Science.gov

Sample records for pyramidal neuron number

  1. Pyramidal Neuron Number in Layer 3 of Primary Auditory Cortex of Subjects with Schizophrenia

    PubMed Central

    Dorph-Petersen, Karl-Anton; Delevich, Kristen M.; Marcsisin, Michael J.; Zhang, Wei; Sampson, Allan R.; Gundersen, Hans Jørgen G.; Lewis, David A.; Sweet, Robert A.

    2009-01-01

    Individuals with schizophrenia demonstrate impairments of sensory processing within primary auditory cortex. We have previously identified lower densities of dendritic spines and axon boutons, and smaller mean pyramidal neuron somal volume, in layer 3 of the primary auditory cortex in subjects with schizophrenia, all of which might reflect fewer layer 3 pyramidal neurons in schizophrenia. To examine this hypothesis, we developed a robust stereological method based upon unbiased principles for estimation of total volume and pyramidal neuron numbers for each layer of a cortical area. Our method generates both a systematic, uniformly random set of mapping sections as well as a set of randomly rotated sections cut orthogonal to the pial surface, within the region of interest. We applied our approach in twelve subjects with schizophrenia, each matched to a normal comparison subject. Primary auditory cortex volume was assessed using Cavalieri’s method. The relative and absolute volume of each cortical layer and, within layer 3, the number and density of pyramidal neurons was estimated using our novel approach. Subject groups did not differ in regional volume, layer volumes, or pyramidal neuron number, although pyramidal neuron density was significantly greater in subjects with schizophrenia. These findings suggest that previously observed lower densities of dendritic spines and axon boutons reflect fewer numbers per neuron, and contribute to greater neuronal density via a reduced neuropil. Our approach represents a powerful new method for stereologic estimation of features of interest within individual layers of cerebral cortex, with applications beyond the current study. PMID:19524554

  2. Dendritic potassium channels in hippocampal pyramidal neurons

    PubMed Central

    Johnston, Daniel; Hoffman, Dax A; Magee, Jeffrey C; Poolos, Nicholas P; Watanabe, Shigeo; Colbert, Costa M; Migliore, Michele

    2000-01-01

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 μm of the apical dendrites, so that action potentials recorded farther than 200 μm from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials. PMID:10811726

  3. Dendritic potassium channels in hippocampal pyramidal neurons.

    PubMed

    Johnston, D; Hoffman, D A; Magee, J C; Poolos, N P; Watanabe, S; Colbert, C M; Migliore, M

    2000-05-15

    Potassium channels located in the dendrites of hippocampal CA1 pyramidal neurons control the shape and amplitude of back-propagating action potentials, the amplitude of excitatory postsynaptic potentials and dendritic excitability. Non-uniform gradients in the distribution of potassium channels in the dendrites make the dendritic electrical properties markedly different from those found in the soma. For example, the influence of a fast, calcium-dependent potassium current on action potential repolarization is progressively reduced in the first 150 micrometer of the apical dendrites, so that action potentials recorded farther than 200 micrometer from the soma have no fast after-hyperpolarization and are wider than those in the soma. The peak amplitude of back-propagating action potentials is also progressively reduced in the dendrites because of the increasing density of a transient potassium channel with distance from the soma. The activation of this channel can be reduced by the activity of a number of protein kinases as well as by prior depolarization. The depolarization from excitatory postsynaptic potentials (EPSPs) can inactivate these A-type K+ channels and thus lead to an increase in the amplitude of dendritic action potentials, provided the EPSP and the action potentials occur within the appropriate time window. This time window could be in the order of 15 ms and may play a role in long-term potentiation induced by pairing EPSPs and back-propagating action potentials.

  4. Glutamic acid decarboxylase-67-positive hippocampal interneurons undergo a permanent reduction in number following kainic acid-induced degeneration of ca3 pyramidal neurons.

    PubMed

    Shetty, A K; Turner, D A

    2001-06-01

    Kainic acid (KA)-induced degeneration of CA3 pyramidal neurons leads to synaptic reorganization and hyperexcitability in both dentate gyrus and CA1 region of the hippocampus. We hypothesize that the substrate for hippocampal inhibitory circuitry incurs significant and permanent alterations following degeneration of CA3 pyramidal neurons. We quantified changes in interneuron density (N(v)) in all strata of the dentate gyrus and the CA1 and CA3 subfields of adult rats at 1, 4, and 6 months following intracerebroventricular (icv) KA administration, using glutamic acid decarboxylase-67 (GAD-67) immunocytochemistry. At 1 month postlesion, GAD-67-positive interneuron density was significantly reduced in all strata of every hippocampal region except stratum pyramidale of CA1. The reduction in GAD-67-positive interneuron density either persisted or exacerbated at 4 and 6 months postlesion in every stratum of all hippocampal regions. Further, the soma of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield showed significant hypertrophy. Thus, both permanent reductions in the density of GAD-67-positive interneurons in all hippocampal regions and somatic hypertrophy of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield occur following icv KA. In contrast, the density of interneurons visualized with Nissl in CA1 and CA3 regions was nearly equivalent to that in the intact hippocampus at all postlesion time points. Collectively, these results suggest that persistent reductions in GAD-67-positive interneuron density observed throughout the hippocampus following CA3 lesion are largely due to a permanent loss of GAD-67 expression in a significant fraction of interneurons, rather than widespread degeneration of interneurons. Nevertheless, a persistent decrease in interneuron activity, as evidenced by permanent down-regulation of GAD-67 in a major fraction of interneurons, would likely enhance the degree of hyperexcitability in the CA3

  5. The mammalian neocortex new pyramidal neuron: a new conception

    PubMed Central

    Marín-Padilla, Miguel

    2014-01-01

    The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities while essentially using analogous anatomical and neural makeups. The human neocortex starts to develop in 6-week-old embryos with the establishment of a primordial cortical organization, which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divides its components into those above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating its developing motor activities. The new pyramidal neuron’ distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface) without losing its original attachment to first layer or the location of its soma and, hence, retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing and thinking as a premotor activity. Words used in language are the motor expression of thoughts and represent sounds produced by maneuvering the column of expiratory

  6. Pyramidal Neurons Are Not Generalizable Building Blocks of Cortical Networks

    PubMed Central

    Luebke, Jennifer I.

    2017-01-01

    A key challenge in cortical neuroscience is to gain a comprehensive understanding of how pyramidal neuron heterogeneity across different areas and species underlies the functional specialization of individual neurons, networks, and areas. Comparative studies have been important in this endeavor, providing data relevant to the question of which of the many inherent properties of individual pyramidal neurons are necessary and sufficient for species-specific network and areal function. In this mini review, the importance of pyramidal neuron structural properties for signaling are outlined, followed by a summary of our recent work comparing the structural features of mouse (C57/BL6 strain) and rhesus monkey layer 3 (L3) pyramidal neurons in primary visual and frontal association cortices and their implications for neuronal and areal function. Based on these and other published data, L3 pyramidal neurons plausibly might be considered broadly “generalizable” from one area to another in the mouse neocortex due to their many similarities, but major differences in the properties of these neurons in diverse areas in the rhesus monkey neocortex rules this out in the primate. Further, fundamental differences in the dendritic topology of mouse and rhesus monkey pyramidal neurons highlight the implausibility of straightforward scaling and/or extrapolation from mouse to primate neurons and cortical networks. PMID:28326020

  7. Quantitative analysis of cortical pyramidal neurons after corpus callosotomy.

    PubMed

    Jacobs, Bob; Creswell, Johanna; Britt, Jonathan P; Ford, Kevin L; Bogen, Joseph E; Zaidel, Eran

    2003-07-01

    This study quantitatively explored the dendritic/spine extent of supragranular pyramidal neurons across several cortical areas in two adult male subjects who had undergone a callosotomy several decades before death. In all cortical areas, there were numerous atypical, supragranular pyramidal neurons with elongated "tap root" basilar dendrites. These atypical cells could be associated with an underlying epileptic condition and/or could represent a compensatory mechanism in response to deafferentation after callosotomy.

  8. Early establishment of multiple release site connectivity between interneurons and pyramidal neurons in the developing hippocampus.

    PubMed

    Groc, Laurent; Gustafsson, Bengt; Hanse, Eric

    2003-05-01

    The strength of the synaptic transmission between two neurons critically depends on the number of release sites connecting the neurons. Here we examine the development of connectivity between gamma-aminobutyric acid (GABA)ergic interneurons and CA1 pyramidal neurons in the hippocampus. GABAergic postsynaptic currents (PSCs) were recorded in whole-cell voltage-clamped CA1 pyramidal neurons. By comparing spontaneous and miniature (action potential-independent) GABAergic PSCs, we found that multiple release site connectivity is established already at the first postnatal day and that the degree of connectivity remains unaltered into adulthood. During the same time there is a dramatic increase in the number of GABAergic synapses on each pyramidal neuron as indicated by the increase in frequency of miniature GABAergic PSCs. These results indicate that during development a given interneuron contacts an increasing number of target pyramidal neurons but with the same multiple release site connectivity. It has been shown previously that the connectivity between CA3 and CA1 pyramidal neurons is initially restricted to one release site, and develops gradually. The present result thus suggests different mechanisms to govern the maturation of excitatory and inhibitory synaptic transmissions.

  9. Pernicious effects of long-term, continuous 900-MHz electromagnetic field throughout adolescence on hippocampus morphology, biochemistry and pyramidal neuron numbers in 60-day-old Sprague Dawley male rats.

    PubMed

    Kerimoğlu, Gökçen; Hancı, Hatice; Baş, Orhan; Aslan, Ali; Erol, Hüseyin Serkan; Turgut, Alpgiray; Kaya, Haydar; Çankaya, Soner; Sönmez, Osman Fikret; Odacı, Ersan

    2016-11-01

    The central nervous system (CNS) begins developing in the intrauterine period, a process that continues until adulthood. Contact with chemical substances, drugs or environmental agents such as electromagnetic field (EMF) during adolescence therefore has the potential to disturb the development of the morphological architecture of components of the CNS (such as the hippocampus). The hippocampus is essential to such diverse functions as memory acquisition and integration and spatial maneuvering. EMF can result in severe damage to both the morphology of the hippocampus and its principal functions during adolescence. Although children and adolescents undergo greater exposure to EMF than adults, the information currently available regarding the effects of exposure to EMF during this period is as yet insufficient. This study investigated the 60-day-old male rat hippocampus following exposure to 900 megahertz (MHz) EMF throughout the adolescent period using stereological, histopathological and biochemical analysis techniques. Eighteen male Sprague Dawley rats aged 21days were assigned into control, sham and EMF groups on a random basis. No procedure was performed on the control group rats. The EMF group (EMFGr) was exposed to a 900-MHz EMF for 1h daily from beginning to end of adolescence. The sham group rats were held in the EMF cage but were not exposed to EMF. All rats were sacrificed at 60days of age. Their brains were extracted and halved. The left hemispheres were set aside for biochemical analyses and the right hemispheres were subjected to stereological and histopathological evaluation. Histopathological examination revealed increased numbers of pyknotic neurons with black or dark blue cytoplasm on EMFGr slides stained with cresyl violet. Stereological analyses revealed fewer pyramidal neurons in EMFGr than in the other two groups. Biochemical analyses showed an increase in malondialdehyde and glutathione levels, but a decrease in catalase levels in EMFGr. Our

  10. Multisynaptic activity in a pyramidal neuron model and neural code.

    PubMed

    Ventriglia, Francesco; Di Maio, Vito

    2006-01-01

    The highly irregular firing of mammalian cortical pyramidal neurons is one of the most striking observation of the brain activity. This result affects greatly the discussion on the neural code, i.e. how the brain codes information transmitted along the different cortical stages. In fact it seems to be in favor of one of the two main hypotheses about this issue, named the rate code. But the supporters of the contrasting hypothesis, the temporal code, consider this evidence inconclusive. We discuss here a leaky integrate-and-fire model of a hippocampal pyramidal neuron intended to be biologically sound to investigate the genesis of the irregular pyramidal firing and to give useful information about the coding problem. To this aim, the complete set of excitatory and inhibitory synapses impinging on such a neuron has been taken into account. The firing activity of the neuron model has been studied by computer simulation both in basic conditions and allowing brief periods of over-stimulation in specific regions of its synaptic constellation. Our results show neuronal firing conditions similar to those observed in experimental investigations on pyramidal cortical neurons. In particular, the variation coefficient (CV) computed from the inter-spike intervals (ISIs) in our simulations for basic conditions is close to the unity as that computed from experimental data. Our simulation shows also different behaviors in firing sequences for different frequencies of stimulation.

  11. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  12. De novo expression of the neurokinin 1 receptor in spinal lamina I pyramidal neurons in polyarthritis.

    PubMed

    Almarestani, L; Waters, S M; Krause, J E; Bennett, G J; Ribeiro-da-Silva, A

    2009-05-20

    Spinal lamina I (LI) neurons play a major role in the transmission and integration of pain-related information that is relayed to higher centers. Alterations in the excitability of these neurons influence chronic pain development, and expression of the neurokinin 1 receptor (NK-1r) is thought to play a major role in such changes. Novel expression of NK-1r may underlie hyperexcitability in new populations of LI neurons. LI projection neurons can be classified morphologically into fusiform, pyramidal, and multipolar cells, differing in their functional properties, with the pyramidal type being nonnociceptive. In agreement with this, we have shown that spinoparabrachial pyramidal neurons seldom express NK-1r, in contrast with the other two cell types. In this study we investigated in the rat the long-term changes in NK-1r expression by spinoparabrachial LI neurons following the unilateral injection in the hindpaw plantar surface of complete Freund's adjuvant (CFA). Cholera toxin subunit B (CTb) was injected unilaterally into the parabrachial nucleus. Our results revealed that, ipsilaterally, pyramidal neurons were seldom immunoreactive for NK-1r both in saline-injected and in CFA-injected rats, up to 10 days post-CFA. However, a considerable number of pyramidal cells were immunoreactive for NK-1r at 15, 21, and 30 days post-CFA. Our data raise the possibility -- which needs to be confirmed by electrophysiology -- that most LI projection neurons of the pyramidal type are likely nonnociceptive in naive animals but might become nociceptive following the development of arthritis.

  13. Dense and overlapping innervation of pyramidal neurons by neocortical chandelier cells

    PubMed Central

    Inan, Melis; Blázquez-Llorca, Lidia; Merchán-Perez, Angel; Anderson, Stewart A.; DeFelipe, Javier; Yuste, Rafael

    2013-01-01

    Chandelier (or axo-axonic) cells are a distinct group of GABAergic interneurons that innervate the axon initial segments of pyramidal cells and thus could have an important role controlling the activity of cortical circuits. To understand their connectivity we labeled upper layers chandelier cells (ChCs) from mouse neocortex with a genetic strategy and studied how their axons contact local populations of pyramidal neurons, using immunohistochemical detection of axon initial segments. We studied ChCs located in the border of layers 1 and 2 from primary somatosensory cortex and find that practically all ChC axon terminals contact axon initial segments with an average of 3–5 boutons per cartridge. By measuring the number of putative synapses in initial segments we estimate that each pyramidal neuron is innervated, on average, by at least 4 ChCs. Additionally, each individual ChC contacts 35–50% of pyramidal neurons within its axonal arbor, with pockets of high innervation density. Finally, we find that ChC axons seems to have a conserved innervation pattern at different postnatal ages (P18–90), with only relatively small lateral expansions of their arbor and increases in the total number of their cartridges during the developmental period analyzed. We conclude that ChCs innervate neighboring pyramidal neurons in a dense and overlapping manner, an innervation pattern which could enable ChCs exert a widespread influence on their local circuits. PMID:23365230

  14. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons.

    PubMed

    Toharia, Pablo; Robles, Oscar D; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2015-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron.

  15. PyramidalExplorer: A New Interactive Tool to Explore Morpho-Functional Relations of Human Pyramidal Neurons

    PubMed Central

    Toharia, Pablo; Robles, Oscar D.; Fernaud-Espinosa, Isabel; Makarova, Julia; Galindo, Sergio E.; Rodriguez, Angel; Pastor, Luis; Herreras, Oscar; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    This work presents PyramidalExplorer, a new tool to interactively explore and reveal the detailed organization of the microanatomy of pyramidal neurons with functionally related models. It consists of a set of functionalities that allow possible regional differences in the pyramidal cell architecture to be interactively discovered by combining quantitative morphological information about the structure of the cell with implemented functional models. The key contribution of this tool is the morpho-functional oriented design that allows the user to navigate within the 3D dataset, filter and perform Content-Based Retrieval operations. As a case study, we present a human pyramidal neuron with over 9000 dendritic spines in its apical and basal dendritic trees. Using PyramidalExplorer, we were able to find unexpected differential morphological attributes of dendritic spines in particular compartments of the neuron, revealing new aspects of the morpho-functional organization of the pyramidal neuron. PMID:26778972

  16. Glutamatergic Nonpyramidal Neurons From Neocortical Layer VI and Their Comparison With Pyramidal and Spiny Stellate Neurons

    PubMed Central

    Andjelic, Sofija; Gallopin, Thierry; Cauli, Bruno; Hill, Elisa L.; Roux, Lisa; Badr, Sammy; Hu, Emilie; Tamás, Gábor; Lambolez, Bertrand

    2009-01-01

    The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription–polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity. PMID:19052106

  17. Glutamatergic nonpyramidal neurons from neocortical layer VI and their comparison with pyramidal and spiny stellate neurons.

    PubMed

    Andjelic, Sofija; Gallopin, Thierry; Cauli, Bruno; Hill, Elisa L; Roux, Lisa; Badr, Sammy; Hu, Emilie; Tamás, Gábor; Lambolez, Bertrand

    2009-02-01

    The deeper part of neocortical layer VI is dominated by nonpyramidal neurons, which lack a prominent vertically ascending dendrite and predominantly establish corticocortical connections. These neurons were studied in rat neocortical slices using patch-clamp, single-cell reverse transcription-polymerase chain reaction, and biocytin labeling. The majority of these neurons expressed the vesicular glutamate transporter but not glutamic acid decarboxylase, suggesting that a high proportion of layer VI nonpyramidal neurons are glutamatergic. Indeed, they exhibited numerous dendritic spines and established asymmetrical synapses. Our sample of glutamatergic nonpyramidal neurons displayed a wide variety of somatodendritic morphologies and a subset of these cells expressed the Nurr1 mRNA, a marker for ipsilateral, but not commissural corticocortical projection neurons in layer VI. Comparison with spiny stellate and pyramidal neurons from other layers showed that glutamatergic neurons consistently exhibited a low occurrence of GABAergic interneuron markers and regular spiking firing patterns. Analysis of electrophysiological diversity using unsupervised clustering disclosed three groups of cells. Layer V pyramidal neurons were segregated into a first group, whereas a second group consisted of a subpopulation of layer VI neurons exhibiting tonic firing. A third heterogeneous cluster comprised spiny stellate, layer II/III pyramidal, and layer VI neurons exhibiting adaptive firing. The segregation of layer VI neurons in two different clusters did not correlate either with their somatodendritic morphologies or with Nurr1 expression. Our results suggest that electrophysiological similarities between neocortical glutamatergic neurons extend beyond layer positioning, somatodendritic morphology, and projection specificity.

  18. A Sodium-Pump-Mediated Afterhyperpolarization in Pyramidal Neurons

    PubMed Central

    Dasari, Sameera; Onoue, Keita; Stephens, Emily K.; Hasse, J. Michael; Avesar, Daniel

    2013-01-01

    The sodium-potassium ATPase (i.e., the “sodium pump”) plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 “place cell” as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this “place cell train” generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons. PMID:23926257

  19. A sodium-pump-mediated afterhyperpolarization in pyramidal neurons.

    PubMed

    Gulledge, Allan T; Dasari, Sameera; Onoue, Keita; Stephens, Emily K; Hasse, J Michael; Avesar, Daniel

    2013-08-07

    The sodium-potassium ATPase (i.e., the "sodium pump") plays a central role in maintaining ionic homeostasis in all cells. Although the sodium pump is intrinsically electrogenic and responsive to dynamic changes in intracellular sodium concentration, its role in regulating neuronal excitability remains unclear. Here we describe a physiological role for the sodium pump in regulating the excitability of mouse neocortical layer 5 and hippocampal CA1 pyramidal neurons. Trains of action potentials produced long-lasting (∼20 s) afterhyperpolarizations (AHPs) that were insensitive to blockade of voltage-gated calcium channels or chelation of intracellular calcium, but were blocked by tetrodotoxin, ouabain, or the removal of extracellular potassium. Correspondingly, the AHP time course was similar to the decay of activity-induced increases in intracellular sodium, whereas intracellular calcium decayed at much faster rates. To determine whether physiological patterns of activity engage the sodium pump, we replayed in vitro a place-specific burst of 15 action potentials recorded originally in vivo in a CA1 "place cell" as the animal traversed the associated place field. In both layer 5 and CA1 pyramidal neurons, this "place cell train" generated small, long-lasting AHPs capable of reducing neuronal excitability for many seconds. Place-cell-train-induced AHPs were blocked by ouabain or removal of extracellular potassium, but not by intracellular calcium chelation. Finally, we found calcium contributions to the AHP to be temperature dependent: prominent at room temperature, but largely absent at 35°C. Our results demonstrate a previously unappreciated role for the sodium-potassium ATPase in regulating the excitability of neocortical and hippocampal pyramidal neurons.

  20. Electrotonic Coupling between Pyramidal Neurons in the Neocortex

    PubMed Central

    Wang, Yun; Barakat, Amey; Zhou, Hongwei

    2010-01-01

    Electrotonic couplings (i.e., electrical synapses or gap junctions) are fundamental to neuronal synchronization, and thus essential for many physiological functions and pathological disorders. Interneuron electrical synapses have been studied intensively. Although studies on electrotonic couplings between pyramidal cells (PCs) are emerging, particularly in the hippocampus, evidence is still rare in the neocortex. The electrotonic coupling of PCs in the neocortex is therefore largely unknown in terms of electrophysiological, anatomical and synaptological properties. Using multiple patch-clamp recording with differential interference contrast infrared videomicroscopy (IR-DIC) visualization, histochemical staining, and 3D-computer reconstruction, electrotonic coupling was recorded between close PCs, mainly in the medial prefrontal cortex as well as in the visual cortical regions of ferrets and rats. Compared with interneuron gap junctions, these electrotonic couplings were characterized by several special features. The recording probability of an electrotonic coupling between PCs is extremely low; but the junctional conductance is notably high, permitting the direct transmission of action potentials (APs) and even tonic firing between coupled neurons. AP firing is therefore perfectly synchronized between coupled PCs; Postjunctional APs and spikelets alternate following slight changes of membrane potentials; Postjunctional spikelets, especially at high frequencies, are summated and ultimately reach AP-threshold to fire. These properties of pyramidal electrotonic couplings largely fill the needs, as predicted by simulation studies, for the synchronization of a neuronal assembly. It is therefore suggested that the electrotonic coupling of PCs plays a unique role in the generation of neuronal synchronization in the neocortex. PMID:20436674

  1. Stereological study of pyramidal neurons in the human superior temporal gyrus from childhood to adulthood

    PubMed Central

    Barger, Nicole; Sheley, Matthew F.; Schumann, Cynthia M.

    2014-01-01

    The association cortex of the superior temporal gyrus (STG) is implicated in complex social and linguistic functions. As such, reliable methods for quantifying cellular variation in this region could greatly benefit researchers interested in addressing the cellular correlates of typical and atypical function associated with these critical cognitive abilities. To facilitate this task, we first present a general set of cytoarchitectonic criteria targeted specifically toward stereological analyses of thick, Nissl stained sections for the homotypical cortex of the STG, referred to, here, as BA22/TA. Secondly, we use the optical fractionator to estimate pyramidal neuron number and the nucleator for pyramidal somal and nuclear volume to investigate the influence of age and sex on these parameters and to set a typically developing baseline for future comparisons. In 11 typically developing cases aged 4-48 years, the most distinguishing features of BA22/TA were the presence of distinct granular layers, a prominent, jagged layer IIIc, and a distinctly staining VIa. The average number of neurons was 91 ± 15 million, volume of pyramidal soma, 1,512 μm3, and nuclear volume, 348 μm3. We found no correlation with age and neuron number. In contrast, pyramidal somal and nuclear volume were both negatively correlated and linearly associated with age in regression analyses. We found no significant sex differences. Overall, the data support the idea that postnatal neuron numbers are relatively stable through development but also suggest that neuronal volume may be subject to important developmental variation. Both measures are critical variables in the study of developmental neuropathology. PMID:25556320

  2. Phosphorylation of CRMP2 is involved in proper bifurcation of the apical dendrite of hippocampal CA1 pyramidal neurons.

    PubMed

    Niisato, Emi; Nagai, Jun; Yamashita, Naoya; Nakamura, Fumio; Goshima, Yoshio; Ohshima, Toshio

    2013-02-01

    The neural circuit in the hippocampus is important for higher brain functions. Dendrites of CA1 pyramidal neurons mainly receive input from the axons of CA3 pyramidal neurons in this neural circuit. A CA1 pyramidal neuron has a single apical dendrite and multiple basal dendrites. In wild-type mice, most of CA1 pyramidal neurons extend a single trunk, or alternatively, the apical dendrite bifurcates into two daughter trunks at the stratum radiatum layer. We previously reported the proximal bifurcation phenotype in Sema3A-/-, p35-/-, and CRMP4-/- mice. Cdk5/p35 phosphorylates CRMP2 at Ser522, and inhibition of this phosphorylation suppressed Sema3A-induced growth cone collapse. In this study, we analyzed the bifurcation points of the apical dendrites of hippocampal CA1 pyramidal neurons in CRMP2KI/KI mice in which the Cdk5/p35-phosphorylation site Ser522 was mutated into an Ala residue. The proximal bifurcation phenotype was not observed in CRMP2KI/KI mice; however, severe proximal bifurcation of apical dendrites was found in CRMP2KI/KI;CRMP4-/- mice. Cultured hippocampal neurons from CRMP2KI/KI and CRMP2KI/KI;CRMP4-/- embryos showed an increased number of dendritic branching points compared to those from wild-type embryos. Sema3A increased the number of branching points and the total length of dendrites in wild-type hippocampal neurons, but these effects of Sema3A for dendrites were not observed in CRMP2KI/KI and CRMP2KI/KI;CRMP4-/-hippocampal neurons. Binding of CRMP2 to tubulin increased in both CRMP2KI/KI and CRMP2KI/KI:CRMP4-/- brain lysates. These results suggest that CRMP2 and CRMP4 synergistically regulate dendritic development, and CRMP2 phosphorylation is critical for proper bifurcation of apical dendrite of CA1 pyramidal neurons.

  3. Intrinsic Oscillations of Neocortex Generated by Layer 5 Pyramidal Neurons

    NASA Astrophysics Data System (ADS)

    Silva, Laurie R.; Amitai, Yael; Connors, Barry W.

    1991-01-01

    Rhythmic activity in the neocortex varies with different behavioral and pathological states and in some cases may encode sensory information. However, the neural mechanisms of these oscillations are largely unknown. Many pyramidal neurons in layer 5 of the neocortex showed prolonged, 5- to 12-hertz rhythmic firing patterns at threshold. Rhythmic firing was due to intrinsic membrane properties, sodium conductances were essential for rhythmicity, and calcium-dependent conductances strongly modified rhythmicity. Isolated slices of neocortex generated epochs of 4- to 10-hertz synchronized activity when N-methyl-D-aspartate receptor-mediated channels were facilitated. Layer 5 was both necessary and sufficient to produce these synchronized oscillations. Thus, synaptic networks of intrinsically rhythmic neurons in layer 5 may generate or promote certain synchronized oscillations of the neocortex.

  4. Neurodevelopmental role for VGLUT2 in pyramidal neuron plasticity, dendritic refinement, and in spatial learning.

    PubMed

    He, Hongbo; Mahnke, Amanda H; Doyle, Sukhjeevan; Fan, Ni; Wang, Chih-Chieh; Hall, Benjamin J; Tang, Ya-Ping; Inglis, Fiona M; Chen, Chu; Erickson, Jeffrey D

    2012-11-07

    The level and integrity of glutamate transmission during critical periods of postnatal development plays an important role in the refinement of pyramidal neuron dendritic arbor, synaptic plasticity, and cognition. Presently, it is not clear how excitatory transmission via the two predominant isoforms of the vesicular glutamate transporter (VGLUT1 and VGLUT2) participate in this process. To assess a neurodevelopmental role for VGLUT2 in pyramidal neuron maturation, we generated recombinant VGLUT2 knock-out mice and inactivated VGLUT2 throughout development using Emx1-Cre(+/+) knock-in mice. We show that VGLUT2 deficiency in corticolimbic circuits results in reduced evoked glutamate transmission, release probability, and LTD at hippocampal CA3-CA1 synapses during a formative developmental period (postnatal days 11-14). In adults, we find a marked reduction in the amount of dendritic arbor across the span of the dendritic tree of CA1 pyramidal neurons and reduced long-term potentiation and levels of synaptic markers spinophilin and VGLUT1. Loss of dendritic arbor is accompanied by corresponding reductions in the number of dendritic spines, suggesting widespread alterations in synaptic connectivity. Conditional VGLUT2 knock-out mice exhibit increased open-field exploratory activity yet impaired spatial learning and memory, endophenotypes similar to those of NMDA receptor knock-down mice. Remarkably, the impairment in learning can be partially restored by selectively increasing NMDA receptor-mediated glutamate transmission in adult mice by prolonged treatment with d-serine and a d-amino acid oxidase inhibitor. Our data indicate that VGLUT2 expression is pivotal to the proper development of mature pyramidal neuronal architecture and plasticity, and that such glutamatergic deficiency leads to cognitive malfunction as observed in several neurodevelopmental psychiatric disorders.

  5. Long-term adrenalectomy causes loss of dentate gyrus and pyramidal neurons in the adult hippocampus.

    PubMed

    Sapolsky, R M; Stein-Behrens, B A; Armanini, M P

    1991-11-01

    A growing literature suggests that the hippocampus can be damaged by glucocorticoids, the adrenal steroids secreted during stress. Thus, considerable interest was generated by recent reports that prolonged elimination of glucocorticoids by adrenalectomy (ADX) damages hippocampal dentate gyrus neurons. To date, this phenomenon has only been observed in rats of peripubertal age or younger; moreover, reports differ considerably as to the magnitude of the damage induced. Therefore, we examined this issue in rats ADXd at 5 months of age. Three months later, there was a significant 26% loss of dentate neurons in a subset of rats. In agreement with these previous reports, this subset had attenuated weight gain and electrolyte imbalances, suggestive of complete removal of the adrenals and accessory adrenal tissue. As a novel observation, we also observed significant (19%) loss of CA4 pyramidal neurons. Thus, both severe under- or overexposure to glucocorticoids can be deleterious to a number of hippocampal neuron types.

  6. Housing under the pyramid reduces susceptibility of hippocampal CA3 pyramidal neurons to prenatal stress in the developing rat offspring.

    PubMed

    Murthy, Krishna Dilip; George, Mitchel Constance; Ramasamy, Perumal; Mustapha, Zainal Arifin

    2013-12-01

    Mother-offspring interaction begins before birth. The foetus is particularly vulnerable to environmental insults and stress. The body responds by releasing excess of the stress hormone cortisol, which acts on glucocorticoid receptors. Hippocampus in the brain is rich in glucocorticoid receptors and therefore susceptible to stress. The stress effects are reduced when the animals are placed under a model wooden pyramid. The present study was to first explore the effects of prenatal restraint-stress on the plasma corticosterone levels and the dendritic arborisation of CA3 pyramidal neurons in the hippocampus of the offspring. Further, to test whether the pyramid environment would alter these effects, as housing under a pyramid is known to reduce the stress effects, pregnant Sprague Dawley rats were restrained for 9 h per day from gestation day 7 until parturition in a wire-mesh restrainer. Plasma corticosterone levels were found to be significantly increased. In addition, there was a significant reduction in the apical and the basal total dendritic branching points and intersections of the CA3 hippocampal pyramidal neurons. The results thus suggest that, housing in the pyramid dramatically reduces prenatal stress effects in rats.

  7. Patterned activity in stratum lacunosum moleculare inhibits CA1 pyramidal neuron firing.

    PubMed

    Dvorak-Carbone, H; Schuman, E M

    1999-12-01

    CA1 pyramidal cells are the primary output neurons of the hippocampus, carrying information about the result of hippocampal network processing to the subiculum and entorhinal cortex (EC) and thence out to the rest of the brain. The primary excitatory drive to the CA1 pyramidal cells comes via the Schaffer collateral (SC) projection from area CA3. There is also a direct projection from EC to stratum lacunosum-moleculare (SLM) of CA1, an input well positioned to modulate information flow through the hippocampus. High-frequency stimulation in SLM evokes an inhibition sufficiently strong to prevent CA1 pyramidal cells from spiking in response to SC input, a phenomenon we refer to as spike-blocking. We characterized the spike-blocking efficacy of burst stimulation (10 stimuli at 100 Hz) in SLM and found that it is greatest at approximately 300-600 ms after the burst, consistent with the time course of the slow GABA(B) signaling pathway. Spike-blocking efficacy increases in potency with the number of SLM stimuli in a burst, but also decreases with repeated presentations of SLM bursts. Spike-blocking was eliminated in the presence of GABA(B) antagonists. We have identified a candidate population of interneurons in SLM and distal stratum radiatum (SR) that may mediate this spike-blocking effect. We conclude that the output of CA1 pyramidal cells, and hence the hippocampus, is modulated in an input pattern-dependent manner by activation of the direct pathway from EC.

  8. Pyramidal neurons in the septal and temporal CA1 field of the human and hedgehog tenrec hippocampus.

    PubMed

    Liagkouras, Ioannis; Michaloudi, Helen; Batzios, Christos; Psaroulis, Dimitrios; Georgiadis, Marios; Künzle, Heinz; Papadopoulos, Georgios C

    2008-07-07

    The present study examines comparatively the cellular density of disector-counted/Nissl-stained CA1 pyramidal neurons and the morphometric characteristics (dendritic number/length, spine number/density and Sholl-counted dendritic branch points/20 microm) of the basal and apical dendritic systems of Golgi-impregnated CA1 neurons, in the septal and temporal hippocampus of the human and hedgehog tenrec brain. The obtained results indicate that in both hippocampal parts the cellular density of the CA1 pyramidal neurons is lower in human than in tenrec. However, while the human pyramidal cell density is higher in the septal hippocampal part than in the temporal one, in the tenrec the density of these cells is higher in the temporal part. The dendritic tree of the CA1 pyramidal cells, more developed in the septal than in temporal hippocampus in both species studied, is in general more complex in the human hippocampus. The basal and the apical dendritic systems exhibit species related morphometric differences, while dendrites of different orders exhibit differences in their number and length, and in their spine density. Finally, in both species, as well as hippocampal parts and dendritic systems, changes of dendritic morphometric features along ascending dendritic orders fluctuate in a similar way, as do the number of dendritic branch points in relation to the distance from the neuron soma.

  9. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state.

    PubMed

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-07-07

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity.

  10. Active dendrites support efficient initiation of dendritic spikes in hippocampal CA3 pyramidal neurons

    PubMed Central

    Kim, Sooyun; Guzman, Segundo J; Hu, Hua; Jonas, Peter

    2013-01-01

    CA3 pyramidal neurons are important for memory formation and pattern completion in the hippocampal network. It is generally thought that proximal synapses from the mossy fibers activate these neurons most efficiently, whereas distal inputs from the perforant path have a weaker modulatory influence. We used confocally targeted patch-clamp recording from dendrites and axons to map the activation of rat CA3 pyramidal neurons at the subcellular level. Our results reveal two distinct dendritic domains. In the proximal domain, action potentials initiated in the axon backpropagate actively with large amplitude and fast time course. In the distal domain, Na+ channel–mediated dendritic spikes are efficiently initiated by waveforms mimicking synaptic events. CA3 pyramidal neuron dendrites showed a high Na+-to-K+ conductance density ratio, providing ideal conditions for active backpropagation and dendritic spike initiation. Dendritic spikes may enhance the computational power of CA3 pyramidal neurons in the hippocampal network. PMID:22388958

  11. Reduced density of dendritic spines in pyramidal neurons of rats exposed to alcohol during early postnatal life.

    PubMed

    De Giorgio, Andrea; Granato, Alberto

    2015-04-01

    Dendritic spines are the main postsynaptic sites of excitatory connections of neocortical pyramidal neurons. Alterations of spine shape, number, and density can be observed in different mental diseases, including those caused by developmental alcohol exposure. Pyramidal neurons of layer 2/3 are the most abundant cells of the neocortex and represent the main source of associative cortico-cortical connections. These neurons are essential for higher functions mediated by the cortex such as feature selection and perceptual grouping. Furthermore, their connections have been shown to be altered in experimental models of fetal alcohol spectrum disorders. Here, we used a Golgi-like tracing method to study the spine density of layer 2/3 associative pyramidal neurons in the somatosensory cortex of adult rats exposed to alcohol during the first postnatal week. The main result of the present study is represented by the decreased spine density in the apical dendrite of alcohol-treated rats, as compared to controls. As to the basal dendritic tree, there were no significant differences between the experimental and the control group. A decreased density of dendritic spines in the apical dendrite may impair the excitatory input onto pyramidal neurons, thus resulting in a widespread alteration of the cortical information flow.

