Permanent magnet focused X-band photoinjector
Yu, David U. L.; Rosenzweig, James
2002-09-10
A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.
Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M
2016-03-08
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
46 CFR 52.15-1 - General (modifies PWT-1 through PWT-15).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false General (modifies PWT-1 through PWT-15). 52.15-1 Section 52.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-1 General (modifies PWT-1 through PWT-15). Watertube boilers and parts thereof shall be as...
46 CFR 52.15-1 - General (modifies PWT-1 through PWT-15).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false General (modifies PWT-1 through PWT-15). 52.15-1 Section 52.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-1 General (modifies PWT-1 through PWT-15). Watertube boilers and parts thereof shall be as...
46 CFR 52.15-1 - General (modifies PWT-1 through PWT-15).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false General (modifies PWT-1 through PWT-15). 52.15-1 Section 52.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-1 General (modifies PWT-1 through PWT-15). Watertube boilers and parts thereof shall be as...
46 CFR 52.15-1 - General (modifies PWT-1 through PWT-15).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false General (modifies PWT-1 through PWT-15). 52.15-1 Section 52.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-1 General (modifies PWT-1 through PWT-15). Watertube boilers and parts thereof shall be as...
46 CFR 52.15-1 - General (modifies PWT-1 through PWT-15).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false General (modifies PWT-1 through PWT-15). 52.15-1 Section 52.15-1 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-1 General (modifies PWT-1 through PWT-15). Watertube boilers and parts thereof shall be as...
46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 2 2012-10-01 2012-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...
46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...
46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...
46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...
46 CFR 52.15-5 - Tube connections (modifies PWT-9 and PWT-11).
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Tube connections (modifies PWT-9 and PWT-11). 52.15-5 Section 52.15-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Requirements for Watertube Boilers § 52.15-5 Tube connections (modifies PWT-9 and PWT-11). (a) Tubes, pipe and nipples shall be attached...
A Polarized Electron RF Photoinjector Using the Plane-Wave-Transformer (PWT) Design
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clendenin, James E
Polarized electron beams are now in routine use in particle accelerators for nuclear and high energy physics experiments. These beams are presently produced by dc-biased photoelectron sources combined with rf chopping and bunching systems with inherently high transverse emittances. Low emittances can be produced with an rf gun, but the vacuum environment has until now been considered too harsh to support a negative electron affinity GaAs photocathode. We propose to significantly improve the vacuum conditions by adapting a PWT rf photoinjector to achieve reasonable cathode emission rates and lifetimes. This adaptation can also be combined with special optics that willmore » result in a flat beam with a normalized rms emittance in the narrow dimension that may be as low as 10{sup -8} m.« less
Functional magnetic resonance imaging in primary writing tremor and writer’s cramp: A pilot study
Sahni, Hirdesh; Jayakumar, Peruvumba N.; Pal, Pramod Kumar
2010-01-01
Objectives: The precise pathophysiology of primary writing tremor (PWT) and writer’s cramp (WC) is not known. The aim of this study is to compare the cerebral activation patterns in patients of PWT, WC and healthy controls, during a task of signing on paper, using functional magnetic resonance imaging (fMRI). Materials and Methods: Six subjects with PWT, three with WC and six healthy volunteers were examined using a 1.5-Tesla scanner. The paradigm consisted of three times repetition of a set of period of rest and activity. Each set consisted of 10 blood oxygen level dependent (BOLD) echo-planar imaging (EPI) acquisitions at rest followed by 10 BOLD EPI acquisitions while signing their names on paper using the dominant right hand. Entire brain was covered. SPM99 analysis was done. Results: In comparison to the healthy controls, the following differences in cerebral activation were noted in the patients: (a) primary and supplementary motor areas showed overactivation in patients of PWT and underactivation in patients of WC, (b) the cingulate motor area showed underactivation in patients of PWT and overactivation in patients of WC and (c) the cerebellar activity was reduced in both WC and PWT. Conclusion: Our preliminary findings suggest that the cerebral and cerebellar activation patterns in PWT and WC during signing on paper are distinct from each other and from healthy controls. There may be cerebellar dysfunction in addition to motor dysfunctions in the pathogenesis of these disorders. PMID:21085530
Altered brain network measures in patients with primary writing tremor.
Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar
2017-10-01
Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results.
NASA Astrophysics Data System (ADS)
Park, Jong Yul; Kim, Sung-Ho; Rok Kim, Kyung
2015-06-01
In this work, we propose extended design window which is helpful to judge whether the plasma-wave transistor (PWT) operates as a resonant terahertz (THz) electromagnetic (EM) wave emitter. When metal-oxide-semiconductor field-effect transistor (MOSFET) is on strong inversion which is believed to be an operation regime of PWT THz emitter, Boltzmann statistics is no longer valid and degenerate Fermi-Dirac distribution should be considered. Based on degenerate carrier velocity model, we report the increased maximum channel length (Lmax) to 17 nm for strained silicon (s-Si) PWT with assuming μ = 500 cm2·V-1·s-1. As mobility is enhanced, it is possible to observe two emission spectrums [fundamental (N = 1) and third (N = 3) harmonics] in a specific operation range. Theoretically, increment of Lmax for enhanced μ is limited to near 35 nm by the Pauli’s principle in the case of s-Si PWT. This theoretical value of Lmax should be compromised by considering actual PWT operation voltage for gate oxide breakdown.
Bain, P G; Findley, L J; Britton, T C; Rothwell, J C; Gresty, M A; Thompson, P D; Marsden, C D
1995-12-01
Primary writing tremor (PWT) is considered to be a type of task-specific tremor in which tremor predominantly occurs and interferes with handwriting. We describe the clinical and neurophysiological features of 21 patients (20 male and one female) with PWT. Mean age at tremor onset was 50.1 years. A family history of PWT was obtained from seven patients. Ten patients obtained benefit from drug treatment (mainly propranalol or primidone) and seven responded to alcohol. The writing speeds of the patients (mean +/- SEM: 73.1 +/- 6.6 letters per minute) when using their preferred hand were significantly reduced (Student's t test: P < 0.001) compared with those of healthy control subjects (mean +/- SEM: 127.7 +/- 6.4). Surface polymyography performed during writing showed 4.1-7.3 Hz rhythmic activity predominantly in the intrinsic hand and forearm muscles. Alternating, extensor activation alone, skipping from alternating to extensor activation, and co-contracting EMG patterns were recorded from the flexor and extensor muscles of the forearm. There was no evidence for excessive 'overflow' of this rhythmic EMG activity, as similar activity was detected in comparable muscle groups of healthy control subjects. Accelerometry confirmed that the frequency of PWT ranged from 4.1-7.3 Hz (median 5.5 Hz) and that normal subjects wrote with a 4.0-7.7 Hz oscillation (median 4.6 Hz). Forearm reciprocal inhibition was normal in PWT (n = 13), and thus patients with PWT can be distinguished from those with writer's cramp in whom decreased presynaptic inhibition has been found. Patients were sub-classified as having either type A (n = 11) or B (n = 10) PWT depending on whether tremor appeared during writing (type A: task induced tremor) or whilst writing and adopting the hand position used in writing (type B: positionally sensitive tremor). However, the only differences between these two groups were that a co-contracting EMG pattern and tremor induced by tendon taps to the volar aspect of the wrist were present in type B but not type A cases.
A review of primary writing tremor.
Rana, Abdul Qayyum; Vaid, Haris M
2012-03-01
A task-specific tremor (TST) is a rare form of movement disorder that appears while performing or attempting to perform a particular task. Primary writing tremor (PWT) is the most common form of TST which only occurs during the act of writing and hinders it. (Bain PG, Findley LJ, Britton TC, Rothwell JC, Gresty MA, Thompson PD, Marsden CD. MRC Human Movement, and Balance Unit, Institute of Neurology, London, UK. Primary writing tremor. Brain. 1995;118(6):1461-72.) Primary writing tremor type B is present not only during the act of writing but also when the hand assumes a writing posture. (Bain PG, Findley LJ, Britton TC, Rothwell JC, Gresty MA, Thompson PD, Marsden CD. MRC Human Movement and Balance Unit, Institute of Neurology, London, UK. Primary writing tremor. Brain. 1995;118(6):1461-72.) We first of all describe a remarkable case study of a 50-year old, right-handed male who started experiencing a primary writing tremor in his right hand about a year ago. This case was found to be of particular interest because the patient had it relatively difficult when attempting to write numbers as opposed to writing letters. This review further discusses the clinical manifestations of PWT. In addition, three main hypotheses have been proposed for the causation of PWT, although the exact pathophysiology of PWT still remains unknown. It has been suggested that PWT is a separate entity, a variant of essential tremor and not a separate entity, or a type of dystonia. The various treatment options for PWT are discussed including botulinum toxin and oral pharmacotherapy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Cho; Alexander Fridman
2009-04-02
The overall objective of the present work was to develop technologies to reduce freshwater consumption in a cooling tower of coal-based power plant so that one could significantly reduce the need of make-up water. The specific goal was to develop a scale prevention technology based an integrated system of physical water treatment (PWT) and a novel filtration method so that one could reduce the need for the water blowdown, which accounts approximately 30% of water loss in a cooling tower. The present study investigated if a pulsed spark discharge in water could be used to remove deposits from the filtermore » membrane. The test setup included a circulating water loop and a pulsed power system. The present experiments used artificially hardened water with hardness of 1,000 mg/L of CaCO{sub 3} made from a mixture of calcium chloride (CaCl{sub 2}) and sodium carbonate (Na{sub 2}CO{sub 3}) in order to produce calcium carbonate deposits on the filter membrane. Spark discharge in water was found to produce strong shockwaves in water, and the efficiency of the spark discharge in cleaning filter surface was evaluated by measuring the pressure drop across the filter over time. Results showed that the pressure drop could be reduced to the value corresponding to the initial clean state and after that the filter could be maintained at the initial state almost indefinitely, confirming the validity of the present concept of pulsed spark discharge in water to clean dirty filter. The present study also investigated the effect of a plasma-assisted self-cleaning filter on the performance of physical water treatment (PWT) solenoid coil for the mitigation of mineral fouling in a concentric counterflow heat exchanger. The self-cleaning filter utilized shockwaves produced by pulse-spark discharges in water to continuously remove scale deposits from the surface of the filter, thus keeping the pressure drop across the filter at a relatively low value. Artificial hard water was used in the present fouling experiments for three different cases: no treatment, PWT coil only, and PWT coil plus self-cleaning filter. Fouling resistances decreased by 59-72% for the combined case of PWT coil plus filter compared with the values for no-treatment cases. SEM photographs showed much smaller particle sizes for the combined case of PWT coil plus filter as larger particles were continuously removed from circulating water by the filter. The x-ray diffraction data showed calcite crystal structures for all three cases.« less
A wall interference assessment/correction interface measurement system for the NASA/ARC 12-ft PWT
NASA Technical Reports Server (NTRS)
1989-01-01
Development of complex air vehicle configurations is placing increasing demands on wind tunnel testing capabilities. A major area of concern is wall induced interference. Recent developments in wall interference technology provide a means for assessing and correcting for the wall induced interference using information contained in the distribution of flow variables measured at, or near, the wall. The restoration of the NASA-ARC 12-ft pressure wind tunnel (PWT) provides an opportunity to incorporate a measurement system with which wall interference assessment/correction (WIAC) technology can be applied. In this first phase of the development of a WIAC system for the PWT, the design criteria for the placement and the geometry of wall static pressure orifices were determined with a three step approach. First, the operational environment of the PWT was analyzed as to the requirements for the WIAC system. Second, appropriate wall interference theories were evaluated against the requirements determined from the operational environment. Third, the flow about representative models in the PWT was calculated and, specifically, the pressure signatures at the location of the test section wall were obtained. The number of discrete pressure measurements and their locations were determined by curve fitting the pressure distribution through the discrete measurements and evaluating the resulting error.
2014-01-01
Background The measurement of mechanosensitivity is a key method for the study of pain in animal models. This is often accomplished with the use of von Frey filaments in an up-down testing paradigm. The up-down method described by Chaplan et al. (J Neurosci Methods 53:55–63, 1994) for mechanosensitivity testing in rodents remains one of the most widely used methods for measuring pain in animals. However, this method results in animals receiving a varying number of stimuli, which may lead to animals in different groups receiving different testing experiences that influences their later responses. To standardize the measurement of mechanosensitivity we developed a simplified up-down method (SUDO) for estimating paw withdrawal threshold (PWT) with von Frey filaments that uses a constant number of five stimuli per test. We further refined the PWT calculation to allow the estimation of PWT directly from the behavioral response to the fifth stimulus, omitting the need for look-up tables. Results The PWT estimates derived using SUDO strongly correlated (r > 0.96) with the PWT estimates determined with the conventional up-down method of Chaplan et al., and this correlation remained very strong across different levels of tester experience, different experimental conditions, and in tests from both mice and rats. The two testing methods also produced similar PWT estimates in prospective behavioral tests of mice at baseline and after induction of hyperalgesia by intraplantar capsaicin or complete Freund’s adjuvant. Conclusion SUDO thus offers an accurate, fast and user-friendly replacement for the widely used up-down method of Chaplan et al. PMID:24739328
Primary writing tremor: motor cortex reorganisation and disinhibition.
Byrnes, Michelle L; Mastaglia, Frank L; Walters, Susan E; Archer, Sarah-Anne R; Thickbroom, Gary W
2005-01-01
Primary writing tremor (PWT) is a task-specific tremor of uncertain origin. There has been debate as to whether PWT represents a variant of essential tremor or a tremulous form of focal dystonia related to writer's cramp. In writer's cramp there is evidence of changes in intracortical inhibition (ICI), as well as cortical motor reorganisation. To study corticomotor organisation and short-latency ICI in a patient with typical task-specific PWT. Transcranial magnetic stimulation mapping of the corticomotor representation of the hand and studies of ICI using paired-pulse stimulation were performed in a 47-year-old right-handed woman with a pure task-specific writing tremor. The motor maps for the hand were displaced posteriorly on both sides and reverted to a normal position after treatment with botulinum toxin. Short-latency ICI was reduced for the dominant hand. The findings indicate reorganisation and disinhibition of the corticomotor projection to the hand and point to the participation of cortical centres in the origin of PWT.
An, Guanghui; Li, Wenhui; Yan, Tao; Li, Shitong
2014-06-11
It has become increasingly apparent that the pain threshold of females and males varies in an estrogen dependent manner. To investigate the modulation of pain by estrogen and the molecular mechanisms involved in this process. A total of 48 rats were ovariectomized (OVX). At 14 and 20 days after OVX, rats were divided into eight groups: groups 1-4 were administered drugs intravenously (IV); groups 5-8 were administered through intrathecal (IT) catheter. Hind paw incision was made in all animals to determine incisional pain. Paw withdraw threshold (PWT) was tested prior to and 24 h after incision. The test drugs were applied 24 h after the incision. Rats were either IV or IT administered with: 17-β-estradiol (E2), G protein-coupled estrogen receptor (GPER)-selective agonist (G1), GPER-selective antagonist (G15) and E2 (G15+E2), or solvent. Before and 30 min after IV drug administration and 20 min during the IT catheter administration, PWT was tested and recorded. 24 h after incisional surgery, the PWT of all rats significantly decreased. Both in the IV group and IT group: administration of E2 and G1 significantly decreased PWT. Neither administration of G15+E2 nor solvent significantly changed PWT. Estrogen causes rapid reduction in the mechanical pain threshold of OVX rats via GPER.
Writing Orthotic Device for the Management of Writer's Cramp.
Singam, Narayanasarma V; Dwivedi, Alok; Espay, Alberto J
2013-01-01
Oral therapies and chemodenervation procedures are often unrewarding in the treatment of focal, task-specific hand disorders such as writer's cramp or primary writing tremor (PWT). A portable writing orthotic device (WOD) was evaluated on 15 consecutively recruited writer's cramp and PWT subjects. We measured overall impairment at baseline and after 2 weeks of at-home use with the Writer's Cramp Rating Scale (range = 0-8, higher is worse) and writing quality and comfort with a visual analog scale (range = 0-10). Compared to regular pen, the WOD improved the Writer's Cramp Rating Scale scores at first-test (p = 0.001) and re-test (p = 0.005) as well as writing quality and device comfort in writer's cramp subjects. Benefits were sustained at 2 weeks. PWT subjects demonstrated no improvements. WODs exploiting a muscle-substitution strategy may yield immediate benefits in patients with writer's cramp.
Kim, Taemin; Seol, Dong Rim; Hahm, Suk-Chan; Ko, Cheolwoong; Kim, Eun-Hye; Chun, Keyoungjin; Kim, Junesun; Lim, Tae-Hong
2015-01-01
The present study examined the analgesic effects of slow-releasing bupivacaine from hydrogel on chronic arthritic pain in rats. Osteoarthritis (OA) was induced by monosodium iodoacetate (MIA) injection into the right knee joint. Hydrogel (HG: 20, 30, and 50 μL) and temperature-sensitive hydrogel containing bupivacaine (T-gel: 20, 30, and 50 μL) were injected intra-articularly 14 days after MIA injection. Behavioral tests were conducted. The rats showed a significant decrease in weight load and paw withdrawal threshold (PWT). Intra-articular 0.5% bupivacaine (10 and 20 μL) significantly reversed MIA-induced decreased PWT, with no effect on weight load. In normal rats, hydrogel did not produce significant changes in PWT but at 30 and 50 μL slightly decreased weight bearing; T-gel did not cause any changes in both the weight load and PWT. In OA rats, T-gel at 20 μL had a significant analgesic effect for 2 days, even though T-gel at 50 μL further reduced the weight load, demonstrating that intra-articular T-gel (20 μL) has long-lasting analgesic effects in OA rats. Thus, T-gel designed to deliver analgesics into the joint cavity could be an effective therapeutic tool in the clinical setting. PMID:26881207
Holstein, Katharina; von Mackensen, Sylvia; Bokemeyer, Carsten; Langer, Florian
2017-07-10
The impact of inherited bleeding disorders on the socioeconomic status (SES) of affected individuals is not clear. The SES of adult patients with congenital bleeding disorders (PWBD) from a centre in Germany (age 42.3 ± 15.0 years) was compared to that of a gender- and age-matched control group of patients with thrombophilia or a thrombotic event (PWT). Patients completed a questionnaire including aspects of SES, impact of the disease on their lives, and health-related quality of life (HRQoL). Forty-five patients were enrolled in each group; 71 % of PBWD had a severe form of the bleeding disorder (FVIII/IX activity < 1 % or VWD type 3), and 60 % of all PWBD were treated on-demand. PWBD had a lower monthly income (p = 0.029) and a worse occupational status (p = 0.047) than PWT, but there was no difference regarding the project-specific SES index. PWBD also reported a worse HRQoL in the physical summary component score of the SF-36 (p < 0.001). More PWBD (69.8 %) reported a high impact of the disease on their lives than PWT (33.3 %, p < 0.001). In summary, PWBD had a worse occupational status, monthly income, health behaviour, HRQoL, and impact of the disease on their lives compared to PWT, but not a significantly different SES in general.
Ince, Semra; Emer, Ozdes; Deveci, Salih; Okuyucu, Kursat; Alagoz, Engin; San, Huseyin; Ayan, Aslı; Karacalioglu, Ozgur; Haymana, Cem; Gunalp, Bengul; Arslan, Nuri
2018-05-02
Parathyroid scintigraphy (PS) can be negative or equivocal (N/E) in a considerable number of cases with highly suspicious clinical findings and biochemical results for parathyroid adenoma (PA). The aims of this study were to investigate the complementary role of parathormone washout test (PWT) to PS in patients with primary hyperparathyroidism (PHPT) and evaluate histopathologic aspects of PAs in comparison with PS results. Thirty-eight patients with PHPT referred for PS were included in the study. Seventeen patients had both scintigraphic and ultrasonographic findings concordant with PA (Group A). Twenty-one patients having N/E PS, but suspected lesions for PA on ultrasonography (US) formed Group B. PWT was performed for all patients and they underwent the surgical intervention. An adenoma was removed in all patients and the histopathologic cell characteristics were established. The tumor size on US was larger in those patients whose adenomas were seen on the PS (P<.001). The percentages of chief (or principal), oxyphilic and clear cells in PAs were not statistically different between the groups. Serum parathormone level and PWT were not statistically significant between Group A and Group B (P=.095 and P=.04, respectively). Although there is not a definitive threshold value, the sensitivity of PS increases with lesion size. While chief cell and oxyphilic cell content of PAs tend to deplete in N/E PS, clear cell rate increases substantially. Combining PS with both US and PWT increases the sensitivity of detection and localization of PAs. Copyright © 2018. Publicado por Elsevier España, S.L.U.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia( PHN) in rats. A total of 100 male SD rats were randomly divided into the five groups( n = 20) : control group,PHN group,PHN group treated with hydrogen-rich saline( PHN-H2group),PHN group treated with hydrogen-rich saline and3-MA( PHN-H2-3-MA group),PHN group treated with hydrogen-rich saline and rapamycin( PHN-H2-Rap group). PHN models were established by varicella-zoster virus( VZV) inoculation. After modeling,15 mg / kg 3-MA or 10 mg / kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline( 10 m L / kg)was injected intraperitoneally twice a day for 7 consecutive days in PHN-H2 group,PHN-H2-3-MA group and PHN-H2-Rap group after VZV injection. The paw withdrawal thresholds( PWT) of 50 rats were detected at 3,7,14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α( TNF-α),interleukine 1β( IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3( LC3),beclin 1and P62 by Western blotting. Compared with the control group,the rats in the PHN group presented with decreased PWT,increased levels of TNF-α,IL-1β,IL-6,LC3Ⅱ and beclin 1,and down-regulated P62 expression. Compared with PHN group,the rats in the PHN-H2 group and PHN-H2-Rap group showed increased PWT,decreased levels of TNF-α,IL-1β and IL-6,further up-regulated expressions of LC3 and beclin 1 as wel as P62 expression. Compared with PHN-H2 group,the rats in the PHN-H2-3-MA group had reduced PWT,elevated expressions of TNF-α,IL-1β and IL-6,suppressed expressions of LC3 and beclin 1,and enhanced p62 expression. Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α,IL-1β,IL-6 in rats with PHN via activating autophagy.
Ma, Hongtao; Chen, Hongguang; Dong, Aili; Wang, Yanyan; Bian, Yingxue; Xie, Keliang
2017-02-01
Objective To investigate the role of autophagy in hydrogen-rich saline attenuating post-herpetic neuralgia (PHN) in rats. Methods A total of 100 male SD rats were randomly divided into the five groups (n=20): control group, PHN group, PHN group treated with hydrogen-rich saline (PHN-H 2 group), PHN group treated with hydrogen-rich saline and 3-MA (PHN-H 2 -3-MA group), PHN group treated with hydrogen-rich saline and rapamycin (PHN-H 2 -Rap group). PHN models were established by varicella-zoster virus (VZV) inoculation. After modeling, 15 mg/kg 3-MA or 10 mg/kg rapamycin were intraperitoneally injected in corresponding rats with PHN once two days for 3 times. Hydrogen-rich saline (10 mL/kg) was injected intraperitoneally twice a day for 7 consecutive days in PHN-H 2 group, PHN-H 2 -3-MA group and PHN-H 2 -Rap group after VZV injection. The paw withdrawal thresholds (PWT) of 50 rats were detected at 3, 7, 14 and 21 days after modeling. Spinal cord enlargements of the other 50 rats were collected to examine tumor necrosis factor α (TNF-α), interleukine 1β (IL-1β) and IL-6 by ELISA and autophagy protein microtubule-associated protein 1 light chain 3 (LC3), beclin 1 and P62 by Western blotting. Results Compared with the control group, the rats in the PHN group presented with decreased PWT, increased levels of TNF-α, IL-1β, IL-6, LC3II and beclin 1, and down-regulated P62 expression. Compared with PHN group, the rats in the PHN-H 2 group and PHN-H 2 -Rap group showed increased PWT, decreased levels of TNF-α, IL-1β and IL-6, further up-regulated expressions of LC3 and beclin 1 as well as P62 expression. Compared with PHN-H 2 group, the rats in the PHN-H 2 -3-MA group had reduced PWT, elevated expressions of TNF-α, IL-1β and IL-6, suppressed expressions of LC3 and beclin 1, and enhanced p62 expression. Conclusion Hydrogen-rich saline attenuated PWT and inhibited the release of cytokines TNF-α, IL-1β, IL-6 in rats with PHN via activating autophagy.
Rosales Nieto, C A; Ferguson, M B; Macleay, C A; Briegel, J R; Wood, D A; Martin, G B; Bencini, R; Thompson, A N
2018-02-26
In ewe lambs, acceleration of growth and accumulation of both muscle and fat leads to earlier sexual maturity and better reproductive performance. The next stage in the development of this theme is to test whether these aspects of growth in young ewes affect milk production in their first lactation and the growth of their first progeny. We studied 75 young Merino ewes that had known phenotypic values for depth of eye muscle (EMD) and fat (FAT), and known Australian Sheep Breeding Values for post-weaning weight (PWT) and depths of eye muscle (PEMD) and fat (PFAT). They lambed for the first time at 1 year of age. Their lambs were weighed weekly from birth to weaning at 10 weeks to determine live weight gain and weaning weight. Progeny birth weight was positively associated with live weight gain and weaning weight (P0.05). The PWT of the sire was positively associated with live weight gain (P0.05). The concentrations of fat, protein, lactose and total solids in the milk were not affected by the phenotype or genotype of the mothers or of the sires of the mothers, or by the sex of the progeny (P>0.05). We conclude that selection of young Merino ewes for better growth, and more rapid accumulation of muscle and fat, will lead to progeny that are heavier at birth, grow faster and are heavier at weaning. Moreover, milk production and composition do not seem to be affected by the genetic merit of the mother for post-weaning live weight or PEMD or PFAT. Therefore, Merino ewes can lamb at 1 year of age without affecting the production objectives of the Merino sheep industry.
Perin, Emerson C.; Murphy, Michael P.; March, Keith L.; Bolli, Roberto; Loughran, John; Yang, Phillip C.; Leeper, Nicholas J.; Dalman, Ronald L.; Alexander, Jason; Henry, Timothy D.; Traverse, Jay H.; Pepine, Carl J.; Anderson, R. David; Berceli, Scott; Willerson, James T.; Muthupillai, Raja; Gahremanpour, Amir; Raveendran, Ganesh; Velasquez, Omaida; Hare, Joshua M.; Schulman, Ivonne Hernandez; Kasi, Vijaykumar S.; Hiatt, William R.; Ambale-Venkatesh, Bharath; Lima, João A.; Taylor, Doris A.; Resende, Micheline; Gee, Adrian P.; Durett, April G.; Bloom, Jeanette; Richman, Sara; G’Sell, Patricia; Williams, Shari; Khan, Fouzia; Ross, Elsie Gyang; Santoso, Michelle R.; Goldman, JoAnne; Leach, Dana; Handberg, Eileen; Cheong, Benjamin; Piece, Nichole; DiFede, Darcy; Bruhn-Ding, Barb; Caldwell, Emily; Bettencourt, Judy; Lai, Dejian; Piller, Linda; Simpson, Lara; Cohen, Michelle; Sayre, Shelly L.; Vojvodic, Rachel W.; Moyé, Lem; Ebert, Ray F.; Simari, Robert D.; Hirsch, Alan T.
2017-01-01
Background Atherosclerotic peripheral artery disease (PAD) affects 8–12% of Americans over 65 and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE is an NHLBI-sponsored, randomized, double-blind, placebo-controlled phase 2, exploratory clinical trial designed to assess safety and efficacy of autologous bone marrow–derived aldehyde dehydrogenase bright (ALDHbr) cells in PAD patients and to explore associated claudication physiologic mechanisms. Methods All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by ten injections into the thigh and calf of the index leg. The co-primary endpoints were: change from baseline to six months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging (MRI); as well as safety. Results A total of 82 patients with claudication and infra-inguinal PAD were randomized at nine sites, of which 78 had analyzable data (57 male, 21 female; mean age 66±9 years). The mean differences in the change over six months between study groups for PWT (mean ± standard error of the mean [SEM]) (0.9±0.8 minutes; 95% CI −0.6 to 2.5; p=0.238), collateral count (0.9±0.6 arteries; 95% CI −0.2 to 2.1; p=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/sec; 95% CI −0.8 to 0.8; p=0.978), and capillary perfusion (−0.2±0.6%; 95% CI −1.3 to 0.9; p=0.752) were not significant. Additionally, there were no significant differences for the secondary endpoints, including quality of life measures. There were no adverse safety outcomes. Correlative relationships between MRI measures and PWT were not significant. A post-hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI 0.1 to 2.9; p=0.047) in participants with completely occluded femoral arteries. Conclusions ALDHbr cell administration did not improve PWT or MR outcomes, and the changes in PWT were not associated with the anatomic or physiologic MRI endpoints. Future PAD cell therapy investigational trial design may be informed by new anatomic and perfusion insights. PMID:28209728
Perin, Emerson C; Murphy, Michael P; March, Keith L; Bolli, Roberto; Loughran, John; Yang, Phillip C; Leeper, Nicholas J; Dalman, Ronald L; Alexander, Jason; Henry, Timothy D; Traverse, Jay H; Pepine, Carl J; Anderson, R David; Berceli, Scott; Willerson, James T; Muthupillai, Raja; Gahremanpour, Amir; Raveendran, Ganesh; Velasquez, Omaida; Hare, Joshua M; Hernandez Schulman, Ivonne; Kasi, Vijaykumar S; Hiatt, William R; Ambale-Venkatesh, Bharath; Lima, João A; Taylor, Doris A; Resende, Micheline; Gee, Adrian P; Durett, April G; Bloom, Jeanette; Richman, Sara; G'Sell, Patricia; Williams, Shari; Khan, Fouzia; Gyang Ross, Elsie; Santoso, Michelle R; Goldman, JoAnne; Leach, Dana; Handberg, Eileen; Cheong, Benjamin; Piece, Nichole; DiFede, Darcy; Bruhn-Ding, Barb; Caldwell, Emily; Bettencourt, Judy; Lai, Dejian; Piller, Linda; Simpson, Lara; Cohen, Michelle; Sayre, Shelly L; Vojvodic, Rachel W; Moyé, Lem; Ebert, Ray F; Simari, Robert D; Hirsch, Alan T
2017-04-11
Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute-sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow-derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] -0.6 to 2.5; P =0.238), collateral count (0.9±0.6 arteries; 95% CI, -0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, -0.8 to 0.8; P =0.978), and capillary perfusion (-0.2±0.6%; 95% CI, -1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1-2.9; P =0.047) in participants with completely occluded femoral arteries. ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097. © 2017 American Heart Association, Inc.
Mouzé-Amady, Marc; Raufaste, Eric; Prade, Henri; Meyer, Jean-Pierre
2013-01-01
The aim of this study was to assess mental workload in which various load sources must be integrated to derive reliable workload estimates. We report a new algorithm for computing weights from qualitative fuzzy integrals and apply it to the National Aeronautics and Space Administration -Task Load indeX (NASA-TLX) subscales in order to replace the standard pair-wise weighting technique (PWT). In this paper, two empirical studies were reported: (1) In a laboratory experiment, age- and task-related variables were investigated in 53 male volunteers and (2) In a field study, task- and job-related variables were studied on aircrews during 48 commercial flights. The results found in this study were as follows: (i) in the experimental setting, fuzzy estimates were highly correlated with classical (using PWT) estimates; (ii) in real work conditions, replacing PWT by automated fuzzy treatments simplified the NASA-TLX completion; (iii) the algorithm for computing fuzzy estimates provides a new classification procedure sensitive to various variables of work environments and (iv) subjective and objective measures can be used for the fuzzy aggregation of NASA-TLX subscales. NASA-TLX, a classical tool for mental workload assessment, is based on a weighted sum of ratings from six subscales. A new algorithm, which impacts on input data collection and computes weights and indexes from qualitative fuzzy integrals, is evaluated through laboratory and field studies. Pros and cons are discussed.
Chen, Yuling; Lou, Yang; Yen, Jesse
2017-07-01
During conventional ultrasound imaging, the need for multiple transmissions for one image and the time of flight for a desired imaging depth limit the frame rate of the system. Using a single plane wave pulse during each transmission followed by parallel receive processing allows for high frame rate imaging. However, image quality is degraded because of the lack of transmit focusing. Beamforming by spatial matched filtering (SMF) is a promising method which focuses ultrasonic energy using spatial filters constructed from the transmit-receive impulse response of the system. Studies by other researchers have shown that SMF beamforming can provide dynamic transmit-receive focusing throughout the field of view. In this paper, we apply SMF beamforming to plane wave transmissions (PWTs) to achieve both dynamic transmit-receive focusing at all imaging depths and high imaging frame rate (>5000 frames per second). We demonstrated the capability of the combined method (PWT + SMF) of achieving two-way focusing mathematically through analysis based on the narrowband Rayleigh-Sommerfeld diffraction theory. Moreover, the broadband performance of PWT + SMF was quantified in terms of lateral resolution and contrast from both computer simulations and experimental data. Results were compared between SMF beamforming and conventional delay-and-sum (DAS) beamforming in both simulations and experiments. At an imaging depth of 40 mm, simulation results showed a 29% lateral resolution improvement and a 160% contrast improvement with PWT + SMF. These improvements were 17% and 48% for experimental data with noise.
Avallone, G; Helmbold, P; Caniatti, M; Stefanello, D; Nayak, R C; Roccabianca, P
2007-09-01
Perivascular wall tumors (PWTs) are defined as neoplasms deriving from mural cells of blood vessels, excluding the endothelial lining. The spectrum of human cutaneous PWT includes glomus tumor, hemangiopericytoma (HEP), myopericytoma, angioleiomyoma/sarcoma, angiomyofibroblastoma, and angiofibroma. The purpose of this study was to revise clinical presentation, cytology, histopathology, and immunohistology of canine cutaneous PWT with cytology typical of canine HEP. Diagnosis was established on the basis of vascular growth patterns (staghorn, placentoid, perivascular whorling, bundles from media) and immunohistology, including 7 smooth muscle markers and the cell membrane ganglioside of unknown origin recognized by the antibody 3G5 (CMG-3G5). Twenty cases were included. Ages ranged from 6 to 13 years; 12 dogs were males and 8 were females, and there was a prevalence of crossbreeds. Tumors arose from a single site with preferential acral location (10/20). Cytology revealed moderate to high cellularity in all cases, cohesive groups of cells (19/20), capillaries (18/20), and bi- to multinucleated cells (18/20). Six myopericytomas, 5 angioleiomyomas, 2 angioleiomyosarcomas, 2 HEP, 1 angiofibroma, and 1 adventitial tumor were identified. A definitive diagnosis was not possible in 3 cases. Smoothelin, heavy caldesmon, desmin, myosin, calponin, and CMG-3G5 were the most valuable markers to differentially diagnose canine PWT. Similar to reports in humans, canine HEP embodied a spectrum of neoplastic entities arising from different vascular mural cells. Before canine PWTs are assimilated into one prognostic category, a consistent classification and characterization of their biology is necessary. As proposed in humans, HEP should also be considered a diagnosis of exclusion in dogs.
Bertran, Kateri; Thomas, Colleen; Guo, Xuan; Bublot, Michel; Pritchard, Nikki; Regan, Jeffrey T; Cox, Kevin M; Gasdaska, John R; Dickey, Lynn F; Kapczynski, Darrell R; Swayne, David E
2015-07-09
A synthetic hemagglutinin (HA) gene from the highly pathogenic avian influenza (HPAI) virus A/chicken/Indonesia/7/2003 (H5N1) (Indo/03) was expressed in aquatic plant Lemna minor (rLemna-HA). In Experiment 1, efficacy of rLemna-HA was tested on birds immunized with 0.2μg or 2.3 μg HA and challenged with 10(6) mean chicken embryo infectious doses (EID50) of homologous virus strain. Both dosages of rLemna-HA conferred clinical protection and dramatically reduced viral shedding. Almost all the birds immunized with either dosage of rLemna-HA elicited HA antibody titers against Indo/03 antigen, suggesting an association between levels of anti-Indo/03 antibodies and protection. In Experiment 2, efficacy of rLemna-HA was tested on birds immunized with 0.9 μg or 2.2 μg HA and challenged with 10(6) EID50 of heterologous H5N1 virus strains A/chicken/Vietnam/NCVD-421/2010 (VN/10) or A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Birds challenged with VN/10 exhibited 100% survival regardless of immunization dosage, while birds challenged with PWT/06 had 50% and 30% mortality at 0.9 μg HA and 2.2 μg HA, respectively. For each challenge virus, viral shedding titers from 2.2 μg HA vaccinated birds were significantly lower than those from 0.9μg HA vaccinated birds, and titers from both immunized groups were in turn significantly lower than those from sham vaccinated birds. Even if immunized birds elicited HA titers against the vaccine antigen Indo/03, only the groups challenged with VN/10 developed humoral immunity against the challenge antigen. None (rLemna-HA 0.9 μg HA) and 40% (rLemna-HA 2.2 μg HA) of the immunized birds challenged with PWT/06 elicited pre-challenge antibody titers, respectively. In conclusion, Lemna-expressed HA demonstrated complete protective immunity against homologous challenge and suboptimal protection against heterologous challenge, the latter being similar to results from inactivated whole virus vaccines. Transgenic duckweed-derived HA could be a good alternative for producing high quality antigen for an injectable vaccine against H5N1 HPAI viruses. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mei, Ya-Fang, E-mail: ya-fang.mei@umu.se
2016-10-15
Conventional adenovirus vectors harboring E1 or E3 deletions followed by the insertion of an exogenous gene show considerably reduced virion stability. Here, we report strategies to generate complete replication-competent Ad11p(RCAd11p) vectors that overcome the above disadvantage. A GFP cassette was successfully introduced either upstream of E1A or in the E3A region. The resulting vectors showed high expression levels of the hexon and E1genes and also strongly induced the cytopathic effect in targeted cells. When harboring oversized genomes, the RCAd11pE1 and RCAd11pE3 vectors showed significantly improved heat stability in comparison to Ad11pwt;of the three, RCAd11pE3 was the most tolerant to heatmore » treatment. Electron microscopy showed that RCAd11pE3, RCAd11pE1, Ad11pwt, and Ad11pE1 Delmanifested dominant, moderate, minimum, or no full virus particles after heat treatment at 47 °C for 5 h. Our results demonstrated that both genome size and the insertion site in the viral genome affect virion stability. -- Highlights: •Replicating adenovirus 11p GFP vectors at the E1 or E3 region were generated. •RCAd11pE3 and RCAd11pE1 vectors manifested significantly improved heat stability. •RCAd11pE3 and RCAd11pE1 showed more full viral particles than Ad11pwt after heating. •We demonstrated that both genome size and the insertion site affect virion stability.« less
Computer work duration and its dependence on the used pause definition.
Richter, Janneke M; Slijper, Harm P; Over, Eelco A B; Frens, Maarten A
2008-11-01
Several ergonomic studies have estimated computer work duration using registration software. In these studies, an arbitrary pause definition (Pd; the minimal time between two computer events to constitute a pause) is chosen and the resulting duration of computer work is estimated. In order to uncover the relationship between the used pause definition and the computer work duration (PWT), we used registration software to record usage patterns of 571 computer users across almost 60,000 working days. For a large range of Pds (1-120 s), we found a shallow, log-linear relationship between PWT and Pds. For keyboard and mouse use, a second-order function fitted the data best. We found that these relationships were dependent on the amount of computer work and subject characteristics. Comparison of exposure duration from studies using different pause definitions should take this into account, since it could lead to misclassification. Software manufacturers and ergonomists assessing computer work duration could use the found relationships for software design and study comparison.
As part of the Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated two passive water treatment (PWT) technologies for metals removal from acid mine drainage (AMD) at the Summitville Mine Superfund Site in southern Colorado...
NASA Astrophysics Data System (ADS)
Jeuck, James A.
This dissertation consists of research projects related to forest land use / land cover (LULC): (1) factors predicting LULC change and (2) methodology to predict particular forest use, or "potential working timberland" (PWT), from current forms of land data. The first project resulted in a published paper, a meta-analysis of 64 econometric models from 47 studies predicting forest land use changes. The response variables, representing some form of forest land change, were organized into four groups: forest conversion to agriculture (F2A), forestland to development (F2D), forestland to non-forested (F2NF) and undeveloped (including forestland) to developed (U2D) land. Over 250 independent econometric variables were identified, from 21 F2A models, 21 F2D models, 12 F2NF models, and 10 U2D models. These variables were organized into a hierarchy of 119 independent variable groups, 15 categories, and 4 econometric drivers suitable for conducting simple vote count statistics. Vote counts were summarized at the independent variable group level and formed into ratios estimating the predictive success of each variable group. Two ratio estimates were developed based on (1) proportion of times independent variables successfully achieved statistical significance (p ≤0.10), and (2) proportion of times independent variables successfully met the original researchers'expectations. In F2D models, popular independent variables such as population, income, and urban proximity often achieved statistical significance. In F2A models, popular independent variables such as forest and agricultural rents and costs, governmental programs, and site quality often achieved statistical significance. In U2D models, successful independent variables included urban rents and costs, zoning issues concerning forestland loss, site quality, urban proximity, population, and income. F2NF models high success variables were found to be agricultural rents, site quality, population, and income. This meta-analysis provides insight into the general success of econometric independent variables for future forest use or cover change research. The second part of this dissertation developed a method for predicting area estimates and spatial distribution of PWT in the US South. This technique determined land use from USFS Forest Inventory and Analysis (FIA) and land cover from the National Land Cover Database (NLCD). Three dependent variable forms (DV Forms) were derived from the FIA data: DV Form 1, timberland, other; DV Form 2, short timberland, tall timberland, agriculture, other; and DV Form 3, short hardwood (HW) timberland, tall HW timberland, short softwood (SW) timberland, tall SW timberland, agriculture, other. The prediction accuracy of each DV Form was investigated using both random forest model and logistic regression model specifications and data optimization techniques. Model verification employing a "leave-group-out" Monte Carlo simulation determined the selection of a stratified version of the random forest model using one-year NLCD observations with an overall accuracy of 0.53-0.94. The lower accuracy side of the range was when predictions were made from an aggregated NLCD land cover class "grass_shrub". The selected model specification was run using 2011 NLCD and the other predictor variables to produce three levels of timberland prediction and probability maps for the US South. Spatial masks removed areas unlikely to be working forests (protected and urbanized lands) resulting in PWT maps. The area of the resulting maps compared well with USFS area estimates and masked PWT maps and had an 8-11% reduction of the USFS timberland estimate for the US South compared to the DV Form. Change analysis of the 2011 NLCD to PWT showed (1) the majority of the short timberland came from NLCD grass_shrub; (2) the majority of NLCD grass_shrub predicted into tall timberland, and (3) NLCD grass_shrub was more strongly associated with timberland in the Coastal Plain. Resulting map products provide practical analytical tools for those interested in studying the area and distribution of PWT in the US South.
Report #12-R-0601, July 25, 2012. PWT did not have adequate controls to ensure that its subcontractors and vendors complied with the Buy American and Davis-Bacon Act (DBA) provisions of the Recovery Act.
Growth Factors and COX2 Expression in Canine Perivascular Wall Tumors.
Avallone, G; Stefanello, D; Boracchi, P; Ferrari, R; Gelain, M E; Turin, L; Tresoldi, E; Roccabianca, P
2015-11-01
Canine perivascular wall tumors (PWTs) are a group of subcutaneous soft tissue sarcomas developing from vascular mural cells. Mural cells are involved in angiogenesis through a complex crosstalk with endothelial cells mediated by several growth factors and their receptors. The evaluation of their expression may have relevance since they may represent a therapeutic target in the control of canine PWTs. The expression of vascular endothelial growth factor (VEGF) and receptors VEGFR-I/II, basic fibroblast growth factor (bFGF) and receptor Flg, platelet-derived growth factor B (PDGFB) and receptor PDGFRβ, transforming growth factor β1 (TGFβ1) and receptors TGFβR-I/II, and cyclooxygenase 2 (COX2) was evaluated on frozen sections of 40 PWTs by immunohistochemistry and semiquantitatively scored to identify their potential role in PWT development. Statistical analysis was performed to analyze possible correlations between Ki67 labeling index and the expression of each molecule. Proteins of the VEGF-, PDGFB-, and bFGF-mediated pathways were highly expressed in 27 (67.5%), 30 (75%), and 19 (47.5%) of 40 PWTs, respectively. Proteins of the TGFβ1- and COX2-mediated pathways were highly expressed in 4 (10%) and 14 (35%) of 40 cases. Statistical analysis identified an association between VEGF and VEGFR-I/II (P = .015 and .003, respectively), bFGF and Flg (P = .038), bFGF and PDGFRβ (P = .003), and between TGFβ1 and COX2 (P = .006). These findings were consistent with the mechanisms that have been reported to play a role in angiogenesis and in tumor development. No association with Ki67 labeling index was found. VEGF-, PDGFB-, and bFGF-mediated pathways seem to have a key role in PWT development and growth. Blockade of tyrosine kinase receptors after surgery could represent a promising therapy with the aim to reduce the PWT relapse rate and prolong the time to relapse. © The Author(s) 2015.
Liu, Ying-jia; Song, Guo-hong; Zhang, Chen
2015-08-01
To explore the possible pain mechanism of chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). The models of CP/CPPS were established in male Wistar rats by the autoimmune method. The paw withdrawal threshold (PWT) was detected using Von Frey filament. The expressions of the substance P and c-fos in the prostate and spinal L5-S2 segments were determined by immunohistochemistry followed by analysis of their correlation with CP/CPPS. Compared with the control rats, the CP/CPPS models showed significantly decreased PWT (P < 0.05), remarkable prostatic inflammation, enlarged scope of lesions, and obvious interstitial lymphocytic infiltration (P < 0.05). Both the expressions of substance P and c-fos were markedly elevated in the prostate and spinal dorsal horn (L5-S2) of the rat models (P < 0.05), but the expression of substance P in the prostate exhibited no correlation with that in the spinal cord (r = 0.099, P = 0.338), nor did that of c-fos (r = 0.027, P = 0.454). The upregulated expressions of substance P and c-fos in the spinal cord L5-S2 sections may be associated with the pain mechanism of CP/CPPS.
NASA Technical Reports Server (NTRS)
Ramsey, P. E.
1976-01-01
An experimental investigation (SA16F) was conducted in the AEDC PWT 4T to determine the entry static stability of a 0.00548 scale space shuttle solid rocket booster (SRB). The primary objective was to improve the definition of the aerodynamic characteristics in the angle of attack range beyond 90 deg in the vicinity of the entry trim point. The SRB scale model consisted of the reentry configuration with all major protuberances. A simulated heat shield around the engine nozzle was also included. Data were obtained for a 60 deg side mounted sting and a straight nose mounted sting. The angle of attack range for the side mounted sting was 113 deg to 147 deg and for the nose mounted sting 152 deg to 187 deg. The Mach number range consisted of 0.4 to 1.2 at roll angles of 0 and 90 deg. The resulting 6-component aerodynamic force data was presented as the variation of coefficients with angle of attack for each Mach number and roll angle.
He, Xiao-Tao; Zhou, Kai-Xiang; Zhao, Wen-Jun; Zhang, Chen; Deng, Jian-Ping; Chen, Fa-Ming; Gu, Ze-Xu; Li, Yun-Qing; Dong, Yu-Lin
2018-01-01
The easily developed morphine tolerance in bone cancer pain (BCP) significantly hindered its clinical use. Increasing evidence suggests that histone deacetylases (HDACs) regulate analgesic tolerance subsequent to continuous opioid exposure. However, whether HDACs contribute to morphine tolerance in the pathogenesis of BCP is still unknown. In the current study, we explored the possible engagement of HDACs in morphine tolerance during the pathogenesis of BCP. After intra-tibia tumor cell inoculation (TCI), we found that the increased expression of HDACs was negatively correlated with the decreased expression of MOR in the DRG following TCI. The paw withdrawal threshold (PWT) and percentage maximum possible effects (MPEs) decreased rapidly in TCI rats when morphine was used alone. In contrast, the concomitant use of SAHA and morphine significantly elevated the PWT and MPEs of TCI rats compared to morphine alone. Additionally, we found that SAHA administration significantly elevated MOR expression in the DRG of TCI rats with or without morphine treatment. Moreover, the TCI-induced increase in the co-expression of MOR and HDAC1 in neurons was significantly decreased after SAHA administration. These results suggest that HDACs are correlated with the downregulation of MOR in the DRG during the pathogenesis of BCP. Inhibition of HDACs using SAHA can be used to attenuate morphine tolerance in BCP.
Semiannual Report to Congress on the Effectiveness of the Civil Aviation Security Program.
1984-04-13
AD-fl143 023 SEMIANNUAL REPORT TO CONGRESS ON THEUEFFECTIVENESS OF i/i THE CIVIL AVIATION SECURITY PROGRAM(U) FEDERAL AVIATION ADMINISTRATION...Semiannual Report to O Congress on the US Deportmnent of TrasEffectiveness ofi of TransportationFedewl Avkffim Avao The Civil Aviation - Security Program... Aviation Security Program 8. Performing OrgniaetioNi RePwt Us. Aviation Security Division 9. Performing Organistion Name and Address 10. Work Unit No
Zhang, J H; Yang, C X; Zhong, J Y; Zhang, L; Xiong, Q M; Wang, J; Wang, H B
2016-06-28
To observe the influence of lumbar sympathetic ganglion radiofrequency thermocoagulation on the activation of spinal microglia in rats with diabetic neuropathic pain (DNP). Thirty-six painful diabetic Sprague-Dawley rats induced by 60 mg/kg streptozotocin (STZ) intraperitoneal injection were randomly divided into diabetic neuropathic pain group (group DNP, n=12), Sham operation group (group Sham, n=12) and radiofrequency thermocoagulation group (group R, n=12). Meanwhile another 12 age-matched rats were allocated as normal control group (group N), rats in group N received intraperitoneal injection of equal volume of normal saline. Twenty-eight days after STZ injection, rats in group R received L3 lumbar sympathetic ganglia radiofrequency thermocoagulation on the left side under X-ray guideline after anesthesia with damage time 60 s and damage temperature 60 ℃. Rats in group Sham received puncture positioning, but not thermocoagulation therapy. The mechanical paw withdrawal threshold (PWT) were performed before STZ injection, 7, 14, 21, 28 days after STZ injection and 1, 3, 5, 7, 14 days after radiofrequency thermocoagulation, respectively. Blood glucose were performed before STZ injection, 3, 28 days after STZ injection and 1, 14days after radiofrequency thermocoagulation. After the final behavioral testing, L3-L5 spinal cord tissues were removed to exam the expression of microglia marker OX42 by Western blotting and immunofluorescence technique, and the changes in the expression of inflammation factor IL-1β, IL-6, TNF-α were detected by ELISA technique. Compared with group N, after 14, 21, 28 days of STZ injection and 1, 3, 5, 7, 14 days of radiofrequency thermocoagulation, the PWT of group DNP and group Sham decreased significantly (P<0.05); Before radiofrequency thermocoagulation, the PWT of rats in group DNP was (3.84±0.83) g, the PWT of rats in group R was (4.45±0.88) g, there was no statistically significant difference between group DNP and group R (t=1.514, P>0.05), but after radiofrequency thermocoagulation, compared with DNP group, the PWT of rats in group R increased significantly (P<0.05), and lasted to 14 d after radiofrequency thermocoagulation. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group N were 0.074±0.023, (35.93±6.16) pg/ml, (92.11±13.23) pg/ml, and (169.50±22.64) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group DNP were 1.023±0.185, (73.82±9.25) pg/ml, (155.33±21.82) pg/ml, and (298.30±33.21) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group Sham were 0.951±0.103, (73.00±7.54) pg/ml, (151.02±24.26) pg/ml, and (294.01±36.37) pg/ml, respectively. The ratio of spinal microglia marker OX42 and GAPDH, the expression of inflammation factor IL-1β, IL-6, and TNF-α in group R were 0.563±0.019, (51.81±7.36) pg/ml, (123.24±16.13) pg/ml, and (229.23±29.16) pg/ml, respectively. Compared with group N, the expression of spinal microglia marker OX42 and inflammation factor IL-1β, IL-6, and TNF-α in group DNP, group Sham and group R increased significantly (F=7.501, 348.698, 568.021, 145.110, all P<0.05). Compared with DNP group, the expression of spinal microglia marker OX42 and inflammation factor IL-1β, IL-6, and TNF-α of group R reduced significantly (all P<0.05). The lumbar sympathetic ganglion radiofrequency thermocoagulation can alleviate diabetic neuropathic pain. The mechanism may relate with the inhibition of spinal microglia activation and the lower expression of inflammation factor.
Comparison of Theory and Experiment on Aeroacoustic Loads and Deflections
NASA Astrophysics Data System (ADS)
Campos, L. M. B. C.; Bourgine, A.; Bonomi, B.
1999-01-01
The correlation of acoustic pressure loads induced by a turbulent wake on a nearby structural panel is considered: this problem is relevant to the acoustic fatigue of aircraft, rocket and satellite structures. Both the correlation of acoustic pressure loads and the panel deflections, were measured in an 8-m diameter transonic wind tunnel. Using the measured correlation of acoustic pressures, as an input to a finite-element aeroelastic code, the panel response was reproduced. The latter was also satisfactorily reproduced, using again the aeroelastic code, with input given by a theoretical formula for the correlation of acoustic pressures; the derivation of this formula, and the semi-empirical parameters which appear in it, are included in this paper. The comparison of acoustic responses in aeroacoustic wind tunnels (AWT) and progressive wave tubes (PWT) shows that much work needs to be done to bridge that gap; this is important since the PWT is the standard test means, whereas the AWT is more representative of real flight conditions but also more demanding in resources. Since this may be the first instance of successful modelling of acoustic fatigue, it may be appropriate to list briefly the essential ``positive'' features and associated physical phenomena: (i) a standard aeroelastic structural code can predict acoustic fatigue, provided that the correlation of pressure loads be adequately specified; (ii) the correlation of pressure loads is determined by the interference of acoustic waves, which depends on the exact evaluation of multiple scattering integrals, involving the statistics of random phase shifts; (iii) for the relatively low frequencies (one to a few hundred Hz) of aeroacoustic fatigue, the main cause of random phase effects is scattering by irregular wakes, which are thin on wavelength scale, and appear as partially reflecting rough interfaces. It may also be appropriate to mention some of the ``negative'' features, to which may be attached illusory importance; (iv) deterministic flow features, even conspicuous or of large scale, such as convection, are not relevant to aeroacoustic fatigue, because they do not produce random phase shifts; (v) local turbulence, of scale much smaller than the wavelength of sound, cannot produce significant random phase shifts, and is also of little consequence to aeroacoustic fatigue; (vi) the precise location of sound sources can become of little consequence, after multiple scattering gives rise to a diffuse sound field; and (vii) there is not much ground for distinction between unsteady flow and sound waves, since at transonic speeds they are both associated with pressures fluctuating in time and space.
Cui, Weihua; Wang, Shanshan; Han, Ruquan; Wang, Qiang; Li, Junfa
2016-01-01
Previous clinical studies have shown that lidocaine can alleviate severe postoperative pain after remifentanil-based anesthesia. Experimental studies have also demonstrated that lidocaine can inhibit remifentanil-induced hyperalgesia, yet the mechanism remains unknown. The present study explored the role of the primary somatosensory (S1) cortex in remifentanil-induced hyperalgesia as well as its inhibition by lidocaine through evaluation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) phosphorylation and protein expression levels in S1 cortical neurons. Male Sprague-Dawley rats were randomly allocated to the following 3 groups: remifentanil only (R), lidocaine only (L), and remifentanil+lidocaine (RL). Experimentally naive animals were used as controls for immunoblotting and immunofluorescence evaluations. Via intravenous tail vein administration (24 G catheter), the animals received remifentanil at 2.4 μg/kg/min, lidocaine at 200 μg/kg/min, and remifentanil at 2.4 μg/kg/min plus lidocaine at 200 μg/kg/min for 2 hours. Paw withdrawal threshold (PWT) values for both mechanical and thermal hyperalgesia, along with immunoblotting and immunofluorescence, were used to measure remifentanil-induced hyperalgesia and changes in CaMKII phosphorylation (P-CaMKII) and total protein expression (T-CaMKII). There was a significant decrease in the PWT for mechanical stimulation at 0.5 and 2 hours after discontinuing infusion in groups R and RL (P<0.05, n=10 per group). However, there were no differences in thermal PWT in any group at any time period when compared with that of baseline. There was also a significant increase of P-CaMKII (not T-CaMKII) in S1 cortical neurons of group R (not L and RL groups) at 0 to 2 hours after discontinuing infusion when compared with that of the corresponding control group (P<0.05, n=6 per group) as determined by immunoblotting and immunofluorescence microscopy. These results suggested that the phosphorylation of CaMKII in S1 cortical neurons increases significantly during the process of remifentanil-induced hyperalgesia. The increase of CaMKII phosphorylation could be inhibited by systemic application of lidocaine. This inhibition may play a role in the antihyperalgesia effects of lidocaine.
