. Vortex fluidic entrapment of functional microalgal cells in a magnetic polymer matrix

    NASA Astrophysics Data System (ADS)

    Eroglu, Ela; D'Alonzo, Nicholas J.; Smith, Steven M.; Raston, Colin L.

    2013-03-01

    Composite materials based on superparamagnetic magnetite nanoparticles embedded in polyvinylpyrrolidone (PVP) are generated in a continuous flow vortex fluidic device (VFD). The same device is effective in entrapping microalgal cells within this material, such that the functional cells can be retrieved from aqueous dispersions using an external magnet.Composite materials based on superparamagnetic magnetite nanoparticles embedded in polyvinylpyrrolidone (PVP) are generated in a continuous flow vortex fluidic device (VFD). The same device is effective in entrapping microalgal cells within this material, such that the functional cells can be retrieved from aqueous dispersions using an external magnet. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr33813d

  5. Surface-enhanced raman spectroscopy substrate for arsenic sensing in groundwater

    DOEpatents

    Yang, Peidong; Mulvihill, Martin; Tao, Andrea R.; Sinsermsuksakul, Prasert; Arnold, John

    2015-06-16

    A surface-enhanced Raman spectroscopy (SERS) substrate formed from a plurality of monolayers of polyhedral silver nanocrystals, wherein at least one of the monolayers has polyvinypyrrolidone (PVP) on its surface, and thereby configured for sensing arsenic is described. Highly active SERS substrates are formed by assembling high density monolayers of differently shaped silver nanocrystals onto a solid support. SERS detection is performed directly on this substrate by placing a droplet of the analyte solution onto the nanocrystal monolayer. Adsorbed polymer, polyvinypyrrolidone (PVP), on the surface of the nanoparticles facilitates the binding of both arsenate and arsenite near the silver surface, allowing for highly accurate and sensitive detection capabilities.

  6. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins.

  7. Percutaneous Vertebroplasty of the Entire Thoracic and Lumbar Vertebrae for Vertebral Compression Fractures Related to Chronic Glucocorticosteriod Use: Case Report and Review of Literature

    PubMed Central

    Tian, Qing-Hua; Xiao, Quan-Ping; He, Cheng-Jian; Gu, Yi-Feng; Wang, Tao; Li, Ming-Hua

    2014-01-01

    Glucocorticosteroid-induced osteoporosis is the most frequent of all secondary types of osteoporosis, and can increase the risk of vertebral compression fractures (VCFs). There are promising additions to current medical treatment for appropriately selected osteoporotic patients. Few studies have reported on the efficiency of percutaneous vertebroplasty (PVP) or kyphoplasty for whole thoracic and lumbar glucocorticosteroid-induced osteoporotic vertebral compression fractures. We report a case of a 67-year-old man with intractable pain caused by successional VCFs treated by PVP. PMID:25469092

  8. Acetylene-derived polymers and their applications in hair and skin care.

    PubMed

    Petter, P J

    1989-02-01

    Synopsis Since the introduction over 30 years ago of polyvinylpyrrolidone (PVP) as the first synthetic hairspray resin, acetylene-derived polymers have found wide and increasing applications in the cosmetics and toiletries industry. This review covers the two main classes of acetylenic polymers. In the first class, in which the chemistry may be traced back to reaction of acetylene with formaldehyde, are included PVP homopolymers and copolymers of VP with vinyl acetate, dimethylaminoethyl methacrylate, vinylcaprolactam and styrene. In the second class, stemming from reaction of acetylene with methanol, are the poly (vinyl methyl ether/maleic acid) monoester resins. PMID:19456933

  9. One-pot synthesis of single-crystal Pt nanoplates uniformly deposited on reduced graphene oxide, and their high activity and stability on the electrocalalytic oxidation of methanol.