  12. Location-Dependent Excitatory Synaptic Interactions in Pyramidal Neuron Dendrites

    PubMed Central

    Behabadi, Bardia F.; Polsky, Alon; Jadi, Monika; Schiller, Jackie; Mel, Bartlett W.

    2012-01-01

    Neocortical pyramidal neurons (PNs) receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors. PMID:22829759

  13. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons.

    PubMed

    Acker, Corey D; Hoyos, Erika; Loew, Leslie M

    2016-01-01

    EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5-30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23-420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean R eck estimate of 204 MΩ (range, 52-521 MΩ; N = 34).

  14. Loss of Sleep Affects the Ultrastructure of Pyramidal Neurons in the Adolescent Mouse Frontal Cortex

    PubMed Central

    de Vivo, Luisa; Nelson, Aaron B.; Bellesi, Michele; Noguti, Juliana; Tononi, Giulio; Cirelli, Chiara

    2016-01-01

    Study Objective: The adolescent brain may be uniquely affected by acute sleep deprivation (ASD) and chronic sleep restriction (CSR), but direct evidence is lacking. We used electron microscopy to examine how ASD and CSR affect pyramidal neurons in the frontal cortex of adolescent mice, focusing on mitochondria, endosomes, and lysosomes that together perform most basic cellular functions, from nutrient intake to prevention of cellular stress. Methods: Adolescent (1-mo-old) mice slept (S) or were sleep deprived (ASD, with novel objects and running wheels) during the first 6–8 h of the light period, chronically sleep restricted (CSR) for > 4 days (using novel objects, running wheels, social interaction, forced locomotion, caffeinated water), or allowed to recover sleep (RS) for ∼32 h after CSR. Ultrastructural analysis of 350 pyramidal neurons was performed (S = 82; ASD = 86; CSR = 103; RS = 79; 4 to 5 mice/group). Results: Several ultrastructural parameters differed in S versus ASD, S versus CSR, CSR versus RS, and S versus RS, although the different methods used to enforce wake may have contributed to some of the differences between short and long sleep loss. Differences included larger cytoplasmic area occupied by mitochondria in CSR versus S, and higher number of secondary lysosomes in CSR versus S and RS. We also found that sleep loss may unmask interindividual differences not obvious during baseline sleep. Moreover, using a combination of 11 ultrastructural parameters, we could predict in up to 80% of cases whether sleep or wake occurred at the single cell level. Conclusions: Ultrastructural analysis may be a powerful tool to identify which cellular organelles, and thus which cellular functions, are most affected by sleep and sleep loss. Citation: de Vivo L, Nelson AB, Bellesi M, Noguti J, Tononi G, Cirelli C. Loss of sleep affects the ultrastructure of pyramidal neurons in the adolescent mouse frontal cortex. SLEEP 2016;39(4):861–874. PMID:26715225

  15. Different Ca2+ source for slow AHP in completely adapting and repetitive firing pyramidal neurons.

    PubMed

    Pineda, J C; Galarraga, E; Foehring, R C

    1999-06-23

    Intracellular recordings in an in vitro neocortical slice preparation from immature rats were used to investigate the Ca2 source for slow afterhyperpolarization (sAHP) generation in pyramidal neurons that exhibit complete spike frequency adaptation (CA neurons). In pyramidal neurons that maintain repetitive firing for long periods of time (RF neurons), N-, P- and Q-type Ca2+ channels supply Ca2+ for sAHP generation. In CA neurons, the sAHP was reduced by only 50% by the combination of antagonists for these Ca2+ channel types and L-type channels. Ryanodine and dantrolene, blockers of Ca2(+)-induced Ca2+ release, reduced the sAHP by approximately 45% in CA neurons, but caused no reduction of the sAHP in RF neurons. Dantrolene application caused CA neurons to fire throughout a 1s suprathreshold current injection (as do RF neurons).

  16. The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons.

    PubMed

    Miao, Sheng; Chen, Renchao; Ye, Jiahao; Tan, Guo-He; Li, Shuai; Zhang, Jing; Jiang, Yong-hui; Xiong, Zhi-Qi

    2013-01-02

    Pyramidal neurons have a highly polarized dendritic morphology, characterized by one long apical dendrite and multiple short basal dendrites. They function as the primary excitatory cells of the mammalian prefrontal cortex and the corticospinal tract. However, the molecular mechanisms underlying the development of polarized dendrite morphology in pyramidal neurons remain poorly understood. Here, we report that the Angelman syndrome (AS) protein ubiquitin-protein ligase E3A (Ube3a) plays an important role in specifying the polarization of pyramidal neuron dendritic arbors in mice. shRNA-mediated downregulation of Ube3a selectively inhibited apical dendrite outgrowth and resulted in impaired dendrite polarity, which could be rescued by coexpressing mouse Ube3a isoform 2, but not isoform 1 or 3. Ube3a knockdown also disrupted the polarized distribution of the Golgi apparatus, a well established cellular mechanism for asymmetric dendritic growth in pyramidal neurons. Furthermore, downregulation of Ube3a completely blocked Reelin-induced rapid deployment of Golgi into dendrite. Consistently, we also observed selective inhibition of apical dendrite outgrowth in pyramidal neurons in a mouse model of AS. Overall, these results show that Ube3a is required for the specification of the apical dendrites and dendrite polarization in pyramidal neurons, and suggest a novel pathological mechanism for AS.

  17. Variations in Acetylcholinesterase Activity within Human Cortical Pyramidal Neurons Across Age and Cognitive Trajectories.

    PubMed

    Janeczek, Monica; Gefen, Tamar; Samimi, Mehrnoosh; Kim, Garam; Weintraub, Sandra; Bigio, Eileen; Rogalski, Emily; Mesulam, M-Marsel; Geula, Changiz

    2017-03-01

    We described an extensive network of cortical pyramidal neurons in the human brain with abundant acetylcholinesterase (AChE) activity. Emergence of these neurons during childhood/adolescence, attainment of highest density in early adulthood, and virtual absence in other species led us to hypothesize involvement of AChE within these neurons in higher cortical functions. The current study quantified the density and staining intensity of these neurons using histochemical procedures. Few faintly stained AChE-positive cortical pyramidal neurons were observed in children/adolescents. These neurons attained their highest density and staining intensity in young adulthood. Compared with the young adult group, brains of cognitively normal elderly displayed no significant change in numerical density but a significant decrease in staining intensity of AChE-positive cortical pyramidal neurons. Brains of elderly above age 80 with unusually preserved memory performance (SuperAgers) showed significantly lower staining intensity and density of these neurons when compared with same-age peers. Conceivably, low levels of AChE activity could enhance the impact of acetylcholine on pyramidal neurons to counterbalance other involutional factors that mediate the decline of memory capacity during average aging. We cannot yet tell if elderly with superior memory capacity have constitutively low neuronal AChE levels or if this feature reflects adaptive neuroplasticity.

  18. Action potential initiation and propagation in rat neocortical pyramidal neurons.

    PubMed

    Stuart, G; Schiller, J; Sakmann, B

    1997-12-15

    1. Initiation and propagation of action potentials evoked by extracellular synaptic stimulation was studied using simultaneous dual and triple patch pipette recordings from different locations on neocortical layer 5 pyramidal neurons in brain slices from 4-week-old rats (P26-30) at physiological temperatures. 2. Simultaneous cell-attached and whole-cell voltage recordings from the apical trunk (up to 700 microns distal to the soma) and the soma indicated that proximal synaptic stimulation (layer 4) initiated action potentials first at the soma, whereas distal stimulation (upper layer 2/3) could initiate dendritic regenerative potentials prior to somatic action potentials following stimulation at higher intensity. 3. Somatic action potentials, once initiated, propagated back into the apical dendrites in a decremented manner which was frequency dependent. The half-width of back propagating action potentials increased and their maximum rate of rise decreased with distance from the soma, with the peak of these action potentials propagating with a conduction velocity of approximately 0.5 m s-1. 4. Back-propagation of action potentials into the dendritic tree was associated with dendritic calcium electrogenesis, which was particularly prominent during bursts of somatic action potentials. 5. When dendritic regenerative potentials were evoked prior to somatic action potentials, the more distal the dendritic recording was made from the soma the longer the time between the onset of the dendritic regenerative potential relative to somatic action potential. This suggested that dendritic regenerative potentials were initiated in the distal apical dendrites, possibly in the apical tuft. 6. At any one stimulus intensity, the initiation of dendritic regenerative potentials prior to somatic action potentials could fluctuate, and was modulated by depolarizing somatic or hyperpolarizing dendritic current injection. 7. Dendritic regenerative potentials could be initiated prior to

  19. Clarithromycin increases neuronal excitability in CA3 pyramidal neurons through a reduction in GABAergic signaling.

    PubMed

    Bichler, Edyta K; Elder, Courtney C; García, Paul S

    2017-01-01

    Antibiotics are used in the treatment and prevention of bacterial infections, but effects on neuron excitability have been documented. A recent study demonstrated that clarithromycin alleviates daytime sleepiness in hypersomnia patients (Trotti LM, Saini P, Freeman AA, Bliwise DL, García PS, Jenkins A, Rye DB. J Psychopharmacol 28: 697-702, 2014). To explore the potential application of clarithromycin as a stimulant, we performed whole cell patch-clamp recordings in rat pyramidal cells from the CA3 region of hippocampus. In the presence of the antibiotic, rheobase current was reduced by 50%, F-I relationship (number of action potentials as a function of injected current) was shifted to the left, and the resting membrane potential was more depolarized. Clarithromycin-induced hyperexcitability was dose dependent; doses of 30 and 300 μM clarithromycin significantly increased the firing frequency and membrane potential compared with controls (P = 0.003, P < 0.0001). We hypothesized that clarithromycin enhanced excitability by reducing GABAA receptor activation. Clarithromycin at 30 μM significantly reduced (P = 0.001) the amplitude of spontaneous miniature inhibitory GABAergic currents and at 300 μM had a minor effect on action potential width. Additionally, we tested the effect of clarithromycin in an ex vivo seizure model by evaluating its effect on spontaneous local field potentials. Bath application of 300 μM clarithromycin enhanced burst frequency twofold compared with controls (P = 0.0006). Taken together, these results suggest that blocking GABAergic signaling with clarithromycin increases cellular excitability and potentially serves as a stimulant, facilitating emergence from anesthesia or normalizing vigilance in hypersomnia and narcolepsy. However, the administration of clarithromycin should be carefully considered in patients with seizure disorders.

  20. Myricetin protects hippocampal CA3 pyramidal neurons and improves learning and memory impairments in rats with Alzheimer's disease

    PubMed Central

    Ramezani, Matin; Darbandi, Niloufar; Khodagholi, Fariba; Hashemi, Azam

    2016-01-01

    There is currently no treatment for effectively slowing the progression of Alzheimer's disease, so early prevention is very important. Numerous studies have shown that flavonoids can improve memory impairment. The present study investigated the effects of myricetin, a member of the flavonoids, on intracerebroventricular streptozotocin induced neuronal loss and memory impairment in rat models of Alzheimer's disease. Myricetin at 5 or 10 mg/kg was intraperitoneally injected into rats over 21 days. Control rats were treated with 10 mL/kg saline. Behavioral test (the shuttle box test) was performed on day 22 to examine learning and memory in rats. Immediately after that, hematoxylin-eosin staining was performed to observe the morphological change in hippocampal CA3 pyramidal neurons. Myricetin greatly increased the number of hippocampal CA3 pyramidal neurons and improved learning and memory impairments in rats with Alzheimer's disease. These findings suggest that myricetin is beneficial for treatment of Alzheimer's disease. PMID:28197195

  1. IK1 channels do not contribute to the slow afterhyperpolarization in pyramidal neurons

    PubMed Central

    Wang, Kang; Mateos-Aparicio, Pedro; Hönigsperger, Christoph; Raghuram, Vijeta; Wu, Wendy W; Ridder, Margreet C; Sah, Pankaj; Maylie, Jim; Storm, Johan F; Adelman, John P

    2016-01-01

    In pyramidal neurons such as hippocampal area CA1 and basolateral amygdala, a slow afterhyperpolarization (sAHP) follows a burst of action potentials, which is a powerful regulator of neuronal excitability. The sAHP amplitude increases with aging and may underlie age related memory decline. The sAHP is due to a Ca2+-dependent, voltage-independent K+ conductance, the molecular identity of which has remained elusive until a recent report suggested the Ca2+-activated K+ channel, IK1 (KCNN4) as the sAHP channel in CA1 pyramidal neurons. The signature pharmacology of IK1, blockade by TRAM-34, was reported for the sAHP and underlying current. We have examined the sAHP and find no evidence that TRAM-34 affects either the current underling the sAHP or excitability of CA1 or basolateral amygdala pyramidal neurons. In addition, CA1 pyramidal neurons from IK1 null mice exhibit a characteristic sAHP current. Our results indicate that IK1 channels do not mediate the sAHP in pyramidal neurons. DOI: http://dx.doi.org/10.7554/eLife.11206.001 PMID:26765773

  2. In vivo dual intra- and extracellular recordings suggest bidirectional coupling between CA1 pyramidal neurons.

    PubMed

    Chorev, Edith; Brecht, Michael

    2012-09-01

    Spikelets, small spikelike membrane potential deflections, are prominent in the activity of hippocampal pyramidal neurons in vivo. The origin of spikelets is still a source of much controversy. Somatically recorded spikelets have been postulated to originate from dendritic spikes, ectopic spikes, or spikes in an electrically coupled neuron. To differentiate between the different proposed mechanisms we used a dual recording approach in which we simultaneously recorded the intracellular activity of one CA1 pyramidal neuron and the extracellular activity in its vicinity, thus monitoring extracellularly the activity of both the intracellularly recorded cell as well as other units in its surroundings. Spikelets were observed in a quarter of our recordings (n = 36). In eight of these nine recordings a second extracellular unit fired in correlation with spikelet occurrences. This observation is consistent with the idea that the spikelets reflect action potentials of electrically coupled nearby neurons. The extracellular spikes of these secondary units preceded the onset of spikelets. While the intracellular spikelet amplitude was voltage dependent, the simultaneously recorded extracellular unit remained unchanged. Spikelets often triggered action potentials in neurons, resulting in a characteristic 1- to 2-ms delay between spikelet onset and firing. Here we show that this relationship is bidirectional, with spikes being triggered by and also triggering spikelets. Secondary units, coupled to pyramidal neurons, showed discharge patterns similar to the recorded pyramidal neuron. These findings suggest that spikelets reflect spikes in an electrically coupled neighboring neuron, most likely of pyramidal cell type. Such coupling might contribute to the synchronization of pyramidal neurons with millisecond precision.

  3. Irregular spiking of pyramidal neurons organizes as scale-invariant neuronal avalanches in the awake state

    PubMed Central

    Bellay, Timothy; Klaus, Andreas; Seshadri, Saurav; Plenz, Dietmar

    2015-01-01

    Spontaneous fluctuations in neuronal activity emerge at many spatial and temporal scales in cortex. Population measures found these fluctuations to organize as scale-invariant neuronal avalanches, suggesting cortical dynamics to be critical. Macroscopic dynamics, though, depend on physiological states and are ambiguous as to their cellular composition, spatiotemporal origin, and contributions from synaptic input or action potential (AP) output. Here, we study spontaneous firing in pyramidal neurons (PNs) from rat superficial cortical layers in vivo and in vitro using 2-photon imaging. As the animal transitions from the anesthetized to awake state, spontaneous single neuron firing increases in irregularity and assembles into scale-invariant avalanches at the group level. In vitro spike avalanches emerged naturally yet required balanced excitation and inhibition. This demonstrates that neuronal avalanches are linked to the global physiological state of wakefulness and that cortical resting activity organizes as avalanches from firing of local PN groups to global population activity. DOI: http://dx.doi.org/10.7554/eLife.07224.001 PMID:26151674

  4. Thrombin modulates persistent sodium current in CA1 pyramidal neurons of young and adult rat hippocampus.

    PubMed

    Lunko, O O; Isaev, D S; Krishtal, O O; Isaeva, E V

    2015-01-01

    Serine protease thrombin, a key factor of blood coagulation, participates in many neuronal processes important for normal brain functioning and during pathological conditions involving abnormal neuronal synchronization, neurodegeneration and inflammation. Our previous study on CA3 pyramidal neurons showed that application ofthrombin through the activation of specific protease-activated receptor 1 (PAR1) produces a significant hyperpolarizing shift of the activation of the TTX-sensitive persistent voltage-gated Na+ current (I(Nap)) thereby affecting membrane potential and seizure threshold at the network level. It was shown that PAR1 is also expressed in CA1 area of hippocampus and can be implicated in neuronal damage in this area after status epilepticus. The aim of the present study was to evaluate the effect of thrombin on I(NaP) in CA1 pyramidal neurons from adult and young rats. Using whole cell patch-clamp technique we demonstrate that thrombin application results in the hyperpolarization shift of I(NaP) activation as well as increase in the I(NaP) amplitude in both age groups. We have found that I(NaP) in pyramidal neurons of hippocampal CA 1 region is more vulnerable to the thrombin action than I(NaP) in pyramidal neurons of hippocampal CA3 region. We have also found that the immature hippocampus is more sensitive to thrombin action which emphasizes the contribution of thrombin-dependent pathway to the regulation of neuronal activity in immature brain.

  5. Temporal synchrony and gamma to theta power conversion in the dendrites of CA1 pyramidal neurons

    PubMed Central

    Vaidya, Sachin P.; Johnston, Daniel

    2014-01-01

    Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of HCN channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a novel mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors. PMID:24185428

  6. Prenatal morphine exposure reduces pyramidal neurons in CA1, CA2 and CA3 subfields of mice hippocampus

    PubMed Central

    Ghafari, Soraya; Golalipour, Mohammad Jafar

    2014-01-01

    Objective(s): This study was carried out to evaluate the effect of maternal morphine exposure during gestational and lactation period on pyramidal neurons of hippocampus in 18 and 32 day mice offspring. Materials and Methods: Thirty female mice were randomly allocated into cases and controls. In case group, animals received morphine sulfate 10 mg/kg.body weight intraperitoneally during 7 days before mating, gestational period (GD 0-21), 18 and 32 days after delivery in the experimental groups. The control animals received an equivalent volume of normal saline. Cerebrum of six offsprings in each group was removed and stained with cresyl violet and a monoclonal antibody NeuN for immunohistochemical detection of surviving pyramidal neurons. Quantitative computer-assisted morphometric study was done on hippocampus. Results: The number of pyramidal neurons in CA1, CA2 and CA3 in treated groups was significantly reduced in postnatal day 18 and 32 (P18, P32) compared to control groups (P<0.05). The mean thickness of the stratum pyramidal layer was decreased in the treated groups in comparison with controls (P<0.05), whereas the mean thickness of the stratum oriens, stratum radiatum and stratum lacunosum-moleculare in CA1 field and stratum oriens, stratum lucidum, stratum radiatum and stratum lacunosum-moleculare in CA3 were significantly increased in morphine treated group in comparison with controls (P<0.05). Conclusion: Morphine administration before and during pregnancy and during lactation period causes pyramidal neurons loss in 18 and 32 days old infant mice. PMID:24847417

  7. Cellular and Network Contributions to Excitability of Layer 5 Neocortical Pyramidal Neurons in the Rat

    PubMed Central

    Bar-Yehuda, Dan; Korngreen, Alon

    2007-01-01

    There is a considerable gap between investigating the dynamics of single neurons and the computational aspects of neural networks. A growing number of studies have attempted to overcome this gap using the excitation in brain slices elicited by various chemical manipulations of the bath solution. However, there has been no quantitative study on the effects of these manipulations on the cellular and network factors controlling excitability. Using the whole-cell configuration of the patch-clamp technique we recorded the membrane potential from the soma of layer 5 pyramidal neurons in acute brain slices from the somatosensory cortex of young rats at 22°C and 35°C. Using blockers of synaptic transmission, we show distinct changes in cellular properties following modification of the ionic composition of the artificial cerebrospinal fluid (ACSF). Thus both cellular and network changes may contribute to the observed effects of slice excitation solutions on the physiology of single neurons. Furthermore, our data suggest that the difference in the ionic composition of current standard ACSF from that of CSF measured in vivo cause ACSF to depress network activity in acute brain slices. This may affect outcomes of experiments investigating biophysical and physiological properties of neurons in such preparations. Our results strongly advocate the necessity of redesigning experiments routinely carried out in the quiescent acute brain slice preparation. PMID:18030343

  8. Sensory deprivation differentially impacts the dendritic development of pyramidal versus non-pyramidal neurons in layer 6 of mouse barrel cortex.

    PubMed

    Chen, Chia-Chien; Tam, Danny; Brumberg, Joshua C

    2012-04-01

    Early postnatal sensory experience can have profound impacts on the structure and function of cortical circuits affecting behavior. Using the mouse whisker-to-barrel system we chronically deprived animals of normal sensory experience by bilaterally trimming their whiskers every other day from birth for the first postnatal month. Brain tissue was then processed for Golgi staining and neurons in layer 6 of barrel cortex were reconstructed in three dimensions. Dendritic and somatic parameters were compared between sensory-deprived and normal sensory experience groups. Results demonstrated that layer 6 non-pyramidal neurons in the chronically deprived group showed an expansion of their dendritic arbors. The pyramidal cells responded to sensory deprivation with increased somatic size and basilar dendritic arborization but overall decreased apical dendritic parameters. In sum, sensory deprivation impacted on the neuronal architecture of pyramidal and non-pyramidal neurons in layer 6, which may provide a substrate for observed physiological and behavioral changes resulting from whisker trimming.

  9. Pyramidal Cells in Prefrontal Cortex of Primates: Marked Differences in Neuronal Structure Among Species

    PubMed Central

    Elston, Guy N.; Benavides-Piccione, Ruth; Elston, Alejandra; Manger, Paul R.; DeFelipe, Javier

    2010-01-01

    The most ubiquitous neuron in the cerebral cortex, the pyramidal cell, is characterized by markedly different dendritic structure among different cortical areas. The complex pyramidal cell phenotype in granular prefrontal cortex (gPFC) of higher primates endows specific biophysical properties and patterns of connectivity, which differ from those in other cortical regions. However, within the gPFC, data have been sampled from only a select few cortical areas. The gPFC of species such as human and macaque monkey includes more than 10 cortical areas. It remains unknown as to what degree pyramidal cell structure may vary among these cortical areas. Here we undertook a survey of pyramidal cells in the dorsolateral, medial, and orbital gPFC of cercopithecid primates. We found marked heterogeneity in pyramidal cell structure within and between these regions. Moreover, trends for gradients in neuronal complexity varied among species. As the structure of neurons determines their computational abilities, memory storage capacity and connectivity, we propose that these specializations in the pyramidal cell phenotype are an important determinant of species-specific executive cortical functions in primates. PMID:21347276

  10. The influence of phospho-tau on dendritic spines of cortical pyramidal neurons in patients with Alzheimer’s disease

    PubMed Central

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús

    2013-01-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer’s disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer’s disease is likely to depend on the relative number of neurons that have well developed tangles. PMID:23715095

  11. The influence of phospho-τ on dendritic spines of cortical pyramidal neurons in patients with Alzheimer's disease.

    PubMed

    Merino-Serrais, Paula; Benavides-Piccione, Ruth; Blazquez-Llorca, Lidia; Kastanauskaite, Asta; Rábano, Alberto; Avila, Jesús; DeFelipe, Javier

    2013-06-01

    The dendritic spines on pyramidal cells represent the main postsynaptic elements of cortical excitatory synapses and they are fundamental structures in memory, learning and cognition. In the present study, we used intracellular injections of Lucifer yellow in fixed tissue to analyse over 19 500 dendritic spines that were completely reconstructed in three dimensions along the length of the basal dendrites of pyramidal neurons in the parahippocampal cortex and CA1 of patients with Alzheimer's disease. Following intracellular injection, sections were immunostained for anti-Lucifer yellow and with tau monoclonal antibodies AT8 and PHF-1, which recognize tau phosphorylated at Ser202/Thr205 and at Ser396/404, respectively. We observed that the diffuse accumulation of phospho-tau in a putative pre-tangle state did not induce changes in the dendrites of pyramidal neurons, whereas the presence of tau aggregates forming intraneuronal neurofibrillary tangles was associated with progressive alteration of dendritic spines (loss of dendritic spines and changes in their morphology) and dendrite atrophy, depending on the degree of tangle development. Thus, the presence of phospho-tau in neurons does not necessarily mean that they suffer severe and irreversible effects as thought previously but rather, the characteristic cognitive impairment in Alzheimer's disease is likely to depend on the relative number of neurons that have well developed tangles.

  12. Branch specific and spike-order specific action potential invasion in basal, oblique, and apical dendrites of cortical pyramidal neurons

    PubMed Central

    Zhou, Wen-Liang; Short, Shaina M.; Rich, Matthew T.; Oikonomou, Katerina D.; Singh, Mandakini B.; Sterjanaj, Enas V.; Antic, Srdjan D.

    2014-01-01

    Abstract. In neocortical pyramidal neurons, action potentials (APs) propagate from the axon into the dendritic tree to influence distal synapses. Traditionally, AP backpropagation was studied in the thick apical trunk. Here, we used the principles of optical imaging developed by Cohen to investigate AP invasion into thin dendritic branches (basal, oblique, and tuft) of prefrontal cortical L5 pyramidal neurons. Multisite optical recordings from neighboring dendrites revealed a clear dichotomy between two seemingly equal dendritic branches belonging to the same cell (“sister branches”). We documented the variable efficacy of AP invasion in basal and oblique branches by revealing their AP voltage waveforms. Using fast multisite calcium imaging, we found that trains of APs are filtered differently between two apical tuft branches. Although one dendritic branch passes all spikes in an AP train, another branch belonging to the same neuron, same cortical layer, and same path distance from the cell body, experiences only one spike. Our data indicate that the vast differences in dendritic voltage and calcium transients, detected in dendrites of pyramidal neurons, arise from a nonuniform distribution of A-type K+ conductance, an aggregate number of branch points in the path of the AP propagation and minute differences in dendritic diameter. PMID:26157997

  13. The rostral migratory stream generates hippocampal CA1 pyramidal-like neurons in a novel organotypic slice co-culture model

    PubMed Central

    Singec, Ilyas; Knoth, Rolf; Vida, Imre; Frotscher, Michael

    2015-01-01

    ABSTRACT The mouse subventricular zone (SVZ) generates large numbers of neuroblasts, which migrate in a distinct pathway, the rostral migratory stream (RMS), and replace specific interneurons in the olfactory bulb (OB). Here, we introduce an organotypic slice culture model that directly connects the RMS to the hippocampus as a new destination. RMS neuroblasts widely populate the hippocampus and undergo cellular differentiation. We demonstrate that RMS cells give rise to various neuronal subtypes and, surprisingly, to CA1 pyramidal neurons. Pyramidal neurons are typically generated before birth and are lost in various neurological disorders. Hence, this unique slice culture model enables us to investigate their postnatal genesis under defined in vitro conditions from the RMS, an unanticipated source for hippocampal pyramidal neurons. PMID:26340944

  14. An unusual population of pyramidal neurons in the anterior cingulate cortex of hominids contains the calcium-binding protein calretinin.

    PubMed

    Hof, P R; Nimchinsky, E A; Perl, D P; Erwin, J M

    2001-07-20

    In the context of an on-going comparative analysis of primate neocortex evolution, we describe the occurrence and distribution of a previously unrecognized group of pyramidal neurons, restricted to the superficial part of layer V in the anterior cingulate cortex of hominids and characterized by immunoreactivity to the calcium-binding protein, calretinin. These neurons were rare in orangutans, more numerous in gorillas and common chimpanzees, while humans had the highest numbers. These calretinin-containing pyramidal cells were not observed in the cingulate cortex of any other primate or mammalian species. This finding, together with other recent observations on the hominoid cingulate cortex, is interesting when considering primate neocortical evolution, as it indicates possible adaptive and anatomical modifications in a cortical region critical for the integration of many aspects of autonomic function, vocalization, and cognitive processes.

  15. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses.

    PubMed

    Rutherford, L C; Nelson, S B; Turrigiano, G G

    1998-09-01

    Recently, we have identified a novel form of synaptic plasticity that acts to stabilize neocortical firing rates by scaling the quantal amplitude of AMPA-mediated synaptic inputs up or down as a function of neuronal activity. Here, we show that the effects of activity blockade on quantal amplitude are mediated through the neurotrophin brain-derived neurotrophic factor (BDNF). Exogenous BDNF prevented, and a TrkB-IgG fusion protein reproduced, the effects of activity blockade on pyramidal quantal amplitude. BDNF had opposite effects on pyramidal neuron and interneuron quantal amplitudes and modified the ratio of pyramidal neuron to interneuron firing rates. These data demonstrate a novel role for BDNF in the homeostatic regulation of excitatory synaptic strengths and in the maintenance of the balance of cortical excitation and inhibition.

  16. Perineuronal Nets Suppress Plasticity of Excitatory Synapses on CA2 Pyramidal Neurons

    PubMed Central

    Carstens, Kelly E.; Phillips, Mary L.; Pozzo-Miller, Lucas; Weinberg, Richard J.

    2016-01-01

    Long-term potentiation of excitatory synapses on pyramidal neurons in the stratum radiatum rarely occurs in hippocampal area CA2. Here, we present evidence that perineuronal nets (PNNs), a specialized extracellular matrix typically localized around inhibitory neurons, also surround mouse CA2 pyramidal neurons and envelop their excitatory synapses. CA2 pyramidal neurons express mRNA transcripts for the major PNN component aggrecan, identifying these neurons as a novel source for PNNs in the hippocampus. We also found that disruption of PNNs allows synaptic potentiation of normally plasticity-resistant excitatory CA2 synapses; thus, PNNs play a role in restricting synaptic plasticity in area CA2. Finally, we found that postnatal development of PNNs on CA2 pyramidal neurons is modified by early-life enrichment, suggesting that the development of circuits containing CA2 excitatory synapses are sensitive to manipulations of the rearing environment. SIGNIFICANCE STATEMENT Perineuronal nets (PNNs) are thought to play a major role in restricting synaptic plasticity during postnatal development, and are altered in several models of neurodevelopmental disorders, such as schizophrenia and Rett syndrome. Although PNNs have been predominantly studied in association with inhibitory neurons throughout the brain, we describe a dense expression of PNNs around excitatory pyramidal neurons in hippocampal area CA2. We also provide insight into a previously unrecognized role for PNNs in restricting plasticity at excitatory synapses and raise the possibility of an early critical period of hippocampal plasticity that may ultimately reveal a key mechanism underlying learning and memory impairments of PNN-associated neurodevelopmental disorders. PMID:27277807

  17. Brief Dopaminergic Stimulations Produce Transient Physiological Changes in Prefrontal Pyramidal Neurons

    PubMed Central

    Moore, Anna R.; Zhou, Wen-Liang; Potapenko, Evgeniy S.; Kim, Eun-Ji; Antic, Srdjan D.

    2010-01-01

    In response to food reward and other pertinent events, midbrain dopaminergic neurons fire short bursts of action potentials causing a phasic release of dopamine in the prefrontal cortex (rapid and transient increases in cortical dopamine concentration). Here we apply short (2 sec) iontophoretic pulses of glutamate, GABA, dopamine and dopaminergic agonists locally, onto layer 5 pyramidal neurons in brain slices of the rat medial prefrontal cortex (PFC). Unlike glutamate and GABA, brief dopaminergic pulses had negligible effects on the resting membrane potential. However, dopamine altered action potential firing in an extremely rapid (<1s) and transient (<5min) manner, as every neuron returned to baseline in less than 5-min post-application. The physiological responses to dopamine differed markedly among individual neurons. Pyramidal neurons with a preponderance of D1-like receptor signaling respond to dopamine with a severe depression in action potential firing rate, while pyramidal neurons dominated by the D2 signaling pathway respond to dopamine with an instantaneous increase in spike production. Increasing levels of dopamine concentrations around the cell body resulted in a dose dependent response, which resembles an “inverted U curve” (Vijayraghavan et al., 2007), but this effect can easily be caused by an iontophoresis current artifact. Our present data imply that one population of PFC pyramidal neurons receiving direct synaptic contacts from midbrain dopaminergic neurons would stall during the 0.5 sec of the phasic dopamine burst. The spillover dopamine, on the other hand, would act as a positive stimulator of cortical excitability (30% increase) to all D2-receptor carrying pyramidal cells, for the next 40 seconds. PMID:21059342

  18. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation

    PubMed Central

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  19. Effects of Calcium Spikes in the Layer 5 Pyramidal Neuron on Coincidence Detection and Activity Propagation.

    PubMed

    Chua, Yansong; Morrison, Abigail

    2016-01-01

    The role of dendritic spiking mechanisms in neural processing is so far poorly understood. To investigate the role of calcium spikes in the functional properties of the single neuron and recurrent networks, we investigated a three compartment neuron model of the layer 5 pyramidal neuron with calcium dynamics in the distal compartment. By performing single neuron simulations with noisy synaptic input and occasional large coincident input at either just the distal compartment or at both somatic and distal compartments, we show that the presence of calcium spikes confers a substantial advantage for coincidence detection in the former case and a lesser advantage in the latter. We further show that the experimentally observed critical frequency phenomenon, in which action potentials triggered by stimuli near the soma above a certain frequency trigger a calcium spike at distal dendrites, leading to further somatic depolarization, is not exhibited by a neuron receiving realistically noisy synaptic input, and so is unlikely to be a necessary component of coincidence detection. We next investigate the effect of calcium spikes in propagation of spiking activities in a feed-forward network (FFN) embedded in a balanced recurrent network. The excitatory neurons in the network are again connected to either just the distal, or both somatic and distal compartments. With purely distal connectivity, activity propagation is stable and distinguishable for a large range of recurrent synaptic strengths if the feed-forward connections are sufficiently strong, but propagation does not occur in the absence of calcium spikes. When connections are made to both the somatic and the distal compartments, activity propagation is achieved for neurons with active calcium dynamics at a much smaller number of neurons per pool, compared to a network of passive neurons, but quickly becomes unstable as the strength of recurrent synapses increases. Activity propagation at higher scaling factors can be

  20. K+ channel regulation of signal propagation in dendrites of hippocampal pyramidal neurons.

    PubMed

    Hoffman, D A; Magee, J C; Colbert, C M; Johnston, D

    1997-06-26

    Pyramidal neurons receive tens of thousands of synaptic inputs on their dendrites. The dendrites dynamically alter the strengths of these synapses and coordinate them to produce an output in ways that are not well understood. Surprisingly, there turns out to be a very high density of transient A-type potassium ion channels in dendrites of hippocampal CA1 pyramidal neurons. These channels prevent initiation of an action potential in the dendrites, limit the back-propagation of action potentials into the dendrites, and reduce excitatory synaptic events. The channels act to prevent large, rapid dendritic depolarizations, thereby regulating orthograde and retrograde propagation of dendritic potentials.

  1. Characterization of intrinsic properties of cingulate pyramidal neurons in adult mice after nerve injury

    PubMed Central

    2009-01-01

    The anterior cingulate cortex (ACC) is important for cognitive and sensory functions including memory and chronic pain. Glutamatergic excitatory synaptic transmission undergo long-term potentiation in ACC pyramidal cells after peripheral injury. Less information is available for the possible long-term changes in neuronal action potentials or intrinsic properties. In the present study, we characterized cingulate pyramidal cells in the layer II/III of the ACC in adult mice. We then examined possible long-term changes in intrinsic properties of the ACC pyramidal cells after peripheral nerve injury. In the control mice, we found that there are three major types of pyramidal cells according to their action potential firing pattern: (i) regular spiking (RS) cells (24.7%), intrinsic bursting (IB) cells (30.9%), and intermediate (IM) cells (44.4%). In a state of neuropathic pain, the population distribution (RS: 21.3%; IB: 31.2%; IM: 47.5%) and the single action potential properties of these three groups were indistinguishable from those in control mice. However, for repetitive action potentials, IM cells from neuropathic pain animals showed higher initial firing frequency with no change for the properties of RS and IB neurons from neuropathic pain mice. The present results provide the first evidence that, in addition to synaptic potentiation reported previously, peripheral nerve injury produces long-term plastic changes in the action potentials of cingulate pyramidal neurons in a cell type-specific manner. PMID:20015370

  2. Antibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture

    PubMed Central

    Bahrami, Farideh; Janahmadi, Mahyar

    2013-01-01

    Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination; however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electrophysiological whole-cell patch-clamp recordings from rat hippocampal pyramidal cells in primary culture were performed to investigate the effects of antibiotic supplements on the intrinsic excitability of cultured cells. Results: The present findings indicated that presence of antibiotic supplements (penicillin/streptomycin) in the culture medium altered the intrinsic electrical activity of hippocampal pyramidal neurons in primary culture. These alterations included: 1) depolarized resting membrane potential; 2) a significant enhancement in the after-hyperpolarization amplitude; 3) a significant increase in the area under the action potential and in the decay and rise time of the action potential; 4) a significant broadening of action potential and 5) a significant reduction in the firing frequency. Conclusion: These findings suggest that addition of antibiotic supplements to culture media influences the neuronal excitability and alters the electrophysiological properties of cultured neurons, possibly through changing the ionic conductance underlying neuronal excitability. PMID:23567852

  3. Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron

    PubMed Central

    Ramaswamy, Srikanth; Markram, Henry

    2015-01-01

    The thick-tufted layer 5 (TTL5) pyramidal neuron is one of the most extensively studied neuron types in the mammalian neocortex and has become a benchmark for understanding information processing in excitatory neurons. By virtue of having the widest local axonal and dendritic arborization, the TTL5 neuron encompasses various local neocortical neurons and thereby defines the dimensions of neocortical microcircuitry. The TTL5 neuron integrates input across all neocortical layers and is the principal output pathway funneling information flow to subcortical structures. Several studies over the past decades have investigated the anatomy, physiology, synaptology, and pathophysiology of the TTL5 neuron. This review summarizes key discoveries and identifies potential avenues of research to facilitate an integrated and unifying understanding on the role of a central neuron in the neocortex. PMID:26167146

  4. Physiology of Layer 5 Pyramidal Neurons in Mouse Primary Visual Cortex: Coincidence Detection through Bursting

    PubMed Central

    Shai, Adam S.; Anastassiou, Costas A.; Larkum, Matthew E.; Koch, Christof

    2015-01-01

    L5 pyramidal neurons are the only neocortical cell type with dendrites reaching all six layers of cortex, casting them as one of the main integrators in the cortical column. What is the nature and mode of computation performed in mouse primary visual cortex (V1) given the physiology of L5 pyramidal neurons? First, we experimentally establish active properties of the dendrites of L5 pyramidal neurons of mouse V1 using patch-clamp recordings. Using a detailed multi-compartmental model, we show this physiological setup to be well suited for coincidence detection between basal and apical tuft inputs by controlling the frequency of spike output. We further show how direct inhibition of calcium channels in the dendrites modulates such coincidence detection. To establish the singe-cell computation that this biophysics supports, we show that the combination of frequency-modulation of somatic output by tuft input and (simulated) calcium-channel blockage functionally acts as a composite sigmoidal function. Finally, we explore how this computation provides a mechanism whereby dendritic spiking contributes to orientation tuning in pyramidal neurons. PMID:25768881

  5. Voltage-gated ion channels in dendrites of hippocampal pyramidal neurons.

    PubMed

    Chen, Xixi; Johnston, Daniel

    2006-12-01

    The properties and distribution of voltage-gated ion channels contribute to electrical signaling in neuronal dendrites. The apical dendrites of CA1 pyramidal neurons in hippocampus express a wide variety of sodium, calcium, potassium, and other voltage-gated channels. In this report, we provide some new evidence for the role of the delayed-rectifier K(+) channel in shaping the dendritic action potential at different membrane potentials.