Huang, Wan; Huang, Jingxiu; Jiang, Yu; Huang, Xuanwei; Xing, Wei; He, Yaoxuan; Ouyang, Handong
2018-05-24
The aim of this study was to investigate the mechanism of oxaliplatin in the induction of neuropathic pain as a symptom of chemotherapy-induced peripheral neuropathy (CIPN). The CIPN rat model was induced with a one-time injection of oxaliplatin, and the paw withdrawal response was determined using von Frey filaments. The paw withdrawal threshold (PWT) value was recorded and the dorsal horn (DH) and dorsal root ganglion (DRG) tissues were collected. The mRNA and protein levels of calcineurin (CaN), nuclear factor of activated T cells (NFAT), and other relevant cytokines were determined. CaN and NFAT inhibition reagents, FK506 and 11R-VIVIT, were applied in order to investigate the functions of the CaN/NFAT pathway in the neuropathic pain processes. The levels of the downstream inflammatory cytokines, TNF-α and IL-1β, were assessed by ELISA. The application of oxaliplatin reduced the value of PWT by 4 times on days 7(4±1.33)and 14(5.13±3.07)compared with the control group(14±0.91; 13.67±0.76). After treatment, the CaN mRNA level decreased and that of NFAT increased in DH and DRG tissues (P<0.05). However, treatment with FK506 and 11R-VIVIT decreased the value of PWT that had increased after oxaliplatin treatment. The expression of downstream cytokines related to the CaN/NFAT pathway increased, including CCR2, COX2, p-ERK, and p-P38 (all p<0.05). In addition, when the CaN/NFAT pathway was activated, the concentration of TNFα increased to 40pg/mg in DH tissues and 60pg/mg in DRG tissues compared with the control group, while the concentration of IL-1β increased to over 60pg/mg in DH and DRG tissues. It was the first time to prove that oxaliplatin-induced neuropathic pain was correlated to the activation of the CaN/NFAT pathway in our rat model. This finding can provide a new direction for explore the mechanism of oxaliplatin-induced neuropathic pain. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Suarez, David L.; Spackman, Erica; Jadhao, Samadhan; Dauphin, Gwenaelle; Kim-Torchetti, Mia; McGrane, James; Weaver, John; Daniels, Peter; Wong, Frank; Selleck, Paul; Wiyono, Agus; Indriani, Risa; Yupiana, Yuni; Sawitri Siregar, Elly; Prajitno, Teguh; Smith, Derek; Fouchier, Ron
2015-01-01
ABSTRACT Vaccines are used in integrated control strategies to protect poultry against H5N1 high-pathogenicity avian influenza (HPAI). H5N1 HPAI was first reported in Indonesia in 2003, and vaccination was initiated in 2004, but reports of vaccine failures began to emerge in mid-2005. This study investigated the role of Indonesian licensed vaccines, specific vaccine seed strains, and emerging variant field viruses as causes of vaccine failures. Eleven of 14 licensed vaccines contained the manufacturer's listed vaccine seed strains, but 3 vaccines contained a seed strain different from that listed on the label. Vaccines containing A/turkey/Wisconsin/1968 (WI/68), A/chicken/Mexico/28159-232/1994 (Mex/94), and A/turkey/England/N28/1973 seed strains had high serological potency in chickens (geometric mean hemagglutination inhibition [HI] titers, ≥1:169), but vaccines containing strain A/chicken/Guangdong/1/1996 generated by reverse genetics (rg; rgGD/96), A/chicken/Legok/2003 (Legok/03), A/chicken/Vietnam/C57/2004 generated by rg (rgVN/04), or A/chicken/Legok/2003 generated by rg (rgLegok/03) had lower serological potency (geometric mean HI titers, ≤1:95). In challenge studies, chickens immunized with any of the H5 avian influenza vaccines were protected against A/chicken/West Java/SMI-HAMD/2006 (SMI-HAMD/06) and were partially protected against A/chicken/Papua/TA5/2006 (Papua/06) but were not protected against A/chicken/West Java/PWT-WIJ/2006 (PWT/06). Experimental inactivated vaccines made with PWT/06 HPAI virus or rg-generated PWT/06 low-pathogenicity avian influenza (LPAI) virus seed strains protected chickens from lethal challenge, as did a combination of a commercially available live fowl poxvirus vaccine expressing the H5 influenza virus gene and inactivated Legok/03 vaccine. These studies indicate that antigenic variants did emerge in Indonesia following widespread H5 avian influenza vaccine usage, and efficacious inactivated vaccines can be developed using antigenic variant wild-type viruses or rg-generated LPAI virus seed strains containing the hemagglutinin and neuraminidase genes of wild-type viruses. IMPORTANCE H5N1 high-pathogenicity avian influenza (HPAI) virus has become endemic in Indonesian poultry, and such poultry are the source of virus for birds and mammals, including humans. Vaccination has become a part of the poultry control strategy, but vaccine failures have occurred in the field. This study identified possible causes of vaccine failure, which included the use of an unlicensed virus seed strain and induction of low levels of protective antibody because of an insufficient quantity of vaccine antigen. However, the most important cause of vaccine failure was the appearance of drift variant field viruses that partially or completely overcame commercial vaccine-induced immunity. Furthermore, experimental vaccines using inactivated wild-type virus or reverse genetics-generated vaccines containing the hemagglutinin and neuraminidase genes of wild-type drift variant field viruses were protective. These studies indicate the need for surveillance to identify drift variant viruses in the field and update licensed vaccines when such variants appear. PMID:25609805
Taati, Mina; Tamaddonfard, Esmaeal
2018-06-01
Oxytocin plays an important role in supraspinal modulation of pain. In the present study, we investigated the effects of ventrolateral orbital cortex (VLOC) microinjection of oxytocin on neuropathic pain after blockade of opioid receptors in this area and ventrolateral periaqueductal gray (vlPAG). Neuropathic pain was induced by complete transcection of preoneal and tibial branches of sciatic nerve. The VLOC and vlPAG were unilaterally (contralateral to the sciatic nerve-injured side) and bilaterally implanted with guide cannulas, respectively. Mechanical paw withdrawal threshold (PWT) was measured using von Frey filaments. Area under curve (AUC) was also calculated. Microinjection of oxytocin (5, 10 and 20 ng/site) into the VLOC increased PWT. Antiallodynia induced by oxytocin (20 ng/site) was inhibited by prior intra-VLOC administration of atosiban (an oxytocin receptor antagonist, 100 ng/site) and naloxone (an opioid receptor antagonist, 500 ng/site). Prior microinjection of naloxone (500 ng/site) into the vlPAG also inhibited antiallodynia induced by intra-VLOC microinjection of oxytocin (20 ng/site). All the VLOC and vlPAG microinjected drugs did not alter locomotor activity. It is concluded that oxytocin and its receptor may be involved in modulation of neuropathic pain at the VLOC level. Opioid receptors of VLOC and vlPAG might be involved in the antiallodynic effect of the VLOC-microinjected oxytocin. Copyright © 2017 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Interarm blood pressure difference and target organ damage in the general population.
Johansson, Jouni K; Puukka, Pauli J; Jula, Antti M
2014-02-01
The objective of the study was to investigate interarm differences of blood pressure (BP) and its determinants, and to clarify whether both arms are equally good in assessing BP and target organ damage in the general population. We studied a representative sample of Finnish adult population with 484 study participants, ages 25-74 years. BP was measured twice by an oscillometric monitor simultaneously on both arms. Study participants underwent a clinical examination including measurements of serum lipids, glucose and indicators of target organ damage. BP was 2.3/0.2 mmHg higher on right than on left arm (P < 0.001/P = 0.15 for SBP/DBP differences). SBP and DBP measured on right and left arms correlated equally with left ventricular mass index (LVMI), interventricular septal thickness (IVST), posterior wall thickness (PWT), pulse wave velocity (PWV) and albuminuria. Higher SBP level was an independent determinant of both greater systolic and diastolic interarm BP difference. Exaggerated absolute diastolic interarm BP difference (>5 mmHg) was associated with higher BMI, arm circumference, LVMI, IVST and PWT, whereas exaggerated absolute systolic interarm BP difference (>10 mmHg) was not associated with any clinical variables. There was only a small difference in BP between arms in a healthy general population. Both arms are equally good determinants of target organ damage. BP should be measured at least once on both arms and prefer the arm with higher BP readings in the future BP measurements.
Penev, Lyubomir; Ratnasingham, Sujeevan; Smith, M. Alex; Sones, Jayme; Telfer, Angela; deWaard, Jeremy R.; Hebert, Paul D. N.
2014-01-01
Abstract The Barcode of Life Data Systems (BOLD) is designed to support the generation and application of DNA barcode data, but it also provides a unique source of data with potential for many research uses. This paper explores the streamlining of BOLD specimen data to record species distributions – and its fast publication using the Biodiversity Data Journal (BDJ), and its authoring platform, the Pensoft Writing Tool (PWT). We selected a sample of 630 specimens and 10 species of a highly diverse group of parasitoid wasps (Hymenoptera: Braconidae, Microgastrinae) from the Nearctic region and used the information in BOLD to uncover a significant number of new records (of locality, provinces, territories and states). By converting specimen information (such as locality, collection date, collector, voucher depository) from the BOLD platform to the Excel template provided by the PWT, it is possible to quickly upload and generate long lists of "Material Examined" for papers discussing taxonomy, ecology and/or new distribution records of species. For the vast majority of publications including DNA barcodes, the generation and publication of ancillary data associated with the barcoded material is seldom highlighted and often disregarded, and the analysis of those data sets to uncover new distribution patterns of species has rarely been explored, even though many BOLD records represent new and/or significant discoveries. The introduction of journals specializing in – and streamlining – the release of these datasets, such as the BDJ, should facilitate thorough analysis of these records, as shown in this paper. PMID:25473326
Wang, Dong; Pan, Hao; Zhu, Hang; Zhu, Li; He, Yong-Jiang; Wang, Jian; Jia, Gao-Yong
2017-10-01
The nucleus pulposus (NP) is an avascular, hydrated tissue that permits the intervertebral disc to resist compressive loads to the spine. To determine the mechanisms by which intervertebral disc degeneration is caused by the nucleus pulposus, the expression and regulation of nuclear factor (NF)‑κB and acid sensing ion channel 3 (ASIC3) were examined. For the intervertebral disc degeneration model, NP was harvested from the tail of rats and applied to the L5 dorsal root ganglion (DRG). The mechanical pain withdrawal threshold (PWT) in NP model rats was assessed. Reverse transcription‑quantitative polymerase chain reaction and western blotting were used to examine NF‑κB and ASIC3 expression levels in DRG. Finally, the effect of the NF‑κB inhibitor pyrrolidine dithiocarbamate (PDTC) and the ASIC3 signaling pathway blocker amiloride were examined. Rats exposed to NP exhibited decreased PWT for 12 days, and NF‑κB and ASIC3 was upregulated in DRG induced by NP 14 days after surgery. After administration of amiloride and PDTC to DRG affected by NP, the levels of nitric oxide (NO), tumor necrosis factor‑α (TNF‑α), interleukin‑6 (IL‑6), NF‑κB and ASIC3 were downregulated, and the levels of aquaporin (AQP) 1 and AQP3 were significantly increased for 14 days. In conclusion, these results suggested that NF‑κB and ASIC3 may serve an important role in intervertebral disc degeneration caused by NP.
Navier-Stokes Analysis of a High Wing Transport High-Lift Configuration with Externally Blown Flaps
NASA Technical Reports Server (NTRS)
Slotnick, Jeffrey P.; An, Michael Y.; Mysko, Stephen J.; Yeh, David T.; Rogers, Stuart E.; Roth, Karlin; Baker, M.David; Nash, S.
2000-01-01
Insights and lessons learned from the aerodynamic analysis of the High Wing Transport (HWT) high-lift configuration are presented. Three-dimensional Navier-Stokes CFD simulations using the OVERFLOW flow solver are compared with high Reynolds test data obtained in the NASA Ames 12 Foot Pressure Wind Tunnel (PWT) facility. Computational analysis of the baseline HWT high-lift configuration with and without Externally Blown Flap (EBF) jet effects is highlighted. Several additional aerodynamic investigations, such as nacelle strake effectiveness and wake vortex studies, are presented. Technical capabilities and shortcomings of the computational method are discussed and summarized.
Addison, Odessa; Ryan, Alice S; Prior, Steven J; Katzel, Leslie I; Kundi, Rishi; Lal, Brajesh K; Gardner, Andrew W
Both obesity and peripheral artery disease (PAD) limit function and may work additively to reduce mobility. The purpose of this study was to compare the effects of a 6-month, center-based walking program on mobility function between adults who are weight-stable obese and nonobese with PAD. This is a secondary data analysis of 2 combined studies taken from previous work. Fifty-three adults with PAD and intermittent claudication participated in 6 months of treadmill training or standard of care. Patients were divided into 4 groups for analyses: exercise nonobese (Ex), exercise obese (ExO), standard-of-care nonobese (SC), and standard-of-care obese (SCO). Mobility was assessed by a standardized treadmill test to measure claudication onset time (COT) and peak walking time (PWT) as well as the distance walked during a 6-minute walk distance (6MWD) test. There was a significant (P < .001) interaction (intervention × obesity) effect on 6MWD, wherein both exercise groups improved (Ex = 7%, ExO = 16%; P < .02), the SC group did not change (0.9%; P > .05), and the SCO group tended to decline (-18%; P = .06). Both exercise intervention groups significantly improved COT (Ex = 92%, ExO = 102%; P < .01) and PWT (Ex = 54%, ExO = 103%; P < .001). There was no change (P > .05) in either standard-of-care group. Individuals who are obese and nonobese with PAD made similar improvements after a 6-month, center-based walking program. However, patients who are obese with PAD and do not exercise may be susceptible to greater declines in mobility. Exercise may be particularly important in patients who are obese with PAD to avoid declines in mobility.
Suzuki, S; Uchida, K; Nakayama, H
2014-07-01
Canine malignant peripheral nerve sheath tumors (MPNSTs) occur not only in the peripheral nervous system (PNS) but also in soft tissue and various organs (non-PNS). The most important diagnostic criterion is proof of peripheral nerve sheath origin. This is difficult in non-PNS MPNSTs, and its differential diagnosis is challenging. Canine perivascular wall tumors (PWTs) also commonly arise in soft tissue. Their histopathological features are quite similar to those of canine MPNSTs, making their differential diagnosis challenging. To elucidate whether the morphological features are applicable to diagnose non-PNS MPNSTs and to demonstrate useful markers for distinction between canine MPNSTs and PWTs, the authors examined 30 canine MPNSTs and 31 PWTs immunohistochemically for S100, nestin, NGFR, Olig2, claudin-1, CD57, PRX, α-SMA, desmin, and calponin. Among canine MPNSTs, the PNS tumors displayed significantly higher S100 and Olig2 expression than the non-PNS tumors. The expression levels of the other markers did not differ significantly, suggesting that the same morphological diagnostic criteria are applicable regardless of their location. The PWT cells displayed significantly weaker immunoreactivity than MPNSTs to markers used except α-SMA and desmin. Cluster analysis sorted most canine MPNSTs and PWTs into 2 distinctly different clusters, whereas 3 MPNSTs and 6 PWTs were assigned to the opposing cluster. These 3 MPNSTs were negative for almost all markers, while these 6 PWTs were positive for only neuronal markers. In particular, NGFR and Olig2 were almost negative in the rest of PWT cases. These findings suggest that NGFR and Olig2 are useful to distinguish these 2 tumors. © The Author(s) 2013.
Silva, Raquel V S; Tessarolo, Nathalia S; Pereira, Vinícius B; Ximenes, Vitor L; Mendes, Fábio L; de Almeida, Marlon B B; Azevedo, Débora A
2017-03-01
The elucidation of bio-oil composition is important to evaluate the processes of biomass conversion and its upgrading, and to suggest the proper use for each sample. Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC×GC-TOFMS) is a widely applied analytical approach for bio-oil investigation due to the higher separation and resolution capacity from this technique. This work addresses the issue of analytical performance to assess the comprehensive characterization of real bio-oil samples via GC×GC-TOFMS. The approach was applied to the individual quantification of compounds of real thermal (PWT), catalytic process (CPO), and hydrodeoxygenation process (HDO) bio-oils. Quantification was performed with reliability using the analytical curves of oxygenated and hydrocarbon standards as well as the deuterated internal standards. The limit of quantification was set at 1ngµL -1 for major standards, except for hexanoic acid, which was set at 5ngµL -1 . The GC×GC-TOFMS method provided good precision (<10%) and excellent accuracy (recovery range of 70-130%) for the quantification of individual hydrocarbons and oxygenated compounds in real bio-oil samples. Sugars, furans, and alcohols appear as the major constituents of the PWT, CPO, and HDO samples, respectively. In order to obtain bio-oils with better quality, the catalytic pyrolysis process may be a better option than hydrogenation due to the effective reduction of oxygenated compound concentrations and the lower cost of the process, when hydrogen is not required to promote deoxygenation in the catalytic pyrolysis process. Copyright © 2016 Elsevier B.V. All rights reserved.
1979-02-01
8217 -13.2 i 2 Lt 5 8 10 D Zp . I i 2 u, 6 8 Zp b. Xp = O, Yp = -1 in., 0 = O, ~ = 0 Figure 17. Continued. 10 44 5YM TUNNEL REXI ~ e 0 4" 5.0 0 A...TUNNEL REXI ~ s 0 ~T 3.~ 0 R 5.0 CN Cm 6 ,u, 2 0 -2 -u, 6 I i i I I I, t~ l I P -2 i i - 6 i Cy 2 i I ~ , r - - - I -2
SHARK: Flight Results of an UHTC-Based Nose Related to USV Hot Structures
NASA Astrophysics Data System (ADS)
Gardi, R.; Del Vecchio, A.; Russo, G.; Marino, G.
2011-05-01
In the frame of USV program, CIRA is developing different projects aimed to develop new technologies for the future hypersonic vehicles. One of these technological projects is Sharp Hot Structures (SHS) and it is aimed to the realization of innovative thermo- structures, based on innovative material solution, able to sustain the heat loads generated during the hypersonic flight. Because the slender configuration of the USV program vehicles, SHS is focused on sharp geometries, like sharp leading edges and sharp nose cones. CIRA, for many years, is investigating the effectiveness of ultra high temperature ceramic materials (UHTC) by means of numerical simulations, ground testing in plasma torch and in SCIROCCO, the 70MW plasma wind tunnel (PWT) facility at CIRA. More recently CIRA is moving the experimentation in real flight environment, boarding UHTC components on the re-entering space capsules EXPERT and SHARK. The former is a European experimental test bed boarding a couple of UHTC fins, already qualified and integrated on the vehicle. SHARK is a 20kg capsule launched on March the 26th 2010 from Kiruna with the European sounding rocker Maxus-8. During the ascent parabola, the capsule was released and successfully executed its 15 minutes ballistic flight and then re-entered in the atmosphere from a 700km altitude. The capsule has been recovered on July the 1st and all data have been acquired. All the instrumentation worked nicely and the data acquisition continued even after the landing, confirming the robustness of the design.
Inception horizon concept as a basis for sinkhole hazard mapping
NASA Astrophysics Data System (ADS)
Vouillamoz, J.; Jeannin, P.-Y.; Kopp, L.; Chantry, R.
2012-04-01
The office for natural hazards of the Vaud canton (Switzerland) is interested for a pragmatic approach to map sinkhole hazard in karst areas. A team was created by merging resources from a geoengineering company (CSD) and a karst specialist (SISKA). Large areas in Vaud territory are limestone karst in which the collapse hazard is essentially related to the collapse of soft-rocks covering underground cavities, rather than the collapse of limestone roofs or underground chambers. This statement is probably not valid for cases in gypsum and salt. Thus, for limestone areas, zones of highest danger are voids covered by a thin layer of soft-sediments. The spatial distributions of void and cover-thickness should therefore be used for the hazard assessment. VOID ASSESSMENT Inception features (IF) are millimetre to decimetre thick planes (mainly bedding but also fractures) showing a mineralogical, a granulometrical or a physical contrast with the surrounding formation that make them especially susceptible to karst development (FILIPPONI ET AL., 2009). The analysis of more than 1500 km of cave passage showed that karst conduits are mainly developed along such discrete layers within a limestone series. The so-called Karst-ALEA method (FILIPPONI ET AL., 2011) is based on this concept and aims at assessing the probability of karst conduit occurrences in the drilling of a tunnel. This approach requires as entries the identification of inception features (IF), the recognition of paleo-water-table (PWT), and their respective spatial distribution in a 3D geological model. We suggest the Karst-ALEA method to be adjusted in order to assess the void distribution in subsurface as a basis for sinkhole hazard mapping. Inception features (horizons or fractures) and paleo-water-tables (PWT) have to be first identified using visible caves and dolines. These features should then be introduced into a 3D geological model. Intersections of HI and PWT located close to landsurface are areas with a high probability of karst occurrence. ASSESSMENT OF THE SOFT-SEDIMENT COVER Classical geological investigations (mapping, DEM analysis, drilling, etc.) are used to establish a map of the thickness of soft-sediment on top of the limestone. This can also be included in the 3D model. The combination of the void and soft-sediment information in the 3D model makes it possible to derive the sinkhole hazard map. This is currently being developed and applied in the Vaud canton and first results will be presented. BIBLIOGRAPHY FILIPPONI, M., JEANNIN, P. & TACHER, L. (2009): Evidence of inception horizons in karst conduit networks. Geomorphology, 106, 86-99. FILIPPONI, M., SCHMASSMANN, S., JEANNIN, P. Y. & PARRIAUX, A. (2011): Karst - ALEA - Method a risk assessment method of karst for tunnel projects: Application to the Tunnel of Flims (GR, Switzerland). Proc. 9th conference on limestone hydrogeology. Besançon, France. p. 181-184.
Shahid, Muhammad; Subhan, Fazal; Ahmad, Nisar; Ullah, Ihsan
2017-06-05
The current therapy of neuropathic pain is inadequate and is limited by the extent of pain relief and the occurrence of dose dependant side effects. Insufficient control of pain with conventional medications prompts the use of complementary and alternative medicine therapies by patients with neuropathic pain. This study therefore investigated a standardized methanolic extract of Bacopa monnieri, a widely reputed nootropic plant, for prospective antinociceptive effect in the chronic constriction injury (CCI) model of neuropathic pain. Placement of four loose ligatures around the sciatic nerve produced partial denervation of the hindpaw in rats. Bacopa monnieri (40 and 80 mg/kg, p.o) and the positive control, gabapentin (75 mg/kg, i.p), were administered daily after CCI or sham surgery and the behavioral paradigms of static- and dynamic-allodynia (paw withdrawal threshold to von Frey filament stimulation [PWT] and paw withdrawal latency to light-brushing [PWL]), cold-allodynia (paw withdrawal duration [PWD] to acetone), heat- (PWL to heat-stimulus) and punctate-hyperalgesia (PWD to pin-prick) were assessed on days 3, 7, 14 and 21. CCI consistently generated static- (days 3-21), dynamic- (days 14-21) and cold-allodynia (days 3-21) plus heat- and mechano-hyperalgesia (days 3-21). The tested doses of Bacopa monnieri significantly attenuated the CCI-induced allodynia and hyperalgesia, exemplified by increased PWT (days 7-21), PWL to light brushing (days 14-21) and heat (days 7-21) as well as decreased PWD to pin prick and cold stimuli (days 3-21). The extract also counterbalanced the CCI-induced aberrations in the nociceptive behaviors by increasing the pain threshold to that of pre-surgery baseline. Gabapentin also afforded analogous beneficial behavioral profile but of higher magnitude. Our findings suggest that Bacopa monnieri can be used as adjuvant therapy for neuropathic pain conditions afflicted with allodynia and hyperalgesia.
Fang, J Q; Du, J Y; Fang, J F; Xiao, T; Le, X Q; Pan, N F; Yu, J; Liu, B Y
2018-05-01
Observing the parameter-specific anti-hyperalgesic effects of EA with different stimulation times and frequencies on painful hyperalgesia mediated by the level of TRPV1 and P2X3 expression in DRG after CFA injection. The model was induced by the injection of CFA in each rat's right hind paw. EA treatment was applied to the bilateral ST36 and BL60. Paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were tested with Von Frey filaments and the radiant heat source of the test instrument, respectively. TRPV1 and P2X3 expressions were measured by immunofluorescence and western blot. αβ-meATP and capsaicine combined with EA were further utilized to investigate the change in PWL. Different stimulation times (20, 30, 45 min) combined with different frequencies (2 Hz, 100 Hz, 2/100 Hz) of EA have analgesic effects on the PWT and PWL; however, the level of the hypoalgesic efficacy of EA was primarily associated with EA frequency. The analgesic effect of EA was better at 100 Hz than at 2 Hz. The level of regulation of 100 Hz EA on TRPV1 and P2X3 in DRG was greater than that of 2 Hz. Furthermore, both TRPV1 agonist and P2X3 agonist may impair the level of EA analgesia. EA has a parameter-specific effect on chronic inflammatory pain relief, which primarily depend on the stimulation frequency and not on the stimulation time at a certain stimulation time. The parameter-specific analgesic effect of EA is at least partially related to mediation of the protein level of TRPV1 and P2X3 expression in DRG of CFA rats. Copyright © 2018 Elsevier Inc. All rights reserved.
Caspani, Ombretta; Reitz, Marie-Céline; Ceci, Angelo; Kremer, Andreas; Treede, Rolf-Detlef
2014-09-01
Depression and anxiety are common comorbidities of neuropathic pain (NP). Pharmacological preclinical studies on NP have given abundant information on the effects of drugs on reflex measures of stimulus-evoked pain. However, few preclinical studies focus on relief of comorbidities evoked by NP. In this study, we investigated the effects of tramadol on nociceptive reflex, depression-associated and anxiety-related behaviors in a NP model in rats. We used chronic constriction injury (CCI) of the sciatic nerve as an animal model of neuropathic pain. We performed electronic von Frey tests (evF) to measure mechanical sensitivity, elevated plus maze tests (EPM) to record anxiety-related behaviors and forced swimming tests (FST) to evaluate depression-associated behaviors. In the evF, CCI rats showed a decrease of 82% of the paw withdrawal threshold (PWT) compared to sham (P<0.001). Tramadol increased the PWT by 336% in CCI rats (P<0.001) and by 16% in sham (P<0.05). On the EPM, CCI rats spent 45% less time than sham on the open arms of the maze (P<0.05). Tramadol increased the time spent on the open arms of CCI rats by 67% (P<0.05) and had no significant effect on sham. During the FST, CCI rats showed 28% longer immobility than sham (P<0.01). Tramadol reduced the immobility time in CCI rats by 22% (P<0.001), while having no effect on sham. Tramadol reversed the changes in mechanical sensitivity as well as anxiety-related and depression-associated behaviors that are caused by injury of the sciatic nerve with only minor effects in the absence of injury. These data suggest that tramadol relieves chronic pain and its indirect consequences and comorbidities, and that this study also is a model for pharmacological studies seeking to investigate the effect of drugs on the major disabling symptoms of NP. Copyright © 2014 Elsevier Inc. All rights reserved.
Community-based walking exercise for peripheral artery disease: An exploratory pilot study
Mays, Ryan J; Hiatt, William R; Casserly, Ivan P; Rogers, R Kevin; Main, Deborah S; Kohrt, Wendy M; Ho, P Michael; Regensteiner, Judith G
2016-01-01
Supervised walking exercise is an effective treatment to improve walking ability of patients with peripheral artery disease (PAD), but few exercise programs in community settings have been effective. The aim of this study was to determine the efficacy of a community-based walking exercise program with training, monitoring, and coaching (TMC) components to improve exercise performance and patient-reported outcomes in PAD patients. This was a randomized, controlled trial including PAD patients who previously received peripheral endovascular therapy or presented with stable claudication. Patients randomized (n=25) to the intervention group received a comprehensive community-based walking exercise program with elements of TMC over 14 weeks. Patients in the control group did not receive treatment beyond standard advice to walk. The primary outcome in the intent-to-treat (ITT) analyses was peak walking time (PWT) on a graded treadmill. Secondary outcomes included claudication onset time (COT) and patient-reported outcomes assessed via the Walking Impairment Questionnaire (WIQ). Intervention group patients (n=10) did not significantly improve PWT when compared with the control group patients (n=10) (mean±standard error: +2.1±0.7 vs. 0.0±0.7 min, p=0.052). Changes in COT and WIQ scores were greater for intervention patients compared with control patients (COT: +1.6±0.8 vs. −0.6±0.7 min, p=0.045; WIQ: +18.3±4.2 vs. −4.6±4.2%, p=0.001). This pilot using a walking program with TMC and an ITT analyses did not improve the primary outcome in PAD patients. Other walking performance and patient self-reported outcomes were improved following exercise in community settings. Further study is needed to determine whether this intervention improves outcomes in a trial employing a larger sample size. PMID:25755148
Srebro, Dragana P; Vučković, Sonja M; Savić Vujović, Katarina R; Prostran, Milica Š
2015-02-01
Previous studies have shown that while magnesium, an antagonist of the glutamate subtype of N-methyl-D-aspartate receptors, possesses analgesic properties, it can induce writhing in rodents. The aim of this study was to determine the effect and mechanism of action of local (intraplantar) administration of magnesium sulfate (MS) on the paw withdrawal threshold (PWT) to mechanical stimuli. The PWT was evaluated by the electronic von Frey test in male Wistar rats. Tested drugs were either co-administered intraplantarly (i.pl.) with MS or given into the contralateral paw to exclude systemic effects. MS at doses of 0.5, 1.5, 3 and 6.2 mg/paw (i.pl.) induced a statistically significant (as compared to 0.9% NaCl) and dose-dependent mechanical hyperalgesia. Only isotonic MS (250 mmol/l or 6.2% or 6.2 mg/paw) induced mechanical hyperalgesia that lasted at least six hours. Isotonic MS-induced mechanical hyperalgesia was reduced in a dose-dependent manner by co-injection of camphor, a non-selective TRPA1 antagonist (0.3, 1 and 2.5 μg/paw), MK-801, a NMDA receptor antagonist (0.001, 0.025 and 0.1 μg/paw), L-NAME, a non-selective nitric oxide (NO) synthase inhibitor (20, 50 and 100 μg/paw), ARL 17477, a selective neuronal NOS inhibitor (5.7 and 17 μg/paw), SMT, a selective inducible NOS inhibitor (1 and 2.78 μg/paw), and methylene blue, a guanylate cyclase inhibitor (5, 20 and 125 μg/paw). Drugs injected into the contralateral hind paw did not produce significant effects. These results suggest that an i.pl. injection of MS produces local peripheral mechanical hyperalgesia via activation of peripheral TRPA1 and NMDA receptors and peripheral production of NO. Copyright © 2014 Elsevier Inc. All rights reserved.
EH 11n modes E type in the disk and washer accelerating structure
NASA Astrophysics Data System (ADS)
Andreev, V. G.; Belugin, V. M.; Daikovsky, A. G.; Esin, S. K.; Kravchuk, L. V.; Paramonov, V. V.; Ryabov, A. D.
1983-01-01
The disk and washer accelerating structure has a great deal to do with high-beta structures progress. The frequencies and electromagnetic fields for modes, which have a different number of azimuthal variations, are calculated to determined the dispersion properties and other characteristics of parasitic modes in a disc and washer accelerating structure. The main attention was given to the accelerating structure of the linear accelerator of the Institute for Nuclear Research (INR) of the USSR Academy of Sciences. Modification of a structure for PIGMI accelerator (LANL, USA) is considered briefly.
Advanced accelerator and mm-wave structure research at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya Ivanovna
2016-06-22
This document outlines acceleration projects and mm-wave structure research performed at LANL. The motivation for PBG research is described first, with reference to couplers for superconducting accelerators and structures for room-temperature accelerators and W-band TWTs. These topics are then taken up in greater detail: PBG structures and the MIT PBG accelerator; SRF PBG cavities at LANL; X-band PBG cavities at LANL; and W-band PBG TWT at LANL. The presentation concludes by describing other advanced accelerator projects: beam shaping with an Emittance Exchanger, diamond field emitter array cathodes, and additive manufacturing of novel accelerator structures.
Simulation Studies of the Dielectric Grating as an Accelerating and Focusing Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soong, Ken; Peralta, E.A.; Byer, R.L.
A grating-based design is a promising candidate for a laser-driven dielectric accelerator. Through simulations, we show the merits of a readily fabricated grating structure as an accelerating component. Additionally, we show that with a small design perturbation, the accelerating component can be converted into a focusing structure. The understanding of these two components is critical in the successful development of any complete accelerator. The concept of accelerating electrons with the tremendous electric fields found in lasers has been proposed for decades. However, until recently the realization of such an accelerator was not technologically feasible. Recent advances in the semiconductor industry,more » as well as advances in laser technology, have now made laser-driven dielectric accelerators imminent. The grating-based accelerator is one proposed design for a dielectric laser-driven accelerator. This design, which was introduced by Plettner, consists of a pair of opposing transparent binary gratings, illustrated in Fig. 1. The teeth of the gratings serve as a phase mask, ensuring a phase synchronicity between the electromagnetic field and the moving particles. The current grating accelerator design has the drive laser incident perpendicular to the substrate, which poses a laser-structure alignment complication. The next iteration of grating structure fabrication seeks to monolithically create an array of grating structures by etching the grating's vacuum channel into a fused silica wafer. With this method it is possible to have the drive laser confined to the plane of the wafer, thus ensuring alignment of the laser-and-structure, the two grating halves, and subsequent accelerator components. There has been previous work using 2-dimensional finite difference time domain (2D-FDTD) calculations to evaluate the performance of the grating accelerator structure. However, this work approximates the grating as an infinite structure and does not accurately model a realizable structure. In this paper, we will present a 3-dimensional frequency-domain simulation of both the infinite and the finite grating accelerator structure. Additionally, we will present a new scheme for a focusing structure based on a perturbation of the accelerating structure. We will present simulations of this proposed focusing structure and quantify the quality of the focusing fields.« less
Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure
Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; ...
2016-02-10
We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less
On the relationship between collisionless shock structure and energetic particle acceleration
NASA Technical Reports Server (NTRS)
Kennel, C. F.
1983-01-01
Recent experimental research on bow shock structure and theoretical studies of quasi-parallel shock structure and shock acceleration of energetic particles were reviewed, to point out the relationship between structure and particle acceleration. The phenomenological distinction between quasi-parallel and quasi-perpendicular shocks that has emerged from bow shock research; present efforts to extend this work to interplanetary shocks; theories of particle acceleration by shocks; and particle acceleration to shock structures using multiple fluid models were discussed.
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.
2015-01-01
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410
Terahertz-driven linear electron acceleration
Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...
2015-10-06
The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less
High gradient tests of metallic mm-wave accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2017-05-10
This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less
High gradient tests of metallic mm-wave accelerating structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon
This study explores the physics of vacuum rf breakdowns in high gradient mm-wave accelerating structures. We performed a series of experiments with 100 GHz and 200 GHz metallic accelerating structures, at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. This paper presents the experimental results of rf tests of 100 GHz travelling-wave accelerating structures, made of hard copper-silver alloy. The results are compared with pure hard copper structures. The rf fields were excited by the FACET ultra-relativistic electron beam. The accelerating structures have open geometries, 10 cm long, composed of two halves separated bymore » a variable gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changed from 90 GHz to 140 GHz. The measured frequency and pulse length are consistent with our simulations. When the beam travels off-axis, a deflecting field is induced in addition to the decelerating longitudinal field. We measured the deflecting forces by observing the displacement of the electron bunch and used this measurement to verify the expected accelerating gradient. We present the first quantitative measurement of rf breakdown rates in 100 GHz copper-silver accelerating structure, which was 10 –3 per pulse, with peak electric field of 0.42 GV/m, an accelerating gradient of 127 MV/m, at a pulse length of 2.3 ns. The goal of our studies is to understand the physics of gradient limitations in order to increase the energy reach of future accelerators.« less
Multipactor Physics, Acceleration, and Breakdown in Dielectric-Loaded Accelerating Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fischer, Richard P.; Gold, Steven H.
2016-07-01
The objective of this 3-year program is to study the physics issues associated with rf acceleration in dielectric-loaded accelerating (DLA) structures, with a focus on the key issue of multipactor loading, which has been found to cause very significant rf power loss in DLA structures whenever the rf pulsewidth exceeds the multipactor risetime (~10 ns). The experiments are carried out in the X-band magnicon laboratory at the Naval Research Laboratory (NRL) in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC, who develop the test structures with support from the DoE SBIR program. There are two main elements inmore » the research program: (1) high-power tests of DLA structures using the magnicon output (20 MW @11.4 GHz), and (2) tests of electron acceleration in DLA structures using relativistic electrons from a compact X-band accelerator. The work during this period has focused on a study of the use of an axial magnetic field to suppress multipactor in DLA structures, with several new high power tests carried out at NRL, and on preparation of the accelerator for the electron acceleration experiments.« less
Investigations into dual-grating THz-driven accelerators
NASA Astrophysics Data System (ADS)
Wei, Y.; Ischebeck, R.; Dehler, M.; Ferrari, E.; Hiller, N.; Jamison, S.; Xia, G.; Hanahoe, K.; Li, Y.; Smith, J. D. A.; Welsch, C. P.
2018-01-01
Advanced acceleration technologies are receiving considerable interest in order to miniaturize future particle accelerators. One such technology is the dual-grating dielectric structures, which can support accelerating fields one to two orders of magnitude higher than the metal RF cavities in conventional accelerators. This opens up the possibility of enabling high accelerating gradients of up to several GV/m. This paper investigates numerically a quartz dual-grating structure which is driven by THz pulses to accelerate electrons. Geometry optimizations are carried out to achieve the trade-offs between accelerating gradient and vacuum channel gap. A realistic electron bunch available from the future Compact Linear Accelerator for Research and Applications (CLARA) is loaded into an optimized 100-period dual-grating structure for a detailed wakefield study. A THz pulse is then employed to interact with this CLARA bunch in the optimized structure. The computed beam quality is analyzed in terms of emittance, energy spread and loaded accelerating gradient. The simulations show that an accelerating gradient of 348 ± 12 MV/m with an emittance growth of 3.0% can be obtained.
Prototyping high-gradient mm-wave accelerating structures
Nanni, Emilio A.; Dolgashev, Valery A.; Haase, Andrew; ...
2017-01-01
We present single-cell accelerating structures designed for high-gradient testing at 110 GHz. The purpose of this work is to study the basic physics of ultrahigh vacuum RF breakdown in high-gradient RF accelerators. The accelerating structures are π-mode standing-wave cavities fed with a TM 01 circular waveguide. The structures are fabricated using precision milling out of two metal blocks, and the blocks are joined with diffusion bonding and brazing. The impact of fabrication and joining techniques on the cell geometry and RF performance will be discussed. First prototypes had a measured Q 0 of 2800, approaching the theoretical design value ofmore » 3300. The geometry of these accelerating structures are as close as practical to singlecell standing-wave X-band accelerating structures more than 40 of which were tested at SLAC. This wealth of X-band data will serve as a baseline for these 110 GHz tests. Furthermore, the structures will be powered with short pulses from a MW gyrotron oscillator. RF power of 1 MW may allow an accelerating gradient of 400 MeV/m to be reached.« less
NASA Technical Reports Server (NTRS)
Price, E. A.; Hull, J. J.; Rawls, E. A.
1971-01-01
A dual purpose test was conducted in the propulsion wind tunnel (PWT) to evaluate the performance of an aerospike engine, in the presence of a booster, and obtain forebody and base pressure distributions on the booster in which it is installed. The test item was a 2.5 percent scaled replica of the SERV booster employing a 5 percent spike length aerospike engine installed in the base region of the model. Cold flow air was used to simulate engine jet operation. Two booster configurations were investigated, one on which reentry aerospike engine thermal protection doors were installed, and another where the doors were removed. The data presented are representative of the latter configuration for a Mach number range of 0 to 1.25 at angles of attack of 0 and 8 degrees and 0 degrees angle of sideslip.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, C.; Konecny, R.; Antipov, S.
2013-11-18
Efforts by a number of institutions to develop a Dielectric-Loaded Accelerating (DLA) structure capable of supporting high gradient acceleration when driven by an external radio frequency source have been ongoing over the past decade. Single surface resonant multipactor has been previously identified as one of the major limitations on the practical application of DLA structures in electron accelerators. In this paper, we report the results of an experiment that demonstrated suppression of multipactor growth in an X-band DLA structure through the use of an applied axial magnetic field. This represents an advance toward the practical use of DLA structures inmore » many accelerator applications.« less
NASA Astrophysics Data System (ADS)
Chernousov, Yu. D.; Shebolaev, I. V.; Ikryanov, I. M.
2018-01-01
An electron beam with a high (close to 100%) coefficient of electron capture into the regime of acceleration has been obtained in a linear electron accelerator based on a parallel coupled slow-wave structure, electron gun with microwave-controlled injection current, and permanent-magnet beam-focusing system. The high capture coefficient was due to the properties of the accelerating structure, beam-focusing system, and electron-injection system. Main characteristics of the proposed systems are presented.
Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byer, Robert L.
2013-11-07
The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-11-30
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
The Psychology of Working Theory.
Duffy, Ryan D; Blustein, David L; Diemer, Matthew A; Autin, Kelsey L
2016-03-01
In the current article, we build on research from vocational psychology, multicultural psychology, intersectionality, and the sociology of work to construct an empirically testable Psychology of Working Theory (PWT). Our central aim is to explain the work experiences of all individuals, but particularly people near or in poverty, people who face discrimination and marginalization in their lives, and people facing challenging work-based transitions for which contextual factors are often the primary drivers of the ability to secure decent work. The concept of decent work is defined and positioned as the central variable within the theory. A series of propositions is offered concerning (a) contextual predictors of securing decent work, (b) psychological and economic mediators and moderators of these relations, and (c) outcomes of securing decent work. Recommendations are suggested for researchers seeking to use the theory and practical implications are offered concerning counseling, advocacy, and public policy. (c) 2016 APA, all rights reserved).
Ultra-High Gradient S-band Linac for Laboratory and Industrial Applications
NASA Astrophysics Data System (ADS)
Faillace, L.; Agustsson, R.; Dolgashev, V.; Frigola, P.; Murokh, A.; Rosenzweig, J.; Yakimenko, V.
2010-11-01
A strong demand for high gradient structures arises from the limited real estate available for linear accelerators. RadiaBeam Technologies is developing a Doubled Energy Compact Accelerator (DECA) structure: an S-band standing wave electron linac designed to operate at accelerating gradients of up to 50 MV/m. In this paper, we present the radio-frequency design of the DECA S-band accelerating structure, operating at 2.856 GHz in the π-mode. The structure design is heavily influenced by NLC collaboration experience with ultra high gradient X-band structures; S-band, however, is chosen to take advantage of commonly available high power S-band klystrons.
Intermittent nature of acceleration in near wall turbulence.
Lee, Changhoon; Yeo, Kyongmin; Choi, Jung-Il
2004-04-09
Using direct numerical simulation of a fully developed turbulent channel flow, we investigate the behavior of acceleration near a solid wall. We find that acceleration near the wall is highly intermittent and the intermittency is in large part associated with the near wall organized coherent turbulence structures. We also find that acceleration of large magnitude is mostly directed towards the rotation axis of the coherent vortical structures, indicating that the source of the intermittent acceleration is the rotational motion associated with the vortices that causes centripetal acceleration.
A new compact structure for a high intensity low-energy heavy-ion accelerator
NASA Astrophysics Data System (ADS)
Wang, Zhi-Jun; He, Yuan; A. Kolomiets, A.; Liu, Shu-Hui; Du, Xiao-Nan; Jia, Huan; Li, Chao; Wang, Wang-Sheng; Chen, Xi-Meng
2013-12-01
A new compact accelerating structure named Hybrid RFQ is proposed to accelerate a high-intensity low-energy heavy ion beam in HISCL (High Intensive heavy ion SuperConducting Linear accelerator), which is an injector of HIAF (Heavy Ion Advanced Research Facility). It is combined by an alternative series of acceleration gaps and RFQ sections. The proposed structure has a high accelerating ability compared with a conventional RFQ and is more compact than traditional DTLs. A Hybrid RFQ is designed to accelerate 238U34+ from 0.38 MeV/u to 1.33 MeV/u. The operation frequency is described to be 81.25 MHz at CW (continuous wave) mode. The design beam current is 1.0 mA. The results of beam dynamics and RF simulation of the Hybrid RFQ show that the structure has a good performance at the energy range for ion acceleration. The emittance growth is less than 5% in both directions and the RF power is less than 150 kW. In this paper, the results of beam dynamics and RF simulation of the Hybrid RFQ are presented.
High Gradient Accelerator Research
DOE Office of Scientific and Technical Information (OSTI.GOV)
Temkin, Richard
The goal of the MIT program of research on high gradient acceleration is the development of advanced acceleration concepts that lead to a practical and affordable next generation linear collider at the TeV energy level. Other applications, which are more near-term, include accelerators for materials processing; medicine; defense; mining; security; and inspection. The specific goals of the MIT program are: • Pioneering theoretical research on advanced structures for high gradient acceleration, including photonic structures and metamaterial structures; evaluation of the wakefields in these advanced structures • Experimental research to demonstrate the properties of advanced structures both in low-power microwave coldmore » test and high-power, high-gradient test at megawatt power levels • Experimental research on microwave breakdown at high gradient including studies of breakdown phenomena induced by RF electric fields and RF magnetic fields; development of new diagnostics of the breakdown process • Theoretical research on the physics and engineering features of RF vacuum breakdown • Maintaining and improving the Haimson / MIT 17 GHz accelerator, the highest frequency operational accelerator in the world, a unique facility for accelerator research • Providing the Haimson / MIT 17 GHz accelerator facility as a facility for outside users • Active participation in the US DOE program of High Gradient Collaboration, including joint work with SLAC and with Los Alamos National Laboratory; participation of MIT students in research at the national laboratories • Training the next generation of Ph. D. students in the field of accelerator physics.« less
Method for computationally efficient design of dielectric laser accelerator structures
Hughes, Tyler; Veronis, Georgios; Wootton, Kent P.; ...
2017-06-22
Here, dielectric microstructures have generated much interest in recent years as a means of accelerating charged particles when powered by solid state lasers. The acceleration gradient (or particle energy gain per unit length) is an important figure of merit. To design structures with high acceleration gradients, we explore the adjoint variable method, a highly efficient technique used to compute the sensitivity of an objective with respect to a large number of parameters. With this formalism, the sensitivity of the acceleration gradient of a dielectric structure with respect to its entire spatial permittivity distribution is calculated by the use of onlymore » two full-field electromagnetic simulations, the original and ‘adjoint’. The adjoint simulation corresponds physically to the reciprocal situation of a point charge moving through the accelerator gap and radiating. Using this formalism, we perform numerical optimizations aimed at maximizing acceleration gradients, which generate fabricable structures of greatly improved performance in comparison to previously examined geometries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon
This study explores the physics of vacuum rf breakdowns in subterahertz high-gradient traveling-wave accelerating structures. We present the experimental results of rf tests of 200 GHz metallic accelerating structures, made of copper and copper-silver. These experiments were carried out at the Facility for Advanced Accelerator Experimental Tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. The traveling-wave structure is an open geometry, 10 cm long, composed of two halves separated by a gap. The rf frequency of the fundamental accelerating mode depends on the gap size and can be changedmore » from 160 to 235 GHz. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measure the deflecting forces by observing the displacement of the electron bunch and use this measurement to verify the expected accelerating gradient. Furthermore, we present the first quantitative measurement of rf breakdown rates in 200 GHz metallic accelerating structures. The breakdown rate of the copper structure is 10 –2 per pulse, with a peak surface electric field of 500 MV/m and a rf pulse length of 0.3 ns, which at a relatively large gap of 1.5 mm, or one wavelength, corresponds to an accelerating gradient of 56 MV/m. For the same breakdown rate, the copper-silver structure has a peak electric field of 320 MV/m at a pulse length of 0.5 ns. For a gap of 1.1 mm, or 0.74 wavelengths, this corresponds to an accelerating gradient of 50 MV/m.« less
Wilson, L; Lero, Donna; Smofsky, Allan; Gross, Deborah; Haines, Jess
2016-11-10
Parenting programs integrating general parenting and health behaviour messaging may be an effective childhood obesity prevention strategy. The current study explored workplaces as an alternate setting to deliver parenting programs. This study involved two phases. The objective of the first phase was to explore interest in and preferred delivery mode of a workplace program that addresses general parenting and health behaviours. The objective of the second phase was to adapt and test the feasibility and acceptability of a pre-existing program that has been successfully run in community settings for parents in their workplace. To achieve the first objective, we conducted 9 individual or small group qualitative interviews with 11 workplace representatives involved in employee wellness/wellness programming from 8 different organizations across Southwestern Ontario. To achieve the second objective, we adapted a pre-existing program incorporating workplace representatives' suggestions to create Parents Working Together (PWT). We then tested the program using a pre/post uncontrolled feasibility trial with 9 employees of a large manufacturing company located in Guelph, Ontario. Results from the qualitative phase showed that a workplace parenting program that addresses general parenting and health behaviour messages is of interest to workplaces. Results from the feasibility trial suggest that PWT is feasible and well received by participants; attendance rates were high with 89 % of the participants attending 5 or more sessions and 44 % attending all 7 sessions offered. All participants stated they would recommend the program to co-workers. Just over half of our parent participants were male (55.6 %), which is a unique finding as the majority of existing parenting programs engage primarily mothers. Impact evaluation results suggest that changes in children's and parents' weight-related behaviours, as well as parents' reports of family interfering with work were in the desired direction post-intervention; however, confidence intervals substantially overlapped zero. Contrary to expectations, parents also reported an increase in restrictive feeding practices. Our results indicate that a workplace-based program that addresses general parenting skills and weight-related behaviours may be a feasible way to engage and educate parents, including fathers. A full-scale trial is needed to examine the effectiveness of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, L; Ballangrud, A; Mechalakos, J
Purpose: For left-sided PU patients requiring CW and nodal irradiation, sometimes partial wide tangents (PWT) are not feasible due to abnormal chest wall contour or heart position close to the anterior chest wall or unusual wide excision scar. We developed an energy modulated electron chest wall irradiation technique that will achieve heart sparing. Methods: Ten left-sided PU patients were selected for this dosimetry study. If PWT were used, the amount of the ipsilateral lung would be ranged 3.4 to 4.4 cm, and the amount of heart would be ranged 1.3 to 3.8 cm. We used electron paired fields that matchedmore » on the skin to achieve dose conformity to the chest wall. The enface electron fields were designed at extended SSD from a single isocenter and gantry angle with different energy beams using different cutout. Lower energy was used in the central chest wall part and higher energy was used in the periphery of the chest wall. Bolus was used for the electron fields to ensure adequate skin dose coverage. The electron fields were matched to the photon supra-clavicle field in the superior region. Daily field junctions were used to feather the match lines between all the fields. Target volumes and normal tissues were drawn according to institutional protocols. Prescription dose was 2Gy per fraction for a total 50Gy. Dose calculations were done with Eclipse EMC-11031 for Electron and AAA-11031 for photons. Results: Six patients were planned using 6/9MeV, three using 9/12MeV and one 6/12MeV. Target volumes achieved adequate coverage. For heart, V30Gy, V20Gy and Mean Dose were 0.6%±0.6%, 2.7%±1.7%, and 3.0Gy±0.8Gy respectively. For ipsilateral lung, V50Gy, V20Gy, V10Gy and V5Gy were 0.9%±1.1%, 34.3%±5.1%, 51.6%±6.3% and 64.1%±7.5% respectively. Conclusion: For left-sided PU patients with unusual anatomy, energy modulated electron CW irradiation technique can achieve heart sparing with acceptable lung dose.« less
NASA Astrophysics Data System (ADS)
Mededovic Thagard, Selma; Stratton, Gunnar R.; Dai, Fei; Bellona, Christopher L.; Holsen, Thomas M.; Bohl, Douglas G.; Paek, Eunsu; Dickenson, Eric R. V.
2017-01-01
To determine the types of applications for which plasma-based water treatment (PWT) is best suited, the treatability of 23 environmental contaminants was assessed through treatment in a gas discharge reactor with argon bubbling, termed the enhanced-contact reactor. The contaminants were treated in a mixture to normalize reaction conditions and convective transport limitations. Treatability was compared in terms of the observed removal rate constant (k obs). To characterize the influence of interfacial processes on k obs, a model was developed that accurately predicts k obs for each compound, as well as the contributions to k obs from each of the three general degradation mechanisms thought to occur at or near the gas-liquid interface: ‘sub-surface’, ‘surface’ and ‘above-surface’. Sub-surface reactions occur just underneath the gas-liquid interface between the contaminants and dissolved plasma-generated radicals, contributing significantly to the removal of compounds that lack surfactant-like properties and so are not highly concentrated at the interface. Surface reactions occur at the interface between the contaminants and dissolved radicals, contributing significantly to the removal of surfactant-like compounds that have high interfacial concentrations. The contaminants’ interfacial concentrations were calculated using surface-activity parameters determined through surface tension measurements. Above-surface reactions are proposed to take place in the plasma interior between highly energetic plasma species and exposed portions of compounds that extend out of the interface. This mechanism largely accounts for the degradation of surfactant-like contaminants that contain highly hydrophobic perfluorocarbon groups, which are most likely to protrude from the interface. For a few compounds, the degree of exposure to the plasma interior was supported by new and previously reported molecular dynamics simulations results. By reviewing the predicted contributions from the three general mechanisms, it was determined that surface concentration is the dominant factor determining a compound’s treatability. These insights indicate that PWT would be most viable for the treatment of surfactant-like contaminants. , which features invited work from the best early-career researchers working within the scope of J. Phys. D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Selma Mededovic Thagard was selected by the Editorial Board of J. Phys. D as an Leader.
Source-to-accelerator quadrupole matching section for a compact linear accelerator
NASA Astrophysics Data System (ADS)
Seidl, P. A.; Persaud, A.; Ghiorso, W.; Ji, Q.; Waldron, W. L.; Lal, A.; Vinayakumar, K. B.; Schenkel, T.
2018-05-01
Recently, we presented a new approach for a compact radio-frequency (RF) accelerator structure and demonstrated the functionality of the individual components: acceleration units and focusing elements. In this paper, we combine these units to form a working accelerator structure: a matching section between the ion source extraction grids and the RF-acceleration unit and electrostatic focusing quadrupoles between successive acceleration units. The matching section consists of six electrostatic quadrupoles (ESQs) fabricated using 3D-printing techniques. The matching section enables us to capture more beam current and to match the beam envelope to conditions for stable transport in an acceleration lattice. We present data from an integrated accelerator consisting of the source, matching section, and an ESQ doublet sandwiched between two RF-acceleration units.
Configuration management and automatic control of an augmentor wing aircraft with vectored thrust
NASA Technical Reports Server (NTRS)
Cicolani, L. S.; Sridhar, B.; Meyer, G.
1979-01-01
An advanced structure for automatic flight control logic for powered-lift aircraft operating in terminal areas is under investigation at Ames Research Center. This structure is based on acceleration control; acceleration commands are constructed as the sum of acceleration on the reference trajectory and a corrective feedback acceleration to regulate path tracking errors. The central element of the structure, termed a Trimmap, uses a model of the aircraft aerodynamic and engine forces to calculate the control settings required to generate the acceleration commands. This report describes the design criteria for the Trimmap and derives a Trimmap for Ames experimental augmentor wing jet STOL research aircraft.
Schooling in Times of Acceleration
ERIC Educational Resources Information Center
Buddeberg, Magdalena; Hornberg, Sabine
2017-01-01
Modern societies are characterised by forms of acceleration, which influence social processes. Sociologist Hartmut Rosa has systematised temporal structures by focusing on three categories of social acceleration: technical acceleration, acceleration of social change, and acceleration of the pace of life. All three processes of acceleration are…
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.; ...
2016-03-01
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Ziran; Lee, Chunghun H.; Wootton, Kent P.
Silicon woodpile photonic crystals provide a base structure that can be used to build a three-dimensional dielectric waveguide system for high-gradient laser driven acceleration. A new woodpile waveguide design that hosts a phase synchronous, centrally confined accelerating mode is proposed. Comparing with previously discovered silicon woodpile accelerating modes, this mode shows advantages in terms of better electron beam loading and higher achievable acceleration gradient. Several traveling-wave coupler design schemes developed for multi-cell RF cavity accelerators are adapted to the woodpile power coupler design for this new accelerating mode. Design of a forward coupled, highly efficient silicon woodpile accelerator is achieved.more » Simulation shows high efficiency of over 75% of the drive laser power coupled to this fundamental accelerating mode, with less than 15% backward wave scattering. The estimated acceleration gradient, when the coupler structure is driven at the damage threshold fluence of silicon at its operating 1.506 μm wavelength, can reach 185 MV/m. Lastly, a 17-layer woodpile waveguide structure was successfully fabricated, and the measured bandgap is in excellent agreement with simulation.« less
Advances in high gradient normal conducting accelerator structures
Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.
2018-03-09
Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less
Advances in high gradient normal conducting accelerator structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya Ivanovna; Dolgashev, Valery A.; Tantawi, Sami G.
Here, this paper reviews the current state-of-the-art in understanding the phenomena of ultra-high vacuum radio-frequency (rf) breakdown in accelerating structures and the efforts to improve stable operation of the structures at accelerating gradients above 100 MV/m. Numerous studies have been conducted recently with the goal of understanding the dependence of the achievable accelerating gradients and breakdown rates on the frequency of operations, the geometry of the structure, material and method of fabrication, and operational temperature. Tests have been conducted with single standing wave accelerator cells as well as with the multi-cell traveling wave structures. Notable theoretical effort was directed atmore » understanding the physical mechanisms of the rf breakdown and its statistical behavior. Finally, the achievements presented in this paper are the result of the large continuous self-sustaining collaboration of multiple research institutions in the United States and worldwide.« less
Field characteristics of an alvarez-type linac structure having chain-like electrode array
DOE Office of Scientific and Technical Information (OSTI.GOV)
Odera, M.; Goto, A.; Hemmi, M.