    PubMed

    Hao, Yanfei; Wang, Xudan; Shen, Jianfeng; Yuan, Junhua; Wang, Ai-Jun; Niu, Li; Huang, Shengtang

    2016-04-01

    We demonstrate a one-pot thermoreduction approach towards the preparation of single-crystal Pt nanoplates, which were uniformly deposited on the reduced graphene oxide (RGO) using polyvinylpyrrolidone (PVP) as a stabilizer. The size of Pt nanoplates can be tuned from 6.8 to 10.1 nm by controlling Pt loading. The as-prepared Pt/PVP/RGO catalysts show high stability and activity towards the methanol oxidation reaction (MOR). Their MOR current can reach up to 401 mA mg(-1) Pt and MOR current can maintain 89.4% of its initial value after 10 000 potential cycles.

  10. Composite materials for medical purposes based on polyvinylpyrrolidone modified with ketoprofen and silver nanoparticles

    NASA Astrophysics Data System (ADS)

    Nikitin, L. N.; Vasil'Kov, A. Yu.; Banchero, M.; Manna, L.; Naumkin, A. V.; Podshibikhin, V. L.; Abramchuk, S. S.; Buzin, M. I.; Korlyukov, A. A.; Khokhlov, A. R.

    2011-07-01

    A method for obtaining composite medical materials based on polyvinylpyrrolidone (PVP K15) modified with ketoprofen in a medium of supercritical carbon dioxide and with Ag nanoparticles prepared by metal vapor synthesis is developed. A system in which ketoprofen and Ag nanoparticles with an average size of ˜16 nm are uniformly distributed over the bulk of PVP is obtained. It is found that the yield of ketoprofen from the composite in the physiological solution is higher than that for an analogous system obtained by mechanical mixing of the components.

  11. Effect of hydration on plasma volume and endocrine responses to water immersion

    NASA Technical Reports Server (NTRS)

    Harrison, M. H.; Keil, L. C.; Wade, C. A.; Silver, J. E.; Geelen, G.

    1986-01-01

    The effect of hydration status on early endocrine responses and on osmotic and intravascular volume changes during immersion was determined in humans undergoing successive periods of dehydration, immersion, rehydration, and immersion. Immersion caused an isotonic expansion of plasma volume, as well as suppression of plasma renin activity and aldosterone, which all occurred independently of hydration status. On the other hand, the concentration of plasma vasopressin (PVP) was found to decrease during dehydrated immersion, but not during rehydrated immersion. It is concluded that plasma tonicity is not a factor influencing PVP suppression during water immersion.

  12. Effects of polymer wrapping and covalent functionalization on the stability of MWCNT in aqueous dispersions.

    PubMed

    Ntim, Susana Addo; Sae-Khow, Ornthida; Witzmann, Frank A; Mitra, Somenath

    2011-03-15

    The colloidal behavior of aqueous dispersions of functionalized multiwall carbon nanotubes (F-CNTS) formed via carboxylation and polymer wrapping with polyvinyl pyrrolidone (PVP) is presented. The presence of polymer on the nanotube surface provided steric stabilization, and the aggregation behavior of the colloidal system was quite different from its covalently functionalized analog. Based on hydrophobicity index, particle size distribution, zeta potential as well as the aggregation kinetics studied using time-resolved dynamic light scattering, the PVP wrapped CNT was somewhat less prone to agglomeration. However, its long-term stability was lower, and this was attributed to the partial unwrapping of the polyvinyl pyrrolidone layer on the CNT surface. PMID:21236442

  13. Bioavailability and in vivo efficacy of a praziquantel-polyvinylpyrrolidone solid dispersion in Schistosoma mansoni-infected mice.