  6. Suppressive Effects of Resveratrol Treatment on The Intrinsic Evoked Excitability of CA1 Pyramidal Neurons

    PubMed Central

    Meftahi, Gholamhossein; Ghotbedin, Zohreh; Eslamizade, Mohammad Javad; Hosseinmardi, Narges; Janahmadi, Mahyar

    2015-01-01

    Objective Resveratrol, a phytoalexin, has a wide range of desirable biological actions. Despite a growing body of evidence indicating that resveratrol induces changes in neu- ronal function, little effort, if any, has been made to investigate the cellular effect of res- veratrol treatment on intrinsic neuronal properties. Materials and Methods This experimental study was performed to examine the acute effects of resveratrol (100 µM) on the intrinsic evoked responses of rat Cornu Ammonis (CA1) pyramidal neurons in brain slices, using whole cell patch clamp re- cording under current clamp conditions. Results Findings showed that resveratrol treatment caused dramatic changes in evoked responses of pyramidal neurons. Its treatment induced a significant (P<0.05) increase in the after hyperpolarization amplitude of the first evoked action potential. Resveratrol-treated cells displayed a significantly broader action potential (AP) when compared with either control or vehicle-treated groups. In addition, the mean instantaneous firing frequency between the first two action potentials was significantly lower in resveratrol-treated neurons. It also caused a significant reduction in the time to maximum decay of AP. The rheobase current and the utilization time were both significantly greater following resveratrol treatment. Neurons exhibited a significantly depolarized voltage threshold when exposed to resveratrol. Conclusion Results provide direct electrophysiological evidence for the inhibitory effects of resveratrol on pyramidal neurons, at least in part, by reducing the evoked neural activity. PMID:26464825

  7. Spike Phase Locking in CA1 Pyramidal Neurons depends on Background Conductance and Firing Rate

    PubMed Central

    Broiche, Tilman; Malerba, Paola; Dorval, Alan D.; Borisyuk, Alla; Fernandez, Fernando R.; White, John A.

    2012-01-01

    Oscillatory activity in neuronal networks correlates with different behavioral states throughout the nervous system, and the frequency-response characteristics of individual neurons are believed to be critical for network oscillations. Recent in vivo studies suggest that neurons experience periods of high membrane conductance, and that action potentials are often driven by membrane-potential fluctuations in the living animal. To investigate the frequency-response characteristics of CA1 pyramidal neurons in the presence of high conductance and voltage fluctuations, we performed dynamic-clamp experiments in rat hippocampal brain slices. We drove neurons with noisy stimuli that included a sinusoidal component ranging, in different trials, from 0.1 to 500 Hz. In subsequent data analysis, we determined action potential phase-locking profiles with respect to background conductance, average firing rate, and frequency of the sinusoidal component. We found that background conductance and firing rate qualitatively change the phase-locking profiles of CA1 pyramidal neurons vs. frequency. In particular, higher average spiking rates promoted band-pass profiles, and the high-conductance state promoted phase-locking at frequencies well above what would be predicted from changes in the membrane time constant. Mechanistically, spike-rate adaptation and frequency resonance in the spike-generating mechanism are implicated in shaping the different phase-locking profiles. Our results demonstrate that CA1 pyramidal cells can actively change their synchronization properties in response to global changes in activity associated with different behavioral states. PMID:23055508

  8. The Dendrites of CA2 and CA1 Pyramidal Neurons Differentially Regulate Information Flow in the Cortico-Hippocampal Circuit.

    PubMed

    Srinivas, Kalyan V; Buss, Eric W; Sun, Qian; Santoro, Bina; Takahashi, Hiroto; Nicholson, Daniel A; Siegelbaum, Steven A

    2017-03-22

    The impact of a given neuronal pathway depends on the number of synapses it makes with its postsynaptic target, the strength of each individual synapse, and the integrative properties of the postsynaptic dendrites. Here we explore the cellular and synaptic mechanisms responsible for the differential excitatory drive from the entorhinal cortical pathway onto mouse CA2 compared with CA1 pyramidal neurons (PNs). Although both types of neurons receive direct input from entorhinal cortex onto their distal dendrites, these inputs produce a 5- to 6-fold larger EPSP at the soma of CA2 compared with CA1 PNs, which is sufficient to drive action potential output from CA2 but not CA1. Experimental and computational approaches reveal that dendritic propagation is more efficient in CA2 than CA1 as a result of differences in dendritic morphology and dendritic expression of the hyperpolarization-activated cation current (Ih). Furthermore, there are three times as many cortical inputs onto CA2 compared with CA1 PN distal dendrites. Using a computational model, we demonstrate that the differences in dendritic properties of CA2 compared with CA1 PNs are necessary to enable the CA2 PNs to generate their characteristically large EPSPs in response to their cortical inputs; in contrast, CA1 dendritic properties limit the size of the EPSPs they generate, even to a similar number of cortical inputs. Thus, the matching of dendritic integrative properties with the density of innervation is crucial for the differential processing of information from the direct cortical inputs by CA2 compared with CA1 PNs.SIGNIFICANCE STATEMENT Recent discoveries have shown that the long-neglected hippocampal CA2 region has distinct synaptic properties and plays a prominent role in social memory and schizophrenia. This study addresses the puzzling finding that the direct entorhinal cortical inputs to hippocampus, which target the very distal pyramidal neuron dendrites, provide an unusually strong excitatory

  9. Aberrant excitatory rewiring of layer V pyramidal neurons early after neocortical trauma.

    PubMed

    Takahashi, D Koji; Gu, Feng; Parada, Isabel; Vyas, Shri; Prince, David A

    2016-07-01

    Lesioned neuronal circuits form new functional connections after a traumatic brain injury (TBI). In humans and animal models, aberrant excitatory connections that form after TBI may contribute to the pathogenesis of post-traumatic epilepsy. Partial neocortical isolation ("undercut" or "UC") leads to altered neuronal circuitry and network hyperexcitability recorded in vivo and in brain slices from chronically lesioned neocortex. Recent data suggest a critical period for maladaptive excitatory circuit formation within the first 3days post UC injury (Graber and Prince 1999, 2004; Li et al. 2011, 2012b). The present study focuses on alterations in excitatory connectivity within this critical period. Immunoreactivity (IR) for growth-associated protein (GAP)-43 was increased in the UC cortex 3days after injury. Some GAP-43-expressing excitatory terminals targeted the somata of layer V pyramidal (Pyr) neurons, a domain usually innervated predominantly by inhibitory terminals. Immunocytochemical analysis of pre- and postsynaptic markers showed that putative excitatory synapses were present on somata of these neurons in UC neocortex. Excitatory postsynaptic currents from UC layer V Pyr cells displayed properties consistent with perisomatic inputs and also reflected an increase in the number of synaptic contacts. Laser scanning photostimulation (LSPS) experiments demonstrated reorganized excitatory connectivity after injury within the UC. Concurrent with these changes, spontaneous epileptiform bursts developed in UC slices. Results suggest that aberrant reorganization of excitatory connectivity contributes to early neocortical hyperexcitability in this model. The findings are relevant for understanding the pathophysiology of neocortical post-traumatic epileptogenesis and are important in terms of the timing of potential prophylactic treatments.

  10. Experimentally guided modelling of dendritic excitability in rat neocortical pyramidal neurones

    PubMed Central

    Keren, Naomi; Bar-Yehuda, Dan; Korngreen, Alon

    2009-01-01

    Constructing physiologically relevant compartmental models of neurones is critical for understanding neuronal activity and function. We recently suggested that measurements from multiple locations along the soma, dendrites and axon are necessary as a data set when using a genetic optimization algorithm to constrain the parameters of a compartmental model of an entire neurone. However, recordings from L5 pyramidal neurones can routinely be performed simultaneously from only two locations. Now we show that a data set recorded from the soma and apical dendrite combined with a parameter peeling procedure is sufficient to constrain a compartmental model for the apical dendrite of L5 pyramidal neurones. The peeling procedure was tested on several compartmental models showing that it avoids local minima in parameter space. Based on the requirements of this analysis procedure, we designed and performed simultaneous whole-cell recordings from the soma and apical dendrite of rat L5 pyramidal neurones. The data set obtained from these recordings allowed constraining a simplified compartmental model for the apical dendrite of L5 pyramidal neurones containing four voltage-gated conductances. In agreement with experimental findings, the optimized model predicts that the conductance density gradients of voltage-gated K+ conductances taper rapidly proximal to the soma, while the density gradient of the voltage-gated Na+ conductance tapers slowly along the apical dendrite. The model reproduced the back-propagation of the action potential and the modulation of the resting membrane potential along the apical dendrite. Furthermore, the optimized model provided a mechanistic explanation for the back-propagation of the action potential into the apical dendrite and the generation of dendritic Na+ spikes. PMID:19171651

  11. Physiology and anatomy of synaptic connections between thick tufted pyramidal neurones in the developing rat neocortex.

    PubMed Central

    Markram, H; Lübke, J; Frotscher, M; Roth, A; Sakmann, B

    1997-01-01

    1. Dual voltage recordings were made from pairs of adjacent, synaptically connected thick tufted layer 5 pyramidal neurones in brain slices of young rat (14-16 days) somatosensory cortex to examine the physiological properties of unitary EPSPs. Pre- and postsynaptic neurones were filled with biocytin and examined in the light and electron microscope to quantify the morphology of axonal and dendritic arbors and the number and location of synaptic contacts on the target neurone. 2. In 138 synaptic connections between pairs of pyramidal neurones 96 (70%) were unidirectional and 42 (30%) were bidirectional. The probability of finding a synaptic connection in dual recordings was 0.1. Unitary EPSPs evoked by a single presynaptic action potential (AP) had a mean peak amplitude ranging from 0.15 to 5.5 mV in different connections with a mean of 1.3 +/- 1.1 mV, a latency of 1.7 +/- 0.9 ms, a 20-80% rise time of 2.9 +/- 2.3 ms and a decay time constant of 40 +/- 18 ms at 32-24 degrees C and -60 +/- 2 mV membrane potential. 3. Peak amplitudes of unitary EPSPs fluctuated randomly from trial to trial. The coefficient of variation (c.v.) of the unitary EPSP amplitudes ranged from 0.13 to 2.8 in different synaptic connections (mean, 0.52; median, 0.41). The percentage of failures of single APs to evoke a unitary EPSP ranged from 0 to 73% (mean, 14%; median, 7%). Both c.v. and percentage of failures decreased with increasing mean EPSP amplitude. 4. Postsynaptic glutamate receptors which mediate unitary EPSPs at -60 mV were predominantly of the L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor type. Receptors of the N-methyl-D-aspartate (NMDA) type contributed only a small fraction (< 20%) to the voltage-time integral of the unitary EPSP at -60 mV, but their contribution increased at more positive membrane potentials. 5. Branching patterns of dendrites and axon collaterals of forty-five synaptically connected neurones, when examined in the light microscope

  12. Maternal mobile phone exposure alters intrinsic electrophysiological properties of CA1 pyramidal neurons in rat offspring.

    PubMed

    Razavinasab, Moazamehosadat; Moazzami, Kasra; Shabani, Mohammad

    2016-06-01

    Some studies have shown that exposure to electromagnetic field (EMF) may result in structural damage to neurons. In this study, we have elucidated the alteration in the hippocampal function of offspring Wistar rats (n = 8 rats in each group) that were chronically exposed to mobile phones during their gestational period by applying behavioral, histological, and electrophysiological tests. Rats in the EMF group were exposed to 900 MHz pulsed-EMF irradiation for 6 h/day. Whole cell recordings in hippocampal pyramidal cells in the mobile phone groups did show a decrease in neuronal excitability. Mobile phone exposure was mostly associated with a decrease in the number of action potentials fired in spontaneous activity and in response to current injection in both male and female groups. There was an increase in the amplitude of the afterhyperpolarization (AHP) in mobile phone rats compared with the control. The results of the passive avoidance and Morris water maze assessment of learning and memory performance showed that phone exposure significantly altered learning acquisition and memory retention in male and female rats compared with the control rats. Light microscopy study of brain sections of the control and mobile phone-exposed rats showed normal morphology.Our results suggest that exposure to mobile phones adversely affects the cognitive performance of both female and male offspring rats using behavioral and electrophysiological techniques.

  13. ToF-SIMS cluster ion imaging of hippocampal CA1 pyramidal rat neurons

    NASA Astrophysics Data System (ADS)

    Francis, J. T.; Nie, H.-Y.; Taylor, A. R.; Walzak, M. J.; Chang, W. H.; MacFabe, D. F.; Lau, W. M.

    2008-12-01

    Recent studies have demonstrated the power of time-of-flight secondary ion mass spectrometry (ToF-SIMS) cluster ion imaging to characterize biological structures, such as that of the rat central nervous system. A large number of the studies to date have been carried out on the "structural scale" imaging several mm 2 using mounted thin sections. In this work, we present our ToF-SIMS cluster ion imaging results on hippocampal rat brain neurons, at the cellular and sub-cellular levels. As a part of an ongoing investigation to examine gut linked metabolic factors in autism spectrum disorders using a novel rat model, we have observed a possible variation in hippocampal Cornu ammonis 1 (CA1) pyramidal neuron geometry in thin, paraformaldehyde fixed brain sections. However, the fixation process alters the tissue matrix such that much biochemical information appears to be lost. In an effort to preserve as much as possible this original information, we have established a protocol using unfixed thin brain sections, along with low dose, 500 eV Cs + pre-sputtering that allows imaging down to the sub-cellular scale with minimal sample preparation.

  14. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Benavides-Piccione, Ruth; Bourgeois, Jean-Pierre; Changeux, Jean-Pierre; DeFelipe, Javier

    2010-01-01

    The neuronal nicotinic acetylcholine receptors (nAChRs) are allosteric membrane proteins involved in multiple cognitive processes, including attention, learning, and memory. The most abundant form of heterooligomeric nAChRs in the brain contains the β2- and α4- subunits and binds nicotinic agonists with high affinity. In the present study, we investigated in the mouse the consequences of the deletion of one of the nAChR components: the β2-subunit (β2−/−) on the microanatomy of cortical pyramidal cells. Using an intracellular injection method, complete basal dendritic arbors of 650 layer III pyramidal neurons were sampled from seven cortical fields, including primary sensory, motor, and associational areas, in both β2−/− and WT animals. We observed that the pyramidal cell phenotype shows significant quantitative differences among different cortical areas in mutant and WT mice. In WT mice, the density of dendritic spines was rather similar in all cortical fields, except in the prelimbic/infralimbic cortex, where it was significantly higher. In the absence of the β2-subunit, the most significant reduction in the density of spines took place in this high-order associational field. Our data suggest that the β2-subunit is involved in the dendritic morphogenesis of pyramidal neurons and, in particular, in the circuits that contribute to the high-order functional connectivity of the cerebral cortex. PMID:20534523

  15. Layer 4 pyramidal neurons exhibit robust dendritic spine plasticity in vivo after input deprivation.

    PubMed

    Miquelajauregui, Amaya; Kribakaran, Sahana; Mostany, Ricardo; Badaloni, Aurora; Consalez, G Giacomo; Portera-Cailliau, Carlos

    2015-05-06

    Pyramidal neurons in layers 2/3 and 5 of primary somatosensory cortex (S1) exhibit somewhat modest synaptic plasticity after whisker input deprivation. Whether neurons involved at earlier steps of sensory processing show more or less plasticity has not yet been examined. Here, we used longitudinal in vivo two-photon microscopy to investigate dendritic spine dynamics in apical tufts of GFP-expressing layer 4 (L4) pyramidal neurons of the vibrissal (barrel) S1 after unilateral whisker trimming. First, we characterize the molecular, anatomical, and electrophysiological properties of identified L4 neurons in Ebf2-Cre transgenic mice. Next, we show that input deprivation results in a substantial (∼50%) increase in the rate of dendritic spine loss, acutely (4-8 d) after whisker trimming. This robust synaptic plasticity in L4 suggests that primary thalamic recipient pyramidal neurons in S1 may be particularly sensitive to changes in sensory experience. Ebf2-Cre mice thus provide a useful tool for future assessment of initial steps of sensory processing in S1.

  16. Dendritic integration in pyramidal neurons during network activity and disease.

    PubMed

    Palmer, Lucy M

    2014-04-01

    Neurons have intricate dendritic morphologies which come in an array of shapes and sizes. Not only do they give neurons their unique appearance, but dendrites also endow neurons with the ability to receive and transform synaptic inputs. We now have a wealth of information about the functioning of dendrites which suggests that the integration of synaptic inputs is highly dependent on both dendritic properties and neuronal input patterns. It has been shown that dendrites can perform non-linear processing, actively transforming synaptic input into Na(+) spikes, Ca(2+) plateau spikes and NMDA spikes. These membrane non-linearities can have a large impact on the neuronal output and have been shown to be regulated by numerous factors including synaptic inhibition. Many neuropathological diseases involve changes in how dendrites receive and package synaptic input by altering dendritic spine characteristics, ion channel expression and the inhibitory control of dendrites. This review focuses on the role of dendrites in integrating and transforming input and what goes wrong in the case of neuropathological diseases.

  17. Kv2 channels regulate firing rate in pyramidal neurons from rat sensorimotor cortex

    PubMed Central

    Guan, Dongxu; Armstrong, William E; Foehring, Robert C

    2013-01-01

    The largest outward potassium current in the soma of neocortical pyramidal neurons is due to channels containing Kv2.1 α subunits. These channels have been implicated in cellular responses to seizures and ischaemia, mechanisms for intrinsic plasticity and cell death, and responsiveness to anaesthetic agents. Despite their abundance, knowledge of the function of these delayed rectifier channels has been limited by the lack of specific pharmacological agents. To test for functional roles of Kv2 channels in pyramidal cells from somatosensory or motor cortex of rats (layers 2/3 or 5), we transfected cortical neurons with DNA for a Kv2.1 pore mutant (Kv2.1W365C/Y380T: Kv2.1 DN) in an organotypic culture model to manipulate channel expression. Slices were obtained from rats at postnatal days (P7-P14) and maintained in organotypic culture. We used biolistic methods to transfect neurons with gold ‘bullets’ coated with DNA for the Kv2.1 DN and green fluorescent protein (GFP), GFP alone, or wild type (WT) Kv2.1 plus GFP. Cells that fluoresced green, contained a bullet and responded to positive or negative pressure from the recording pipette were considered to be transfected cells. In each slice, we recorded from a transfected cell and a control non-transfected cell from the same layer and area. Whole-cell voltage-clamp recordings obtained after 3–7 days in culture showed that cells transfected with the Kv2.1 DN had a significant reduction in outward current (∼45% decrease in the total current density measured 200 ms after onset of a voltage step from –78 to –2 mV). Transfection with GFP alone did not affect current amplitude and overexpression of the Kv2.1 WT resulted in greatly increased currents. Current-clamp experiments were used to assess the functional consequences of manipulation of Kv2.1 expression. The results suggest roles for Kv2 channels in controlling membrane potential during the interspike interval (ISI), firing rate, spike frequency adaptation

  18. Active Percolation Analysis of Pyramidal Neurons of Somatosensory Cortex:

    NASA Astrophysics Data System (ADS)

    Costa, Luciano Da Fontoura; Barbosa, Marconi Soares; Schierwagen, Andreas; Alpár, Alán; Gärtner, Ulrich; Arendt, Thomas

    This article describes the investigation of morphological variations among two sets of neuronal cells, namely a control group of wild type mouse cells and a group of cells of a transgenic line. Special attention is given to singular points in the neuronal structure, namely the branching points and extremities of the dendritic processes. The characterization of the spatial distribution of such points is obtained by using a recently reported morphological technique based on forced percolation and window-size compensation, which is particularly suited to the analysis of scattered points, presenting several coexisting densities. Different dispersions were identified in our statistical analysis, suggesting that the transgenic line of neurons is characterized by a more pronounced morphological variation. A classification scheme based on a canonical discriminant function was also considered in order to identify the morphological differences.

  19. Grid-layout and theta-modulation of layer 2 pyramidal neurons in medial entorhinal cortex.

    PubMed

    Ray, Saikat; Naumann, Robert; Burgalossi, Andrea; Tang, Qiusong; Schmidt, Helene; Brecht, Michael

    2014-02-21

    Little is known about how microcircuits are organized in layer 2 of the medial entorhinal cortex. We visualized principal cell microcircuits and determined cellular theta-rhythmicity in freely moving rats. Non-dentate-projecting, calbindin-positive pyramidal cells bundled dendrites together and formed patches arranged in a hexagonal grid aligned to layer 1 axons, parasubiculum, and cholinergic inputs. Calbindin-negative, dentate-gyrus-projecting stellate cells were distributed across layer 2 but avoided centers of calbindin-positive patches. Cholinergic drive sustained theta-rhythmicity, which was twofold stronger in pyramidal than in stellate neurons. Theta-rhythmicity was cell-type-specific but not distributed as expected from cell-intrinsic properties. Layer 2 divides into a weakly theta-locked stellate cell lattice and spatiotemporally highly organized pyramidal grid. It needs to be assessed how these two distinct principal cell networks contribute to grid cell activity.

  20. Investigating spike backpropagation induced Ca2+ influx in models of hippocampal and cortical pyramidal neurons.

    PubMed

    Marsálek, P; Santamaría, F

    1998-01-01

    We modeled the influx of calcium ions into dendrites following active backpropagation of spike trains in a dendritic tree, using compartmental models of anatomically reconstructed pyramidal cells in a GENESIS program. Basic facts of ion channel densities in pyramidal cells were taken into account. The time scale of the backpropagating spike train development was longer than in previous models. We also studied the relationship between intracellular calcium dynamics and membrane voltage. Comparisons were made between two pyramidal cell prototypes and in simplified model. Our results show that: (1) sodium and potassium channels are enough to explain regenerative backpropagating spike trains; (2) intracellular calcium concentration changes are consistent in the range of milliseconds to seconds; (3) the simulations support several experimental observations in both hippocampal and neocortical cells. No additional parameter search optimization was necessary. Compartmental models can be used for investigating the biology of neurons, and then simplified for constructing neural networks.

  1. Transient Enhancement of Inhibitory Synaptic Transmission in Hippocampal CA1 Pyramidal Neurons after Cerebral Ischemia

    PubMed Central

    Liang, Rui; Pang, Zhi-Ping; Deng, Ping; Xu, Zao C.

    2009-01-01

    Pyramidal neurons in hippocampal CA1 regions are highly sensitive to cerebral ischemia. Alterations of excitatory and inhibitory synaptic transmission may contribute to the ischemia-induced neuronal degeneration. However, little is known about the changes of GABAergic synaptic transmission in the hippocampus following reperfusion. We examined the GABAA receptor-mediated inhibitory postsynaptic currents (IPSCs) in CA1 pyramidal neurons 12 hours and 24 hours after transient forebrain ischemia. The amplitudes of evoked IPSCs (eIPSCs) were increased significantly 12 hours after ischemia and returned to control levels 24 hours following reperfusion. The potentiation of eIPSCs was accompanied by an increase of miniature IPSCs (mIPSCs) amplitude, and an enhanced response to exogenous application of GABA, indicating the involvement of postsynaptic mechanisms. Furthermore, there was no obvious change of the paired-pulse ratio (PPR) of eIPSCs and the frequency of mIPSCs, suggesting that the potentiation of eIPSCs might not be due to the increased presynaptic release. Blockade of adenosine A1 receptors led to a decrease of eIPSCs amplitude in post-ischemic neurons but not in control neurons, without affecting the frequency of mIPSCs and the PPR of eIPSCs. Thus, tonic activation of adenosine A1 receptors might, at least in part, contribute to the enhancement of inhibitory synaptic transmission in CA1 neurons after forebrain ischemia. The transient enhancement of inhibitory neurotransmission might temporarily protect CA1 pyramidal neurons, and delay the process of neuronal death after cerebral ischemia. PMID:19258028

  2. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons

    PubMed Central

    Guan, D; Tkatch, T; Surmeier, D J; Armstrong, W E; Foehring, R C

    2007-01-01

    We determined the expression of Kv2 channel subunits in rat somatosensory and motor cortex and tested for the contributions of Kv2 subunits to slowly inactivating K+ currents in supragranular pyramidal neurons. Single cell RT-PCR showed that virtually all pyramidal cells expressed Kv2.1 mRNA and ∼80% expressed Kv2.2 mRNA. Immunocytochemistry revealed striking differences in the distribution of Kv2.1 and Kv2.2 subunits. Kv2.1 subunits were clustered and located on somata and proximal dendrites of all pyramidal cells. Kv2.2 subunits were primarily distributed on large apical dendrites of a subset of pyramidal cells from deep layers. We used two methods for isolating currents through Kv2 channels after excluding contributions from Kv1 subunits: intracellular diffusion of Kv2.1 antibodies through the recording pipette and extracellular application of rStromatoxin-1 (ScTx). The Kv2.1 antibody specifically blocked the slowly inactivating K+ current by 25–50% (at 8 min), demonstrating that Kv2.1 subunits underlie much of this current in neocortical pyramidal neurons. ScTx (300 nm) also inhibited ∼40% of the slowly inactivating K+ current. We observed occlusion between the actions of Kv2.1 antibody and ScTx. In addition, Kv2.1 antibody- and ScTx-sensitive currents demonstrated similar recovery from inactivation and voltage dependence and kinetics of activation and inactivation. These data indicate that both agents targeted the same channels. Considering the localization of Kv2.1 and 2.2 subunits, currents from truncated dissociated cells are probably dominated by Kv2.1 subunits. Compared with Kv2.1 currents in expression systems, the Kv2.1 current in neocortical pyramidal cells activated and inactivated at relatively negative potentials and was very sensitive to holding potential. PMID:17379638

  3. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons.

    PubMed

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  4. Layer-specific optogenetic activation of pyramidal neurons causes beta–gamma entrainment of neonatal networks

    PubMed Central

    Bitzenhofer, Sebastian H; Ahlbeck, Joachim; Wolff, Amy; Wiegert, J. Simon; Gee, Christine E.; Oertner, Thomas G.; Hanganu-Opatz, Ileana L.

    2017-01-01

    Coordinated activity patterns in the developing brain may contribute to the wiring of neuronal circuits underlying future behavioural requirements. However, causal evidence for this hypothesis has been difficult to obtain owing to the absence of tools for selective manipulation of oscillations during early development. We established a protocol that combines optogenetics with electrophysiological recordings from neonatal mice in vivo to elucidate the substrate of early network oscillations in the prefrontal cortex. We show that light-induced activation of layer II/III pyramidal neurons that are transfected by in utero electroporation with a high-efficiency channelrhodopsin drives frequency-specific spiking and boosts network oscillations within beta–gamma frequency range. By contrast, activation of layer V/VI pyramidal neurons causes nonspecific network activation. Thus, entrainment of neonatal prefrontal networks in fast rhythms relies on the activation of layer II/III pyramidal neurons. This approach used here may be useful for further interrogation of developing circuits, and their behavioural readout. PMID:28216627

  5. Active Summation of Excitatory Postsynaptic Potentials in Hippocampal CA3 Pyramidal Neurons

    NASA Astrophysics Data System (ADS)

    Urban, Nathaniel N.; Barrionuevo, German

    1998-09-01

    The manner in which the thousands of synaptic inputs received by a pyramidal neuron are summed is critical both to our understanding of the computations that may be performed by single neurons and of the codes used by neurons to transmit information. Recent work on pyramidal cell dendrites has shown that subthreshold synaptic inputs are modulated by voltage-dependent channels, raising the possibility that summation of synaptic responses is influenced by the active properties of dendrites. Here, we use somatic and dendritic whole-cell recordings to show that pyramidal cells in hippocampal area CA3 sum distal and proximal excitatory postsynaptic potentials sublinearly and actively, that the degree of nonlinearity depends on the magnitude and timing of the excitatory postsynaptic potentials, and that blockade of transient potassium channels linearizes summation. Nonlinear summation of synaptic inputs could have important implications for the computations performed by single neurons and also for the role of the mossy fiber and perforant path inputs to hippocampal area CA3.

  6. Postnatal Development of Synaptic Structure Proteins in Pyramidal Neuron Axon Initial Segments in Monkey Prefrontal Cortex

    PubMed Central

    Cruz, Dianne A.; Lovallo, Emily M.; Stockton, Steven; Rasband, Matthew; Lewis, David A.

    2009-01-01

    In the primate prefrontal cortex (PFC), the functional maturation of the synaptic connections of certain classes of GABA neurons is very complex. For example, the levels of both pre- and post-synaptic proteins that regulate GABA neurotransmission from the chandelier class of cortical interneurons to the axon initial segment (AIS) of pyramidal neurons undergo marked changes during both the perinatal period and adolescence in the monkey PFC. In order to understand the potential molecular mechanisms associated with these developmental refinements, we quantified the relative densities, laminar distributions, and lengths of pyramidal neuron AIS immunoreactive for ankyrin-G, ßIV spectrin, or gephyrin, three proteins involved in regulating synapse structure and receptor localization, in the PFC of rhesus monkeys ranging in age from birth through adulthood. Ankyrin-G- and ßIV spectrin-labeled AIS declined in density and length during the first six months postnatal, but then remained stable through adolescence and into adulthood. In contrast, the density of gephyrin-labeled AIS was stable until approximately 15 months of age and then markedly declined during adolescence. Thus, molecular determinants of the structural features that define GABA inputs to pyramidal neuron AIS in monkey PFC undergo distinct developmental trajectories with different types of changes occurring during the perinatal period and adolescence. In concert with previous data, these findings reveal a two-phase developmental process of GABAergic synaptic stability and GABA neurotransmission at chandelier cell inputs to pyramidal neurons that likely contributes to the protracted maturation of behaviors mediated by primate PFC circuitry. PMID:19330819

  7. Distinctive transcriptome alterations of prefrontal pyramidal neurons in schizophrenia and schizoaffective disorder

    PubMed Central

    Arion, Dominique; Corradi, John P.; Tang, Shaowu; Datta, Dibyadeep; Boothe, Franklyn; He, Aiqing; Cacace, Angela M.; Zaczek, Robert; Albright, Charles F.; Tseng, George; Lewis, David A.

    2014-01-01

    Schizophrenia is associated with alterations in working memory that reflect dysfunction of dorsolateral prefrontal cortex (DLPFC) circuitry. Working memory depends on the activity of excitatory pyramidal cells in DLPFC layer 3, and to a lesser extent in layer 5. Although many studies have profiled gene expression in DLPFC gray matter in schizophrenia, little is known about cell type-specific transcript expression in these two populations of pyramidal cells. We hypothesized that interrogating gene expression specifically in DLPFC layer 3 or 5 pyramidal cells would reveal new and/or more robust schizophrenia-associated differences that would provide new insights into the nature of pyramidal cell dysfunction in the illness. We also sought to determine the impact of other variables, such as a diagnosis of schizoaffective disorder or medication use at time of death, on the patterns of gene expression in pyramidal neurons. Individual pyramidal cells in DLPFC layers 3 or 5 were captured by laser microdissection from 36 subjects with schizophrenia or schizoaffective disorder and matched normal comparison subjects. The mRNA from cell collections was subjected to transcriptome profiling by microarray followed by qPCR validation. Expression of genes involved in mitochondrial (MT) or ubiquitin-proteasome system (UPS) functions were markedly down-regulated in the patient group (p values for MT-related and UPS-related pathways were <10−7 and <10−5 respectively). MT-related gene alterations were more prominent in layer 3 pyramidal cells, whereas UPS-related gene alterations were more prominent in layer 5 pyramidal cells. Many of these alterations were not present, or found to a lesser degree, in samples of DLPFC gray matter from the same subjects, suggesting that they are pyramidal cell-specific. Furthermore, these findings principally reflected alterations in the schizophrenia subjects, were not present or present to a lesser degree in the schizoaffective disorder subjects

  8. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex

    PubMed Central

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-01-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex. PMID:26762857

  9. Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex.

    PubMed

    Rojo, Concepción; Leguey, Ignacio; Kastanauskaite, Asta; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Benavides-Piccione, Ruth

    2016-06-01

    Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex.

  10. The pyramidal neuron in cerebral cortex following prenatal X-irradiation

    SciTech Connect

    Donoso, J.A.; Norton, S.

    1982-07-01

    Pregnant rats were subjected to whole body X-irradiation amounting to 125 R, on gestational day 15. Cortical pyramidal neurons were examined in irradiated and control offspring at 4 weeks and 4 to 6 months postnatally. All gestationally irradiated rats developed ectopic cortex located below the corpus callosum adjacent to the caudate nucleus in the forebrain. With the rapid Golgi stain, counts were made of dendritic spines on the apical dendrites of layer 5 pyramidal cells in the normally-located cortex and compared with similar neurons in the ectopias. Dendritic spines were present on all pyramidal cells but spines were more sparse on ectopic pyramidal cells. Electron microscopic examination of ectopic and layered cortex in irradiated rats showed axodendritic synapses on the spines and shafts of the dendrites and axosomatic synapses, all of which were indistinguishable morphologically from synapses in control cortex. As a result of the observations made with the light and electron microscopes, it is concluded that the ectopic cortex may contain functional cells in spite of the abnormal location of the tissue.

  11. Potassium channels control the interaction between active dendritic integration compartments in layer 5 cortical pyramidal neurons

    PubMed Central

    Harnett, Mark T.; Xu, Ning-Long; Magee, Jeffrey C.; Williams, Stephen R.