1985-10-01
A chain-like electrode configuration in an Alvarez-type linac cavity was studied by models. The structure has been devised to get a moderate shunt impedance together with simplicity of operation, in ion velocity region of more than a few percent of that of light by incorporating focusing scheme by high frequency quadrupolar fields into an TM-010 accelerating field of an Alvarez linac. It has a chain-like electrode array instead of drift tubes containing quadrupole lenses for ordinary linacs. The chain-like electrode structure generates along its central axis, high frequency acceleration and focusing fields alternately, separating the acceleration and focusing functions inmore » space. The separation discriminates this structure from spatially uniform acceleration and focusing scheme of the RFQs devised by Kapchinsky and Teplyakov. It gives beam acceleration effects different from those by conventional linacs and reveals possibility of getting a high acceleration efficiency. Resonant frequency spectrum was found relatively simple by measurements on high frequency models. Separation of unwanted modes from the TM-010 acceleration mode is large; a few 10 MHz, at least. Tilt of the acceleration field is not very sensitive to pertubation in gap capacitance for the TM-010 mode.« less
Development of a 20 MeV Dielectric-Loaded Test Accelerator
NASA Astrophysics Data System (ADS)
Gold, Steven H.; Kinkead, Allen K.; Gai, Wei; Power, John G.; Konecny, Richard; Jing, Chunguang; Long, Jidong; Tantawi, Sami G.; Nantista, Christopher D.; Bruce, Ralph W.; Fliflet, Arne W.; Lombardi, Marcie; Lewis, David
2006-11-01
This paper presents a progress report on a joint project by the Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), to develop a dielectric-loaded test accelerator in the magnicon facility at NRL. The accelerator will be powered by an experimental 11.424-GHz magnicon amplifier that presently produces 25 MW of output power in a ˜250-ns pulse at up to 10 Hz. The accelerator will include a 5-MeV electron injector originally developed at the Tsinghua University in Beijing, China, and can incorporate DLA structures up to 0.5 m in length. The DLA structures are being developed by ANL, and shorter test structures fabricated from a variety of dielectric materials have undergone testing at NRL at gradients up to ˜8 MV/m. SLAC has developed components to distribute the power from the two magnicon output arms to the injector and to the DLA accelerating structure with separate control of the power ratio and relative phase. RWBruce Associates, Inc., working with NRL, has investigated means to join short ceramic sections into a continuous accelerator tube by a brazing process using an intense 83-GHz beam. The installation and testing of the first dielectric-loaded test accelerator, including injector, DLA test structure, and spectrometer, should take place within the next year.
Basic features of the STS/Spacelab vibration environment
NASA Technical Reports Server (NTRS)
Baugher, Charles R.; Ramachandran, N.
1994-01-01
The Space Shuttle acceleration environment is characterized. The acceleration environment is composed of a residual or quasi-steady component and higher frequency components induced by vehicle structural modes and the operation of onboard machinery. Quasi-steady accelerations are generally due to atmospheric drag, gravity gradient effects, and rotational forces. These accelerations tend to vary with the orbital frequency (approx. 10(exp -4) Hz) and have magnitudes less than or equal to 10(exp -6) g(sub 0) (where 1 g(sub 0) is terrestrial gravity). Higher frequency g-jitter is characterized by oscillatory disturbances in the 1-100 Hz range and transient components. Oscillatory accelerations are related to the response of large flexible structures like antennae, the Spacelab module, and the Orbiter itself, and to the operation of rotating machinery. The Orbiter structural modes in the 1-10 Hz range, are excited by oscillatory and transient disturbances and tend to dominate the energy spectrum of the acceleration environment. A comparison of the acceleration measurements from different Space Shuttle missions reveals the characteristic signature of the structural modes of the Orbiter overlaid with mission specific hardware induced disturbances and their harmonics. Transient accelerations are usually attributed to crew activity and Orbiter thruster operations. During crew sleep periods, the acceleration levels are typically on the order of 10(exp -6) g(sub 0) (1 micro-g). Crew work and exercise tend to raise the accelerations to the 10(exp -3) g(sub 0) (1 milli-g) level. Vernier reaction control system firings tend to cause accelerations of 10(exp -4) g(sub 0), while primary reaction control system and Orbiter maneuvering system firings cause accelerations as large as 10(exp -2) g(sub 0). Vibration isolation techniques (both active and passive systems) used during crew exercise have been shown to significantly reduce the acceleration magnitudes.
Studies on the S-band bunching system with the Hybrid Bunching-accelerating Structure
NASA Astrophysics Data System (ADS)
Pei, Shi-Lun; Gao, Bin
2018-04-01
Generally, a standard bunching system is composed of a standing-wave (SW) pre-buncher (PB), a traveling-wave (TW) buncher (B) and a standard accelerating structure. In the industrial area, the bunching system is usually simplified by eliminating the PB and integrating the B and the standard accelerating structure together to form a β-varied accelerating structure. The beam capturing efficiency for this kind of simplified system is often worse than that for the standard one. The hybrid buncher (HB) has been proved to be a successful attempt to reduce the cost but preserve the beam quality as much as possible. Here we propose to exclusively simplify the standard bunching system by integrating the PB, the B and the standard accelerating structure together to form a Hybrid Bunching-accelerating Structure (HBaS). Compared to the standard bunching system, the one based on the HBaS is more compact, and the cost is lowered to the largest extent. With almost the same beam transportation efficiency (∼70%) from the electron gun to the linac exit, the peak-to-peak (p-to-p) beam energy spread and the 1 σ emittance of the linac with the HBaS are ∼20% and ∼60% bigger than those of the linac based on the split PB/B/standard accelerating structure system. Nonetheless, the proposed HBaS can be widely applied in the industrial linacs to greatly increase the beam capturing efficiency without fairly increasing the construction cost.
NASA Astrophysics Data System (ADS)
Trachtenberg, I.
How a reliability model might be developed with new data from accelerated stress testing, failure mechanisms, process control monitoring, and test structure evaluations is illustrated. The effects of the acceleration of temperature on operating life is discussed. Test structures that will further accelerate the failure rate are discussed. Corrosion testing is addressed. The uncoated structure is encapsulated in a variety of mold compounds and subjected to pressure-cooker testing.
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement structures and/or materials. However, running an APT experiment is expensive. It requires costly accelerated loading devic...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guo-Bo; Key Laboratory for Laser Plasmas; Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com
2016-03-14
The acceleration of electron beams with multiple transverse structures in wakefields driven by Laguerre-Gaussian pulses has been studied through three-dimensional (3D) particle-in-cell simulations. Under different laser-plasma conditions, the wakefield shows different transverse structures. In general cases, the wakefield shows a donut-like structure and it accelerates the ring-shaped hollow electron beam. When a lower plasma density or a smaller laser spot size is used, besides the donut-like wakefield, a central bell-like wakefield can also be excited. The wake sets in the center of the donut-like wake. In this case, both a central on-axis electron beam and a ring-shaped electron beam aremore » simultaneously accelerated. Further, reducing the plasma density or laser spot size leads to an on-axis electron beam acceleration only. The research is beneficial for some potential applications requiring special pulse beam structures, such as positron acceleration and collimation.« less
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2016-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an Autoregressive Moving Average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. shape sensing, fiber optic strain sensor, system equivalent reduction and expansion process.
Self-shielded electron linear accelerators designed for radiation technologies
NASA Astrophysics Data System (ADS)
Belugin, V. M.; Rozanov, N. E.; Pirozhenko, V. M.
2009-09-01
This paper describes self-shielded high-intensity electron linear accelerators designed for radiation technologies. The specific property of the accelerators is that they do not apply an external magnetic field; acceleration and focusing of electron beams are performed by radio-frequency fields in the accelerating structures. The main characteristics of the accelerators are high current and beam power, but also reliable operation and a long service life. To obtain these characteristics, a number of problems have been solved, including a particular optimization of the accelerator components and the application of a variety of specific means. The paper describes features of the electron beam dynamics, accelerating structure, and radio-frequency power supply. Several compact self-shielded accelerators for radiation sterilization and x-ray cargo inspection have been created. The introduced methods made it possible to obtain a high intensity of the electron beam and good performance of the accelerators.
NASA Astrophysics Data System (ADS)
Agapitov, O. V.; Mozer, F.; Artemyev, A.; Krasnoselskikh, V.; Lejosne, S.
2014-12-01
A huge number of different non-linear structures (double layers, electron holes, non-linear whistlers, etc) have been observed by the electric field experiment on the Van Allen Probes in conjunction with relativistic electron acceleration in the Earth's outer radiation belt. These structures, found as short duration (~0.1 msec) quasi-periodic bursts of electric field in the high time resolution electric field waveform, have been called Time Domain Structures (TDS). They can quite effectively interact with radiation belt electrons. Due to the trapping of electrons into these non-linear structures, they are accelerated up to ~10 keV and their pitch angles are changed, especially for low energies (˜1 keV). Large amplitude electric field perturbations cause non-linear resonant trapping of electrons into the effective potential of the TDS and these electrons are then accelerated in the non-homogeneous magnetic field. These locally accelerated electrons create the "seed population" of several keV electrons that can be accelerated by coherent, large amplitude, upper band whistler waves to MeV energies in this two step acceleration process. All the elements of this chain acceleration mechanism have been observed by the Van Allen Probes.
Acceleration and Velocity Sensing from Measured Strain
NASA Technical Reports Server (NTRS)
Pak, Chan-Gi; Truax, Roger
2015-01-01
A simple approach for computing acceleration and velocity of a structure from the strain is proposed in this study. First, deflection and slope of the structure are computed from the strain using a two-step theory. Frequencies of the structure are computed from the time histories of strain using a parameter estimation technique together with an autoregressive moving average model. From deflection, slope, and frequencies of the structure, acceleration and velocity of the structure can be obtained using the proposed approach. Simple harmonic motion is assumed for the acceleration computations, and the central difference equation with a linear autoregressive model is used for the computations of velocity. A cantilevered rectangular wing model is used to validate the simple approach. Quality of the computed deflection, acceleration, and velocity values are independent of the number of fibers. The central difference equation with a linear autoregressive model proposed in this study follows the target response with reasonable accuracy. Therefore, the handicap of the backward difference equation, phase shift, is successfully overcome.
Choosing order of operations to accelerate strip structure analysis in parameter range
NASA Astrophysics Data System (ADS)
Kuksenko, S. P.; Akhunov, R. R.; Gazizov, T. R.
2018-05-01
The paper considers the issue of using iteration methods in solving the sequence of linear algebraic systems obtained in quasistatic analysis of strip structures with the method of moments. Using the analysis of 4 strip structures, the authors have proved that additional acceleration (up to 2.21 times) of the iterative process can be obtained during the process of solving linear systems repeatedly by means of choosing a proper order of operations and a preconditioner. The obtained results can be used to accelerate the process of computer-aided design of various strip structures. The choice of the order of operations to accelerate the process is quite simple, universal and could be used not only for strip structure analysis but also for a wide range of computational problems.
rf breakdown tests of mm-wave metallic accelerating structures
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-01-06
In this study, we explore the physics and frequency-scaling of vacuum rf breakdowns at sub-THz frequencies. We present the experimental results of rf tests performed in metallic mm-wave accelerating structures. These experiments were carried out at the facility for advanced accelerator experimental tests (FACET) at the SLAC National Accelerator Laboratory. The rf fields were excited by the FACET ultrarelativistic electron beam. We compared the performances of metal structures made with copper and stainless steel. The rf frequency of the fundamental accelerating mode, propagating in the structures at the speed of light, varies from 115 to 140 GHz. The traveling wavemore » structures are 0.1 m long and composed of 125 coupled cavities each. We determined the peak electric field and pulse length where the structures were not damaged by rf breakdowns. We calculated the electric and magnetic field correlated with the rf breakdowns using the FACET bunch parameters. The wakefields were calculated by a frequency domain method using periodic eigensolutions. Such a method takes into account wall losses and is applicable to a large variety of geometries. The maximum achieved accelerating gradient is 0.3 GV/m with a peak surface electric field of 1.5 GV/m and a pulse length of about 2.4 ns.« less
Development of a Dielectric-Loaded Accelerator Test Facility Based on an X-Band Magnicon Amplifier
NASA Astrophysics Data System (ADS)
Gold, S. H.; Kinkead, A. K.; Gai, W.; Power, J. G.; Konecny, R.; Jing, C.; Tantawi, S. G.; Nantista, C. D.; Hu, Y.; Du, X.; Tang, C.; Lin, Y.; Bruce, R. W.; Bruce, R. L.; Fliflet, A. W.; Lewis, D.
2006-01-01
The Naval Research Laboratory (NRL) and Argonne National Laboratory (ANL), in collaboration with the Stanford Linear Accelerator Center (SLAC), are developing a dielectric-loaded accelerator (DLA) test facility powered by the 11.424-GHz magnicon amplifier that was developed jointly by NRL and Omega-P, Inc. Thus far, DLA structures developed by ANL have been tested at the NRL Magnicon Facility without injected electrons, including tests of alumina and magnesium calcium titanate structures at gradients up to ˜8 MV/m. The next step is to inject electrons in order to build a compact DLA test accelerator. The Accelerator Laboratory of Tsinghua University in Beijing, China has developed a 5-MeV electron injector for the accelerator, and SLAC is developing a means to combine the two magnicon output arms, and to drive the injector and an accelerator section with separate control of the power ratio and relative phase. Also, RWBruce Associates, working with NRL, is developing a means to join ceramic tubes to produce long accelerating sections using a microwave brazing process. The installation and commissioning of the first dielectric-loaded test accelerator, including injector, DLA structure, and spectrometer, should take place within the next year.
Sharp plasma pinnacle structure based on shockwave for an improved laser wakefield accelerator
NASA Astrophysics Data System (ADS)
Fang, Ming; Zhang, Zhijun; Wang, Wentao; Liu, Jiansheng; Li, Ruxin
2018-07-01
We created a sharp plasma pinnacle structure for localized electron injection and controlled acceleration in a laser wakefield accelerator. The formation of this shockwave-based pinnacle structure was investigated using aerodynamic theory. Details and scaling laws for the shockwave angle, shock position, shock width, and density ratio were experimentally and theoretically presented. Such work is crucial to yielding an expected plasma density distribution in a laser–plasma experiment but has had little discussion in the literature. Compared with the commonly used shock downramp structure, the particle-in-cell simulations demonstrated that the e beam injected in the created pinnacle structure could be accelerated to higher energy with much smaller root-mean-square relative energy spread. Moreover, this study indicated that the beam charge and transverse emittance can be tuned by the shock angle.
Accelerated Test Method for Corrosion Protective Coatings Project
NASA Technical Reports Server (NTRS)
Falker, John; Zeitlin, Nancy; Calle, Luz
2015-01-01
This project seeks to develop a new accelerated corrosion test method that predicts the long-term corrosion protection performance of spaceport structure coatings as accurately and reliably as current long-term atmospheric exposure tests. This new accelerated test method will shorten the time needed to evaluate the corrosion protection performance of coatings for NASA's critical ground support structures. Lifetime prediction for spaceport structure coatings has a 5-year qualification cycle using atmospheric exposure. Current accelerated corrosion tests often provide false positives and negatives for coating performance, do not correlate to atmospheric corrosion exposure results, and do not correlate with atmospheric exposure timescales for lifetime prediction.
NASA Astrophysics Data System (ADS)
Kutsaev, Sergey V.; Agustsson, Ronald; Boucher, Salime; Fischer, Richard; Murokh, Alex; Mustapha, Brahim; Nassiri, Alireza; Ostroumov, Peter N.; Plastun, Alexander; Savin, Evgeny; Smirnov, Alexander Yu.
2017-12-01
The development of high-gradient accelerating structures for low-β particles is the key for compact hadron linear accelerators. A particular example of such a machine is a hadron therapy linac, which is a promising alternative to cyclic machines, traditionally used for cancer treatment. Currently, the practical utilization of linear accelerators in radiation therapy is limited by the requirement to be under 50 m in length. A usable device for cancer therapy should produce 200-250 MeV protons and/or 400 - 450 MeV /u carbon ions, which sets the requirement of having 35 MV /m average "real-estate gradient" or gradient per unit of actual accelerator length, including different accelerating sections, focusing elements and beam transport lines, and at least 50 MV /m accelerating gradients in the high-energy section of the linac. Such high accelerating gradients for ion linacs have recently become feasible for operations at S-band frequencies. However, the reasonable application of traditional S-band structures is practically limited to β =v /c >0.4 . However, the simulations show that for lower phase velocities, these structures have either high surface fields (>200 MV /m ) or low shunt impedances (<35 M Ω /m ). At the same time, a significant (˜10 % ) reduction in the linac length can be achieved by using the 50 MV /m structures starting from β ˜0.3 . To address this issue, we have designed a novel radio frequency structure where the beam is synchronous with the higher spatial harmonic of the electromagnetic field. In this paper, we discuss the principles of this approach, the related beam dynamics and especially the electromagnetic and thermomechanical designs of this novel structure. Besides the application to ion therapy, the technology described in this paper can be applied to future high gradient normal conducting ion linacs and high energy physics machines, such as a compact hadron collider. This approach preserves linac compactness in settings with limited space availability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Li, Z.; Ng, C.
The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedentedmore » accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Shichun; Geng, Rongli
2015-09-01
Reliable acceleration of low- to medium-beta proton or heavy ion species is needed for future high-current superconducting radio frequency (SRF) accelerators. Due to the high-Q nature of an SRF resonator, it is sensitive to many factors such as electron loading (from either the accelerated beam or from parasitic field emitted electrons), mechanical vibration, and liquid helium bath pressure fluctuation etc. To increase the stability against those factors, a mechanically strong and stable RF structure is desirable. Guided by this consideration, multi-fold symmetry element-loaded SRF structures (MFSEL), cylindrical tanks with multiple (n>=3) rod-shaped radial elements, are being explored. The top goalmore » of its optimization is to improve mechanical stability. A natural consequence of this structure is a lowered ratio of the peak surface electromagnetic field to the acceleration gradient as compared to the traditional spoke cavity. A disadvantage of this new structure is an increased size for a fixed resonant frequency and optimal beta. This paper describes the optimization of the electro-magnetic (EM) design and preliminary mechanical analysis for such structures.« less
State of the art in electromagnetic modeling for the Compact Linear Collider
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, Arno; Kabel, Andreas; Lee, Lie-Quan
SLAC's Advanced Computations Department (ACD) has developed the parallel 3D electromagnetic time-domain code T3P for simulations of wakefields and transients in complex accelerator structures. T3P is based on state-of-the-art Finite Element methods on unstructured grids and features unconditional stability, quadratic surface approximation and up to 6th-order vector basis functions for unprecedented simulation accuracy. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with fast turn-around times, aiding the design of the next generation of accelerator facilities. Applications include simulations of the proposed two-beam accelerator structures for the Compact Linear Collider (CLIC) - wakefieldmore » damping in the Power Extraction and Transfer Structure (PETS) and power transfer to the main beam accelerating structures are investigated.« less
High power tests of an electroforming cavity operating at 11.424 GHz
NASA Astrophysics Data System (ADS)
Dolgashev, V. A.; Gatti, G.; Higashi, Y.; Leonardi, O.; Lewandowski, J. R.; Marcelli, A.; Rosenzweig, J.; Spataro, B.; Tantawi, S. G.; Yeremian, D. A.
2016-03-01
The achievement of ultra high accelerating gradients is mandatory in order to fabricate compact accelerators at 11.424 GHz for scientific and industrial applications. An extensive experimental and theoretical program to determine a reliable ultra high gradient operation of the future linear accelerators is under way in many laboratories. In particular, systematic studies on the 11.424 GHz frequency accelerator structures, R&D on new materials and the associated microwave technology are in progress to achieve accelerating gradients well above 120 MeV/m. Among the many, the electroforming procedure is a promising approach to manufacture high performance RF devices in order to avoid the high temperature brazing and to produce precise RF structures. We report here the characterization of a hard high gradient RF accelerating structure at 11.424 GHz fabricated using the electroforming technique. Low-level RF measurements and high power RF tests carried out at the SLAC National Accelerator Laboratory on this prototype are presented and discussed. In addition, we present also a possible layout where the water-cooling of irises based on the electroforming process has been considered for the first time.
Calculation of longitudinal and transverse wake-field effects in dielectric structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gai, W.
1989-01-01
The electro-magnetic radiation of a charged particle passing through a dielectric structure has many applications to accelerator physics. Recently a new acceleration scheme, called the dielectric wake field accelerator, has been proposed. It also can be used as a pick up system for a storage ring because of its slow wave characteristics. In order to study these effects in detail, in this paper we will calculate the wake field effects produced in a dielectric structure by a charged particle. 8 refs., 2 figs.
Electron acceleration behind a wavy dipolarization front
NASA Astrophysics Data System (ADS)
Wu, Mingyu; Lu, Quanming; Volwerk, Martin; Nakamura, Rumi; Zhang, Tielong
2018-02-01
In this paper, with the in-situ observations from the Time History of Events and Macroscale Interactions during Substorms (THEMIS) probes we report a wavy dipolarization front (DF) event, where the DF has different magnetic structures and electron distributions at different y positions in the Geocentric Solar Magnetospheric (GSM) coordinates. At y ˜2.1RE (RE is the radius of Earth), the DF has a relatively simple structure, which is similar to that of a conventional DF. At y ˜3.0RE, the DF is revealed to have a multiple DF structure, where the plasma exhibits a vortex flow. Such a wavy DF could be the results of the interchange instability. The different structure of such a wavy DF at different sites has a great effect on electron acceleration. Fermi acceleration can occur at the site of the DF with a simple or multiple DF structure, while betatron acceleration as a local process has the contribution to energetic electrons only at the site of the DF with a simple structure.
The laser accelerator-another unicorn in the garden
NASA Astrophysics Data System (ADS)
Hand, L. N.
1981-07-01
Some proposed techniques for using laser beams to accelerate charged particles was reviewed. Two specific ideas for grating type accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a multipass collider; a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak power requirements to be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.
Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY
NASA Astrophysics Data System (ADS)
Nie, Y. C.; Assmann, R.; Dorda, U.; Marchetti, B.; Weikum, M.; Zhu, J.; Hüning, M.
2016-09-01
Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.
Traveling wave linear accelerator with RF power flow outside of accelerating cavities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgashev, Valery A.
A high power RF traveling wave accelerator structure includes a symmetric RF feed, an input matching cell coupled to the symmetric RF feed, a sequence of regular accelerating cavities coupled to the input matching cell at an input beam pipe end of the sequence, one or more waveguides parallel to and coupled to the sequence of regular accelerating cavities, an output matching cell coupled to the sequence of regular accelerating cavities at an output beam pipe end of the sequence, and output waveguide circuit or RF loads coupled to the output matching cell. Each of the regular accelerating cavities hasmore » a nose cone that cuts off field propagating into the beam pipe and therefore all power flows in a traveling wave along the structure in the waveguide.« less
The development and initial validation of the Decent Work Scale.
Duffy, Ryan D; Allan, Blake A; England, Jessica W; Blustein, David L; Autin, Kelsey L; Douglass, Richard P; Ferreira, Joaquim; Santos, Eduardo J R
2017-03-01
Decent work is positioned as the centerpiece of the recently developed Psychology of Working Theory (PWT; Duffy, Blustein, Diemer, & Autin, 2016). However, to date, no instrument exists which assesses all 5 components of decent work from a psychological perspective. In the current study, we developed the Decent Work Scale (DWS) and demonstrated several aspects of validity with 2 samples of working adults. In Study 1 (N = 275), a large pool of items were developed and exploratory factor analysis was conducted resulting in a final 15-item scale with 5 factors/subscales corresponding to the 5 components of decent work: (a) physically and interpersonally safe working conditions, (b) access to health care, (c) adequate compensation, (d) hours that allow for free time and rest, and (e) organizational values that complement family and social values. In Study 2 (N = 589), confirmatory factor analysis demonstrated that a 5-factor, bifactor model offered the strongest and most parsimonious fit to the data. Configural, metric, and scalar invariance models were tested demonstrating that the structure of the instrument did not differ across gender, income, social class, and majority/minority racial/ethnic groups. Finally, the overall scale score and 5 subscale scores correlated in the expected directions with similar constructs supporting convergent and discriminant evidence of validity, and subscale scores evidenced predictive validity in the prediction of job satisfaction, work meaning, and withdrawal intentions. The development of this scale provides a useful tool for researchers and practitioners seeking to assess the attainment of decent work among employed adults. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Summary Report of Mission Acceleration Measurements for STS-79. Launched 16 Sep. 1996
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Moskowitz, Milton E.; Hrovat, Kenneth; Reckart, Timothy A.
1997-01-01
The Space Acceleration Measurement System (SAMS) collected acceleration data in support of the Mechanics of Granular Materials experiment during the STS-79 Mir docking mission, September 1996. STS-79 was the first opportunity to record SAMS data on an Orbiter while it was docked to Mir. Crew exercise activities in the Atlantis middeck and the Mir base module are apparent in the data. The acceleration signals related to the Enhanced Orbiter Refrigerator Freezer had different characteristics when comparing the data recorded on Atlantis on STS-79 with the data recorded on Mir during STS-74. This is probably due, at least in part, to different transmission paths and SAMS sensor head mounting mechanisms. Data collected on Atlantis during the STS-79 docking indicate that accelerations due to vehicle and solar array structural modes from Mir transfer to Atlantis and that the structural modes of the Atlantis-Mir complex are different from those of either vehicle independently. A 0.18 Hz component of the SAMS data, present while the two vehicles were docked, was probably caused by the Mir solar arrays. Compared to Atlantis structural modes of about 3.9 and 4.9 Hz, the Atlantis-Mir complex has structural components of about 4.5 and 5.1 Hz. After docking, apparent structural modes appeared in the data at about 0.8 and 1.8 Hz. The appearance, disappearance, and change in the structural modes during the docking and undocking phases of the joint Atlantis-Mir operations indicates that the structural modes of the two spacecraft have an effect on the microgravity environment of each other. The transfer of structural and equipment related accelerations between vehicles is something that should be considered in the International Space Station era.
Fabrication and Characterization of Woodpile Structures for Direct Laser Acceleration
DOE Office of Scientific and Technical Information (OSTI.GOV)
McGuinness, C.; Colby, E.; England, R.J.
2010-08-26
An eight and nine layer three dimensional photonic crystal with a defect designed specifically for accelerator applications has been fabricated. The structures were fabricated using a combination of nanofabrication techniques, including low pressure chemical vapor deposition, optical lithography, and chemical mechanical polishing. Limits imposed by the optical lithography set the minimum feature size to 400 nm, corresponding to a structure with a bandgap centered at 4.26 {micro}m. Reflection spectroscopy reveal a peak in reflectivity about the predicted region, and good agreement with simulation is shown. The eight and nine layer structures will be aligned and bonded together to form themore » complete seventeen layer woodpile accelerator structure.« less
Novel Linac Structures For Low-Beta Ions And For Muons
NASA Astrophysics Data System (ADS)
Kurennoy, Sergey S.
2011-06-01
Development of two innovative linacs is discussed. (1) High-efficiency normal-conducting accelerating structures for ions with beam velocities in the range of a few percent of the speed of light. Two existing accelerator technologies—the H-mode resonator cavities and transverse beam focusing by permanent-magnet quadrupoles (PMQ)—are merged to create efficient structures for light-ion beams of considerable currents. The inter-digital H-mode accelerator with PMQ focusing (IH-PMQ) has the shunt impedance 10-20 times higher than the standard drift-tube linac. Results of the combined 3-D modeling for an IH-PMQ accelerator tank—electromagnetic computations, beam-dynamics simulations, and thermal-stress analysis—are presented. H-PMQ structures following a short RFQ accelerator can be used in the front end of ion linacs or in stand-alone applications like a compact mobile deuteron-beam accelerator up to a few MeV. (2) A large-acceptance high-gradient linac for accelerating low-energy muons in a strong solenoidal magnetic field. When a proton beam hits a target, many low-energy pions are produced almost isotropically, in addition to a small number of high-energy pions in the forward direction. We propose to collect and accelerate copious muons created as the low-energy pions decay. The acceleration should bring muons to a kinetic energy of ˜200 MeV in about 10 m, where both an ionization cooling of the muon beam and its further acceleration in a superconducting linac become feasible. One potential solution is a normal-conducting linac consisting of independently fed 0-mode RF cavities with wide apertures closed by thin metal windows or grids. The guiding magnetic field is provided by external superconducting solenoids. The cavity choice, overall linac design considerations, and simulation results of muon acceleration are presented. Potential applications range from basic research to homeland defense to industry and medicine.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
Persaud, A.; Ji, Q.; Feinberg, E.; ...
2017-06-08
Here, a new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number ofmore » parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further red ucing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Finally, ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.« less
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure
NASA Astrophysics Data System (ADS)
Persaud, A.; Ji, Q.; Feinberg, E.; Seidl, P. A.; Waldron, W. L.; Schenkel, T.; Lal, A.; Vinayakumar, K. B.; Ardanuc, S.; Hammer, D. A.
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
A compact linear accelerator based on a scalable microelectromechanical-system RF-structure.
Persaud, A; Ji, Q; Feinberg, E; Seidl, P A; Waldron, W L; Schenkel, T; Lal, A; Vinayakumar, K B; Ardanuc, S; Hammer, D A
2017-06-01
A new approach for a compact radio-frequency (RF) accelerator structure is presented. The new accelerator architecture is based on the Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) structure that was first developed in the 1980s. The MEQALAC utilized RF resonators producing the accelerating fields and providing for higher beam currents through parallel beamlets focused using arrays of electrostatic quadrupoles (ESQs). While the early work obtained ESQs with lateral dimensions on the order of a few centimeters, using a printed circuit board (PCB), we reduce the characteristic dimension to the millimeter regime, while massively scaling up the potential number of parallel beamlets. Using Microelectromechanical systems scalable fabrication approaches, we are working on further reducing the characteristic dimension to the sub-millimeter regime. The technology is based on RF-acceleration components and ESQs implemented in the PCB or silicon wafers where each beamlet passes through beam apertures in the wafer. The complete accelerator is then assembled by stacking these wafers. This approach has the potential for fast and inexpensive batch fabrication of the components and flexibility in system design for application specific beam energies and currents. For prototyping the accelerator architecture, the components have been fabricated using the PCB. In this paper, we present proof of concept results of the principal components using the PCB: RF acceleration and ESQ focusing. Ongoing developments on implementing components in silicon and scaling of the accelerator technology to high currents and beam energies are discussed.
CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications.
Lei, Guoqing; Dou, Yong; Wan, Wen; Xia, Fei; Li, Rongchun; Ma, Meng; Zou, Dan
2012-01-01
Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications.
High-Power Testing of 11.424-GHz Dielectric-Loaded Accelerating Structures
NASA Astrophysics Data System (ADS)
Gold, Steven; Gai, Wei
2001-10-01
Argonne National Laboratory has previously described the design, construction, and bench testing of an X-band traveling-wave accelerating structure loaded with a permittivity=20 dielectric (P. Zou et al., Rev. Sci. Instrum. 71, 2301, 2000.). We describe a new program to build a test accelerator using this structure. The accelerator will be powered by the high-power 11.424-GHz radiation from the magnicon facility at the Naval Research Laboratory ( O.A. Nezhevenko et al., Proc. PAC 2001, in press). The magnicon is expected to provide up to 30 MW from each of two WR-90 output waveguide arms in pulses of up to 1 microsecond duration, permitting tests up to a gradient of 40 MV/m. Still higher power pulses (100-500 MW) may be available at the output of an active pulse compressor driven by the magnicon ( A.L. Vikharev et al., Proc. 9th Workshop on Advanced Accelerator Concepts.).
Selfsimilar time dependent shock structures
NASA Astrophysics Data System (ADS)
Beck, R.; Drury, L. O.
1985-08-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Selfsimilar time dependent shock structures
NASA Technical Reports Server (NTRS)
Beck, R.; Drury, L. O.
1985-01-01
Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.
Cantilever Beam Natural Frequencies in Centrifugal Inertia Field
NASA Astrophysics Data System (ADS)
Jivkov, V. S.; Zahariev, E. V.
2018-03-01
In the advanced mechanical science the well known fact is that the gravity influences on the natural frequencies and modes even for the vertical structures and pillars. But, the condition that should be fulfilled in order for the gravity to be taken into account is connected with the ration between the gravity value and the geometrical cross section inertia. The gravity is related to the earth acceleration but for moving structures there exist many other acceleration exaggerated forces and such are forces caused by the centrifugal accelerations. Large rotating structures, as wind power generators, chopper wings, large antennas and radars, unfolding space structures and many others are such examples. It is expected, that acceleration based forces influence on the structure modal and frequency properties, which is a subject of the present investigations. In the paper, rotating beams are subject to investigations and modal and frequency analysis is carried out. Analytical dependences for the natural resonances are derived and their dependences on the angular velocity and centrifugal accelerations are derived. Several examples of large rotating beams with different orientations of the rotating shaft are presented. Numerical experiments are conducted. Time histories of the beam tip deflections, that depict the beam oscillations are presented.
Parasitic modes removal out of operating mode neighbourhood in the DAW accelerating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andreev, V.G.; Belugin, V.M.; Esin, S.K.
1983-08-01
The disk and washer (DAW) accelerating structure finds its use in a number of new projects (PIGMI, SNQ etc ). It composes the main part of the accelerating structure of the meson factory now under construction in the Institute for Nuclear Research (INR), Moscow. It is known that the parasitic modes with azimuthal field variations exist at the operating mode region. In this report different methods of the parasitic modes frequency shift are considered. The main attention is given to the resonant methods, which are the most efficient.
Experimental Results from a Resonant Dielectric Laser Accelerator
NASA Astrophysics Data System (ADS)
Yoder, Rodney; McNeur, Joshua; Sozer, Esin; Travish, Gil; Hazra, Kiran Shankar; Matthews, Brian; England, Joel; Peralta, Edgar; Wu, Ziran
2015-04-01
Laser-powered accelerators have the potential to operate with very large accelerating gradients (~ GV/m) and represent a path toward extremely compact colliders and accelerator technology. Optical-scale laser-powered devices based on field-shaping structures (known as dielectric laser accelerators, or DLAs) have been described and demonstrated recently. Here we report on the first experimental results from the Micro-Accelerator Platform (MAP), a DLA based on a slab-symmetric resonant optical-scale structure. As a resonant (rather than near-field) device, the MAP is distinct from other DLAs. Its cavity resonance enhances its accelerating field relative to the incoming laser fields, which are coupled efficiently through a diffractive optic on the upper face of the device. The MAP demonstrated modest accelerating gradients in recent experiments, in which it was powered by a Ti:Sapphire laser well below its breakdown limit. More detailed results and some implications for future developments will be discussed. Supported in part by the U.S. Defense Threat Reduction Agency (UCLA); U.S. Dept of Energy (SLAC); and DARPA (SLAC).
Zha, Hao; Latina, Andrea; Grudiev, Alexej; ...
2016-01-20
The baseline design of CLIC (Compact Linear Collider) uses X-band accelerating structures for its main linacs. In order to maintain beam stability in multibunch operation, long-range transverse wakefields must be suppressed by 2 orders of magnitude between successive bunches, which are separated in time by 0.5 ns. Such strong wakefield suppression is achieved by equipping every accelerating structure cell with four damping waveguides terminated with individual rf loads. A beam-based experiment to directly measure the effectiveness of this long-range transverse wakefield and benchmark simulations was made in the FACET test facility at SLAC using a prototype CLIC accelerating structure. Furthermore,more » the experiment showed good agreement with the simulations and a strong suppression of the wakefields with an unprecedented minimum resolution of 0.1 V/(pC mm m).« less
Electron bunch structure in energy recovery linac with high-voltage dc photoelectron gun
NASA Astrophysics Data System (ADS)
Saveliev, Y. M.; Jackson, F.; Jones, J. K.; McKenzie, J. W.
2016-09-01
The internal structure of electron bunches generated in an injector line with a dc photoelectron gun is investigated. Experiments were conducted on the ALICE (accelerators and lasers in combined experiments) energy recovery linac at Daresbury Laboratory. At a relatively low dc gun voltage of 230 kV, the bunch normally consisted of two beamlets with different electron energies, as well as transverse and longitudinal characteristics. The beamlets are formed at the head and the tail of the bunch. At a higher gun voltage of 325 kV, the beam substructure is much less pronounced and could be observed only at nonoptimal injector settings. Experiments and computer simulations demonstrated that the bunch structure develops during the initial beam acceleration in the superconducting rf booster cavity and can be alleviated either by increasing the gun voltage to the highest possible level or by controlling the beam acceleration from the gun voltage in the first accelerating structure.
Development of a wireless displacement measurement system using acceleration responses.
Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F
2013-07-01
Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system.
Development of a Wireless Displacement Measurement System Using Acceleration Responses
Park, Jong-Woong; Sim, Sung-Han; Jung, Hyung-Jo; Spencer, Billie F.
2013-01-01
Displacement measurements are useful information for various engineering applications such as structural health monitoring (SHM), earthquake engineering and system identification. Most existing displacement measurement methods are costly, labor-intensive, and have difficulties particularly when applying to full-scale civil structures because the methods require stationary reference points. Indirect estimation methods converting acceleration to displacement can be a good alternative as acceleration transducers are generally cost-effective, easy to install, and have low noise. However, the application of acceleration-based methods to full-scale civil structures such as long span bridges is challenging due to the need to install cables to connect the sensors to a base station. This article proposes a low-cost wireless displacement measurement system using acceleration. Developed with smart sensors that are low-cost, wireless, and capable of on-board computation, the wireless displacement measurement system has significant potential to impact many applications that need displacement information at multiple locations of a structure. The system implements an FIR-filter type displacement estimation algorithm that can remove low frequency drifts typically caused by numerical integration of discrete acceleration signals. To verify the accuracy and feasibility of the proposed system, laboratory tests are carried out using a shaking table and on a three storey shear building model, experimentally confirming the effectiveness of the proposed system. PMID:23881123
Measurement of Thermal Dependencies of PBG Fiber Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Laouar, Rachik
Photonic crystal fibers (PCFs) represent a class of optical fibers which have a wide spectrum of applications in the telecom and sensing industries. Currently, the Advanced Accelerator Research Department at SLAC is developing photonic bandgap particle accelerators, which are photonic crystal structures with a central defect used to accelerate electrons and achieve high longitudinal electric fields. Extremely compact and less costly than the traditional accelerators, these structures can support higher accelerating gradients and will open a new era in high energy physics as well as other fields of science. Based on direct laser acceleration in dielectric materials, the so calledmore » photonic band gap accelerators will benefit from mature laser and semiconductor industries. One of the key elements to direct laser acceleration in hollow core PCFs, is maintaining thermal and structural stability. Previous simulations demonstrate that accelerating modes are sensitive to the geometry of the defect region and the variations in the effective index. Unlike the telecom modes (for which over 95% of the energy propagates in the hollow core) most of the power of these modes is located in the glass at the periphery of the central hole which has a higher thermal constant than air ({gamma}{sub SiO{sub 2}} = 1.19 x 10{sup -6} 1/K, {gamma}{sub air} = -9 x 10{sup -7} 1/K with {gamma} = dn/dT). To fully control laser driven acceleration, we need to evaluate the thermal and structural consequences of such modes on the PCFs. We are conducting series of interferometric tests to quantify the dependencies of the HC-633-02 (NKT Photonics) propagation constant (k{sub z}) on temperature, vibration amplitude, stress and electric field strength. In this paper we will present the theoretical principles characterizing the thermal behavior of a PCF, the measurements realized for the fundamental telecom mode (TE{sub 00}), and the experimental demonstration of TM-like mode propagation in the HC-633-02 fiber.« less
Variable energy constant current accelerator structure
Anderson, O.A.
1988-07-13
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.
CPU-GPU hybrid accelerating the Zuker algorithm for RNA secondary structure prediction applications
2012-01-01
Background Prediction of ribonucleic acid (RNA) secondary structure remains one of the most important research areas in bioinformatics. The Zuker algorithm is one of the most popular methods of free energy minimization for RNA secondary structure prediction. Thus far, few studies have been reported on the acceleration of the Zuker algorithm on general-purpose processors or on extra accelerators such as Field Programmable Gate-Array (FPGA) and Graphics Processing Units (GPU). To the best of our knowledge, no implementation combines both CPU and extra accelerators, such as GPUs, to accelerate the Zuker algorithm applications. Results In this paper, a CPU-GPU hybrid computing system that accelerates Zuker algorithm applications for RNA secondary structure prediction is proposed. The computing tasks are allocated between CPU and GPU for parallel cooperate execution. Performance differences between the CPU and the GPU in the task-allocation scheme are considered to obtain workload balance. To improve the hybrid system performance, the Zuker algorithm is optimally implemented with special methods for CPU and GPU architecture. Conclusions Speedup of 15.93× over optimized multi-core SIMD CPU implementation and performance advantage of 16% over optimized GPU implementation are shown in the experimental results. More than 14% of the sequences are executed on CPU in the hybrid system. The system combining CPU and GPU to accelerate the Zuker algorithm is proven to be promising and can be applied to other bioinformatics applications. PMID:22369626
Recovering bridge deflections from collocated acceleration and strain measurements
NASA Astrophysics Data System (ADS)
Bell, M.; Ma, T. W.; Xu, N. S.
2015-04-01
In this research, an internal model based method is proposed to estimate the displacement profile of a bridge subjected to a moving traffic load using a combination of acceleration and strain measurements. The structural response is assumed to be within the linear range. The deflection profile is assumed to be dominated by the fundamental mode of the bridge, therefore only requiring knowledge of the first mode. This still holds true under a multiple vehicle loading situation as the high mode shapes don't impact the over all response of the structure. Using the structural modal parameters and partial knowledge of the moving vehicle load, the internal models of the structure and the moving load can be respectively established, which can be used to form an autonomous state-space representation of the system. The structural displacements, velocities, and accelerations are the states of such a system, and it is fully observable when the measured output contains structural accelerations and strains. Reliable estimates of structural displacements are obtained using the standard Kalman filtering technique. The effectiveness and robustness of the proposed method has been demonstrated and evaluated via numerical simulation of a simply supported single span concrete bridge subjected to a moving traffic load.
Novel target design for enhanced laser driven proton acceleration
NASA Astrophysics Data System (ADS)
Dalui, Malay; Kundu, M.; Tata, Sheroy; Lad, Amit D.; Jha, J.; Ray, Krishanu; Krishnamurthy, M.
2017-09-01
We demonstrate a simple method of preparing structured target for enhanced laser-driven proton acceleration under target-normal-sheath-acceleration scheme. A few layers of genetically modified, clinically grown micron sized E. Coli bacteria cell coated on a thin metal foil has resulted in an increase in the maximum proton energy by about 1.5 times and the total proton yield is enhanced by approximately 25 times compared to an unstructured reference foil at a laser intensity of 1019 W/cm2. Particle-in-cell simulations on the system shows that the structures on the target-foil facilitates anharmonic resonance, contributing to enhanced hot electron production which leads to stronger accelerating field. The effect is observed to grow as the number of structures is increased in the focal area of the laser pulse.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sahai, Aakash A., E-mail: aakash.sahai@gmail.com
2014-05-15
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparencymore » through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.« less
Summary of the Normal-Conducting Accelerating Structures for LEDA and APT
NASA Astrophysics Data System (ADS)
Schneider, J. David
1998-04-01
The accelerator production of tritium (APT) plant requires a continuous (100% duty-factor), 100-mA, 1000--1700-MeV proton beam. Superconducting structures will accelerate protons above about 200 MeV, but room-temperature, normal-conducting (NC) copper structures will be used for lower energies. We will assemble the front 11-MeV portion of this NC accelerator as the low-energy demonstration accelerator (LEDA). This presentation will cover the demonstated operation of the proton injector, the design, fabrication, and tuning status of the 6.7-MeV RFQ, and the design features of the CCDTL (coupled-cavity drift-tube linac) that will accelerate protons to 100 MeV, before use of a conventional CCL (coupled-cavity linac). Several innovative features result in improved performance, ease of use, and improved reliabiltiy. The75-keV injector features a microwave ion source, dual-solenoid transport, and has no electronics at high potential. Its demonstrated high efficiency (less than 800 Watts), excellent proton fraction (>90%), high current (>110 mA), and reliability make it attractive for several other high-current applications. The 6.7-MeV, 350-MHz RFQ is an 8-meter-long, brazed-copper structure with hundreds of cooling channels that carry away the 1.3 MW of waste heat. During beam operation, only the cooling-water temperature is adjustable to maintain structure resonance. LEDA's 700-MHz CCDTL structure is new, combining features of the conventional DTL and CCL structures. All focus magnets are external to the copper accelerating cavities, each of which contains either one or two drift tubes. A `hot model' will validate fabrication, cooling, tuning, and coupling techniques. The LEDA facility is being upgraded with 15 MW of power and cooling utiliites, to support seven 1-MW cw RF systems needed to power all structures. The first few of these 1.3 MW 350-MHz systems are operational, and extensive testing was completed on the critical RF windows. Updates will be given on the development of vacuum, diagnostic, control, and cooling systems, as well as transport lines and beam stops. The unique and very compact, thin-walled beam stop is surrounded by an integral water shield for the prompt neutrons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hand, L.N.
Some proposed techniques for using laser beams to accelerate charged particles are reviewed. Two specific ideas for 'grating-type' accelerating structures are discussed. Speculations are presented about how a successful laser accelerator could be used in a 'multi-pass collider', a type of machine which would have characteristics intermediate between those of synchrotrons and linear (single-pass) colliders. No definite conclusions about practical structures for laser accelerators are reached, but it is suggested that a serious effort be made to design a small prototype machine. Achieving a reasonable luminosity demands that the accelerator either be a cw machine or that laser peak powermore » requirements be much higher than those presently available. Use of superconducting gratings requires a wavelength in the sub-millimeter range.« less
DOT National Transportation Integrated Search
2014-05-01
The overall objective of this research study is to evaluate the structural performance and loadcarrying : capacity of bonded concrete overlay pavement structures through accelerated pavement : testing and document the experience of mix design and con...
Dal Forno, Massimo; Dolgashev, Valery; Bowden, Gordon; ...
2016-05-03
We present an experimental study of a high-gradient metallic accelerating structure at sub-THz frequencies, where we investigated the physics of rf breakdowns. Wakefields in the structure were excited by an ultrarelativistic electron beam. We present the first quantitative measurements of gradients and metal vacuum rf breakdowns in sub-THz accelerating cavities. When the beam travels off axis, a deflecting field is induced in addition to the longitudinal field. We measured the deflecting forces by observing the displacement and changes in the shape of the electron bunch. This behavior can be exploited for subfemtosecond beam diagnostics.
Computational screening of organic polymer dielectrics for novel accelerator technologies
Pilania, Ghanshyam; Weis, Eric; Walker, Ethan M.; ...
2018-06-18
The use of infrared lasers to power accelerating dielectric structures is a developing area of research. Within this technology, the choice of the dielectric material forming the accelerating structures, such as the photonic band gap (PBG) structures, is dictated by a range of interrelated factors including their dielectric and optical properties, amenability to photo-polymerization, thermochemical stability and other target performance metrics of the particle accelerator. In this direction, electronic structure theory aided computational screening and design of dielectric materials can play a key role in identifying potential candidate materials with the targeted functionalities to guide experimental synthetic efforts. In anmore » attempt to systematically understand the role of chemistry in controlling the electronic structure and dielectric properties of organic polymeric materials, here we employ empirical screening and density functional theory (DFT) computations, as a part of our multi-step hierarchal screening strategy. Our DFT based analysis focused on the bandgap, dielectric permittivity, and frequency-dependent dielectric losses due to lattice absorption as key properties to down-select promising polymer motifs. In addition to the specific application of dielectric laser acceleration, the general methodology presented here is deemed to be valuable in the design of new insulators with an attractive combination of dielectric properties.« less
ERIC Educational Resources Information Center
Couturier, Lara K.
2012-01-01
In spring 2012, after a year of intensive data analysis and planning, the colleges participating in Completion by Design announced strategies for creating clear, structured routes through college for more students, often referred to as accelerated, structured pathways to completion. These strategies contain elements unique to each college, but all…
Laser Wakefield Acceleration: Structural and Dynamic Studies. Final Technical Report ER40954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Downer, Michael C.
2014-04-30
Particle accelerators enable scientists to study the fundamental structure of the universe, but have become the largest and most expensive of scientific instruments. In this project, we advanced the science and technology of laser-plasma accelerators, which are thousands of times smaller and less expensive than their conventional counterparts. In a laser-plasma accelerator, a powerful laser pulse exerts light pressure on an ionized gas, or plasma, thereby driving an electron density wave, which resembles the wake behind a boat. Electrostatic fields within this plasma wake reach tens of billions of volts per meter, fields far stronger than ordinary non-plasma matter (suchmore » as the matter that a conventional accelerator is made of) can withstand. Under the right conditions, stray electrons from the surrounding plasma become trapped within these “wake-fields”, surf them, and acquire energy much faster than is possible in a conventional accelerator. Laser-plasma accelerators thus might herald a new generation of compact, low-cost accelerators for future particle physics, x-ray and medical research. In this project, we made two major advances in the science of laser-plasma accelerators. The first of these was to accelerate electrons beyond 1 gigaelectronvolt (1 GeV) for the first time. In experimental results reported in Nature Communications in 2013, about 1 billion electrons were captured from a tenuous plasma (about 1/100 of atmosphere density) and accelerated to 2 GeV within about one inch, while maintaining less than 5% energy spread, and spreading out less than ½ milliradian (i.e. ½ millimeter per meter of travel). Low energy spread and high beam collimation are important for applications of accelerators as coherent x-ray sources or particle colliders. This advance was made possible by exploiting unique properties of the Texas Petawatt Laser, a powerful laser at the University of Texas at Austin that produces pulses of 150 femtoseconds (1 femtosecond is 10-15 seconds) in duration and 150 Joules in energy (equivalent to the muzzle energy of a small pistol bullet). This duration was well matched to the natural electron density oscillation period of plasma of 1/100 atmospheric density, enabling efficient excitation of a plasma wake, while this energy was sufficient to drive a high-amplitude wake of the right shape to produce an energetic, collimated electron beam. Continuing research is aimed at increasing electron energy even further, increasing the number of electrons captured and accelerated, and developing applications of the compact, multi-GeV accelerator as a coherent, hard x-ray source for materials science, biomedical imaging and homeland security applications. The second major advance under this project was to develop new methods of visualizing the laser-driven plasma wake structures that underlie laser-plasma accelerators. Visualizing these structures is essential to understanding, optimizing and scaling laser-plasma accelerators. Yet prior to work under this project, computer simulations based on estimated initial conditions were the sole source of detailed knowledge of the complex, evolving internal structure of laser-driven plasma wakes. In this project we developed and demonstrated a suite of optical visualization methods based on well-known methods such as holography, streak cameras, and coherence tomography, but adapted to the ultrafast, light-speed, microscopic world of laser-driven plasma wakes. Our methods output images of laser-driven plasma structures in a single laser shot. We first reported snapshots of low-amplitude laser wakes in Nature Physics in 2006. We subsequently reported images of high-amplitude laser-driven plasma “bubbles”, which are important for producing electron beams with low energy spread, in Physical Review Letters in 2010. More recently, we have figured out how to image laser-driven structures that change shape while propagating in a single laser shot. The latter techniques, which use the methods of computerized tomography, were demonstrated on test objects – e.g. laser-driven filaments in air and glass – and reported in Optics Letters in 2013 and Nature Communications in 2014. Their output is a multi-frame movie rather than a snapshot. Continuing research is aimed at applying these tomographic methods directly to evolving laser-driven plasma accelerator structures in our laboratory, then, once perfected, to exporting them to plasma-based accelerator laboratories around the world as standard in-line metrology instruments.« less
Variable energy constant current accelerator structure
Anderson, Oscar A.
1990-01-01
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.
NASA Astrophysics Data System (ADS)
Sahai, Aakash A.
2014-05-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a0>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.
Ultra-High Accelerating Gradients in Radio-Frequency Cryogenic Copper Structures
NASA Astrophysics Data System (ADS)
Cahill, Alexander David
Normal conducting radio-frequency (rf) particle accelerators have many applications, including colliders for high energy physics, high-intensity synchrotron light sources, non-destructive testing for security, and medical radiation therapy. In these applications, the accelerating gradient is an important parameter. Specifically for high energy physics, increasing the accelerating gradient extends the potential energy reach and is viewed as a way to mitigate their considerable cost. Furthermore, a gradient increase will enable for more compact and thus accessible free electron lasers (FELs). The major factor limiting larger accelerating gradients is vacuum rf breakdown. Basic physics of this phenomenon has been extensively studied over the last few decades. During which, the occurrence of rf breakdowns was shown to be probabilistic, and can be characterized by a breakdown rate. The current consensus is that vacuum rf breakdowns are caused by movements of crystal defects induced by periodic mechanical stress. The stress may be caused by pulsed surface heating and large electric fields. A compelling piece of evidence that supports this hypothesis is that accelerating structures constructed from harder materials exhibit larger accelerating gradients for similar breakdown rates. One possible method to increase sustained electric fields in copper cavities is to cool them to temperatures below 77 K, where the rf surface resistance and coefficient of thermal expansion decrease, while the yield strength (which correlates with hardness) and thermal conductivity increase. These changes in material properties at low temperature increases metal hardness and decreases the mechanical stress from exposure to rf electromagnetic fields. To test the validity of the improvement in breakdown rate, experiments were conducted with cryogenic accelerating cavities in the Accelerator Structure Test Area (ASTA) at SLAC National Accelerator Laboratory. A short 11.4 GHz standing wave accelerating structure was conditioned to an accelerating gradient of 250 MV/m at 45 K with 108 rf pulses. At gradients greater than 150 MV/m I observed a degradation in the intrinsic quality factor of the cavity, Q0. I developed a model for the change in Q0 using measured field emission currents and rf signals. I found that the Q 0 degradation is consistent with the rf power being absorbed by strong field emission currents accelerated inside the cavity. I measured rf breakdown rates for 45 K and found 2*10-4/pulse/meter when accounting for any change in Q0. These are the largest accelerating gradients for a structure with similar breakdown rates. The final chapter presents the design of an rf photoinjector electron source that uses the cryogenic normal conducting accelerator technology: the TOPGUN. With this cryogenic rf photoinjector, the beam brightness will increase by over an order of a magnitude when compared to the current photoinjector for the Linac Coherent Light Source (LCLS). When using the TOPGUN as the source for an X-ray Free Electron Laser, the higher brightness would allow for a decrease in the required length of the LCLS undulator by more than a factor of two.
Simulation of dynamics of beam structures with bolted joints using adjusted Iwan beam elements
NASA Astrophysics Data System (ADS)
Song, Y.; Hartwigsen, C. J.; McFarland, D. M.; Vakakis, A. F.; Bergman, L. A.
2004-05-01
Mechanical joints often affect structural response, causing localized non-linear stiffness and damping changes. As many structures are assemblies, incorporating the effects of joints is necessary to produce predictive finite element models. In this paper, we present an adjusted Iwan beam element (AIBE) for dynamic response analysis of beam structures containing joints. The adjusted Iwan model consists of a combination of springs and frictional sliders that exhibits non-linear behavior due to the stick-slip characteristic of the latter. The beam element developed is two-dimensional and consists of two adjusted Iwan models and maintains the usual complement of degrees of freedom: transverse displacement and rotation at each of the two nodes. The resulting element includes six parameters, which must be determined. To circumvent the difficulty arising from the non-linear nature of the inverse problem, a multi-layer feed-forward neural network (MLFF) is employed to extract joint parameters from measured structural acceleration responses. A parameter identification procedure is implemented on a beam structure with a bolted joint. In this procedure, acceleration responses at one location on the beam structure due to one known impulsive forcing function are simulated for sets of combinations of varying joint parameters. A MLFF is developed and trained using the patterns of envelope data corresponding to these acceleration histories. The joint parameters are identified through the trained MLFF applied to the measured acceleration response. Then, using the identified joint parameters, acceleration responses of the jointed beam due to a different impulsive forcing function are predicted. The validity of the identified joint parameters is assessed by comparing simulated acceleration responses with experimental measurements. The capability of the AIBE to capture the effects of bolted joints on the dynamic responses of beam structures, and the efficacy of the MLFF parameter identification procedure, are demonstrated.
ERIC Educational Resources Information Center
Grimm, Kevin; Zhang, Zhiyong; Hamagami, Fumiaki; Mazzocco, Michele
2013-01-01
We propose the use of the latent change and latent acceleration frameworks for modeling nonlinear growth in structural equation models. Moving to these frameworks allows for the direct identification of "rates of change" and "acceleration" in latent growth curves--information available indirectly through traditional growth…
Driver-witness electron beam acceleration in dielectric mm-scale capillaries
NASA Astrophysics Data System (ADS)
Lekomtsev, K.; Aryshev, A.; Tishchenko, A. A.; Shevelev, M.; Lyapin, A.; Boogert, S.; Karataev, P.; Terunuma, N.; Urakawa, J.
2018-05-01
We investigated a corrugated mm-scale capillary as a compact accelerating structure in the driver-witness acceleration scheme, and suggested a methodology to measure the acceleration of the witness bunch. The accelerating fields produced by the driver bunch and the energy spread of the witness bunch in a corrugated capillary and in a capillary with a constant inner radius were measured and simulated for both on-axis and off-axis beam propagation. Our simulations predicted a change in the accelerating field structure for the corrugated capillary. Also, an approximately twofold increase of the witness bunch energy gain on the first accelerating cycle was expected for both capillaries for the off-axis beam propagation. These results were confirmed in the experiment, and the maximum measured acceleration of 170 keV /m at 20 pC driver beam charge was achieved for off-axis beam propagation. The driver bunch showed an increase in energy spread of up to 11%, depending on the capillary geometry and beam propagation, with a suppression of the longitudinal energy spread in the witness bunch of up to 15%.