    PubMed

    El-Lakkany, Naglaa; Seif El-Din, Sayed Hassan; Heikal, Lamia

    2012-12-01

    One of the problems of praziquantel (PZQ) is its very low aqueous solubility. Moreover, its dissolution rate is considered the limiting factor for its bioavailability. This work correlates the physical properties and the dissolution behavior of PZQ-polyvinylpyrrolidone (PVP) solid dispersion (SD) at the ratios of 1:1 and 3:7 with its oral bioavailability and its in vivo efficacy against Schistosoma mansoni (S. mansoni). The PZQ and PZQ-PVP SD were characterized by infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy (SEM) and solubility test. Results showed a decrease in crystallinity, possible interaction between PZQ and PVP, greater increase in dissolution rate and appreciable reduction in particle size. S. mansoni-infected mice treated orally with either pure PZQ or PZQ-PVP at a single dose of 500 mg/kg showed a higher increase in AUC((0-8h)), C (max), K(a) and t (1/2e) with a significant decrease in k (el) versus the corresponding uninfected mice. Moreover, uninfected and infected mice treated with PZQ-PVP SD showed 2.3-, 1.6- and 1.3-, 1.25-fold increase, respectively, in AUC((0-8h)) and C(max), with a decrease in k(el) and increase in t (1/2e) by twofold versus the corresponding pure PZQ-treated groups. Percentage worm reduction at all administered doses (62.5, 125, 250, 500 and 1,000 mg/kg) was significantly higher (1- to 1.5-fold) in mice treated with PZQ-PVP SD (ED₅₀ = 40.92) versus those treated with pure PZQ (ED₅₀ = 99.29). In addition, a significant reduction in total tissue egg load concomitant with a significant decrease in total immature and mature eggs and an increase in dead eggs in PZQ-PVP SD-treated groups versus their corresponding pure PZQ-treated groups was recorded. Solid dispersion of PZQ with PVP could lead to a further improvement in the effectiveness of PZQ therapy especially with the appearance of some PZQ-tolerant S. mansoni isolates.

  14. Influence of polyvinylpyrrolidone quantity on the solubility, crystallinity and oral bioavailability of fenofibrate in solvent-evaporated microspheres.

    PubMed

    Yousaf, Abid Mehmood; Kim, Dong Wuk; Kim, Dong Shik; Kim, Jong Oh; Youn, Yu Seok; Cho, Kwan Hyung; Yong, Chul Soon; Choi, Han-Gon

    2016-06-01

    The objective of this study is to explore the influence of polyvinylpyrrolidone (PVP) quantity on the solubility, crystallinity and oral bioavailability of poorly water-soluble fenofibrate in solvent-evaporated microspheres. Numerous microspheres were prepared with fenofibrate, sodium lauryl sulphate (SLS) and PVP using the spray-drying technique. Their aqueous solubility, dissolution, physicochemical properties and pharmacokinetics in rats were assessed. The drug in the solvent-evaporated microspheres composed of fenofibrate, PVP and SLS at the weight ratio of 1:0.5:0.25 was not entirely changed to the amorphous form and partially in the microcrystalline state. However, the microspheres at the weight ratio of 1:4:0.25 provided the entire conversion to the amorphous form. The latter microspheres, with an improvement of about 115 000-fold in aqueous solubility and 5.6-fold improvement in oral bioavailability compared with the drug powder, gave higher aqueous solubility and oral bioavailability compared with the former. Thus, PVP quantity played an important role in these properties of fenofibrate in the solvent-evaporated microspheres. PMID:27283260

  15. The effect of the physical states of binders on high-shear wet granulation and granule properties: a mechanistic approach towards understanding high-shear wet granulation process. Part I. Physical characterization of binders.

    PubMed

    Li, Jinjiang; Tao, Li; Dali, Mandar; Buckley, David; Gao, Julia; Hubert, Mario

    2011-01-01

    In this study, the objective is to investigate the effect of the physical state of a binder on wet granulation and granule properties using a binary model system (CaCO(3)-binder), which is essential for understanding the mechanism of wet granulation when binder is added in a dry state. Part I focus on studying the phase behavior or the physical state change of four binders: PVP K12, K29/32, HPC, and HPMC, after exposure to either moisture or liquid water. Their interaction with water was studied by measuring the water sorption of binders and the binary blends of CaCO(3)-binder. Changes in the physical states of the binders at room temperature as a function of water content was monitored via dialysis experiments, and characterized by determining the glass transition temperatures (T(g)) of the binders with water. The results suggest that the PVP binders can absorb more water than the cellulosic binders which is same for binder alone and in the binary blends. PVP K12 undergoes a phase transition from the glassy state to the rubbery/solution state at much lower water content than PVP K29/32 (10% vs. 20%) at room temperature. The phase transition for HPC occurs with 10-15% water based on rheological measurements. PMID:20575065

  16. Preliminary evaluation of polymer-based drug composite microparticle production by coacervate desolvation with supercritical carbon dioxide.