    2013-01-01

    Active dendritic synaptic integration enhances the computational power of neurons. Such nonlinear processing generates an object-localization signal in the apical dendritic tuft of layer 5B cortical pyramidal neurons during sensory-motor behaviour. Here we employ electrophysiological and optical approaches in brain-slices and behaving animals to investigate how excitatory synaptic input to this distal dendritic compartment influences neuronal output. We find that active dendritic integration throughout the apical dendritic tuft is highly compartmentalized by voltage-gated potassium (KV) channels. A high-density of both transient and sustained KV channels was observed in all apical dendritic compartments. These channels potently regulated the interaction between apical dendritic tuft, trunk, and axo-somatic integration zones to control neuronal output in vitro as well as the engagement of dendritic nonlinear processing in vivo during sensory-motor behaviour. Thus, KV channels dynamically tune the interaction between active dendritic integration compartments in layer 5B pyramidal neurons to shape behaviourally relevant neuronal computations. PMID:23931999

  12. Morphology of Pyramidal Neurons in the Rat Prefrontal Cortex: Lateralized Dendritic Remodeling by Chronic Stress

    PubMed Central

    Perez-Cruz, Claudia; Müller-Keuker, Jeanine I. H.; Heilbronner, Urs; Fuchs, Eberhard; Flügge, Gabriele

    2007-01-01

    The prefrontal cortex (PFC) plays an important role in the stress response. We filled pyramidal neurons in PFC layer III with neurobiotin and analyzed dendrites in rats submitted to chronic restraint stress and in controls. In the right prelimbic cortex (PL) of controls, apical and distal dendrites were longer than in the left PL. Stress reduced the total length of apical dendrites in right PL and abolished the hemispheric difference. In right infralimbic cortex (IL) of controls, proximal apical dendrites were longer than in left IL, and stress eliminated this hemispheric difference. No hemispheric difference was detected in anterior cingulate cortex (ACx) of controls, but stress reduced apical dendritic length in left ACx. These data demonstrate interhemispheric differences in the morphology of pyramidal neurons in PL and IL of control rats and selective effects of stress on the right hemisphere. In contrast, stress reduced dendritic length in the left ACx. PMID:18253468

  13. Ovarian hormone deficiency reduces intrinsic excitability and abolishes acute estrogen sensitivity in hippocampal CA1 pyramidal neurons

    PubMed Central

    Wu, Wendy W.; Adelman, John P.; Maylie, James

    2011-01-01

    Premature and uncompensated loss of ovarian hormones following ovariectomy (OVX) elevates the risks of cognitive impairment and dementia. These risks are prevented with estrogen (E2)-containing hormone replacement therapy initiated shortly following OVX but not after substantial delay. Currently the cellular bases underlying these clinical findings are unknown. At the cellular level, intrinsic membrane properties regulate the efficiency of synaptic inputs to initiate output action potentials (APs), thereby affecting neuronal communication hence cognitive processing. This study tested the hypothesis that in CA1 pyramidal neurons, intrinsic membrane properties and their acute regulation by E2 require ovarian hormones for maintenance. Whole-cell current clamp recordings were performed on neurons from ~7 months old OVX rats that experienced either short-term (10 days, control OVX) or long-term (5 months, OVXLT) ovarian hormone deficiency. The results reveal that long-term hormone deficiency reduced intrinsic membrane excitability (IE) as measured by the number of evoked action potentials (APs) and firing duration for a given current injection. This was accompanied by AP broadening, an increased slow afterhyperpolarization (sAHP), and faster accumulation of NaV channel inactivation during repetitive firing. In the control OVX neurons, E2 acutely increased IE and reduced the sAHP. In contrast, acute regulation of IE by E2 was absent in the OVXLT neurons. Since the degree of IE of hippocampal pyramidal neurons is positively related with hippocampus-dependent learning ability, and modulation of IE is observed following successful learning, these findings provide a framework for understanding hormone deficiency-related cognitive impairment and the critical window for therapy initiation. PMID:21325532

  14. Non-associative Potentiation of Perisomatic Inhibition Alters the Temporal Coding of Neocortical Layer 5 Pyramidal Neurons

    PubMed Central

    Lourenço, Joana; Pacioni, Simone; Rebola, Nelson; van Woerden, Geeske M.; Marinelli, Silvia; DiGregorio, David; Bacci, Alberto

    2014-01-01

    In the neocortex, the coexistence of temporally locked excitation and inhibition governs complex network activity underlying cognitive functions, and is believed to be altered in several brain diseases. Here we show that this equilibrium can be unlocked by increased activity of layer 5 pyramidal neurons of the mouse neocortex. Somatic depolarization or short bursts of action potentials of layer 5 pyramidal neurons induced a selective long-term potentiation of GABAergic synapses (LTPi) without affecting glutamatergic inputs. Remarkably, LTPi was selective for perisomatic inhibition from parvalbumin basket cells, leaving dendritic inhibition intact. It relied on retrograde signaling of nitric oxide, which persistently altered presynaptic GABA release and diffused to inhibitory synapses impinging on adjacent pyramidal neurons. LTPi reduced the time window of synaptic summation and increased the temporal precision of spike generation. Thus, increases in single cortical pyramidal neuron activity can induce an interneuron-selective GABAergic plasticity effectively altering the computation of temporally coded information. PMID:25003184

  15. De novo expression of neurokinin-1 receptors by spinoparabrachial lamina I pyramidal neurons following a peripheral nerve lesion.

    PubMed

    Saeed, Abeer W; Ribeiro-da-Silva, Alfredo

    2013-06-01

    Lamina I of the spinal dorsal horn is a major site of integration and transmission to higher centers of nociceptive information from the periphery. One important primary afferent population that transmits such information to the spinal cord expresses substance P (SP). These fibers terminate in contact with lamina I projection neurons that express the SP receptor, also known as the neurokinin-1 receptor (NK-1r). Three types of lamina I projection neurons have been described: multipolar, fusiform, and pyramidal. Most neurons of the first two types are thought to be nociceptive and express the NK-1r, whereas most pyramidal neurons are nonnociceptive and do not express the NK-1r. In this immunocytochemical and behavioral study, we induced a neuropathic pain-like condition in the rat by means of a polyethylene cuff placed around in the sciatic nerve. We document that this lesion led to a de novo expression of NK-1r on pyramidal neurons as well as a significant increase in SP-immunoreactive innervation onto these neurons. These phenotypic changes were evident at the time of onset of neuropathic pain-related behavior. Additionally, we show that, after a noxious stimulus (intradermal capsaicin injection), these NK-1r on pyramidal neurons were internalized, providing evidence that these neurons become responsive to peripheral noxious stimulation. We suggest that the changes following nerve lesion in the phenotype and innervation pattern of pyramidal neurons are of significance for neuropathic pain and/or limb temperature regulation.

  16. Effect, number and location of synapses made by single pyramidal cells onto aspiny interneurones of cat visual cortex.

    PubMed Central

    Buhl, E H; Tamás, G; Szilágyi, T; Stricker, C; Paulsen, O; Somogyi, P

    1997-01-01

    -event interval. 5. The probability density function of the peak amplitudes of the unitary EPSPs could be adequately fitted with a quantal model. Without quantal variance, however, the minimum number of components in the model, excluding the failures, exceeded the number of electron microscopically determined synaptic junctions for all five connections. In contrast, incorporating quantal variance gave a minimum number of components which was compatible with the number of synaptic junctions, and which fitted the data equally well as models incorporating additional components but no quantal variance. For this model with quantal variance with the minimum number of components the estimate of the quantal coefficient of variation ranged between 0.33 and 0.46, and the corresponding quantal sizes ranged between 260 and 657 microV. The peak EPSP amplitudes in two of the four connections with more than one synaptic junction could be adequately described by a uniform binomial model for transmitter release. 6. In conclusion, at least three distinct interneurone classes receive local excitatory pyramidal cell input which they relay to different compartments on their postsynaptic target neurones. The reliability of transmission is high, but the fast time course of the EPSPs constrains their temporal summation. Due to the relatively small amplitude of unitary EPSPs several convergent inputs will therefore be required to elicit suprathreshold responses. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:9161986

  17. On learning time delays between the spikes from different input neurons in a biophysical model of a pyramidal neuron.

    PubMed

    Koutsou, Achilleas; Bugmann, Guido; Christodoulou, Chris

    2015-10-01

    Biological systems are able to recognise temporal sequences of stimuli or compute in the temporal domain. In this paper we are exploring whether a biophysical model of a pyramidal neuron can detect and learn systematic time delays between the spikes from different input neurons. In particular, we investigate whether it is possible to reinforce pairs of synapses separated by a dendritic propagation time delay corresponding to the arrival time difference of two spikes from two different input neurons. We examine two subthreshold learning approaches where the first relies on the backpropagation of EPSPs (excitatory postsynaptic potentials) and the second on the backpropagation of a somatic action potential, whose production is supported by a learning-enabling background current. The first approach does not provide a learning signal that sufficiently differentiates between synapses at different locations, while in the second approach, somatic spikes do not provide a reliable signal distinguishing arrival time differences of the order of the dendritic propagation time. It appears that the firing of pyramidal neurons shows little sensitivity to heterosynaptic spike arrival time differences of several milliseconds. This neuron is therefore unlikely to be able to learn to detect such differences.

  18. [Electrical excitability of the apical dendrites of mammalian cortical pyramidal neurons].

    PubMed

    Fan, Shih-Fang

    2012-12-25

    The electrical excitability of the dendrites of the cortical neurons was first studied on the apical dendrites of the pyramidal neurons. Professor ZHANG Xiang-Tong (H-T Chang) made important contributions in the fifties of last century on this topic. Through numerous studies later on, it has been established that the electrical excitability of dendrites of different types of neurons, even different dendrites in the same neuron is different. For the apical dendrites of the cortical pyramidal neurons, neither a single nor a train of repetitive action potentials with constant frequency can reach its terminal portion. However, some of the burst repetitive responses with non-constant frequency of the apical dendrite elicited by direct current injected into the soma may reach the terminal portion. This may be due to: (1) the calcium ion concentration in the apical dendrite is increased by the burst activities, which, in turn, increases the electrical excitability of the apical dendrite and /or (2) some retrograde collaterals of axon of the activated soma reach the apical dendrite and release neurotransmitter glutamate, which changes the properties of the voltage-gated ion channels in the apical dendrite. Low electrical excitability of the apical dendrites seems to be essential for the processing of numerous income signals to the terminal portion of the apical dendrites.

  19. Basal Dendrites of Layer-III Pyramidal Neurons do not Scale with Changes in Cortical Magnification Factor in Macaque Primary Visual Cortex

    PubMed Central

    Oga, Tomofumi; Okamoto, Tsuguhisa; Fujita, Ichiro

    2016-01-01

    Neurons in the mammalian primary visual cortex (V1) are systematically arranged across the cortical surface according to the location of their receptive fields (RFs), forming a visuotopic (or retinotopic) map. Within this map, the foveal visual field is represented by a large cortical surface area, with increasingly peripheral visual fields gradually occupying smaller cortical areas. Although cellular organization in the retina, such as the spatial distribution of ganglion cells, can partially account for the eccentricity-dependent differences in the size of cortical representation, whether morphological differences exist across V1 neurons representing different eccentricities is unclear. In particular, morphological differences in dendritic field diameter might contribute to the magnified representation of the central visual field. Here, we addressed this question by measuring the basal dendritic arbors of pyramidal neurons of layer-IIIC and adjoining layer III sublayers (in the Hassler’s nomenclature) in macaque V1. We labeled layer-III pyramidal neurons at various retinotopic positions in V1 by injecting lightly fixed brain tissue with intracellular dye, and then compared dendritic morphology across regions in the retinotopic map representing 0–20° of eccentricity. The dendritic field area, total dendritic length, number of principal dendrites, branching complexity, spine density and total number of spines were all consistent across different retinotopic regions of V1. These results indicate that dendrites in layer-III pyramidal neurons are relatively homogeneous according to these morphometric parameters irrespective of their locations in this portion of the retinotopic map. The homogeneity of dendritic morphology in these neurons suggests that the emphasis of central visual field representation is not attributable to changes in the basal dendritic arbors of pyramidal neurons in layer III, but is likely the result of successive processes earlier in the

  20. Basal Dendrites of Layer-III Pyramidal Neurons do not Scale with Changes in Cortical Magnification Factor in Macaque Primary Visual Cortex.

    PubMed

    Oga, Tomofumi; Okamoto, Tsuguhisa; Fujita, Ichiro

    2016-01-01

    Neurons in the mammalian primary visual cortex (V1) are systematically arranged across the cortical surface according to the location of their receptive fields (RFs), forming a visuotopic (or retinotopic) map. Within this map, the foveal visual field is represented by a large cortical surface area, with increasingly peripheral visual fields gradually occupying smaller cortical areas. Although cellular organization in the retina, such as the spatial distribution of ganglion cells, can partially account for the eccentricity-dependent differences in the size of cortical representation, whether morphological differences exist across V1 neurons representing different eccentricities is unclear. In particular, morphological differences in dendritic field diameter might contribute to the magnified representation of the central visual field. Here, we addressed this question by measuring the basal dendritic arbors of pyramidal neurons of layer-IIIC and adjoining layer III sublayers (in the Hassler's nomenclature) in macaque V1. We labeled layer-III pyramidal neurons at various retinotopic positions in V1 by injecting lightly fixed brain tissue with intracellular dye, and then compared dendritic morphology across regions in the retinotopic map representing 0-20° of eccentricity. The dendritic field area, total dendritic length, number of principal dendrites, branching complexity, spine density and total number of spines were all consistent across different retinotopic regions of V1. These results indicate that dendrites in layer-III pyramidal neurons are relatively homogeneous according to these morphometric parameters irrespective of their locations in this portion of the retinotopic map. The homogeneity of dendritic morphology in these neurons suggests that the emphasis of central visual field representation is not attributable to changes in the basal dendritic arbors of pyramidal neurons in layer III, but is likely the result of successive processes earlier in the retino

  1. Intracellular activities related to in vitro hippocampal sharp waves are altered in CA3 pyramidal neurons of aged mice.

    PubMed

    Moradi-Chameh, H; Peng, J; Wu, C; Zhang, L

    2014-09-26

    Pyramidal neurons in the hippocampal CA3 area interconnect intensively via recurrent axonal collaterals, and such CA3-to-CA3 recurrent circuitry plays important roles in the generation of hippocampal network activities. In particular, the CA3 circuitry is able to generate spontaneous sharp waves (SPWs) when examined in vitro. These in vitro SPWs are thought to result from the network activity of GABAergic inhibitory interneurons as SPW-correlating intracellular activities are featured with strong IPSPs in pyramidal neurons and EPSPs or spikes in GABAergic interneurons. In view of accumulating evidence indicating a decrease in subgroups of hippocampal GABAergic interneurons in aged animals, we test the hypothesis that the intracellular activities related to in vitro SPWs are altered in CA3 pyramidal neurons of aged mice. Hippocampal slices were prepared from adult and aged C57 black mice (ages 3-6 and 24-28months respectively). Population and single-cell activities were examined via extracellular and whole-cell patch-clamp recordings. CA3 SPW frequencies were not significantly different between the slices of adult and aged mice but SPW-correlating intracellular activities featured weaker IPSC components in aged CA3 pyramidal neurons compared to adult neurons. It was unlikely that this latter phenomenon was due to general impairments of GABAergic synapses in the aged CA3 circuitry as evoked IPSC responses and pharmacologically isolated IPSCs were observed in aged CA3 pyramidal neurons. In addition, aged CA3 pyramidal neurons displayed more positive resting potentials and had a higher propensity of burst firing than adult neurons. We postulate that alterations of GABAergic network activity may explain the reduced IPCS contributions to in vitro SPWs in aged CA3 pyramidal neurons. Overall, our present observations are supportive of the notion that excitability of hippocampal CA3 circuitry is increased in aged mice.

  2. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels.

    PubMed

    Kratzer, Stephan; Mattusch, Corinna; Metzger, Michael W; Dedic, Nina; Noll-Hussong, Michael; Kafitz, Karl W; Eder, Matthias; Deussing, Jan M; Holsboer, Florian; Kochs, Eberhard; Rammes, Gerhard

    2013-01-01

    Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS) and field excitatory postsynaptic potentials (fEPSP) were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean ± Standard error of the mean; 231.8 ± 31.2% of control; n = 10) while neither affecting fEPSPs (104.3 ± 4.2%; n = 10) nor long-term potentiation (LTP). However, when Schaffer-collaterals were excited via action potentials (APs) generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n = 8) and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1) expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca(2+)-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity.

  3. Activation of CRH receptor type 1 expressed on glutamatergic neurons increases excitability of CA1 pyramidal neurons by the modulation of voltage-gated ion channels

    PubMed Central

    Kratzer, Stephan; Mattusch, Corinna; Metzger, Michael W.; Dedic, Nina; Noll-Hussong, Michael; Kafitz, Karl W.; Eder, Matthias; Deussing, Jan M.; Holsboer, Florian; Kochs, Eberhard; Rammes, Gerhard

    2013-01-01

    Corticotropin-releasing hormone (CRH) plays an important role in a substantial number of patients with stress-related mental disorders, such as anxiety disorders and depression. CRH has been shown to increase neuronal excitability in the hippocampus, but the underlying mechanisms are poorly understood. The effects of CRH on neuronal excitability were investigated in acute hippocampal brain slices. Population spikes (PS) and field excitatory postsynaptic potentials (fEPSP) were evoked by stimulating Schaffer-collaterals and recorded simultaneously from the somatic and dendritic region of CA1 pyramidal neurons. CRH was found to increase PS amplitudes (mean ± Standard error of the mean; 231.8 ± 31.2% of control; n = 10) while neither affecting fEPSPs (104.3 ± 4.2%; n = 10) nor long-term potentiation (LTP). However, when Schaffer-collaterals were excited via action potentials (APs) generated by stimulation of CA3 pyramidal neurons, CRH increased fEPSP amplitudes (119.8 ± 3.6%; n = 8) and the magnitude of LTP in the CA1 region. Experiments in slices from transgenic mice revealed that the effect on PS amplitude is mediated exclusively by CRH receptor 1 (CRHR1) expressed on glutamatergic neurons. The effects of CRH on PS were dependent on phosphatase-2B, L- and T-type calcium channels and voltage-gated potassium channels but independent on intracellular Ca2+-elevation. In patch-clamp experiments, CRH increased the frequency and decay times of APs and decreased currents through A-type and delayed-rectifier potassium channels. These results suggest that CRH does not affect synaptic transmission per se, but modulates voltage-gated ion currents important for the generation of APs and hence elevates by this route overall neuronal activity. PMID:23882180

  4. Functional changes in piriform cortex pyramidal neurons in the chronic methamphetamine-treated rat.

    PubMed

    Hori, Nobuaki; Kadota, Tomoko; Akaike, Norio

    2015-01-01

    Chronic treatment of rats with methamphetamine (MAP) causes a range of functional changes to the central nervous system (CNS), including a toxicity that is widespread throughout the brain (Frost and Cadet 2000; Fasihpour et al. 2013). In this report, we examined the effect of chronic MAP treatment on pyramidal neurons of the rat piriform cortex, an area involved in sensory processing, associative learning and a model system for studies on synaptic plasticity. MAP treatment significantly depolarized the membrane potential and decreased neuronal input resistance. Furthermore, the voltage-dependence of both AMPA and NMDA responses was disturbed by chronic MAP treatment, and the extent of long-term potentiation (LTP) was decreased. Morphological changes of MAP-treated rat pyramidal neurons were observed as blebbing of the dendrite trees. The changes we observed represent detrimental effects on the function of piriform cortical neurons further illustrating deficits in synaptic plasticity extend beyond the hippocampus. These changes may contribute to behavioural deficits in chronic MAP-treated animals.

  5. Evidence of altered inhibition in layer V pyramidal neurons from neocortex of Kcna1-null mice.

    PubMed

    van Brederode, J F; Rho, J M; Cerne, R; Tempel, B L; Spain, W J

    2001-01-01

    Mice lacking the potassium channel subunit KCNA1 exhibit a severe epileptic phenotype beginning at an early postnatal age. The precise cellular physiological substrates for these seizures are unclear, as is the site of origin. Since KCNA1 mRNA in normal mice is expressed in the neocortex, we asked whether neurons in the neocortex of three to four week-old Kcna1-null mutants exhibit evidence of hyperexcitability. Layer V pyramidal neurons were directly visualized in brain slices with infrared differential-interference contrast microscopy and evaluated with cellular electrophysiological techniques. There were no significant differences in intrinsic membrane properties and action potential shape between Kcna1-null and wild-type mice, consistent with previous findings in hippocampal slice recordings. However, the frequency of spontaneous post-synaptic currents was significantly higher in Kcna1-null compared to wild-type mice. The frequency of spontaneous inhibitory post-synaptic currents and miniature (action-potential-independent) inhibitory post-synaptic currents was also significantly higher in Kcna1-null compared to wild-type mice. However, the frequency of spontaneous and miniature excitatory post-synaptic currents was not different in these two groups of animals. Comparison of the amplitude and kinetics of miniature inhibitory and excitatory post-synaptic currents revealed differences in amplitude, rise time and half-width between Kcna1-null and wild-type mice. Our data indicate that the inhibitory drive onto layer V pyramidal neurons is increased in Kcna1 knockout mice, either directly through an increased spontaneous release of GABA from presynaptic terminals contacting layer V pyramidal neurons, or an enhanced excitatory synaptic input to inhibitory interneurons.

  6. Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors

    PubMed Central

    Graves, Austin R; Moore, Shannon J; Bloss, Erik B; Mensh, Brett D; Kath, William L; Spruston, Nelson

    2012-01-01

    Summary Relating the function of neuronal cell types to information processing and behavior is a central goal of neuroscience. In the hippocampus, pyramidal cells in CA1 and the subiculum process sensory and motor cues to form a cognitive map encoding spatial, contextual, and emotional information, which they transmit throughout the brain. Do these cells constitute a single class, or are there multiple cell types with specialized functions? Using unbiased cluster analysis, we show that there are two morphologically and electrophysiologically distinct principal cell types that carry hippocampal output. We show further that these two cell types are inversely modulated by the synergistic action of glutamate and acetylcholine acting on metabotropic receptors that are central to hippocampal function. Combined with prior connectivity studies, our results support a model of hippocampal processing in which the two pyramidal cell types are predominantly segregated into two parallel pathways that process distinct modalities of information. PMID:23177962

  7. Coexistence of Multiple Types of Synaptic Plasticity in Individual Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Edelmann, Elke; Cepeda-Prado, Efrain; Leßmann, Volkmar

    2017-01-01

    Understanding learning and memory mechanisms is an important goal in neuroscience. To gain insights into the underlying cellular mechanisms for memory formation, synaptic plasticity processes are studied with various techniques in different brain regions. A valid model to scrutinize different ways to enhance or decrease synaptic transmission is recording of long-term potentiation (LTP) or long-term depression (LTD). At the single cell level, spike timing-dependent plasticity (STDP) protocols have emerged as a powerful tool to investigate synaptic plasticity with stimulation paradigms that also likely occur during memory formation in vivo. Such kind of plasticity can be induced by different STDP paradigms with multiple repeat numbers and stimulation patterns. They subsequently recruit or activate different molecular pathways and neuromodulators for induction and expression of STDP. Dopamine (DA) and brain-derived neurotrophic factor (BDNF) have been recently shown to be important modulators for hippocampal STDP at Schaffer collateral (SC)-CA1 synapses and are activated exclusively by distinguishable STDP paradigms. Distinct types of parallel synaptic plasticity in a given neuron depend on specific subcellular molecular prerequisites. Since the basal and apical dendrites of CA1 pyramidal neurons are known to be heterogeneous, and distance-dependent dendritic gradients for specific receptors and ion channels are described, the dendrites might provide domain specific locations for multiple types of synaptic plasticity in the same neuron. In addition to the distinct signaling and expression mechanisms of various types of LTP and LTD, activation of these different types of plasticity might depend on background brain activity states. In this article, we will discuss some ideas why multiple forms of synaptic plasticity can simultaneously and independently coexist and can contribute so effectively to increasing the efficacy of memory storage and processing capacity of the

  8. Influences of nanoparticle zinc oxide on acutely isolated rat hippocampal CA3 pyramidal neurons.

    PubMed

    Zhao, Jingxia; Xu, Lanju; Zhang, Tao; Ren, Guogang; Yang, Zhuo

    2009-03-01

    The effects of zinc oxide nanoparticles (nano-ZnO) on the properties of voltage-dependent sodium, potassium currents and evoked action potentials were studied in acutely isolated rat hippocampal CA3 pyramidal neurons at postnatal ages of 10-14 days rats using the whole-cell patch-clamp technique. The results indicated that: (1) in the present of final concentration of 10(-4)g/ml nano-ZnO, the current-voltage curve of sodium current (I(Na)) was decreased, and the peak amplitudes of I(Na) were increased considerably from -50 to +20mV (p<0.05). Meanwhile, the inactivation and the recovery from inactivation of I(Na) were also promoted by the nano-ZnO solution (10(-4)g/ml) (p<0.01). However, the steady-state activation curve of I(Na) was not shifted by the nano-ZnO. (2) The amplitudes of transient outward potassium current (I(A)) were increased by the nano-ZnO solution (10(-4)g/ml), while the current-voltage curve of delayed rectifier potassium current (I(K)) was significantly increased from +20 to +90mV (p<0.05). However, it is apparent that the nano-ZnO solution did not shift the steady-state activation curve of I(A) and I(K), and neither had significant effects on the inactivation and the recovery from inactivation of I(A). (3) Peak amplitude and overshoot of the evoked single action potential were increased and half-width was diminished in the presence of the 10(-4)g/ml nano-ZnO solution (p<0.05). Simultaneously, a prolonged depolarizing current injection enhanced (p<0.05) repetitive firing evoked firing rate. These results suggested that 10(-4)g/ml nano-ZnO solution can lead to an enhancement in the current amplitudes of I(Na) and I(K) by increasing the opening number of sodium channels, delaying rectifier potassium channels, and enhancing the excitability of neurons, which lead to Na(+) influx and the accumulation of intracellular Na(+), as well as K(+) efflux plus the loss of cytoplasmic K(+). These may disturb the ionic homeostasis and the physiological

  9. Membrane Potential Dynamics of CA1 Pyramidal Neurons During Hippocampal Ripples in Awake Mice

    PubMed Central

    Hulse, Brad K.; Moreaux, Laurent C.; Lubenov, Evgueniy V.; Siapas, Athanassios G.

    2016-01-01

    Ripples are high-frequency oscillations associated with population bursts in area CA1 of the hippocampus that play a prominent role in theories of memory consolidation. While spiking during ripples has been extensively studied, our understanding of the subthreshold behavior of hippocampal neurons during these events remains incomplete. Here, we combine in vivo whole-cell and multisite extracellular recordings to characterize the membrane potential dynamics of identified CA1 pyramidal neurons during ripples. We find that the subthreshold depolarization during ripples is uncorrelated with the net excitatory input to CA1, while the post-ripple hyperpolarization varies proportionately. This clarifies the circuit mechanism keeping most neurons silent during ripples. On a finer time scale, the phase delay between intracellular and extracellular ripple oscillations varies systematically with membrane potential. Such smoothly varying delays are inconsistent with models of intracellular ripple generation involving perisomatic inhibition alone. Instead, they suggest that ripple-frequency excitation leading inhibition shapes intracellular ripple oscillations. PMID:26889811

  10. Regulation of GABAergic inputs to CA1 pyramidal neurons by nicotinic receptors and kynurenic acid.

    PubMed

    Banerjee, Jyotirmoy; Alkondon, Manickavasagom; Pereira, Edna F R; Albuquerque, Edson X

    2012-05-01

    Impaired α7 nicotinic acetylcholine receptor (nAChR) function and GABAergic transmission in the hippocampus and elevated brain levels of kynurenic acid (KYNA), an astrocyte-derived metabolite of the kynurenine pathway, are key features of schizophrenia. KYNA acts as a noncompetitive antagonist with respect to agonists at both α7 nAChRs and N-methyl-D-aspartate receptors. Here, we tested the hypothesis that in hippocampal slices tonically active α7 nAChRs control GABAergic transmission to CA1 pyramidal neurons and are sensitive to inhibition by rising levels of KYNA. The α7 nAChR-selective antagonist α-bungarotoxin (α-BGT; 100 nM) and methyllycaconitine (MLA; 10 nM), an antagonist at α7 and other nAChRs, reduced by 51.3 ± 1.3 and 65.2 ± 1.5%, respectively, the frequency of GABAergic postsynaptic currents (PSCs) recorded from CA1 pyramidal neurons. MLA had no effect on miniature GABAergic PSCs. Thus, GABAergic synaptic activity in CA1 pyramidal neurons is maintained, in part, by tonically active α7 nAChRs located on the preterminal region of axons and/or the somatodendritic region of interneurons that synapse onto the neurons under study. L-Kynurenine (20 or 200 μM) or KYNA (20-200 μM) suppressed concentration-dependently the frequency of GABAergic PSCs; the inhibitory effect of 20 μM L-kynurenine had an onset time of approximately 35 min and could not be detected in the presence of 100 nM α-BGT. These results suggest that KYNA levels generated from 20 μM kynurenine inhibit tonically active α7 nAChR-dependent GABAergic transmission to the pyramidal neurons. Disruption of nAChR-dependent GABAergic transmission by mildly elevated levels of KYNA can be an important determinant of the cognitive deficits presented by patients with schizophrenia.

  11. Temporal synchrony and gamma-to-theta power conversion in the dendrites of CA1 pyramidal neurons.

    PubMed

    Vaidya, Sachin P; Johnston, Daniel

    2013-12-01

    Timing is a crucial aspect of synaptic integration. For pyramidal neurons that integrate thousands of synaptic inputs spread across hundreds of microns, it is thus a challenge to maintain the timing of incoming inputs at the axo-somatic integration site. Here we show that pyramidal neurons in the rodent hippocampus use a gradient of inductance in the form of hyperpolarization-activated cation-nonselective (HCN) channels as an active mechanism to counteract location-dependent temporal differences of dendritic inputs at the soma. Using simultaneous multi-site whole-cell recordings complemented by computational modeling, we find that this intrinsic biophysical mechanism produces temporal synchrony of rhythmic inputs in the theta and gamma frequency ranges across wide regions of the dendritic tree. While gamma and theta oscillations are known to synchronize activity across space in neuronal networks, our results identify a new mechanism by which this synchrony extends to activity within single pyramidal neurons with complex dendritic arbors.

  12. A method for high fidelity optogenetic control of individual pyramidal neurons in vivo.

    PubMed

    Nakamura, Shinya; Baratta, Michael V; Cooper, Donald C

    2013-09-02

    Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior.

  13. In Vivo Monosynaptic Excitatory Transmission between Layer 2 Cortical Pyramidal Neurons

    PubMed Central

    Jouhanneau, Jean-Sébastien; Kremkow, Jens; Dorrn, Anja L.; Poulet, James F.A.

    2015-01-01

    Summary Little is known about the properties of monosynaptic connections between identified neurons in vivo. We made multiple (two to four) two-photon targeted whole-cell recordings from neighboring layer 2 mouse somatosensory barrel cortex pyramidal neurons in vivo to investigate excitatory monosynaptic transmission in the hyperpolarized downstate. We report that pyramidal neurons form a sparsely connected (6.7% connectivity) network with an overrepresentation of bidirectional connections. The majority of unitary excitatory postsynaptic potentials were small in amplitude (<0.5 mV), with a small minority >1 mV. The coefficient of variation (CV = 0.74) could largely be explained by the presence of synaptic failures (22%). Both the CV and failure rates were reduced with increasing amplitude. The mean paired-pulse ratio was 1.15 and positively correlated with the CV. Our approach will help bridge the gap between connectivity and function and allow investigations into the impact of brain state on monosynaptic transmission and integration. PMID:26670044

  14. Impact of calcium-activated potassium channels on NMDA spikes in cortical layer 5 pyramidal neurons

    PubMed Central

    Bock, Tobias

    2016-01-01

    Active electrical events play an important role in shaping signal processing in dendrites. As these events are usually associated with an increase in intracellular calcium, they are likely to be under the control of calcium-activated potassium channels. Here, we investigate the impact of calcium-activated potassium channels on N-methyl-d-aspartate (NMDA) receptor-dependent spikes, or NMDA spikes, evoked by glutamate iontophoresis onto basal dendrites of cortical layer 5 pyramidal neurons. We found that small-conductance calcium-activated potassium channels (SK channels) act to reduce NMDA spike amplitude but at the same time, also decrease the iontophoretic current required for their generation. This SK-mediated decrease in NMDA spike threshold was dependent on R-type voltage-gated calcium channels and indicates a counterintuitive, excitatory effect of SK channels on NMDA spike generation, whereas the capacity of SK channels to suppress NMDA spike amplitude is in line with the expected inhibitory action of potassium channels on dendritic excitability. Large-conductance calcium-activated potassium channels had no significant impact on NMDA spikes, indicating that these channels are either absent from basal dendrites or not activated by NMDA spikes. These experiments reveal complex and opposing interactions among NMDA receptors, SK channels, and voltage-gated calcium channels in basal dendrites of cortical layer 5 pyramidal neurons during NMDA spike generation, which are likely to play an important role in regulating the way these neurons integrate the thousands of synaptic inputs they receive. PMID:26936985

  15. Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.

    PubMed

    Izumi, Y; Svrakic, N; O'Dell, K; Zorumski, C F

    2013-03-13

    Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. Based on this, we hypothesize that metabolic stressors, including hyperammonemia, promote untimely NMDAR activation and result in neural adaptations that include the synthesis of allopregnanolone (alloP) and other GABA-potentiating neurosteroids that dampen neuronal activity and impair LTP and memory formation. Using an antibody against 5α-reduced neurosteroids, we found that 100 μM ammonia acutely enhanced neurosteroid immunostaining in pyramidal neurons in the CA1 region of rat hippocampal slices. The enhanced staining was blocked by finasteride, a selective inhibitor of 5α-reductase, a key enzyme required for alloP synthesis. Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia.

  16. A Method for High Fidelity Optogenetic Control of Individual Pyramidal Neurons In vivo

    PubMed Central

    Cooper, Donald C.

    2013-01-01

    Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior. PMID:24022017

  17. Persistent Sodium Current Drives Conditional Pacemaking in CA1 Pyramidal Neurons under Muscarinic Stimulation

    PubMed Central

    Yamada-Hanff, Jason

    2013-01-01

    Hippocampal CA1 pyramidal neurons are normally quiescent but can fire spontaneously when stimulated by muscarinic agonists. In brain slice recordings from mouse CA1 pyramidal neurons, we examined the ionic basis of this activity using interleaved current-clamp and voltage-clamp experiments. Both in control and after muscarinic stimulation, the steady-state current–voltage curve was dominated by inward TTX-sensitive persistent sodium current (INaP) that activated near −75 mV and increased steeply with depolarization. In control, total membrane current was net outward (hyperpolarizing) near −70 mV so that cells had a stable resting potential. Muscarinic stimulation activated a small nonselective cation current so that total membrane current near −70 mV shifted to become barely net inward (depolarizing). The small depolarization triggers regenerative activation of INaP, which then depolarizes the cell from −70 mV to spike threshold. We quantified the relative contributions of INaP, hyperpolarization-activated cation current (Ih), and calcium current to pacemaking by using the cell's own firing as a voltage command along with specific blockers. TTX-sensitive sodium current was substantial throughout the entire interspike interval, increasing as the membrane potential approached threshold, while both Ih and calcium current were minimal. Thus, spontaneous activity is driven primarily by activation of INaP in a positive feedback loop starting near −70 mV and providing increasing inward current to threshold. These results show that the pacemaking “engine” from INaP is an inherent property of CA1 pyramidal neurons that can be engaged or disengaged by small shifts in net membrane current near −70 mV, as by muscarinic stimulation. PMID:24048831

  18. Action potential modulation in CA1 pyramidal neuron axons facilitates OLM interneuron activation in recurrent inhibitory microcircuits of rat hippocampus.

    PubMed

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron-O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron-interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits.

  19. Dendritic vulnerability in neurodegenerative disease: insights from analyses of cortical pyramidal neurons in transgenic mouse models

    PubMed Central

    Weaver, Christina M.; Rocher, Anne B.; Rodriguez, Alfredo; Crimins, Johanna L.; Dickstein, Dara L.; Wearne, Susan L.; Hof, Patrick R.

    2011-01-01

    In neurodegenerative disorders, such as Alzheimer’s disease, neuronal dendrites and dendritic spines undergo significant pathological changes. Because of the determinant role of these highly dynamic structures in signaling by individual neurons and ultimately in the functionality of neuronal networks that mediate cognitive functions, a detailed understanding of these changes is of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the abnormal production and aggregation of amyloid and tau proteins, because of the key role that these proteins play in neurodegenerative disease. This review showcases the multidimensional approach taken by our collaborative group to increase understanding of pathological mechanisms in neurodegenerative disease using these mouse models. This approach includes analyses of empirical 3D morphological and electrophysiological data acquired from frontal cortical pyramidal neurons using confocal laser scanning microscopy and whole-cell patch-clamp recording techniques, combined with computational modeling methodologies. These collaborative studies are designed to shed insight on the repercussions of dystrophic changes in neocortical neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in dementia. PMID:20177698

  20. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons.

    PubMed

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-02-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter--describing somatic integration--and the spike-history filter--accounting for spike-frequency adaptation--dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations.