Accelerated life assessment of coating on the radar structure components in coastal environment.
Liu, Zhe; Ming, ZhiMao
2016-07-04
This paper aimed to build an accelerated life test scheme and carry out quantitative analysis between accelerated life test in the laboratory and actual service for the coating composed of epoxy primer and polyurethane paint on structure components of some kind of radar served in the coastal environment of South China Sea. The accelerated life test scheme was built based on the service environment and failure analysis of the coating. The quantitative analysis between accelerated life test and actual service was conducted by comparing the gloss loss, discoloration, chalking, blistering, cracking and electrochemical impedance spectroscopy of the coating. The main factors leading to the coating failure were ultraviolet radiation, temperature, moisture, salt fog and loads, the accelerated life test included ultraviolet radiation, damp heat, thermal shock, fatigue and salt spray. The quantitative relationship was that one cycle of the accelerated life test was equal to actual service for one year. It was established that one cycle of the accelerated life test was equal to actual service for one year. It provided a precise way to predict actual service life of newly developed coatings for the manufacturer.
Relationship between Alfvén Wave and Quasi-Static Acceleration in Earth's Auroral Zone
NASA Astrophysics Data System (ADS)
Mottez, Fabrice
2016-02-01
There are two main categories of acceleration processes in the Earth's auroral zone: those based on quasi-static structures, and those based on Alfvén wave (AW). AWs play a nonnegligible role in the global energy budget of the plasma surrounding the Earth because they participate in auroral acceleration, and because auroral acceleration conveys a large portion of the energy flux across the magnetosphere. Acceleration events by double layers (DLs) and by AW have mostly been investigated separately, but many studies cited in this chapter show that they are not independent: these processes can occur simultaneously, and one process can be the cause of the other. The quasi-simultaneous occurrences of acceleration by AW and by quasi-static structures have been observed predominantly at the polar cap boundary of auroral arc systems, where often new bright arcs develop or intensify.
Multi-Mode Cavity Accelerator Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Yong; Hirshfield, Jay Leonard
2016-11-10
This project aimed to develop a prototype for a novel accelerator structure comprising coupled cavities that are tuned to support modes with harmonically-related eigenfrequencies, with the goal of reaching an acceleration gradient >200 MeV/m and a breakdown rate <10 -7/pulse/meter. Phase I involved computations, design, and preliminary engineering of a prototype multi-harmonic cavity accelerator structure; plus tests of a bimodal cavity. A computational procedure was used to design an optimized profile for a bimodal cavity with high shunt impedance and low surface fields to maximize the reduction in temperature rise ΔT. This cavity supports the TM010 mode and its 2ndmore » harmonic TM011 mode. Its fundamental frequency is at 12 GHz, to benchmark against the empirical criteria proposed within the worldwide High Gradient collaboration for X-band copper structures; namely, a surface electric field E sur max< 260 MV/m and pulsed surface heating ΔT max< 56 °K. With optimized geometry, amplitude and relative phase of the two modes, reductions are found in surface pulsed heating, modified Poynting vector, and total RF power—as compared with operation at the same acceleration gradient using only the fundamental mode.« less
Yoo, Jongsoo; Yamada, Masaaki; Ji, Hantao; Myers, Clayton E
2013-05-24
The ion dynamics in a collisionless magnetic reconnection layer are studied in a laboratory plasma. The measured in-plane plasma potential profile, which is established by electrons accelerated around the electron diffusion region, shows a saddle-shaped structure that is wider and deeper towards the outflow direction. This potential structure ballistically accelerates ions near the separatrices toward the outflow direction. Ions are heated as they travel into the high-pressure downstream region.
KLYNAC: Compact linear accelerator with integrated power supply
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyzhenkov, Alexander
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scienti c community is working towards improving the quality of the accelerated beam and its parameters while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype, resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RFmore » source, an accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simpli ed theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using particle-in-cell simulation studies for mono- resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.« less
Semiconductor acceleration sensor
NASA Astrophysics Data System (ADS)
Ueyanagi, Katsumichi; Kobayashi, Mitsuo; Goto, Tomoaki
1996-09-01
This paper reports a practical semiconductor acceleration sensor especially suited for automotive air bag systems. The acceleration sensor includes four beams arranged in a swastika structure. Two piezoresistors are formed on each beam. These eight piezoresistors constitute a Wheatstone bridge. The swastika structure of the sensing elements, an upper glass plate and a lower glass plate exhibit the squeeze film effect which enhances air dumping, by which the constituent silicon is prevented from breakdown. The present acceleration sensor has the following features. The acceleration force component perpendicular to the sensing direction can be cancelled. The cross-axis sensitivity is less than 3 percent. And, the erroneous offset caused by the differences between the thermal expansion coefficients of the constituent materials can be canceled. The high aspect ratio configuration realized by plasma etching facilitates reducing the dimensions and improving the sensitivity of the acceleration sensor. The present acceleration sensor is 3.9 mm by 3.9 mm in area and 1.2 mm in thickness. The present acceleration sensor can measure from -50 to +50 G with sensitivity of 0.275 mV/G and with non-linearity of less than 1 percent. The acceleration sensor withstands shock of 3000 G.
Klynac: Compact Linear Accelerator with Integrated Power Supply
NASA Astrophysics Data System (ADS)
Malyzhenkov, A. V.
Accelerators and accelerator-based light sources have a wide range of applications in science, engineering technology and medicine. Today the scientific community is working towards improving the quality of the accelerated beam and its parameters, while trying to develop technology for reducing accelerator size. This work describes a design of a compact linear accelerator (linac) prototype: resonant Klynac device, which is a combined linear accelerator and its power supply - klystron. The intended purpose of a Klynac device is to provide a compact and inexpensive alternative to a conventional 1 to 6 MeV accelerator, which typically requires a separate RF source, accelerator itself and all the associated hardware. Because the Klynac is a single structure, it has the potential to be much less sensitive to temperature variations than a system with separate klystron and linac. We start by introducing a simplified theoretical model for a Klynac device. We then demonstrate how a prototype is designed step-by-step using Particle-In-Cell simulation studies for mono-resonant and bi-resonant structures. Finally, we discuss design options from a stability point of view and required input power as well as behavior of competing modes for the actual built device.
Front surface structured targets for enhancing laser-plasma interactions
NASA Astrophysics Data System (ADS)
Snyder, Joseph; George, Kevin; Ji, Liangliang; Yalamanchili, Sasir; Simonoff, Ethan; Cochran, Ginevra; Daskalova, Rebecca; Poole, Patrick; Willis, Christopher; Lewis, Nathan; Schumacher, Douglass
2016-10-01
We present recent progress made using front surface structured interfaces for enhancing ultrashort, relativistic laser-plasma interactions. Structured targets can increase laser absorption and enhance ion acceleration through a number of mechanisms such as direct laser acceleration and laser guiding. We detail experimental results obtained at the Scarlet laser facility on hollow, micron-scale plasma channels for enhancing electron acceleration. These targets show a greater than three times enhancement in the electron cutoff energy as well as an increased slope temperature for the electron distribution when compared to a flat interface. Using three-dimensional particle-in-cell (PIC) simulations, we have modeled the interaction to give insight into the physical processes responsible for the enhancement. Furthermore, we have used PIC simulations to design structures that are more advantageous for ion acceleration. Such targets necessitate advanced target fabrication methods and we describe techniques used to manufacture optimized structures, including vapor-liquid-solid growth, cryogenic etching, and 3D printing using two-photon-polymerization. This material is based upon work supported by the Air Force Office of Scientific Research under Award Number FA9550-14-1-0085.
Particle tracking acceleration via signed distance fields in direct-accelerated geometry Monte Carlo
Shriwise, Patrick C.; Davis, Andrew; Jacobson, Lucas J.; ...
2017-08-26
Computer-aided design (CAD)-based Monte Carlo radiation transport is of value to the nuclear engineering community for its ability to conduct transport on high-fidelity models of nuclear systems, but it is more computationally expensive than native geometry representations. This work describes the adaptation of a rendering data structure, the signed distance field, as a geometric query tool for accelerating CAD-based transport in the direct-accelerated geometry Monte Carlo toolkit. Demonstrations of its effectiveness are shown for several problems. The beginnings of a predictive model for the data structure's utilization based on various problem parameters is also introduced.
Development work for a superconducting linear collider
NASA Technical Reports Server (NTRS)
Matheisen, Axel
1995-01-01
For future linear e(+)e(-) colliders in the TeV range several alternatives are under discussion. The TESLA approach is based on the advantages of superconductivity. High Q values of the accelerator structures give high efficiency for converting RF power into beam power. A low resonance frequency for the RF structures can be chosen to obtain a large number of electrons (positrons) per bunch. For a given luminosity the beam dimensions can be chosen conservatively which leads to relaxed beam emittance and tolerances at the final focus. Each individual superconducting accelerator component (resonator cavity) of this linear collider has to deliver an energy gain of 25 MeV/m to the beam. Today s.c. resonators are in use at CEBAF/USA, at DESY/Germany, Darmstadt/Germany KEK/Japan and CERN/Geneva. They show acceleration gradients between 5 MV/m and 10 MV/m. Encouraging experiments at CEA Saclay and Cornell University showed acceleration gradients of 20 MV/m and 25 MV/m in single and multicell structures. In an activity centered at DESY in Hamburg/Germany the TESLA collaboration is constructing a 500 MeV superconducting accelerator test facility (TTF) to demonstrate that a linear collider based on this technique can be built in a cost effective manner and that the necessary acceleration gradients of more than 15 MeV/m can be reached reproducibly. The test facility built at DESY covers an area of 3.000 m2 and is divided into 3 major activity areas: (1) The testlinac, where the performance ofthe modular components with an electron beam passing the 40 m long acceleration section can be demonstrated. (2) The test area, where all individual resonators are tested before installation into a module. (3) The preparation and assembly area, where assembly of cavities and modules take place. We report here on the design work to reach a reduction of costs compared to actual existing superconducting accelerator structures and on the facility set up to reach high acceleration gradients in a reproducible way.
NASA Astrophysics Data System (ADS)
Fujiwara, Takahiro; Uchiito, Haruki; Tokairin, Tomoya; Kawai, Hiroyuki
2017-04-01
Regarding Structural Health Monitoring (SHM) for seismic acceleration, Wireless Sensor Networks (WSN) is a promising tool for low-cost monitoring. Compressed sensing and transmission schemes have been drawing attention to achieve effective data collection in WSN. Especially, SHM systems installing massive nodes of WSN require efficient data transmission due to restricted communications capability. The dominant frequency band of seismic acceleration is occupied within 100 Hz or less. In addition, the response motions on upper floors of a structure are activated at a natural frequency, resulting in induced shaking at the specified narrow band. Focusing on the vibration characteristics of structures, we introduce data compression techniques for seismic acceleration monitoring in order to reduce the amount of transmission data. We carry out a compressed sensing and transmission scheme by band pass filtering for seismic acceleration data. The algorithm executes the discrete Fourier transform for the frequency domain and band path filtering for the compressed transmission. Assuming that the compressed data is transmitted through computer networks, restoration of the data is performed by the inverse Fourier transform in the receiving node. This paper discusses the evaluation of the compressed sensing for seismic acceleration by way of an average error. The results present the average error was 0.06 or less for the horizontal acceleration, in conditions where the acceleration was compressed into 1/32. Especially, the average error on the 4th floor achieved a small error of 0.02. Those results indicate that compressed sensing and transmission technique is effective to reduce the amount of data with maintaining the small average error.
Bulanov, S. S.; Esarey, E.; Schroeder, C. B.; ...
2015-03-13
Radiation Pressure Acceleration is a highly efficient mechanism of laser driven ion acceleration, with the laser energy almost totally transferrable to the ions in the relativistic regime. There is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. In the case of a tightly focused laser pulses, which are utilized to get the highest intensity, another factor limiting the maximum ion energy comes into play, the transverse expansion of the target. Transverse expansion makes the target transparent for radiation, thus reducing the effectiveness of acceleration. Utilization of an external guidingmore » structure for the accelerating laser pulse may provide a way of compensating for the group velocity and transverse expansion effects.« less
NASA Astrophysics Data System (ADS)
Strathdee, A.
1985-10-01
The topics discussed are related to high-energy accelerators and colliders, particle sources and electrostatic accelerators, controls, instrumentation and feedback, beam dynamics, low- and intermediate-energy circular accelerators and rings, RF and other acceleration systems, beam injection, extraction and transport, operations and safety, linear accelerators, applications of accelerators, radiation sources, superconducting supercolliders, new acceleration techniques, superconducting components, cryogenics, and vacuum. Accelerator and storage ring control systems are considered along with linear and nonlinear orbit theory, transverse and longitudinal instabilities and cures, beam cooling, injection and extraction orbit theory, high current dynamics, general beam dynamics, and medical and radioisotope applications. Attention is given to superconducting RF structures, magnet technology, superconducting magnets, and physics opportunities with relativistic heavy ion accelerators.
Testing of Composite Fan Vanes With Erosion-Resistant Coating Accelerated
NASA Technical Reports Server (NTRS)
Bowman, Cheryl L.; Sutter, James K.; Otten, Kim D.; Samorezov, Sergey; Perusek, Gail P.
2004-01-01
The high-cycle fatigue of composite stator vanes provided an accelerated life-state prior to insertion in a test stand engine. The accelerated testing was performed in the Structural Dynamics Laboratory at the NASA Glenn Research Center under the guidance of Structural Mechanics and Dynamics Branch personnel. Previous research on fixturing and test procedures developed at Glenn determined that engine vibratory conditions could be simulated for polymer matrix composite vanes by using the excitation of a combined slip table and electrodynamic shaker in Glenn's Structural Dynamics Laboratory. Bench-top testing gave researchers the confidence to test the coated vanes in a full-scale engine test.
Optimal orbit transfer suitable for large flexible structures
NASA Technical Reports Server (NTRS)
Chatterjee, Alok K.
1989-01-01
The problem of continuous low-thrust planar orbit transfer of large flexible structures is formulated as an optimal control problem with terminal state constraints. The dynamics of the spacecraft motion are treated as a point-mass central force field problem; the thrust-acceleration magnitude is treated as an additional state variable; and the rate of change of thrust-acceleration is treated as a control variable. To ensure smooth transfer, essential for flexible structures, an additional quadratic term is appended to the time cost functional. This term penalizes any abrupt change in acceleration. Numerical results are presented for the special case of a planar transfer.
Improvement of voltage holding and high current beam acceleration by MeV accelerator for ITER NB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taniguchi, M.; Kashiwagi, M.; Inoue, T.
Voltage holding of -1 MV is an essential issue in development of a multi-aperture multi-grid (MAMuG) negative ion accelerator, of which target is to accelerate 200 A/m{sup 2} H{sup -} ion beam up to the energy of 1 MeV for several tens seconds. Review of voltage holding results ever obtained with various geometries of the accelerators showed that the voltage holding capability was about a half of designed value based on the experiment obtained from ideal small electrode. This is considered due to local electric field concentration in the accelerators, such as edge and steps between multi-aperture grids and itsmore » support structures. Based on the detailed investigation with electric field analysis, accelerator was modified to reduce the electric field concentration by reshaping the support structures and expanding the gap length between the grid supports. After the modifications, the accelerator succeeded in sustaining -1 MV for more than one hour in vacuum. Improvement of the voltage holding characteristics progressed the energy and current accelerated by the MeV accelerator. Up to 2010, beam parameters achieved by the MAMuG accelerator were increased to 879 keV, 0.36 A (157 A/m{sup 2}) at perveance matched condition and 937 keV, 0.33 A (144 A/m{sup 2}) slightly under perveance.« less
Calculation of structural dynamic forces and stresses using mode acceleration
NASA Technical Reports Server (NTRS)
Blelloch, Paul
1989-01-01
While the standard mode acceleration formulation in structural dynamics has often been interpreted to suggest that the reason for improved convergence obtainable is that the dynamic correction factor is divided by the modal frequencies-squared, an alternative formulation is presented which clearly indicates that the only difference between mode acceleration and mode displacement data recovery is the addition of a static correction term. Attention is given to the advantages in numerical implementation associated with this alternative, as well as to an illustrative example.
Use of electron microscopy to classify canine perivascular wall tumors.
Palmieri, C; Avallone, G; Cimini, M; Roccabianca, P; Stefanello, D; Della Salda, L
2013-03-01
The histologic classification of canine perivascular wall tumors (PWTs) is controversial. Many PWTs are still classified as hemangiopericytomas (HEPs), and the distinction from peripheral nerve sheath tumors (PNSTs) is still under debate. A recent histologic classification of canine soft tissue sarcomas included most histologic types of PWT but omitted those that were termed undifferentiated. Twelve cases of undifferentiated canine PWTs were evaluated by transmission electron microscopy. The ultrastructural findings supported a perivascular wall origin for all cases with 4 categories of differentiation: myopericytic (n = 4), myofibroblastic (n = 1), fibroblastic (n = 2), and undifferentiated (n = 5). A PNST was considered unlikely in each case based on immunohistochemical expression of desmin and/or the lack of typical ultrastructural features, such as basal lamina. Electron microscopy was pivotal for the subclassification of canine PWTs, and the results support the hypothesis that canine PWTs represent a continuum paralleling the phenotypic plasticity of vascular mural cells. The hypothesis that a subgroup of PWTs could arise from a pluripotent mesenchymal perivascular wall cell was also considered and may explain the diverse differentiation of canine PWTs.
The Organizational Culture and Structure of Accelerated Schools.
ERIC Educational Resources Information Center
Steaffens, Susan; McCarthy, Jane; Putney, LeAnn; Steinhoff, Carl
This paper describes the organizational culture and structure of five accelerated schools in the Clark County School District in Nevada, focusing on the similarities and differences among these schools. The cultural aspects of the schools under comparison included the guiding principles, the central values, and the learning philosophy, whereas the…
Structure of Accelerated Learning Program (ALP) Efforts, 2000-01.
ERIC Educational Resources Information Center
Baenen, Nancy; Yaman, Kimberly
This report focuses on the structure of instructional assistance available through the Accelerated Learning Program (ALP) to students who show low achievement in the Wake County Public School System (WCPSS), North Carolina. Context information is also provided on other programs available to these students. Reports on ALP student participation,…
Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.
2004-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating into an ambient plasma. We find that the growth times depend on the Lorenz factors of jets. The jets with larger Lorenz factors grow slower. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The small scale magnetic field structure generated by the Weibel instability is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Feinberg, E.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Lal, A.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3 × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
Persaud, A.; Seidl, P. A.; Ji, Q.; ...
2017-10-26
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
Staging of RF-accelerating Units in a MEMS-based Ion Accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persaud, A.; Seidl, P. A.; Ji, Q.
Multiple Electrostatic Quadrupole Array Linear Accelerators (MEQALACs) provide an opportunity to realize compact radio- frequency (RF) accelerator structures that can deliver very high beam currents. MEQALACs have been previously realized with acceleration gap distances and beam aperture sizes of the order of centimeters. Through advances in Micro-Electro-Mechanical Systems (MEMS) fabrication, MEQALACs can now be scaled down to the sub-millimeter regime and batch processed on wafer substrates. In this paper we show first results from using three RF stages in a compact MEMS-based ion accelerator. The results presented show proof-of-concept with accelerator structures formed from printed circuit boards using a 3more » × 3 beamlet arrangement and noble gas ions at 10 keV. We present a simple model to describe the measured results. We also discuss some of the scaling behaviour of a compact MEQALAC. The MEMS-based approach enables a low-cost, highly versatile accelerator covering a wide range of currents (10 μA to 100 mA) and beam energies (100 keV to several MeV). Applications include ion-beam analysis, mass spectrometry, materials processing, and at very high beam powers, plasma heating.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simakov, Evgenya Ivanovna; Andrews, Heather Lynn; Herman, Matthew Joseph
2016-09-20
These are slides for a presentation at Stanford University. The outline is as follows: Motivation: customers for compact accelerators, LANL's technologies for laser acceleration, DFEA cathodes, and additive manufacturing of micron-size structures. Among the stated conclusions are the following: preliminary study identified DFEA cathodes as promising sources for DLAs--high beam current and small emittance; additive manufacturing with Nanoscribe Professional GT can produce structures with the right scale features for a DLA operating at micron wavelengths (fabrication tolerances need to be studied, DLAs require new materials). Future plans include DLA experiment with a beam produced by the DFEA cathode with fieldmore » emission, demonstration of photoemission from DFEAs, and new structures to print and test.« less
Beam dynamics design of the muon linac high-beta section
NASA Astrophysics Data System (ADS)
Kondo, Y.; Hasegawa, K.; Otani, M.; Mibe, T.; Yoshida, M.; Kitamura, R.
2017-07-01
A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H line) at the J-PARC muon science facility are once stopped in a silica-aerogel target, and room temperature muoniums are evaporated from the aerogel. They are dissociated with lasers, then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure (DLS) is described.
A reproducible accelerated in vitro release testing method for PLGA microspheres.
Shen, Jie; Lee, Kyulim; Choi, Stephanie; Qu, Wen; Wang, Yan; Burgess, Diane J
2016-02-10
The objective of the present study was to develop a discriminatory and reproducible accelerated in vitro release method for long-acting PLGA microspheres with inner structure/porosity differences. Risperidone was chosen as a model drug. Qualitatively and quantitatively equivalent PLGA microspheres with different inner structure/porosity were obtained using different manufacturing processes. Physicochemical properties as well as degradation profiles of the prepared microspheres were investigated. Furthermore, in vitro release testing of the prepared risperidone microspheres was performed using the most common in vitro release methods (i.e., sample-and-separate and flow through) for this type of product. The obtained compositionally equivalent risperidone microspheres had similar drug loading but different inner structure/porosity. When microsphere particle size appeared similar, porous risperidone microspheres showed faster microsphere degradation and drug release compared with less porous microspheres. Both in vitro release methods investigated were able to differentiate risperidone microsphere formulations with differences in porosity under real-time (37 °C) and accelerated (45 °C) testing conditions. Notably, only the accelerated USP apparatus 4 method showed good reproducibility for highly porous risperidone microspheres. These results indicated that the accelerated USP apparatus 4 method is an appropriate fast quality control tool for long-acting PLGA microspheres (even with porous structures). Copyright © 2015 Elsevier B.V. All rights reserved.
Baczewski, Andrew D; Miller, Nicholas C; Shanker, Balasubramaniam
2012-04-01
The analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require O(N2) operations, N being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodic dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in O(N) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.
The Particle Adventure | What is fundamental? | Fundamental
Quiz - What particles are made of The four interactions How does matter interact? The unseen effect structure Rutherford's result Rutherford's analysis How physicists experiment Deflected probe Detecting the Energy-mass conversion Accelerators How to obtain particles to accelerate Accelerating particles
NASA Technical Reports Server (NTRS)
Cassanto, John M.; Cassanto, Valerie A.
1988-01-01
Acceleration ground tests were conducted on the Get Away Special (GAS) payload 559 to verify the structural integrity of the structure/support avionics and two of the planned three flight experiments. The ITA (Integrated Test Area) Standardized Experiment Module (ISEM) structure was modified to accommodate the experiments for payload 559. The ISEM avionics consisted of a heavy duty sliver zinc power supply, three orthogonal-mounted low range microgravity accelerometers, a tri-axis high range accelerometer, a solid state recorder/programmer sequencer, and pressure and temperature sensors. The tests were conducted using the Gravitational Plant Physiology Laboratory Centrifuge of the University City Science Center in Philadelphia, PA. The launch-powered flight steady state acceleration profile of the shuttle was simulated from lift-off through jettison of the External Tank (3.0 g's). Additional tests were conducted at twice the nominal powered flight acceleration levels (6 g's) and an over-test condition of four times the powered flight loads to 12.6 g's. The present test program has demonstrated the value of conducting ground tests to verify GAS payload experiment integrity and operation before flying on the shuttle.
NASA Astrophysics Data System (ADS)
Lopatin, V. S.; Remnev, G. E.; Martynenko, A. A.
2017-05-01
We have studied the collective acceleration of protons and deuterons in an electron beam emitted from plasma formed at the surface of a dielectric anode insert. The experiments were performed with a pulsed electron accelerator operating at an accelerating voltage up to 1 MV, current amplitude up to 40 kA, and pulse duration of 50 ns. Reduction of the accelerating voltage pulse front width and optimization of the diode unit and drift region ensured the formation of several annular structures in the electron beam. As a result, up to 50% of the radioactivity induced in a copper target was concentrated in a ring with 4.5-cm diameter and 0.2-cm width. The formation of high energy density in these circular traces and the appearance of an axial component of the self-generated magnetic field of the electron beam are related with the increasing efficiency of acceleration of the most intense group of ions.
Structural loads preliminary results
NASA Technical Reports Server (NTRS)
Alfaro-Bou, E.
1986-01-01
From a total of 351 instrumentation channels, 341 channels (97%) were in operation during the initial impact of the airplane. Both NASA seats, the energy absorbing seat and the standard seat, maintained their integrity during the impact. The floor accelerations at the seat locations were lower than the accelerations required for the energy absorbers to stroke; consequently, the energy absorbing seat did not stroke. The two seats remained firm in place during the crash and no seat attachment failures were observed. Due to the low accelerations experienced during the crash, both seats performed as standard seats. In the airplane structure, the accelerations were higher at both the point of impact in the left wing and at the forward end of the fuselage. The accelerations on the floor were higher toward the front than toward the rear and the floor accelerations on the left side were higher than on the right side at the front of the fuselage, but toward the rear they evened out.
Flow acceleration structure of Aurelia aurita: implications on propulsion
NASA Astrophysics Data System (ADS)
Kim, Jin-Tae; Piper, Matthew; Chamorro, Leonardo P.
2017-11-01
The jetting and paddling mechanisms used by Aurelia aurita jellyfish allows for one of the most efficient propulsion among other metazoans. Characterization of the induced flow acceleration is critical to uncover distinctive patterns. We found four acceleration structures using 3D measurements of body and flow dynamics in Lagrangian frame of reference. Two intense structures occur near the bell margin and are generated by paddling; the other two around the center of the jellyfish and half magnitude are a result of jetting. Their interaction leads to the maximum flow velocity in the middle of the relaxation, where relatively straight flow trajectories occur. The jellyfish achieves an efficient relaxation by generating flow deceleration with minor body deceleration.
Structures to Resist the Effects of Accidental Explosions. Volume 3. Principles of Dynamic Analysis
1984-06-01
multi-degree-of-freedom systems) is presented. A step-by-step numerical integration of an element’s motion under dynamic loads using the...structural arrangements; providing closures, and preventing damage to interior portions of structures due to structual motion , shock, and fragment...an element’s motion under dynamic loads utilizing the Acceleration-Impulse- Extrapolation Method or the Average Acceleration Method and design charts
Davis, Julie E; Harkey, Matthew S; Ward, Robert J; Mackay, James W; Lu, Bing; Price, Lori Lyn; Eaton, Charles B; Barbe, Mary F; Lo, Grace H; McAlindon, Timothy E; Driban, Jeffrey B
2018-04-01
We aimed to characterize the agreement between distinct structural changes on magnetic resonance (MR) imaging and self-reported injury in the 12 months leading to incident common or accelerated knee osteoarthritis (KOA). We conducted a descriptive study using data from baseline and the first 4 annual visits of the Osteoarthritis Initiative. Knees had no radiographic KOA at baseline (Kellgren-Lawrence [KL]<2). We classified two groups: (1) accelerated KOA: a knee developed advanced-stage KOA (KL = 3 or 4) within 48 months and (2) common KOA: a knee increased in radiographic severity (excluding those with accelerated KOA). Adults were 1:1 matched based on sex. The index visit was when a person met the accelerated or common KOA criteria. We limited our sample to people with MR images and self-reported injury data at index visit and year prior. Among 226 people, we found fair agreement between self-reported injuries and distinct structural changes (kappa = 0.24 to 0.31). Most distinct structural changes were medial meniscal pathology. No distinct structural changes (e.g., root or radial tears) appeared to differ between adults who reported or did not report an injury; except, all subchondral fractures occurred in adults who developed accelerated KOA and reported an injury. While there is fair agreement between self-reported knee injuries and distinct structural changes, there is some discordance. Self-reported injury may represent a different construct from distinct structural changes that occur after joint trauma. Clin. Anat. 31:330-334, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Estimation of ground motion parameters
Boore, David M.; Joyner, W.B.; Oliver, A.A.; Page, R.A.
1978-01-01
Strong motion data from western North America for earthquakes of magnitude greater than 5 are examined to provide the basis for estimating peak acceleration, velocity, displacement, and duration as a function of distance for three magnitude classes. A subset of the data (from the San Fernando earthquake) is used to assess the effects of structural size and of geologic site conditions on peak motions recorded at the base of structures. Small but statistically significant differences are observed in peak values of horizontal acceleration, velocity and displacement recorded on soil at the base of small structures compared with values recorded at the base of large structures. The peak acceleration tends to b3e less and the peak velocity and displacement tend to be greater on the average at the base of large structures than at the base of small structures. In the distance range used in the regression analysis (15-100 km) the values of peak horizontal acceleration recorded at soil sites in the San Fernando earthquake are not significantly different from the values recorded at rock sites, but values of peak horizontal velocity and displacement are significantly greater at soil sites than at rock sites. Some consideration is given to the prediction of ground motions at close distances where there are insufficient recorded data points. As might be expected from the lack of data, published relations for predicting peak horizontal acceleration give widely divergent estimates at close distances (three well known relations predict accelerations between 0.33 g to slightly over 1 g at a distance of 5 km from a magnitude 6.5 earthquake). After considering the physics of the faulting process, the few available data close to faults, and the modifying effects of surface topography, at the present time it would be difficult to accept estimates less than about 0.8 g, 110 cm/s, and 40 cm, respectively, for the mean values of peak acceleration, velocity, and displacement at rock sites within 5 km of fault rupture in a magnitude 6.5 earthquake. These estimates can be expected to change as more data become available.
Sánchez, G; Orea, A; Trevethan, S; Martínez Ríos, M A
1984-01-01
Thirty-four patients with left ventricular hypertrophy were studied. In all cases the following parameters were analyzed: 1) Echocardiography:left ventricular diastolic and systolic diameters, ejection fraction, thickness and movement of interventricular septum and posterior wall of the left ventricle (LV) 2) Electrocardiography: R wave voltaje in precordial leads V2, V3 and V5 and electrical axis in frontal plane 3) Catheterization: intracavitary pressures in LV and aortic pressures 4) Left ventriculography: areas of altered contractility 5) Coronariography: distribution pattern of coronary arteries and number of first order branches of circumflex (CA) and anterior descending coronary arteries (ADCA). The population was divided into 2 groups. Group A (GA) was made up of 22 patients with concentric hypertrophy (CH) of the LV (15 with systemic hypertensive heart disease, 6 with aortic valvular stenosis and 1 idiopathic). Echocardiographic findings included posterior wall thickness (PWT) or septal thickness of 1.1. cm or more and interventricular septum-posterior wall thickness ratio (S/PW) of less than 1.3. Group B (GB) included 12 patients with asymmetric septal hypertrophy (ASH), idiopathic in 5, systemic hypertensive heart disease in 4 and aortic valvular stenosis in 3. In these patients the S/PW thickness ratio was greater than 1.3 and the thickness of either wall greater than 1.1. cm. When the data of the two groups were compared there were significant differences in relation to the presence of septal hypertrophy. The R wave voltage in V2, interventricular thickness and S/PW were greater in GB. In addition, septal movement was less in GB than in Group A (0.47 +/- 0.26 cm vs. 0.74 +/- 0.37 cm; P less than 0.05). PWT was also less in Group B than in A (B: 1.01 +/- 0.1 cm, A: 1.2 +/- 0.2 cm; P less than 0.001). The CA in Group B divided into fewer than 4 first order branches to the upper two thirds of the posterior and lateral walls of the LV in 91.6%. This distribution of circumflex branches was found in 31.8% of the patients in Group A (P less than 0.05). In Group B, the ADCA divided into septal branches with no more than 2 diagonal branches. The posterior descending artery dominated septal distribution in 100% of these cases (GA: 31.8%; P less than 0.05). The sum of the first order branches of the CA and the ADCA was 5.6 +/- 0.9 in Group A and 2.7 +/- 0.9 branches in Group B (P less than 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)
PARTICLE ACCELERATOR AND METHOD OF CONTROLLING THE TEMPERATURE THEREOF
Neal, R.B.; Gallagher, W.J.
1960-10-11
A method and means for controlling the temperature of a particle accelerator and more particularly to the maintenance of a constant and uniform temperature throughout a particle accelerator is offered. The novel feature of the invention resides in the provision of two individual heating applications to the accelerator structure. The first heating application provided is substantially a duplication of the accelerator heat created from energization, this first application being employed only when the accelerator is de-energized thereby maintaining the accelerator temperature constant with regard to time whether the accelerator is energized or not. The second heating application provided is designed to add to either the first application or energization heat in a manner to create the same uniform temperature throughout all portions of the accelerator.
Design and Analysis of Megawatt Class Free Electron Laser Weapons
2015-12-01
accelerating structure. The SRF linear accelerator stores RF fields within its niobium cavities. Superconductors require less average RF power than...is needed to cool the superconductor for the SRF linear accelerator. A current outstanding research topic is the RF frequency to use for the SRF
NASTRAN forced vibration analysis of rotating cyclic structures
NASA Technical Reports Server (NTRS)
Elchuri, V.; Smith, G. C. C.; Gallo, A. M.
1983-01-01
Theoretical aspects of a new capability developed and implemented in NASTRAN level 17.7 to analyze forced vibration of a cyclic structure rotating about its axis of symmetry are presented. Fans, propellers, and bladed shrouded discs of turbomachines are some examples of such structures. The capability includes the effects of Coriolis and centripetal accelerations on the rotating structure which can be loaded with: (1) directly applied loads moving with the structure and (2) inertial loas due to the translational acceleration of the axis of rotation (''base' acceleration). Steady-state sinusoidal or general periodic loads are specified to represent: (1) the physical loads on various segments of the complete structure, or (2) the circumferential harmonic components of the loads in (1). The cyclic symmetry feature of the rotating structure is used in deriving and solving the equations of forced motion. Consequently, only one of the cyclic sectors is modelled and analyzed using finite elements, yielding substantial savings in the analysis cost. Results, however, are obtained for the entire structure. A tuned twelve bladed disc example is used to demonstrate the various features of the capability.
Two-stage Electron Acceleration by 3D Collisionless Guide-field Magnetic Reconnection
NASA Astrophysics Data System (ADS)
Buechner, J.; Munoz, P.
2017-12-01
We discuss a two-stage process of electron acceleration near X-lines of 3D collisionless guide-field magnetic reconnection. Non-relativistic electrons are first pre-accelerated by magnetic-field-aligned (parallel) electric fields. At the nonlinear stage of 3D guide-field magnetic reconnection electric and magnetic fields become filamentary structured due to streaming instabilities. This causes an additional curvature-driven electron acceleration in the guide-field direction. The resulting spectrum of the accelerated electrons follows a power law.
Theory of unfolded cyclotron accelerator
NASA Astrophysics Data System (ADS)
Rax, J.-M.; Robiche, J.
2010-10-01
An acceleration process based on the interaction between an ion, a tapered periodic magnetic structure, and a circularly polarized oscillating electric field is identified and analyzed, and its potential is evaluated. A Hamiltonian analysis is developed in order to describe the interplay between the cyclotron motion, the electric acceleration, and the magnetic modulation. The parameters of this universal class of magnetic modulation leading to continuous acceleration without Larmor radius increase are expressed analytically. Thus, this study provides the basic scaling of what appears as a compact unfolded cyclotron accelerator.
Compact accelerator for medical therapy
Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.
2010-05-04
A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.
Fifty years of accelerator based physics at Chalk River
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, John W.
1999-04-26
The Chalk River Laboratories of Atomic Energy of Canada Ltd. was a major centre for Accelerator based physics for the last fifty years. As early as 1946, nuclear structure studies were started on Cockroft-Walton accelerators. A series of accelerators followed, including the world's first Tandem, and the MP Tandem, Superconducting Cyclotron (TASCC) facility that was opened in 1986. The nuclear physics program was shut down in 1996. This paper will describe some of the highlights of the accelerators and the research of the laboratory.
Externbrink, Anna; Clark, Meredith R; Friend, David R; Klein, Sandra
2013-11-01
The objective of the present study was to investigate if temperature can be utilized to accelerate drug release from Nuvaring®, a reservoir type intravaginal ring based on polyethylene vinyl acetate copolymer that releases a constant dose of contraceptive steroids over a duration of 3 weeks. The reciprocating holder apparatus (USP 7) was utilized to determine real-time and accelerated etonogestrel release from ring segments. It was demonstrated that drug release increased with increasing temperature which can be attributed to enhanced drug diffusion. An Arrhenius relationship of the zero-order release constants was established, indicating that temperature is a valid parameter to accelerate drug release from this dosage form and that the release mechanism is maintained under these accelerated test conditions. Accelerated release tests are particularly useful for routine quality control to assist during batch release of extended release formulations that typically release the active over several weeks, months or even years, since they can increase the product shelf life. The accelerated method should therefore be able to discriminate between formulations with different release characteristics that can result from normal manufacturing variance. In the case of Nuvaring®, it is well known that the process parameters during the extrusion process strongly influence the polymeric structure. These changes in the polymeric structure can affect the permeability which, in turn, is reflected in the release properties. Results from this study indicate that changes in the polymeric structure can lead to a different temperature dependence of the release rate, and as a consequence, the accelerated method can become less sensitive to detect changes in the release properties. When the accelerated method is utilized during batch release, it is therefore important to take this possible restriction into account and to evaluate the accelerated method with samples from non-conforming batches that are explicitly "out of specification" under real-time test conditions. Copyright © 2013 Elsevier B.V. All rights reserved.
Radially dependent angular acceleration of twisted light.
Webster, Jason; Rosales-Guzmán, Carmelo; Forbes, Andrew
2017-02-15
While photons travel in a straight line at constant velocity in free space, the intensity profile of structured light may be tailored for acceleration in any degree of freedom. Here we propose a simple approach to control the angular acceleration of light. Using Laguerre-Gaussian modes as our twisted beams carrying orbital angular momentum, we show that superpositions of opposite handedness result in a radially dependent angular acceleration as they pass through a focus (waist plane). Due to conservation of orbital angular momentum, we find that propagation dynamics are complex despite the free-space medium: the outer part of the beam (rings) rotates in an opposite direction to the inner part (petals), and while the outer part accelerates, the inner part decelerates. We outline the concepts theoretically and confirm them experimentally. Such exotic structured light beams are topical due to their many applications, for instance in optical trapping and tweezing, metrology, and fundamental studies in optics.
Designing a Dielectric Laser Accelerator on a Chip
NASA Astrophysics Data System (ADS)
Niedermayer, Uwe; Boine-Frankenheim, Oliver; Egenolf, Thilo
2017-07-01
Dielectric Laser Acceleration (DLA) achieves gradients of more than 1GeV/m, which are among the highest in non-plasma accelerators. The long-term goal of the ACHIP collaboration is to provide relativistic (>1 MeV) electrons by means of a laser driven microchip accelerator. Examples of ’’slightly resonant” dielectric structures showing gradients in the range of 70% of the incident laser field (1 GV/m) for electrons with beta=0.32 and 200% for beta=0.91 are presented. We demonstrate the bunching and acceleration of low energy electrons in dedicated ballistic buncher and velocity matched grating structures. However, the design gradient of 500 MeV/m leads to rapid defocusing. Therefore we present a scheme to bunch the beam in stages, which does not only reduce the energy spread, but also the transverse defocusing. The designs are made with a dedicated homemade 6D particle tracking code.
Cybermaterials: materials by design and accelerated insertion of materials
NASA Astrophysics Data System (ADS)
Xiong, Wei; Olson, Gregory B.
2016-02-01
Cybermaterials innovation entails an integration of Materials by Design and accelerated insertion of materials (AIM), which transfers studio ideation into industrial manufacturing. By assembling a hierarchical architecture of integrated computational materials design (ICMD) based on materials genomic fundamental databases, the ICMD mechanistic design models accelerate innovation. We here review progress in the development of linkage models of the process-structure-property-performance paradigm, as well as related design accelerating tools. Extending the materials development capability based on phase-level structural control requires more fundamental investment at the level of the Materials Genome, with focus on improving applicable parametric design models and constructing high-quality databases. Future opportunities in materials genomic research serving both Materials by Design and AIM are addressed.
NASA Astrophysics Data System (ADS)
Simakov, Evgenya I.; Andrews, Heather L.; Herman, Matthew J.; Hubbard, Kevin M.; Weis, Eric
2017-03-01
Demonstration of a stand-alone practical dielectric laser accelerator (DLA) requires innovation in two major critical components: high-current ultra-low-emittance cathodes and efficient laser accelerator structures. LANL develops two technologies that in our opinion are applicable to the novel DLA architectures: diamond field emitter array (DFEA) cathodes and additive manufacturing of photonic band-gap (PBG) structures. This paper discusses the results of testing of DFEA cathodes in the field-emission regime and the possibilities for their operation in the photoemission regime, and compares their emission characteristics to the specific needs of DLAs. We also describe recent advances in additive manufacturing of dielectric woodpile structures using a Nanoscribe direct laser-writing device capable of maskless lithography and additive manufacturing, and the development of novel infrared dielectric materials compatible with additive manufacturing.
Generation of auroral kilometric radiation and the structure of auroral acceleration region
NASA Technical Reports Server (NTRS)
Lee, L. C.; Kan, J. R.; Wu, C. S.
1980-01-01
Generation of auroral kilometric radiation (AKR) in the auroral acceleration region is studied. It is shown that auroral kilometric radiation can be generated by backscattered electrons trapped in the acceleration region via a cyclotron maser process. The parallel electric field in the acceleration region is required to be distributed over 1-2 earth radii. The observed AKR frequency spectrum can be used to estimate the altitude range of the auroral acceleration region. The altitudes of the lower and upper boundaries of the acceleration region determined from the AKR data are respectively approximately 2000 and 9000 km.
Guha, Madhumita; Gao, Xuan; Jayaraman, Shobini; Gursky, Olga
2008-11-04
High-density lipoproteins (HDLs) are protein-lipid assemblies that remove excess cell cholesterol and prevent atherosclerosis. HDLs are stabilized by kinetic barriers that decelerate protein dissociation and lipoprotein fusion. We propose that similar barriers modulate metabolic remodeling of plasma HDLs; hence, changes in particle composition that destabilize HDLs and accelerate their denaturation may accelerate their metabolic remodeling. To test this notion, we correlate existing reports on HDL-mediated cell cholesterol efflux and esterification, which are obligatory early steps in cholesterol removal, with our kinetic studies of HDL stability. The results support our hypothesis and show that factors accelerating cholesterol efflux and esterification in model discoidal lipoproteins (including reduced protein size, reduced fatty acyl chain length, and/or increased level of cis unsaturation) destabilize lipoproteins and accelerate their fusion and apolipoprotein dissociation. Oxidation studies of plasma spherical HDLs show a similar trend: mild oxidation by Cu(2+) or OCl(-) accelerates cell cholesterol efflux, protein dissociation, and HDL fusion, while extensive oxidation inhibits these reactions. Consequently, moderate destabilization may be beneficial for HDL functions by facilitating insertion of cholesterol and lipophilic enzymes, promoting dissociation of lipid-poor apolipoproteins, which are primary acceptors of cell cholesterol, and thereby accelerating HDL metabolism. Therefore, HDL stability must be delicately balanced to maintain the structural integrity of the lipoprotein assembly and ensure structural specificity necessary for interactions of HDL with its metabolic partners, while facilitating rapid HDL remodeling and turnover at key junctures of cholesterol transport. The inverse correlation between HDL stability and remodeling illustrates the functional importance of structural disorder in macromolecular assemblies stabilized by kinetic barriers.
NASA Astrophysics Data System (ADS)
Birx, Daniel
1992-03-01
Among the family of particle accelerators, the Induction Linear Accelerator is the best suited for the acceleration of high current electron beams. Because the electromagnetic radiation used to accelerate the electron beam is not stored in the cavities but is supplied by transmission lines during the beam pulse it is possible to utilize very low Q (typically<10) structures and very large beam pipes. This combination increases the beam breakup limited maximum currents to of order kiloamperes. The micropulse lengths of these machines are measured in 10's of nanoseconds and duty factors as high as 10-4 have been achieved. Until recently the major problem with these machines has been associated with the pulse power drive. Beam currents of kiloamperes and accelerating potentials of megavolts require peak power drives of gigawatts since no energy is stored in the structure. The marriage of liner accelerator technology and nonlinear magnetic compressors has produced some unique capabilities. It now appears possible to produce electron beams with average currents measured in amperes, peak currents in kiloamperes and gradients exceeding 1 MeV/meter, with power efficiencies approaching 50%. The nonlinear magnetic compression technology has replaced the spark gap drivers used on earlier accelerators with state-of-the-art all-solid-state SCR commutated compression chains. The reliability of these machines is now approaching 1010 shot MTBF. In the following paper we will briefly review the historical development of induction linear accelerators and then discuss the design considerations.
The hydrodynamics of linear accelerations in bluegill sunfish, Lepomis macrochirus
NASA Astrophysics Data System (ADS)
Wise, Tyler; Boden, Alex; Schwalbe, Margot; Tytell, Eric
2015-11-01
As fish swim, their body interacts with the fluid around them in order to generate thrust. In this study, we examined the hydrodynamics of linear acceleration by bluegill sunfish, Lepomis macrochirus, which swims using a carangiform mode. Carangiform swimmers primarily use their caudal fin and posterior body for propulsion, which is different from anguilliform swimmers, like eels, that undulate almost their whole body to swim. Most previous studies have examined steady swimming, but few have looked at linear accelerations, even though most fish do not often swim steadily. During steady swimming, thrust and drag forces are balanced, which makes it difficult to separate the two, but during acceleration, thrust exceeds drag, making it easier to measure; this may reveal insights into how thrust is produced. This study used particle image velocimetry (PIV) to compare the structure of the wake during steady swimming and acceleration and to estimate the axial force. Axial force increased during acceleration, but the orientation of the vortices did not differ between steady swimming and acceleration, which is different than anguilliform swimmers, whose wakes change structure during acceleration. This difference may point to fundamental differences between the two swimming modes. This material is based upon work supported by the U. S. Army Research Office under grant number W911NF-14-1-0494.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacLachlan, J.A.
The basic premises of the conceptual design for the linac upgrade are pursued to establish lengths, gradients, power dissipation, etc., for the 400 MeV linac and matching section. The discussion is limited to accelerating and focusing components. Wherever values depend on the choice of the accelerating structure, the disk-and-washer structure is emphasized; the results are generally relevant to the side coupled cavity choice also.
Electron Energization and Structure of the Diffusion Region During Asymmetric Reconnection
NASA Technical Reports Server (NTRS)
Chen, Li-Jen; Hesse, Michael; Wang, Shan; Bessho, Naoki; Daughton, William
2016-01-01
Results from particle-in-cell simulations of reconnection with asymmetric upstream conditions are reported to elucidate electron energization and structure of the electron diffusion region (EDR). Acceleration of unmagnetized electrons results in discrete structures in the distribution functions and supports the intense current and perpendicular heating in the EDR. The accelerated electrons are cyclotron turned by the reconnected magnetic field to produce the outflow jets, and as such, the acceleration by the reconnection electric field is limited, leading to resistivity without particle-particle or particle-wave collisions. A map of electron distributions is constructed, and its spatial evolution is compared with quantities previously proposed to be EDR identifiers to enable effective identifications of the EDR in terrestrial magnetopause reconnection.
Design of an electromagnetic accelerator for turbulent hydrodynamic mix studies
NASA Astrophysics Data System (ADS)
Susoeff, A. R.; Hawke, R. S.; Morrison, J. J.; Dimonte, G.; Remington, B. A.
1993-12-01
An electromagnetic accelerator in the form of a linear electric motor (LEM) has been designed to achieve controlled acceleration profiles of a carriage containing hydrodynamically unstable fluids for the investigation of the development of turbulent mix. The Rayleigh-Taylor instability is investigated by accelerating two dissimilar density fluids using the LEM to achieve a wide variety of acceleration and deceleration profiles. The acceleration profiles are achieved by independent control of rail and augmentation currents. A variety of acceleration-time profiles are possible including: (1) constant, (2) impulsive and (3) shaped. The LEM and support structure are a robust design in order to withstand high loads with deflections and to mitigate operational vibration. Vibration of the carriage during acceleration could create artifacts in the data which would interfere with the intended study of the Rayleigh-Taylor instability. The design allows clear access for diagnostic techniques such as laser induced fluorescence radiography, shadowgraphs and particle imaging velocimetry. Electromagnetic modeling codes were used to optimize the rail and augmentation coil positions within the support structure framework. Results of contemporary studies for non-arcing sliding contact of solid armatures are used for the design of the driving armature and the dynamic electromagnetic braking system. A 0.6MJ electrolytic capacitor bank is used for energy storage to drive the LEM. This report will discuss a LEM design which will accelerate masses of up to 3kg to a maximum of about 3000g(sub o), where g(sub o) is accelerated due to gravity.
Radiation from Accelerated Particles in Shocks and Reconnections
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Zhang, B.; Niemiec, J.; Medvedev, M.; Hardee, P.; Mizuno, Y.; Nordlund, A.; Frederiksen, J. T.; Sol, H.; Pohl, M.;
2011-01-01
Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. We are currently investigating the specific case of a jet colliding with an anti-parallel magnetized ambient medium. The properties of the radiation may be important for understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets in general, and supernova remnants.
An algorithm for the design and tuning of RF accelerating structures with variable cell lengths
NASA Astrophysics Data System (ADS)
Lal, Shankar; Pant, K. K.
2018-05-01
An algorithm is proposed for the design of a π mode standing wave buncher structure with variable cell lengths. It employs a two-parameter, multi-step approach for the design of the structure with desired resonant frequency and field flatness. The algorithm, along with analytical scaling laws for the design of the RF power coupling slot, makes it possible to accurately design the structure employing a freely available electromagnetic code like SUPERFISH. To compensate for machining errors, a tuning method has been devised to achieve desired RF parameters for the structure, which has been qualified by the successful tuning of a 7-cell buncher to π mode frequency of 2856 MHz with field flatness <3% and RF coupling coefficient close to unity. The proposed design algorithm and tuning method have demonstrated the feasibility of developing an S-band accelerating structure for desired RF parameters with a relatively relaxed machining tolerance of ∼ 25 μm. This paper discusses the algorithm for the design and tuning of an RF accelerating structure with variable cell lengths.
NASA Astrophysics Data System (ADS)
Dombeck, J. P.; Cattell, C. A.; Prasad, N.; Sakher, A.; Hanson, E.; McFadden, J. P.; Strangeway, R. J.
2016-12-01
Field-aligned currents (FACs) provide a fundamental driver and means of Magnetosphere-Ionosphere (M-I) coupling. These currents need to be supported by local physics along the entire field line generally with quasi-static potential structures, but also supporting the time-evolution of the structures and currents, producing Alfvén waves and Alfvénic electron acceleration. In regions of upward current, precipitating auroral electrons are accelerated earthward. These processes can result in ion outflow, changes in ionospheric conductivity, and affect the particle distributions on the field line, affecting the M-I coupling processes supporting the individual FACs and potentially the entire FAC system. The FAST mission was well suited to study both the FACs and the electron auroral acceleration processes. We present the results of the comparisons between meso- and small-scale FACs determined from FAST using the method of Peria, et al., 2000, and our FAST auroral acceleration mechanism study when such identification is possible for the entire ˜13 year FAST mission. We also present the latest results of the electron energy (and number) flux ionospheric input based on acceleration mechanism (and FAC characteristics) from our FAST auroral acceleration mechanism study.
Design, Construction, and Test of a 473 MHZ Four - Cavity Rfq.
NASA Astrophysics Data System (ADS)
Kazimi, Reza
1992-01-01
An RFQ accelerator using the new four-rod cavity design has been fabricated and successfully tested at Texas Accelerator Center. The RFQ is designed to accelerate a 10 mA H^- ion beam from 30 keV to 500 keV with the operating frequency of 473 MHz. This new type of RFQ structure not only promises simplicity of design, construction, and operation, but also can be manufactured to operate at higher frequencies than previously achieved by other four-rod type RFQs. Combination of simplicity and compactness due to higher operating frequencies (400 to 500 MHz) makes the design desirable for injector of proton accelerators, medical linear accelerators, and variety of other applications. This dissertation presents the steps I went through in inventing, developing, and experimentally testing this new RFQ design. First an introduction to accelerators is given, and the basic accelerator physics terminologies are defined. The principles of operations of the RFQs are described, and the theory behind new type of RFQ structure is explained. Then the beam dynamics and cavity design of the RFQ are presented. Finally, the mechanical design and construction procedure are discussed, and experimental results of rf tests and actual H ^- beam test are given.
Grisham, Larry R
2013-12-17
The present invention provides systems and methods for the magnetic insulation of accelerator electrodes in electrostatic accelerators. Advantageously, the systems and methods of the present invention improve the practically obtainable performance of these electrostatic accelerators by addressing, among other things, voltage holding problems and conditioning issues. The problems and issues are addressed by flowing electric currents along these accelerator electrodes to produce magnetic fields that envelope the accelerator electrodes and their support structures, so as to prevent very low energy electrons from leaving the surfaces of the accelerator electrodes and subsequently picking up energy from the surrounding electric field. In various applications, this magnetic insulation must only produce modest gains in voltage holding capability to represent a significant achievement.
NASA Astrophysics Data System (ADS)
Ma, Wei; Lu, Liang; Xu, Xianbo; Sun, Liepeng; Zhang, Zhouli; Dou, Weiping; Li, Chenxing; Shi, Longbo; He, Yuan; Zhao, Hongwei
2017-03-01
An 81.25 MHz continuous wave (CW) radio frequency quadrupole (RFQ) accelerator has been designed for the Low Energy Accelerator Facility (LEAF) at the Institute of Modern Physics (IMP) of the Chinese Academy of Science (CAS). In the CW operating mode, the proposed RFQ design adopted the conventional four-vane structure. The main design goals are providing high shunt impendence with low power losses. In the electromagnetic (EM) design, the π-mode stabilizing loops (PISLs) were optimized to produce a good mode separation. The tuners were also designed and optimized to tune the frequency and field flatness of the operating mode. The vane undercuts were optimized to provide a flat field along the RFQ cavity. Additionally, a full length model with modulations was set up for the final EM simulations. Following the EM design, thermal analysis of the structure was carried out. In this paper, detailed EM design and thermal simulations of the LEAF-RFQ will be presented and discussed. Structure error analysis was also studied.
Micro structure processing on plastics by accelerated hydrogen molecular ions
NASA Astrophysics Data System (ADS)
Hayashi, H.; Hayakawa, S.; Nishikawa, H.
2017-08-01
A proton has 1836 times the mass of an electron and is the lightest nucleus to be used for accelerator in material modification. We can setup accelerator with the lowest acceleration voltage. It is preferable characteristics of Proton Beam Writer (PBW) for industrial applications. On the contrary ;proton; has the lowest charge among all nuclei and the potential impact to material is lowest. The object of this research is to improve productivity of the PBW for industry application focusing on hydrogen molecular ions. These ions are generated in the same ion source by ionizing hydrogen molecule. There is no specific ion source requested and it is suitable for industrial use. We demonstrated three dimensional (3D) multilevel micro structures on polyester base FPC (Flexible Printed Circuits) using proton, H2+ and H3+. The reactivity of hydrogen molecular ions is much higher than that of proton and coincident with the level of expectation. We can apply this result to make micro devices of 3D multilevel structures on FPC.
He, Z.-H.; Beaurepaire, B.; Nees, J. A.; Gallé, G.; Scott, S. A.; Pérez, J. R. Sánchez; Lagally, M. G.; Krushelnick, K.; Thomas, A. G. R.; Faure, J.
2016-01-01
Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scale by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes. PMID:27824086
He, Z. -H.; Beaurepaire, B.; Nees, J. A.; ...
2016-11-08
Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have enormous benefits for ultrafast science. These novel sources promise to become indispensable tools for the investigation of structural dynamics on the femtosecond time scale, with spatial resolution on the atomic scale. Here in this paper, we demonstrate the use of laser-wakefield-accelerated electron bunches for time-resolved electron diffraction measurements of the structural dynamics of single-crystal silicon nano-membranes pumped by an ultrafast laser pulse. In our proof-of-concept study, we resolve the silicon lattice dynamics on a picosecond time scalemore » by deflecting the momentum-time correlated electrons in the diffraction peaks with a static magnetic field to obtain the time-dependent diffraction efficiency. Further improvements may lead to femtosecond temporal resolution, with negligible pump-probe jitter being possible with future laser-wakefield-accelerator ultrafast-electron-diffraction schemes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dieckmann, M.E.; Shukla, P.K.; Eliasson, B.
2006-06-15
The ever increasing performance of supercomputers is now enabling kinetic simulations of extreme astrophysical and laser produced plasmas. Three-dimensional particle-in-cell (PIC) simulations of relativistic shocks have revealed highly filamented spatial structures and their ability to accelerate particles to ultrarelativistic speeds. However, these PIC simulations have not yet revealed mechanisms that could produce particles with tera-electron volt energies and beyond. In this work, PIC simulations in one dimension (1D) of the foreshock region of an internal shock in a gamma ray burst are performed to address this issue. The large spatiotemporal range accessible to a 1D simulation enables the self-consistent evolutionmore » of proton phase space structures that can accelerate particles to giga-electron volt energies in the jet frame of reference, and to tens of tera-electron volt in the Earth's frame of reference. One potential source of ultrahigh energy cosmic rays may thus be the thermalization of relativistically moving plasma.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence Cardman
2006-09-01
The Continuous Electron Accelerator Facility, CEBAF, located at the Thomas Jefferson National Accelerator Facility, is devoted to the investigation of the electromagnetic structure of mesons, nucleons, and nuclei using high energy, high duty-cycle electron and photon beams. Selected experimental results of particular interest to the MAMI community are presented.