    PubMed

    Yasuji, Takehiko; Haslam, John; Kajiyama, Atsushi; McIntosh, Michelle P; Rajewski, Roger A

    2006-03-01

    Drug/polymer particles incorporating phenytoin in polyvinylpyrrolidone (PVP) were prepared by desolvation of coacervates sprayed through an ultrasonic converging-diverging nozzle into supercritical (SC) carbon dioxide. The mean diameter of the particles produced and the crystallinity of phenytoin in the drug/polymer particles were evaluated with an Aerosizer DSP Particle Size Analyzer and powder X-ray diffraction, respectively. The drug release properties from the composite particles were evaluated using the USP 24 Method 2 rotational paddle method with UV detection. Spraying PVP in ethanol solution into SC carbon dioxide did not produce particles. However, a PVP coacervate in a mixture of ethanol and hexanes had lower viscosity than the solution, and spraying the coacervate into SC carbon dioxide through an ultrasonic converging-diverging nozzle produced micron sized particles. The use of a coacervate containing phenytoin and PVP likely led to increased interaction between drug and polymer and the composite particles contained amorphous phenytoin. The drug content in the composite particles approached theoretical values. The drug release rates from the composite particles produced from the coacervate were faster than those from particles produced by conventional SC methods and complete release was observed.

  17. The Influence of Drug Physical State on the Dissolution Enhancement of Solid Dispersions Prepared Via Hot-Melt Extrusion: A Case Study Using Olanzapine

    PubMed Central

    Pina, Maria Fátima; Zhao, Min; Pinto, João F; Sousa, João J; Craig, Duncan Q M

    2014-01-01

    In this study, we examine the relationship between the physical structure and dissolution behavior of olanzapine (OLZ) prepared via hot-melt extrusion in three polymers [polyvinylpyrrolidone (PVP) K30, polyvinylpyrrolidone-co-vinyl acetate (PVPVA) 6:4, and Soluplus® (SLP)]. In particular, we examine whether full amorphicity is necessary to achieve a favorable dissolution profile. Drug–polymer miscibility was estimated using melting point depression and Hansen solubility parameters. Solid dispersions were characterized using differential scanning calorimetry, X-ray powder diffraction, and scanning electron microscopy. All the polymers were found to be miscible with OLZ in a decreasing order of PVP>PVPVA>SLP. At a lower extrusion temperature (160°C), PVP generated fully amorphous dispersions with OLZ, whereas the formulations with PVPVA and SLP contained 14%–16% crystalline OLZ. Increasing the extrusion temperature to 180°C allowed the preparation of fully amorphous systems with PVPVA and SLP. Despite these differences, the dissolution rates of these preparations were comparable, with PVP showing a lower release rate despite being fully amorphous. These findings suggested that, at least in the particular case of OLZ, the absence of crystalline material may not be critical to the dissolution performance. We suggest alternative key factors determining dissolution, particularly the dissolution behavior of the polymers themselves. PMID:24765654

  18. A room-temperature process for fabricating a nano-Pt counter electrode on a plastic substrate for efficient dye-sensitized cells

    NASA Astrophysics Data System (ADS)

    Hsieh, Tsung-Yu; Wei, Tzu-Chien; Zhai, Peng; Feng, Shien-Ping; Ikegami, Masashi; Miyasaka, Tsutomu