  1. Role of GABAA inhibition in modulation of pyramidal tract neuron activity during postural corrections

    PubMed Central

    Tamarova, Zinaida A; Sirota, Mikhail G; Orlovsky, Grigori N; Deliagina, Tatiana G; Beloozerova, Irina N

    2007-01-01

    In a previous study we demonstrated that the activity of pyramidal tract neurons (PTNs) of the motor cortex is modulated in relation to postural corrections evoked by periodical tilts of the animal. The modulation included an increase in activity in one phase of the tilt cycle and a decrease in the other phase. It is known that the motor cortex contains a large population of inhibitory GABAergic neurons. How do these neurons participate in periodic modulation of PTNs? The goal of this study was to investigate the role of GABAA inhibitory neurons of the motor cortex in the modulation of postural-related PTN activity. Using extracellular electrodes with attached micropipettes, we recorded the activity of PTNs in cats maintaining balance on a tilting platform both before and after iontophoretic application of the GABAA receptor antagonists gabazine or bicuculline. The tilt-related activity of 93% of PTNs was affected by GABAA receptor antagonists. In 88% of cells, peak activity increased by 75 ± 50% (mean ± SD). In contrast, the trough activity changed by a much smaller value and almost as many neurons showed a decrease as showed an increase. In 73% of the neurons, the phase position of the peak activity did not change or changed by no more than 0.1 of a cycle. We conclude that the GABAergic system of the motor cortex reduces the posture-related responses of PTNs but has little role in determining their response timing. PMID:17425574

  2. Enhanced Sensitivity to Rapid Input Fluctuations by Nonlinear Threshold Dynamics in Neocortical Pyramidal Neurons

    PubMed Central

    Mensi, Skander; Hagens, Olivier; Gerstner, Wulfram; Pozzorini, Christian

    2016-01-01

    The way in which single neurons transform input into output spike trains has fundamental consequences for network coding. Theories and modeling studies based on standard Integrate-and-Fire models implicitly assume that, in response to increasingly strong inputs, neurons modify their coding strategy by progressively reducing their selective sensitivity to rapid input fluctuations. Combining mathematical modeling with in vitro experiments, we demonstrate that, in L5 pyramidal neurons, the firing threshold dynamics adaptively adjust the effective timescale of somatic integration in order to preserve sensitivity to rapid signals over a broad range of input statistics. For that, a new Generalized Integrate-and-Fire model featuring nonlinear firing threshold dynamics and conductance-based adaptation is introduced that outperforms state-of-the-art neuron models in predicting the spiking activity of neurons responding to a variety of in vivo-like fluctuating currents. Our model allows for efficient parameter extraction and can be analytically mapped to a Generalized Linear Model in which both the input filter—describing somatic integration—and the spike-history filter—accounting for spike-frequency adaptation—dynamically adapt to the input statistics, as experimentally observed. Overall, our results provide new insights on the computational role of different biophysical processes known to underlie adaptive coding in single neurons and support previous theoretical findings indicating that the nonlinear dynamics of the firing threshold due to Na+-channel inactivation regulate the sensitivity to rapid input fluctuations. PMID:26907675

  3. Early postnatal stress suppresses the developmental trajectory of hippocampal pyramidal neurons: the role of CRHR1.

    PubMed

    Liu, Rui; Yang, Xiao-Dun; Liao, Xue-Mei; Xie, Xiao-Meng; Su, Yun-Ai; Li, Ji-Tao; Wang, Xiao-Dong; Si, Tian-Mei

    2016-12-01

    Adverse experiences early in life hamper the development and maturation of the hippocampus, but how early-life stress perturbs the developmental trajectory of the hippocampus across various life stages and the underlying molecular mechanisms remain to be investigated. In this study, we stressed male mice from postnatal day 2 (P2) to P9, and examined the potential role of CRHR1 in postnatal stress-induced structural remodeling of hippocampal CA3 pyramidal neurons directly after stress (P9), in mid-adolescence (P35) and in adulthood (P90). We found that early-life stress exposure significantly reduced apical dendritic arborization and spine density in CA3 neurons on P9 and P90. Moreover, postnatally stressed neurons underwent increased pruning of spines, especially thin spines, between P35 and P90. These stress-induced immediate and long-term structural abnormalities could be abolished by daily systemic administration of the CRHR1 antagonist antalarmin (20 µg/g of body weight) during stress exposure. However, such treatment strategy failed to attenuate the deleterious stress effects in mid-adolescence on P35. We then extended antalarmin treatment until the end of the second postnatal week, and found that prolonged blockade of CRHR1 could prevent the mid-term impact of early postnatal stress on structural remodeling of CA3 neurons. Our study characterized the influences of early-life stress on the developmental trajectory of hippocampal pyramidal neurons, and highlighted the critical role of CRHR1 in modulating these negative outcomes evoked by early-life stress.

  4. Ephrin-B1 controls the columnar distribution of cortical pyramidal neurons by restricting their tangential migration.

    PubMed

    Dimidschstein, Jordane; Passante, Lara; Dufour, Audrey; van den Ameele, Jelle; Tiberi, Luca; Hrechdakian, Tatyana; Adams, Ralf; Klein, Rüdiger; Lie, Dieter Chichung; Jossin, Yves; Vanderhaeghen, Pierre

    2013-09-18

    Neurons of the cerebral cortex are organized in layers and columns. Unlike laminar patterning, the mechanisms underlying columnar organization remain largely unexplored. Here, we show that ephrin-B1 plays a key role in this process through the control of nonradial steps of migration of pyramidal neurons. In vivo gain of function of ephrin-B1 resulted in a reduction of tangential motility of pyramidal neurons, leading to abnormal neuronal clustering. Conversely, following genetic disruption of ephrin-B1, cortical neurons displayed a wider lateral dispersion, resulting in enlarged ontogenic columns. Dynamic analyses revealed that ephrin-B1 controls the lateral spread of pyramidal neurons by limiting neurite extension and tangential migration during the multipolar phase. Furthermore, we identified P-Rex1, a guanine-exchange factor for Rac3, as a downstream ephrin-B1 effector required to control migration during the multipolar phase. Our results demonstrate that ephrin-B1 inhibits nonradial migration of pyramidal neurons, thereby controlling the pattern of cortical columns.

  5. Fractal dimension of apical dendritic arborization differs in the superficial and the deep pyramidal neurons of the rat cerebral neocortex.

    PubMed

    Puškaš, Nela; Zaletel, Ivan; Stefanović, Bratislav D; Ristanović, Dušan

    2015-03-04

    Pyramidal neurons of the mammalian cerebral cortex have specific structure and pattern of organization that involves the presence of apical dendrite. Morphology of the apical dendrite is well-known, but quantification of its complexity still remains open. Fractal analysis has proved to be a valuable method for analyzing the complexity of dendrite morphology. The aim of this study was to establish the fractal dimension of apical dendrite arborization of pyramidal neurons in distinct neocortical laminae by using the modified box-counting method. A total of thirty, Golgi impregnated neurons from the rat brain were analyzed: 15 superficial (cell bodies located within lamina II-III), and 15 deep pyramidal neurons (cell bodies situated within lamina V-VI). Analysis of topological parameters of apical dendrite arborization showed no statistical differences except in total dendritic length (p=0.02), indicating considerable homogeneity between the two groups of neurons. On the other hand, average fractal dimension of apical dendrite was 1.33±0.06 for the superficial and 1.24±0.04 for the deep cortical neurons, showing statistically significant difference between these two groups (p<0.001). In conclusion, according to the fractal dimension values, apical dendrites of the superficial pyramidal neurons tend to show higher structural complexity compared to the deep ones.

  6. Histone deacetylase 2 cell autonomously suppresses excitatory and enhances inhibitory synaptic function in CA1 pyramidal neurons.

    PubMed

    Hanson, Jesse E; Deng, Lunbin; Hackos, David H; Lo, Shih-Ching; Lauffer, Benjamin E; Steiner, Pascal; Zhou, Qiang

    2013-04-03

    Histone deacetylase 2 (HDAC2) negatively regulates excitatory synapse number and memory performance. However, whether HDAC2 regulation of excitatory synapses occurs in a cell-autonomous manner and whether HDAC2 regulates inhibitory synaptic functions are not well understood. To examine these aspects of HDAC2 function, we used sparse transfection of rat hippocampal slice cultures and whole-cell recordings in pyramidal neurons. HDAC2 knockdown (KD) in single postsynaptic pyramidal neurons enhanced, whereas HDAC2 overexpression (OE) reduced, excitatory synaptic transmission. Postsynaptic KD of HDAC2 also facilitated expression of long-term potentiation induced by subthreshold induction stimuli, without altering long-term depression. In contrast, HDAC2 KD reduced, whereas HDAC2 OE enhanced, inhibitory synaptic transmission. Alterations of postsynaptic GABA(A) receptors (GABA(A)Rs) likely underlie the impact of HDAC2 on inhibitory transmission. Consistent with this, we observed reduced transcript and protein levels of the GABA(A)R γ2 subunit and reduced surface expression of the α2 subunit after HDAC2 KD. Furthermore, we observed a reduction in synaptic but not tonic GABA(A)R currents by HDAC2 KD, suggesting that HDAC2 selectively affects synaptic abundance of functional GABA(A)Rs. Immunostaining for postsynaptic GABA(A)Rs confirmed that HDAC2 KD and OE can regulate the synaptic abundance of these receptors. Together, these results highlight a role for HDAC2 in suppressing synaptic excitation and enhancing synaptic inhibition of hippocampal neurons. Therefore, a shift in the balance of synaptic excitation versus inhibition favoring excitation could contribute to the beneficial effects of reducing HDAC2 function in wild-type mice or of inhibiting HDACs in models of cognitive impairment.

  7. Normalization of Ca2+ signals by small oblique dendrites of CA1 pyramidal neurons.

    PubMed

    Frick, Andreas; Magee, Jeffrey; Koester, Helmut J; Migliore, Michele; Johnston, Daniel

    2003-04-15

    Oblique dendrites of CA1 pyramidal neurons predominate in stratum radiatum and receive approximately 80% of the synaptic input from Schaffer collaterals. Despite this fact, most of our understanding of dendritic signal processing in these neurons comes from studies of the main apical dendrite. Using a combination of Ca2+ imaging and whole-cell recording techniques in rat hippocampal slices, we found that the properties of the oblique dendrites differ markedly from those of the main dendrites. These different properties tend to equalize the Ca2+ rise from single action potentials as they backpropagate into the oblique dendrites from the main trunk. Evidence suggests that this normalization of Ca2+ signals results from a higher density of a transient, A-type K+ current [I(K(A))] in the oblique versus the main dendrites. The higher density of I(K(A)) may have important implications for our understanding of synaptic integration and plasticity in these structures.

  8. Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites.

    PubMed

    Poolos, Nicholas P; Migliore, Michele; Johnston, Daniel

    2002-08-01

    The dendrites of pyramidal neurons have markedly different electrical properties from those of the soma, owing to the non-uniform distribution of voltage-gated ion channels in dendrites. It is thus possible that drugs acting on ion channels might preferentially alter dendritic, but not somatic, excitability. Using dendritic and somatic whole-cell and cell-attached recordings in rat hippocampal slices, we found that the anticonvulsant lamotrigine selectively reduced action potential firing from dendritic depolarization, while minimally affecting firing at the soma. This regional and input-specific effect resulted from an increase in the hyperpolarization-activated cation current (I(h)), a voltage-gated current present predominantly in dendrites. These results demonstrate that neuronal excitability can be altered by drugs acting selectively on dendrites, and suggest an important role for I(h) in controlling dendritic excitability and epileptogenesis.

  9. Alterations of Neocortical Pyramidal Neurons: Turning Points in the Genesis of Mental Retardation

    PubMed Central

    Granato, Alberto; De Giorgio, Andrea

    2014-01-01

    Pyramidal neurons (PNs) represent the majority of neocortical cells and their involvement in cognitive functions is decisive. Therefore, they are the most obvious target of developmental disorders characterized by mental retardation. Genetic and non-genetic forms of intellectual disability share a few basic pathogenetic signatures that result in the anomalous function of PNs. Here, we review the key mechanisms impairing these neurons and their participation in the cortical network, with special focus on experimental models of fetal exposure to alcohol. Due to the heterogeneity of PNs, some alterations affect selectively a given cell population, which may also differ depending on the considered pathology. These specific features open new possibilities for the interpretation of cognitive defects observed in mental retardation syndromes, as well as for novel therapeutic interventions. PMID:25157343

  10. Protein Kinase C Regulates Ionic Conductance in Hippocampal Pyramidal Neurons: Electrophysiological Effects of Phorbol Esters

    NASA Astrophysics Data System (ADS)

    Baraban, Jay M.; Snyder, Solomon H.; Alger, Bradley E.

    1985-04-01

    The vertebrate central nervous system contains very high concentrations of protein kinase C, a calcium-and phospholipid-stimulated phosphorylating enzyme. Phorbol esters, compounds with inflammatory and tumor-promoting properties, bind to and activate this enzyme. To clarify the role of protein kinase C in neuronal function, we have localized phorbol ester receptors in the rat hippocampus by autoradiography and examined the electrophysiological effects of phorbol esters on hippocampal pyramidal neurons in vitro. Phorbol esters blocked a calcium-dependent potassium conductance. In addition, phorbol esters blocked the late hyperpolarization elicited by synaptic stimulation even though other synaptic potentials were not affected. The potencies of several phorbol esters in exerting these actions paralleled their affinities for protein kinase C, suggesting that protein kinase C regulates membrane ionic conductance.

  11. Glia-derived ATP inversely regulates excitability of pyramidal and CCK-positive neurons

    PubMed Central

    Tan, Zhibing; Liu, Yu; Xi, Wang; Lou, Hui-fang; Zhu, Liya; Guo, Zhifei; Mei, Lin; Duan, Shumin

    2017-01-01

    Astrocyte responds to neuronal activity with calcium waves and modulates synaptic transmission through the release of gliotransmitters. However, little is known about the direct effect of gliotransmitters on the excitability of neuronal networks beyond synapses. Here we show that selective stimulation of astrocytes expressing channelrhodopsin-2 in the CA1 area specifically increases the firing frequency of CCK-positive but not parvalbumin-positive interneurons and decreases the firing rate of pyramidal neurons, phenomena mimicked by exogenously applied ATP. Further evidences indicate that ATP-induced increase and decrease of excitability are caused, respectively, by P2Y1 receptor-mediated inhibition of a two-pore domain potassium channel and A1 receptor-mediated opening of a G-protein-coupled inwardly rectifying potassium channel. Moreover, the activation of ChR2-expressing astrocytes reduces the power of kainate-induced hippocampal ex vivo gamma oscillation. Thus, through distinct receptor subtypes coupled with different K+ channels, astrocyte-derived ATP differentially modulates the excitability of different types of neurons and efficiently controls the activity of neuronal network. PMID:28128211

  12. Dynamic Expression Patterns of Progenitor and Pyramidal Neuron Layer Markers in the Developing Human Hippocampus.

    PubMed

    Cipriani, Sara; Nardelli, Jeannette; Verney, Catherine; Delezoide, Anne-Lise; Guimiot, Fabien; Gressens, Pierre; Adle-Biassette, Homa

    2016-03-01

    The molecular mechanisms underlying the formation of hippocampus are unknown in humans. To improve our knowledge of molecules that potentially regulate pyramidal neurogenesis and layering in various hippocampal fields, we investigated the expression of progenitor markers and cell fate molecules from gestational week (GW) 9 to GW 20. At GW 9, the progenitor cell compartment of the hippocampal formation mainly consisted of PAX6(+) cells in the ventricular zone. Between GW 9 and 11, a second germinal area, the subventricular zone (SVZ), was formed, as shown by TBR2 labeling. Postmitotic markers (TBR1, CTIP2, SATB2, and CUX1) might reflect the inside-out layering of the plate from GW 11 onwards. TBR1(+) neurons appeared in the deep plate, whereas CTIP2(+), SATB2(+), and CUX1(+) neurons occupied the upper layers. From GW 16, differences in layer segregation were observed between the ammonic and subicular plates. Moreover, an ammonic-to-subicular maturation gradient was observed in germinal/postmitotic areas. Taken together, these findings demonstrate for the first time the presence of an SVZ in the hippocampus of human fetuses and laminar differences in transcription factor expression in the pyramidal layer of the human ammonic and subicular plate, and provide new information to further investigate the connectivity of the hippocampal formation.

  13. High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo.

    PubMed

    Nakamura, Shinya; Baratta, Michael V; Pomrenze, Matthew B; Dolzani, Samuel D; Cooper, Donald C

    2012-01-01

    Precise spatial and temporal manipulation of neural activity in specific genetically defined cell populations is now possible with the advent of optogenetics. The emerging field of optogenetics consists of a set of naturally-occurring and engineered light-sensitive membrane proteins that are able to activate (e.g. channelrhodopsin-2, ChR2) or silence (e.g. halorhodopsin, NpHR) neural activity. Here we demonstrate the technique and the feasibility of using novel adeno-associated viral (AAV) tools to activate (AAV-CaMKllα-ChR2-eYFP) or silence (AAV-CaMKllα-eNpHR3.0-eYFP) neural activity of rat prefrontal cortical prelimbic (PL) pyramidal neurons  in vivo.  In vivo single unit extracellular recording of ChR2-transduced pyramidal neurons showed that delivery of brief (10 ms) blue (473 nm) light-pulse trains up to 20 Hz via a custom fiber optic-coupled recording electrode (optrode) induced spiking with high fidelity at 20 Hz for the duration of recording (up to two hours in some cases). To silence spontaneously active neurons, we transduced them with the NpHR construct and administered continuous green (532 nm) light to completely inhibit action potential activity for up to 10 seconds with 100% fidelity in most cases. These versatile photosensitive tools, combined with optrode recording methods, provide experimental control over activity of genetically defined neurons and can be used to investigate the functional relationship between neural activity and complex cognitive behavior.

  14. High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo

    PubMed Central

    Cooper, Donald C

    2012-01-01

    Precise spatial and temporal manipulation of neural activity in specific genetically defined cell populations is now possible with the advent of optogenetics. The emerging field of optogenetics consists of a set of naturally-occurring and engineered light-sensitive membrane proteins that are able to activate (e.g. channelrhodopsin-2, ChR2) or silence (e.g. halorhodopsin, NpHR) neural activity. Here we demonstrate the technique and the feasibility of using novel adeno-associated viral (AAV) tools to activate (AAV-CaMKllα-ChR2-eYFP) or silence (AAV-CaMKllα-eNpHR3.0-eYFP) neural activity of rat prefrontal cortical prelimbic (PL) pyramidal neurons  in vivo.  In vivo single unit extracellular recording of ChR2-transduced pyramidal neurons showed that delivery of brief (10 ms) blue (473 nm) light-pulse trains up to 20 Hz via a custom fiber optic-coupled recording electrode (optrode) induced spiking with high fidelity at 20 Hz for the duration of recording (up to two hours in some cases). To silence spontaneously active neurons, we transduced them with the NpHR construct and administered continuous green (532 nm) light to completely inhibit action potential activity for up to 10 seconds with 100% fidelity in most cases. These versatile photosensitive tools, combined with optrode recording methods, provide experimental control over activity of genetically defined neurons and can be used to investigate the functional relationship between neural activity and complex cognitive behavior. PMID:24555016

  15. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats

    PubMed Central

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2016-01-01

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat’s sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups. PMID:27784858

  16. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  17. Action Potential Modulation in CA1 Pyramidal Neuron Axons Facilitates OLM Interneuron Activation in Recurrent Inhibitory Microcircuits of Rat Hippocampus

    PubMed Central

    Kim, Sooyun

    2014-01-01

    Oriens-lacunosum moleculare (O-LM) interneurons in the CA1 region of the hippocampus play a key role in feedback inhibition and in the control of network activity. However, how these cells are efficiently activated in the network remains unclear. To address this question, I performed recordings from CA1 pyramidal neuron axons, the presynaptic fibers that provide feedback innervation of these interneurons. Two forms of axonal action potential (AP) modulation were identified. First, repetitive stimulation resulted in activity-dependent AP broadening. Broadening showed fast onset, with marked changes in AP shape following a single AP. Second, tonic depolarization in CA1 pyramidal neuron somata induced AP broadening in the axon, and depolarization-induced broadening summated with activity-dependent broadening. Outside-out patch recordings from CA1 pyramidal neuron axons revealed a high density of α-dendrotoxin (α-DTX)-sensitive, inactivating K+ channels, suggesting that K+ channel inactivation mechanistically contributes to AP broadening. To examine the functional consequences of axonal AP modulation for synaptic transmission, I performed paired recordings between synaptically connected CA1 pyramidal neurons and O-LM interneurons. CA1 pyramidal neuron–O-LM interneuron excitatory postsynaptic currents (EPSCs) showed facilitation during both repetitive stimulation and tonic depolarization of the presynaptic neuron. Both effects were mimicked and occluded by α-DTX, suggesting that they were mediated by K+ channel inactivation. Therefore, axonal AP modulation can greatly facilitate the activation of O-LM interneurons. In conclusion, modulation of AP shape in CA1 pyramidal neuron axons substantially enhances the efficacy of principal neuron–interneuron synapses, promoting the activation of O-LM interneurons in recurrent inhibitory microcircuits. PMID:25409299

  18. Active dendrites regulate the impact of gliotransmission on rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan

    2016-01-01

    An important consequence of gliotransmission, a signaling mechanism that involves glial release of active transmitter molecules, is its manifestation as N-methyl-d-aspartate receptor (NMDAR)-dependent slow inward currents in neurons. However, the intraneuronal spatial dynamics of these events or the role of active dendrites in regulating their amplitude and spatial spread have remained unexplored. Here, we used somatic and/or dendritic recordings from rat hippocampal pyramidal neurons and demonstrate that a majority of NMDAR-dependent spontaneous slow excitatory potentials (SEP) originate at dendritic locations and are significantly attenuated through their propagation across the neuronal arbor. We substantiated the astrocytic origin of SEPs through paired neuron–astrocyte recordings, where we found that specific infusion of inositol trisphosphate (InsP3) into either distal or proximal astrocytes enhanced the amplitude and frequency of neuronal SEPs. Importantly, SEPs recorded after InsP3 infusion into distal astrocytes exhibited significantly slower kinetics compared with those recorded after proximal infusion. Furthermore, using neuron-specific infusion of pharmacological agents and morphologically realistic conductance-based computational models, we demonstrate that dendritically expressed hyperpolarization-activated cyclic-nucleotide–gated (HCN) and transient potassium channels play critical roles in regulating the strength, kinetics, and compartmentalization of neuronal SEPs. Finally, through the application of subtype-specific receptor blockers during paired neuron–astrocyte recordings, we provide evidence that GluN2B- and GluN2D-containing NMDARs predominantly mediate perisomatic and dendritic SEPs, respectively. Our results unveil an important role for active dendrites in regulating the impact of gliotransmission on neurons and suggest astrocytes as a source of dendritic plateau potentials that have been implicated in localized plasticity and place

  19. Cytosolic phospholipase A(2) alpha mediates electrophysiologic responses of hippocampal pyramidal neurons to neurotoxic NMDA treatment.

    PubMed

    Shen, Ying; Kishimoto, Koji; Linden, David J; Sapirstein, Adam

    2007-04-03

    The arachidonic acid-generating enzyme cytosolic phospholipase A(2) alpha (cPLA(2)alpha) has been implicated in the progression of excitotoxic neuronal injury. However, the mechanisms of cPLA(2)alpha toxicity have yet to be determined. Here, we used a model system exposing mouse hippocampal slices to NMDA as an excitotoxic injury, in combination with simultaneous patch-clamp recording and confocal Ca(2+) imaging of CA1 pyramidal neurons. NMDA treatment caused significantly greater injury in wild-type (WT) than in cPLA(2)alpha null CA1 neurons. Bath application of NMDA evoked a slow inward current in voltage-clamped neurons (composed of both NMDA receptor-mediated and other conductances) that was smaller in cPLA(2)alpha null than in WT slices. This was not due to down-regulation of NMDA receptor function because NMDA receptor-mediated currents were equivalent in each genotype following brief photolysis of caged glutamate. Current-clamp recordings were made during and following NMDA exposure by eliciting a single action potential with a brief current injection. After NMDA exposure, WT CA1 neurons developed a spike-evoked plateau potential and an increased spike-evoked dendritic Ca(2+) transient. These effects were absent in CA1 neurons from cPLA(2)alpha null mice and WT neurons treated with a cPLA(2)alpha inhibitor. The Ca-sensitive K-channel toxins, apamin and paxilline, caused spike broadening and Ca(2+) enhancement in WT and cPLA(2)alpha null slices. NMDA application in WT and arachidonate applied to cPLA(2)alpha null cells occluded the effects of apamin/paxilline. These results indicate that cPLA(2)alpha activity is required for development of aberrant electrophysiologic events triggered by NMDA receptor activation, in part through attenuation of K-channel function.

  20. Anatomical and electrophysiological comparison of CA1 pyramidal neurons of the rat and mouse.

    PubMed

    Routh, Brandy N; Johnston, Daniel; Harris, Kristen; Chitwood, Raymond A

    2009-10-01

    The study of learning and memory at the single-neuron level has relied on the use of many animal models, most notably rodents. Although many physiological and anatomical studies have been carried out in rats, the advent of genetically engineered mice has necessitated the comparison of new results in mice to established results from rats. Here we compare fundamental physiological and morphological properties and create three-dimensional compartmental models of identified hippocampal CA1 pyramidal neurons of one strain of rat, Sprague-Dawley, and two strains of mice, C57BL/6 and 129/SvEv. We report several differences in neuronal physiology and anatomy among the three animal groups, the most notable being that neurons of the 129/SvEv mice, but not the C57BL/6 mice, have higher input resistance, lower dendritic surface area, and smaller spines than those of rats. A surprising species-specific difference in membrane resonance indicates that both mouse strains have lower levels of the hyperpolarization-activated nonspecific cation current I(h). Simulations suggest that differences in I(h) kinetics rather than maximal conductance account for the lower resonance. Our findings indicate that comparisons of data obtained across strains or species will need to account for these and potentially other physiological and anatomical differences.

  1. Anatomical and Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and Mouse

    PubMed Central

    Routh, Brandy N.; Johnston, Daniel; Harris, Kristen

    2009-01-01

    The study of learning and memory at the single-neuron level has relied on the use of many animal models, most notably rodents. Although many physiological and anatomical studies have been carried out in rats, the advent of genetically engineered mice has necessitated the comparison of new results in mice to established results from rats. Here we compare fundamental physiological and morphological properties and create three-dimensional compartmental models of identified hippocampal CA1 pyramidal neurons of one strain of rat, Sprague–Dawley, and two strains of mice, C57BL/6 and 129/SvEv. We report several differences in neuronal physiology and anatomy among the three animal groups, the most notable being that neurons of the 129/SvEv mice, but not the C57BL/6 mice, have higher input resistance, lower dendritic surface area, and smaller spines than those of rats. A surprising species-specific difference in membrane resonance indicates that both mouse strains have lower levels of the hyperpolarization-activated nonspecific cation current Ih. Simulations suggest that differences in Ih kinetics rather than maximal conductance account for the lower resonance. Our findings indicate that comparisons of data obtained across strains or species will need to account for these and potentially other physiological and anatomical differences. PMID:19675296

  2. An Augmented Two-Layer Model Captures Nonlinear Analog Spatial Integration Effects in Pyramidal Neuron Dendrites.

    PubMed

    Jadi, Monika P; Behabadi, Bardia F; Poleg-Polsky, Alon; Schiller, Jackie; Mel, Bartlett W

    2014-05-01

    In pursuit of the goal to understand and eventually reproduce the diverse functions of the brain, a key challenge lies in reverse engineering the peculiar biology-based "technology" that underlies the brain's remarkable ability to process and store information. The basic building block of the nervous system is the nerve cell, or "neuron," yet after more than 100 years of neurophysiological study and 60 years of modeling, the information processing functions of individual neurons, and the parameters that allow them to engage in so many different types of computation (sensory, motor, mnemonic, executive, etc.) remain poorly understood. In this paper, we review both historical and recent findings that have led to our current understanding of the analog spatial processing capabilities of dendrites, the major input structures of neurons, with a focus on the principal cell type of the neocortex and hippocampus, the pyramidal neuron (PN). We encapsulate our current understanding of PN dendritic integration in an abstract layered model whose spatially sensitive branch-subunits compute multidimensional sigmoidal functions. Unlike the 1-D sigmoids found in conventional neural network models, multidimensional sigmoids allow the cell to implement a rich spectrum of nonlinear modulation effects directly within their dendritic trees.

  3. Heterogeneity of spine density in pyramidal neurons of isocortex of mongoose, Herpestes edwardsii (É. Geoffroy Saint-Hilaire 1818).

    PubMed

    Srivastava, U C; Singh, Sippy; Chauhan, Prashant

    2013-08-01

    The characteristics of pyramidal neurons within six layers of Indian gray mongoose (Herpestes edwardsii) isocortex have been investigated using Golgi and Cresyl-Violet methods. Pyramidal neurons and the cytoarchitecture of isocortex of mongoose were photographed with the help of computer aided Nikon eclipse 80i microscope whereas the lucida drawings were made by simple light microscope equipped with camera lucida. The cortical neurons exhibit marked regional differences in phenotype. The differences occur in morphology and distribution of spines within the cortical neurons not only among different species but also within an animal's brain. The present investigation aims at studying the features of pyramidal neurons and to find out the differences if any in distribution of spines in different layers (II-VI) as well as regions (Frontal, Temporal, Parietal, and Occipital) of isocortex of mongoose, which will provide information regarding importance of different layer and region. This piece of work embarks the findings that spine density shows inter-regional as well as interlaminar variations within isocortex of mongoose indicating that pyramidal cells present in varied layer and region are not equally functional and there do exists differences in activity among layers and regions. Among regions, the Temporal region possessing highest spine density contributes more toward functioning of mongoose isocortex and might play significant role in predatory nature of mongoose because this region in mammals is associated with auditory, visual perception, and object recognition.

  4. Simple method for evaluation of planum temporale pyramidal neurons shrinkage in postmortem tissue of Alzheimer disease patients.

    PubMed

    Kutová, Martina; Mrzílková, Jana; Kirdajová, Denisa; Řípová, Daniela; Zach, Petr

    2014-01-01

    We measured the length of the pyramidal neurons in the cortical layer III in four subregions of the planum temporale (transitions into superior temporal gyrus, Heschl's gyrus, insular cortex, and Sylvian fissure) in control group and Alzheimer disease patients. Our hypothesis was that overall length of the pyramidal neurons would be smaller in the Alzheimer disease group compared to controls and also there would be right-left asymmetry in both the control and Alzheimer disease groups. We found pyramidal neuron length asymmetry only in controls--in the transition into the Sylvian fissure--and the rest of the subregions in the control group and Alzheimer disease patients did not show size difference. However, control-Alzheimer disease group pyramidal neuron length comparison revealed (a) no length difference in superior temporal gyrus transition area, (b) reversal of asymmetry in the insular transition area with left insular transition significantly shorter in the Alzheimer disease group compared to the control group, (c) both right and left Heschl's gyrus transitions significantly shorter in the Alzheimer disease group compared to the control group, and (d) right Sylvian fissure transition significantly shorter in the Alzheimer disease group compared to the control group. This neuronal length measurement method could supplement already existing neuropathological criteria for postmortem Alzheimer disease diagnostics.

  5. MGluR-Mediated Calcium Waves that Invade the Soma Regulate Firing in Layer V Medial Prefrontal Cortical Pyramidal Neurons

    PubMed Central

    Hagenston, Anna M.; Fitzpatrick, John S.; Yeckel, Mark F.

    2010-01-01

    Factors that influence the activity of prefrontal cortex (PFC) pyramidal neurons are likely to play an important role in working memory function. One such factor may be the release of Ca2+ from intracellular stores. Here we investigate the hypothesis that metabotropic glutamate receptors (mGluRs)-mediated waves of internally released Ca2+ can regulate the intrinsic excitability and firing patterns of PFC pyramidal neurons. Synaptic or focal pharmacological activation of mGluRs triggered Ca2+waves in the dendrites and somata of layer V medial PFC pyramidal neurons. These Ca2+ waves often evoked a transient SK-mediated hyperpolarization followed by a prolonged depolarization that respectively decreased and increased neuronal excitability. Generation of the hyperpolarization depended on whether the Ca2+wave invaded or came near to the soma. The depolarization also depended on the extent of Ca2+ wave propagation. We tested factors that influence the propagation of Ca2+ waves into the soma. Stimulating more synapses, increasing inositol trisphosphate concentration near the soma, and priming with physiological trains of action potentials all enhanced the amplitude and likelihood of evoking somatic Ca2+waves. These results suggest that mGluR-mediated Ca2+waves may regulate firing patterns of PFC pyramidal neurons engaged by working memory, particularly under conditions that favor the propagation of Ca2+ waves into the soma. PMID:17573372

  6. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo.

    PubMed

    Destexhe, A; Paré, D

    1999-04-01

    During wakefulness, neocortical neurons are subjected to an intense synaptic bombardment. To assess the consequences of this background activity for the integrative properties of pyramidal neurons, we constrained biophysical models with in vivo intracellular data obtained in anesthetized cats during periods of intense network activity similar to that observed in the waking state. In pyramidal cells of the parietal cortex (area 5-7), synaptic activity was responsible for an approximately fivefold decrease in input resistance (Rin), a more depolarized membrane potential (Vm), and a marked increase in the amplitude of Vm fluctuations, as determined by comparing the same cells before and after microperfusion of tetrodotoxin (TTX). The model was constrained by measurements of Rin, by the average value and standard deviation of the Vm measured from epochs of intense synaptic activity recorded with KAc or KCl-filled pipettes as well as the values measured in the same cells after TTX. To reproduce all experimental results, the simulated synaptic activity had to be of relatively high frequency (1-5 Hz) at excitatory and inhibitory synapses. In addition, synaptic inputs had to be significantly correlated (correlation coefficient approximately 0.1) to reproduce the amplitude of Vm fluctuations recorded experimentally. The presence of voltage-dependent K+ currents, estimated from current-voltage relations after TTX, affected these parameters by <10%. The model predicts that the conductance due to synaptic activity is 7-30 times larger than the somatic leak conductance to be consistent with the approximately fivefold change in Rin. The impact of this massive increase in conductance on dendritic attenuation was investigated for passive neurons and neurons with voltage-dependent Na+/K+ currents in soma and dendrites. In passive neurons, correlated synaptic bombardment had a major influence on dendritic attenuation. The electrotonic attenuation of simulated synaptic inputs was

  7. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing.

    PubMed

    Yamada-Hanff, Jason; Bean, Bruce P

    2015-10-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current-which amplifies EPSPs-was most effectively recruited by rapid voltage changes, while Ih-which blunts EPSPs-was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons.

  8. Activation of Ih and TTX-sensitive sodium current at subthreshold voltages during CA1 pyramidal neuron firing

    PubMed Central

    Yamada-Hanff, Jason

    2015-01-01

    We used dynamic clamp and action potential clamp techniques to explore how currents carried by tetrodotoxin-sensitive sodium channels and HCN channels (Ih) regulate the behavior of CA1 pyramidal neurons at resting and subthreshold voltages. Recording from rat CA1 pyramidal neurons in hippocampal slices, we found that the apparent input resistance and membrane time constant were strongly affected by both conductances, with Ih acting to decrease apparent input resistance and time constant and sodium current acting to increase both. We found that both Ih and sodium current were active during subthreshold summation of artificial excitatory postsynaptic potentials (EPSPs) generated by dynamic clamp, with Ih dominating at less depolarized voltages and sodium current at more depolarized voltages. Subthreshold sodium current—which amplifies EPSPs—was most effectively recruited by rapid voltage changes, while Ih—which blunts EPSPs—was maximal for slow voltage changes. The combined effect is to selectively amplify rapid EPSPs. We did similar experiments in mouse CA1 pyramidal neurons, doing voltage-clamp experiments using experimental records of action potential firing of CA1 neurons previously recorded in awake, behaving animals as command voltages to quantify flow of Ih and sodium current at subthreshold voltages. Subthreshold sodium current was larger and subthreshold Ih was smaller in mouse neurons than in rat neurons. Overall, the results show opposing effects of subthreshold sodium current and Ih in regulating subthreshold behavior of CA1 neurons, with subthreshold sodium current prominent in both rat and mouse CA1 pyramidal neurons and additional regulation by Ih in rat neurons. PMID:26289465

  9. Distinct Physiological Effects of Dopamine D4 Receptors on Prefrontal Cortical Pyramidal Neurons and Fast-Spiking Interneurons.

    PubMed

    Zhong, Ping; Yan, Zhen

    2016-01-01

    Dopamine D4 receptor (D4R), which is strongly linked to neuropsychiatric disorders, such as attention-deficit hyperactivity disorder and schizophrenia, is highly expressed in pyramidal neurons and GABAergic interneurons in prefrontal cortex (PFC). In this study, we examined the impact of D4R on the excitability of these 2 neuronal populations. We found that D4R activation decreased the frequency of spontaneous action potentials (sAPs) in PFC pyramidal neurons, whereas it induced a transient increase followed by a decrease of sAP frequency in PFC parvalbumin-positive (PV+) interneurons. D4R activation also induced distinct effects in both types of PFC neurons on spontaneous excitatory and inhibitory postsynaptic currents, which drive the generation of sAP. Moreover, dopamine substantially decreased sAP frequency in PFC pyramidal neurons, but markedly increased sAP frequency in PV+ interneurons, and both effects were partially mediated by D4R activation. In the phencyclidine model of schizophrenia, the decreasing effect of D4R on sAP frequency in both types of PFC neurons was attenuated, whereas the increasing effect of D4R on sAP in PV+ interneurons was intact. These results suggest that D4R activation elicits distinct effects on synaptically driven excitability in PFC projection neurons versus fast-spiking interneurons, which are differentially altered in neuropsychiatric disorder-related conditions.

  10. Intrinsic excitability changes induced by acute treatment of hippocampal CA1 pyramidal neurons with exogenous amyloid β peptide.

    PubMed

    Tamagnini, Francesco; Scullion, Sarah; Brown, Jon T; Randall, Andrew D

    2015-07-01

    Accumulation of beta-amyloid (Aβ) peptides in the human brain is a canonical pathological hallmark of Alzheimer's disease (AD). Recent work in Aβ-overexpressing transgenic mice indicates that increased brain Aβ levels can be associated with aberrant epileptiform activity. In line with this, such mice can also exhibit altered intrinsic excitability (IE) of cortical and hippocampal neurons: these observations may relate to the increased prevalence of seizures in AD patients. In this study, we examined what changes in IE are produced in hippocampal CA1 pyramidal cells after 2-5 h treatment with an oligomeric preparation of synthetic human Aβ 1-42 peptide. Whole cell current clamp recordings were compared between Aβ-(500 nM) and vehicle-(DMSO 0.05%) treated hippocampal slices obtained from mice. The soluble Aβ treatment did not produce alterations in sub-threshold intrinsic properties, including membrane potential, input resistance, and hyperpolarization activated "sag". Similarly, no changes were noted in the firing profile evoked by 500 ms square current supra-threshold stimuli. However, Aβ 500 nM treatment resulted in the hyperpolarization of the action potential (AP) threshold. In addition, treatment with Aβ at 500 nM depressed the after-hyperpolarization that followed both a single AP or 50 Hz trains of a number of APs between 5 and 25. These data suggest that acute exposure to soluble Aβ oligomers affects IE properties of CA1 pyramidal neurons differently from outcomes seen in transgenic models of amyloidopathy. However, in both chronic and acute models, the IE changes are toward hyperexcitability, reinforcing the idea that amyloidopathy and increased incidence in seizures might be causally related in AD patients.