Alternating phase focused linacs
Swenson, Donald A.
1980-01-01
A heavy particle linear accelerator employing rf fields for transverse and ongitudinal focusing as well as acceleration. Drift tube length and gap positions in a standing wave drift tube loaded structure are arranged so that particles are subject to acceleration and succession of focusing and defocusing forces which contain the beam without additional magnetic or electric focusing fields.
Conceptual design of a high real-estate gradient cavity for a SRF ERL
NASA Astrophysics Data System (ADS)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; Xin, Tianmu; Wang, Haipeng
2017-10-01
The term "real-estate gradient" is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total accelerating efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this paper, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).
Does MRI scan acceleration affect power to track brain change?
Ching, Christopher R K; Hua, Xue; Hibar, Derrek P; Ward, Chadwick P; Gunter, Jeffrey L; Bernstein, Matt A; Jack, Clifford R; Weiner, Michael W; Thompson, Paul M
2015-01-01
The Alzheimer's Disease Neuroimaging Initiative recently implemented accelerated T1-weighted structural imaging to reduce scan times. Faster scans may reduce study costs and patient attrition by accommodating people who cannot tolerate long scan sessions. However, little is known about how scan acceleration affects the power to detect longitudinal brain change. Using tensor-based morphometry, no significant difference was detected in numerical summaries of atrophy rates from accelerated and nonaccelerated scans in subgroups of patients with Alzheimer's disease, early or late mild cognitive impairment, or healthy controls over a 6- and 12-month scan interval. Whole-brain voxelwise mapping analyses revealed some apparent regional differences in 6-month atrophy rates when comparing all subjects irrespective of diagnosis (n = 345). No such whole-brain difference was detected for the 12-month scan interval (n = 156). Effect sizes for structural brain changes were not detectably different in accelerated versus nonaccelerated data. Scan acceleration may influence brain measures but has minimal effects on tensor-based morphometry-derived atrophy measures, at least over the 6- and 12-month intervals examined here. Copyright © 2015 Elsevier Inc. All rights reserved.
Sulfate-reducing bacteria inhabiting natural corrosion deposits from marine steel structures.
Païssé, Sandrine; Ghiglione, Jean-François; Marty, Florence; Abbas, Ben; Gueuné, Hervé; Amaya, José Maria Sanchez; Muyzer, Gerard; Quillet, Laurent
2013-08-01
In the present study, investigations were conducted on natural corrosion deposits to better understand the role of sulfate-reducing bacteria (SRB) in the accelerated corrosion process of carbon steel sheet piles in port environments. We describe the abundance and diversity of total and metabolically active SRB within five natural corrosion deposits located within tidal or low water zone and showing either normal or accelerated corrosion. By using molecular techniques, such as quantitative real-time polymerase chain reaction, denaturing gel gradient electrophoresis, and sequence cloning based on 16S rRNA, dsrB genes, and their transcripts, we demonstrated a clear distinction between SRB population structure inhabiting normal or accelerated low-water corrosion deposits. Although SRB were present in both normal and accelerated low-water corrosion deposits, they dominated and were exclusively active in the inner and intermediate layers of accelerated corrosion deposits. We also highlighted that some of these SRB populations are specific to the accelerated low-water corrosion deposit environment in which they probably play a dominant role in the sulfured corrosion product enrichment.
NASA Technical Reports Server (NTRS)
Hubbard, H. H.; Shepherd, K. P.
1984-01-01
Window and wall acceleration measurements and interior noise measurements ere made for two different building structures during excitation by noise from the WTS-4 horizontal axis wind turbine generator operating in a normal power generation mode. With turbine noise input pulses resulted in acceleration pulses for the wall and window elements of the two tests buildings. Response spectra suggest that natural vibration modes of the structures are excited. Responses of a house trailer were substantially greater than those for a building of sturdier construction. Peak acceleration values correlate well with similar data for houses excited by flyover noise from commercial and military airplanes and helicopters, and sonic booms from supersonic aircraft. Interior noise spectra have peaks at frequencies corresponding to structural vibration modes and room standing waves; and the levels for particular frequencies and locations can be higher than the outside levels.
High field gradient particle accelerator
Nation, John A.; Greenwald, Shlomo
1989-01-01
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear finite element program MSC.Dytran was used to predict the impact pulse for (he drop test of an energy absorbing cellular structure. This pre-test simulation was performed to aid in the design of an energy absorbing concept for a highly reliable passive Earth Entry Vehicle (EEV) that will directly impact the Earth without a parachute. In addition, a goal of the simulation was to bound the acceleration pulse produced and delivered to the simulated space cargo container. EEV's are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the enter of the EEV's cellular structure. The material models and failure criteria were varied to determine their effect on the resulting acceleration pulse. Pre-test analytical predictions using MSC.Dytran were compared with the test results obtained from impact test #4 using bungee accelerator located at the NASA Langley Research Center Impact Dynamics Research Facility. The material model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAMI model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for drop test #4.
NASA Technical Reports Server (NTRS)
Carden, H. D.
1984-01-01
Three six-place, low wing, twin-engine general aviation airplane test specimens were crash tested at the langley Impact Dynamics research Facility under controlled free-flight conditions. One structurally unmodified airplane was the baseline airplane specimen for the test series. The other airplanes were structurally modified to incorporate load-limiting (energy-absorbing) subfloor concepts into the structure for full scale crash test evaluation and comparison to the unmodified airplane test results. Typically, the lowest floor accelerations and anthropomorphic dummy occupant responses, and the least seat crushing of standard and load-limiting seats, occurred in the modified load-limiting subfloor airplanes wherein the greatest structural crushing of the subfloor took place. The better performing of the two load-limiting subfloor concepts reduced the peak airplane floor accelerations at the pilot and four seat/occupant locations to -25 to -30 g's as compared to approximately -50 to -55 g's acceleration magnitude for the unmodified airplane structure.
Facilitation and practice in verb acquisition.
Keren-Portnoy, Tamar
2006-08-01
This paper presents a model of syntax acquisition, whose main points are as follows: Syntax is acquired in an item-based manner; early learning facilitates subsequent learning--as evidenced by the accelerating rate of new verbs entering a given structure; and mastery of syntactic knowledge is typically achieved through practice--as evidenced by intensive use and common word order errors--and this slows down learning during the early stages of acquiring a structure. The facilitation and practice hypotheses were tested on naturalistic production samples of six Hebrew-acquiring children ranging from ages 1;1 to 2;7 (average ages 1;6 to 2;4 months). Results show that most structures did in fact accelerate; the notion of 'practice' is supported by the inverse correlation found between number of verbs and number of errors in the earliest productions in a given structure; and the absence of acceleration in a minority of the structures is due to the fact that they involve relatively less practice.
Baczewski, Andrew David; Miller, Nicholas C.; Shanker, Balasubramaniam
2012-03-22
Here, the analysis of fields in periodic dielectric structures arise in numerous applications of recent interest, ranging from photonic bandgap structures and plasmonically active nanostructures to metamaterials. To achieve an accurate representation of the fields in these structures using numerical methods, dense spatial discretization is required. This, in turn, affects the cost of analysis, particularly for integral-equation-based methods, for which traditional iterative methods require Ο(Ν 2) operations, Ν being the number of spatial degrees of freedom. In this paper, we introduce a method for the rapid solution of volumetric electric field integral equations used in the analysis of doubly periodicmore » dielectric structures. The crux of our method is the accelerated Cartesian expansion algorithm, which is used to evaluate the requisite potentials in Ο(Ν) cost. Results are provided that corroborate our claims of acceleration without compromising accuracy, as well as the application of our method to a number of compelling photonics applications.« less
Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies
NASA Astrophysics Data System (ADS)
Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.
2018-02-01
We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.
An enhancement of NASTRAN for the seismic analysis of structures. [nuclear power plants
NASA Technical Reports Server (NTRS)
Burroughs, J. W.
1980-01-01
New modules, bulk data cards and DMAP sequence were added to NASTRAN to aid in the seismic analysis of nuclear power plant structures. These allow input consisting of acceleration time histories and result in the generation of acceleration floor response spectra. The resulting system contains numerous user convenience features, as well as being reasonably efficient.
REVIEWS OF TOPICAL PROBLEMS: Acceleration of cosmic rays by shock waves
NASA Astrophysics Data System (ADS)
Berezhko, E. G.; Krymskiĭ, G. F.
1988-01-01
Theoretical work on various processes by which shock waves accelerate cosmic rays is reviewed. The most efficient of these processes, Fermi acceleration, is singled out for special attention. A linear theory for this process is presented. The results found on the basis of nonlinear models of Fermi acceleration, which incorporate the modification of the structure caused by the accelerated particles, are reported. There is a discussion of various possibilities for explaining the generation of high-energy particles observed in interplanetary and interstellar space on the basis of a Fermi acceleration mechanism. The acceleration by shock waves from supernova explosions is discussed as a possible source of galactic cosmic rays. The most important unresolved questions in the theory of acceleration of charged particles by shock waves are pointed out.
Single step optimization of manipulator maneuvers with variable structure control
NASA Technical Reports Server (NTRS)
Chen, N.; Dwyer, T. A. W., III
1987-01-01
One step ahead optimization has been recently proposed for spacecraft attitude maneuvers as well as for robot manipulator maneuvers. Such a technique yields a discrete time control algorithm implementable as a sequence of state-dependent, quadratic programming problems for acceleration optimization. Its sensitivity to model accuracy, for the required inversion of the system dynamics, is shown in this paper to be alleviated by a fast variable structure control correction, acting between the sampling intervals of the slow one step ahead discrete time acceleration command generation algorithm. The slow and fast looping concept chosen follows that recently proposed for optimal aiming strategies with variable structure control. Accelerations required by the VSC correction are reserved during the slow one step ahead command generation so that the ability to overshoot the sliding surface is guaranteed.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-L.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. The non-linear fluctuation amplitudes of densities, currents, electric, and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at the comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. Additionally, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by the Weibel instability scale proportional to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform: small-scale magnetic fields which contribute to the electron's (positron's) transverse deflection behind the jet head. This small scale magnetic field structure is appropriate to the generation of jitter radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a a uniform magnetic field. The jitter radiation resulting from small scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks
NASA Technical Reports Server (NTRS)
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2005-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This small- scale magnetic field structure is appropriate to the generation of "jitter" radiation from deflected electrons (positrons) as opposed to synchrotron radiation. The jitter radiation has different properties than synchrotron radiation calculated assuming a uniform magnetic field. The jitter radiation resulting from small-scale magnetic field structures may be important for understanding the complex time structure and spectral evolution observed in gamma-ray bursts or other astrophysical sources containing relativistic jets and relativistic collisionless shocks.
GYROSURFING ACCELERATION OF IONS IN FRONT OF EARTH's QUASI-PARALLEL BOW SHOCK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kis, Arpad; Lemperger, Istvan; Wesztergom, Viktor
2013-07-01
It is well known that shocks in space plasmas can accelerate particles to high energies. However, many details of the shock acceleration mechanism are still unknown. A critical element of shock acceleration is the injection problem; i.e., the presence of the so called seed particle population that is needed for the acceleration to work efficiently. In our case study, we present for the first time observational evidence of gyroresonant surfing acceleration in front of Earth's quasi-parallel bow shock resulting in the appearance of the long-suspected seed particle population. For our analysis, we use simultaneous multi-spacecraft measurements provided by the Clustermore » spacecraft ion (CIS), magnetic (FGM), and electric field and wave instrument (EFW) during a time period of large inter-spacecraft separation distance. The spacecraft were moving toward the bow shock and were situated in the foreshock region. The results show that the gyroresonance surfing acceleration takes place as a consequence of interaction between circularly polarized monochromatic (or quasi-monochromatic) transversal electromagnetic plasma waves and short large amplitude magnetic structures (SLAMSs). The magnetic mirror force of the SLAMS provides the resonant conditions for the ions trapped by the waves and results in the acceleration of ions. Since wave packets with circular polarization and different kinds of magnetic structures are very commonly observed in front of Earth's quasi-parallel bow shock, the gyroresonant surfing acceleration proves to be an important particle injection mechanism. We also show that seed ions are accelerated directly from the solar wind ion population.« less
Plasma wakefield acceleration experiments at FACET II
NASA Astrophysics Data System (ADS)
Joshi, C.; Adli, E.; An, W.; Clayton, C. E.; Corde, S.; Gessner, S.; Hogan, M. J.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; O'shea, B.; Xu, Xinlu; White, G.; Yakimenko, V.
2018-03-01
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the ‘blow-out regime’ have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currently under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. We then briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.
Plasma wakefield acceleration experiments at FACET II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, C.; Adli, E.; An, W.
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Plasma wakefield acceleration experiments at FACET II
Joshi, C.; Adli, E.; An, W.; ...
2018-01-12
During the past two decades of research, the ultra-relativistic beam-driven plasma wakefield accelerator (PWFA) concept has achieved many significant milestones. These include the demonstration of ultra-high gradient acceleration of electrons over meter-scale plasma accelerator structures, efficient acceleration of a narrow energy spread electron bunch at high-gradients, positron acceleration using wakes in uniform plasmas and in hollow plasma channels, and demonstrating that highly nonlinear wakes in the 'blow-out regime' have the electric field structure necessary for preserving the emittance of the accelerating bunch. A new 10 GeV electron beam facility, Facilities for Accelerator Science and Experimental Test (FACET) II, is currentlymore » under construction at SLAC National Accelerator Laboratory for the next generation of PWFA research and development. The FACET II beams will enable the simultaneous demonstration of substantial energy gain of a small emittance electron bunch while demonstrating an efficient transfer of energy from the drive to the trailing bunch. In this paper we first describe the capabilities of the FACET II facility. We then describe a series of PWFA experiments supported by numerical and particle-in-cell simulations designed to demonstrate plasma wake generation where the drive beam is nearly depleted of its energy, high efficiency acceleration of the trailing bunch while doubling its energy and ultimately, quantifying the emittance growth in a single stage of a PWFA that has optimally designed matching sections. Here, we briefly discuss other FACET II plasma-based experiments including in situ positron generation and acceleration, and several schemes that are promising for generating sub-micron emittance bunches that will ultimately be needed for both an early application of a PWFA and for a plasma-based future linear collider.« less
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; ...
2016-08-16
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.).more » Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m –1 to a similar degree of accuracy. Lastly, these results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity.« less
Self-mapping the longitudinal field structure of a nonlinear plasma accelerator cavity
Clayton, C. E.; Adli, E.; Allen, J.; An, W.; Clarke, C. I.; Corde, S.; Frederico, J.; Gessner, S.; Green, S. Z.; Hogan, M. J.; Joshi, C.; Litos, M.; Lu, W.; Marsh, K. A.; Mori, W. B.; Vafaei-Najafabadi, N.; Xu, X.; Yakimenko, V.
2016-01-01
The preservation of emittance of the accelerating beam is the next challenge for plasma-based accelerators envisioned for future light sources and colliders. The field structure of a highly nonlinear plasma wake is potentially suitable for this purpose but has not been yet measured. Here we show that the longitudinal variation of the fields in a nonlinear plasma wakefield accelerator cavity produced by a relativistic electron bunch can be mapped using the bunch itself as a probe. We find that, for much of the cavity that is devoid of plasma electrons, the transverse force is constant longitudinally to within ±3% (r.m.s.). Moreover, comparison of experimental data and simulations has resulted in mapping of the longitudinal electric field of the unloaded wake up to 83 GV m−1 to a similar degree of accuracy. These results bode well for high-gradient, high-efficiency acceleration of electron bunches while preserving their emittance in such a cavity. PMID:27527569
Dust particle injector for hypervelocity accelerators provides high charge-to-mass ratio
NASA Technical Reports Server (NTRS)
Berg, O. E.
1966-01-01
Injector imparts a high charge-to-mass ratio to microparticles and injects them into an electrostatic accelerator so that the particles are accelerated to meteoric speeds. It employs relatively large masses in the anode and cathode structures with a relatively wide separation, thus permitting a large increase in the allowable injection voltages.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, A.W.
1984-04-16
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.
Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam
Maschke, Alfred W.
1985-01-01
A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.
Forced vibration analysis of rotating cyclic structures in NASTRAN
NASA Technical Reports Server (NTRS)
Elchuri, V.; Gallo, A. M.; Skalski, S. C.
1981-01-01
A new capability was added to the general purpose finite element program NASTRAN Level 17.7 to conduct forced vibration analysis of tuned cyclic structures rotating about their axis of symmetry. The effects of Coriolis and centripetal accelerations together with those due to linear acceleration of the axis of rotation were included. The theoretical, user's, programmer's and demonstration manuals for this new capability are presented.
An Rf Focused Interdigital Ion Accelerating Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swenson, D.A.
2003-08-26
An Rf Focused Interdigital (RFI) ion accelerating structure will be described. It represents an effective combination of the Wideroee (or interdigital) linac structure, used for many low frequency, heavy ion applications, and the rf electric quadrupole focusing used in the RFQ and RFD linac structures. As in the RFD linac structure, rf focusing is introduced into the RFI linac structure by configuring the drift tubes as two independent pieces operating at different electrical potentials as determined by the rf fields of the linac structure. Each piece (or electrode) of the RFI drift tube supports two fingers pointed inwards towards themore » opposite end of the drift tube forming a four-finger geometry that produces an rf quadrupole field along the axis of the linac for focusing the beam. However, because of the differences in the rf field configuration along the axis, the scheme for introducing rf focusing into the interdigital linac structure is quite different from that adopted for the RFD linac structure. The RFI linac structure promises to have significant size, efficiency, performance, and cost advantages over existing linac structures for the acceleration of low energy ion beams of all masses (light to heavy). These advantages will be reviewed. A 'cold model' of this new linac structure has been fabricated and the results of rf cavity measurements on this cold model will be presented.« less
Mizuno, T; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Watanabe, K; Dairaku, M; Sakamoto, K; Inoue, T
2010-02-01
Heat load on acceleration grids by secondary particles such as electrons, neutrals, and positive ions, is a key issue for long pulse acceleration of negative ion beams. Complicated behaviors of the secondary particles in multiaperture, multigrid (MAMuG) accelerator have been analyzed using electrostatic accelerator Monte Carlo code. The analytical result is compared to experimental one obtained in a long pulse operation of a MeV accelerator, of which second acceleration grid (A2G) was removed for simplification of structure. The analytical results show that relatively high heat load on the third acceleration grid (A3G) since stripped electrons were deposited mainly on A3G. This heat load on the A3G can be suppressed by installing the A2G. Thus, capability of MAMuG accelerator is demonstrated for suppression of heat load due to secondary particles by the intermediate grids.
Recent results of studies of acceleration of compact toroids
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Hartmen, C. W.; Eddleman, J.
1984-03-01
The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.
High gradient RF test results of S-band and C-band cavities for medical linear accelerators
NASA Astrophysics Data System (ADS)
Degiovanni, A.; Bonomi, R.; Garlasché, M.; Verdú-Andrés, S.; Wegner, R.; Amaldi, U.
2018-05-01
TERA Foundation has proposed and designed hadrontherapy facilities based on novel linacs, i.e. high gradient linacs which accelerate either protons or light ions. The overall length of the linac, and therefore its cost, is almost inversely proportional to the average accelerating gradient. With the scope of studying the limiting factors for high gradient operation and to optimize the linac design, TERA, in collaboration with the CLIC Structure Development Group, has conducted a series of high gradient experiments. The main goals were to study the high gradient behavior and to evaluate the maximum gradient reached in 3 and 5.7 GHz structures to direct the design of medical accelerators based on high gradient linacs. This paper summarizes the results of the high power tests of 3.0 and 5.7 GHz single-cell cavities.
Radiation from Accelerated Particles in Shocks and Reconnections
NASA Technical Reports Server (NTRS)
Nishikawa, K. I.; Choi, E. J.; Min, K. W.; Niemiec, J.; Zhang, B.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Nordlund, A.; Frederiksen, J.;
2012-01-01
Plasma instabilities are responsible not only for the onset and mediation of collisionless shocks but also for the associated acceleration of particles. We have investigated particle acceleration and shock structure associated with an unmagnetized relativistic electron-positron jet propagating into an unmagnetized electron-positron plasma. Cold jet electrons are thermalized and slowed while the ambient electrons are swept up to create a partially developed hydrodynamic-like shock structure. In the leading shock, electron density increases by a factor of about 3.5 in the simulation frame. Strong electromagnetic fields are generated in the trailing shock and provide an emission site. These magnetic fields contribute to the electrons transverse deflection and, more generally, relativistic acceleration behind the shock. We have calculated, self-consistently, the radiation from electrons accelerated in the turbulent magnetic fields. We found that the synthetic spectra depend on the Lorentz factor of the jet, its thermal temperature and strength of the generated magnetic fields. Our initial results of a jet-ambient interaction with anti-parallelmagnetic fields show pile-up of magnetic fields at the colliding shock, which may lead to reconnection and associated particle acceleration. We will investigate the radiation in a transient stage as a possible generation mechanism of precursors of prompt emission. In our simulations we calculate the radiation from electrons in the shock region. The detailed properties of this radiation are important for understanding the complex time evolution and spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Accelerator structure and beam transport system for the KEK photon factory injector
NASA Astrophysics Data System (ADS)
Sato, Isamu
1980-11-01
The injector is a 2.5 GeV electron linac which serves multiple purposes, being not only the injector for the various storage rings of the Photon Factory but also for the next planned project, the TRISTAN RING, and also as an intense electron or γ-ray source for research on phenomena in widely diverse scientific fields. The accelerator structure and beam transport system for the linac were designed with the greatest care in order to avoid beam blow-up difficulties, and also to be as suitable as possible to enable the economical mass production of the accelerator guides and focusing magnets.
High field gradient particle accelerator
Nation, J.A.; Greenwald, S.
1989-05-30
A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.
BBU design of linear induction accelerator cells for radiography application
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shang, C.C.; Chen, Y.J.; Gaporaso, G.J.
1997-05-06
There is an ongoing effort to develop accelerating modules for high-current electron accelerators for advanced radiography application. Accelerating modules with low beam-cavity coupling impedances along with gap designs with acceptable field stresses comprise a set of fundamental design criteria. We examine improved cell designs which have been developed for accelerator application in several radiographic operating regimes. We evaluate interaction impedances, analyze the effects of beam structure coupling on beam dynamics (beam break-up instability and corkscrew motion). We also provide estimates of coupling through interesting new high-gradient insulators and evaluate their potential future application in induction cells.
Magnetosheath Filamentary Structures Formed by Ion Acceleration at the Quasi-Parallel Bow Shock
NASA Technical Reports Server (NTRS)
Omidi, N.; Sibeck, D.; Gutynska, O.; Trattner, K. J.
2014-01-01
Results from 2.5-D electromagnetic hybrid simulations show the formation of field-aligned, filamentary plasma structures in the magnetosheath. They begin at the quasi-parallel bow shock and extend far into the magnetosheath. These structures exhibit anticorrelated, spatial oscillations in plasma density and ion temperature. Closer to the bow shock, magnetic field variations associated with density and temperature oscillations may also be present. Magnetosheath filamentary structures (MFS) form primarily in the quasi-parallel sheath; however, they may extend to the quasi-perpendicular magnetosheath. They occur over a wide range of solar wind Alfvénic Mach numbers and interplanetary magnetic field directions. At lower Mach numbers with lower levels of magnetosheath turbulence, MFS remain highly coherent over large distances. At higher Mach numbers, magnetosheath turbulence decreases the level of coherence. Magnetosheath filamentary structures result from localized ion acceleration at the quasi-parallel bow shock and the injection of energetic ions into the magnetosheath. The localized nature of ion acceleration is tied to the generation of fast magnetosonic waves at and upstream of the quasi-parallel shock. The increased pressure in flux tubes containing the shock accelerated ions results in the depletion of the thermal plasma in these flux tubes and the enhancement of density in flux tubes void of energetic ions. This results in the observed anticorrelation between ion temperature and plasma density.
Response of long, flexible cantilever beams applied root motions. [spacecraft structures
NASA Technical Reports Server (NTRS)
Fralich, R. W.
1976-01-01
Results are presented for an analysis of the response of long, flexible cantilever beams to applied root rotational accelerations. Maximum values of deformation, slope, bending moment, and shear are found as a function of magnitude and duration of acceleration input. Effects of tip mass and its eccentricity and rotatory inertia on the response are also investigated. It is shown that flexible beams can withstand large root accelerations provided the period of applied acceleration can be kept small relative to the beam fundamental period.
Computer modeling of test particle acceleration at oblique shocks
NASA Technical Reports Server (NTRS)
Decker, Robert B.
1988-01-01
The present evaluation of the basic techniques and illustrative results of charged particle-modeling numerical codes suitable for particle acceleration at oblique, fast-mode collisionless shocks emphasizes the treatment of ions as test particles, calculating particle dynamics through numerical integration along exact phase-space orbits. Attention is given to the acceleration of particles at planar, infinitessimally thin shocks, as well as to plasma simulations in which low-energy ions are injected and accelerated at quasi-perpendicular shocks with internal structure.
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration. The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
NASA Astrophysics Data System (ADS)
Biham, Ofer; Malcai, Ofer; Levy, Moshe; Solomon, Sorin
1998-08-01
The dynamics of generic stochastic Lotka-Volterra (discrete logistic) systems of the form wi(t+1)=λ(t)wi(t)+aw¯(t)-bwi(t)w¯(t) is studied by computer simulations. The variables wi, i=1,...,N, are the individual system components and w¯(t)=(1/N)∑iwi(t) is their average. The parameters a and b are constants, while λ(t) is randomly chosen at each time step from a given distribution. Models of this type describe the temporal evolution of a large variety of systems such as stock markets and city populations. These systems are characterized by a large number of interacting objects and the dynamics is dominated by multiplicative processes. The instantaneous probability distribution P(w,t) of the system components wi turns out to fulfill a Pareto power law P(w,t)~w-1-α. The time evolution of w¯(t) presents intermittent fluctuations parametrized by a Lévy-stable distribution with the same index α, showing an intricate relation between the distribution of the wi's at a given time and the temporal fluctuations of their average.
Austenitic stainless steel for high temperature applications
Johnson, Gerald D.; Powell, Roger W.
1985-01-01
This invention describes a composition for an austenitic stainless steel which has been found to exhibit improved high temperature stress rupture properties. The composition of this alloy is about (in wt. %): 12.5 to 14.5 Cr; 14.5 to 16.5 Ni; 1.5 to 2.5 Mo; 1.5 to 2.5 Mn; 0.1 to 0.4 Ti; 0.02 to 0.08 C; 0.5 to 1.0 Si; 0.01 maximum, N; 0.02 to 0.08 P; 0.002 to 0.008 B; 0.004-0.010 S; 0.02-0.05 Nb; 0.01-0.05 V; 0.005-0.02 Ta; 0.02-0.05 Al; 0.01-0.04 Cu; 0.02-0.05 Co; 0.03 maximum, As; 0.01 maximum, O; 0.01 maximum, Zr; and with the balance of the alloy being essentially iron. The carbon content of the alloy is adjusted such that wt. % Ti/(wt. % C+wt. % N) is between 4 and 6, and most preferably about 5. In addition the sum of the wt. % P+wt. % B+wt. % S is at least 0.03 wt. %. This alloy is believed to be particularly well suited for use as fast breeder reactor fuel element cladding.
Active Oxidation of a UHTC-Based CMC
NASA Technical Reports Server (NTRS)
Glass, David E.; Splinter, Scott C.
2012-01-01
The active oxidation of ceramic matrix composites (CMC) is a severe problem that must be avoided for multi-use hypersonic vehicles. Much work has been performed studying the active oxidation of silicon-based CMCs such as C/SiC and SiC-coated carbon/carbon (C/C). Ultra high temperature ceramics (UTHC) have been proposed as a possible material solution for high-temperature applications on hypersonic vehicles. However, little work has been performed studying the active oxidation of UHTCs. The intent of this paper is to present test data indicating an active oxidation process for a UHTC-based CMC similar to the active oxidation observed with Si-based CMCs. A UHTC-based CMC was tested in the HyMETS arc-jet facility (or plasma wind tunnel, PWT) at NASA Langley Research Center, Hampton, VA. The coupon was tested at a nominal surface temperature of 3000 F (1650 C), with a stagnation pressure of 0.026 atm. A sudden and large increase in surface temperature was noticed with negligible increase in the heat flux, indicative of the onset of active oxidation. It is shown that the surface conditions, both temperature and pressure, fall within the region for a passive to active transition (PAT) of the oxidation.
Implementation of the WICS Wall Interference Correction System at the National Transonic Facility
NASA Technical Reports Server (NTRS)
Iyer, Venkit; Martin, Lockheed; Everhart, Joel L.; Bir, Pamela J.; Ulbrich, Norbert
2000-01-01
The Wall Interference Correction System (WICS) is operational at the National Transonic Facility (NTF) of NASA Langley Research Center (NASA LaRC) for semispan and full span tests in the solid wall (slots covered) configuration, The method is based on the wall pressure signature method for computing corrections to the measured parameters. It is an adaptation of the WICS code operational at the 12 ft pressure wind tunnel (12ft PWT) of NASA Ames Research Center (NASA ARC). This paper discusses the details of implementation of WICS at the NTF including, tunnel calibration, code modifications for tunnel and support geometry, changes made for the NTF wall orifices layout, details of interfacing with the tunnel data processing system, and post-processing of results. Example results of applying WICS to a semispan test and a full span test are presented. Comparison with classical correction results and an analysis of uncertainty in the corrections are also given. As a special application of the code, the Mach number calibration data from a centerline pipe test was computed by WICS. Finally, future work for expanding the applicability of the code including online implementation is discussed.
Feng, Tao; Yin, Qin; Weng, Ze-lin; Zhang, Jian-cheng; Wang, Kun-feng; Yuan, Shi-ying; Cheng, Wei
2014-12-01
Autophagy acts as an important homoeostatic mechanism by degradation of cytosolic constituents and plays roles in many physiological processes. Recent studies demonstrated that autophagy can also regulate the production and secretion of the proinflammatory cytokine interleukin-1β (IL-1β), which plays a critical role in the development and maintenance of neuropathic pain. In the present study, the paw withdrawal threshold (PWT) and paw withdrawal latency (PWL) were significantly decreased after spinal nerve ligation (SNL), and the changes were accompanied by inhibited autophagy in the spinal microglia and increased mRNA and protein levels of IL-1β in the ipsilateral spinal cord. We then investigated the antinociceptive effect of rapamycin, a widely used autopahgy inducer, on SNL-induced neuropathic pain in rats and found that treatment with intrathecal rapamycin significantly attenuated the mechanical allodynia and thermal hyperalgesia. Moreover, rapamycin significantly enhanced autophagy in the spinal microglia, whereas it reduced the mRNA and protein levels of IL-1β in the ipsilateral spinal cord. Our results showed that rapamycin could ameliorate neuropathic pain by activating autophagy and inhibiting IL-1β in the spinal cord.
Microgravity Vibration Control and Civil Applications
NASA Technical Reports Server (NTRS)
Whorton, Mark Stephen; Alhorn, Dean Carl
1998-01-01
Controlling vibration of structures is essential for both space structures as well as terrestrial structures. Due to the ambient acceleration levels anticipated for the International Space Station, active vibration isolation is required to provide a quiescent acceleration environment for many science experiments. An overview is given of systems developed and flight tested in orbit for microgravity vibration isolation. Technology developed for vibration control of flexible space structures may also be applied to control of terrestrial structures such as buildings and bridges subject to wind loading or earthquake excitation. Recent developments in modern robust control for flexible space structures are shown to provide good structural vibration control while maintaining robustness to model uncertainties. Results of a mixed H-2/H-infinity control design are provided for a benchmark problem in structural control for earthquake resistant buildings.
NASA Astrophysics Data System (ADS)
Kilic, Cevahir; Raible, Christoph C.; Stocker, Thomas F.; Kirk, Edilbert
2017-01-01
Fundamental to the redistribution of energy in a planetary atmosphere is the general circulation and its meridional structure. We use a general circulation model of the atmosphere in an aquaplanet configuration with prescribed sea surface temperature and investigate the influence of the gravitational acceleration g on the structure of the circulation. For g =g0 = 9.81 ms-2 , three meridional cells exist in each hemisphere. Up to about g /g0 = 1.4 all cells increase in strength. Further increasing this ratio results in a weakening of the thermally indirect cell, such that a two- and finally a one-cell structure of the meridional circulation develops in each hemisphere. This transition is explained by the primary driver of the thermally direct Hadley cell: the diabatic heating at the equator which is proportional to g. The analysis of the energetics of the atmospheric circulation based on the Lorenz energy cycle supports this finding. For Earth-like gravitational accelerations transient eddies are primarily responsible for the meridional heat flux. For large gravitational accelerations, the direct zonal mean conversion of energy dominates the meridional heat flux.
NASA Astrophysics Data System (ADS)
Zhong, Fan; Li, Jensen; Liu, Hui; Zhu, Shining
2018-06-01
General relativity uses curved space-time to describe accelerating frames. The movement of particles in different curved space-times can be regarded as equivalent physical processes based on the covariant transformation between different frames. In this Letter, we use one-dimensional curved metamaterials to mimic accelerating particles in curved space-times. The different curved shapes of structures are used to mimic different accelerating frames. The different geometric phases along the structure are used to mimic different movements in the frame. Using the covariant principle of general relativity, we can obtain equivalent nanostructures based on space-time transformations, such as the Lorentz transformation and conformal transformation. In this way, many covariant structures can be found that produce the same surface plasmon fields when excited by spin photons. A new kind of accelerating beam, the Rindler beam, is obtained based on the Rindler metric in gravity. Very large effective indices can be obtained in such systems based on geometric-phase gradient. This general covariant design method can be extended to many other optical media.
Evidence for an elastic projection mechanism in the chameleon tongue.
de Groot, Jurriaan H.; van Leeuwen, Johan L.
2004-01-01
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope. PMID:15209111
Evidence for an elastic projection mechanism in the chameleon tongue.
de Groot, Jurriaan H; van Leeuwen, Johan L
2004-04-07
To capture prey, chameleons ballistically project their tongues as far as 1.5 body lengths with accelerations of up to 500 m s(-2). At the core of a chameleon's tongue is a cylindrical tongue skeleton surrounded by the accelerator muscle. Previously, the cylindrical accelerator muscle was assumed to power tongue projection directly during the actual fast projection of the tongue. However, high-speed recordings of Chamaeleo melleri and C. pardalis reveal that peak powers of 3000 W kg(-1) are necessary to generate the observed accelerations, which exceed the accelerator muscle's capacity by at least five- to 10-fold. Extrinsic structures might power projection via the tongue skeleton. High-speed fluoroscopy suggests that they contribute less than 10% of the required peak instantaneous power. Thus, the projection power must be generated predominantly within the tongue, and an energy-storage-and-release mechanism must be at work. The key structure in the projection mechanism is probably a cylindrical connective-tissue layer, which surrounds the entoglossal process and was previously suggested to act as lubricating tissue. This tissue layer comprises at least 10 sheaths that envelop the entoglossal process. The outer portion connects anteriorly to the accelerator muscle and the inner portion to the retractor structures. The sheaths contain helical arrays of collagen fibres. Prior to projection, the sheaths are longitudinally loaded by the combined radial contraction and hydrostatic lengthening of the accelerator muscle, at an estimated mean power of 144 W kg(-1) in C. melleri. Tongue projection is triggered as the accelerator muscle and the loaded portions of the sheaths start to slide over the tip of the entoglossal process. The springs relax radially while pushing off the rounded tip of the entoglossal process, making the elastic energy stored in the helical fibres available for a simultaneous forward acceleration of the tongue pad, accelerator muscle and retractor structures. The energy release continues as the multilayered spring slides over the tip of the smooth and lubricated entoglossal process. This sliding-spring theory predicts that the sheaths deliver most of the instantaneous power required for tongue projection. The release power of the sliding tubular springs exceeds the work rate of the accelerator muscle by at least a factor of 10 because the elastic-energy release occurs much faster than the loading process. Thus, we have identified a unique catapult mechanism that is very different from standard engineering designs. Our morphological and kinematic observations, as well as the available literature data, are consistent with the proposed mechanism of tongue projection, although experimental tests of the sheath strain and the lubrication of the entoglossal process are currently beyond our technical scope.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arsenyev, Sergey Andreyevich; Simakov, Evgenya Ivanovna; Shchegolkov, Dmitry
2015-04-29
We report the design and experimental data for a copper prototype of a superconducting radio-frequency (SRF) accelerator module. The five-cell module has an incorporated photonic band gap (PBG) cell with couplers. The purpose of the PBG cell is to achieve better higher order mode (HOM) damping, which is vital for preserving the quality of high-current electron beams. Better HOM damping raises the current threshold for beam instabilities in novel SRF accelerators. The PBG design also increases the real-estate gradient of the linac because both HOM damping and the fundamental power coupling can be done through the PBG cell instead ofmore » on the beam pipe via complicated end assemblies. First, we will discuss the design and accelerating properties of the structure. The five-cell module was optimized to provide good HOM damping while maintaining the same accelerating properties as conventional elliptical-cell modules. We will then discuss the process of tuning the structure to obtain the desired accelerating gradient profile. Finally, we will list measured quality factors for the accelerating mode and the most dangerous HOMs.« less
Villa, Francesco
1990-01-01
A high gain, single-pass free electron laser formed of a high brilliance electron injector source, a linear accelerator which imparts high energy to the electron beam, and an undulator capable of extremely high magnetic fields, yet with a very short period. The electron injector source is the first stage (gap) of the linear accelerator or a radial line transformer driven by fast circular switch. The linear accelerator is formed of a plurality of accelerating gaps arranged in series. These gaps are energized in sequence by releasing a single pulse of energy which propagates simultaneously along a plurality of transmission lines, each of which feeds the gaps. The transmission lines are graduated in length so that pulse power is present at each gap as the accelerated electrons pass therethrough. The transmission lines for each gap are open circuited at their ends. The undualtor has a structure similar to the accelerator, except that the transmission lines for each gap are substantially short circuited at their ends, thus converting the electric field into magnetic field. A small amount of resistance is retained in order to generate a small electric field for replenishing the electron bunch with the energy lost as it traverses through the undulator structure.
Acceleration and torque feedback for robotic control - Experimental results
NASA Technical Reports Server (NTRS)
Mclnroy, John E.; Saridis, George N.
1990-01-01
Gross motion control of robotic manipulators typically requires significant on-line computations to compensate for nonlinear dynamics due to gravity, Coriolis, centripetal, and friction nonlinearities. One controller proposed by Luo and Saridis avoids these computations by feeding back joint acceleration and torque. This study implements the controller on a Puma 600 robotic manipulator. Joint acceleration measurement is obtained by measuring linear accelerations of each joint, and deriving a computationally efficient transformation from the linear measurements to the angular accelerations. Torque feedback is obtained by using the previous torque sent to the joints. The implementation has stability problems on the Puma 600 due to the extremely high gains inherent in the feedback structure. Since these high gains excite frequency modes in the Puma 600, the algorithm is modified to decrease the gain inherent in the feedback structure. The resulting compensator is stable and insensitive to high frequency unmodeled dynamics. Moreover, a second compensator is proposed which uses acceleration and torque feedback, but still allows nonlinear terms to be fed forward. Thus, by feeding the increment in the easily calculated gravity terms forward, improved responses are obtained. Both proposed compensators are implemented, and the real time results are compared to those obtained with the computed torque algorithm.
Accelerating bridge construction to minimize traffic disruption : research spotlight.
DOT National Transportation Integrated Search
2013-12-01
Since 2008, MDOT has been using accelerated bridge construction, which utilizes prefabricated components and structural placements, to minimize traffic disruptions during bridge replacement or rehabilitation. A recent project provided MDOT with a new...
Using High-Powered Laser, Scientists Record Images of Chemical Interactions in RNA | Poster
A recent study at the Department of Energy’s Stanford Linear Accelerator Center National Accelerator Laboratory has literally shed new light on the structural interactions between RNA and another biomolecule.
Buttram, M.T.; Ginn, J.W.
1988-06-21
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.
NASA Astrophysics Data System (ADS)
Shafqat, N.; Di Mitri, S.; Serpico, C.; Nicastro, S.
2017-09-01
The FERMI free-electron laser (FEL) of Elettra Sincrotrone Trieste, Italy, is a user facility driven by a 1.5 GeV 10-50 Hz S-band radiofrequency linear accelerator (linac), and it is based on an external laser seeding scheme that allows lasing at the shortest fundamental wavelength of 4 nm. An increase of the beam energy to 1.8 GeV at a tolerable breakdown rate, and an improvement of the final beam quality is desired in order to allow either lasing at 4 nm with a higher flux, or lasing at shorter wavelengths. This article presents the impedance analysis of newly designed S-band accelerating structures, for replacement of the existing backward travelling wave structures (BTWS) in the last portion of the FERMI linac. The new structure design promises higher accelerating gradient and lower impedance than those of the existing BTWS. Particle tracking simulations show that, with the linac upgrade, the beam relative energy spread, its linear and nonlinear z-correlation internal to the bunch, and the beam transverse emittances can be made smaller than the ones in the present configuration, with expected advantage to the FEL performance. The repercussion of the upgrade on the linac quadrupole magnets setting, for a pre-determined electron beam optics, is also considered.
Accelerated stability studies for moisture-induced aggregation of tetanus toxoid.
Jain, Nishant Kumar; Roy, Ipsita
2011-03-01
The study was carried out to evaluate the effect of exposing solid tetanus toxoid to moisture in two different ways on the structure and function of the toxoid. Tetanus toxoid was exposed to moisture by (i) the addition of an optimized amount of buffer and (ii) incubation under an environment provided by a saturated solution of K(2)CrO(4.) The changes in the conformational, structural and antigenic properties of tetanus toxoid were measured and compared. Results show that even at a similar level of moisture-induced aggregation, the amounts of water absorbed by the two preparations of tetanus toxoid are different. Differences in antigenicity and changes in structure of the toxoid at primary, secondary and tertiary structure levels were seen. Although both conditions are used to mimic accelerated stability conditions in the laboratory, the final products are different in the two cases. Thus, conditions for 'accelerated stability studies' for therapeutic proteins need to be selected with care so that they resemble the fate of the actual product.
NASA Technical Reports Server (NTRS)
Chen, J. C.; Garba, J. A.; Wada, B. K.
1978-01-01
In the design/analysis process of a payload structural system, the accelerations at the payload/launch vehicle interface obtained from a system analysis using a rigid payload are often used as the input forcing function to the elastic payload to obtain structural design loads. Such an analysis is at best an approximation since the elastic coupling effects are neglected. This paper develops a method wherein the launch vehicle/rigid payload interface accelerations are modified to account for the payload elasticity. The advantage of the proposed method, which is exact to the extent that the physical system can be described by a truncated set of generalized coordinates, is that the complete design/analysis process can be performed within the organization responsible for the payload design. The method requires the updating of the system normal modes to account for payload changes, but does not require a complete transient solution using the composite system model. An application to a real complex structure, the Viking Spacecraft System, is given.
Multi-beam linear accelerator EVT
NASA Astrophysics Data System (ADS)
Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.
2016-09-01
A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initial specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. A relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.
Multi-beam linear accelerator EVT
Teryaev, Vladimir E.; Kazakov, Sergey Yu.; Hirshfield, Jay L.
2016-03-29
A novel electron multi-beam accelerator is presented. The accelerator, short-named EVT (Electron Voltage Transformer) belongs to the class of two-beam accelerators. It combines an RF generator and essentially an accelerator within the same vacuum envelope. Drive beam-lets and an accelerated beam are modulated in RF modulators and then bunches pass into an accelerating structure, comprising uncoupled with each other and inductive tuned cavities, where the energy transfer from the drive beams to the accelerated beam occurs. A phasing of bunches is solved by choice correspond distances between gaps of the adjacent cavities. Preliminary results of numerical simulations and the initialmore » specification of EVT operating in S-band, with a 60 kV gun and generating a 2.7 A, 1.1 MV beam at its output is presented. Furthermore, a relatively high efficiency of 67% and high design average power suggest that EVT can find its use in industrial applications.« less
Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo
2007-05-01
We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.
Damage detection based on acceleration data using artificial immune system
NASA Astrophysics Data System (ADS)
Chartier, Sandra; Mita, Akira
2009-03-01
Nowadays, Structural Health Monitoring (SHM) is essential in order to prevent damages occurrence in civil structures. This is a particularly important issue as the number of aged structures is increasing. Damage detection algorithms are often based on changes in the modal properties like natural frequencies, modal shapes and modal damping. In this paper, damage detection is completed by using Artificial Immune System (AIS) theory directly on acceleration data. Inspired from the biological immune system, AIS is composed of several models like negative selection which has a great potential for this study. The negative selection process relies on the fact that T-cells, after their maturation, are sensitive to non self cells and can not detect self cells. Acceleration data were provided by using the numerical model of a 3-story frame structure. Damages were introduced, at particular times, by reduction of story's stiffness. Based on these acceleration data, undamaged data (equivalent to self data) and damaged data (equivalent to non self data) can be obtained and represented in the Hamming shape-space with a binary representation. From the undamaged encoded data, detectors (equivalent to T-cells) are derived and are able to detect damaged encoded data really efficiently by using the rcontiguous bits matching rule. Indeed, more than 95% of detection can be reached when efficient combinations of parameters are used. According to the number of detected data, the localization of damages can even be determined by using the differences between story's relative accelerations. Thus, the difference which presents the highest detection rate, generally up to 89%, is directly linked to the location of damage.
NASA Astrophysics Data System (ADS)
le Roux, J. A.
2017-12-01
We developed previously a focused transport kinetic theory formalism with Fokker-plank coefficients (and its Parker transport limit) to model large-scale energetic particle transport and acceleration in solar wind regions with multiple contracting and merging small-scale flux ropes on MHD (inertial) scales (Zank et al. 2014; le Roux et al. 2015). The theory unifies the main acceleration mechanisms identified in particle simulations for particles temporarily trapped in such active flux rope structures, such as acceleration by the parallel electric field in reconnection regions between merging flux ropes, curvature drift acceleration in incompressible/compressible contracting and merging flux ropes, and betatron acceleration (e.g., Dahlin et al 2016). Initial analytical solutions of the Parker transport equation in the test particle limit showed that the energetic particle pressure from efficient flux-rope energization can potentially be high in turbulent solar wind regions containing active flux-rope structures. This requires taking into account the back reaction of energetic particles on flux ropes to more accurately determine the efficiency of energetic particles acceleration by small-scale flux ropes. To accomplish this goal we developed recently an extension of the kinetic theory to a kinetic-MHD level. We will present the extended theory showing the focused transport equation to be coupled to a solar wind MHD transport equation for small-scale flux-rope energy density extracted from a recently published nearly incompressible theory for solar wind MHD turbulence with a plasma beta of 1 (Zank et al. 2017). In the flux-rope transport equation appears new expressions for the damping/growth rates of flux-rope energy derived from assuming energy conservation in the interaction between energetic particles and small-scale flux ropes for all the main flux-rope acceleration mechanisms, whereas previous expressions for average particle acceleration rates have been explored in more detail. Future applications will involve exploring the relative role of diffusive shock and flux-ropes acceleration in the vicinity of traveling shocks in the supersonic solar wind near Earth where many flux-rope structures were detected recently (Hu et al 2017, this session).
CLASHING BEAM PARTICLE ACCELERATOR
Burleigh, R.J.
1961-04-11
A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.
O’Shea, B. D.; Andonian, G.; Barber, S. K.; ...
2016-09-14
There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m –1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m –1 using a dielectric wakefield accelerator of 15 cmmore » length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m –1. As a result, both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.« less
O'Shea, B. D.; Andonian, G.; Barber, S. K.; Fitzmorris, K. L.; Hakimi, S.; Harrison, J.; Hoang, P. D.; Hogan, M. J.; Naranjo, B.; Williams, O. B.; Yakimenko, V.; Rosenzweig, J. B.
2016-01-01
There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m−1) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m−1 using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m−1. Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons. PMID:27624348
Optical, x-ray and microwave diagnostics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudisco, S.; Mascali, D.; Altana, C.
2013-07-26
Laser-driven ion acceleration is a new approach for the particles acceleration, which allows obtaining ion beams with unique properties, such as short burst duration, large particle number, small size source size, low transverse emittance. Currently, two main acceleration mechanisms have been identified and investigated: target normal sheath acceleration (TNSA) and radiation pressure acceleration (RPA). Electrons dynamics and energies are strongly coupled to these acceleration mechanisms and they can be investigated with optical and X-ray techniques. The main aim of these studies are the identification of few physical observables that can be directly correlated to the proton emission obtained (in termsmore » of reproducibility and intensity) in operations with different target material and structure and laser-target interaction parameters.« less
Coupled-cavity drift-tube linac
Billen, James H.
1996-01-01
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the .pi.-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is .beta..lambda., where .lambda. is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a .pi./2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range.
Coupled-cavity drift-tube linac
Billen, J.H.
1996-11-26
A coupled-cavity drift-tube linac (CCDTL) combines features of the Alvarez drift-tube linac (DTL) and the {pi}-mode coupled-cavity linac (CCL). In one embodiment, each accelerating cavity is a two-cell, 0-mode DTL. The center-to-center distance between accelerating gaps is {beta}{lambda}, where {lambda} is the free-space wavelength of the resonant mode. Adjacent accelerating cavities have oppositely directed electric fields, alternating in phase by 180 degrees. The chain of cavities operates in a {pi}/2 structure mode so the coupling cavities are nominally unexcited. The CCDTL configuration provides an rf structure with high shunt impedance for intermediate velocity charged particles, i.e., particles with energies in the 20-200 MeV range. 5 figs.
A Novel Permanent Magnetic Angular Acceleration Sensor
Zhao, Hao; Feng, Hao
2015-01-01
Angular acceleration is an important parameter for status monitoring and fault diagnosis of rotary machinery. Therefore, we developed a novel permanent magnetic angular acceleration sensor, which is without rotation angle limitations and could directly measure the instantaneous angular acceleration of the rotating system. The sensor rotor only needs to be coaxially connected with the rotating system, which enables convenient sensor installation. For the cup structure of the sensor rotor, it has a relatively small rotational inertia. Due to the unique mechanical structure of the sensor, the output signal of the sensor can be directed without a slip ring, which avoids signal weakening effect. In this paper, the operating principle of the sensor is described, and simulated using finite element method. The sensitivity of the sensor is calibrated by torsional pendulum and angle sensor, yielding an experimental result of about 0.88 mV/(rad·s−2). Finally, the angular acceleration of the actual rotating system has been tested, using both a single-phase asynchronous motor and a step motor. Experimental result confirms the operating principle of the sensor and indicates that the sensor has good practicability. PMID:26151217
Conceptual design of a high real-estate gradient cavity for a SRF ERL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
X-ray driven channeling acceleration in crystals and carbon nanotubes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Young-Min; Still, Dean A.; Shiltsev, Vladimir
2013-12-01
Acceleration of particles channeling in a crystal by means of diffracted x-rays via Bormann anomalous transmission was conceived for heavy ions and muons by Tajima and Cavenago [Phys. Rev. Lett. 59, 1440 (1987)], which potentially offers an appreciably high field gradient on the order of GV/cm. The theoretical model of the high gradient acceleration has been studied in two kinds of atomic structure, crystals and carbon nanotubes (CNTs), with analytic calculations and electromagnetic eigenmode simulations. A range of acceleration gradients and cutoffs of the x-ray power (the lowest power limit to overcome the Bremsstrahlung radiation losses) are characterized in termsmore » of the lattice constants, unit cell sizes, and photon energies. The parametric analysis indicates that the required x-ray power can be reduced to an order of megawatt by replacing crystals with CNTs. Eventually, the equivalent dielectric approximation of a multi-wall nanotube shows that 250–810 MeV muons can be synchronously coupled with x-rays of 0.65–1.32 keV in the accelerating structure.« less
Conceptual design of a high real-estate gradient cavity for a SRF ERL
Xu, Chen; Ben-Zvi, Ilan; Hao, Yue; ...
2017-07-19
The term “real-estate gradient” is used to describe the energy gain provided by an accelerating structure per actual length it takes in the accelerator. given that the length of the tunnel available for the accelerator is constrained, the real-estate gradient is an important measure of the efficiency of a given accelerator structure. When designing an accelerating cavity to be efficient in this sense, the unwanted Higher Order Mode (HOM) fields should be reduced by suitable HOM dampers. This is a particularly important consideration for high current operation. The additional RF components might take longitude space and reduce the total acceleratingmore » efficiency. We describe a new high efficiency 5-cell cavity with the dampers included. The total length of the cavity is reduced by 13% as compared to a more conventional design without compromising the cavity fundamental-mode performance. In addition, the HOM impedance is reduced for a higher Beam-Break-Up (BBU) threshold of operating current. In this article, we consider an example, a possible application at the eRHIC Energy Recovery Linac (ERL).« less
NASA Astrophysics Data System (ADS)
Pawłowski, Bogdan; Bała, Piotr
2012-12-01
The main objective of this work was to determine the effect of different delivery conditions on the accelerated degradation of structural steels used for lifting beams (rails) of the monorail transport systems. Some of these rails, made of the same steel grade as others, undergoes accelerated corrosion in the coal mine environment. Corrosion degradation occurs much faster (more than two times faster), comparing to the same steel grade rails operated under the same conditions but with different microstructures. However, all the provided rails meet the requirements of appropriate standards for steel on the lifting beams of the monorail transport systems. The investigations were carried out on rails made of the same steel grade but with different microstructures and showed that the main factor influencing the accelerated corrosion degradation of tested steels is the delivery condition, so-called "as rolled" condition. The greatest resistance to the accelerated corrosion showed rails in the normalized or normalizing rolling condition.
On the maximum energy achievable in the first order Fermi acceleration at shocks
NASA Astrophysics Data System (ADS)
Grozny, I.; Diamond, P.; Malkov, M.
2002-11-01
Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.
FPGA accelerator for protein secondary structure prediction based on the GOR algorithm
2011-01-01
Background Protein is an important molecule that performs a wide range of functions in biological systems. Recently, the protein folding attracts much more attention since the function of protein can be generally derived from its molecular structure. The GOR algorithm is one of the most successful computational methods and has been widely used as an efficient analysis tool to predict secondary structure from protein sequence. However, the execution time is still intolerable with the steep growth in protein database. Recently, FPGA chips have emerged as one promising application accelerator to accelerate bioinformatics algorithms by exploiting fine-grained custom design. Results In this paper, we propose a complete fine-grained parallel hardware implementation on FPGA to accelerate the GOR-IV package for 2D protein structure prediction. To improve computing efficiency, we partition the parameter table into small segments and access them in parallel. We aggressively exploit data reuse schemes to minimize the need for loading data from external memory. The whole computation structure is carefully pipelined to overlap the sequence loading, computing and back-writing operations as much as possible. We implemented a complete GOR desktop system based on an FPGA chip XC5VLX330. Conclusions The experimental results show a speedup factor of more than 430x over the original GOR-IV version and 110x speedup over the optimized version with multi-thread SIMD implementation running on a PC platform with AMD Phenom 9650 Quad CPU for 2D protein structure prediction. However, the power consumption is only about 30% of that of current general-propose CPUs. PMID:21342582
Kniep, Rüdiger; Zahn, Dirk; Wulfes, Jana
2017-01-01
We explored the functional role of individual otoconia within the otolith system of mammalians responsible for the detection of linear accelerations and head tilts in relation to the gravity vector. Details of the inner structure and the shape of intact human and artificial otoconia were studied using environmental scanning electron microscopy (ESEM), including decalcification by ethylenediaminetetraacetic acid (EDTA) to discriminate local calcium carbonate density. Considerable differences between the rhombohedral faces of human and artificial otoconia already indicate that the inner architecture of otoconia is not consistent with the point group -3m. This is clearly confirmed by decalcified otoconia specimen which are characterized by a non-centrosymmetric volume distribution of the compact 3+3 branches. This structural evidence for asymmetric mass distribution was further supported by light microscopy in combination with a high speed camera showing the movement of single otoconia specimen (artificial specimen) under gravitational influence within a viscous medium (artificial endolymph). Moreover, the response of otoconia to linear acceleration forces was investigated by particle dynamics simulations. Both, time-resolved microscopy and computer simulations of otoconia acceleration show that the dislocation of otoconia include significant rotational movement stemming from density asymmetry. Based on these findings, we suggest an otolith membrane expansion/stiffening mechanism for enhanced response to linear acceleration transmitted to the vestibular hair cells. PMID:28406968
Osada, Naoki; Akashi, Hiroshi
2012-01-01
Accelerated rates of mitochondrial protein evolution have been proposed to reflect Darwinian coadaptation for efficient energy production for mammalian flight and brain activity. However, several features of mammalian mtDNA (absence of recombination, small effective population size, and high mutation rate) promote genome degradation through the accumulation of weakly deleterious mutations. Here, we present evidence for "compensatory" adaptive substitutions in nuclear DNA- (nDNA) encoded mitochondrial proteins to prevent fitness decline in primate mitochondrial protein complexes. We show that high mutation rate and small effective population size, key features of primate mitochondrial genomes, can accelerate compensatory adaptive evolution in nDNA-encoded genes. We combine phylogenetic information and the 3D structure of the cytochrome c oxidase (COX) complex to test for accelerated compensatory changes among interacting sites. Physical interactions among mtDNA- and nDNA-encoded components are critical in COX evolution; amino acids in close physical proximity in the 3D structure show a strong tendency for correlated evolution among lineages. Only nuclear-encoded components of COX show evidence for positive selection and adaptive nDNA-encoded changes tend to follow mtDNA-encoded amino acid changes at nearby sites in the 3D structure. This bias in the temporal order of substitutions supports compensatory weak selection as a major factor in accelerated primate COX evolution.