    2015-06-01

    We present a method for depositing polyvinylpyrrolidone-capped platinum nanoparticles (PVP-nPt) on a plastic substrate as the counter electrode (CE) for dye-sensitized cells. This method was implemented using a modified two-step dip-coating process performed under ambient conditions. In particular, a short UV-ozone exposure period was adopted to replace conventional annealing, rendering the whole process feasible for plastic substrates. The surfactant required for deposition was confirmed by analyzing a Fourier transform infrared spectroscopy spectrum; however, we discovered that the surfactant jeopardized charge transfer between the PVP-nPt CE and the substrate. Furthermore, the UV-ozone treatment efficiently decomposed the surfactant, and the electrochemical-catalytic property improved considerably. When the CE was combined with a dye-sensitized photoanode fabricated on a plastic substrate, the power conversion efficiency (PCE) reached 6.24%. To further prove that the PCE is limited by the plastic photoanode instead of the proposed plastic PVP-nPt CE, a photoanode fabricated on FTO glass and the proposed plastic PVP-nPt CE with a PCE of 8.80% was demonstrated. Finally, thermal aging (conducted at 60 °C, 1000 h) test on this device indicated excellent durability, and the PCE was only 1% lower than its initial value.

  19. Effect of Poly(4-vinylphenol) Concentration Increase on Deposition Rate of Dielectric Thin Film Fabrication by Using Electrohydrodynamic Atomization

    NASA Astrophysics Data System (ADS)

    Ali, Adnan; Lee, Yun Woo; Choi, Kyung Hyun; Jo, Jeongdai

    2013-12-01

    In this work, the effect of poly(4-vinylphenol) (PVP) concentration increase on electrohydrodynamic atomization and its deposition rate has been studied. The aim of this study is to further increase the deposition rate of uniform dielectric thin films by the nonvacuum electrohydrodynamic atomization process. The operating envelope has been explored by subjecting ink to controlled flow through a metallic capillary exposed to an electric field at ambient temperature. It has been observed that greater applied voltage is required to develop a stable cone jet from a highly concentrated PVP meniscus, in comparison with lower concentration. A combination of optimized parameters has been used from the developed operating envelope to generate an electrohydrodynamic jet, which subsequently disintegrated into droplets, thus depositing a uniform PVP thin film on indium tin oxide-coated polyethylene terephthalate substrates with average thickness of ~40 nm at constant substrate speed of 3 mm/s. The PVP thin film has been characterized by using scanning electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet (UV)-visible spectroscopy.

  20. Development of curcumin nanocrystal: physical aspects.

    PubMed

    Rachmawati, Heni; Al Shaal, Loaye; Müller, Rainer H; Keck, Cornelia M

    2013-01-01

    Curcumin, a naturally occuring polyphenolic phytoconstituent, is isolated from the rhizomes of Curcuma longa Linn. (Zingiberaceae). It is water insoluble under acidic or neutral conditions but dissolves in alkaline environment. In neutral or alkaline conditions, curcumin is highly unstable undergoing rapid hydrolytic degradation to feruloyl methane and ferulic acid. Thus, the use of curcumin is limited by its poor aqueous solubility in acidic or neutral conditions and instability in alkaline pH. In the present study, curcumin nanocrystals were prepared using high-pressure homogenization, to improve its solubility. Five different stabilizers [polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), d-α-tocopherol polyethylene glycol 1000 succinate (TPGS), sodium dodecyl sulfate (SDS), carboxymethylcellulose sodium salt] possessing different stabilization mechanism were investigated. The nanoparticles were characterized with regard to size, surface charge, shape and morphology, thermal property, and crystallinity. A short-term stability study was performed storing the differently stabilized nanoparticles at 4°C and room temperature. PVA, PVP, TPGS, and SDS successfully produced curcumin nanoparticle with the particle size in the range of 500-700 nm. PVA, PVP, and TPGS showed similar performance in preserving the curcumin nanosuspension stability. However, PVP is the most efficient polymer to stabilize curcumin nanoparticle. This study illustrates that the developed curcumin nanoparticle held great potential as a possible approach to improve the curcumin solubility then enhancing bioavailability. PMID:23047816