  11. Homeostatic regulation of synaptic excitability: tonic GABAA receptor currents replace Ih in cortical pyramidal neurons of HCN1 knockout mice

    PubMed Central

    Chen, Xiangdong; Shu, Shaofang; Schwartz, Lauren C.; Sun, Chengsan; Kapur, Jaideep; Bayliss, Douglas A.

    2010-01-01

    Homeostatic control of synaptic efficacy is often mediated by dynamic regulation of excitatory synaptic receptors. Here, we report a novel form of homeostatic synaptic plasticity based on regulation of shunt currents that control dendritosomatic information transfer. In cortical pyramidal neurons from wild type mice, HCN1 channels underlie a dendritic hyperpolarization-activated cationic current (Ih) that serves to limit temporal summation of synaptic inputs. In HCN1 knockout mice, as expected, Ih is reduced in pyramidal neurons and its effects on synaptic summation are strongly diminished. Unexpectedly, we found a markedly enhanced bicuculline- and L-655,708-sensitive background GABAA current in these cells that could be attributed to selective up-regulation of GABAA α5 subunit expression in the cortex of HCN1 knockout mice. Strikingly, despite diminished Ih, baseline sub-linear summation of evoked EPSPs was unchanged in pyramidal neurons from HCN1 knockout mice; however, blocking tonic GABAA currents with bicuculline enhanced synaptic summation more strongly in pyramidal cells from HCN1 knockout mice than in those cells from wild type mice. Increasing tonic GABAA receptor conductance in the context of reduced Ih, using computational or pharmacological approaches, restored normal baseline synaptic summation, as observed in neurons from HCN1 knockout mice. These data indicate that up-regulation of α5 subunit-mediated GABAA receptor tonic current compensates quantitatively for loss of dendritic Ih in cortical pyramidal neurons from HCN1 knockout mice to maintain normal synaptic summation; they further imply that dendritosomatic synaptic efficacy is a controlled variable for homeostatic regulation of cortical neuron excitability in vivo. PMID:20164346

  12. Pharmacology of postsynaptic metabotropic glutamate receptors in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Davies, C H; Clarke, V R; Jane, D E; Collingridge, G L

    1995-09-01

    1. Activation of metabotropic glutamate receptors (mGluRs) in hippocampal CA1 pyramidal neurones leads to a depolarization, an increase in input resistance and a reduction in spike frequency adaptation (or accommodation). At least eight subtypes of mGluR have been identified which have been divided into three groups based on their biochemical, structural and pharmacological properties. It is unclear to which group the mGluRs which mediate these excitatory effects in hippocampal CA1 pyramidal neurones belong. We have attempted to address this question by using intracellular recording to test the effects of a range of mGluR agonists and antagonists, that exhibit different profiles of subtype specificity, on the excitability of CA1 pyramidal neurones in rat hippocampal slices. 2. (2S, 1'S,2'S)-2-(2'-carboxycyclopropyl)glycine (L-CCG1) caused a reduction in spike frequency adaptation and a depolarization (1-10 mV) associated with an increase in input resistance (10-30%) at concentrations (> or = 50 microM) that have been shown to activate mGluRs in groups I, II and III. Similar effects were observed with concentrations (50-100 microM) of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid ((1S,3R)-ACPD) and (1S,3S)-ACPD that exhibit little or no activity at group III mGluRs but which activate groups I and II mGluRs. 3. Inhibition of the release of endogenous neurotransmitters through activation of GABAB receptors, by use of 200 microM (+/-)-baclofen, did not alter the effects of (1S,3R)-ACPD (50-100 microM), (1S,3S)-ACPD (100 microM) or L-CCG1 (100 microM). This suggests that mGluR agonists directly activate CA1 pyramidal neurones. 4. Like these broad spectrum mGluR agonists, the racemic mixture ((SR)-) or resolved (S)-isomer of the selective group I mGluR agonist 3,5-dihydroxyphenylglycine ((SR)-DHPG (50-100 microM) or (S)-DHPG (20-50 microM)) caused a reduction in spike frequency adaptation concomitant with postsynaptic depolarization and an increase in input

  13. Evidence that dendritic mitochondria negatively regulate dendritic branching in pyramidal neurons in the neocortex.

    PubMed

    Kimura, Toshiya; Murakami, Fujio

    2014-05-14

    The precise branching patterns of dendritic arbors have a profound impact on information processing in individual neurons and the brain. These patterns are established by positive and negative regulation of the dendritic branching. Although the mechanisms for positive regulation have been extensively investigated, little is known about those for negative regulation. Here, we present evidence that mitochondria located in developing dendrites are involved in the negative regulation of dendritic branching. We visualized mitochondria in pyramidal neurons of the mouse neocortex during dendritic morphogenesis using in utero electroporation of a mitochondria-targeted fluorescent construct. We altered the mitochondrial distribution in vivo by overexpressing Mfn1, a mitochondrial shaping protein, or the Miro-binding domain of TRAK2 (TRAK2-MBD), a truncated form of a motor-adaptor protein. We found that dendritic mitochondria were preferentially targeted to the proximal portion of dendrites only during dendritic morphogenesis. Overexpression of Mfn1 or TRAK2-MBD depleted mitochondria from the dendrites, an effect that was accompanied by increased branching of the proximal portion of the dendrites. This dendritic abnormality cannot be accounted for by changes in the distribution of membrane trafficking organelles since the overexpression of Mfn1 did not alter the distributions of the endoplasmic reticulum, Golgi, or endosomes. Additionally, neither did these constructs impair neuronal viability or mitochondrial function. Therefore, our results suggest that dendritic mitochondria play a critical role in the establishment of the precise branching pattern of dendritic arbors by negatively affecting dendritic branching.

  14. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    ERIC Educational Resources Information Center

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  15. Subchronic vortioxetine treatment -but not escitalopram- enhances pyramidal neuron activity in the rat prefrontal cortex.

    PubMed

    Riga, Maurizio S; Teruel-Martí, Vicent; Sánchez, Connie; Celada, Pau; Artigas, Francesc

    2017-02-01

    Vortioxetine (VOR) is a multimodal antidepressant drug. VOR is a 5-HT3-R, 5-HT7-R and 5-HT1D-R antagonist, 5-HT1B-R partial agonist, 5-HT1A-R agonist, and serotonin transporter (SERT) inhibitor. VOR shows pro-cognitive activity in animal models and beneficial effects on cognitive dysfunction in major depressive patients. Here we compared the effects of 14-day treatments with VOR and escitalopram (ESC, selective serotonin reuptake inhibitor) on neuronal activity in the medial prefrontal cortex (mPFC). Ten groups of rats (5 standard, 5 depleted of 5-HT with p-chlorophenylalanine -pCPA-, used as model of cognitive impairment) were fed with control food or with two doses of VOR-containing food. Four groups were implanted with minipumps delivering vehicle or ESC 10 mg/kg·day s.c. The two VOR doses enable occupation by VOR of SERT+5-HT3-R and all targets, respectively, and correspond to SERT occupancies in patients treated with 5 and 20 VOR mg/day, respectively. Putative pyramidal neurons (n = 985) were recorded extracellularly in the mPFC of anesthetized rats. Sub-chronic VOR administration (but not ESC) significantly increased neuronal discharge in standard and 5-HT-depleted conditions, with a greater effect of the low VOR dose in standard rats. VOR increased neuronal discharge in infralimbic (IL) and prelimbic (PrL) cortices. Hence, oral VOR doses evoking SERT occupancies similar to those in treated patients increase mPFC neuronal discharge. The effect in 5-HT-depleted rats cannot be explained by an antagonist action of VOR at 5-HT3-R and suggests a non-canonical interaction of VOR with 5-HT3-R. These effects may underlie the superior pro-cognitive efficacy of VOR compared with SSRIs in animal models.

  16. Imbalance between excitation and inhibition among synaptic connections of CA3 pyramidal neurons in cultured hippocampal slices.

    PubMed

    Cruz-Martín, Alberto; Schweizer, Felix E

    2008-03-01

    A fundamental property of small neuronal ensembles is their ability to be selectively activated by distinct stimuli. One cellular mechanism by which neurons achieve this input selectivity is by modulating the temporal dynamics of excitation and inhibition. We explored the interplay of excitation and inhibition in synapses between pyramidal neurons of cornu ammonis field 3 of the hippocampal formation (CA3) in cultured rat hippocampal slices, where activation of a single excitatory cell can readily recruit local interneurons. Simultaneous whole-cell recordings from pairs of CA3 pyramidal neurons revealed that the strength of connections was neither uniform nor balanced. Rather, stimulation of presynaptic neurons elicited distinct combinations of excitatory postsynaptic current-inhibitory postsynaptic current (EPSC-IPSC) amplitudes in the postsynaptic neurons. EPSC-IPSC sequences with small EPSCs had large IPSCs and sequences that contained large EPSCs had small IPSCs. In addition to differences in the amplitudes of the responses, the kinetics of the EPSCs were also different, creating distinct temporal dynamics of excitation and inhibition. Weaker EPSCs had significantly slower kinetics and were efficiently occluded by IPSCs, thereby further limiting their contribution to depolarizing the postsynaptic membrane. Our data suggest that hippocampal pyramidal cells may use an imbalance between excitation and inhibition as a filter to enhance selectivity toward preferential excitatory connections.

  17. The role of extracellular conductivity profiles in compartmental models for neurons: particulars for layer 5 pyramidal cells.

    PubMed

    Wang, Kai; Riera, Jorge; Enjieu-Kadji, Herve; Kawashima, Ryuta

    2013-07-01

    With the rapid increase in the number of technologies aimed at observing electric activity inside the brain, scientists have felt the urge to create proper links between intracellular- and extracellular-based experimental approaches. Biophysical models at both physical scales have been formalized under assumptions that impede the creation of such links. In this work, we address this issue by proposing a multicompartment model that allows the introduction of complex extracellular and intracellular resistivity profiles. This model accounts for the geometrical and electrotonic properties of any type of neuron through the combination of four devices: the integrator, the propagator, the 3D connector, and the collector. In particular, we applied this framework to model the tufted pyramidal cells of layer 5 (PCL5) in the neocortex. Our model was able to reproduce the decay and delay curves of backpropagating action potentials (APs) in this type of cell with better agreement with experimental data. We used the voltage drops of the extracellular resistances at each compartment to approximate the local field potentials generated by a PCL5 located in close proximity to linear microelectrode arrays. Based on the voltage drops produced by backpropagating APs, we were able to estimate the current multipolar moments generated by a PCL5. By adding external current sources in parallel to the extracellular resistances, we were able to create a sensitivity profile of PCL5 to electric current injections from nearby microelectrodes. In our model for PCL5, the kinetics and spatial profile of each ionic current were determined based on a literature survey, and the geometrical properties of these cells were evaluated experimentally. We concluded that the inclusion of the extracellular space in the compartmental models of neurons as an extra electrotonic medium is crucial for the accurate simulation of both the propagation of the electric potentials along the neuronal dendrites and the

  18. Density of voltage-gated potassium channels is a bifurcation parameter in pyramidal neurons

    PubMed Central

    Robinson, Hugh P. C.; Århem, Peter

    2014-01-01

    Several types of intrinsic dynamics have been identified in brain neurons. Type 1 excitability is characterized by a continuous frequency-stimulus relationship and, thus, an arbitrarily low frequency at threshold current. Conversely, Type 2 excitability is characterized by a discontinuous frequency-stimulus relationship and a nonzero threshold frequency. In previous theoretical work we showed that the density of Kv channels is a bifurcation parameter, such that increasing the Kv channel density in a neuron model transforms Type 1 excitability into Type 2 excitability. Here we test this finding experimentally, using the dynamic clamp technique on Type 1 pyramidal cells in rat cortex. We found that increasing the density of slow Kv channels leads to a shift from Type 1 to Type 2 threshold dynamics, i.e., a distinct onset frequency, subthreshold oscillations, and reduced latency to first spike. In addition, the action potential was resculptured, with a narrower spike width and more pronounced afterhyperpolarization. All changes could be captured with a two-dimensional model. It may seem paradoxical that an increase in slow K channel density can lead to a higher threshold firing frequency; however, this can be explained in terms of bifurcation theory. In contrast to previous work, we argue that an increased outward current leads to a change in dynamics in these neurons without a rectification of the current-voltage curve. These results demonstrate that the behavior of neurons is determined by the global interactions of their dynamical elements and not necessarily simply by individual types of ion channels. PMID:25339708

  19. Synaptic gene dysregulation within hippocampal CA1 pyramidal neurons in mild cognitive impairment

    PubMed Central

    Counts, Scott E.; Alldred, Melissa J.; Che, Shaoli; Ginsberg, Stephen D.; Mufson, Elliott J.

    2014-01-01

    Clinical neuropathologic studies suggest that the selective vulnerability of hippocampal CA1 pyramidal projection neurons plays a key role in the onset of cognitive impairment during the early phases of Alzheimer’s disease (AD). Disruption of this neuronal population likely affects hippocampal pre- and postsynaptic efficacy underlying episodic memory circuits. Therefore, identifying perturbations in the expression of synaptic gene products within CA1 neurons prior to frank AD is crucial for the development of disease modifying therapies. Here we used custom-designed microarrays to examine progressive alterations in synaptic gene expression within CA1 neurons in cases harvested from the Rush Religious Orders Study who died with a clinical diagnosis of no cognitive impairment (NCI), mild cognitive impairment (MCI, a putative prodromal AD stage), or mild/moderate AD. Quantitative analysis revealed that 21 out of 28 different transcripts encoding regulators of synaptic function were significantly downregulated (1.4 to 1.8 fold) in CA1 neurons in MCI and AD compared to NCI, whereas synaptic transcript levels were not significantly different between MCI and AD. The downregulated transcripts encoded regulators of presynaptic vesicle trafficking, including synaptophysin and synaptogyrin, regulators of vesicle docking and fusion/release, such as synaptotagmin and syntaxin 1, and regulators of glutamatergic postsynaptic function, including PSD-95 and synaptopodin. Clinical pathologic correlation analysis revealed that downregulation of these synaptic markers was strongly associated with poorer antemortem cognitive status and postmortem AD pathological criteria such as Braak stage, NIA-Reagan, and CERAD diagnosis. In contrast to the widespread loss of synaptic gene expression observed in CA1 neurons in MCI, transcripts encoding β-amyloid precursor protein (APP), APP family members, and regulators of APP metabolism were not differentially regulated in CA1 neurons across the

  20. Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca(2+) spike.

    PubMed

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-04-03

    Dendritic Ca(2+) spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca(2+) activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca(2+) spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca(2+) spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca(2+) spike and output APs, which could contribute to mechanically interpreting how dendritic Ca(2+) activity participates in the simple computations of pyramidal neuron.

  1. Action potential initiation in a two-compartment model of pyramidal neuron mediated by dendritic Ca2+ spike

    PubMed Central

    Yi, Guosheng; Wang, Jiang; Wei, Xile; Deng, Bin

    2017-01-01

    Dendritic Ca2+ spike endows cortical pyramidal cell with powerful ability of synaptic integration, which is critical for neuronal computation. Here we propose a two-compartment conductance-based model to investigate how the Ca2+ activity of apical dendrite participates in the action potential (AP) initiation to affect the firing properties of pyramidal neurons. We have shown that the apical input with sufficient intensity triggers a dendritic Ca2+ spike, which significantly boosts dendritic inputs as it propagates to soma. Such event instantaneously shifts the limit cycle attractor of the neuron and results in a burst of APs, which makes its firing rate reach a plateau steady-state level. Delivering current to two chambers simultaneously increases the level of neuronal excitability and decreases the threshold of input-output relation. Here the back-propagating APs facilitate the initiation of dendritic Ca2+ spike and evoke BAC firing. These findings indicate that the proposed model is capable of reproducing in vitro experimental observations. By determining spike initiating dynamics, we have provided a fundamental link between dendritic Ca2+ spike and output APs, which could contribute to mechanically interpreting how dendritic Ca2+ activity participates in the simple computations of pyramidal neuron. PMID:28367964

  2. A slow excitatory postsynaptic current mediated by a novel metabotropic glutamate receptor in CA1 pyramidal neurons.

    PubMed

    Sheng, Nengyin; Yang, Jing; Silm, Katlin; Edwards, Robert H; Nicoll, Roger A

    2017-03-15

    Slow excitatory postsynaptic currents (EPSCs) mediated by metabotropic glutamate receptors (mGlu receptors) have been reported in several neuronal subtypes, but their presence in hippocampal pyramidal neurons remains elusive. Here we find that in CA1 pyramidal neurons a slow EPSC is induced by repetitive stimulation while ionotropic glutamate receptors and glutamate-uptake are blocked whereas it is absent in the VGLUT1 knockout mouse in which presynaptic glutamate is lost, suggesting the slow EPSC is mediated by glutamate activating mGlu receptors. However, it is not inhibited by known mGlu receptor antagonists. These findings suggest that this slow EPSC is mediated by a novel mGlu receptor, and that it may be involved in neurological diseases associated with abnormal high-concentration of extracellular glutamate. This article is part of the Special Issue entitled 'Metabotropic Glutamate Receptors, 5 years on'.

  3. Gene expression levels assessed by CA1 pyramidal neuron and regional hippocampal dissections in Alzheimer’s disease

    PubMed Central

    Ginsberg, Stephen D.; Alldred, Melissa J.; Che, Shaoli

    2011-01-01

    To evaluate molecular signatures of an individual cell type in comparison to the associated region relevant towards understanding the pathogenesis of Alzheimer’s disease (AD), CA1 pyramidal neurons and the surrounding hippocampal formation were microaspirated via laser capture microdissection (LCM) from neuropathologically confirmed AD and age-matched control (CTR) subjects as well as from wild type mouse brain using single population RNA amplification methodology coupled with custom-designed microarray analysis with real-time quantitative polymerase-chain reaction (qPCR) validation. CA1 pyramidal neurons predominantly displayed downregulation of classes of transcripts related to synaptic transmission in AD versus CTR. Regional hippocampal dissections displayed downregulation of several overlapping genes found in the CA1 neuronal population related to neuronal expression, as well as upregulation of select transcripts indicative of admixed cell types including glial-associated markers and immediate-early and cell death genes. Gene level distributions observed in CA1 neurons and regional hippocampal dissections in wild type mice paralleled expression mosaics seen in postmortem human tissue. Microarray analysis was validated in qPCR studies using human postmortem brain tissue and CA1 sector and regional hippocampal dissections obtained from a mouse model of AD/Down syndrome (Ts65Dn mice) and normal disomic (2N) littermates. Classes of transcripts that have a greater percentage of the overall hybridization signal intensity within single neurons tended to be genes related to neuronal communication. The converse was also found, as classes of transcripts such as glial-associated markers were under represented in CA1 pyramidal neuron expression profiles relative to regional hippocampal dissections. These observations highlight a dilution effect that is likely to occur in conventional regional microarray and qPCR studies. Thus, single population studies of specific

  4. Modifications of excitatory and inhibitory transmission in rat hippocampal pyramidal neurons by acute lithium treatment.

    PubMed

    Wakita, Masahito; Nagami, Hideaki; Takase, Yuko; Nakanishi, Ryoji; Kotani, Naoki; Akaike, Norio

    2015-08-01

    The acute effects of high-dose Li(+) treatment on glutamatergic and GABAergic transmissions were studied in the "synaptic bouton" preparation of isolated rat hippocampal pyramidal neurons by using focal electrical stimulation. Both action potential-dependent glutamatergic excitatory and GABAergic inhibitory postsynaptic currents (eEPSC and eIPSC, respectively) were dose-dependently inhibited in the external media containing 30-150 mM Li(+), but the sensitivity for Li(+) was greater tendency for eEPSCs than for eIPSCs. When the effects of Li(+) on glutamate or GABAA receptor-mediated whole-cell responses (IGlu and IGABA) elicited by an exogenous application of glutamate or GABA were examined in the postsynaptic soma membrane of CA3 neurons, Li(+) slightly inhibited both IGlu and IGABA at the 150 mM Li(+) concentration. Present results suggest that acute treatment with high concentrations of Li(+) acts preferentially on presynaptic terminals, and that the Li(+)-induced inhibition may be greater for excitatory than for inhibitory transmission.

  5. Electrophysiological Properties of CA1 Pyramidal Neurons along the Longitudinal Axis of the Mouse Hippocampus

    PubMed Central

    Milior, Giampaolo; Castro, Maria Amalia Di; Sciarria, Livio Pepe’; Garofalo, Stefano; Branchi, Igor; Ragozzino, Davide; Limatola, Cristina; Maggi, Laura

    2016-01-01

    Evidence for different physiological properties along the hippocampal longitudinal axis is emerging. Here, we examined the electrophysiological features of neurons at different dorso-ventral sites of the mouse CA1 hippocampal region. Cell position was defined with respect to longitudinal coordinates of each slice. We measured variations in neuronal excitability, subthreshold membrane properties and neurotransmitter responses along the longitudinal axis. We found that (i) pyramidal cells of the dorsal hippocampus (DH) were less excitable than those of the ventral hippocampus (VH). Resting Membrane Potential (RMP) was more hyperpolarized and somatic Input Resistance (Ri) was lower in DH compared to VH. (ii) The Paired-pulse ratio (PPR) of focally induced synaptic responses was systematically reduced from the DH to the VH; (iii) Long-term-potentiation was most pronounced in the DH and fell gradually in the intermediate hippocampus and in the VH; (iv) the frequency of miniature GABAergic events was higher in the VH than in the DH; (v) the PPR of evoked inhibitory post-synaptic current (IPSC) was higher in the DH than in the VH. These findings indicate an increased probability of both GABA and glutamate release and a reduced plasticity in the ventral compared to more dorsal regions of the hippocampus. PMID:27922053

  6. Plasticity-dependent, full detonation at hippocampal mossy fiber–CA3 pyramidal neuron synapses

    PubMed Central

    Vyleta, Nicholas P; Borges-Merjane, Carolina; Jonas, Peter

    2016-01-01

    Mossy fiber synapses on CA3 pyramidal cells are 'conditional detonators' that reliably discharge postsynaptic targets. The 'conditional' nature implies that burst activity in dentate gyrus granule cells is required for detonation. Whether single unitary excitatory postsynaptic potentials (EPSPs) trigger spikes in CA3 neurons remains unknown. Mossy fiber synapses exhibit both pronounced short-term facilitation and uniquely large post-tetanic potentiation (PTP). We tested whether PTP could convert mossy fiber synapses from subdetonator into detonator mode, using a recently developed method to selectively and noninvasively stimulate individual presynaptic terminals in rat brain slices. Unitary EPSPs failed to initiate a spike in CA3 neurons under control conditions, but reliably discharged them after induction of presynaptic short-term plasticity. Remarkably, PTP switched mossy fiber synapses into full detonators for tens of seconds. Plasticity-dependent detonation may be critical for efficient coding, storage, and recall of information in the granule cell–CA3 cell network. DOI: http://dx.doi.org/10.7554/eLife.17977.001 PMID:27780032

  7. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex

    PubMed Central

    Amakhin, Dmitry V.; Ergina, Julia L.; Chizhov, Anton V.; Zaitsev, Aleksey V.

    2016-01-01

    In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation. PMID:27790093

  8. Factors determining the efficacy of distal excitatory synapses in rat hippocampal CA1 pyramidal neurones

    PubMed Central

    Andreasen, Mogens; Lambert, John D C

    1998-01-01

    A new preparation of the in vitro rat hippocampal slice has been developed in which the synaptic input to the distal apical dendrites of CA1 pyramidal neurones is isolated. This has been used to investigate the properties of distally evoked synaptic potentials.Distal paired-pulse stimulation (0.1 Hz) evoked a dendritic response consisting of a pair of EPSPs, which showed facilitation. The first EPSP had a rise time (10–90 %) of 2.2 ± 0.05 ms and a half-width of 9.1 ± 0.13 ms. The EPSPs were greatly reduced by CNQX (10 μm) and the remaining component could be enhanced in Mg2+-free Ringer solution and blocked by AP5 (50 μm). In 70 % of the dendrites, the EPSPs were followed by a prolonged after-hyperpolarizarion (AHP) which could be blocked by a selective and potent GABAB antagonist, CGP 55845A (2 μm). These results indicate that the EPSPs are primarily mediated by non-NMDA receptors with a small contribution from NMDA receptors, whereas the AHP is a GABAB receptor-mediated slow IPSP.With intrasomatic recordings, the rise time of proximally generated EPSPs (3.4 ± 0.1 ms) was half that of distally generated EPSPs (6.7 ± 0.5 ms), whereas the half-widths were similar (19.6 ± 0.8 ms and 23.8 ± 1 ms, respectively). These results indicate that propagation through the proximal apical dendrites slows the time-to-peak of distally generated EPSPs.Distal stimulation evoked spikes in 60 % of pyramidal neurones. At threshold, the distally evoked spike always appeared on the decaying phase of the dendritic EPSP, indicating that the spike is initiated at some distance proximal to the dendritic recording site. Furthermore, distally and proximally generated threshold spikes had a similar voltage dependency. These results therefore suggest that distally generated threshold spikes are primarily initiated at the initial segment.At threshold, spikes generated by stimulation of distal synapses arose from the decaying phase of the dendritic EPSPs with a latency determined by the

  9. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations.

    PubMed

    Huang, Chih-Hsu; Lin, Chou-Ching K; Ju, Ming-Shaung

    2015-02-01

    Compared with the Monte Carlo method, the population density method is efficient for modeling collective dynamics of neuronal populations in human brain. In this method, a population density function describes the probabilistic distribution of states of all neurons in the population and it is governed by a hyperbolic partial differential equation. In the past, the problem was mainly solved by using the finite difference method. In a previous study, a continuous Galerkin finite element method was found better than the finite difference method for solving the hyperbolic partial differential equation; however, the population density function often has discontinuity and both methods suffer from a numerical stability problem. The goal of this study is to improve the numerical stability of the solution using discontinuous Galerkin finite element method. To test the performance of the new approach, interaction of a population of cortical pyramidal neurons and a population of thalamic neurons was simulated. The numerical results showed good agreement between results of discontinuous Galerkin finite element and Monte Carlo methods. The convergence and accuracy of the solutions are excellent. The numerical stability problem could be resolved using the discontinuous Galerkin finite element method which has total-variation-diminishing property. The efficient approach will be employed to simulate the electroencephalogram or dynamics of thalamocortical network which involves three populations, namely, thalamic reticular neurons, thalamocortical neurons and cortical pyramidal neurons.

  10. Intrinsic Hippocampal Excitability Changes of Opposite Signs and Different Origins in CA1 and CA3 Pyramidal Neurons Underlie Aging-Related Cognitive Deficits

    PubMed Central

    Oh, M. Matthew; Simkin, Dina; Disterhoft, John F.

    2016-01-01

    Aging-related cognitive deficits have been attributed to dysfunction of neurons due to failures at synaptic or intrinsic loci, or both. Given the importance of the hippocampus for successful encoding of memory and that the main output of the hippocampus is via the CA1 pyramidal neurons, much of the research has been focused on identifying the aging-related changes of these CA1 pyramidal neurons. We and others have discovered that the postburst afterhyperpolarization (AHP) following a train of action potentials is greatly enlarged in CA1 pyramidal neurons of aged animals. This enlarged postburst AHP is a significant factor in reducing the intrinsic excitability of these neurons, and thus limiting their activity in the neural network during learning. Based on these data, it has largely been thought that aging-related cognitive deficits are attributable to reduced activity of pyramidal neurons. However, recent in vivo and ex vivo studies provide compelling evidence that aging-related deficits could also be due to a converse change in CA3 pyramidal neurons, which show increased activity with aging. In this review, we will incorporate these recent findings and posit that an interdependent dynamic dysfunctional change occurs within the hippocampal network, largely due to altered intrinsic excitability in CA1 and CA3 hippocampal pyramidal neurons, which ultimately leads to the aging-related cognitive deficits. PMID:27375440

  11. Synaptic Conductance Estimates of the Connection Between Local Inhibitor Interneurons and Pyramidal Neurons in Layer 2/3 of a Cortical Column

    PubMed Central

    Hoffmann, Jochen H.O.; Meyer, H. S.; Schmitt, Arno C.; Straehle, Jakob; Weitbrecht, Trinh; Sakmann, Bert; Helmstaedter, Moritz

    2015-01-01

    Stimulation of a principal whisker yields sparse action potential (AP) spiking in layer 2/3 (L2/3) pyramidal neurons in a cortical column of rat barrel cortex. The low AP rates in pyramidal neurons could be explained by activation of interneurons in L2/3 providing inhibition onto L2/3 pyramidal neurons. L2/3 interneurons classified as local inhibitors based on their axonal projection in the same column were reported to receive strong excitatory input from spiny neurons in L4, which are also the main source of the excitatory input to L2/3 pyramidal neurons. Here, we investigated the remaining synaptic connection in this intracolumnar microcircuit. We found strong and reliable inhibitory synaptic transmission between intracolumnar L2/3 local-inhibitor-to-L2/3 pyramidal neuron pairs [inhibitory postsynaptic potential (IPSP) amplitude −0.88 ± 0.67 mV]. On average, 6.2 ± 2 synaptic contacts were made by L2/3 local inhibitors onto L2/3 pyramidal neurons at 107 ± 64 µm path distance from the pyramidal neuron soma, thus overlapping with the distribution of synaptic contacts from L4 spiny neurons onto L2/3 pyramidal neurons (67 ± 34 µm). Finally, using compartmental simulations, we determined the synaptic conductance per synaptic contact to be 0.77 ± 0.4 nS. We conclude that the synaptic circuit from L4 to L2/3 can provide efficient shunting inhibition that is temporally and spatially aligned with the excitatory input from L4 to L2/3. PMID:25761638

  12. Repeated cocaine weakens GABAB-Girk signaling in Layer 5/6 pyramidal neurons in the prelimbic cortex

    PubMed Central

    Hearing, Matthew; Kotecki, Lydia; de Velasco, Ezequiel Marron Fernandez; Fajardo-Serrano, Ana; Luján, Rafael; Wickman, Kevin

    2013-01-01

    Summary Repeated cocaine exposure triggers adaptations in Layer 5/6 glutamatergic neurons in the medial prefrontal cortex (mPFC) that promote behavioral sensitization and drug-seeking behavior. While suppression of metabotropic inhibitory signaling has been implicated in these behaviors, underlying mechanisms are unknown. Here, we show that Girk/KIR3 channels mediate most of the GABAB receptor (GABABR)-dependent inhibition of Layer 5/6 pyramidal neurons in the mPFC and that repeated cocaine suppresses this pathway. This adaptation was selective for GABABR-dependent Girk signaling in Layer 5/6 pyramidal neurons of the prelimbic cortex (PrLC) and involved a D1/5 dopamine receptor- and phosphorylation-dependent internalization of GABABR and Girk channels. Persistent suppression of Girk signaling in Layer 5/6 of the dorsal mPFC enhanced cocaine-induced locomotor activity and occluded behavioral sensitization. Thus, the cocaine-induced suppression of GABABR-Girk signaling in Layer 5/6 pyramidal neurons of the prelimbic cortex appears to represent an early adaptation critical for promoting addiction-related behavior. PMID:24094109

  13. Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex.

    PubMed

    Ohshima, Toshio; Hirasawa, Motoyuki; Tabata, Hidenori; Mutoh, Tetsuji; Adachi, Tomoko; Suzuki, Hiromi; Saruta, Keiko; Iwasato, Takuji; Itohara, Shigeyoshi; Hashimoto, Mistuhiro; Nakajima, Kazunori; Ogawa, Masaharu; Kulkarni, Ashok B; Mikoshiba, Katsuhiko

    2007-06-01

    The mammalian cerebral cortex consists of six layers that are generated via coordinated neuronal migration during the embryonic period. Recent studies identified specific phases of radial migration of cortical neurons. After the final division, neurons transform from a multipolar to a bipolar shape within the subventricular zone-intermediate zone (SVZ-IZ) and then migrate along radial glial fibres. Mice lacking Cdk5 exhibit abnormal corticogenesis owing to neuronal migration defects. When we introduced GFP into migrating neurons at E14.5 by in utero electroporation, we observed migrating neurons in wild-type but not in Cdk5(-/-) embryos after 3-4 days. Introduction of the dominant-negative form of Cdk5 into the wild-type migrating neurons confirmed specific impairment of the multipolar-to-bipolar transition within the SVZ-IZ in a cell-autonomous manner. Cortex-specific Cdk5 conditional knockout mice showed inverted layering of the cerebral cortex and the layer V and callosal neurons, but not layer VI neurons, had severely impaired dendritic morphology. The amount of the dendritic protein Map2 was decreased in the cerebral cortex of Cdk5-deficient mice, and the axonal trajectory of cortical neurons within the cortex was also abnormal. These results indicate that Cdk5 is required for proper multipolar-to-bipolar transition, and a deficiency of Cdk5 results in abnormal morphology of pyramidal neurons. In addition, proper radial neuronal migration generates an inside-out pattern of cerebral cortex formation and normal axonal trajectories of cortical pyramidal neurons.

  14. Clotrimazole analogues: effective blockers of the slow afterhyperpolarization in cultured rat hippocampal pyramidal neurones

    PubMed Central

    Shah, M M; Miscony, Z; Javadzadeh-Tabatabaie, M; Ganellin, C R; Haylett, D G

    2001-01-01

    The pharmacology of the slow afterhyperpolarization (sAHP) was studied in cultured rat hippocampal pyramidal neurones. Clotrimazole, its in vivo metabolite, 2-chlorophenyl-bisphenyl-methanol (CBM) and the novel analogues, UCL 1880 and UCL 2027, inhibited the sIAHP with similar IC50s (1 – 2 μM). Clotrimazole and CBM also inhibited the high voltage-activated (HVA) Ca2+ current in pyramidal neurones with IC50s of 4.7 μM and 2.2 μM respectively. UCL 1880 was a less effective Ca2+ channel blocker, reducing the HVA Ca2+ current by 50% at 10 μM. At concentrations up to 10 μM, UCL 2027 had no effect on the Ca2+ current, indicating that its effects on the sIAHP were independent of Ca2+ channel block. Clotrimazole also inhibited both the outward holding current (IC50=2.8 μM) present at a potential of −50 mV and the apamin-sensitive medium AHP (mAHP; IC50≈amp;10 μM). The other clotrimazole analogues tested had smaller effects on these two currents. The present work also shows that 100 nM UCL 1848, an inhibitor of apamin-sensitive conductances, abolishes the mAHP. Currents were recorded from HEK293 cells transfected with hSK1 and rSK2. The SK currents were very sensitive to inhibition by UCL 1848 but were not significantly reduced by the sIAHP inhibitor, UCL 2027 (10 μM). 10 μM UCL 1880 reduced the hSK1 current by 40%. UCL 2027 appears to be the first relatively selective blocker of the sAHP to be described. Furthermore, the ability of UCL 2027 to block the sAHP with minimal effect on SK1 channel activity questions the role of this channel in the sAHP. PMID:11181430

  15. Properties of GABA-mediated synaptic potentials induced by zinc in adult rat hippocampal pyramidal neurones.

    PubMed Central

    Xie, X; Smart, T G

    1993-01-01

    1. Intracellular recording techniques were used to study the actions of the transition ion, zinc, on CA1 and CA3 pyramidal neurones in adult rat hippocampal slices. 2. Zinc (300 microM) hyperpolarized pyramidal neurones, increased the membrane excitability and also induced periodic, spontaneous giant depolarizing potentials associated with a conductance increase mechanism. 3. The occurrence of spontaneous giant depolarizations was dependent on the zinc concentration (10 microM-1 mM) with an apparent dissociation constant of 98 microM. The frequency of zinc-induced depolarizations was unaffected by the membrane potential from -50 to -100 mV. 4. Stimulation of the Schaffer collaterals or mossy fibre pathways evoked an excitatory and inhibitory synaptic potential complex. In the presence of zinc, nerve fibre stimulation evoked, in an all-or-none fashion, a giant depolarizing potential with an increased membrane conductance. Both spontaneous and evoked depolarizations were inhibited by 1 microM tetrodotoxin. 5. Evoked giant depolarizations were labile with too frequent stimulation resulting in a failure of generation. A minimum time of 140 s was required between stimuli to ensure successive giant depolarizations. 6. Spontaneous and evoked zinc-induced depolarizing potentials were inhibited by bicuculline (10 microM) or picrotoxin (40 microM) and enhanced by pentobarbitone (100 microM) or flurazepam (10 microM), suggesting that these potentials are mediated by activation of gamma-aminobutyric acidA (GABAA) receptors. 7. Ionophoretic application of GABA produced biphasic responses at -60 mV membrane potential. The reversal potentials for the depolarizing and hyperpolarizing GABA responses were -56 +/- 5 and -66 +/- 8 mV respectively. The giant depolarizations induced by zinc reversed at -57 +/- 4 mV. This suggests a dendritic location for the generation of these potentials. 8. Excitatory amino acid antagonists, 2-amino-5-phosphonovalerate (APV, 40 microM) or 6-cyano-7

  16. The kinetics of multibranch integration on the dendritic arbor of CA1 pyramidal neurons

    PubMed Central

    Yang, Sunggu; Emiliani, Valentina; Tang, Cha-Min

    2014-01-01

    The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and temporal precision may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli. PMID:24860429

  17. LTP is accompanied by an enhanced local excitability of pyramidal neuron dendrites.

    PubMed

    Frick, Andreas; Magee, Jeffrey; Johnston, Daniel

    2004-02-01

    The propagation and integration of signals in the dendrites of pyramidal neurons is regulated, in part, by the distribution and biophysical properties of voltage-gated ion channels. It is thus possible that any modification of these channels in a specific part of the dendritic tree might locally alter these signaling processes. Using dendritic and somatic whole-cell recordings, combined with calcium imaging in rat hippocampal slices, we found that the induction of long-term potentiation (LTP) was accompanied by a local increase in dendritic excitability that was dependent on the activation of NMDA receptors. These changes favored the back-propagation of action potentials into this dendritic region with a subsequent boost in the Ca(2+) influx. Dendritic cell-attached patch recordings revealed a hyperpolarized shift in the inactivation curve of transient, A-type K(+) currents that can account for the enhanced excitability. These results suggest an important mechanism associated with LTP for shaping signal processing and controlling dendritic function.