Particle acceleration in pulsar magnetospheres
NASA Technical Reports Server (NTRS)
Baker, K. B.
1978-01-01
The structure of pulsar magnetospheres and the acceleration mechanism for charged particles in the magnetosphere was studied using a pulsar model which required large acceleration of the particles near the surface of the star. A theorem was developed which showed that particle acceleration cannot be expected when the angle between the magnetic field lines and the rotation axis is constant (e.g. radial field lines). If this angle is not constant, however, acceleration must occur. The more realistic model of an axisymmetric neutron star with a strong dipole magnetic field aligned with the rotation axis was investigated. In this case, acceleration occurred at large distances from the surface of the star. The magnitude of the current can be determined using the model presented. In the case of nonaxisymmetric systems, the acceleration is expected to occur nearer to the surface of the star.
NASA Technical Reports Server (NTRS)
Nikitin, M. V.
1980-01-01
A series of experiments comparing single and combined effects of hypokinesia and gravitational acceleration on morphology of intestinal blood vessels are discussed. Results indicate that hypokinesia has a whole body nonspecific effect reflected even in an organ whose activity shows little or no change due to hypokinesia. In early hypokinetic stages blood redistribution caused anorexia, intestinal atonia, and secretory disruption. Destructive changes from further exposure include aneurisms, varicoses, extravascular movement of blood elements, and vascular wall muscle fiber degeneration. The effect of acceleration is greatest in the ventrodorsal direction. Changes due to acceleration then hypokinesia are like those due to hypokinesia alone; changes due to acceleration before and after hypokinesia are like those due to acceleration. Adaptation raises acceleration tolerance but the effects do not survive four-week hypokinesia.
Linear induction accelerator and pulse forming networks therefor
Buttram, Malcolm T.; Ginn, Jerry W.
1989-01-01
A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities.
NASA Astrophysics Data System (ADS)
Takeuchi, Kazuya; Masuda, Arata; Akahori, Shunsuke; Higashi, Yoshiyuki; Miura, Nanako
2017-04-01
This paper proposes an aerial robot that can land on and cling to a steel structure using electric permanent magnets to be- have as a vibration sensor probe for use in vibration-based structural health monitoring. In the last decade, structural health monitoring techniques have been studied intensively to tackle with serious social issues that most of the infrastructures in advanced countries are being deteriorated. In the typical concept of the structural health monitoring, vibration sensors like accelerometers are installed in the structure to continuously collect the dynamical response of the operating structure to find a symptom of the structural damage. It is unreasonable, however, to permanently deploy the sensors to numerous infrastructures because most of the infrastructures except for those of primary importance do not need continuous measurement and evaluation. In this study, the aerial robot plays a role of a mobile detachable sensor unit. The design guidelines of the aerial robot that performs the vibration measurement from the analysis model of the robot is shown. Experiments to evaluate the frequency response function of the acceleration measured by the robot with respect to the acceleration at the point where the robot adheres are carried out. And the experimental results show that the prototype robot can measure the acceleration of the host structure accurately up to 150 Hz.
Wang, D.; Antipov, S.; Jing, C.; ...
2016-02-05
Electron beam interaction with high frequency structures (beyond microwave regime) has a great impact on future high energy frontier machines. We report on the generation of multimegawatt pulsed rf power at 91 GHz in a planar metallic accelerating structure driven by an ultrarelativistic electron bunch train. This slow-wave wakefield device can also be used for high gradient acceleration of electrons with a stable rf phase and amplitude which are controlled by manipulation of the bunch train. To achieve precise control of the rf pulse properties, a two-beam wakefield interferometry method was developed in which the rf pulse, due to themore » interference of the wakefields from the two bunches, was measured as a function of bunch separation. As a result, measurements of the energy change of a trailing electron bunch as a function of the bunch separation confirmed the interferometry method.« less
Compact two-beam push-pull free electron laser
Hutton, Andrew [Yorktown, VA
2009-03-03
An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byung Cheol; Park, Hyung Dal; Lee, Seung Hyun; Buaphad, Pikad
2017-05-01
KAERI is developing a 6 MeV X-band radio frequency (RF) electron linear accelerator for medical purposes. The proposed X-band accelerator consists of an e-gun, an accelerating structure, two solenoid magnets, two steering magnets, a magnetron, a modulator, and an automatic frequency control (AFC) system. The accelerating structure of the component consists of oxygen-free high-conductivity copper (OFHC). Therefore, the ambient temperature changes the volume, and the resonance frequency of the accelerating structure also changes. If the RF frequency of a 9300 MHz magnetron and the resonance frequency of the accelerating structure do not match, it can degrade the performance. That is, it will decrease the output power, lower the beam current, decrease the X-ray dose rate, increase the reflection power, and result in unstable operation of the accelerator. Accelerator operation should be possible at any time during all four seasons. To prevent humans from being exposed to radiation when it is operated, the accelerator should also be operable through remote monitoring and remote control. Therefore, the AFC system is designed to meet these requirements; it is configured based on the concept of a phase-locked loop (PLL) model, which includes an RF section, an intermediate frequency (IF) [1-3] section, and a local oscillator (LO) section. Some resonance frequency controllers use a DC motor, chain, and potentiometer to store the position and tune the frequency [4,5]. Our AFC system uses a step motor to tune the RF frequency of the magnetron. The maximum tuning turn number of our magnetron frequency tuning shaft is ten. Since the RF frequency of our magnetron is 9300±25 MHz, it gives 5 MHz (∵±25 MHz/10 turns → 50 MHz/10 turns =5 MHz/turn) frequency tuning per turn. The rotation angle of our step motor is 0.72° per step and the total step number per one rotation is 360°/0.72°=500 steps. Therefore, the tuning range per step is 10 kHz/step (=5 MHz per turn/500 steps per turn). The developed system is a more compact new resonance frequency control system. In addition, a frequency measuring part is included and it can measure the real-time resonance frequency from the magnetron. We have succeeded in the stable provisioning of RF power by recording the results of a 0.01% frequency deviation in the AFC during an RF test. Accordingly, in this paper, the detailed design, fabrication, and a high power test of the AFC system for the X-band linac are presented.
Prolonged electron accelerations at a high-Mach-number, quasi-perpendicular shock
NASA Astrophysics Data System (ADS)
Matsumoto, Y.; Amano, T.; Kato, T.; Hoshino, M.
2016-12-01
Elucidating acceleration mechanisms of charged particles have been of great interests in laboratory, space, and astrophysical plasmas. Among other mechanisms, a collision-less shock is thought as an efficient particle accelerator. The idea has been strengthened by radio, X-ray, and gamma-ray observations of astrophysical objects such as supernova remnant shocks, where it has been indicated that protons and electrons are efficiently accelerated to TeV energies at such very strong shock waves. Efficient electron accelerations at high-Mach-number shocks was also suggested recently by in-situ measurements at the Saturn's bow shock. Motivated by these circumstances, laboratory experiments using high-power laser facilities emerge to provide a new platform to tackle these problems.Numerical simulations have revealed that electrons can be efficiently heated and accelerated via so-called the shock surfing acceleration mechanism in which electron-scale Buneman instability played key roles. Recently, Matsumoto et al. [2015] proposed a stochastic acceleration mechanism by turbulent reconnection in the shock transition region through excitation of the ion Weibel instability. In order to deal with the two different acceleration mechanisms in a self-consistent system, we examined 3D PIC simulations of a quasi-perpendicular, high-Mach-number shock. We successfully followed a long term evolution in which two different acceleration mechanisms coexist in the 3D shock structure. The Buneman instability is strongly excited ahead of the shock front in the same manner as have been found in 2D simulations. The surfing acceleration is found to be very effective in the present 3D system. In the transition region, the ion-beam Weibel instability generated strong magnetic field turbulence in 3D space. Energetic electrons, which initially experienced the surfing acceleration, undergo pitch-angle diffusion by interacting with the turbulent fields and thus stay in the upstream regions. The ion Weibel turbulence is essentially the key to prolonged acceleration processes which can produce relativistic particles with energies more than 1000 times the initial kinetic energy. We present how such relativistic electrons are produced during traveling in the 3D shock structure.
Design and Analysis of a New Hair Sensor for Multi-Physical Signal Measurement
Yang, Bo; Hu, Di; Wu, Lei
2016-01-01
A new hair sensor for multi-physical signal measurements, including acceleration, angular velocity and air flow, is presented in this paper. The entire structure consists of a hair post, a torsional frame and a resonant signal transducer. The hair post is utilized to sense and deliver the physical signals of the acceleration and the air flow rate. The physical signals are converted into frequency signals by the resonant transducer. The structure is optimized through finite element analysis. The simulation results demonstrate that the hair sensor has a frequency of 240 Hz in the first mode for the acceleration or the air flow sense, 3115 Hz in the third and fourth modes for the resonant conversion, and 3467 Hz in the fifth and sixth modes for the angular velocity transformation, respectively. All the above frequencies present in a reasonable modal distribution and are separated from interference modes. The input-output analysis of the new hair sensor demonstrates that the scale factor of the acceleration is 12.35 Hz/g, the scale factor of the angular velocity is 0.404 nm/deg/s and the sensitivity of the air flow is 1.075 Hz/(m/s)2, which verifies the multifunction sensitive characteristics of the hair sensor. Besides, the structural optimization of the hair post is used to improve the sensitivity of the air flow rate and the acceleration. The analysis results illustrate that the hollow circular hair post can increase the sensitivity of the air flow and the II-shape hair post can increase the sensitivity of the acceleration. Moreover, the thermal analysis confirms the scheme of the frequency difference for the resonant transducer can prominently eliminate the temperature influences on the measurement accuracy. The air flow analysis indicates that the surface area increase of hair post is significantly beneficial for the efficiency improvement of the signal transmission. In summary, the structure of the new hair sensor is proved to be feasible by comprehensive simulation and analysis. PMID:27399716
Development of a dual-pulse RF driver for an S-band (= 2856 MHz) RF electron linear accelerator
NASA Astrophysics Data System (ADS)
Cha, Sungsu; Kim, Yujong; Lee, Byeong-No; Lee, Byung Cheol; Cha, Hyungki; Ha, Jang Ho; Park, Hyung Dal; Lee, Seung Hyun; Kim, Hui Su; Buaphad, Pikad
2016-04-01
The radiation equipment research division of Korea Atomic Energy Research Institute has developed a Container Inspection System (CIS) using a Radio Frequency (RF) electron linear accelerator for port security. The primary purpose of the CIS is to detect nuclear materials and explosives, as well country-specific prohibited substances, e.g., smuggled. The CIS consists of a 9/6 MeV dualenergy electron linear accelerator for distinguishing between organic and inorganic materials. The accelerator consists of an electron gun, an RF accelerating structure, an RF driver, a modulator, electromagnets, a cooling system, a X-ray generating target, X-ray collimator, a detector, and a container moving system. The RF driver is an important part of the configuration because it is the RF power source: it supplies the RF power to the accelerating structure. A unique aspect of the RF driver is that it generates dual RF power to generate dual energy (9/6 MeV). The advantage of this RF driver is that it can allow the pulse width to vary and can be used to obtain a wide range of energy output, and pulse repetition rates up to 300 Hz. For this reason, 140 W (5 MW - 9 MeV) and 37 W (3.4 MW - 6 MeV) power outputs are available independently. A high power test for 20 minutes demonstrate that stable dual output powers can be generated. Moreover, the dual power can be applied to the accelerator which has stable accelerator operation. In this paper, the design, fabrication and high power test of the RF driver for the RF electron linear accelerator (linac) are presented.
Zhao, Hao; Feng, Hao
2013-01-01
An angular acceleration sensor can be used for the dynamic analysis of human and joint motions. In this paper, an angular acceleration sensor with novel structure based on the principle of electromagnetic induction is designed. The method involves the construction of a constant magnetic field by the excitation windings of sensor, and the cup-shaped rotor that cut the magnetic field. The output windings of the sensor generate an electromotive force, which is directly proportional to the angular acceleration through the electromagnetic coupling when the rotor has rotational angular acceleration. The mechanical structure and the magnetic working circuit of the sensor are described. The output properties and the mathematical model including the transfer function and state-space model of the sensor are established. The asymptotical stability of the sensor when it is working is verified by the Lyapunov Theorem. An angular acceleration calibration device based on the torsional pendulum principle is designed. The method involves the coaxial connection of the angular acceleration sensor, torsion pendulum and a high-precision angle sensor, and then an initial external force is applied to the torsion pendulum to produce a periodic damping angle oscillation. The angular acceleration sensor and the angle sensor will generate two corresponding electrical signals. The sensitivity coefficient of the angular acceleration sensor can be obtained after processing these two-channel signals. The experiment results show that the sensitivity coefficient of the sensor is about 17.29 mv/Krad·s2. Finally, the errors existing in the practical applications of the sensor are discussed and the corresponding improvement measures are proposed to provide effective technical support for the practical promotion of the novel sensor. PMID:23941911
Stability condition for the drive bunch in a collinear wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baturin, S. S.; Zholents, A.
The beam breakup instability of the drive bunch in the structure-based collinear wakefield accelerator is considered and a stabilizing method is proposed. The method includes using the specially designed beam focusing channel, applying the energy chirp along the electron bunch, and keeping energy chirp constant during the drive bunch deceleration. A stability condition is derived that defines the limit on the accelerating field for the witness bunch.
A six degree-of-freedom Lorentz vibration isolator with nonlinear controller
NASA Astrophysics Data System (ADS)
Fenn, Ralph C.
1992-05-01
The results of a phase 2 Small Business Innovation Research Program sponsored by MSFC are presented. Technology is developed for isolating acceleration sensitive microgravity experiments from structural vibration of a spacecraft, such as a space station. Two hardware articles are constructed: a six degree of freedom Lorentz force isolation and a one degree of freedom low acceleration testbed capable of tests at typical experiment accelerations.
Evaluation of stone/RAP interlayers under accelerated loading : technical summary.
DOT National Transportation Integrated Search
2008-08-01
The primary objective of this study was to determine the effectiveness of using an untreated RAP interlayer in lieu of a stone interlayer in a soil-cement asphalt pavement structure under accelerated loading. The secondary objective was to investigat...
Acceleration of barium ions near 8000 km above an aurora
NASA Technical Reports Server (NTRS)
Stenbaek-Nielsen, H. C.; Hallinan, T. J.; Wescott, E. M.; Foeppl, H.
1984-01-01
A barium shaped charge, named Limerick, was released from a rocket launched from Poker Flat Research Range, Alaska, on March 30, 1982, at 1033 UT. The release took place in a small auroral breakup. The jet of ionized barium reached an altitude of 8100 km 14.5 min after release, indicating that there were no parallel electric fields below this altitude. At 8100 km the jet appeared to stop. Analysis shows that the barium at this altitude was effectively removed from the tip. It is concluded that the barium was actually accelerated upward, resulting in a large decrease in the line-of-sight density and hence the optical intensity. The parallel electric potential in the acceleration region must have been greater than 1 kV over an altitude interval of less than 200 km. The acceleration region, although presumably auroral in origin, did not seem to be related to individual auroral structures, but appeared to be a large-scale horizontal structure. The perpendicular electric field below, as deduced from the drift of the barium, was temporally and spatially very uniform and showed no variation related to individual auroral structures passing through.
Wireless monitoring of structural components of wind turbines including tower and foundations
NASA Astrophysics Data System (ADS)
Wondra, B.; Botz, M.; Grosse, C. U.
2016-09-01
Only few large wind turbines contain an extensive structural health monitoring (SHM) system. Such SHM systems could provide deeper insight into the real load history of a wind turbine along its standard lifetime of 20 years and support a justified extension of operation beyond the original intended period. This paper presents a new concept of a wireless SHM system based on acceleration measurement sensor nodes to permanently record acceleration of the tower structure at different heights. Exploitation of acceleration data and its referring position on the turbine tower enables calculation of vibration frequencies, their amplitudes and subsequently eigenmodes. Tower heights of 100 m and more are within the transmission range of wireless nodes, enabling a complete surveillance of the tower in three dimensions without the need for long cabling or electric signal amplification. Mounting of the sensor nodes on the tower is not limited to a few positions by the presence of an electric cable anymore. Still a comparison between data recorded by wireless sensors and data recorded by high-resolution wire-based sensors shows that the present resolution of the wireless sensors has to be improved to record accelerations more accurately and thus analyze vibration frequencies more precisely.
Atherosclerosis in epilepsy: its causes and implications.
Hamed, Sherifa A
2014-12-01
Evidence from epidemiological, longitudinal, prospective, double-blinded clinical trials as well as case reports documents age-accelerated atherosclerosis with increased carotid artery intima media thickness (CA-IMT) in patients with epilepsy. These findings raise concern regarding their implications for age-accelerated cognitive and behavioral changes in midlife and risk of later age-related cognitive disorders including neurodegenerative processes such as Alzheimer's disease (AD). Chronic epilepsy, cerebral atherosclerosis, and age-related cognitive disorders including AD share many clinical manifestations (e.g. characteristic cognitive deficits), risk factors, and structural and pathological brain abnormalities. These shared risk factors include increased CA-IMT, hyperhomocysteinemia (HHcy), lipid abnormalities, weight gain and obesity, insulin resistance (IR), and high levels of inflammatory and oxidative stresses. The resulting brain structural and pathological abnormalities include decreased volume of the hippocampus, increased cortical thinning of the frontal lobe, ventricular expansion and increased white matter ischemic disease, total brain atrophy, and β-amyloid protein deposition in the brain. The knowledge that age-accelerated atherosclerosis may contribute to age-accelerated cognitive and behavioral abnormalities and structural brain pathologies in patients with chronic epilepsy represents an important research path to pursue future clinical and management considerations. Copyright © 2014 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Uzdensky, Dmitri
Relativistic astrophysical plasma environments routinely produce intense high-energy emission, which is often observed to be nonthermal and rapidly flaring. The recently discovered gamma-ray (> 100 MeV) flares in Crab Pulsar Wind Nebula (PWN) provide a quintessential illustration of this, but other notable examples include relativistic active galactic nuclei (AGN) jets, including blazars, and Gamma-ray Bursts (GRBs). Understanding the processes responsible for the very efficient and rapid relativistic particle acceleration and subsequent emission that occurs in these sources poses a strong challenge to modern high-energy astrophysics, especially in light of the necessity to overcome radiation reaction during the acceleration process. Magnetic reconnection and collisionless shocks have been invoked as possible mechanisms. However, the inferred extreme particle acceleration requires the presence of coherent electric-field structures. How such large-scale accelerating structures (such as reconnecting current sheets) can spontaneously arise in turbulent astrophysical environments still remains a mystery. The proposed project will conduct a first-principles computational and theoretical study of kinetic turbulence in relativistic collisionless plasmas with a special focus on nonthermal particle acceleration and radiation emission. The main computational tool employed in this study will be the relativistic radiative particle-in-cell (PIC) code Zeltron, developed by the team members at the Univ. of Colorado. This code has a unique capability to self-consistently include the synchrotron and inverse-Compton radiation reaction force on the relativistic particles, while simultaneously computing the resulting observable radiative signatures. This proposal envisions performing massively parallel, large-scale three-dimensional simulations of driven and decaying kinetic turbulence in physical regimes relevant to real astrophysical systems (such as the Crab PWN), including the radiation reaction effects. In addition to measuring the general fluid-level statistical properties of kinetic turbulence (e.g., the turbulent spectrum in the inertial and sub-inertial range), as well as the overall energy dissipation and particle acceleration, the proposed study will also investigate their intermittency and time variability, resulting in direction- and time-resolved emitted photon spectra and direction- and energy-resolved light curves, which can then be compared with observations. To gain deeper physical insight into the intermittent particle acceleration processes in turbulent astrophysical environments, the project will also identify and analyze statistically the current sheets, shocks, and other relevant localized particle-acceleration structures found in the simulations. In particular, it will assess whether relativistic kinetic turbulence in PWN can self-consistently generate such structures that are long and strong enough to accelerate large numbers of particles to the PeV energies required to explain the Crab gamma-ray flares, and where and under what conditions such acceleration can occur. The results of this research will also advance our understanding the origin of ultra-rapid TeV flares in blazar jets and will have important implications for GRB prompt emission, as well as AGN radio-lobes and radiatively-inefficient accretion flows, such as the flow onto the supermassive black hole at our Galactic Center.
NASA Astrophysics Data System (ADS)
Wygant, J. R.
2016-12-01
Evidence has accumulated that most energy conversion structures in space plasmas are characterized by intense small-scale size electric fields with strong parallel components, which are prime suspects in the rapid and efficient bulk acceleration of electrons. The proposed MPEX mission will provide, for the first time, 1 ms measurements of electrons capable of resolving the acceleration process due to these small-scale structures. These structures include Time Domain Structures (TDS) which are often organized into wave trains of hundreds of discrete structures propagating along magnetic fields lines. Recent measurements in the near Earth tail on auroral field lines indicate these wave trains are associated with electron acceleration in layers of strong energy flow in the form of particle energy flux and Poynting flux. Also coincident are kinetic Alfven waves which may be capable of driving the time domain structures or directly accelerating electrons. Other waves that may be important include lower hybrid wave packets, electron cyclotron waves, and large amplitude whistler waves. High time resolution field measurements show that such structures occur within dayside and tail reconnection regions, at the bow shock, at interplanetary shocks, and at other structures in the solar wind. The MPEX mission will be a multiphase mission with apogee boosts, which will explore all these regions. An array of electron ESAs will provide a 1 millisecond measurement of electron flux variations with nearly complete pitch angle coverage over a programmable array of selected energy channels. The electric field detector will provide measurement a fully 3-D measurement of the electric field with the benefit of an extremely large ratio of boom length to spacecraft radius and an improved sensor design. 2-D ion distribution functions will be provided by ion mass spectrometer and energetic electrons will be measured by a solid-state telescope.
Design of a ram accelerator mass launch system
NASA Technical Reports Server (NTRS)
Aarnio, Michael; Armerding, Calvin; Berschauer, Andrew; Christofferson, Erik; Clement, Paul; Gohd, Robin; Neely, Bret; Reed, David; Rodriguez, Carlos; Swanstrom, Fredrick
1988-01-01
The ram accelerator mass launch system has been proposed to greatly reduce the costs of placing acceleration-insensitive payloads into low earth orbit. The ram accelerator is a chemically propelled, impulsive mass launch system capable of efficiently accelerating relatively large masses from velocities of 0.7 km/sec to 10 km/sec. The principles of propulsion are based on those of a conventional supersonic air-breathing ramjet; however the device operates in a somewhat different manner. The payload carrying vehicle resembles the center-body of the ramjet and accelerates through a stationary tube which acts as the outer cowling. The tube is filled with premixed gaseous fuel and oxidizer mixtures that burn in the vicinity of the vehicle's base, producing a thrust which accelerates the vehicle through the tube. This study examines the requirement for placing a 2000 kg vehicle into a 500 km circular orbit with a minimum amount of on-board rocket propellant for orbital maneuvers. The goal is to achieve a 50 pct payload mass fraction. The proposed design requirements have several self-imposed constraints that define the vehicle and tube configurations. Structural considerations on the vehicle and tube wall dictate an upper acceleration limit of 1000 g's and a tube inside diameter of 1.0 m. In-tube propulsive requirements and vehicle structural constraints result in a vehicle diameter of 0.76 m, a total length of 7.5 m and a nose-cone half angle of 7 degrees. An ablating nose-cone constructed from carbon-carbon composite serves as the thermal protection mechanism for atmospheric transit.
Efficient particle acceleration in shocks
NASA Astrophysics Data System (ADS)
Heavens, A. F.
1984-10-01
A self-consistent non-linear theory of acceleration of particles by shock waves is developed, using an extension of the two-fluid hydrodynamical model by Drury and Völk. The transport of the accelerated particles is governed by a diffusion coefficient which is initially assumed to be independent of particle momentum, to obtain exact solutions for the spectrum. It is found that steady-state shock structures with high acceleration efficiency are only possible for shocks with Mach numbers less than about 12. A more realistic diffusion coefficient is then considered, and this maximum Mach number is reduced to about 6. The efficiency of the acceleration process determines the relative importance of the non-relativistic and relativistic particles in the distribution of accelerated particles, and this determines the effective specific heat ratio.
Laser-powered dielectric-structures for the production of high-brightness electron and x-ray beams
NASA Astrophysics Data System (ADS)
Travish, Gil; Yoder, Rodney B.
2011-05-01
Laser powered accelerators have been under intensive study for the past decade due to their promise of high gradients and leveraging of rapid technological progress in photonics. Of the various acceleration schemes under examination, those based on dielectric structures may enable the production of relativistic electron beams in breadbox sized systems. When combined with undulators having optical-wavelength periods, these systems could produce high brilliance x-rays which find application in, for instance, medical and industrial imaging. These beams also may open the way for table-top atto-second sciences. Development and testing of these dielectric structures faces a number of challenges including complex beam dynamics, new demands on lasers and optical coupling, beam injection schemes, and fabrication. We describe one approach being pursued at UCLA-the Micro Accelerator Platform (MAP). A structure similar to the MAP has also been designed which produces periodic deflections and acts as an undulator for radiation production, and the prospects for this device will be considered. The lessons learned from the multi-year effort to realize these devices will be presented. Challenges remain with acceleration of sub-relativistic beams, focusing, beam phase stability and extension of these devices to higher beam energies. Our progress in addressing these hurdles will be summarized. Finally, the demands on laser technology and optical coupling will be detailed.
Beam-driven acceleration in ultra-dense plasma media
Shin, Young-Min
2014-09-15
Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10 25 m -3 and 1.6 x 10 28 m -3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlargingmore » the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less
Guided post-acceleration of laser-driven ions by a miniature modular structure
Kar, Satyabrata; Ahmed, Hamad; Prasad, Rajendra; Cerchez, Mirela; Brauckmann, Stephanie; Aurand, Bastian; Cantono, Giada; Hadjisolomou, Prokopis; Lewis, Ciaran L. S.; Macchi, Andrea; Nersisyan, Gagik; Robinson, Alexander P. L.; Schroer, Anna M.; Swantusch, Marco; Zepf, Matt; Willi, Oswald; Borghesi, Marco
2016-01-01
All-optical approaches to particle acceleration are currently attracting a significant research effort internationally. Although characterized by exceptional transverse and longitudinal emittance, laser-driven ion beams currently have limitations in terms of peak ion energy, bandwidth of the energy spectrum and beam divergence. Here we introduce the concept of a versatile, miniature linear accelerating module, which, by employing laser-excited electromagnetic pulses directed along a helical path surrounding the laser-accelerated ion beams, addresses these shortcomings simultaneously. In a proof-of-principle experiment on a university-scale system, we demonstrate post-acceleration of laser-driven protons from a flat foil at a rate of 0.5 GeV m−1, already beyond what can be sustained by conventional accelerator technologies, with dynamic beam collimation and energy selection. These results open up new opportunities for the development of extremely compact and cost-effective ion accelerators for both established and innovative applications. PMID:27089200
The Particle Accelerator Simulation Code PyORBIT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorlov, Timofey V; Holmes, Jeffrey A; Cousineau, Sarah M
2015-01-01
The particle accelerator simulation code PyORBIT is presented. The structure, implementation, history, parallel and simulation capabilities, and future development of the code are discussed. The PyORBIT code is a new implementation and extension of algorithms of the original ORBIT code that was developed for the Spallation Neutron Source accelerator at the Oak Ridge National Laboratory. The PyORBIT code has a two level structure. The upper level uses the Python programming language to control the flow of intensive calculations performed by the lower level code implemented in the C++ language. The parallel capabilities are based on MPI communications. The PyORBIT ismore » an open source code accessible to the public through the Google Open Source Projects Hosting service.« less
Ion-acoustic shocks with reflected ions: modelling and particle-in-cell simulations
NASA Astrophysics Data System (ADS)
Liseykina, T. V.; Dudnikova, G. I.; Vshivkov, V. A.; Malkov, M. A.
2015-10-01
> Non-relativistic collisionless shock waves are widespread in space and astrophysical plasmas and are known as efficient particle accelerators. However, our understanding of collisionless shocks, including their structure and the mechanisms whereby they accelerate particles, remains incomplete. We present here the results of numerical modelling of an ion-acoustic collisionless shock based on the one-dimensional kinetic approximation for both electrons and ions with a real mass ratio. Special emphasis is paid to the shock-reflected ions as the main driver of shock dissipation. The reflection efficiency, the velocity distribution of reflected particles and the shock electrostatic structure are studied in terms of the shock parameters. Applications to particle acceleration in geophysical and astrophysical shocks are discussed.
Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes
Palmer, Robert B.
1991-01-01
An accelerating cavity having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps.
Plasma development in the accelerator of a 2-kJ focus discharge.
Fischer, H; Haering, K H
1979-07-01
Optical image structures from early breakdown ( approximately 200 nsec) to focus formation (~1300 nsec) in 3 Torr hydrogen were studied by means of 2 image converter shutters having 50-nsec and 10-nsec exposure. Space charge limited cathode spots at the outer electrode (OE)-spoke-shaped positive columns across the gap-and an extended electron cloud along the center electrode (CE) determine the current flow during early breakdown. Ionization increases exponentially within the center gap plasma. This is separated from the CE by a pattern of anode drop filaments. Filament structures grow into the z-axis accelerated current sheath, which in addition carries the early spoke pattern. The sheath appears homogeneous after leaving the accelerator exit.
Radio evidence for shock acceleration of electrons in the solar corona
NASA Technical Reports Server (NTRS)
Cane, H. V.; Stone, R. G.; Fainberg, J.; Steinberg, J. L.; Hoang, S.; Stewart, R. T.
1981-01-01
It is pointed out that the new class of kilometer-wavelength solar radio bursts observed with the ISEE-3 Radio Astronomy Experiment occurs at the reported times of type II events, which are indicative of a shock wave. An examination of records from the Culgoora Radio Observatory reveals that the associated type II bursts have fast drift elements emanating from them; that is, a herringbone structure is formed. It is proposed that this new class of bursts is a long-wavelength continuation of the herringbone structure, and it is thought probable that the electrons producing the radio emission are accelerated by shocks. These new events are referred to as shock-accelerated events, and their characteristics are discussed.
Benevicius, Vincas; Ostasevicius, Vytautas; Gaidys, Rimvydas
2013-08-22
Due to their small size, low weight, low cost and low energy consumption, MEMS accelerometers have achieved great commercial success in recent decades. The aim of this research work is to identify a MEMS accelerometer structure for human body dynamics measurements. Photogrammetry was used in order to measure possible maximum accelerations of human body parts and the bandwidth of the digital acceleration signal. As the primary structure the capacitive accelerometer configuration is chosen in such a way that sensing part measures on all three axes as it is 3D accelerometer and sensitivity on each axis is equal. Hill climbing optimization was used to find the structure parameters. Proof-mass displacements were simulated for all the acceleration range that was given by the optimization problem constraints. The final model was constructed in Comsol Multiphysics. Eigenfrequencies were calculated and model's response was found, when vibration stand displacement data was fed into the model as the base excitation law. Model output comparison with experimental data was conducted for all excitation frequencies used during the experiments.
Dynamic Finite Element Predictions for Mars Sample Return Cellular Impact Test #4
NASA Technical Reports Server (NTRS)
Fasanella, Edwin L.; Billings, Marcus D.
2001-01-01
The nonlinear, transient dynamic finite element code, MSC.Dytran, was used to simulate an impact test of an energy absorbing Earth Entry Vehicle (EEV) that will impact without a parachute. EEVOs are designed to return materials from asteroids, comets, or planets for laboratory analysis on Earth. The EEV concept uses an energy absorbing cellular structure designed to contain and limit the acceleration of space exploration samples during Earth impact. The spherical shaped cellular structure is composed of solid hexagonal and pentagonal foam-filled cells with hybrid graphite-epoxy/Kevlar cell walls. Space samples fit inside a smaller sphere at the center of the EEVOs cellular structure. Pre-test analytical predictions were compared with the test results from a bungee accelerator. The model used to represent the foam and the proper failure criteria for the cell walls were critical in predicting the impact loads of the cellular structure. It was determined that a FOAM1 model for the foam and a 20% failure strain criteria for the cell walls gave an accurate prediction of the acceleration pulse for cellular impact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cappelletti, A.; /CERN; Dolgashev, V.
A fundamental element of the CLIC concept is two-beam acceleration, where RF power is extracted from a high current, low energy drive beam in order to accelerate the low current main beam to high energy. The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the constant impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced is collected downstream of the structure by means of the RF power extractor; it is delivered to the main linac using the waveguide network connectingmore » the PETS to the main CLIC accelerating structures. The PETS should produce 135 MW at 240 ns RF pulses at a very low breakdown rate: BDR < 10{sup -7}/pulse/m. Over 2010, a thorough high RF power testing program was conducted in order to investigate the ultimate performance and the limiting factors for the PETS operation. The testing program is described and the results are presented.« less
Design of a high power TM01 mode launcher optimized for manufacturing by milling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dal Forno, Massimo
2016-12-15
Recent research on high-gradient rf acceleration found that hard metals, such as hard copper and hard copper-silver, have lower breakdown rate than soft metals. Traditional high-gradient accelerating structures are manufactured with parts joined by high-temperature brazing. The high temperature used in brazing makes the metal soft; therefore, this process cannot be used to manufacture structures out of hard metal alloys. In order to build the structure with hard metals, the components must be designed for joining without high-temperature brazing. One method is to build the accelerating structures out of two halves, and join them by using a low-temperature technique, atmore » the symmetry plane along the beam axis. The structure has input and output rf power couplers. We use a TM01 mode launcher as a rf power coupler, which was introduced during the Next Linear Collider (NLC) work. The part of the mode launcher will be built in each half of the structure. This paper presents a novel geometry of a mode launcher, optimized for manufacturing by milling. The coupler was designed for the CERN CLIC working frequency f = 11.9942 GHz; the same geometry can be scaled to any other frequency.« less
Scaling fixed-field alternating gradient accelerators with a small orbit excursion.
Machida, Shinji
2009-10-16
A novel scaling type of fixed-field alternating gradient (FFAG) accelerator is proposed that solves the major problems of conventional scaling and nonscaling types. This scaling FFAG accelerator can achieve a much smaller orbit excursion by taking a larger field index k. A triplet focusing structure makes it possible to set the operating point in the second stability region of Hill's equation with a reasonable sensitivity to various errors. The orbit excursion is about 5 times smaller than in a conventional scaling FFAG accelerator and the beam size growth due to typical errors is at most 10%.
Investigation on target normal sheath acceleration through measurements of ions energy distribution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudisco, S., E-mail: tudisco@lns.infn.it; Cirrone, G. A. P.; Mascali, D.
2016-02-15
An experimental campaign aiming at investigating the ion acceleration mechanisms through laser-matter interaction in femtosecond domain has been carried out at the Intense Laser Irradiation Laboratory facility with a laser intensity of up to 2 × 10{sup 19} W/cm{sup 2}. A Thomson parabola spectrometer was used to obtain the spectra of the ions of the different species accelerated. Here, we show the energy spectra of light-ions and we discuss their dependence on structural characteristics of the target and the role of surface and target bulk in the acceleration process.
Adiponectin and Cardiac Hypertrophy in Acromegaly.
Gurbulak, Sabriye; Akin, Fulya; Yerlikaya, Emrah; Yaylali, Guzin F; Topsakal, Senay; Tanriverdi, Halil; Akdag, Beyza; Kaptanoglu, Bunyamin
2016-01-01
Adiponectin is an adipocytes-derived hormone which has been shown to possess insulin-sensitizing, antiatherogenic, and anti-inflammatory properties. In acromegaly, the data on adiponectin is contradictory. The relationship between adiponectin levels and cardiac parameters has not been studied. The aim of this study was to find out how adiponectin levels were affected in acromegalic patients and the relationship between adiponectin levels and cardiac parameters. We included 30 subjects (15 male, 15 female), diagnosed with acromegaly and 30 healthy (10 male, 20 female) subjects. Serum glucose, insulin, GH, IGF-1 and adiponectin levels were obtained and the insulin resistance of the subjects was calculated. Echocardiographic studies of the subjects were performed. We determined that adiponectin levels were significantly higher in the acromegalic group than the control group. In the acromegalic group, there was no statistically significant relation between serum adiponectin and growth hormone (GH), or insulin-like growth factor-1 (IGF-1) levels (p = 0.3, p = 0.1). We demonstrated that cardiac function and structure are affected by acromegaly. IVST, PWT, LVMI, E/A ratio, DT, ET, IVRT, VPR, and LVESV values were increased and the results were statistically significant. In the acromegalic group, adiponectin levels were positively related with left ventricle mass index (LVMI) but this correlation was found to be statistically weak (p = 0.03). In our study, there was a positive correlation between VAI and LVM. We also could not find any correlation between VAI and adiponectin levels. Although insulin resistance and high insulin levels occur in active acromegaly patients, adiponectin levels were higher in our study as a consequence of GH lowering therapies. Our study showed that adiponectin levels may be an indicator of the cardiac involvement acromegaly. However, the usage of serum adiponectin levels in acromegalic patients as an indicator of cardiac involvement should be supported with other, wide, multi-centered studies.
Agrebi, Brahim; Tkatchuk, Vladimir; Hlila, Nawel; Mouelhi, Emna; Belhani, Ali
2015-01-01
Handball activity involves cardiac changes and demands a mixture of both eccentric and concentric remodeling within the heart. This study seeks to explore heart performance and cardiac remodeling likely to define cardiac parameters which influence specific performance in male handball players across different age ranges. Forty three players, with a regular training and competitive background in handball separated into three groups aged on average 11.78 ± 0.41 for youth players aka "schools", "elite juniors" 15.99 ± 0.81 and "elite adults" 24.46 ± 2.63 years, underwent echocardiography and ECG examinations. Incremental ergocycle and specific field (SFT) tests have also been conducted. With age and regular training and competition, myocardial remodeling in different age ranges exhibit significant differences in dilatation's parameters between "schools" and "juniors" players, such as the end-diastolic diameter (LVEDD) and the end-systolic diameter of the left ventricle (LVESD), the root of aorta (Ao) and left atrial (LA), while significant increase is observed between "juniors" and "adults" players in the interventricular septum (IVS), the posterior wall thicknesses (PWT) and LV mass index. ECG changes are also noted but NS differences were observed in studied parameters. For incremental maximal test, players demonstrate a significant increase in duration and total work between "schools" and "juniors" and, in total work only, between "juniors" and "seniors". The SFT shows improvement in performance which ranged between 26.17 ± 1.83 sec to 31.23 ± 2.34 sec respectively from "seniors" to "schools". The cross-sectional approach used to compare groups with prior hypothesis that there would be differences in exercise performance and cardiac parameters depending on duration of prior handball practice, leads to point out the early cardiac remodeling within the heart as adaptive change. Prevalence of cardiac chamber dilation with less hypertrophy remodeling was found from "schools" to "juniors" while a prevalence of cardiac hypertrophy with less pronounced chamber dilation remodeling was noted later.
Miniature Free-Space Electrostatic Ion Thrusters
NASA Technical Reports Server (NTRS)
Hartley, Frank T.; Stephens, James B.
2006-01-01
A miniature electrostatic ion thruster is proposed for maneuvering small spacecraft. In a thruster based on this concept, one or more propellant gases would be introduced into an ionizer based on the same principles as those of the device described in an earlier article, "Miniature Bipolar Electrostatic Ion Thruster". On the front side, positive ions leaving an ionizer element would be accelerated to high momentum by an electric field between the ionizer and an accelerator grid around the periphery of the concave laminate structure. On the front side, electrons leaving an ionizer element would be ejected into free space by a smaller accelerating field. The equality of the ion and electron currents would eliminate the need for an additional electron- or ion-emitting device to keep the spacecraft charge-neutral. In a thruster design consisting of multiple membrane ionizers in a thin laminate structure with a peripheral accelerator grid, the direction of thrust could then be controlled (without need for moving parts in the thruster) by regulating the supply of gas to specific ionizer.
One-Dimensional Analysis of Hall Thruster Operating Modes
2001-08-01
Hall thruster structure with no screens or other control surfaces makes it difficult to understand the interrelationships which, in the end, localize and shape the various plasma regions existing in the accelerating channel. Since the radial magnetic field is usually shaped with a peak near the channel exit, the plasma structure has often been explained as simply a reflection of the magnetic field distribution. However, this is inadequate to explain the plasma dynamics inside the accelerating channel. We develop a macroscopic model gathering reliability and clarity.
Spatial structure of the neck and acceleration processes in a micropinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolgov, A. N., E-mail: alnikdolgov@mail.ru; Klyachin, N. A., E-mail: NAKlyachin@mephi.ru; Prokhorovich, D. E., E-mail: prokhorovich73@mail.ru
2016-12-15
It is shown that the spatial structure of the micropinch neck during the transition from magnetohydrodynamic to radiative compression and the bremsstrahlung spectrum of the discharge in the photon energy range of up to 30 keV depend on the configuration of the inner electrode of the coaxial electrode system of the micropinch discharge. Analysis of the experimental results indicates that the acceleration processes in the electron component of the micropinch plasma develop earlier than radiative compression.
Analysis and application of a velocity command motor as a reaction mass actuator
NASA Technical Reports Server (NTRS)
Sulla, Jeffrey L.; Juang, Jer-Nan; Horta, Lucas G.
1990-01-01
A commercially available linear stepper motor is applied as a reaction mass (RM) actuator. With the actuator operating in the (RM) relative-velocity command mode, open-loop and closed-loop testing is performed to determine operational limits. With the actuator mounted on a simple beam structure, root strain, RM acceleration, or beam acceleration is used in the feedback loop to augment the structural damping. The RM relative position is also used as feedback to ensure that the RM remains centered.
NASA Astrophysics Data System (ADS)
Nguyen, T. P.; Pham, D. T.; Ngo, K. T.
2018-04-01
Reducing vibration in structures under lateral load always attracts many researchers in during pastime, hence the mainly purpose of paper analyzes effectiveness of multiple-tuned liquid dampers for reducing dynamic responses of structures under ground acceleration of earthquakes. In this study, the multi-tuned liquid damper with slat screens (M-TLDWSS) is considered in detail for analyzing dynamic response of multi-degrees of freedom structure due to earthquake, which is more different previous studies. Then, the general equation of motion of the structure and M-TLDWSS under ground acceleration of earthquake is established based on dynamic balance of principle and solved by numerical method in the time domain. The effects of characteristic parameters of M-TLDWSS on dynamic response of the structure are investigated. The results obtained in this study demonstrate that the M-TLDWSS has significantly effectiveness for reducing dynamic response of the structure.
Design of Accelerator Online Simulator Server Using Structured Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Guobao; /Brookhaven; Chu, Chungming
2012-07-06
Model based control plays an important role for a modern accelerator during beam commissioning, beam study, and even daily operation. With a realistic model, beam behaviour can be predicted and therefore effectively controlled. The approach used by most current high level application environments is to use a built-in simulation engine and feed a realistic model into that simulation engine. Instead of this traditional monolithic structure, a new approach using a client-server architecture is under development. An on-line simulator server is accessed via network accessible structured data. With this approach, a user can easily access multiple simulation codes. This paper describesmore » the design, implementation, and current status of PVData, which defines the structured data, and PVAccess, which provides network access to the structured data.« less
NASA Astrophysics Data System (ADS)
Asano, Shogo; Matsumoto, Hideki
2001-05-01
This paper describes the development process for acceleration sensors used on automobiles and an acceleration evaluation system designed specifically for acceleration at super-low-range frequencies. The features of the newly developed sensor are as follows. 1) Original piezo-bimorph design based on a disc-center-fixed structure achieves pyroeffect cancelling and stabilization of sensor characteristics and enables the detection of the acceleration of 0.0009 G at the super-low-range-frequency of 0.03 Hz. 2) The addition of a self-diagnostic function utilizing the characteristics of piezoceramics enables constant monitoring of sensor failure. The frequency range of acceleration for accurate vehicle motion control is considered to be from DC to about 50 Hz. However, the measurement of acceleration in the super-low-range frequency near DC has been difficult because of mechanical and electrical noise interruption. This has delayed the development of the acceleration sensor for automotive use. We have succeeded in the development of an acceleration evaluation system for super-low-range frequencies from 0.015 Hz to 2 Hz with detection of the acceleration range from 0.0002 G (0.2 gal) to 1 G, as well as the development of a piezoelectric-type acceleration sensor for automotive use.
Sensor fusion for structural tilt estimation using an acceleration-based tilt sensor and a gyroscope
NASA Astrophysics Data System (ADS)
Liu, Cheng; Park, Jong-Woong; Spencer, B. F., Jr.; Moon, Do-Soo; Fan, Jiansheng
2017-10-01
A tilt sensor can provide useful information regarding the health of structural systems. Most existing tilt sensors are gravity/acceleration based and can provide accurate measurements of static responses. However, for dynamic tilt, acceleration can dramatically affect the measured responses due to crosstalk. Thus, dynamic tilt measurement is still a challenging problem. One option is to integrate the output of a gyroscope sensor, which measures the angular velocity, to obtain the tilt; however, problems arise because the low-frequency sensitivity of the gyroscope is poor. This paper proposes a new approach to dynamic tilt measurements, fusing together information from a MEMS-based gyroscope and an acceleration-based tilt sensor. The gyroscope provides good estimates of the tilt at higher frequencies, whereas the acceleration measurements are used to estimate the tilt at lower frequencies. The Tikhonov regularization approach is employed to fuse these measurements together and overcome the ill-posed nature of the problem. The solution is carried out in the frequency domain and then implemented in the time domain using FIR filters to ensure stability. The proposed method is validated numerically and experimentally to show that it performs well in estimating both the pseudo-static and dynamic tilt measurements.
Higher-order mode-based cavity misalignment measurements at the free-electron laser FLASH
NASA Astrophysics Data System (ADS)
Hellert, Thorsten; Baboi, Nicoleta; Shi, Liangliang
2017-12-01
At the Free-Electron Laser in Hamburg (FLASH) and the European X-Ray Free-Electron Laser, superconducting TeV-energy superconducting linear accelerator (TESLA)-type cavities are used for the acceleration of electron bunches, generating intense free-electron laser (FEL) beams. A long rf pulse structure allows one to accelerate long bunch trains, which considerably increases the efficiency of the machine. However, intrabunch-train variations of rf parameters and misalignments of rf structures induce significant trajectory variations that may decrease the FEL performance. The accelerating cavities are housed inside cryomodules, which restricts the ability for direct alignment measurements. In order to determine the transverse cavity position, we use a method based on beam-excited dipole modes in the cavities. We have developed an efficient measurement and signal processing routine and present its application to multiple accelerating modules at FLASH. The measured rms cavity offset agrees with the specification of the TESLA modules. For the first time, the tilt of a TESLA cavity inside a cryomodule is measured. The preliminary result agrees well with the ratio between the offset and angle dependence of the dipole mode which we calculated with eigenmode simulations.
Application of Plasma Waveguides to High Energy Accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Milchberg, Howard M
2013-03-30
The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysismore » of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.« less
Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spickermann, Thomas
2012-08-01
In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergencymore » situations; and (3) Plan recovery and keep squirrels out.« less
Interaction of Energetic Particles with Discontinuities Upstream of Strong Shocks
NASA Astrophysics Data System (ADS)
Malkov, Mikhail; Diamond, Patrick
2008-11-01
Acceleration of particles in strong astrophysical shocks is known to be accompanied and promoted by a number of instabilities which are driven by the particles themselves. One of them is an acoustic (also known as Drury's) instability driven by the pressure gradient of accelerated particles upstream. The generated sound waves naturally steepen into shocks thus forming a shocktrain. Similar magnetoacoustic or Alfven type structures may be driven by pick-up ions, for example. We consider the solutions of kinetic equation for accelerated particles within the shocktrain. The accelerated particles are assumed to be coupled to the flow by an intensive pitch-angle scattering on the self-generated Alfven waves. The implications for acceleration and confinement of cosmic rays in this shock environment will be discussed.
NASA Astrophysics Data System (ADS)
Torrisi, Lorenzo
2018-01-01
Measurements of ion acceleration in plasma produced by fs lasers at intensity of the order of 1018 W/cm2 have been performed in different European laboratories. The forward emission in target-normal-sheath-acceleration (TNSA) regime indicated that the maximum energy is a function of the laser parameters, of the irradiation conditions and of the target properties.In particular the laser intensity and contrast play an important role to maximize the ion acceleration enhancing the conversion efficiency. Also the use of suitable prepulses, focal distances and polarized laser light has important roles. Finally the target composition, surface, geometry and multilayered structure, permit to enhance the electric field driving the forward ion acceleration.Experimental measurements will be reported and discussed.
Introduction to Superconducting RF Structures and the Effect of High Pressure Rinsing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tajima, Tsuyoshi
2016-06-30
This presentation begins by describing RF superconductivity and SRF accelerating structures. Then the use of superconducting RF structures in a number of accelerators around the world is reviewed; for example, the International Linear Collider (ILC) will use ~16,000 SRF cavities with ~2,000 cryomodules to get 500 GeV e⁺/e⁻ colliding energy. Field emission control was (and still is) a very important practical issue for SRF cavity development. It has been found that high-pressure ultrapure water rinsing as a final cleaning step after chemical surface treatment resulted in consistent performance of single- and multicell superconducting cavities.
Wakefield Computations for the CLIC PETS using the Parallel Finite Element Time-Domain Code T3P
DOE Office of Scientific and Technical Information (OSTI.GOV)
Candel, A; Kabel, A.; Lee, L.
In recent years, SLAC's Advanced Computations Department (ACD) has developed the high-performance parallel 3D electromagnetic time-domain code, T3P, for simulations of wakefields and transients in complex accelerator structures. T3P is based on advanced higher-order Finite Element methods on unstructured grids with quadratic surface approximation. Optimized for large-scale parallel processing on leadership supercomputing facilities, T3P allows simulations of realistic 3D structures with unprecedented accuracy, aiding the design of the next generation of accelerator facilities. Applications to the Compact Linear Collider (CLIC) Power Extraction and Transfer Structure (PETS) are presented.
Research Institute of Complete Electric Drive (Novosibirsk, USSR)
NASA Astrophysics Data System (ADS)
Derbenev, Ya. S.; Kondratenko, A. M.
1989-05-01
The restrictions on the beam emittance and on the imperfectness of the magnetic structure, which are necessary to conserve the beam polarization in accelerators with Siberian snakes are formulated. The trends for changing these criteria with increasing maximum energies and accelerator dimensions at high energies are considered.
Cosmological consistency tests of gravity theory and cosmic acceleration
NASA Astrophysics Data System (ADS)
Ishak-Boushaki, Mustapha B.
2017-01-01
Testing general relativity at cosmological scales and probing the cause of cosmic acceleration are among the important objectives targeted by incoming and future astronomical surveys and experiments. I present our recent results on consistency tests that can provide insights about the underlying gravity theory and cosmic acceleration using cosmological data sets. We use statistical measures, the rate of cosmic expansion, the growth rate of large scale structure, and the physical consistency of these probes with one another.
First heavy ion beam tests with a superconducting multigap CH cavity
NASA Astrophysics Data System (ADS)
Barth, W.; Aulenbacher, K.; Basten, M.; Busch, M.; Dziuba, F.; Gettmann, V.; Heilmann, M.; Kürzeder, T.; Miski-Oglu, M.; Podlech, H.; Rubin, A.; Schnase, A.; Schwarz, M.; Yaramyshev, S.
2018-02-01
Very compact accelerating-focusing structures, as well as short focusing periods, high accelerating gradients and short drift spaces are strongly required for superconducting (sc) accelerator sections operating at low and medium energies for continuous wave (cw) heavy ion beams. To keep the GSI-super heavy element (SHE) program competitive on a high level and even beyond, a standalone sc cw linac (Helmholtz linear accelerator) in combination with the GSI high charge state injector (HLI), upgraded for cw operation, is envisaged. Recently the first linac section (financed by Helmholtz Institute Mainz (HIM) and GSI) as a demonstration of the capability of 217 MHz multigap crossbar H-mode structures (CH) has been commissioned and extensively tested with heavy ion beam from the HLI. The demonstrator setup reached acceleration of heavy ions up to the design beam energy. The required acceleration gain was achieved with heavy ion beams even above the design mass to charge ratio at high beam intensity and full beam transmission. This paper presents systematic beam measurements with varying rf amplitudes and phases of the CH cavity, as well as phase space measurements for heavy ion beams with different mass to charge ratio. The worldwide first and successful beam test with a superconducting multigap CH cavity is a milestone of the R&D work of HIM and GSI in collaboration with IAP in preparation of the HELIAC project and other cw-ion beam applications.
NASA Astrophysics Data System (ADS)
Qi, Wenke; Jiang, Pan; Lin, Dan; Chi, Xiaoping; Cheng, Min; Du, Yikui; Zhu, Qihe
2018-01-01
A mini time-sliced ion velocity map imaging photofragment translational spectrometer using low voltage acceleration has been constructed. The innovation of this apparatus adopts a relative low voltage (30-150 V) to substitute the traditional high voltage (650-4000 V) to accelerate and focus the fragment ions. The overall length of the flight path is merely 12 cm. There are many advantages for this instrument, such as compact structure, less interference, and easy to operate and control. Low voltage acceleration gives a longer turn-around time to the photofragment ions forming a thicker Newton sphere, which provides sufficient time for slicing. Ion trajectory simulation has been performed for determining the structure dimensions and the operating voltages. The photodissociation and multiphoton ionization of O2 at 224.999 nm is used to calibrate the ion images and examine the overall performance of the new spectrometer. The velocity resolution (Δν/ν) of this spectrometer from O2 photodissociation is about 0.8%, which is better than most previous results using high acceleration voltage. For the case of CF3I dissociation at 277.38 nm, many CF3 vibrational states have been resolved, and the anisotropy parameter has been measured. The application of low voltage acceleration has shown its advantages on the ion velocity map imaging (VMI) apparatus. The miniaturization of the VMI instruments can be realized on the premise of high resolution.
Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.
2016-01-01
Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M <20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
NASA Astrophysics Data System (ADS)
Raubenheimer, T. O.
2001-10-01
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well as of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.
Isothermal Crystallization Behavior of Cocoa Butter at 17 and 20 °C with and without Limonene.
Rigolle, Annelien; Goderis, Bart; Van Den Abeele, Koen; Foubert, Imogen
2016-05-04
Differential scanning calorimetry and real-time X-ray diffraction using synchrotron radiation were used to elucidate isothermal cocoa butter crystallization at 17 and 20 °C in the absence and presence of different limonene concentrations. At 17 °C, a three-step crystallization process was visible for pure cocoa butter, whereby first an unknown structure with long spacings between a 2L and 3L structure was formed that rapidly transformed into the more stable α structure, which in turn was converted into more stable β' crystals. At 20 °C, an α-mediated β' crystallization was observed. The addition of limonene resulted in a reduction of the amount of unstable crystals and an acceleration of polymorphic transitions. At 17 °C, the crystallization process was accelerated due to the acceleration of the formation of more stable polymorphic forms, whereas there were insufficient α crystals for an α-mediated β' nucleation at 20 °C, resulting in a slower crystallization process.
Anderson acceleration and application to the three-temperature energy equations
NASA Astrophysics Data System (ADS)
An, Hengbin; Jia, Xiaowei; Walker, Homer F.
2017-10-01
The Anderson acceleration method is an algorithm for accelerating the convergence of fixed-point iterations, including the Picard method. Anderson acceleration was first proposed in 1965 and, for some years, has been used successfully to accelerate the convergence of self-consistent field iterations in electronic-structure computations. Recently, the method has attracted growing attention in other application areas and among numerical analysts. Compared with a Newton-like method, an advantage of Anderson acceleration is that there is no need to form the Jacobian matrix. Thus the method is easy to implement. In this paper, an Anderson-accelerated Picard method is employed to solve the three-temperature energy equations, which are a type of strong nonlinear radiation-diffusion equations. Two strategies are used to improve the robustness of the Anderson acceleration method. One strategy is to adjust the iterates when necessary to satisfy the physical constraint. Another strategy is to monitor and, if necessary, reduce the matrix condition number of the least-squares problem in the Anderson-acceleration implementation so that numerical stability can be guaranteed. Numerical results show that the Anderson-accelerated Picard method can solve the three-temperature energy equations efficiently. Compared with the Picard method without acceleration, Anderson acceleration can reduce the number of iterations by at least half. A comparison between a Jacobian-free Newton-Krylov method, the Picard method, and the Anderson-accelerated Picard method is conducted in this paper.
Radio frequency accelerating cavity having slotted irises for damping certain electromagnetic modes
Palmer, R.B.
1991-05-21
An accelerating cavity is disclosed having one or more iris structures mounted therein for strongly damping unwanted frequencies that are generated in the cavity by bunches of particles in a particle beam that is accelerated through the cavity during its operation. Each of the iris structures is characterized by containing a plurality of radial slots therein that extend from the central aperture through the iris member to the perimeter thereof. The outer end of each of the radial slots includes an enlarged portion that is effective to prevent undesired frequencies from being reflected back into the center aperture of the iris member. Waveguide means connect the outer ends of the radial slots to frequency damping means or to a dump or dumps. 17 figures.
Particle acceleration in solar active regions being in the state of self-organized criticality.
NASA Astrophysics Data System (ADS)
Vlahos, Loukas
We review the recent observational results on flare initiation and particle acceleration in solar active regions. Elaborating a statistical approach to describe the spatiotemporally intermittent electric field structures formed inside a flaring solar active region, we investigate the efficiency of such structures in accelerating charged particles (electrons and protons). The large-scale magnetic configuration in the solar atmosphere responds to the strong turbulent flows that convey perturbations across the active region by initiating avalanche-type processes. The resulting unstable structures correspond to small-scale dissipation regions hosting strong electric fields. Previous research on particle acceleration in strongly turbulent plasmas provides a general framework for addressing such a problem. This framework combines various electromagnetic field configurations obtained by magnetohydrodynamical (MHD) or cellular automata (CA) simulations, or by employing a statistical description of the field’s strength and configuration with test particle simulations. We work on data-driven 3D magnetic field extrapolations, based on a self-organized criticality models (SOC). A relativistic test-particle simulation traces each particle’s guiding center within these configurations. Using the simulated particle-energy distributions we test our results against observations, in the framework of the collisional thick target model (CTTM) of solar hard X-ray (HXR) emission and compare our results with the current observations.
NASA Astrophysics Data System (ADS)
Penisi, Osvaldo; Bocca, José; Aguilar, Horacio; Bocca, Pedro
2015-09-01
In the mechanized harvest of vines, grape berries are detached through the vibration to the structure supporting the clusters. According to the kind of guide selected, the clusters require one or two vibration directions in the structure. For guiding in parral structures, vibration is necessary in two directions or planes: One perpendicular to the other. The guide branches producing the clusters develop in these planes, and the guiding is called H-guiding. Mechanism theory indicates that a mechanism has as many degrees of freedom as its actuators, and an actuator is needed to achieve a certain vibration. Having the smallest number of possible actuators is beneficial in reducing moving parts and achieving more compact and easily controllable mechanisms. In this case, a single degree-of-freedom mechanism is proposed. It is capable of generating vibrations on two planes: One perpendicular to the other. This mechanism is the sum of two link mechanisms on perpendicular planes with a common outlet located at the output rod of the mechanism where the actuator is found. As the distance between the soil and the elements containing the clusters is not constant, a system has been designed to measure the accelerations at the bars and the rocker to validate the acceleration values that detach the grape berries in a prototype in a lab experiment, to ensure that the acceleration needed for pulling the grape berries are produced at any contact point of the bar.
High Power Microwave Tubes: Basics and Trends, Volume 2
NASA Astrophysics Data System (ADS)
Kesari, Vishal; Basu, B. N.
2018-01-01
Volume 2 of the book begins with chapter 6, in which we have taken up conventional MWTs (such as TWTs, klystrons, including multi-cavity and multi-beam klystrons, klystron variants including reflex klystron, IOT, EIK, EIO and twystron, and crossed-field tubes, namely, magnetron, CFA and carcinotron). In chapter 7, we have taken up fast-wave tubes (such as gyrotron, gyro-BWO, gyro-klystron, gyro-TWT, CARM, SWCA, hybrid gyro-tubes and peniotron). In chapter 8, we discuss vacuum microelectronic tubes (such as klystrino module, THz gyrotron and clinotron BWO); plasma-assisted tubes (such as PWT, plasma-filled TWT, BWO, including PASOTRON, and gyrotron); and HPM (high power microwave) tubes (such as relativistic TWT, relativistic BWO, RELTRON (variant of relativistic klystron), relativistic magnetron, high power Cerenkov tubes including SWO, RDG or orotron, MWCG and MWDG, bremsstrahlung radiation type tube, namely, vircator, and M-type tube MILO). In Chapter 9, we provide handy information about the frequency and power ranges of common MWTs, although more such information is provided at relevant places in the rest of the book as and where necessary. Chapter 10 is an epilogue that sums up the authors' attempt to bring out the various aspects of the basics of and trends in high power MWTs.
Haywood, Adrian R; Hathway, Gareth J; Chapman, Victoria
2018-05-08
The mechanisms underlying the transition from acute nociceptive pain to centrally maintained chronic pain are not clear. We have studied the contributions of the peripheral and central nervous systems during the development of osteoarthritis (OA) pain. Male Sprague-Dawley rats received unilateral intra-articular injections of monosodium iodoacetate (MIA 1 mg) or saline, and weight-bearing (WB) asymmetry and distal allodynia measured. Subgroups of rats received intra-articular injections of, QX-314 (membrane impermeable local anaesthetic) + capsaicin, QX-314, capsaicin or vehicle on days 7, 14 or 28 post-MIA and WB and PWT remeasured. On days 7&14 post-MIA, but not day 28, QX-314 + capsaicin signficantly attenuated changes in WB induced by MIA, illustrating a crucial role for TRPV1 expressing nociceptors in early OA pain. The role of top-down control of spinal excitability was investigated. The mu-opioid receptor agonist DAMGO was microinjected into the rostroventral medulla, to activate endogenous pain modulatory systems, in MIA and control rats and reflex excitability measured using electromyography. DAMGO (3 ng) had a significantly larger inhibitory effect in MIA treated rats than in controls. These data show distinct temporal contribtuions of TRPV1 expressing nociceptors and opioidergic pain control systems at later timepoints.
Challenges in Modelling and Control of Offshore De-oiling Hydrocyclone Systems
NASA Astrophysics Data System (ADS)
Durdevic, Petar; Pedersen, Simon; Yang, Zhenyu
2017-01-01
Offshore de-oiling installations are facing an increasing challenge with regards to removing oil residuals from produced water prior to discharge into the ocean. The de-oiling of produced water is initially achieved in the primary separation processes using gravity-based multi-phase separators, which can effectively handle large amounts of oil-well fluids but may struggle with the efficient separation of small dispersed oil particles. Thereby hydrocyclone systems are commonly employed in the downstream Produced Water Treatment (PWT) process for further reducing the oil concentration in the produced water before it can be discharged into the ocean. The popularity of hydrocyclone technology in the offshore oil and gas industry is mainly due to its rugged design and low maintenance requirements. However, to operate and control this type of system in an efficient way is far less simple, and alternatively this task imposes a number of key control challenges. Specifically, there is much research to be performed in the direction of dynamic modelling and control of de-oiling hydrocyclone systems. The current solutions rely heavily on empirical trial-and-error approaches. This paper gives a brief review of current hydrocyclone control solutions and the remaining challenges and includes some of our recent work in this topic and ends with a motivation for future work.
DOT National Transportation Integrated Search
2008-12-01
PROBLEM: The full-scale accelerated pavement testing (APT) provides a unique tool for pavement : engineers to directly collect pavement performance and failure data under heavy : wheel loading. However, running a full-scale APT experiment is very exp...
DOT National Transportation Integrated Search
2009-03-01
The thirteenth full-scale Accelerated Pavement Test (APT) experiment at the Civil Infrastructure Laboratory (CISL) : of Kansas State University aimed to determine the response and the failure mode of thin concrete overlays. Four : pavement structures...
DOT National Transportation Integrated Search
2011-12-01
Accelerated pavement testing (APT) has been increasingly used by state highway agencies in recent years for evaluating pavement : design and performance through applying a simulative heavy vehicular load to the pavement section under controlled fi el...
Success Structure for Accelerated Acquisition of English by Young ESL Learners
ERIC Educational Resources Information Center
Mohamed, Abdul Rashid; Tumin, Mahani; Omar, Hamzah
2008-01-01
This is an investigation into the accelerated acquisition of English among young ESL learners in an International School. It employed an ethnographic case study approach where data were gathered through non-participant observations, unstructured interviews, relevant documents, students' portfolios, field notes and biographical details. The sample…
Complete multipactor suppression in an X-band dielectric-loaded accelerating structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing, C.; Gold, S. H.; Fischer, Richard
2016-05-09
Multipactor is a major issue limiting the gradient of rf-driven Dielectric-Loaded Accelerating (DLA) structures. Theoretical models have predicted that an axial magnetic field applied to DLA structures may completely block the multipactor discharge. However, previous attempts to demonstrate this magnetic field effect in an X-band traveling-wave DLA structure were inconclusive, due to the axial variation of the applied magnetic field, and showed only partial suppression of the multipactor loading [Jing et al., Appl. Phys. Lett. 103, 213503 (2013)]. The present experiment has been performed under improved conditions with a uniform axial magnetic field extending along the length of an X-bandmore » standing-wave DLA structure. Multipactor loading began to be continuously reduced starting from 3.5 kG applied magnetic field and was completely suppressed at 8 kG. Dependence of multipactor suppression on the rf gradient inside the DLA structure was also measured.« less
Damage identification of supporting structures with a moving sensory system
NASA Astrophysics Data System (ADS)
Zhu, X. Q.; Law, S. S.; Huang, L.; Zhu, S. Y.
2018-02-01
An innovative approach to identify local anomalies in a structural beam bridge with an instrumented vehicle moving as a sensory system across the bridge. Accelerations at both the axle and vehicle body are measured from which vehicle-bridge interaction force on the structure is determined. Local anomalies of the structure are estimated from this interaction force with the Newton's iterative method basing on the homotopy continuation method. Numerical results with the vehicle moving over simply supported or continuous beams show that the acceleration responses from the vehicle or the bridge structure are less sensitive to the local damages than the interaction force between the wheel and the structure. Effects of different movement patterns and moving speed of the vehicle are investigated, and the effect of measurement noise on the identified results is discussed. A heavier or slower vehicle has been shown to be less sensitive to measurement noise giving more accurate results.
Progress on the Multiphysics Capabilities of the Parallel Electromagnetic ACE3P Simulation Suite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kononenko, Oleksiy
2015-03-26
ACE3P is a 3D parallel simulation suite that is being developed at SLAC National Accelerator Laboratory. Effectively utilizing supercomputer resources, ACE3P has become a key tool for the coupled electromagnetic, thermal and mechanical research and design of particle accelerators. Based on the existing finite-element infrastructure, a massively parallel eigensolver is developed for modal analysis of mechanical structures. It complements a set of the multiphysics tools in ACE3P and, in particular, can be used for the comprehensive study of microphonics in accelerating cavities ensuring the operational reliability of a particle accelerator.
Increase in the Acceleration Efficiency of Solids in a Hybrid Coaxial Magnetoplasma Accelerator
NASA Astrophysics Data System (ADS)
Gerasimov, D. Yu.; Sivkov, A. A.
2018-01-01
It is shown that in a hybrid coaxial magnetoplasma accelerator with a channel length of 350 mm and a diameter of 23 mm, the acceleration velocity and the energy conversion efficiency increase as the length of the plasma structure formation channel filled with a gas-generating material decreases from 17 to 9 mm. It is found that it is reasonable to use paraffin as the gas-generating material as it has a less significant deionizing effect on the high-current arc discharge and hence causes a less significant decrease in the discharge current intensity and an increase in conductive and inductive electrodynamic forces.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, M. L.; Liu, B.; Hu, R. H.
In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with highermore » energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.« less
The LILIA (laser induced light ions acceleration) experiment at LNF
NASA Astrophysics Data System (ADS)
Agosteo, S.; Anania, M. P.; Caresana, M.; Cirrone, G. A. P.; De Martinis, C.; Delle Side, D.; Fazzi, A.; Gatti, G.; Giove, D.; Giulietti, D.; Gizzi, L. A.; Labate, L.; Londrillo, P.; Maggiore, M.; Nassisi, V.; Sinigardi, S.; Tramontana, A.; Schillaci, F.; Scuderi, V.; Turchetti, G.; Varoli, V.; Velardi, L.
2014-07-01
Laser-matter interaction at relativistic intensities opens up new research fields in the particle acceleration and related secondary sources, with immediate applications in medical diagnostics, biophysics, material science, inertial confinement fusion, up to laboratory astrophysics. In particular laser-driven ion acceleration is very promising for hadron therapy once the ion energy will attain a few hundred MeV. The limited value of the energy up to now obtained for the accelerated ions is the drawback of such innovative technique to the real applications. LILIA (laser induced light ions acceleration) is an experiment now running at LNF (Frascati) with the goal of producing a real proton beam able to be driven for significant distances (50-75 cm) away from the interaction point and which will act as a source for further accelerating structure. In this paper the description of the experimental setup, the preliminary results of solid target irradiation and start to end simulation for a post-accelerated beam up to 60 MeV are given.
Accelerators for America's Future
NASA Astrophysics Data System (ADS)
Bai, Mei
2016-03-01
Particle accelerator, a powerful tool to energize beams of charged particles to a desired speed and energy, has been the working horse for investigating the fundamental structure of matter and fundermental laws of nature. Most known examples are the 2-mile long Stanford Linear Accelerator at SLAC, the high energy proton and anti-proton collider Tevatron at FermiLab, and Large Hadron Collider that is currently under operation at CERN. During the less than a century development of accelerator science and technology that led to a dazzling list of discoveries, particle accelerators have also found various applications beyond particle and nuclear physics research, and become an indispensible part of the economy. Today, one can find a particle accelerator at almost every corner of our lives, ranging from the x-ray machine at the airport security to radiation diagnostic and therapy in hospitals. This presentation will give a brief introduction of the applications of this powerful tool in fundermental research as well as in industry. Challenges in accelerator science and technology will also be briefly presented
Recent results from the University of Washington's 38 mm ram accelerator
NASA Technical Reports Server (NTRS)
De Turenne, J. A.; Chew, G.; Bruckner, A. P.
1992-01-01
The ram accelerator is a propulsive device that accelerates projectiles using gasdynamic cycles similar to those which generate thrust in airbreathing ramjets. The projectile, analogous to the centerbody of a ramjet, travels supersonically through a stationary tube containing a gaseous fuel and oxidizer mixture. The projectile itself carries no onboard propellant. A combustion zone follows the projectile and stabilizes the shock structure. The resulting pressure distribution continuously accelerates the projectile. Several modes of ram accelerator operation have been investigated experimentally and theoretically. At velocities below the Chapman-Jouguet (C-J) detonation speed of the propellant mixture, the thermally choked propulsion mode accelerates the projectiles. At projectile velocities between approximately 90 and 110 percent of the C-J speed, a transdetonative propulsion mode occurs. At velocities beyond 110 percent of the C-J speed, projectiles experience superdetonative propulsion. This paper presents recent experimental results from these propulsion modes obtained with the University of Washington's 38-mm bore ram accelerator. Data from investigations with hydrogen diluted-gas mixtures are also introduced.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Hyojae, E-mail: lkcom@ibs.re.kr; Jin, Hyunchang; Jang, Ji-Ho
2016-02-15
A heavy ion accelerator, RAON is going to be built by Rare Isotope Science Project in Korea. Its target is to accelerate various stable ions such as uranium, proton, and xenon from electron cyclotron resonance ion source and some rare isotopes from isotope separation on-line. The beam shaping, charge selection, and modulation should be applied to the ions from these ion sources because RAON adopts a superconducting linear accelerator structure for beam acceleration. For such treatment, low energy beam transport, radio frequency quadrupole, and medium energy beam transport (MEBT) will be installed in injector part of RAON accelerator. Recently, developmentmore » of a prototype of stripline beam position monitor (BPM) to measure the position of ion beams in MEBT section is under way. In this presentation, design of stripline, electromagnetic (EM) simulation results, and RF measurement test results obtained from the prototyped BPM will be described.« less
Chemical acceleration of a neutral granulated blast-furnace slag activated by sodium carbonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovtun, Maxim, E-mail: max.kovtun@up.ac.za; Kearsley, Elsabe P., E-mail: elsabe.kearsley@up.ac.za; Shekhovtsova, Julia, E-mail: j.shekhovtsova@gmail.com
2015-06-15
This paper presents results of a study on chemical acceleration of a neutral granulated blast-furnace slag activated using sodium carbonate. As strength development of alkali-activated slag cements containing neutral GBFS and sodium carbonate as activator at room temperature is known to be slow, three accelerators were investigated: sodium hydroxide, ordinary Portland cement and a combination of silica fume and slaked lime. In all cements, the main hydration product is C–(A)–S–H, but its structure varies between tobermorite and riversideite depending on the accelerator used. Calcite and gaylussite are present in all systems and they were formed due to either cation exchangemore » reaction between the slag and the activator, or carbonation. With accelerators, compressive strength up to 15 MPa can be achieved within 24 h in comparison to 2.5 MPa after 48 h for a mix without an accelerator.« less
Yu, David U. L.
1990-01-01
A compact high gradient accelerator driven by a relativistic klystron is utilized to inject high energy electrons into an X-ray synchrotron radiation ring. The high gradients provided by the relativistic klystron enables accelerator structure to be much shorter (typically 3 meters) than conventional injectors. This in turn enables manufacturers which utilize high energy, high intensity X-rays to produce various devices, such as computer chips, to do so on a cost effective basis.
Demountable damped cavity for HOM-damping in ILC superconducting accelerating cavities
NASA Astrophysics Data System (ADS)
Konomi, T.; Yasuda, F.; Furuta, F.; Saito, K.
2014-01-01
We have designed a new higher-order-mode (HOM) damper called a demountable damped cavity (DDC) as part of the R&D efforts for the superconducting cavity of the International Linear Collider (ILC). The DDC has two design concepts. The first is an axially symmetrical layout to obtain high damping efficiency. The DDC has a coaxial structure along the beam axis to realize strong coupling with HOMs. HOMs are damped by an RF absorber at the end of the coaxial waveguide and the accelerating mode is reflected by a choke filter mounted at the entrance of the coaxial waveguide. The second design concept is a demountable structure to facilitate cleaning, in order to suppress the Q-slope problem in a high field. A single-cell cavity with the DDC was fabricated to test four performance parameters. The first was frequency matching between the accelerating cavity and the choke filter. Since the bandwidth of the resonance frequency in a superconducting cavity is very narrow, there is a possibility that the accelerating field will leak to the RF absorber because of thermal shrinkage. The design bandwidth of the choke filter is 25 kHz. It was demonstrated that frequency matching adjusted at room temperature could be successfully maintained at 2 K. The second parameter was the performance of the demountable structure. At the joint, the magnetic field is 1/6 of the maximum field in the accelerating cavity. Ultimately, the accelerating field reached 19 MV/m and Q0 was 1.5×1010 with a knife-edge shape. The third parameter was field emission and multipacting. Although the choke structure has numerous parallel surfaces that are susceptible to the multipacting problem, it was found that neither field emission nor multipacting presented problems in both an experiment and simulation. The final parameter was the Q values of the HOM. The RF absorber adopted in the system is a Ni-Zn ferrite type. The RF absorber shape was designed based on the measurement data of permittivity and permeability at 77 K. The Q values of the HOM in the DDC are 10-100 times lower than those of a TESLA-type HOM coupler.
NASA Astrophysics Data System (ADS)
Hull, A. J.; Chaston, C. C.; Fillingim, M. O.; Frey, H. U.; Goldstein, M. L.; Bonnell, J. W.; Mozer, F.
2015-12-01
The auroral acceleration region is an integral link in the chain of events that transpire during substorms, and the currents, plasma and electric fields undergo significant changes driven by complex dynamical processes deep in the magnetotail. The acceleration processes that occur therein accelerate and heat the plasma that ultimately leads to some of the most intense global substorm auroral displays. Though this region has garnered considerable attention, the temporal evolution of field-aligned current systems, associated acceleration processes, and resultant changes in the plasma constituents that occur during key stages of substorm development remain unclear. In this study we present a survey of Cluster traversals within and just above the auroral acceleration region (≤3 Re altitude) during substorms. Particular emphasis is on the spatial morphology and developmental sequence of auroral acceleration current systems, potentials and plasma constituents, with the aim of identifying controlling factors, and assessing auroral emmission consequences. Exploiting multi-point measurements from Cluster in combination with auroral imaging, we reveal the injection powered, Alfvenic nature of both the substorm onset and expansion of auroral particle acceleration. We show evidence that indicates substorm onsets are characterized by the gross-intensification and filamentation/striation of pre-existing large-scale current systems to smaller/dispersive scale Alfven waves. Such an evolutionary sequence has been suggested in theoretical models or single spacecraft data, but has not been demonstrated or characterized in multispacecraft observations until now. It is also shown how the Alfvenic variations over time may dissipate to form large-scale inverted-V structures characteristic of the quasi-static aurora. These findings suggest that, in addition to playing active roles in driving substorm aurora, inverted-V and Alfvenic acceleration processes are causally linked. Key elements of substorm current spatial structure and temporal development, relationship to electric fields/potentials, plasma moment and distribution features, causal linkages to auroral emission features, and other properties will be discussed.
Development of hazard-compatible building fragility and vulnerability models
Karaca, E.; Luco, N.
2008-01-01
We present a methodology for transforming the structural and non-structural fragility functions in HAZUS into a format that is compatible with conventional seismic hazard analysis information. The methodology makes use of the building capacity (or pushover) curves and related building parameters provided in HAZUS. Instead of the capacity spectrum method applied in HAZUS, building response is estimated by inelastic response history analysis of corresponding single-degree-of-freedom systems under a large number of earthquake records. Statistics of the building response are used with the damage state definitions from HAZUS to derive fragility models conditioned on spectral acceleration values. Using the developed fragility models for structural and nonstructural building components, with corresponding damage state loss ratios from HAZUS, we also derive building vulnerability models relating spectral acceleration to repair costs. Whereas in HAZUS the structural and nonstructural damage states are treated as if they are independent, our vulnerability models are derived assuming "complete" nonstructural damage whenever the structural damage state is complete. We show the effects of considering this dependence on the final vulnerability models. The use of spectral acceleration (at selected vibration periods) as the ground motion intensity parameter, coupled with the careful treatment of uncertainty, makes the new fragility and vulnerability models compatible with conventional seismic hazard curves and hence useful for extensions to probabilistic damage and loss assessment.
3D RNA and functional interactions from evolutionary couplings
Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.
2016-01-01
Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444
Experimental high gradient testing of a 17.1 GHz photonic band-gap accelerator structure
Munroe, Brian J.; Zhang, JieXi; Xu, Haoran; ...
2016-03-29
In this paper, we report the design, fabrication, and high gradient testing of a 17.1 GHz photonic band-gap (PBG) accelerator structure. Photonic band-gap (PBG) structures are promising candidates for electron accelerators capable of high-gradient operation because they have the inherent damping of high order modes required to avoid beam breakup instabilities. The 17.1 GHz PBG structure tested was a single cell structure composed of a triangular array of round copper rods of radius 1.45 mm spaced by 8.05 mm. The test assembly consisted of the test PBG cell located between conventional (pillbox) input and output cells, with input power ofmore » up to 4 MW from a klystron supplied via a TM 01 mode launcher. Breakdown at high gradient was observed by diagnostics including reflected power, downstream and upstream current monitors and visible light emission. The testing procedure was first benchmarked with a conventional disc-loaded waveguide structure, which reached a gradient of 87 MV=m at a breakdown probability of 1.19 × 10 –1 per pulse per meter. The PBG structure was tested with 100 ns pulses at gradient levels of less than 90 MV=m in order to limit the surface temperature rise to 120 K. The PBG structure reached up to 89 MV=m at a breakdown probability of 1.09 × 10 –1 per pulse per meter. These test results show that a PBG structure can simultaneously operate at high gradients and low breakdown probability, while also providing wakefield damping.« less
NASA Astrophysics Data System (ADS)
Partono, Windu; Pardoyo, Bambang; Atmanto, Indrastono Dwi; Azizah, Lisa; Chintami, Rouli Dian
2017-11-01
Fault is one of the dangerous earthquake sources that can cause building failure. A lot of buildings were collapsed caused by Yogyakarta (2006) and Pidie (2016) fault source earthquakes with maximum magnitude 6.4 Mw. Following the research conducted by Team for Revision of Seismic Hazard Maps of Indonesia 2010 and 2016, Lasem, Demak and Semarang faults are three closest earthquake sources surrounding Semarang. The ground motion from those three earthquake sources should be taken into account for structural design and evaluation. Most of tall buildings, with minimum 40 meter high, in Semarang were designed and constructed following the 2002 and 2012 Indonesian Seismic Code. This paper presents the result of sensitivity analysis research with emphasis on the prediction of deformation and inter-story drift of existing tall building within the city against fault earthquakes. The analysis was performed by conducting dynamic structural analysis of 8 (eight) tall buildings using modified acceleration time histories. The modified acceleration time histories were calculated for three fault earthquakes with magnitude from 6 Mw to 7 Mw. The modified acceleration time histories were implemented due to inadequate time histories data caused by those three fault earthquakes. Sensitivity analysis of building against earthquake can be predicted by evaluating surface response spectra calculated using seismic code and surface response spectra calculated from acceleration time histories from a specific earthquake event. If surface response spectra calculated using seismic code is greater than surface response spectra calculated from acceleration time histories the structure will stable enough to resist the earthquake force.
An investigation into the probabilistic combination of quasi-static and random accelerations
NASA Technical Reports Server (NTRS)
Schock, R. W.; Tuell, L. P.
1984-01-01
The development of design load factors for aerospace and aircraft components and experiment support structures, which are subject to a simultaneous vehicle dynamic vibration (quasi-static) and acoustically generated random vibration, require the selection of a combination methodology. Typically, the procedure is to define the quasi-static and the random generated response separately, and arithmetically add or root sum square to get combined accelerations. Since the combination of a probabilistic and a deterministic function yield a probabilistic function, a viable alternate approach would be to determine the characteristics of the combined acceleration probability density function and select an appropriate percentile level for the combined acceleration. The following paper develops this mechanism and provides graphical data to select combined accelerations for most popular percentile levels.
Linear induction accelerators made from pulse-line cavities with external pulse injection.
Smith, I
1979-06-01
Two types of linear induction accelerator have been reported previously. In one, unidirectional voltage pulses are generated outside the accelerator and injected into the accelerator cavity modules, which contain ferromagnetic material to reduce energy losses in the form of currents induced, in parallel with the beam, in the cavity structure. In the other type, the accelerator cavity modules are themselves pulse-forming lines with energy storage and switches; parallel current losses are made zero by the use of circuits that generate bidirectional acceleration waveforms with a zero voltage-time integral. In a third type of design described here, the cavities are externally driven, and 100% efficient coupling of energy to the beam is obtained by designing the external pulse generators to produce bidirectional voltage waveforms with zero voltage-time integral. A design for such a pulse generator is described that is itself one hundred percent efficient and which is well suited to existing pulse power techniques. Two accelerator cavity designs are described that can couple the pulse from such a generator to the beam; one of these designs provides voltage doubling. Comparison is made between the accelerating gradients that can be obtained with this and the preceding types of induction accelerator.
Tunnel flexibility effect on the ground surface acceleration response
NASA Astrophysics Data System (ADS)
Baziar, Mohammad Hassan; Moghadam, Masoud Rabeti; Choo, Yun Wook; Kim, Dong-Soo
2016-09-01
Flexibility of underground structures relative to the surrounding medium, referred to as the flexibility ratio, is an important factor that influences their dynamic interaction. This study investigates the flexibility effect of a box-shaped subway tunnel, resting directly on bedrock, on the ground surface acceleration response using a numerical model verified against dynamic centrifuge test results. A comparison of the ground surface acceleration response for tunnel models with different flexibility ratios revealed that the tunnels with different flexibility ratios influence the acceleration response at the ground surface in different ways. Tunnels with lower flexibility ratios have higher acceleration responses at short periods, whereas tunnels with higher flexibility ratios have higher acceleration responses at longer periods. The effect of the flexibility ratio on ground surface acceleration is more prominent in the high range of frequencies. Furthermore, as the flexibility ratio of the tunnel system increases, the acceleration response moves away from the free field response and shifts towards the longer periods. Therefore, the flexibility ratio of the underground tunnels influences the peak ground acceleration (PGA) at the ground surface, and may need to be considered in the seismic zonation of urban areas.
Nanoparticles and amyloid systems: A fatal encounter?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abel, Bernd
2014-10-06
Nanoparticles (NPs) are used in many products of our daily life, however, there has been concern that they may also be harmful to human health. Recently NPs have been found to accelerate the fibrillation kinetics of amyloid systems. In the past this has been preliminarily attributed to a nucleation effect. Nanoparticle surfaces and interfaces appear to limit the degrees of freedom of amyloid systems (i.e., peptides and proteins) due to a phase space constraint such that rapid cross-beta structures are formed faster than without interface interactions and in turn fibril formation is enhanced significantly. Here we explore if lipid bilayersmore » in the form of liposomes (140nm) also accelerate fibril formation for amyloid systems. We have investigated a fragment NNFGAIL of the Human islet amyloid polypeptide (hIAPP) in contact with 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) liposomes in aqueous solution. We found that the lipid bilayer vesicles do accelerate fibril formation in time-resolved off-line detected atomic force microscopy experiments. Characteristic Thioflavine-T fluorescence on the same structures verify that the structures consist of aggregated peptides in a typical cross-β-structure arrangement.« less
Features of Wear-Resistant Cast Iron Coating Formation During Plasma-Powder Surfacing
NASA Astrophysics Data System (ADS)
Vdovin, K. N.; Emelyushin, A. N.; Nefed'ev, S. P.
2017-09-01
The structure of coatings deposited on steel 45 by plasma-powder surfacing of white wear-resistant cast iron is studied. The effects of surfacing regime and additional production effects on the welding bath during surfacing produced by current modulation, accelerated cooling of the deposited beads by blowing with air, and accelerated cooling of the substrate with running water on the structure, are determined. A new composition is suggested for powder material for depositing wear-resistant and corrosion-resistant coatings on a carbon steel by the plasma-powder process.
Plasma Radiation and Acceleration Effectiveness of CME-driven Shocks
NASA Astrophysics Data System (ADS)
Gopalswamy, N.; Schmidt, J. M.
2008-05-01
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME- driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Plasma radiation and acceleration effectiveness of CME-driven shocks
NASA Astrophysics Data System (ADS)
Schmidt, Joachim
CME-driven shocks are effective radio radiation generators and accelerators for Solar Energetic Particles (SEPs). We present simulated 3 D time-dependent radio maps of second order plasma radiation generated by CME-driven shocks. The CME with its shock is simulated with the 3 D BATS-R-US CME model developed at the University of Michigan. The radiation is simulated using a kinetic plasma model that includes shock drift acceleration of electrons and stochastic growth theory of Langmuir waves. We find that in a realistic 3 D environment of magnetic field and solar wind outflow of the Sun the CME-driven shock shows a detailed spatial structure of the density, which is responsible for the fine structure of type II radio bursts. We also show realistic 3 D reconstructions of the magnetic cloud field of the CME, which is accelerated outward by magnetic buoyancy forces in the diverging magnetic field of the Sun. The CME-driven shock is reconstructed by tomography using the maximum jump in the gradient of the entropy. In the vicinity of the shock we determine the Alfven speed of the plasma. This speed profile controls how steep the shock can grow and how stable the shock remains while propagating away from the Sun. Only a steep shock can provide for an effective particle acceleration.
Are Anxiety Disorders Associated with Accelerated Aging? A Focus on Neuroprogression
Perna, Giampaolo; Iannone, Giuseppe; Alciati, Alessandra; Caldirola, Daniela
2016-01-01
Anxiety disorders (AnxDs) are highly prevalent throughout the lifespan, with detrimental effects on daily-life functioning, somatic health, and quality of life. An emerging perspective suggested that AnxDs may be associated with accelerated aging. In this paper, we explored the association between AnxDs and hallmarks of accelerated aging, with a specific focus on neuroprogression. We reviewed animal and human findings that suggest an overlap between processes of impaired neurogenesis, neurodegeneration, structural, functional, molecular, and cellular modifications in AnxDs, and aging. Although this research is at an early stage, our review suggests a link between anxiety and accelerated aging across multiple processes involved in neuroprogression. Brain structural and functional changes that accompany normal aging were more pronounced in subjects with AnxDs than in coevals without AnxDs, including reduced grey matter density, white matter alterations, impaired functional connectivity of large-scale brain networks, and poorer cognitive performance. Similarly, molecular correlates of brain aging, including telomere shortening, Aβ accumulation, and immune-inflammatory and oxidative/nitrosative stress, were overrepresented in anxious subjects. No conclusions about causality or directionality between anxiety and accelerated aging can be drawn. Potential mechanisms of this association, limitations of the current research, and implications for treatments and future studies are discussed. PMID:26881136
NASA Astrophysics Data System (ADS)
Junqueira Leão, Rodrigo; Raffaelo Baldo, Crhistian; Collucci da Costa Reis, Maria Luisa; Alves Trabanco, Jorge Luiz
2018-03-01
The building blocks of particle accelerators are magnets responsible for keeping beams of charged particles at a desired trajectory. Magnets are commonly grouped in support structures named girders, which are mounted on vertical and horizontal stages. The performance of this type of machine is highly dependent on the relative alignment between its main components. The length of particle accelerators ranges from small machines to large-scale national or international facilities, with typical lengths of hundreds of meters to a few kilometers. This relatively large volume together with micrometric positioning tolerances make the alignment activity a classical large-scale dimensional metrology problem. The alignment concept relies on networks of fixed monuments installed on the building structure to which all accelerator components are referred. In this work, the Sirius accelerator is taken as a case study, and an alignment network is optimized via computational methods in terms of geometry, densification, and surveying procedure. Laser trackers are employed to guide the installation and measure the girders’ positions, using the optimized network as a reference and applying the metric developed in part I of this paper. Simulations demonstrate the feasibility of aligning the 220 girders of the Sirius synchrotron to better than 0.080 mm, at a coverage probability of 95%.
Physics Goals for the Planned Next Linear Collider Engineering Test Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raubenheimer, Tor O
2001-10-02
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Courtlandt L Bohn et al.
2001-06-26
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Physics goals for the planned next linear collider engineering test facility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bohn, C.; Michelotti, L.; Ostiguy, J.-F.
2001-07-17
The Next Linear Collider (NLC) Collaboration is planning to construct an Engineering Test Facility (ETF) at Fermilab. As presently envisioned, the ETF would comprise a fundamental unit of the NLC main linac to include X-band klystrons and modulators, a delay-line power-distribution system (DLDS), and NLC accelerating structures that serve as loads. The principal purpose of the ETF is to validate stable operation of the power-distribution system, first without beam, then with a beam having the NLC pulse structure. This paper concerns the possibility of configuring and using the ETF to accelerate beam with an NLC pulse structure, as well asmore » of doing experiments to measure beam-induced wakefields in the rf structures and their influence back on the beam.« less
Structural and Trajectory Control of Variable Geometry Planetary Entry Systems
NASA Technical Reports Server (NTRS)
Quadrelli, Marco; Kwok, Kawai; Pellegrino, Sergio
2009-01-01
The results presented in this paper apply to a generic vehicle entering a planetary atmosphere which makes use of a variable geometry change to modulate the heat, drag, and acceleration loads. Two structural concepts for implementing the cone angle variation, namely a segmented shell and a corrugated shell, are presented. A structural analysis of these proposed structural configuration shows that the stress levels are tolerable during entry. The analytic expressions of the longitudinal aerodynamic coefficients are also derived, and guidance laws that track reference heat flux, drag, and aerodynamic acceleration loads are also proposed. These guidance laws have been tested in an integrated simulation environment, and the results indicate that use of variable geometry is feasible to track specific profiles of dynamic load conditions during reentry.
Denmark, Scott E.; Marlin, John E.; Rajendra, G.
2012-01-01
The carbanion-accelerated Claisen rearrangement has been extended to include phosphorus carbanion-stabilizing groups. The appropriately substituted allyl vinyl ethers are synthesized by the nucleophilic addition of allyloxides to phosphorus-substituted allenes, which are obtained in one step from simple starting materials. The phosphorus-stabilized, carbanion-accelerated Claisen rearrangements proceed rapidly at room temperature in high yield, and the rearrangements are highly site and stereoselective. The first examples of asymmetric induction in the Claisen rearrangement with chiral, phosphorus, anion-stabilizing groups are described. The observed asymmetric induction is highly dependent on the structure of the auxiliary and the metal counterion involved. Both internal and relative diastereoselectivity are high. A model for the observed sense of internal diastereoselectivity is proposed that is founded in the current understanding of the structure of phosphorus-stabilized anions. PMID:23101563
An Experimental Study of a Low-Jitter Pulsed Electromagnetic Plasma Accelerator
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Lee, Michael; Eskridge, Richard; Smith, James; Martin, Adam; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
An experimental plasma accelerator for a variety of applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 kilometers per second have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter has been characterized and future work for second generation "ultra-low jitter" gun development is identified.
BrainAGE score indicates accelerated brain aging in schizophrenia, but not bipolar disorder.
Nenadić, Igor; Dietzek, Maren; Langbein, Kerstin; Sauer, Heinrich; Gaser, Christian
2017-08-30
BrainAGE (brain age gap estimation) is a novel morphometric parameter providing a univariate score derived from multivariate voxel-wise analyses. It uses a machine learning approach and can be used to analyse deviation from physiological developmental or aging-related trajectories. Using structural MRI data and BrainAGE quantification of acceleration or deceleration of in individual aging, we analysed data from 45 schizophrenia patients, 22 bipolar I disorder patients (mostly with previous psychotic symptoms / episodes), and 70 healthy controls. We found significantly higher BrainAGE scores in schizophrenia, but not bipolar disorder patients. Our findings indicate significantly accelerated brain structural aging in schizophrenia. This suggests, that despite the conceptualisation of schizophrenia as a neurodevelopmental disorder, there might be an additional progressive pathogenic component. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-01-01
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation. PMID:28223697
Toyama, Yuki; Kano, Hanaho; Mase, Yoko; Yokogawa, Mariko; Osawa, Masanori; Shimada, Ichio
2017-02-22
Heterotrimeric guanine-nucleotide-binding proteins (G proteins) serve as molecular switches in signalling pathways, by coupling the activation of cell surface receptors to intracellular responses. Mutations in the G protein α-subunit (Gα) that accelerate guanosine diphosphate (GDP) dissociation cause hyperactivation of the downstream effector proteins, leading to oncogenesis. However, the structural mechanism of the accelerated GDP dissociation has remained unclear. Here, we use magnetic field-dependent nuclear magnetic resonance relaxation analyses to investigate the structural and dynamic properties of GDP bound Gα on a microsecond timescale. We show that Gα rapidly exchanges between a ground-state conformation, which tightly binds to GDP and an excited conformation with reduced GDP affinity. The oncogenic D150N mutation accelerates GDP dissociation by shifting the equilibrium towards the excited conformation.
An optical fiber spool for laser stabilization with reduced acceleration sensitivity to 10-12/g
NASA Astrophysics Data System (ADS)
Hu, Yong-Qi; Dong, Jing; Huang, Jun-Chao; Li, Tang; Liu, Liang
2015-10-01
Environmental vibration causes mechanical deformation in optical fibers, which induces excess frequency noise in fiber-stabilized lasers. In order to solve such a problem, we propose an ultralow acceleration sensitivity fiber spool with symmetrically mounted structure. By numerical analysis with the finite element method, we obtain the optimal geometry parameters of the spool with which the horizontal and vertical acceleration sensitivity can be reduced to 3.25 × 10-12/g and 5.38 × 10-12/g respectively. Moreover, the structure features the insensitivity to the variation of geometry parameters, which will minimize the influence from numerical simulation error and manufacture tolerance. Project supported by the National Natural Science Foundation of China (Grant Nos. 11034008 and 11274324) and the Key Research Program of the Chinese Academy of Sciences (Grant No. KJZD-EW-W02).
Woessner, Mary N; VanBruggen, Mitch D; Pieper, Carl F; O'Reilly, Erin K; Kraus, William E
2017-01-01
Background Peripheral artery disease (PAD) is caused by atherosclerotic occlusions in the legs. It affects approximately 8-12 million people in the United States alone, one-third of whom suffer from intermittent claudication (IC), defined as ischemic leg pain that occurs with walking and improves with rest. Patients with IC suffer a markedly impaired quality of life and a high perception of disability. Improving pain-free walking time is a primary goal of rehabilitation in this population. Objective The nitric oxide (NO)-PAD trial is designed to compare the effects that 12 weeks of supervised exercise training, in combination with a high inorganic nitrate-content (beetroot [BR] juice) beverage or placebo (PL) beverage, has on clinical outcomes of exercise and functional capacity in two groups of PAD+IC patients: exercise training plus beetroot (EX+BR) and exercise training plus placebo (EX+PL). The primary aims of this randomized controlled, double-blind pilot study are to determine group differences following 12 weeks of EX+BR versus EX+PL in the changes for (1) exercise capacity: pain-free walking time (claudication onset time, COT), peak walk time (PWT), and maximal exercise capacity (peak oxygen uptake, VO2peak) during a maximal-graded cardiopulmonary exercise test (max CPX) and (2) functional capacity: 6-minute walk (6MW) distance. The secondary aims will provide mechanistic insights into the exercise outcome measures and will include (1) gastrocnemius muscle oxygenation during exercise via near-infrared spectroscopy (NIRS); (2) gastrocnemius muscle angiogenesis: capillaries per unit area and per muscle fiber, and relative fraction of type I, IIa, IIb, and IId/x fibers; and (3) vascular health/function via brachial artery flow-mediated dilation, lower-limb blood flow via plethysmography, and pulse wave velocity and reflection. Methods A total of 30 subjects between 40 and 80 years of age with PAD who are limited by IC will undergo exercise training 3 days per week for 12 weeks (ie, 36 sessions). They will be randomized to either the EX+BR or EX+PL group where participants will consume a beverage high in inorganic nitrate (4.2 mmol) or a low-nitrate placebo, respectively, 3 hours prior to each training session. Results Data collection from this study has been completed and is in the process of analysis and write-up. While the study is too underpowered—EX+BR, n=11; EX+PL, n=13—to determine between-group differences in the primary outcomes of COT, PWT, and 6MW, preliminary observations are promising with Cohen d effect sizes of medium to large. Conclusions Exercise training is currently the most effective therapy to increase functional capacity in PAD+IC. If the addition of inorganic nitrate to an exercise regimen elicits greater benefits, it may redefine the current standard of care for PAD+IC. Trial Registration ClinicalTrials.gov NCT01684930; https://clinicaltrials.gov/ct2/show/NCT01684930 (Archived by WebCite at http://www.webcitation.org/6raXFyEcP) PMID:28974486
A new experimental method for the accelerated characterization of composite materials
NASA Technical Reports Server (NTRS)
Yeow, Y. T.; Morris, D. H.; Brinson, H. F.
1978-01-01
The use of composite materials for a variety of practical structural applications is presented and the need for an accelerated characterization procedure is assessed. A new experimental and analytical method is presented which allows the prediction of long term properties from short term tests. Some preliminary experimental results are presented.
Adapting the ALP Model for Student and Institutional Needs
ERIC Educational Resources Information Center
Sides, Meredith
2016-01-01
With the increasing adoption of accelerated models of learning comes the necessary step of adapting these models to fit the unique needs of the student population at each individual institution. One such college adapted the ALP (Accelerated Learning Program) model and made specific changes to the target population, structure and scheduling, and…
Speed Kills, Speed Thrills: Constraining and Enabling Accelerations in Academic Work-Life
ERIC Educational Resources Information Center
Vostal, Filip
2015-01-01
Intensification, speed of change and faster pace of life have recently emerged as significant issues in studies analysing the current academic climate. This article takes up the "social acceleration thesis" as a conceptual resource for capturing the relationship between the individual experience of time and the changing structure and…
Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock.
Wilson, L B; Sibeck, D G; Turner, D L; Osmane, A; Caprioli, D; Angelopoulos, V
2016-11-18
Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-large-scale (i.e., tens to thousands of thermal ion Larmor radii), transient (∼5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M>40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1≤M<20) bow shock. Here we report observations of electrons energized by foreshock disturbances to energies up to at least ∼300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.
NASA Astrophysics Data System (ADS)
Akhavan-Tafti, M.; Slavin, J. A.; Eastwood, J. P.; Cassak, P.; Gershman, D. J.; Zhao, C.
2017-12-01
Flux Transfer Events (FTEs) are transient signatures of magnetic reconnection at the dayside magnetopause and play significant roles in determining the rate of reconnection and accelerating particles. This study investigates the magnetohydrodynamic forces inside and outside FTEs to infer the process through which these structures become force-free and uses electron dynamics to study the mechanisms for particle acceleration within the FTE. Akhavan-Tafti et al. [2017] demonstrated that ion-scale FTEs contain regions of elevated plasma density which greatly contribute to plasma pressure forces inside FTEs. It is shown that as FTEs evolve, the plasma is evacuated as the core magnetic field strengthens, hence becoming more force-free. The neighboring ion-scale FTEs formed at the subsolar magnetopause due to multiple X-line reconnection are forced to interact, and likely coalesce. Entropy is invoked to motivate the discussion on the essential role of coalescence in reconfiguring magnetic fields and current density distributions inside FTEs to allow for the adiabatic growth of these structures. Here, we present observational evidence which shows that, in the absence of coalescence, FTEs can become less force free. Local electron kinematics is studied to compare the contributions of parallel electric field, Fermi acceleration, and betatron acceleration mechanisms to particle heating. Acceleration due to parallel electric fields are shown to be dominant in the vicinity of the reconnection site while betatron acceleration controls perpendicular heating inside the FTE in the presence of magnetic pressure gradients. In the downstream of the reconnection site, the `freshly' reconnected field lines start to straighten due to the magnetic curvature force. Straightening field lines accelerate trapped electrons parallel to the local magnetic field (i.e., first-order Fermi acceleration). These acceleration mechanisms are shown to explain the observed anisotropic pitch angle distributions at the core and at the edges of FTEs. Finally, the forces inside non-flux rope-type FTEs (due to coalescence, expansion, contraction, or division) are shown to contribute to selective plasma heating, hence giving rise to anisotropic plasma temperatures and the subsequent wave activities (e.g. propagation of whistler waves).
Slow wave structures using twisted waveguides for charged particle applications
Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.
2012-12-11
A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.
NASA Astrophysics Data System (ADS)
Argyropoulos, Theodoros; Catalan-Lasheras, Nuria; Grudiev, Alexej; Mcmonagle, Gerard; Rodriguez-Castro, Enrique; Syrachev, Igor; Wegner, Rolf; Woolley, Ben; Wuensch, Walter; Zha, Hao; Dolgashev, Valery; Bowden, Gorden; Haase, Andrew; Lucas, Thomas Geoffrey; Volpi, Matteo; Esperante-Pereira, Daniel; Rajamäki, Robin
2018-06-01
A prototype 11.994 GHz, traveling-wave accelerating structure for the Compact Linear Collider has been built, using the novel technique of assembling the structure from milled halves. The use of milled halves has many advantages when compared to a structure made from individual disks. These include the potential for a reduction in cost, because there are fewer parts, as well as a greater freedom in choice of joining technology because there are no rf currents across the halves' joint. Here we present the rf design and fabrication of the prototype structure, followed by the results of the high-power test and post-test surface analysis. During high-power testing the structure reached an unloaded gradient of 100 MV /m at a rf breakdown rate of less than 1.5 ×10-5 breakdowns /pulse /m with a 200 ns pulse. This structure has been designed for the CLIC testing program but construction from halves can be advantageous in a wide variety of applications.
High Power RF Testing of A 3-Cell Superconducting Traveling Wave Accelerating Structure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanareykin, Alex; Kostin, Romna; Avrakhov, Pavel
Euclid Techlabs has completed the Phase II SBIR project, entitled “High Power RF Testing of a 3-Cell Superconducting Traveling Wave Accelerating Structure” under Grant #DE-SC0006300. In this final technical report, we summarize the major achievements of Phase I of the project and review the details of Phase II of the project. The accelerating gradient in a superconducting structure is limited mainly by quenching, i.e., by the maximum surface RF magnetic field. Various techniques have been developed to increase the gradient. A traveling wave accelerating SC structure with a feedback waveguide was suggested to allow an increased transit time factor andmore » ultimately, a maximum gradient that is 22%-24% higher than in the best of the time standing wave SRF cavity solution. The proposed structure has an additional benefit in that it can be fabricated much longer than the standing wave ones that are limited by the field flatness factor. Taken together, all of these factors will result in a significant overall length and, correspondingly cost reduction of the SRF based linear collider ILC or SRF technology based FELs. In Phase I of this project, a 3-cell L-band SC traveling wave cavity was designed. Cavity shape, surface field ratios, inter-cell coupling coefficients, accelerating field flatness have been reviewed with the analysis of tuning issues. Moreover, the technological aspects of SC traveling wave accelerating structure fabrication have been studied. As the next step in the project, the Phase II experimental program included engineering design, manufacturing, surface processing and high gradient testing. Euclid Techlabs, LLC contracted AES, Inc. to manufacture two niobium cavities. Euclid Techlabs cold tested traveling wave regime in the cavity, and the results showed very good agreement with mathematical model specially developed for superconducting traveling wave cavity performance analysis. Traveling wave regime was adjusted by amplitude and phase variation of input signals due to application of developed power feeding scheme. Traveling wave excitation, adjustment and detection were successfully tested. Auxiliary equipment required for high power test such as the tuner, power and measure couplers, holding plates for VTS at Fermilab were developed and successfully tested. Both TW SRF cavities were fabricated by AES, Inc. without stiffening ribs before this company closed their production facility. Currently Roark EB welding company is finishing now welding process of the cavity for the high power testing at Fermilab VTS. Successful demonstration of high gradients in the 3-cell cavity along with studies of traveling wave excitation and tuning issues is leading to successful development of superconducting traveling wave technology for ILC applications and other future high energy SC accelerators.« less
Multipactor in the Presence of Higher-Order Modes: A Numerical Study
NASA Astrophysics Data System (ADS)
Rice, Scott Alan
Resonant electromagnetic structures are vitally important in engineering and scientific applications, ranging from devices as ubiquitous as antennas and microwave ovens, to devices as demanding as high-power microwave sources and particle accelerator components. As we push the limits on the design and operation of such structures, one of the physical limitations that we must contend with is electrical breakdown, which becomes increasingly likely as we increase field strength and reduce structure sizes. Multipactor is a type of breakdown in which electromagnetic fields accelerate free electrons into a material, which then ejects secondary electrons which are re-accelerated back into the material, and which sustains or grows the breakdown current over time. We are interested in understanding multipactor better because it is one of the common design constraints for high-power resonant structures around microwave frequencies, such as klystrons, couplers, waveguides, and accelerating cavities used in particle accelerators. Besides being a design constraint, we could also potentially employ the non-linear nature of multipactor to intentionally attenuate sporadic harmful power levels which may affect certain sensitive equipment, such as for the protection of front-end electronics on radio receivers in space-borne applications. This dissertation details the results of numerical study of two-surface multipactor driven by time-harmonic fields, with a specific focus upon how secondary electron emission models can affect the resulting multipactor predictions, and how multipactor susceptibility and trajectories can be affected by the presence of additional modes within a resonant structure. The primary focus is on multipactor occurring between the inner and outer conductors of coaxial geometries, but some parallel plate geometries are also considered. The scope of investigation is limited to the multipactor regime in which space charge effects can be neglected. In practice this means the early-time evolution of multipactor, since it takes some time before space charge effects become significant. Despite this simplifying assumption not being applicable to the late-time behavior of multipactor, this approach still allows for much practical benefit in the understanding of multipactor genesis and controllability, which is frequently the most significant concern of engineering interest.
A polymer dataset for accelerated property prediction and design.
Huan, Tran Doan; Mannodi-Kanakkithodi, Arun; Kim, Chiho; Sharma, Vinit; Pilania, Ghanshyam; Ramprasad, Rampi
2016-03-01
Emerging computation- and data-driven approaches are particularly useful for rationally designing materials with targeted properties. Generally, these approaches rely on identifying structure-property relationships by learning from a dataset of sufficiently large number of relevant materials. The learned information can then be used to predict the properties of materials not already in the dataset, thus accelerating the materials design. Herein, we develop a dataset of 1,073 polymers and related materials and make it available at http://khazana.uconn.edu/. This dataset is uniformly prepared using first-principles calculations with structures obtained either from other sources or by using structure search methods. Because the immediate target of this work is to assist the design of high dielectric constant polymers, it is initially designed to include the optimized structures, atomization energies, band gaps, and dielectric constants. It will be progressively expanded by accumulating new materials and including additional properties calculated for the optimized structures provided.
HOM-Free Linear Accelerating Structure for e+ e- Linear Collider at C-Band
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kubo, Kiyoshi
2003-07-07
HOM-free linear acceleration structure using the choke mode cavity (damped cavity) is now under design for e{sup +}e{sup -} linear collider project at C-band frequency (5712 MHz). Since this structure shows powerful damping effect on most of all HOMs, there is no multibunch problem due to long range wakefields. The structure will be equipped with the microwave absorbers in each cells and also the in-line dummy load in the last few cells. The straightness tolerance for 1.8 m long structure is closer than 30 {micro}m for 25% emittance dilution limit, which can be achieved by standard machining and braising techniques.more » Since it has good vacuum pumping conductance through annular gaps in each cell, instabilities due to the interaction of beam with the residual-gas and ions can be minimized.« less
On pads and filters: Processing strong-motion data
Boore, D.M.
2005-01-01
Processing of strong-motion data in many cases can be as straightforward as filtering the acceleration time series and integrating to obtain velocity and displacement. To avoid the introduction of spurious low-frequency noise in quantities derived from the filtered accelerations, however, care must be taken to append zero pads of adequate length to the beginning and end of the segment of recorded data. These padded sections of the filtered acceleration need to be retained when deriving velocities, displacements, Fourier spectra, and response spectra. In addition, these padded and filtered sections should also be included in the time series used in the dynamic analysis of structures and soils to ensure compatibility with the filtered accelerations.
, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator structure of baryonic matter in the universe - the matter that makes up stars, planets and human life itself
Exploring novel structures for manipulating relativistic laser-plasma interaction
NASA Astrophysics Data System (ADS)
Ji, Liangliang
2016-10-01
The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).
NASA Astrophysics Data System (ADS)
Hull, A. J.; Wilber, M.; Chaston, C.; Bonnell, J.; Mozer, F.; McFadden, J.; Goldstein, M.; Fillingim, M.
2007-12-01
The region above the auroral acceleration region is an integral part of the auroral zone electrodynamic system. At these altitudes (≥ 3 Re) we find the source plasma and fields that determine acceleration processes occurring at lower altitudes, which play a key role in the transport of mass and energy into the ionosphere. Dynamic changes in these high-altitude regions can affect and/or control lower-altitude acceleration processes according to how field-aligned currents and specific plasma sources form and decay and how they are spatially distributed, and through magnetic configuration changes deeper in the magnetotail. Though much progress has been made, the time development and consequential effects of the high-altitude plasma and fields are still not fully understood. We present Cluster multi-point observations at key instances within and above the acceleration region (> 3 RE) of evolving auroral arc current systems. Results are presented from events occurring under different conditions, such as magnetospheric activity, associations with density depletions or gradients, and Alfvenic turbulence. A preliminary survey, primarily at or near the plasma sheet boundary, indicates quasi- static up-down current pair systems are at times associated with density depletions and other instances occur in association with density gradients. The data suggest that such quasi-static current systems may be evolving from structured Alfvenic current systems. We will discuss the temporal development of auroral acceleration potentials, plasma and currents, including quasi-static system formation from turbulent systems of structured Alfvenic field-aligned currents, density depletion and constituent reorganization of the source and ionospheric plasma that transpire in such systems. Of particular emphasis is how temporal changes in magnetospheric source plasma and fields affect the development of auroral acceleration potentials at lower altitudes.
MEMS based ion beams for fusion
NASA Astrophysics Data System (ADS)
Persaud, A.; Seidl, P. A.; Ji, Q.; Waldron, W. L.; Schenkel, T.; Ardanuc, S.; Vinayakumar, K. B.; Schaffer, Z. A.; Lal, A.
2016-10-01
Micro-Electro-Mechanical Systems (MEMS) fabrication provides an exciting opportunity to shrink existing accelerator concepts to smaller sizes and to reduce cost by orders of magnitude. We revisit the concept of a Multiple Electrostatic Quadrupole Array Linear Accelerator (MEQALAC) and show how, with current technologies, the concept can be downsized from gap distances of several cm to distances in the sub-mm regime. The basic concept implements acceleration gaps using radio frequency (RF) fields and electrostatic quadrupoles (ESQ) on silicon wafers. First results from proof-of-concept experiments using printed circuit boards to realize the MEQALAC structures are presented. We show results from accelerating structures that were used in an array of nine (3x3) parallel beamlets with He ions at 15 keV. We will also present results from an ESQ focusing lattice using the same beamlet layout showing beam transport and matching. We also will discuss our progress in fabricating MEMS devices in silicon wafers for both the RF and ESQ structures and integration of necessary RF-circuits on-chip. The concept can be scaled up to thousands of beamlets providing high power beams at low cost and can be used to form and compress a plasma for the development of magnetized target fusion approaches. This work was supported by the Office of Science of the US Department of Energy through the ARPA-e ALPHA program under contracts DE-AC0205CH11231 (LBNL).
Response of Olive View Hospital to Northridge and Whittier earthquakes
Celebi, M.
1997-01-01
The purpose of this paper is to study the response of the conventionally designed new Olive View Medical Center (OVMC) building at 16 km from the epicenter of the January 17, 1994 Northridge, California earthquake (Ms = 6.8). OVMC is on an alluvial deposit. The building was subjected to design level peak accelerations during the earthquake and suffered only limited structural and nonstructural damage. The recorded motions at different levels of the OVMC building as well as its associated free-field sites are analyzed using spectral analyses and system identification techniques. The new OVMC building was conservatively designed in 1976 with very high lateral load resisting capability - particularly as a reaction to the detrimental fate of the original Olive View Hospital that was heavily damaged during the 1971 San Fernando earthquake. The original hospital building was later razed. The replacement structure, the new cross-shaped OVMC building, experienced peak acceleration of 2.31g at the roof while its peak ground floor acceleration was 0.82g. The free-field peak acceleration was 0.91g. The lateral load resisting system of the OVMC building consists of concrete shear walls in the lower two stories and steel shear walls at the perimeter of the upper four stories. Spectral analysis shows that this stiff structure was not affected by the long duration pulses of the motions recorded at this site.