  18. Age-related dysfunctions of the autophagy lysosomal pathway in hippocampal pyramidal neurons under proteasome stress.

    PubMed

    Gavilán, Elena; Pintado, Cristina; Gavilan, Maria P; Daza, Paula; Sánchez-Aguayo, Inmaculada; Castaño, Angélica; Ruano, Diego

    2015-05-01

    Autophagy plays a key role in the maintenance of cellular homeostasis, and autophagy deregulation gives rise to severe disorders. Many of the signaling pathways regulating autophagy under stress conditions are still poorly understood. Using a model of proteasome stress in rat hippocampus, we have characterized the functional crosstalk between the ubiquitin proteasome system and the autophagy-lysosome pathway, identifying also age-related modifications in the crosstalk between both proteolytic systems. Under proteasome inhibition, both autophagy activation and resolution were efficiently induced in young but not in aged rats, leading to restoration of protein homeostasis only in young pyramidal neurons. Importantly, proteasome stress inhibited glycogen synthase kinase-3β in young but activated in aged rats. This age-related difference could be because of a dysfunction in the signaling pathway of the insulin growth factor-1 under stress situations. Present data highlight the potential role of glycogen synthase kinase-3β in the coordination of both proteolytic systems under stress situation, representing a key molecular target to sort out this deleterious effect.

  19. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons123

    PubMed Central

    2016-01-01

    Abstract EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5–30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23–420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean Rneck estimate of 204 MΩ (range, 52–521 MΩ; N = 34). PMID:27257618

  20. Delayed neuronal death in hippocampal CA1 pyramidal neurons after forebrain ischemia in hyperglycemic gerbils: amelioration by indomethacin.

    PubMed

    Kondo, F; Kondo, Y; Makino, H; Ogawa, N

    2000-01-17

    Hyperglycemia worsens ischemic-induced neuronal damage. Many reports argue the delayed neuronal cell death (DND) after forebrain ischemia in gerbils is due to apoptosis. We examined the effects of hyperglycemia and indomethacin on DND after forebrain ischemia in gerbils. Complete occlusion of both common carotid arteries was performed for 3.5 min followed by declamping and reperfusion. Blood glucose levels were maintained at 25-30 mmol/1 for 24 h after reperfusion in the hyperglycemic groups. We examined morphological changes consistent with DND using Nissel-stained sections and DNA fragmentation using TUNEL staining, at 12, 24, 36, 48, 60, 72, 84, 96, 108, 120 h, and 7 days after reperfusion. DND was noted 96-120 h after ischemia in normoglycemic group. Hyperglycemia enhanced the development of DND at an earlier stage (48-84 h after ischemia). TUNEL positive neurons were detected 72-108 h after reperfusion in normoglycemic group, but very few TUNEL positive neurons were detected in hyperglycemic group at 36-48 h. Indomethacin reduced the number of TUNEL-positive cells in normoglycemia and completely inhibited the appearance of TUNEL-positive cells under hyperglycemia. The number of viable neurons at 7 days after ischemia was markedly higher in indomethacin-treated groups than vehicle-treated group. Our results indicate that hyperglycemia worsens DND after forebrain ischemia in gerbils but such process is not associated with DNA fragmentation. Our results also showed that indomethacin provides a neuroprotective effect in normo- and hyperglycemic conditions.

  1. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons

    PubMed Central

    Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas

    2009-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744

  2. TRPM2 channel deficiency prevents delayed cytosolic Zn2+ accumulation and CA1 pyramidal neuronal death after transient global ischemia

    PubMed Central

    Ye, M; Yang, W; Ainscough, J F; Hu, X-P; Li, X; Sedo, A; Zhang, X-H; Zhang, X; Chen, Z; Li, X-M; Beech, D J; Sivaprasadarao, A; Luo, J-H; Jiang, L-H

    2014-01-01

    Transient ischemia is a leading cause of cognitive dysfunction. Postischemic ROS generation and an increase in the cytosolic Zn2+ level ([Zn2+]c) are critical in delayed CA1 pyramidal neuronal death, but the underlying mechanisms are not fully understood. Here we investigated the role of ROS-sensitive TRPM2 (transient receptor potential melastatin-related 2) channel. Using in vivo and in vitro models of ischemia–reperfusion, we showed that genetic knockout of TRPM2 strongly prohibited the delayed increase in the [Zn2+]c, ROS generation, CA1 pyramidal neuronal death and postischemic memory impairment. Time-lapse imaging revealed that TRPM2 deficiency had no effect on the ischemia-induced increase in the [Zn2+]c but abolished the cytosolic Zn2+ accumulation during reperfusion as well as ROS-elicited increases in the [Zn2+]c. These results provide the first evidence to show a critical role for TRPM2 channel activation during reperfusion in the delayed increase in the [Zn2+]c and CA1 pyramidal neuronal death and identify TRPM2 as a key molecule signaling ROS generation to postischemic brain injury. PMID:25429618

  3. Kv4 Accessory Protein DPPX (DPP6) is a Critical Regulator of Membrane Excitability in Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Kim, Jinhyun; Nadal, Marcela S.; Clemens, Ann M.; Baron, Matthew; Jung, Sung-Cherl; Misumi, Yoshio; Rudy, Bernardo; Hoffman, Dax A.

    2008-01-01

    A-type K+ currents have unique kinetic and voltage-dependent properties that allow them to finely tune synaptic integration, action potential (AP) shape and firing patterns. In hippocampal CA1 pyramidal neurons, Kv4 channels make up the majority of the somatodendritic A-type current. Studies in heterologous expression systems have shown that Kv4 channels interact with transmembrane dipeptidyl-peptidase-like proteins (DPPLs) to regulate the surface trafficking and biophysical properties of Kv4 channels. To investigate the influence of DPPLs in a native system, we conducted voltage-clamp experiments in patches from CA1 pyramidal neurons expressing short-interfering RNA (siRNA) targeting the DPPL variant known to be expressed in hippocampal pyramidal neurons, DPPX (siDPPX). In accordance with heterologous studies, we found that DPPX downregulation in neurons resulted in depolarizing shifts of the steady-state inactivation and activation curves, a shallower conductance-voltage slope, slowed inactivation, and a delayed recovery from inactivation for A-type currents. We carried out current-clamp experiments to determine the physiological effect of the A-type current modifications by DPPX. Neurons expressing siDPPX exhibited a surprisingly large reduction in subthreshold excitability as measured by a decrease in input resistance, delayed time to AP onset, and an increased AP threshold. Suprathreshold DPPX downregulation resulted in slower AP rise and weaker repolarization. Computer simulations supported our experimental results and demonstrated how DPPX remodeling of A-channel properties can result in opposing sub- and suprathreshold effects on excitability. The Kv4 auxiliary subunit DPPX thus acts to increase neuronal responsiveness and enhance signal precision by advancing AP initiation and accelerating both the rise and repolarization of APs. PMID:18667548

  4. Blockade of Ca2+-permeable AMPA/kainate channels decreases oxygen-glucose deprivation-induced Zn2+ accumulation and neuronal loss in hippocampal pyramidal neurons.

    PubMed

    Yin, Hong Z; Sensi, Stefano L; Ogoshi, Fumio; Weiss, John H

    2002-02-15

    Synaptic release of Zn2+ and its translocation into postsynaptic neurons probably contribute to neuronal injury after ischemia or epilepsy. Studies in cultured neurons have revealed that of the three major routes of divalent cation entry, NMDA channels, voltage-sensitive Ca2+ channels (VSCCs), and Ca2+-permeable AMPA/kainate (Ca-A/K) channels, Ca-A/K channels exhibit the highest permeability to exogenously applied Zn2+. However, routes through which synaptically released Zn2+ gains entry to postsynaptic neurons have not been characterized in vivo. To model ischemia-induced Zn2+ movement in a system approximating the in vivo situation, we subjected mouse hippocampal slice preparations to controlled periods of oxygen and glucose deprivation (OGD). Timm's staining revealed little reactive Zn2+ in CA1 and CA3 pyramidal neurons of slices exposed in the presence of O2 and glucose. However, 15 min of OGD resulted in marked labeling in both regions. Whereas strong Zn2+ labeling persisted if both the NMDA antagonist MK-801 and the VSCC blocker Gd3+ were present during OGD, the presence of either the Ca-A/K channel blocker 1-naphthyl acetyl spermine (NAS) or the extracellular Zn2+ chelator Ca2+ EDTA substantially decreased Zn2+ accumulation in pyramidal neurons of both subregions. In parallel experiments, slices were subjected to 5 min OGD exposures as described above, followed 4 hr later by staining with the cell-death marker propidium iodide. As in the Timm's staining experiments, substantial CA1 or CA3 pyramidal neuronal damage occurred despite the presence of MK-801 and Gd3+, whereas injury was decreased by NAS or by Ca2+ EDTA (in CA1).

  5. Effects of perinatal undernutrition on the basilar dendritic arbor of the anterior cingulate pyramidal neurons in lactating dams.

    PubMed

    Salas, Manuel; Torrero, Carmen; Regalado, Mirelta; Rubio, Lorena

    2015-01-01

    In altricial species, early pre- and neonatal undernutrition interferes with the neuronal organization of several brain structures that have critical time windows for synaptic organization, including the prefrontal cortex. In Golgi-Cox stained tissue the basilar dendritic arbor of pyramidal neurons in the anterior cingulate cortex of early underfed adult lactating dams was evaluated. The anterior cingulate of the rat plays a major role in the execution of sexual, maternal and visual attentional control and other cognitive responses. The effects of neonatal undernutrition on the basilar dendritic tree and perikaryon measurements in layer II/III pyramidal neurons of the anterior cingulate were examined in lactating dams at postpartum days 8 and 12. In the underfed dams the distal portions of the basilar dendrites had fewer branches and a lower dendritic density of dendrites, and neurons had perikarya with reduced perimeter and cross-sectional area. Thus, the neuronal alterations may interfere the plastic synaptic activity and with maternal cognitive performance of rats subjected to early underfeeding. These anatomical alterations of the anterior cingulate may help to understand the disruption of long-term cognitive processes associated with perinatal food restriction.

  6. Changes in the physiology of CA1 hippocampal pyramidal neurons in pre-plaque CRND8 mice

    PubMed Central

    Wykes, Robert; Kalmbach, Abigail; Eliava, Marina; Waters, Jack

    2011-01-01

    Amyloid-β protein (Aβ) is thought to play a central pathogenic role in Alzheimer’s disease. Aβ can impair synaptic transmission, but little is known about the effects of Aβ on intrinsic cellular properties. Here we compared the cellular properties of CA1 hippocampal pyramidal neurons in acute slices from pre-plaque transgenic (Tg+) CRND8 mice and wild-type (Tg−) littermates. CA1 pyramidal neurons from Tg+ mice had narrower action potentials with faster decays than neurons from Tg− littermates. Action potential-evoked intracellular Ca2+ transients in the apical dendrite were smaller in Tg+ than Tg− neurons. Resting calcium concentration was higher in Tg+ than Tg− neurons. The difference in action potential waveform was eliminated by low concentrations of tetraethylammonium ions and of 4-aminopyridine, implicating a fast delayed-rectifier potassium current. Consistent with this suggestion, there was a small increase in immunoreactivity for Kv3.1b in stratum radiatum in Tg+ mice. These changes in intrinsic properties may affect information flow through the hippocampus and contribute to the behavioral deficits observed in mouse models and patients with early-stage Alzheimer’s disease. PMID:21676499

  7. Hippocampal pyramidal neurons switch from a multipolar migration mode to a novel "climbing" migration mode during development.

    PubMed

    Kitazawa, Ayako; Kubo, Ken-ichiro; Hayashi, Kanehiro; Matsunaga, Yuki; Ishii, Kazuhiro; Nakajima, Kazunori

    2014-01-22

    The hippocampus plays important roles in brain functions. Despite the importance of hippocampal functions, recent analyses of neuronal migration have mainly been performed on the cerebral neocortex, and the cellular mechanisms responsible for the formation of the hippocampus are not yet completely understood. Moreover, why a prolonged time is required for hippocampal neurons to complete their migration has been unexplainable for several decades. We analyzed the migratory profile of neurons in the developing mouse hippocampal CA1 region and found that the hippocampal pyramidal neurons generated near the ventricle became postmitotic multipolar cells and accumulated in the multipolar cell accumulation zone (MAZ) in the late stage of development. The hippocampal neurons passed through the pyramidal layer by a unique mode of migration. Their leading processes were highly branched and made contact with many radial fibers. Time-lapse imaging revealed that the migrating cells changed their scaffolds from the original radial fibers to other radial fibers, and as a result they proceed in a zigzag manner, with long intervals. The migrating cells in the hippocampus reminded us of "rock climbers" that instead of using their hands to pull up their bodies were using their leading processes to pull up their cell bodies. Because this mode of migration had never been described, we called it the "climbing" mode. The change from the "climbing" mode in the hippocampus to the "locomotion" mode in the neocortex may have contributed to the brain expansion during evolution.

  8. Evidence for neuroprotective effect of sulbutiamine against oxygen-glucose deprivation in rat hippocampal CA1 pyramidal neurons.

    PubMed

    Kwag, Jeehyun; Majid, Aman Shah Abdul; Kang, Kui Dong

    2011-01-01

    Hippocampus is one of the earliest brain regions that gets affected by ischemia, however, no pharmacological therapy exists yet that can fully counteract the ischemic damage. Here we study the effect of sulbutiamine, a synthetic thiamine analogue that can cross the blood-brain barrier easily, on hippocampal neurons under an in vitro model of ischemia, oxygen-glucose deprivation (OGD). We find that exposure to OGD in the presence of sulbutiamine significantly increases neuronal viability and enhances electrophysiological properties such as excitatory synaptic transmissions and intrinsic neuronal membrane input resistance in a concentration-dependent manner. Overall, here we report, for the first time, the neuroprotective evidence of sulbutiamine on hippocampal CA1 pyramidal neurons under OGD, which may have beneficial implications as a possible therapeutic agent/substance against ischemic insult.

  9. Tonic GABAA conductance decreases membrane time constant and increases EPSP-spike precision in hippocampal pyramidal neurons.

    PubMed

    Wlodarczyk, Agnieszka I; Xu, Chun; Song, Inseon; Doronin, Maxim; Wu, Yu-Wei; Walker, Matthew C; Semyanov, Alexey

    2013-01-01

    Because of a complex dendritic structure, pyramidal neurons have a large membrane surface relative to other cells and so a large electrical capacitance and a large membrane time constant (τm). This results in slow depolarizations in response to excitatory synaptic inputs, and consequently increased and variable action potential latencies, which may be computationally undesirable. Tonic activation of GABAA receptors increases membrane conductance and thus regulates neuronal excitability by shunting inhibition. In addition, tonic increases in membrane conductance decrease the membrane time constant (τm), and improve the temporal fidelity of neuronal firing. Here we performed whole-cell current clamp recordings from hippocampal CA1 pyramidal neurons and found that bath application of 10μM GABA indeed decreases τm in these cells. GABA also decreased first spike latency and jitter (standard deviation of the latency) produced by current injection of 2 rheobases (500 ms). However, when larger current injections (3-6 rheobases) were used, GABA produced no significant effect on spike jitter, which was low. Using mathematical modeling we demonstrate that the tonic GABAA conductance decreases rise time, decay time and half-width of EPSPs in pyramidal neurons. A similar effect was observed on EPSP/IPSP pairs produced by stimulation of Schaffer collaterals: the EPSP part of the response became shorter after application of GABA. Consistent with the current injection data, a significant decrease in spike latency and jitter was obtained in cell attached recordings only at near-threshold stimulation (50% success rate, S50). When stimulation was increased to 2- or 3- times S50, GABA significantly affected neither spike latency nor spike jitter. Our results suggest that a decrease in τm associated with elevations in ambient GABA can improve EPSP-spike precision at near-threshold synaptic inputs.

  10. Electrophysiological properties of genetically identified subtypes of layer 5 neocortical pyramidal neurons: Ca2+ dependence and differential modulation by norepinephrine

    PubMed Central

    Guan, Dongxu; Armstrong, William E.

    2015-01-01

    We studied neocortical pyramidal neurons from two lines of bacterial artificial chromosome mice (etv1 and glt; Gene Expression Nervous System Atlas: GENSAT project), each of which expresses enhanced green fluorescent protein (EGFP) in a different subpopulation of layer 5 pyramidal neurons. In barrel cortex, etv1 and glt pyramidal cells were previously reported to differ in terms of their laminar distribution, morphology, thalamic inputs, cellular targets, and receptive field size. In this study, we measured the laminar distribution of etv1 and glt cells. On average, glt cells were located more deeply; however, the distributions of etv1 and glt cells extensively overlap in layer 5. To test whether these two cell types differed in electrophysiological properties that influence firing behavior, we prepared acute brain slices from 2–4-wk-old mice, where EGFP-positive cells in somatosensory cortex were identified under epifluorescence and then studied using whole cell current- or voltage-clamp recordings. We studied the details of action potential parameters and repetitive firing, characterized by the larger slow afterhyperpolarizations (AHPs) in etv1 neurons and larger medium AHPs (mAHPS) in glt cells, and compared currents underlying the mAHP and slow AHP (sAHP) in etv1 and glt neurons. Etv1 cells exhibited lower dV/dt for spike polarization and repolarization and reduced direct current (DC) gain (lower f-I slope) for repetitive firing than glt cells. Most importantly, we found that 1) differences in the expression of Ca2+-dependent K+ conductances (small-conductance calcium-activated potassium channels and sAHP channels) determine major functional differences between etv1 and glt cells, and 2) there is differential modulation of etv1 and glt neurons by norepinephrine. PMID:25568159

  11. Activation of Functional α7-Containing nAChRs in Hippocampal CA1 Pyramidal Neurons by Physiological Levels of Choline in the Presence of PNU-120596

    PubMed Central

    Kalappa, Bopanna I.; Gusev, Alexander G.; Uteshev, Victor V.

    2010-01-01

    Background The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. Methodology/Principal Findings An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1–5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal

  12. Changes in Neuronal Excitability by Activated Microglia: Differential Na(+) Current Upregulation in Pyramid-Shaped and Bipolar Neurons by TNF-α and IL-18.

    PubMed

    Klapal, Lars; Igelhorst, Birte A; Dietzel-Meyer, Irmgard D

    2016-01-01

    Microglia are activated during pathological events in the brain and are capable of releasing various types of inflammatory cytokines. Here, we demonstrate that the addition of 5% microglia activated by 1 μg/ml lipopolysaccharides (LPS) to hippocampal cultures upregulates Na(+) current densities (INavD) of bipolar as well as pyramid-shaped neurons, thereby increasing their excitability. Deactivation of microglia by the addition of 10 ng/ml transforming growth factor-β (TGF-β) decreases INavD below control levels suggesting that the residual activated microglial cells influence neuronal excitability in control cultures. Preincubation of hippocampal cultures with 10 ng/ml tumor necrosis factor-α (TNF-α), a major cytokine released by activated microglia, upregulated INavD significantly by ~30% in bipolar cells, whereas in pyramid-shaped cells, the upregulation only reached an increase of ~14%. Incubation of the cultures with antibodies against either TNF-receptor 1 or 2 blocked the upregulation of INavD in bipolar cells, whereas in pyramid-shaped cells, increases in INavD were exclusively blocked by antibodies against TNF-receptor 2, suggesting that both cell types respond differently to TNF-α exposure. Since additional cytokines, such as interleukin-18 (IL-18), are released from activated microglia, we tested potential effects of IL-18 on INavD in both cell types. Exposure to 5-10 ng/ml IL-18 for 4 days increased INavD in both pyramid-shaped as well as bipolar neurons, albeit the dose-response curves were shifted to lower concentrations in bipolar cells. Our results suggest that by secretion of cytokines, microglial cells upregulate Na(+) current densities in bipolar and pyramid-shaped neurons to some extent differentially. Depending on the exact cytokine composition and concentration released, this could change the balance between the activity of inhibitory bipolar and excitatory pyramid-shaped cells. Since bipolar cells show a larger upregulation of

  13. The electrical activity of hippocampal pyramidal neuron is subjected to descending control by the brain orexin/hypocretin system.

    PubMed

    Riahi, Esmail; Arezoomandan, Reza; Fatahi, Zahra; Haghparast, Abbas

    2015-03-01

    The hippocampus receives sparse orexinergic innervation from the lateral hypothalamus and expresses a high level of orexin receptor. The function of orexin receptor in the regulation of hippocampal neural activity has never been investigated. In this study, in vivo single unit recording was performed in urethane-anesthetized rats. After 15 min of baseline recording from pyramidal neuron within the CA1 region of the dorsal hippocampus, i.c.v. injection of orexin-A 0.5 nmol, SB334867 400 nmol, a selective orexin receptor 1 antagonist, saline, or DMSO, or microinjection of carbachol 250 nmol or saline into the ipsilateral lateral hypothalamus were performed using a Hamilton microsyringe, and the spontaneous firing activity continued to be recorded for 25 min. Results showed that orexin administration into the lateral cerebral ventricle excited 6 out of 8 neurons and inhibited 1 neuron. Chemical stimulation of the lateral hypothalamus by carbachol excited 9 out of 13 hippocampal neurons and inhibited 3 neurons. On the other hand, i.c.v. injection of the SB334867, caused reductions in the firing activity of 6 out of 10 neurons and increases in 4 additional neurons. It seems that orexin neurotransmission in the hippocampus mostly elicits an excitatory response, whereas blockade of orexin receptor has an inhibitory effect. Further studies need to be done to elucidate the underlying mechanism of orexin action on hippocampal neurons.

  14. Convergence of entorhinal and CA3 inputs onto pyramidal neurons and interneurons in hippocampal area CA1--an anatomical study in the rat.

    PubMed

    Kajiwara, Riichi; Wouterlood, Floris G; Sah, Anupam; Boekel, Amber J; Baks-te Bulte, Luciënne T G; Witter, Menno P

    2008-01-01

    The entorhinal cortex (EC) conveys information to hippocampal field CA1 either directly by way of projections from principal neurons in layer III, or indirectly by axons from layer II via the dentate gyrus, CA3, and Schaffer collaterals. These two pathways differentially influence activity in CA1, yet conclusive evidence is lacking whether and to what extent they converge onto single CA1 neurons. Presently we studied such convergence. Different neuroanatomical tracers injected into layer III of EC and into CA3, respectively, tagged simultaneously the direct entorhino-hippocampal fibers and the indirect innervation of CA1 neurons by Schaffer collaterals. In slices of fixed brains we intracellularly filled CA1 pyramidal cells and interneurons in stratum lacunosum-moleculare (LM) and stratum radiatum (SR). Sections of these slices were scanned in a confocal laser scanning microscope. 3D-reconstruction was used to determine whether boutons of the labeled input fibers were in contact with the intracellularly filled neurons. We analyzed 12 pyramidal neurons and 21 interneurons. Perforant path innervation to pyramidal neurons in our material was observed to be denser than that from CA3. All pyramidal neurons and 17 of the interneurons received contacts of both perforant pathway and Schaffer input on their dendrites and cell bodies. Four interneurons, which were completely embedded in LM, received only labeled perforant pathway input. Thus, we found convergence of both projection systems on single CA1 pyramidal and interneurons with dendrites that access the layers where perforant pathway fibers and Schaffer collaterals end.

  15. Activation of Transient Receptor Potential Vanilloid 4 Increases NMDA-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Li, Lin; Qu, Weijun; Zhou, Libin; Lu, Zihong; Jie, Pinghui; Chen, Lei; Chen, Ling

    2013-01-01

    The glutamate excitotoxicity, mediated through N-methyl-d-aspartate receptors (NMDARs), plays an important role in cerebral ischemia injury. Transient receptor potential vanilloid 4 (TRPV4) can be activated by multiple stimuli that may happen during stroke. The present study evaluated the effect of TRPV4 activation on NMDA-activated current (INMDA) and that of blocking TRPV4 on brain injury after focal cerebral ischemia in mice. We herein report that activation of TRPV4 by 4α-PDD and hypotonic stimulation increased INMDA in hippocampal CA1 pyramidal neurons, which was sensitive to TRPV4 antagonist HC-067047 and NMDAR antagonist AP-5, indicating that TRPV4 activation potentiates NMDAR response. In addition, the increase in INMDA by hypotonicity was sensitive to the antagonist of NMDAR NR2B subunit, but not of NR2A subunit. Furthermore, antagonists of calcium/calmodulin-dependent protein kinase II (CaMKII) significantly attenuated hypotonicity-induced increase in INMDA, while antagonists of protein kinase C or casein kinase II had no such effect, indicating that phosphorylation of NR2B subunit by CaMKII is responsible for TRPV4-potentiated NMDAR response. Finally, we found that intracerebroventricular injection of HC-067047 after 60 min middle cerebral artery occlusion reduced the cerebral infarction with at least a 12 h efficacious time-window. These findings indicate that activation of TRPV4 increases NMDAR function, which may facilitate glutamate excitotoxicity. Closing TRPV4 may exert potent neuroprotection against cerebral ischemia injury through many mechanisms at least including the prevention of NMDAR-mediated glutamate excitotoxicity. PMID:23459987

  16. Activity of pyramidal tract neurons in the cat during standing and walking on an inclined plane.

    PubMed

    Karayannidou, A; Beloozerova, I N; Zelenin, P V; Stout, E E; Sirota, M G; Orlovsky, G N; Deliagina, T G

    2009-08-01

    To keep balance when standing or walking on a surface inclined in the roll plane, the cat modifies its body configuration so that the functional length of its right and left limbs becomes different. The aim of the present study was to assess the motor cortex participation in the generation of this left/right asymmetry. We recorded the activity of fore- and hindlimb-related pyramidal tract neurons (PTNs) during standing and walking on a treadmill. A difference in PTN activity at two tilted positions of the treadmill (+/- 15 deg) was considered a positional response to surface inclination. During standing, 47% of PTNs exhibited a positional response, increasing their activity with either the contra-tilt (20%) or the ipsi-tilt (27%). During walking, PTNs were modulated in the rhythm of stepping, and tilts of the supporting surface evoked positional responses in the form of changes to the magnitude of modulation in 58% of PTNs. The contra-tilt increased activity in 28% of PTNs, and ipsi-tilt increased activity in 30% of PTNs. We suggest that PTNs with positional responses contribute to the modifications of limb configuration that are necessary for adaptation to the inclined surface. By comparing the responses to tilts in individual PTNs during standing and walking, four groups of PTNs were revealed: responding in both tasks (30%); responding only during standing (16%); responding only during walking (30%); responding in none of the tasks (24%). This diversity suggests that common and separate cortical mechanisms are used for postural adaptation to tilts during standing and walking.

  17. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed

    Greene, R W; Haas, H L

    1985-09-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation.

  18. Adenosine actions on CA1 pyramidal neurones in rat hippocampal slices.

    PubMed Central

    Greene, R W; Haas, H L

    1985-01-01

    Intracellular recordings with a bridge amplifier of CA1 pyramidal neurones in vitro were employed to study the mechanisms of action of exogenously applied adenosine in the hippocampal slice preparation of the rat. Adenosine enhanced the calcium-dependent, long-duration after-hyperpolarization (a.h.p.) at least in part by a reduction in the rate of decay of the a.h.p. Both the reduced rate of decay and that of the control can be described with a single exponential. Antagonism of the calcium-dependent potassium current (and as a result, the a.h.p.) by bath application of CdCl2 or intracellular injection of EGTA (ethyleneglycolbis-(beta-aminoethyl ether)N,N'-tetraacetic acid) did not reduce the adenosine-evoked hyperpolarization or decrease in input resistance. Similarly, TEA (tetraethylammonium), which antagonizes both the voltage- and calcium-sensitive, delayed, outward rectification, had no effect on the adenosine-evoked changes in resting membrane properties. Adenosine did not affect the early, transient, outward rectification. During exposure to 4-aminopyridine (4-AP) in concentrations sufficient to antagonize this early rectification, the changes in resting membrane properties evoked by adenosine were unaffected. We conclude that the enhancement of the a.h.p. and accommodation by adenosine may be mediated by a change in the regulation of intracellular calcium. However, the mechanism responsible for the hyperpolarization and decrease in input resistance evoked by adenosine is both calcium and voltage insensitive. Thus, it appears distinct from that mediating the enhancement of the a.h.p. and accommodation. PMID:3932644

  19. Aging-Related Hyperexcitability in CA3 Pyramidal Neurons Is Mediated by Enhanced A-Type K+ Channel Function and Expression

    PubMed Central

    Simkin, Dina; Hattori, Shoai; Ybarra, Natividad; Musial, Timothy F.; Buss, Eric W.; Richter, Hannah; Oh, M. Matthew

    2015-01-01

    Aging-related impairments in hippocampus-dependent cognition have been attributed to maladaptive changes in the functional properties of pyramidal neurons within the hippocampal subregions. Much evidence has come from work on CA1 pyramidal neurons, with CA3 pyramidal neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing in the hippocampal circuit. Here, we use whole-cell current-clamp to demonstrate that aged rat (29–32 months) CA3 pyramidal neurons fire significantly more action potentials (APs) during theta-burst frequency stimulation and that this is associated with faster AP repolarization (i.e., narrower AP half-widths and enlarged fast afterhyperpolarization). Using a combination of patch-clamp physiology, pharmacology, Western blot analyses, immunohistochemistry, and array tomography, we demonstrate that these faster AP kinetics are mediated by enhanced function and expression of Kv4.2/Kv4.3 A-type K+ channels, particularly within the perisomatic compartment, of CA3 pyramidal neurons. Thus, our study indicates that inhibition of these A-type K+ channels can restore the intrinsic excitability properties of aged CA3 pyramidal neurons to a young-like state. SIGNIFICANCE STATEMENT Age-related learning deficits have been attributed, in part, to altered hippocampal pyramidal neuronal function with normal aging. Much evidence has come from work on CA1 neurons, with CA3 neurons receiving comparatively less attention despite its age-related hyperactivation being postulated to interfere with spatial processing. Hence, we conducted a series of experiments to identify the cellular mechanisms that underlie the hyperexcitability reported in the CA3 region. Contrary to CA1 neurons, we demonstrate that postburst afterhyperpolarization is not altered with aging and that aged CA3 pyramidal neurons are able to fire significantly more action potentials and that this is associated with

  20. Silent synapses persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-reared mice.

    PubMed

    Funahashi, Rie; Maruyama, Takuro; Yoshimura, Yumiko; Komatsu, Yukio

    2013-04-01

    Immature excitatory synapses often have NMDA receptors but not AMPA receptors in central neurons, including visual cortical pyramidal neurons. These synapses, called silent synapses, are converted to functional synapses with AMPA receptors by NMDA receptor activation during early development. It is likely that this process underlies the activity-dependent refinement of neuronal circuits and brain functions. In the present study, we investigated postnatal development of excitatory synapses, focusing on the role of visual inputs in the conversion of silent to functional synapses in mouse visual cortex. We analyzed presumably unitary excitatory postsynaptic currents (EPSCs) between a pair of layer 2/3 pyramidal neurons, using minimal stimulation with a patch pipette attached to the soma of one of the pair. The proportion of silent synapses was estimated by the difference in the failure rate between AMPA- and NMDA-EPSCs. In normal development, silent synapses were present abundantly before eye opening, decreased considerably by the critical period of ocular dominance plasticity, and almost absent in adulthood. This decline in silent synapses was prevented by dark rearing. The amplitude of presumably unitary AMPA-EPSCs increased with age, but this increase was suppressed by dark rearing. The quantal amplitude of AMPA-EPSCs and paired-pulse ratio of NMDA-EPSCs both remained unchanged during development, independent of visual experience. These results indicate that visual inputs are required for the conversion of silent to functional synapses and this conversion largely contributes to developmental increases in the amplitude of presumably unitary AMPA-EPSCs.

  1. Functional consequences of age-related morphologic changes to pyramidal neurons of the rhesus monkey prefrontal cortex.

    PubMed

    Coskren, Patrick J; Luebke, Jennifer I; Kabaso, Doron; Wearne, Susan L; Yadav, Aniruddha; Rumbell, Timothy; Hof, Patrick R; Weaver, Christina M

    2015-04-01

    Layer 3 (L3) pyramidal neurons in the lateral prefrontal cortex (LPFC) of rhesus monkeys exhibit dendritic regression, spine loss and increased action potential (AP) firing rates during normal aging. The relationship between these structural and functional alterations, if any, is unknown. To address this issue, morphological and electrophysiological properties of L3 LPFC pyramidal neurons from young and aged rhesus monkeys were characterized using in vitro whole-cell patch-clamp recordings and high-resolution digital reconstruction of neurons. Consistent with our previous studies, aged neurons exhibited significantly reduced dendritic arbor length and spine density, as well as increased input resistance and firing rates. Computational models using the digital reconstructions with Hodgkin-Huxley and AMPA channels allowed us to assess relationships between demonstrated age-related changes and to predict physiological changes that have not yet been tested empirically. For example, the models predict that in both backpropagating APs and excitatory postsynaptic currents (EPSCs), attenuation is lower in aged versus young neurons. Importantly, when identical densities of passive parameters and voltage- and calcium-gated conductances were used in young and aged model neurons, neither input resistance nor firing rates differed between the two age groups. Tuning passive parameters for each model predicted significantly higher membrane resistance (R m ) in aged versus young neurons. This R m increase alone did not account for increased firing rates in aged models, but coupling these R m values with subtle differences in morphology and membrane capacitance did. The predicted differences in passive parameters (or parameters with similar effects) are mathematically plausible, but must be tested empirically.

  2. Two transient potassium currents in layer V pyramidal neurones from cat sensorimotor cortex.

    PubMed Central

    Spain, W J; Schwindt, P C; Crill, W E

    1991-01-01

    1. Two transient outward currents were identified in large pyramidal neurones from layer V of cat sensorimotor cortex ('Betz cells') using an in vitro brain slice preparation and single-microelectrode voltage clamp. Properties of the currents deduced from voltage-clamp measurements were reflected in neuronal responses during constant current stimulation. 2. Both transient outward currents rose rapidly after a step depolarization, but their subsequent time course differed greatly. The fast-transient current decayed within 20 ms, while the slow-transient current took greater than 10 s to decay. Raised extracellular potassium reduced current amplitude. Both currents were present in cadmium-containing or calcium-free perfusate. 3. Tetraethylammonium had little effect on the slow-transient current at a concentration of 1 mM, but the fast-transient current was reduced by 60%. 4-Aminopyridine had little effect on the fast-transient current over the range 20 microM-2 mM, but these concentrations reduced the slow-transient current and altered its time course. 4. Both transient currents were evoked by depolarizations below action potential threshold. The fast-transient current was evoked by a 7 mV smaller depolarization than the slow-transient current, but its chord conductance increased less steeply with depolarization. 5. Voltage-dependent inactivation of the fast-transient was steeper than that of the slow-transient current (4 vs. 7 mV per e-fold change), and half-inactivation occurred at a less negative potential (-59 vs. -65 mV). The activation and inactivation characteristics of each current overlapped, however, implying the existence of a steady 'window current' extending over a range of approximately 14 mV beginning negative to action potential threshold. 6. The fast-transient current displayed a clear voltage dependence of both its activation and inactivation kinetics, whereas the slow-transient current did not. Recovery of either current from inactivation took

  3. The establishment of GABAergic and glutamatergic synapses on CA1 pyramidal neurons is sequential and correlates with the development of the apical dendrite.

    PubMed

    Tyzio, R; Represa, A; Jorquera, I; Ben-Ari, Y; Gozlan, H; Aniksztejn, L

    1999-12-01

    We have performed a morphofunctional analysis of CA1 pyramidal neurons at birth to examine the sequence of formation of GABAergic and glutamatergic postsynaptic currents (PSCs) and to determine their relation to the dendritic arborization of pyramidal neurons. We report that at birth pyramidal neurons are heterogeneous. Three stages of development can be identified: (1) the majority of the neurons (80%) have small somata, an anlage of apical dendrite, and neither spontaneous nor evoked PSCs; (2) 10% of the neurons have a small apical dendrite restricted to the stratum radiatum and PSCs mediated only by GABA(A) receptors; and (3) 10% of the neurons have an apical dendrite that reaches the stratum lacunosum moleculare and PSCs mediated both by GABA(A) and glutamate receptors. These three groups of pyramidal neurons can be differentiated by their capacitance (C(m) = 17.9 +/- 0.8; 30.2 +/- 1.6; 43.2 +/- 3.0 pF, respectively). At birth, the synaptic markers synapsin-1 and synaptophysin labeling are present in dendritic layers but not in the stratum pyramidale, suggesting that GABAergic peridendritic synapses are established before perisomatic ones. The present observations demonstrate that GABAergic and glutamatergic synapses are established sequentially with GABAergic synapses being established first most likely on the apical dendrites of the principal neurons. We propose that different sets of conditions are required for the establishment of functional GABA and glutamate synapses, the latter necessitating more developed neurons that have apical dendrites that reach the lacunosum moleculare region.