Advanced low-beta cavity development for proton and ion accelerators
NASA Astrophysics Data System (ADS)
Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.
2015-05-01
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review this work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for β = 0.077 ions.
Quality control of concrete at the stage of designing its composition and technology
NASA Astrophysics Data System (ADS)
Kudyakov, A.; Prischepa, I.; Kiselev, D.; Prischepa, B.
2016-01-01
The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology - hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation of foam concrete mix technological regulations are worked out, in which it is recommended to use additives - hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.
Electron acceleration via magnetic island coalescence
NASA Astrophysics Data System (ADS)
Shinohara, I.; Yumura, T.; Tanaka, K. G.; Fujimoto, M.
2009-06-01
Electron acceleration via fast magnetic island coalescence that happens as quick magnetic reconnection triggering (QMRT) proceeds has been studied. We have carried out a three-dimensional full kinetic simulation of the Harris current sheet with a large enough simulation run for two magnetic islands coalescence. Due to the strong inductive electric field associated with the non-linear evolution of the lower-hybrid-drift instability and the magnetic island coalescence process observed in the non-linear stage of the collisionless tearing mode, electrons are significantly accelerated at around the neutral sheet and the subsequent X-line. The accelerated meandering electrons generated by the non-linear evolution of the lower-hybrid-drift instability are resulted in QMRT, and QMRT leads to fast magnetic island coalescence. As a whole, the reconnection triggering and its transition to large-scale structure work as an effective electron accelerator.
Systems analysis of a low-acceleration research facility
NASA Technical Reports Server (NTRS)
Martin, Gary L.; Ferebee, Melvin J., Jr.; Wright, Robert L.
1988-01-01
The Low-Acceleration Research Facility (LARF), an unmanned free-flier that is boosted from low-earth orbit to a desired altitude using an orbital transfer vehicle is discussed. Design techniques used to minimize acceleration-causing disturbances and to create an ultra-quiet workshop are discussed, focusing on residual acceleration induced by the environment, the spacecraft and experiments. The selection and integration of critical subsystems, such as electrical power and thermal control, that enable the LARf to accomodate sub-microgravity levels for extended periods of time are presented, including a discussion of the Low-Acceleration Module, which will supply the payload with 25.0 kW of power, and up to 11.8 kW in the low-power mode. Also, the data management, communications, guidance, navigation and control, and structural features of supporting subsystems are examined.
Ram, Pavani K.; Halder, Amal K.; Granger, Stewart P.; Jones, Therese; Hall, Peter; Hitchcock, David; Wright, Richard; Nygren, Benjamin; Islam, M. Sirajul; Molyneaux, John W.; Luby, Stephen P.
2010-01-01
Structured observation is often used to evaluate handwashing behavior. We assessed reactivity to structured observation in rural Bangladesh by distributing soap containing acceleration sensors and performing structured observation 4 days later. Sensors recorded the number of times soap was moved. In 45 participating households, the median number of sensor soap movements during the 5-hour time block on pre-observation days was 3.7 (range 0.3–10.6). During the structured observation, the median number of sensor soap movements was 5.0 (range 0–18.0), a 35% increase, P = 0.0004. Compared with the same 5-hour time block on pre-observation days, the number of sensor soap movements increased during structured observation by ≥ 20% in 62% of households, and by ≥ 100% in 22% of households. The increase in sensor soap movements during structured observation, compared with pre-observation days, indicates substantial reactivity to the presence of the observer. These findings call into question the validity of structured observation for measurement of handwashing behavior. PMID:21036840
Ram, Pavani K; Halder, Amal K; Granger, Stewart P; Jones, Therese; Hall, Peter; Hitchcock, David; Wright, Richard; Nygren, Benjamin; Islam, M Sirajul; Molyneaux, John W; Luby, Stephen P
2010-11-01
Structured observation is often used to evaluate handwashing behavior. We assessed reactivity to structured observation in rural Bangladesh by distributing soap containing acceleration sensors and performing structured observation 4 days later. Sensors recorded the number of times soap was moved. In 45 participating households, the median number of sensor soap movements during the 5-hour time block on pre-observation days was 3.7 (range 0.3-10.6). During the structured observation, the median number of sensor soap movements was 5.0 (range 0-18.0), a 35% increase, P = 0.0004. Compared with the same 5-hour time block on pre-observation days, the number of sensor soap movements increased during structured observation by ≥ 20% in 62% of households, and by ≥ 100% in 22% of households. The increase in sensor soap movements during structured observation, compared with pre-observation days, indicates substantial reactivity to the presence of the observer. These findings call into question the validity of structured observation for measurement of handwashing behavior.
Dal Forno, Massimo; Craievich, Paolo; Penco, Giuseppe; Vescovo, Roberto
2013-11-01
The front-end injection systems of the FERMI@Elettra linac produce high brightness electron beams that define the performance of the Free Electron Laser. The photoinjector mainly consists of the radiofrequency (rf) gun and of two S-band rf structures which accelerate the beam. Accelerating structures endowed with a single feed coupler cause deflection and degradation of the electron beam properties, due to the asymmetry of the electromagnetic field. In this paper, a new type of single feed structure with movable short-circuit is proposed. It has the advantage of having only one waveguide input, but we propose a novel design where the dipolar component is reduced. Moreover, the racetrack geometry allows to reduce the quadrupolar component. This paper presents the microwave design and the analysis of the particle motion inside the linac. A prototype has been machined at the Elettra facility to verify the new coupler design and the rf field has been measured by adopting the bead-pull method. The results are here presented, showing good agreement with the expectations.
Motion-adaptive spatio-temporal regularization for accelerated dynamic MRI.
Asif, M Salman; Hamilton, Lei; Brummer, Marijn; Romberg, Justin
2013-09-01
Accelerated magnetic resonance imaging techniques reduce signal acquisition time by undersampling k-space. A fundamental problem in accelerated magnetic resonance imaging is the recovery of quality images from undersampled k-space data. Current state-of-the-art recovery algorithms exploit the spatial and temporal structures in underlying images to improve the reconstruction quality. In recent years, compressed sensing theory has helped formulate mathematical principles and conditions that ensure recovery of (structured) sparse signals from undersampled, incoherent measurements. In this article, a new recovery algorithm, motion-adaptive spatio-temporal regularization, is presented that uses spatial and temporal structured sparsity of MR images in the compressed sensing framework to recover dynamic MR images from highly undersampled k-space data. In contrast to existing algorithms, our proposed algorithm models temporal sparsity using motion-adaptive linear transformations between neighboring images. The efficiency of motion-adaptive spatio-temporal regularization is demonstrated with experiments on cardiac magnetic resonance imaging for a range of reduction factors. Results are also compared with k-t FOCUSS with motion estimation and compensation-another recently proposed recovery algorithm for dynamic magnetic resonance imaging. . Copyright © 2012 Wiley Periodicals, Inc.
[Acceleration of Embryonic Development of Pinus sibirica Trees with a One-Year Reproductive Cycle].
Tret'yakova, I N; Lukina, N V
2016-01-01
The study of the formation of embryonic structures in Pinus sibirica forms with a one-year reproductive cycle showed that the acceleration of the embryonic process manifested itself as a reduction of the coenocytic stage of the female gametophyte development (1.5 months instead of 1 year). The egg was not fertilized because of the asynchronous maturation of male and female gametophytes. Seeds without embryos were formed. We assumed that the acceleration of the reproductive process in Pinus sibirica was caused by a mutation in the female generative organs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovskiy, A. V.; Galkin, A. L.; Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997
The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.
2016-11-01
acceleration at a cross-section was used as a measure of the wave impact load in units of g. Later developments included publication of the envelope...Republic, 4 – 7 October 2004. PICKFORD, E.V., MAHONE, R.R., WOLK, H.L. (1975). Slam/Shock Isolation Pedestal, United States Patent Number, 3,912,248, 14...accelerations. The rigid body peak acceleration is a measure of the impact load in units of g. In the following plots the data corresponds to head-sea
Lawrence, E.O.; McMillan, E.M.; Alvarez, L.W.
1960-04-19
An electronuclear reactor is described in which a very high-energy particle accelerator is employed with appropriate target structure to produce an artificially produced material in commercial quantities by nuclear transformations. The principal novelty resides in the combination of an accelerator with a target for converting the accelerator beam to copious quantities of low-energy neutrons for absorption in a lattice of fertile material and moderator. The fertile material of the lattice is converted by neutron absorption reactions to an artificially produced material, e.g., plutonium, where depleted uranium is utilized as the fertile material.
Quasi-One-Dimensional Particle-in-Cell Simulation of Magnetic Nozzles
NASA Technical Reports Server (NTRS)
Ebersohn, Frans H.; Sheehan, J. P.; Gallimore, Alec D.; Shebalin, John V.
2015-01-01
A method for the quasi-one-dimensional simulation of magnetic nozzles is presented and simulations of a magnetic nozzle are performed. The effects of the density variation due to plasma expansion and the magnetic field forces on ion acceleration are investigated. Magnetic field forces acting on the electrons are found to be responsible for the formation of potential structures which accelerate ions. The effects of the plasma density variation alone are found to only weakly affect ion acceleration. Strongly diverging magnetic fields drive more rapid potential drops.
Non-perturbative aspects of particle acceleration in non-linear electrodynamics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burton, David A.; Flood, Stephen P.; Wen, Haibao
2015-04-15
We undertake an investigation of particle acceleration in the context of non-linear electrodynamics. We deduce the maximum energy that an electron can gain in a non-linear density wave in a magnetised plasma, and we show that an electron can “surf” a sufficiently intense Born-Infeld electromagnetic plane wave and be strongly accelerated by the wave. The first result is valid for a large class of physically reasonable modifications of the linear Maxwell equations, whilst the second result exploits the special mathematical structure of Born-Infeld theory.
High Energy Density Physics and Exotic Acceleration Schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cowan, T.; /General Atomics, San Diego; Colby, E.
2005-09-27
The High Energy Density and Exotic Acceleration working group took as our goal to reach beyond the community of plasma accelerator research with its applications to high energy physics, to promote exchange with other disciplines which are challenged by related and demanding beam physics issues. The scope of the group was to cover particle acceleration and beam transport that, unlike other groups at AAC, are not mediated by plasmas or by electromagnetic structures. At this Workshop, we saw an impressive advancement from years past in the area of Vacuum Acceleration, for example with the LEAP experiment at Stanford. And wemore » saw an influx of exciting new beam physics topics involving particle propagation inside of solid-density plasmas or at extremely high charge density, particularly in the areas of laser acceleration of ions, and extreme beams for fusion energy research, including Heavy-ion Inertial Fusion beam physics. One example of the importance and extreme nature of beam physics in HED research is the requirement in the Fast Ignitor scheme of inertial fusion to heat a compressed DT fusion pellet to keV temperatures by injection of laser-driven electron or ion beams of giga-Amp current. Even in modest experiments presently being performed on the laser-acceleration of ions from solids, mega-amp currents of MeV electrons must be transported through solid foils, requiring almost complete return current neutralization, and giving rise to a wide variety of beam-plasma instabilities. As keynote talks our group promoted Ion Acceleration (plenary talk by A. MacKinnon), which historically has grown out of inertial fusion research, and HIF Accelerator Research (invited talk by A. Friedman), which will require impressive advancements in space-charge-limited ion beam physics and in understanding the generation and transport of neutralized ion beams. A unifying aspect of High Energy Density applications was the physics of particle beams inside of solids, which is proving to be a very important field for diverse applications such as muon cooling, fusion energy research, and ultra-bright particle and radiation generation with high intensity lasers. We had several talks on these and other subjects, and many joint sessions with the Computational group, the EM Structures group, and the Beam Generation group. We summarize our groups' work in the following categories: vacuum acceleration schemes; ion acceleration; particle transport in solids; and applications to high energy density phenomena.« less
Raval, Alpan; Piana, Stefano; Eastwood, Michael P; Shaw, David E
2016-01-01
Molecular dynamics (MD) simulation is a well-established tool for the computational study of protein structure and dynamics, but its application to the important problem of protein structure prediction remains challenging, in part because extremely long timescales can be required to reach the native structure. Here, we examine the extent to which the use of low-resolution information in the form of residue-residue contacts, which can often be inferred from bioinformatics or experimental studies, can accelerate the determination of protein structure in simulation. We incorporated sets of 62, 31, or 15 contact-based restraints in MD simulations of ubiquitin, a benchmark system known to fold to the native state on the millisecond timescale in unrestrained simulations. One-third of the restrained simulations folded to the native state within a few tens of microseconds-a speedup of over an order of magnitude compared with unrestrained simulations and a demonstration of the potential for limited amounts of structural information to accelerate structure determination. Almost all of the remaining ubiquitin simulations reached near-native conformations within a few tens of microseconds, but remained trapped there, apparently due to the restraints. We discuss potential methodological improvements that would facilitate escape from these near-native traps and allow more simulations to quickly reach the native state. Finally, using a target from the Critical Assessment of protein Structure Prediction (CASP) experiment, we show that distance restraints can improve simulation accuracy: In our simulations, restraints stabilized the native state of the protein, enabling a reasonable structural model to be inferred. © 2015 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Particle acceleration on a chip: A laser-driven micro-accelerator for research and industry
NASA Astrophysics Data System (ADS)
Yoder, R. B.; Travish, G.
2013-03-01
Particle accelerators are conventionally built from radio-frequency metal cavities, but this technology limits the maximum energy available and prevents miniaturization. In the past decade, laser-powered acceleration has been intensively studied as an alternative technology promising much higher accelerating fields in a smaller footprint and taking advantage of recent advances in photonics. Among the more promising approaches are those based on dielectric field-shaping structures. These ``dielectric laser accelerators'' (DLAs) scale with the laser wavelength employed and can be many orders of magnitude smaller than conventional accelerators; DLAs may enable the production of high-intensity, ultra-short relativistic electron bunches in a chip-scale device. When combined with a high- Z target or an optical-period undulator, these systems could produce high-brilliance x-rays from a breadbox-sized device having multiple applications in imaging, medicine, and homeland security. In our research program we have developed one such DLA, the Micro-Accelerator Platform (MAP). We describe the fundamental physics, our fabrication and testing program, and experimental results to date, along with future prospects for MAP-based light-sources and some remaining challenges. Supported in part by the Defense Threat Reduction Agency and National Nuclear Security Administration.
Design study of electron cyclotron resonance-ion plasma accelerator for heavy ion cancer therapy.
Inoue, T; Hattori, T; Sugimoto, S; Sasai, K
2014-02-01
Electron Cyclotron Resonance-Ion Plasma Accelerator (ECR-IPAC) device, which theoretically can accelerate multiple charged ions to several hundred MeV with short acceleration length, has been proposed. The acceleration mechanism is based on the combination of two physical principles, plasma electron ion adiabatic ejection (PLEIADE) and Gyromagnetic Autoresonance (GYRAC). In this study, we have designed the proof of principle machine ECR-IPAC device and simulated the electromagnetic field distribution generating in the resonance cavity. ECR-IPAC device consisted of three parts, ECR ion source section, GYRAC section, and PLEIADE section. ECR ion source section and PLEIADE section were designed using several multi-turn solenoid coils and sextupole magnets, and GYRAC section was designed using 10 turns coil. The structure of ECR-IPAC device was the cylindrical shape, and the total length was 1024 mm and the maximum diameter was 580 mm. The magnetic field distribution, which maintains the stable acceleration of plasma, was generated on the acceleration center axis throughout three sections. In addition, the electric field for efficient acceleration of electrons was generated in the resonance cavity by supplying microwave of 2.45 GHz.
High-efficiency acceleration in the laser wakefield by a linearly increasing plasma density
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong, Kegong; Wu, Yuchi; Zhu, Bin
The acceleration length and the peak energy of the electron beam are limited by the dephasing effect in the laser wakefield acceleration with uniform plasma density. Based on 2D-3V particle in cell simulations, the effects of a linearly increasing plasma density on the electron acceleration are investigated broadly. Comparing with the uniform plasma density, because of the prolongation of the acceleration length and the gradually increasing accelerating field due to the increasing plasma density, the electron beam energy is twice higher in moderate nonlinear wakefield regime. Because of the lower plasma density, the linearly increasing plasma density can also avoidmore » the dark current caused by additional injection. At the optimal acceleration length, the electron energy can be increased from 350 MeV (uniform) to 760 MeV (linearly increasing) with the energy spread of 1.8%, the beam duration is 5 fs and the beam waist is 1.25 μm. This linearly increasing plasma density distribution can be achieved by a capillary with special gas-filled structure, and is much more suitable for experiment.« less
NASA Astrophysics Data System (ADS)
Chang, Tsui-Yu; Cotton, Fabrice; Angelier, Jacques; Shin, Tzay-Chyn
2001-07-01
Attenuation laws are widely used in order to estimate the peak ground acceleration that may occur at a given locality during an earthquake, for hazard evaluation purposes. However, these simplified laws should be regarded acceptable only in the first approximation, because numerous significant parameters at the local and regional scales are often ignored. We examined the relationship between distance and peak acceleration based on examples from the dense accelerometric network of Taiwan, specifically for the Chichi destructive earthquake. We thus observed significant discrepancies between the predicted and observed accelerations, resulting from (1) near-field saturation, (2) amplification in sedimentary basins, and (3) hanging wall effect. We mapped the residual accelerations (difference between observed and predicted peak ground accelerations). This highlights the role of the regional structure, independently revealed by the geological analysis, as a significant factor that controls the transmission of the seismic accelerations.
NASA Astrophysics Data System (ADS)
Rosenberg, R. A.; McDowell, M. W.; Ma, Q.; Harkay, K. C.
2003-09-01
It is well known that exposure to an accelerator environment can cause ``conditioning'' of the vacuum chamber surfaces. In order to understand the manner in which the surface structure might influence the production of gases and electrons in the accelerator, such surfaces should be studied both before and after exposure to accelerator conditions. Numerous studies have been performed on representative materials prior to being inserted into an accelerator, but very little has been done on materials that have ``lived'' in the accelerator for extended periods. In the present work, we mounted Al and Cu coupons at different positions in a section of the Advanced Photon Source storage ring and removed them following exposures ranging from 6 to 18 months. X-ray photoelectron spectroscopy (XPS) of the surface was performed before and after exposure. Changes were observed that depended on the location and whether the coupon was facing the chamber interior or chamber wall. These results will be presented and compared to XPS and secondary electron yield data obtained from laboratory measurements meant to simulate the accelerator conditions.
Eccentric superconducting RF cavity separator structure
Aggus, John R.; Giordano, Salvatore T.; Halama, Henry J.
1976-01-01
Accelerator apparatus having an eccentric-shaped, iris-loaded deflecting cavity for an rf separator for a high energy high momentum, charged particle accelerator beam. In one embodiment, the deflector is superconducting, and the apparatus of this invention provides simplified machining and electron beam welding techniques. Model tests have shown that the electrical characteristics provide the desired mode splitting without adverse effects.
Multistage coupling of independent laser-plasma accelerators
Steinke, S.; van Tilborg, J.; Benedetti, C.; ...
2016-02-01
Laser-plasma accelerators (LPAs) are capable of accelerating charged particles to very high energies in very compact structures. In theory, therefore, they offer advantages over conventional, large-scale particle accelerators. However, the energy gain in a single-stage LPA can be limited by laser diffraction, dephasing, electron-beam loading and laser-energy depletion. The problem of laser diffraction can be addressed by using laser-pulse guiding and preformed plasma waveguides to maintain the required laser intensity over distances of many Rayleigh lengths; dephasing can be mitigated by longitudinal tailoring of the plasma density; and beam loading can be controlled by proper shaping of the electron beam.more » To increase the beam energy further, it is necessary to tackle the problem of the depletion of laser energy, by sequencing the accelerator into stages, each powered by a separate laser pulse. In this work, we present results from an experiment that demonstrates such staging. Two LPA stages were coupled over a short distance (as is needed to preserve the average acceleration gradient) by a plasma mirror. Stable electron beams from a first LPA were focused to a twenty-micrometre radius-by a discharge capillary-based active plasma lens-into a second LPA, such that the beams interacted with the wakefield excited by a separate laser. Staged acceleration by the wakefield of the second stage is detected via an energy gain of 100 megaelectronvolts for a subset of the electron beam. Changing the arrival time of the electron beam with respect to the second-stage laser pulse allowed us to reconstruct the temporal wakefield structure and to determine the plasma density. Our results indicate that the fundamental limitation to energy gain presented by laser depletion can be overcome by using staged acceleration, suggesting a way of reaching the electron energies required for collider applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carley, Eoin P.; Gallagher, Peter T.; Vilmer, Nicole, E-mail: eoin.carley@obspm.fr
Electron acceleration in the solar corona is often associated with flares and the eruption of twisted magnetic structures known as flux ropes. However, the locations and mechanisms of such particle acceleration during the flare and eruption are still subject to much investigation. Observing the exact sites of particle acceleration can help confirm how the flare and eruption are initiated and how they evolve. Here we use the Atmospheric Imaging Assembly to analyze a flare and erupting flux rope on 2014 April 18, while observations from the Nançay Radio Astronomy Facility allow us to diagnose the sites of electron acceleration duringmore » the eruption. Our analysis shows evidence of a pre-formed flux rope that slowly rises and becomes destabilized at the time of a C-class flare, plasma jet, and the escape of ≳75 keV electrons from the rope center into the corona. As the eruption proceeds, continued acceleration of electrons with energies of ∼5 keV occurs above the flux rope for a period over 5 minutes. At the flare peak, one site of electron acceleration is located close to the flare site, while another is driven by the erupting flux rope into the corona at speeds of up to 400 km s{sup −1}. Energetic electrons then fill the erupting volume, eventually allowing the flux rope legs to be clearly imaged from radio sources at 150–445 MHz. Following the analysis of Joshi et al. (2015), we conclude that the sites of energetic electrons are consistent with flux rope eruption via a tether cutting or flux cancellation scenario inside a magnetic fan-spine structure. In total, our radio observations allow us to better understand the evolution of a flux rope eruption and its associated electron acceleration sites, from eruption initiation to propagation into the corona.« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
Doche, A.; Beekman, C.; Corde, S.; ...
2017-10-27
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
Acceleration of a trailing positron bunch in a plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doche, A.; Beekman, C.; Corde, S.
High gradients of energy gain and high energy efficiency are necessary parameters for compact, cost-efficient and high-energy particle colliders. Plasma Wakefield Accelerators (PWFA) offer both, making them attractive candidates for next-generation colliders. Here in these devices, a charge-density plasma wave is excited by an ultra-relativistic bunch of charged particles (the drive bunch). The energy in the wave can be extracted by a second bunch (the trailing bunch), as this bunch propagates in the wake of the drive bunch. While a trailing electron bunch was accelerated in a plasma with more than a gigaelectronvolt of energy gain, accelerating a trailing positronmore » bunch in a plasma is much more challenging as the plasma response can be asymmetric for positrons and electrons. We report the demonstration of the energy gain by a distinct trailing positron bunch in a plasma wakefield accelerator, spanning nonlinear to quasi-linear regimes, and unveil the beam loading process underlying the accelerator energy efficiency. A positron bunch is used to drive the plasma wake in the experiment, though the quasi-linear wake structure could as easily be formed by an electron bunch or a laser driver. Finally, the results thus mark the first acceleration of a distinct positron bunch in plasma-based particle accelerators.« less
Two-material optimization of plate armour for blast mitigation using hybrid cellular automata
NASA Astrophysics Data System (ADS)
Goetz, J.; Tan, H.; Renaud, J.; Tovar, A.
2012-08-01
With the increased use of improvised explosive devices in regions at war, the threat to military and civilian life has risen. Cabin penetration and gross acceleration are the primary threats in an explosive event. Cabin penetration crushes occupants, damaging the lower body. Acceleration causes death at high magnitudes. This investigation develops a process of designing armour that simultaneously mitigates cabin penetration and acceleration. The hybrid cellular automaton (HCA) method of topology optimization has proven efficient and robust in problems involving large, plastic deformations such as crash impact. Here HCA is extended to the design of armour under blast loading. The ability to distribute two metallic phases, as opposed to one material and void, is also added. The blast wave energy transforms on impact into internal energy (IE) inside the solid medium. Maximum attenuation occurs with maximized IE. The resulting structures show HCA's potential for designing blast mitigating armour structures.
NASA Astrophysics Data System (ADS)
Shao, Lin; Gigax, Jonathan; Chen, Di; Kim, Hyosim; Garner, Frank A.; Wang, Jing; Toloczko, Mychailo B.
2017-10-01
Self-ion irradiation is widely used as a method to simulate neutron damage in reactor structural materials. Accelerator-based simulation of void swelling, however, introduces a number of neutron-atypical features which require careful data extraction and, in some cases, introduction of innovative irradiation techniques to alleviate these issues. We briefly summarize three such atypical features: defect imbalance effects, pulsed beam effects, and carbon contamination. The latter issue has just been recently recognized as being relevant to simulation of void swelling and is discussed here in greater detail. It is shown that carbon ions are entrained in the ion beam by Coulomb force drag and accelerated toward the target surface. Beam-contaminant interactions are modeled using molecular dynamics simulation. By applying a multiple beam deflection technique, carbon and other contaminants can be effectively filtered out, as demonstrated in an irradiation of HT-9 alloy by 3.5 MeV Fe ions.
Plasma Accelerator Development for Dynamic Formation of Plasma Liners: A Status Report
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Eskridge, Richard; Martin, Adam; Smith, James; Lee, Michael; Rodgers, Stephen L. (Technical Monitor)
2001-01-01
An experimental plasma accelerator for magnetic target fusion (MTF) applications under development at the NASA Marshall Space Flight Center is described. The accelerator is a pulsed plasma thruster and has been tested experimentally and plasma jet velocities of approximately 50 km/sec have been obtained. The plasma jet structure has been photographed with 10 ns exposure times to reveal a stable and repeatable plasma structure. Data for velocity profile information has been obtained using light pipes embedded in the gun walls to record the plasma transit at various barrel locations. Preliminary spatially resolved spectral data and magnetic field probe data are also presented. A high speed triggering system has been developed and tested as a means of reducing the gun "jitter". This jitter is being characterized and future work for second generation "ultra-low jitter" gun development is being identified.
Spectroscopic studies of the exhaust plume of a quasi-steady MPD accelerator. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bruckner, A. P.
1972-01-01
Spectroscopic and photographic investigations are reported that reveal a complex azimuthal species structure in the exhaust plume of a quasi-steady argon MPD accelerator. Over a wide range of operating conditions the injected argon remains collimated in discrete jets which are azimuthally in line with the six propellant injector orifices. The regions between these argon jets, including the central core of the exhaust flow, are occupied by impurities such as carbon, hydrogen and oxygen ablated from the Plexiglas back plate of the arc chamber. The features of this plume structure are found to be dependent on the arc current and mass flow rate. It is found that nearly half the observed velocity is attained in an acceleration region well downstream of the region of significant electromagnetic interaction. Recombination calculations show that the ionization energy is essentially frozen.
Generation of three-dimensional optical cusp beams with ultrathin metasurfaces.
Liu, Weiwei; Zhang, Yuchao; Gao, Jie; Yang, Xiaodong
2018-06-22
Cusp beams are one type of complex structured beams with unique multiple self-accelerating channels and needle-like field structures owning great potentials to advance applications such as particle micromanipulation and super-resolution imaging. The traditional method to generate optical catastrophe is based on cumbrous reflective diffraction optical elements, which makes optical system complicated and hinders the nanophotonics integration. Here we design geometric phase based ultrathin plasmonic metasurfaces made of nanoslit antennas to produce three-dimensional (3D) optical cusp beams with variable numbers of self-accelerating channels in a broadband wavelength range. The entire beam propagation profiles of the cusp beams generated from the metasurfaces are mapped theoretically and experimentally. The special self-accelerating behavior and caustics concentration property of the cups beams are also demonstrated. Our results provide great potentials for promoting metasurface-enabled compact photonic devices used in wide applications of light-matter interactions.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Astrophysics Data System (ADS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-07-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Crash tests of three identical low-wing single-engine airplane
NASA Technical Reports Server (NTRS)
Castle, C. B.; Alfaro-Bou, E.
1983-01-01
Three identical four place, low wing single engine airplane specimens with nominal masses of 1043 kg were crash tested under controlled free flight conditions. The tests were conducted at the same nominal velocity of 25 m/sec along the flight path. Two airplanes were crashed on a concrete surface (at 10 and 30 deg pitch angles), and one was crashed on soil (at a -30 deg pitch angle). The three tests revealed that the specimen in the -30 deg test on soil sustained massive structural damage in the engine compartment and fire wall. Also, the highest longitudinal cabin floor accelerations occurred in this test. Severe damage, but of lesser magnitude, occurred in the -30 deg test on concrete. The highest normal cabin floor accelerations occurred in this test. The least structural damage and lowest accelerations occurred in the 10 deg test on concrete.
The evolution of cosmic-ray-mediated magnetohydrodynamic shocks: A two-fluid approach
NASA Technical Reports Server (NTRS)
Jun, Byung-Il; Clarke, David A.; Norman, Michael L.
1994-01-01
We study the shock structure and acceleration efficiency of cosmic-ray mediated Magnetohydrodynamic (MHD) shocks both analytically and numerically by using a two-fluid model. Our model includes the dynamical effect of magnetic fields and cosmic rays on a background thermal fluid. The steady state solution is derived by following the technique of Drury & Voelk (1981) and compared to numerical results. We explore the time evolution of plane-perpendicular, piston-driven shocks. From the results of analytical and numerical studies, we conclude that the mean magnetic field plays an important role in the structure and acceleration efficiency of cosmic-ray mediated MHD shocks. The acceleration of cosmic-ray particles becomes less efficient in the presence of strong magnetic pressure since the field makes the shock less compressive. This feature is more prominent at low Mach numbers than at high Mach numbers.
Characteristics of GeV Electron Bunches Accelerated by Intense Lasers in Vacuum
NASA Astrophysics Data System (ADS)
Wang, P. X.; Ho, Y. K.; Kong, Q.; Yuan, X. Q.; Cao, N.; Feng, L.
This paper studies the characteristics of GeV electron bunches driven by ultra-intense lasers in vacuum based on the mechanism of capture and violent acceleration scenario [CAS, see, e.g. J. X. Wang et al., Phys. Rev. E58, 6575 (1998)], which shows an interesting prospect of becoming a new principle of laser-driven accelerators. It has been found that the accelerated GeV electron bunch is a macro-pulse composed of a lot of micro-pulses, which is analogous to the structure of the bunches produced by conventional linacs. The macro-pulse corresponds to the duration of the laser pulse while the micro-pulse corresponds to the periodicity of the laser wave. Therefore, provided that the incoming electron bunch with comparable sizes as that of the laser pulse synchronously impinges on the laser pulse, the total fraction of electrons captured and accelerated to GeV energy can reach more than 20%. These results demonstrate that the mechanisms of CAS is a relatively effective accelerator mechanism.
On-Chip Laser-Power Delivery System for Dielectric Laser Accelerators
NASA Astrophysics Data System (ADS)
Hughes, Tyler W.; Tan, Si; Zhao, Zhexin; Sapra, Neil V.; Leedle, Kenneth J.; Deng, Huiyang; Miao, Yu; Black, Dylan S.; Solgaard, Olav; Harris, James S.; Vuckovic, Jelena; Byer, Robert L.; Fan, Shanhui; England, R. Joel; Lee, Yun Jo; Qi, Minghao
2018-05-01
We propose an on-chip optical-power delivery system for dielectric laser accelerators based on a fractal "tree-network" dielectric waveguide geometry. This system replaces experimentally demanding free-space manipulations of the driving laser beam with chip-integrated techniques based on precise nanofabrication, enabling access to orders-of-magnitude increases in the interaction length and total energy gain for these miniature accelerators. Based on computational modeling, in the relativistic regime, our laser delivery system is estimated to provide 21 keV of energy gain over an acceleration length of 192 μ m with a single laser input, corresponding to a 108-MV/m acceleration gradient. The system may achieve 1 MeV of energy gain over a distance of less than 1 cm by sequentially illuminating 49 identical structures. These findings are verified by detailed numerical simulation and modeling of the subcomponents, and we provide a discussion of the main constraints, challenges, and relevant parameters with regard to on-chip laser coupling for dielectric laser accelerators.
9 GeV energy gain in a beam-driven plasma wakefield accelerator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Litos, M.; Adli, E.; Allen, J. M.
2016-02-15
An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV m -1 at the spectral peak. Moreover, the mean energy spread of the data set was 5.1%. Our results are consistent with the extrapolation of the previously reported energymore » gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.« less
NASA Astrophysics Data System (ADS)
Dahlin, J. T.; Drake, J. F.; Swisdak, M.
2017-09-01
Magnetic reconnection is an important driver of energetic particles in many astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the impact of three-dimensional reconnection dynamics on the efficiency of particle acceleration. In two-dimensional systems, Alfvénic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop an axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. We show that greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration. This suggests a natural explanation for the envelope of electron acceleration during the impulsive phase of eruptive flares.
Fabrication Technologies of the High Gradient Accelerator Structures at 100MV/M Range
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Juwen; /SLAC; Lewandowski, James
A CERN-SLAC-KEK collaboration on high gradient X-band structure research has been established in order to demonstrate the feasibility of the CLIC baseline design for the main linac stably operating at more than 100 MV/m loaded accelerating gradient. Several prototype CLIC structures were successfully fabricated and high power tested. They operated at 105 MV/m with a breakdown rate that meets the CLIC linear collider specifications of < 5 x 10{sup -7}/pulse/m. This paper summarizes the fabrication technologies including the mechanical design, precision machining, chemical cleaning, diffusion bonding as well as vacuum baking and all related assembly technologies. Also, the tolerances control,more » tuning and RF characterization will be discussed.« less
NASA Technical Reports Server (NTRS)
Findley, D. S.; Huckel, V.; Hubbard, H. H.
1975-01-01
In order to evaluate reaction of people to sonic booms of varying overpressures and time durations, a series of closely controlled and systematic flight tests/studies were conducted from June 3 to June 23, 1966. The dynamic responses of several building structures were measured, with emphasis on a two-story residence structure. Sample acceleration and strain recordings from F-104, B-58, and XB-70 sonic boom exposures are included, along with tabulations of the maximum acceleration and strain values measured for each one of about 140 flight tests. These data are compared with similar measurements for engine noise exposures of the building during simulated landing approaches and takeoffs of KC-135 aircraft.
NASA Astrophysics Data System (ADS)
Abdoli-Arani, A.; Montazeri, M. M.
2018-04-01
Two special types of metallic waveguide having dielectric cladding and plasma core including the combined circular and elliptical structure are studied. Longitudinal and transverse field components in the different regions are obtained. Applying the boundary conditions, dispersion relations of the electromagnetic waves in the structures are obtained and then plotted. The acceleration of an injected external relativistic electron in the considered waveguides is studied. The obtained differential equations related to electron motion are solved by the fourth-order Runge-Kutta method. Numerical computations are made, and the results are graphically presented.
Focusing particle concentrator with application to ultrafine particles
Hering, Susanne; Lewis, Gregory; Spielman, Steven R.
2013-06-11
Technology is presented for the high efficiency concentration of fine and ultrafine airborne particles into a small fraction of the sampled airflow by condensational enlargement, aerodynamic focusing and flow separation. A nozzle concentrator structure including an acceleration nozzle with a flow extraction structure may be coupled to a containment vessel. The containment vessel may include a water condensation growth tube to facilitate the concentration of ultrafine particles. The containment vessel may further include a separate carrier flow introduced at the center of the sampled flow, upstream of the acceleration nozzle of the nozzle concentrator to facilitate the separation of particle and vapor constituents.
Structures-propulsion interactions and requirements. [large space structures
NASA Technical Reports Server (NTRS)
Coyner, J. V.
1982-01-01
The effects of low-thrust primary propulsion system characteristics on the mass, area, and orbit transfer characteristics of large space systems (LSS) were determined. Three general structural classes of LSS were considered, each with a broad range of diameters and nonstructural surface densities. While transferring the deployed structure from LEO and to GEO, an acceleration range of 0.02 to 0.1 g's was found to maximize deliverable payload based on structural mass impact. After propulsion system parametric analyses considering four propellant combinations produced values for available payload mass, length and volume, a thrust level range which maximizes deliverable LSS diameter was determined corresponding to a structure and propulsion vehicle. The engine start and/or shutdown thrust transients on the last orbit transfer (apogee) burn can impose transient loads which would be greater than the steady-state loads at the burnout acceleration. The effect of the engine thrust transients on the LSS was determined from the dynamic models upon which various engine ramps were imposed.
NASA Astrophysics Data System (ADS)
Lin, Shan-Yang; Lee, Shui-Mei; Li, Mei-Jane; Liang, Run-Chu
1997-08-01
The possible changes in protein structures of the cataractous human lens capsules of the immature patients with myopia and/or systemic hypertension have been investigated using Fourier transform infrared (FT-IR) microspectroscopy. Second-derivative and deconvolution methods have been applied to obtain the position of the overlapping components of the amide I band and assign them to different secondary structures. Changes in the protein secondary structure and composition of amide I band were estimated quantitatively from Fourier self-deconvolution and curve fitting algorithms. The results indicate that myopia and/or systemic hypertension were found to significantly modify the protein secondary structure of the cataractous human lens capsules to increase the β-type structure and random coil and decrease the α-helix structure. Myopia-induced conformational change in triple helix structure was more pronounced. In conclusion, myopia and/or systemic hypertension seem to modify the conformation of the protein structures in cataractous human lens capsule to change ionic permeation through lens capsule to accelerate the cataract formation of senile patients.
Solar Probe Plus: A NASA Mission to Touch the Sun
NASA Astrophysics Data System (ADS)
Fox, N. J.; Bale, S. D.; Decker, R. B.; Howard, R.; Kasper, J. C.; McComas, D. J.; Szabo, A.; Velli, M. M.
2013-12-01
Solar Probe Plus (SPP), currently in Phase B, will be the first mission to fly into the low solar corona, revealing how the corona is heated and the solar wind is accelerated, solving two fundamental mysteries that have been top priority science goals since such a mission was first proposed in 1958. The scale and concept of such a mission has been revised at intervals since that time, yet the core has always been a close encounter with the Sun. The primary science goal of the Solar Probe Plus mission is to determine the structure and dynamics of the Sun's coronal magnetic field, understand how the solar corona and wind are heated and accelerated, and determine what mechanisms accelerate and transport energetic particles. The SPP mission will achieve this by identifying and quantifying the basic plasma physical processes at the heart of the Heliosphere. SPP uses an innovative mission design, significant technology development and a risk-reducing engineering development to meet the SPP science objectives: 1) Trace the flow of energy that heats and accelerates the solar corona and solar wind; 2) Determine the structure and dynamics of the plasma and magnetic fields at the sources of the solar wind; and 3) Explore mechanisms that accelerate and transport energetic particles. In this poster, we present Solar Probe Plus and examine how the mission will address the science questions that have remained unanswered for over 5 decades.
Dissemination and support of ARGUS for accelerator applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
The ARGUS code is a three-dimensional code system for simulating for interactions between charged particles, electric and magnetic fields, and complex structure. It is a system of modules that share common utilities for grid and structure input, data handling, memory management, diagnostics, and other specialized functions. The code includes the fields due to the space charge and current density of the particles to achieve a self-consistent treatment of the particle dynamics. The physic modules in ARGUS include three-dimensional field solvers for electrostatics and electromagnetics, a three-dimensional electromagnetic frequency-domain module, a full particle-in-cell (PIC) simulation module, and a steady-state PIC model.more » These are described in the Appendix to this report. This project has a primary mission of developing the capabilities of ARGUS in accelerator modeling of release to the accelerator design community. Five major activities are being pursued in parallel during the first year of the project. To improve the code and/or add new modules that provide capabilities needed for accelerator design. To produce a User's Guide that documents the use of the code for all users. To release the code and the User's Guide to accelerator laboratories for their own use, and to obtain feed-back from the. To build an interactive user interface for setting up ARGUS calculations. To explore the use of ARGUS on high-power workstation platforms.« less
Snider, James W; Mutaf, Yildirim; Nichols, Elizabeth; Hall, Andrea; Vadnais, Patrick; Regine, William F; Feigenberg, Steven J
2017-01-01
Accelerated partial breast irradiation has caused higher than expected rates of poor cosmesis. At our institution, a novel breast stereotactic radiotherapy device has demonstrated dosimetric distributions similar to those in brachytherapy. This study analyzed comparative dose distributions achieved with the device and intensity-modulated radiation therapy accelerated partial breast irradiation. Nine patients underwent computed tomography simulation in the prone position using device-specific immobilization on an institutional review board-approved protocol. Accelerated partial breast irradiation target volumes (planning target volume_10mm) were created per the National Surgical Adjuvant Breast and Bowel Project B-39 protocol. Additional breast stereotactic radiotherapy volumes using smaller margins (planning target volume_3mm) were created based on improved immobilization. Intensity-modulated radiation therapy and breast stereotactic radiotherapy accelerated partial breast irradiation plans were separately generated for appropriate volumes. Plans were evaluated based on established dosimetric surrogates of poor cosmetic outcomes. Wilcoxon rank sum tests were utilized to contrast volumes of critical structures receiving a percentage of total dose ( Vx). The breast stereotactic radiotherapy device consistently reduced dose to all normal structures with equivalent target coverage. The ipsilateral breast V20-100 was significantly reduced ( P < .05) using planning target volume_10mm, with substantial further reductions when targeting planning target volume_3mm. Doses to the chest wall, ipsilateral lung, and breast skin were also significantly lessened. The breast stereotactic radiotherapy device's uniform dosimetric improvements over intensity-modulated accelerated partial breast irradiation in this series indicate a potential to improve outcomes. Clinical trials investigating this benefit have begun accrual.
NASA Astrophysics Data System (ADS)
Albert, Felicie
2017-10-01
Bright sources of x-rays, such as synchrotrons and x-ray free electron lasers (XFEL) are transformational tools for many fields of science. They are used for biology, material science, medicine, or industry. Such sources rely on conventional particle accelerators, where electrons are accelerated to gigaelectronvolts (GeV) energies. The accelerated particles are wiggled in magnetic structures to emit x-ray radiation that is commonly used for molecular crystallography, fluorescence studies, chemical analysis, medical imaging, and many other applications. One of the drawbacks of these machines is their size and cost, because electric field gradients are limited to about 100 V/M in conventional accelerators. Particle acceleration in laser-driven plasmas is an alternative to generate x-rays via betatron emission, Compton scattering, or bremsstrahlung. A plasma can sustain electrical fields many orders of magnitude higher than that in conventional radiofrequency accelerator structures. When short, intense laser pulses are focused into a gas, it produces electron plasma waves in which electrons can be trapped and accelerated to GeV energies. X-ray sources, driven by electrons from laser-wakefield acceleration, have unique properties that are analogous to synchrotron radiation, with a 1000-fold shorter pulse. An important use of x-rays from laser plasma accelerators is in High Energy Density (HED) science, which requires laser and XFEL facilities to create in the laboratory extreme conditions of temperatures and pressures that are usually found in the interiors of stars and planets. To diagnose such extreme states of matter, the development of efficient, versatile and fast (sub-picosecond scale) x-ray probes has become essential. In these experiments, x-ray photons can pass through dense material, and absorption of the x-rays can be directly measured, via spectroscopy or imaging, to inform scientists about the temperature and density of the targets being studied. Performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344, supported by the LLNL LDRD program (16ERD024), and by the DOE Office Science Early Career Research Program (SCW1575).
Laser ion source for heavy ion inertial fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okamura, Masahiro
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
Laser ion source for heavy ion inertial fusion
Okamura, Masahiro
2018-01-10
The proposed heavy ion inertial fusion (HIF) scenarios require ampere class low charge state ion beams of heavy species. A laser ion source (LIS) is recognized as one of the promising candidates of ion beam providers, since it can deliver high brightness heavy ion beams to accelerators. A design of LIS for the HIF depends on the accelerator structure and accelerator complex following the source. In this article, we discuss the specifications and design of an appropriate LIS assuming two major types of the accelerators: radio frequency (RF) high quality factor cavity type and non-resonant induction core type. We believemore » that a properly designed LIS satisfies the requirements of both types, however some issues need to be verified experimentally.« less
Structural characterization of UHPC waffle bridge deck and connections : [tech transfer summary].
DOT National Transportation Integrated Search
2014-07-01
Contribute to design an innovative and durable precast deck alternative : using ultra-high performance concrete (UHPC) for accelerated bridge : construction : Evaluate the structural characteristics of the UHPC waffle deck, : critical connect...
NASA Technical Reports Server (NTRS)
Rogers, Melissa J. B.; Alexander, J. I. D.; Schoess, Jeff
1993-01-01
The Honeywell In-Space Accelerometer (HISA) system collected data in the mid-deck area of the Shuttle Columbia during the flight of STS-32, January 1990. The resulting data were to be used to investigate the response of crystal microstructure to different types of residual acceleration. The HISA is designed to detect and record transient and oscillatory accelerations. The sampling and electronics package stored averaged accelerations over two sampling periods; two sampling rates were available: 1 Hz and 50 Hz. Analysis of the HISA data followed the CMMR Acceleration Data Processing Guide, considering in-house computer modelling of a float-zone indium crystal growth experiment. Characteristic examples of HISA data showing the response to the primary reaction control system, Orbiter Maneuvering System operations, and crew treadmill activity are presented. Various orbiter structural modes are excited by these and other activities.
Advanced low-beta cavity development for proton and ion accelerators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conway, Z. A.; Kelly, M. P.; Ostroumov, P. N.
2015-05-01
Recent developments in designing and processing low-beta superconducting cavities at Argonne National Laboratory are very encouraging for future applications requiring compact proton and ion accelerators. One of the major benefits of these accelerating structures is achieving real-estate accelerating gradients greater than 3 MV/m very efficiently either continuously or for long-duty cycle operation (>1%). The technology has been implemented in low-beta accelerator cryomodules for the Argonne ATLAS heavy-ion linac where the cryomodules are required to have real-estate gradients of more than 3 MV/m. In offline testing low-beta cavities with even higher gradients have already been achieved. This paper will review thismore » work where we have achieved surface fields greater than 166 mT magnetic and 117 MV/m electric in a 72 MHz quarter-wave resonator optimized for beta = 0.077 ions.« less
NASA Astrophysics Data System (ADS)
Swisdak, M.; Dahlin, J. T.; Drake, J. F.
2017-12-01
Magnetic reconnection is an important driver of energetic particles in many space and astrophysical phenomena. Using kinetic particle-in-cell simulations, we explore the effects that the dynamics in three-dimensions has on reconnection and the efficiency of particle acceleration. In two-dimensional systems, Alfvenic outflows expel energetic electrons into flux ropes where they become trapped and disconnected from acceleration regions. However, in three-dimensional systems these flux ropes develop axial structure that enables particles to leak out and return to acceleration regions. This requires a finite guide field so that particles may move quickly along the flux rope axis. The greatest energetic electron production occurs when the guide field is of the same order as the reconnecting component: large enough to facilitate strong transport, but not so large as to throttle the dominant Fermi mechanism responsible for efficient electron acceleration.
Quality control of concrete at the stage of designing its composition and technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kudyakov, A., E-mail: kudyakow@mail.tomsknet.ru; Prischepa, I., E-mail: ingaprishepa@mail.ru; Kiselev, D.
The results of tests on samples of foam concrete with a hardening accelerator are presented. As the setting and hardening accelerators the following chemical additives were used: Universal-P-2 and Asilin 12. All additives were added into the insulating foam concrete mix of brand D 400 in the amount of 0.5% to 1% of cement weight. By using of additives in foam concrete technology – hardening accelerators Asilin 12 and Universal P2 in the amount of 0.5 % - and 1.0% by weight of cement foam concrete structure formation is accelerated and increases strength by 60%. For the industrial preparation ofmore » foam concrete mix technological regulations are worked out, in which it is recommended to use additives – hardening accelerators Asilin 12 in the amount of 0.5% and Universal P2 - 1% of cement weight.« less
Collective electron driven linac for high energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seeman, J.T.
1983-08-01
A linac design is presented in which an intense ultrarelativistic electron bunch is used to excite fields in a series of cavities and accelerate charged particles. The intense electron bunch is generated in a simple storage ring to have the required transverse and longitudinal dimensions. The bunch is then transferred to the linac. The linac structure can be inexpensively constructed of spacers and washers. The fields in the cells resulting from the bunch passage are calculated using the program BCI. The results show that certain particles within the driving bunch and also trailing particles of any sign charge can bemore » accelerated. With existing electron storage rings, accelerating gradients greater than 16 MV/m are possible. Examples of two accelerators are given: a 30 GeV electron/positron accelerator useful as an injector for a high energy storage ring and 2) a 110 GeV per beam electron-positron collider.« less
High energy protons generation by two sequential laser pulses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiaofeng; Shen, Baifei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn; Zhang, Xiaomei, E-mail: bfshen@mail.shcnc.ac.cn, E-mail: zhxm@siom.ac.cn
2015-04-15
The sequential proton acceleration by two laser pulses of relativistic intensity is proposed to produce high energy protons. In the scheme, a relativistic super-Gaussian (SG) laser pulse followed by a Laguerre-Gaussian (LG) pulse irradiates dense plasma attached by underdense plasma. A proton beam is produced from the target and accelerated in the radiation pressure regime by the short SG pulse and then trapped and re-accelerated in a special bubble driven by the LG pulse in the underdense plasma. The advantages of radiation pressure acceleration and LG transverse structure are combined to achieve the effective trapping and acceleration of protons. Inmore » a two-dimensional particle-in-cell simulation, protons of 6.7 GeV are obtained from a 2 × 10{sup 22 }W/cm{sup 2} SG laser pulse and a LG pulse at a lower peak intensity.« less
NASA Technical Reports Server (NTRS)
Klein, M.; Reynolds, J.; Ricks, E.
1989-01-01
Load and stress recovery from transient dynamic studies are improved upon using an extended acceleration vector in the modal acceleration technique applied to structural analysis. Extension of the normal LTM (load transformation matrices) stress recovery to automatically compute margins of safety is presented with an application to the Hubble space telescope.
Effects of stinger axial dynamics and mass compensation methods on experimental modal analysis
NASA Astrophysics Data System (ADS)
Hu, Ximing
1992-06-01
A longitudinal bar model that includes both stinger elastic and inertia properties is used to analyze the stinger's axial dynamics as well as the mass compensation that is required to obtain accurate input forces when a stinger is installed between the excitation source, force transducer, and the structure under test. Stinger motion transmissibility and force transmissibility, axial resonance and excitation energy transfer problems are discussed in detail. Stinger mass compensation problems occur when the force transducer is mounted on the exciter end of the stinger. These problems are studied theoretically, numerically, and experimentally. It is found that the measured Frequency Response Function (FRF) can be underestimated if mass compensation is based on the stinger exciter-end acceleration and can be overestimated if the mass compensation is based on the structure-end acceleration due to the stinger's compliance. A new mass compensation method that is based on two accelerations is introduced and is seen to improve the accuracy considerably. The effects of the force transducer's compliance on the mass compensation are also discussed. A theoretical model is developed that describes the measurement system's FRD around a test structure's resonance. The model shows that very large measurement errors occur when there is a small relative phase shift between the force and acceleration measurements. These errors can be in hundreds of percent corresponding to a phase error on the order of one or two degrees. The physical reasons for this unexpected error pattern are explained. This error is currently unknown to the experimental modal analysis community. Two sample structures consisting of a rigid mass and a double cantilever beam are used in the numerical calculations and experiments.
Statistics of vacuum breakdown in the high-gradient and low-rate regime
NASA Astrophysics Data System (ADS)
Wuensch, Walter; Degiovanni, Alberto; Calatroni, Sergio; Korsbäck, Anders; Djurabekova, Flyura; Rajamäki, Robin; Giner-Navarro, Jorge
2017-01-01
In an increasing number of high-gradient linear accelerator applications, accelerating structures must operate with both high surface electric fields and low breakdown rates. Understanding the statistical properties of breakdown occurrence in such a regime is of practical importance for optimizing accelerator conditioning and operation algorithms, as well as of interest for efforts to understand the physical processes which underlie the breakdown phenomenon. Experimental data of breakdown has been collected in two distinct high-gradient experimental set-ups: A prototype linear accelerating structure operated in the Compact Linear Collider Xbox 12 GHz test stands, and a parallel plate electrode system operated with pulsed DC in the kV range. Collected data is presented, analyzed and compared. The two systems show similar, distinctive, two-part distributions of number of pulses between breakdowns, with each part corresponding to a specific, constant event rate. The correlation between distance and number of pulses between breakdown indicates that the two parts of the distribution, and their corresponding event rates, represent independent primary and induced follow-up breakdowns. The similarity of results from pulsed DC to 12 GHz rf indicates a similar vacuum arc triggering mechanism over the range of conditions covered by the experiments.
Effect of Halide Composition on the Photochemical Stability of Perovskite Photovoltaic Materials.
Misra, Ravi K; Ciammaruchi, Laura; Aharon, Sigalit; Mogilyansky, Dmitry; Etgar, Lioz; Visoly-Fisher, Iris; Katz, Eugene A
2016-09-22
The photochemical stability of encapsulated films of mixed halide perovskites with a range of MAPb(I 1-x Br x ) 3 (MA=methylammonium) compositions (solid solutions) was investigated under accelerated stressing using concentrated sunlight. The relevance of accelerated testing to standard operational conditions of solar cells was confirmed by comparison to degradation experiments under outdoor sunlight exposure. We found that MAPbBr 3 films exhibited no degradation, while MAPbI 3 and mixed halide MAPb(I 1-x Br x ) 3 films decomposed yielding crystallization of inorganic PbI 2 accompanied by degradation of the perovskite solar light absorption, with faster absorption degradation in mixed halide films. The crystal coherence length was found to correlate with the stability of the films. We postulate that the introduction of Br into the mixed halide solid solution stressed its structure and induced more structural defects and/or grain boundaries compared to pure halide perovskites, which might be responsible for the accelerated degradation. Hence, the cause for accelerated degradation may be the increased defect density rather than the chemical composition of the perovskite materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Particle acceleration at shocks in the presence of a braided magnetic field
NASA Astrophysics Data System (ADS)
Kirk, J. G.; Duffy, P.; Gallant, Y. A.
1997-05-01
The theory of first order Fermi acceleration at shock fronts assumes charged particles undergo spatial diffusion in a uniform magnetic field. If, however, the magnetic field is not uniform, but has a stochastic or braided structure, the transport of charged particles across the average direction of the field is more complicated. Assuming quasi-linear behaviour of the field lines, the particles undergo sub-diffusion (
Accelerating atomic structure search with cluster regularization
NASA Astrophysics Data System (ADS)
Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.
2018-06-01
We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.
Proc. of the workshop on pushing the limits of RF superconductivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K-J., Eyberger, C., editors
2005-04-13
For three days in late September last year, some sixty experts in RF superconductivity from around the world came together at Argonne to discuss how to push the limits of RF superconductivity for particle accelerators. It was an intense workshop with in-depth presentations and ample discussions. There was added excitement due to the fact that, a few days before the workshop, the International Technology Recommendation Panel had decided in favor of superconducting technology for the International Linear Collider (ILC), the next major high-energy physics accelerator project. Superconducting RF technology is also important for other large accelerator projects that are eithermore » imminent or under active discussion at this time, such as the Rare Isotope Accelerator (RIA) for nuclear physics, energy recovery linacs (ERLs), and x-ray free-electron lasers. For these accelerators, the capability in maximum accelerating gradient and/or the Q value is essential to limit the length and/or operating cost of the accelerators. The technological progress of superconducting accelerators during the past two decades has been truly remarkable, both in low-frequency structures for acceleration of protons and ions as well as in high-frequency structures for electrons. The requirements of future accelerators demand an even higher level of performance. The topics of this workshop are therefore highly relevant and timely. The presentations given at the workshop contained authoritative reviews of the current state of the art as well as some original materials that previously had not been widely circulated. We therefore felt strongly that these materials should be put together in the form of a workshop proceeding. The outcome is this report, which consists of two parts: first, a collection of the scholarly papers prepared by some of the participants and second, copies of the viewgraphs of all presentations. The presentation viewgraphs, in full color, are also available from the Workshop Presentations link on the workshop's web page at http://www.aps.anl.gov/conferences/RFSCLimits/. I would like to thank all of the participants for their lively contributions to the workshop and to these proceedings, and Helen Edwards and Hasan Padamsee for their help in developing the workshop program. I also thank Cathy Eyberger, Kelly Jaje, and Renee Lanham for working very hard to take care of the administrative details, in particular Cathy for editing this report.« less
14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.
Code of Federal Regulations, 2010 CFR
2010-01-01
... engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C...
14 CFR 27.549 - Fuselage, landing gear, and rotor pylon structures.
Code of Federal Regulations, 2013 CFR
2013-01-01
... engine mount and adjacent fuselage structure must be designed to withstand the loads occurring under accelerated flight and landing conditions, including engine torque. (Secs. 604, 605, 72 Stat. 778, 49 U.S.C...
Pulse - Accelerator Science in Medicine
the structure of biological molecules. They use the energy that charged particles emit when powerful than the sun and focused on a pinpoint. Deciphering the structure of proteins is key to understanding biological processes and healing disease. To determine a proteinÂs structure, researchers direct