  4. Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex.

    PubMed

    Breton, Jean-Didier; Stuart, Greg J

    2009-11-01

    Development of the cortical map is experience dependent, with different critical periods in different cortical layers. Previous work in rodent barrel cortex indicates that sensory deprivation leads to changes in synaptic transmission and plasticity in layer 2/3 and 4. Here, we studied the impact of sensory deprivation on the intrinsic properties of layer 5 pyramidal neurons located in rat barrel cortex using simultaneous somatic and dendritic recording. Sensory deprivation was achieved by clipping all the whiskers on one side of the snout. Loss of sensory input did not change somatic active and resting membrane properties, and did not influence dendritic action potential (AP) backpropagation. In contrast, sensory deprivation led to an increase in the percentage of layer 5 pyramidal neurons showing burst firing. This was associated with a reduction in the threshold for generation of dendritic calcium spikes during high-frequency AP trains. Cell-attached recordings were used to assess changes in the properties and expression of dendritic HCN channels. These experiments indicated that sensory deprivation caused a decrease in HCN channel density in distal regions of the apical dendrite. To assess the contribution of HCN down-regulation on the observed increase in dendritic excitability following sensory deprivation, we investigated the impact of blocking HCN channels. Block of HCN channels removed differences in dendritic calcium electrogenesis between control and deprived neurons. In conclusion, these observations indicate that sensory loss leads to increased dendritic excitability of cortical layer 5 pyramidal neurons. Furthermore, they suggest that increased dendritic calcium electrogenesis following sensory deprivation is mediated in part via down-regulation of dendritic HCN channels.

  5. Nonlinear Interaction between Shunting and Adaptation Controls a Switch between Integration and Coincidence Detection in Pyramidal Neurons

    PubMed Central

    Prescott, Steven A.; Ratté, Stéphanie; De Koninck, Yves; Sejnowski, Terrence J.

    2010-01-01

    The membrane conductance of a pyramidal neuron in vivo is substantially increased by background synaptic input. Increased membrane conductance, or shunting, does not simply reduce neuronal excitability. Recordings from hippocampal pyramidal neurons using dynamic clamp revealed that adaptation caused complete cessation of spiking in the high conductance state, whereas repetitive spiking could persist despite adaptation in the low conductance state. This behavior was reproduced in a phase plane model and was explained by a shunting-induced increase in voltage threshold. The increase in threshold allows greater activation of the M current (IM) at subthreshold potentials and reduces the minimum adaptation required to stabilize the system; in contrast, activation of the afterhyperpolarization current is unaffected by the increase in threshold and therefore remains unable to stop repetitive spiking. The nonlinear interaction between shunting and IM has other important consequences. First, timing of spikes elicited by brief stimuli is more precise when background spikes elicited by sustained input are prohibited, as occurs exclusively with IM-mediated adaptation in the high conductance state. Second, activation of IM at subthreshold potentials, which is increased in the high conductance state, hyperpolarizes average membrane potential away from voltage threshold, allowing only large, rapid fluctuations to reach threshold and elicit spikes. These results suggest that the shift from a low to high conductance state in a pyramidal neuron is accompanied by a switch from encoding time-averaged input with firing rate to encoding transient inputs with precisely timed spikes, in effect, switching the operational mode from integration to coincidence detection. PMID:16957065

  6. Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus and nucleus accumbens in old rats after chronic donepezil administration

    PubMed Central

    Alcantara-Gonzalez, Faviola; Juarez, Ismael; Solis, Oscar; Martinez-Tellez, Isaura; Camacho-Abrego, Israel; Masliah, Eliezer; Mena, Raul; Flores, Gonzalo

    2010-01-01

    In Alzheimer's disease brains morphological changes in the dendrites of pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been observed. These changes are particularly reflected in the decrement of both the dendritic tree and spine number. Donepezil is a potent and selective acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease. We have studied the effect of oral administration of this drug on the morphology of neuronal cells from the brain of aged rats. We examined dendrites of pyramidal neurons of the PFC, dorsal or ventral hippocampus and medium spiny neurons of the nucleus accumbens (NAcc). Donepezil (1 mg/Kg, vo) was administrated every day for 60 days to rats aged 10 and 18 months. Dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at 12 and 20 months ages, respectively. In all Donepezil treated-rats a significant increment of the dendritic spines number in pyramidal neurons of the PFC, dorsal hippocampus was observed. However, pyramidal neurons of the ventral hippocampus and medium spiny cells of the NAcc only showed an increase in the number of their spines in 12 months old-rats. Our results suggest that Donepezil prevents the alterations of the neuronal dendrite morphology caused by aging. PMID:20336627

  7. Neuronal Dystroglycan Is Necessary for Formation and Maintenance of Functional CCK-Positive Basket Cell Terminals on Pyramidal Cells.

    PubMed

    Früh, Simon; Romanos, Jennifer; Panzanelli, Patrizia; Bürgisser, Daniela; Tyagarajan, Shiva K; Campbell, Kevin P; Santello, Mirko; Fritschy, Jean-Marc

    2016-10-05

    Distinct types of GABAergic interneurons target different subcellular domains of pyramidal cells, thereby shaping pyramidal cell activity patterns. Whether the presynaptic heterogeneity of GABAergic innervation is mirrored by specific postsynaptic factors is largely unexplored. Here we show that dystroglycan, a protein responsible for the majority of congenital muscular dystrophies when dysfunctional, has a function at postsynaptic sites restricted to a subset of GABAergic interneurons. Conditional deletion of Dag1, encoding dystroglycan, in pyramidal cells caused loss of CCK-positive basket cell terminals in hippocampus and neocortex. PV-positive basket cell terminals were unaffected in mutant mice, demonstrating interneuron subtype-specific function of dystroglycan. Loss of dystroglycan in pyramidal cells had little influence on clustering of other GABAergic postsynaptic proteins and of glutamatergic synaptic proteins. CCK-positive terminals were not established at P21 in the absence of dystroglycan and were markedly reduced when dystroglycan was ablated in adult mice, suggesting a role for dystroglycan in both formation and maintenance of CCK-positive terminals. The necessity of neuronal dystroglycan for functional innervation by CCK-positive basket cell axon terminals was confirmed by reduced frequency of inhibitory events in pyramidal cells of dystroglycan-deficient mice and further corroborated by the inefficiency of carbachol to increase IPSC frequency in these cells. Finally, neurexin binding seems dispensable for dystroglycan function because knock-in mice expressing binding-deficient T190M dystroglycan displayed normal CCK-positive terminals. Together, we describe a novel function of dystroglycan in interneuron subtype-specific trans-synaptic signaling, revealing correlation of presynaptic and postsynaptic molecular diversity.

  8. Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells.

    PubMed

    Holderith, Noémi; Németh, Beáta; Papp, Orsolya I; Veres, Judit M; Nagy, Gergo A; Hájos, Norbert

    2011-10-15

    CB(1) cannabinoid receptor (CB(1)R) activation by exogenous ligands can impair memory processes, which critically depend on synchronous neuronal activities that are temporarily structured by oscillations. In this study, we aimed to reveal the mechanisms underlying the cannabinoid-induced decrease in gamma oscillations. We first verified that cannabinoids (CP55,940 and WIN55,212-2) readily suppressed carbachol-induced gamma oscillations in the CA3 region of hippocampal slices via activation of CB(1)Rs. The cannabinoid-induced decrease in the peak power of oscillations was accompanied by reduced and less precise firing activity in CA3 pyramidal cells and fast spiking basket cells. By examining the cannabinoid sensitivity of synaptic inputs we found that the amplitude of evoked excitatory postsynaptic currents was significantly suppressed upon CB(1)R activation in both CA3 pyramidal cells and fast spiking basket cells. In contrast, evoked inhibitory postsynaptic currents in CA3 pyramidal cells were unaltered. Furthermore, we observed that a CB(1)R agonist-induced decrease in the oscillation power at the beginning of the drug application was accompanied primarily by the reduced discharge of fast spiking basket cells, while pyramidal cell firing was unaltered. This result implies that the dampening of cholinergically induced gamma oscillations in the hippocampus by cannabinoids can be explained by a reduced excitatory input predominantly onto fast spiking basket cells, which leads to a reduction in neuronal firing frequency and precision, and thus to smaller field potentials. In addition, we uncovered that the spontaneously occurring sharp wave-ripple activities in hippocampal slices could also be suppressed by CB(1)R activation suggesting that cannabinoids profoundly reduce the intrinsically generated oscillatory activities at distinct frequencies in CA3 networks by reducing synaptic neurotransmission.

  9. Spikelets in Pyramidal Neurons: Action Potentials Initiated in the Axon Initial Segment That Do Not Activate the Soma

    PubMed Central

    Michalikova, Martina; Kempter, Richard

    2017-01-01

    Spikelets are small spike-like depolarizations that can be measured in somatic intracellular recordings. Their origin in pyramidal neurons remains controversial. To explain spikelet generation, we propose a novel single-cell mechanism: somato-dendritic input generates action potentials at the axon initial segment that may fail to activate the soma and manifest as somatic spikelets. Using mathematical analysis and numerical simulations of compartmental neuron models, we identified four key factors controlling spikelet generation: (1) difference in firing threshold, (2) impedance mismatch, and (3) electrotonic separation between the soma and the axon initial segment, as well as (4) input amplitude. Because spikelets involve forward propagation of action potentials along the axon while they avoid full depolarization of the somato-dendritic compartments, we conjecture that this mode of operation saves energy and regulates dendritic plasticity while still allowing for a read-out of results of neuronal computations. PMID:28068338

  10. Pyramidal neurons of the prefrontal cortex in post-stroke, vascular and other ageing-related dementias.

    PubMed

    Foster, Vincent; Oakley, Arthur E; Slade, Janet Y; Hall, Roslyn; Polvikoski, Tuomo M; Burke, Matthew; Thomas, Alan J; Khundakar, Ahmad; Allan, Louise M; Kalaria, Raj N

    2014-09-01

    Dementia associated with cerebrovascular disease is common. It has been reported that ∼30% of elderly patients who survive stroke develop delayed dementia (post-stroke dementia), with most cases being diagnosed as vascular dementia. The pathological substrates associated with post-stroke or vascular dementia are poorly understood, particularly those associated with executive dysfunction. Three separate yet interconnecting circuits control executive function within the frontal lobe involving the dorsolateral prefrontal cortex, anterior cingulate cortex and the orbitofrontal cortex. We used stereological methods, along with immunohistological and related cell morphometric analysis, to examine densities and volumes of pyramidal neurons of the dorsolateral prefrontal cortex, anterior cingulate cortex and orbitofrontal cortex in the frontal lobe from a total of 90 elderly subjects (age range 71-98 years). Post-mortem brain tissues from post-stroke dementia and post-stroke patients with no dementia were derived from our prospective Cognitive Function After Stroke study. We also examined, in parallel, samples from ageing controls and similar age subjects pathologically diagnosed with Alzheimer's disease, mixed Alzheimer's disease and vascular dementia, and vascular dementia. We found pyramidal cell volumes in layers III and V in the dorsolateral prefrontal cortex of post-stroke and vascular dementia and, of mixed and Alzheimer's disease subjects to be reduced by 30-40% compared to post-stroke patients with no dementia and controls. There were no significant changes in neuronal volumes in either the anterior cingulate or orbitofrontal cortices. Remarkably, pyramidal neurons within the orbitofrontal cortex were also found to be smaller in size when compared to those in the other two neocortical regions. To relate the cell changes to cognitive function, we noted significant correlations between neuronal volumes and total CAMCOG, orientation and memory scores and clinical

  11. Enhancement of Synaptic Potentials in Rabbit CA1 Pyramidal Neurons Following Classical Conditioning

    NASA Astrophysics Data System (ADS)

    Loturco, Joseph J.; Coulter, Douglas A.; Alkon, Daniel L.

    1988-03-01

    A synaptic potential elicited by high-frequency stimulation of the Schaffer collaterals was enhanced in hippocampal CA1 pyramidal cells from rabbits that were classically conditioned relative to cells from control rabbits. In addition, confirming previous reports, the after-hyperpolarization was reduced in cells from conditioned animals. We suggest that reduced after-hyperpolarization and enhanced synaptic responsiveness in cells from conditioned animals work in concert to contribute to the functioning of hippocampal CA1 pyramidal cells during classical conditioning.

  12. Ethanol inhibits development of dendrites and synapses in rat hippocampal pyramidal neuron cultures.

    PubMed

    Yanni, P A; Lindsley, T A

    2000-04-14

    Evidence suggests that some neuropathologic manifestations of Fetal Alcohol Syndrome (FAS) result from the disruption of neuromorphogenesis and synapse formation in the hippocampus. Prior research in this laboratory has shown that ethanol in the medium during the first 24 h in culture increases the number of minor processes (the precursors of axons and dendrites) and accelerates the rate at which axons are formed in low-density cultures of embryonic rat hippocampal neurons. The current study examined the effects of ethanol on the subsequent development of dendrites and synapses in these cultures. Quantitative morphometric analysis utilized double-immunofluorescent staining for MAP2 and synapsin I to visualize dendrites and synaptic specializations, respectively. Six days of ethanol (200, 400 or 600 mg/dl) in the medium, beginning at the time of plating, resulted in decreases in total dendritic length per cell, dendrite number per cell, length of individual dendrites and synapse number per innervated dendrite but had no effect on cell survival. The decrease in synapse number was correlated with dendrite length, suggesting that ethanol's effects on synapse number are secondary to its effects on dendritogenesis. Taken together with our previous findings, these results are the first to demonstrate that ethanol has differential effects on axonal and dendritic growth in a culture model of neurons that are vulnerable to ethanol-induced cytoarchitectural abnormalities during development in vivo.

  13. Kv2 channel regulation of action potential repolarization and firing patterns in superior cervical ganglion neurons and hippocampal CA1 pyramidal neurons.

    PubMed

    Liu, Pin W; Bean, Bruce P

    2014-04-02

    Kv2 family "delayed-rectifier" potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60-80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from -70 mV, but not -80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at -70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation.

  14. Kv2 Channel Regulation of Action Potential Repolarization and Firing Patterns in Superior Cervical Ganglion Neurons and Hippocampal CA1 Pyramidal Neurons

    PubMed Central

    Liu, Pin W.

    2014-01-01

    Kv2 family “delayed-rectifier” potassium channels are widely expressed in mammalian neurons. Kv2 channels activate relatively slowly and their contribution to action potential repolarization under physiological conditions has been unclear. We explored the function of Kv2 channels using a Kv2-selective blocker, Guangxitoxin-1E (GxTX-1E). Using acutely isolated neurons, mixed voltage-clamp and current-clamp experiments were done at 37°C to study the physiological kinetics of channel gating and action potentials. In both rat superior cervical ganglion (SCG) neurons and mouse hippocampal CA1 pyramidal neurons, 100 nm GxTX-1E produced near-saturating block of a component of current typically constituting ∼60–80% of the total delayed-rectifier current. GxTX-1E also reduced A-type potassium current (IA), but much more weakly. In SCG neurons, 100 nm GxTX-1E broadened spikes and voltage clamp experiments using action potential waveforms showed that Kv2 channels carry ∼55% of the total outward current during action potential repolarization despite activating relatively late in the spike. In CA1 neurons, 100 nm GxTX-1E broadened spikes evoked from −70 mV, but not −80 mV, likely reflecting a greater role of Kv2 when other potassium channels were partially inactivated at −70 mV. In both CA1 and SCG neurons, inhibition of Kv2 channels produced dramatic depolarization of interspike voltages during repetitive firing. In CA1 neurons and some SCG neurons, this was associated with increased initial firing frequency. In all neurons, inhibition of Kv2 channels depressed maintained firing because neurons entered depolarization block more readily. Therefore, Kv2 channels can either decrease or increase neuronal excitability depending on the time scale of excitation. PMID:24695716

  15. Constitutively active G-protein-gated inwardly rectifying K+ channels in dendrites of hippocampal CA1 pyramidal neurons.

    PubMed

    Chen, Xixi; Johnston, Daniel

    2005-04-13

    A diversity of ion channels contributes to the active properties of neuronal dendrites. From the apical dendrites of hippocampal CA1 pyramidal neurons, we recorded inwardly rectifying K+ channels with a single-channel conductance of 33 pS. The inwardly rectifying K+ channels were constitutively active at the resting membrane potential. The amount of constitutive channel activity was significantly larger in the apical dendrites than in the soma. Activities of these inwardly rectifying K+ channels were inhibited by Ba2+ (200 microM) and tertiapin (10 nM), both of which are believed to block G-protein-coupled inwardly rectifying K+ (GIRK) channels. Intracellularly applied GTPgammaS (20 microM) during dual dendritic recordings significantly increased constitutive channel activity. Baclofen (20 microM), an agonist for the G-protein-coupled GABA(B) receptor, also significantly increased the level of channel activity. Therefore, these channels are GIRK channels, which are constitutively active at rest in the apical dendrites of CA1 pyramidal neurons and can be further activated via G-protein-coupled neurotransmitter receptors.

  16. Integration of synchronous synaptic input in CA1 pyramidal neuron depends on spatial and temporal distributions of the input.

    PubMed

    Tigerholm, Jenny; Migliore, Michele; Fransén, Erik

    2013-01-01

    Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp-wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances. We found that the transient A-type potassium channel K(A) was able to selectively suppress input of high synchronicity. In recent years, compartmentalization of dendritic integration has been shown. We were therefore interested to study the influence of localization and pattern of synaptic input over the dendritic tree of the CA1 pyramidal neuron. We find that the selective suppression increases when synaptic inputs are placed on oblique dendrites further out from the soma. The suppression also increases along the radial axis from the apical trunk out to the end of oblique dendrites. We also find that the K(A) channel suppresses the occurrence of dendritic spikes. Moreover, recent studies have shown interaction between synaptic inputs. We therefore studied the influence of apical tuft input on the integration studied above. We find that excitatory input provides a modulatory influence reducing the capacity of K(A) to suppress synchronized activity, thus facilitating the excitatory drive of oblique dendritic input. Conversely, inhibitory tuft input increases the suppression by K(A) providing a larger control of oblique depolarizing factors on the CA1 pyramidal neuron in terms of what constitutes the most effective level of synchronicity. Furthermore, we show that the selective suppression studied above depends on the conductance of the K(A) channel. K(A) , as several other potassium channels, is modulated by several neuromodulators, for instance acetylcholine and dopamine, both of which have been discussed in relation to learning and memory. We suggest that dendritic conductances and their

  17. Synaptic connections between layer 4 spiny neurone-layer 2/3 pyramidal cell pairs in juvenile rat barrel cortex: physiology and anatomy of interlaminar signalling within a cortical column.

    PubMed

    Feldmeyer, Dirk; Lübke, Joachim; Silver, R Angus; Sakmann, Bert

    2002-02-01

    Whole-cell voltage recordings were obtained from 64 synaptically coupled excitatory layer 4 (L4) spiny neurones and L2/3 pyramidal cells in acute slices of the somatosensory cortex ('barrel' cortex) of 17- to 23-days-old rats. Single action potentials (APs) in the L4 spiny neurone evoked single unitary EPSPs in the L2/3 pyramidal cell with a peak amplitude of 0.7 +/- 0.6 mV. The average latency was 2.1 +/- 0.6 ms, the rise time was 0.8 +/- 0.3 ms and the decay time constant was 12.7 +/- 3.5 ms. The percentage of failures of an AP in a L4 spiny neurone to evoke a unitary EPSP in the L2/3 pyramidal cell was 4.9 +/- 8.8 % and the coefficient of variation (c.v.) of the unitary EPSP amplitude was 0.27 +/- 0.13. Both c.v. and percentage of failures decreased with increased average EPSP amplitude. Postsynaptic glutamate receptors (GluRs) in L2/3 pyramidal cells were of the N-methyl-D-aspartate (NMDA) receptor (NMDAR) and the non-NMDAR type. At -60 mV in the presence of extracellular Mg2+ (1 mM), 29 +/- 15 % of the EPSP voltage-time integral was blocked by NMDAR antagonists. In 0 Mg2+, the NMDAR/AMPAR ratio of the EPSC was 0.50 +/- 0.29, about half the value obtained for L4 spiny neurone connections. Burst stimulation of L4 spiny neurones showed that EPSPs in L2/3 pyramidal cells depressed over a wide range of frequencies (1-100 s(-1) ). However, at higher frequencies (30 s(-1)) EPSP summation overcame synaptic depression so that the summed EPSP was larger than the first EPSP amplitude in the train. The number of putative synaptic contacts established by the axonal collaterals of the L4 projection neurone with the target neurone in layer 2/3 varied between 4 and 5, with an average of 4.5 +/- 0.5 (n = 13 pairs). Synapses were established on basal dendrites of the pyramidal cell. Their mean geometric distance from the pyramidal cell soma was 67 +/- 34 microm (range, 16-196 microm). The results suggest that each connected L4 spiny neurone produces a weak but reliable EPSP in

  18. Nuclear calcium sensors reveal that repetition of trains of synaptic stimuli boosts nuclear calcium signaling in CA1 pyramidal neurons.

    PubMed

    Bengtson, C Peter; Freitag, H Eckehard; Weislogel, Jan-Marek; Bading, Hilmar

    2010-12-15

    Nuclear calcium is a key signal in the dialogue between synapse and nucleus that controls the genomic responses required for persistent adaptations, including memory and acquired neuroprotection. The amplitude and duration of nuclear calcium transients specify activity-induced transcriptional changes. However, the precise relationship between synaptic input and nuclear calcium output is unknown. Here, we used stereotaxic delivery to the rat brain of recombinant adeno-associated viruses encoding nuclear-targeted calcium sensors to assess nuclear calcium transients in CA1 pyramidal neurons after stimulation of the Schaffer collaterals. We show that in acute hippocampal slices, a burst of synaptic activity elicits a nuclear calcium signal with a regenerative component at above-threshold stimulation intensities. Using classical stimulation paradigms (i.e., high-frequency stimulation (HFS) and θ burst stimulation (TBS)) to induce early LTP (E-LTP) and transcription-dependent late LTP (L-LTP), we found that the magnitude of nuclear calcium signals and the number of action potentials activated by synaptic stimulation trains are greatly amplified by their repetition. Nuclear calcium signals and action potential generation were reduced by blockade of either NMDA receptors or L-type voltage-gated calcium channels, but not by procedures that lead to internal calcium store depletion or by blockade of metabotropic glutamate receptors. These findings identify a repetition-induced switch in nuclear calcium signaling that correlates with the transition from E-LTP to L-LTP, and may explain why the transcription-dependent phase of L-LTP is not induced by a single HFS or TBS but requires repeated trains of activity. Recombinant, nuclear-targeted indicators may prove useful for further analysis of nuclear calcium signaling in vivo.

  19. Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat.

    PubMed Central

    Shirasaki, T; Harata, N; Akaike, N

    1994-01-01

    1. The metabotropic glutamate (mGlu) response was investigated in dissociated rat hippocampal CA1 pyramidal neurones using conventional and nystatin-perforated whole-cell modes of the patch recording configuration. 2. In the perforated patch recording configuration, the application of glutamate (Glu), quisqualate (QA), aspartate (Asp) and N-methyl-D-aspartate (NMDA) induced a slow outward current superimposed on a fast ionotropic inward current, whereas alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate (KA) induced only an ionotropic inward current at a holding potential (VH) of -20 mV. A specific agonist of the mGlu receptor (mGluR), trans-1-aminocyclopentane-1,3-dicarboxylate (tACPD), induced an outward current in approximately 80% of the neurones tested. Asp- and NMDA-induced outward currents were antagonized by D-2-amino-5-phosphonopentanoate (D-AP5) whereas Glu-, QA- and tACPD-induced outward currents were not antagonized by 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX), 6,7-dinitroquinoxaline-2,3-dione (DNQX) and D-AP5, indicating that the mGlu response is an outward current component. 3. L-2-Amino-3-phosphonopropionate (L-AP3) and DL-2-amino-4-phosphonobutyrate (AP4) did not block the mGlu response. 4. The relative potencies of mGlu agonists were QA > Glu > tACPD. The threshold and EC50 values of metabotropic outward currents were 10-100 times lower than those of the ionotropic inward current (iGlu response). 5. The reversal potential of the mGlu response (EmGlu) was close to EK (K+ equilibrium potential), and it shifted 59.5 mV for a tenfold change in extracellular K+ concentration. 6. In Ca(2+)-free external solution, the mGlu response was elicited by an initial application of Glu, but subsequent applications failed to induce the response. There was also an increase in the intracellular free Ca2+ concentration ([Ca2+]i) during the application of Glu and QA but not of AMPA, indicating Ca2+ release from an intracellular Ca2+ store. 7

  20. Dendritic K+ channels contribute to spike-timing dependent long-term potentiation in hippocampal pyramidal neurons

    PubMed Central

    Watanabe, Shigeo; Hoffman, Dax A.; Migliore, Michele; Johnston, Daniel

    2002-01-01

    We investigated the role of A-type K+ channels for the induction of long-term potentiation (LTP) of Schaffer collateral inputs to hippocampal CA1 pyramidal neurons. When low-amplitude excitatory postsynaptic potentials (EPSPs) were paired with two postsynaptic action potentials in a theta-burst pattern, N-methyl-d-aspartate (NMDA)-receptor-dependent LTP was induced. The amplitudes of the back-propagating action potentials were boosted in the dendrites only when they were coincident with the EPSPs. Mitogen-activated protein kinase (MAPK) inhibitors PD 098059 or U0126 shifted the activation of dendritic K+ channels to more hyperpolarized potentials, reduced the boosting of dendritic action potentials by EPSPs, and suppressed the induction of LTP. These results support the hypothesis that dendritic K+ channels and the boosting of back-propagating action potentials contribute to the induction of LTP in CA1 neurons. PMID:12048251

  1. Transition from Initial Hypoactivity to Hyperactivity in Cortical Layer V Pyramidal Neurons after Traumatic Brain Injury In Vivo.

    PubMed

    Ping, Xingjie; Jin, Xiaoming

    2016-02-15

    Traumatic brain injury (TBI) often results in structural damage and a loss of neurons that is commonly accompanied by early changes in neuronal electrical activity. Loss of neuronal activity has been hypothesized to contribute to post-traumatic epileptogenesis through the regulation of homeostatic plasticity. The existence of activity loss in cortical neurons after TBI and its subsequent transition into hyperactivity over time is not well characterized, however, particularly in models of TBI in vivo. In the current study, changes in neuronal activity in the primary motor cortex after moderate controlled cortical impact (CCI) in mice were studied using a single-unit recording technique in vivo. Recordings were made at different time points after CCI from cortical layer V pyramidal neurons that were within 1-2 mm from the anterior edge of the injured foci. Within 1-4 h after CCI, the frequency of spontaneous single-unit activity depressed significantly, with the mean firing frequency decreasing from 2.59 ± 0.18 Hz in the sham group to 1.05 ± 0.20 Hz of the injured group. The firing frequencies recovered to the normal level at 1 day and 7 days post-CCI, but became significantly higher at 3 days and 14 days post-CCI. The results suggest that TBI caused initial loss of activity in neurons of the perilesional cortical region, which was followed by compensatory recovery and enhancement of activity. These time-dependent changes in neuronal activity may contribute to the development of hyperexcitability through homeostatic activity regulation.

  2. Age- and location-dependent differences in store depletion-induced h-channel plasticity in hippocampal pyramidal neurons.

    PubMed

    Clemens, Ann M; Johnston, Daniel

    2014-03-01

    Disruptions of endoplasmic reticulum (ER) Ca(2+) homeostasis are heavily linked to neuronal pathology. Depletion of ER Ca(2+) stores can result in cellular dysfunction and potentially cell death, although adaptive processes exist to aid in survival. We examined the age and region dependence of one postulated, adaptive response to ER store-depletion (SD), hyperpolarization-activated cation-nonspecific (h)-channel plasticity in neurons of the dorsal and ventral hippocampus (DHC and VHC, respectively) from adolescent and adult rats. With the use of whole-cell patch-clamp recordings from the soma and dendrites of CA1 pyramidal neurons, we observed a change in h-sensitive measurements in response to SD, induced by treatment with cyclopiazonic acid, a sarcoplasmic reticulum/ER Ca(2+)-ATPase blocker. We found that whereas DHC and VHC neurons in adolescent animals respond to SD with a perisomatic expression of SD h plasticity, adult animals express SD h plasticity with a dendritic and somatodendritic locus of plasticity in DHC and VHC neurons, respectively. Furthermore, SD h plasticity in adults was dependent on membrane potential and on the activation of L-type voltage-gated Ca(2+) channels. These results suggest that cellular responses to the impairment of ER function, or ER stress, are dependent on brain region and age and that the differential expression of SD h plasticity could provide a neural basis for region- and age-dependent disease vulnerabilities.

  3. Influence of antenatal synthetic glucocorticoid administration on pyramidal cell morphology and microtubule-associated protein type 2 (MAP2) in rat cerebrocortical neurons.

    PubMed

    Pascual, Rodrigo; Cuevas, Isabel; Santander, Odra; Valencia, Martina

    2017-01-01

    Previous animal studies have indicated that excessive prenatal circulating glucocorticoid (GC) levels induced by the antenatal administration of synthetic GC (sGC) significantly alter neuronal development in the cerebellar and hippocampal neurons of the offspring. However, it is unknown whether antenatal sGC administration results in long-term neocortical pyramidal cell impairment. In the current study, we examined whether an equivalent therapeutic dose of antenatal betamethasone phosphate (BET) in pregnant rats alters the Golgi-stained basilar dendritic length and histochemical expression of dendritic microtubule-associated protein 2 (MAP2) of neocortical pyramidal cells in infant, adolescent, and young adult offspring. The results obtained showed that in utero BET exposure resulted in a significant reduction in the basilar dendritic length per neuron and a transient reduction in histochemical MAP2 immunoreactivity. Consistent with previous hippocampal and cerebellar data, the present findings suggest that prenatal BET administration alters the dendritic growth of cerebrocortical pyramidal cells.

  4. Influence of antenatal synthetic glucocorticoid administration on pyramidal cell morphology and microtubule-associated protein type 2 (MAP2) in rat cerebrocortical neurons

    PubMed Central

    Pascual, Rodrigo; Cuevas, Isabel; Santander, Odra; Valencia, Martina

    2017-01-01

    Abstract. Previous animal studies have indicated that excessive prenatal circulating glucocorticoid (GC) levels induced by the antenatal administration of synthetic GC (sGC) significantly alter neuronal development in the cerebellar and hippocampal neurons of the offspring. However, it is unknown whether antenatal sGC administration results in long-term neocortical pyramidal cell impairment. In the current study, we examined whether an equivalent therapeutic dose of antenatal betamethasone phosphate (BET) in pregnant rats alters the Golgi-stained basilar dendritic length and histochemical expression of dendritic microtubule-associated protein 2 (MAP2) of neocortical pyramidal cells in infant, adolescent, and young adult offspring. The results obtained showed that in utero BET exposure resulted in a significant reduction in the basilar dendritic length per neuron and a transient reduction in histochemical MAP2 immunoreactivity. Consistent with previous hippocampal and cerebellar data, the present findings suggest that prenatal BET administration alters the dendritic growth of cerebrocortical pyramidal cells. PMID:28203043

  5. Analysis of the excitatory and inhibitory components of postsynaptic currents recorded in pyramidal neurons and interneurons in the rat hippocampus.

    PubMed

    Buldakova, S L; Tikhonov, D B; Magazanik, L G

    2005-10-01

    Postsynaptic currents recorded from interneurons and pyramidal cells in hippocampal slices by local voltage clamping were found to be the sum of excitatory (EPSC) and inhibitory (IPSC) components. An approach allowing quantitative assessment of the amplitude and time course of EPSC and IPSC without pharmacological blockade of the major postsynaptic receptors involved in generating these currents was developed. The approach is based on the existence of a significant difference between reversion potentials of cationic and anionic currents and the presence of a linear zone in the voltage-current characteristics of responses to excitatory and inhibitory transmitters. Comparison of the results of this calculation-based method with those of classical pharmacological analysis of the excitatory and inhibitory components of postsynaptic currents showed them to be virtually identical, which allows synaptic currents in defined neurons to be studied without altering the state of synaptic connections throughout the brain slice. IPSC was found to make a smaller contribution to the total postsynaptic current recorded in interneurons as compared with pyramidal neurons in rat hippocampal field CA1.

  6. Downregulation of transient K+ channels in dendrites of hippocampal CA1 pyramidal neurons by activation of PKA and PKC.

    PubMed

    Hoffman, D A; Johnston, D

    1998-05-15

    We have reported recently a high density of transient A-type K+ channels located in the distal dendrites of CA1 hippocampal pyramidal neurons and shown that these channels shape EPSPs, limit the back-propagation of action potentials, and prevent dendritic action potential initiation (). Because of the importance of these channels in dendritic signal propagation, their modulation by protein kinases would be of significant interest. We investigated the effects of activators of cAMP-dependent protein kinase (PKA) and the Ca2+-dependent phospholipid-sensitive protein kinase (PKC) on K+ channels in cell-attached patches from the distal dendrites of hippocampal CA1 pyramidal neurons. Inclusion of the membrane-permeant PKA activators 8-bromo-cAMP (8-br-cAMP) or forskolin in the dendritic patch pipette resulted in a depolarizing shift in the activation curve for the transient channels of approximately 15 mV. Activation of PKC by either of two phorbol esters also resulted in a 15 mV depolarizing shift of the activation curve. Neither PKA nor PKC activation affected the sustained or slowly inactivating component of the total outward current. This downregulation of transient K+ channels in the distal dendrites may be responsible for some of the frequently reported increases in cell excitability found after PKA and PKC activation. In support of this hypothesis, we found that activation of either PKA or PKC significantly increased the amplitude of back-propagating action potentials in distal dendrites.

  7. Little-known neurons of the medial wall: a literature review of pyramidal cells of the cingulate gyrus

    PubMed Central

    Pauc, Robin; Young, Antoinette

    2010-01-01

    Objective The purpose of this article is to provide an overview of the current state of knowledge of poorly understood and underresearched neuroanatomy of selected pyramidal cells of the medial wall of the cingulate gyrus. Methods A literature review was performed; and separate computerized literature searches of PubMed, Science Direct, Cochrane Library, Science Citation Index, SCOPUS, CINAHL, and the World Wide Web were used for each cell type using individual set time scales for the discovery of each cell. A narrative overview of the literature was developed using information from searches of computerized databases and authoritative texts. Discussion The medial walls of the cerebral hemispheres, notably the cingulate gyri, contain species-specific neuron fields that to date are not well known within the scientific community and yet have been implicated as the underlying cause of such varying conditions as dysgraphia and autism in children and obsessive-compulsive disorder and Alzheimer disease in adults. As these neurons are late to develop both phylogenetically and ontogenetically, it has been suggested that they may be particularly vulnerable to stressors that potentially could be an underlying factor in a wide range of neurodevelopmental and neuropsychiatric disorders. Conclusion It is considered that knowledge of these little-known pyramidal fields of the medial wall of the human brain is essential to the understanding of how the brain functions both in sickness and in health. PMID:22027033

  8. Hyperforin modulates dendritic spine morphology in hippocampal pyramidal neurons by activating Ca(2+) -permeable TRPC6 channels.

    PubMed

    Leuner, Kristina; Li, Wei; Amaral, Michelle D; Rudolph, Stephanie; Calfa, Gaston; Schuwald, Anita M; Harteneck, Christian; Inoue, Takafumi; Pozzo-Miller, Lucas

    2013-01-01

    The standardized extract of the St. John's wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na(+) concentration through the activation of nonselective cationic TRPC6 channels. TRPC6 channels are also Ca(2+) -permeable, resulting in intracellular Ca(2+) elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca(2+) transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of nerve growth factor. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca(2+) transients and depolarizing inward currents sensitive to the TRPC channel blocker La(3+) , thus resembling the actions of the neurotrophin brain-derived neurotrophic factor (BDNF) in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John's wort are mediated by a mechanism similar to that engaged by BDNF.

  9. Early postnatal migration and development of layer II pyramidal neurons in the rodent cingulate/retrosplenial cortex.

    PubMed

    Zgraggen, Eloisa; Boitard, Michael; Roman, Inge; Kanemitsu, Michiko; Potter, Gael; Salmon, Patrick; Vutskits, Laszlo; Dayer, Alexandre G; Kiss, Jozsef Z

    2012-01-01

    The cingulate and retrosplenial regions are major components of the dorsomedial (dm) limbic cortex and have been implicated in a range of cognitive functions such as emotion, attention, and spatial memory. While the structure and connectivity of these cortices are well characterized, little is known about their development. Notably, the timing and mode of migration that govern the appropriate positioning of late-born neurons remain unknown. Here, we analyzed migratory events during the early postnatal period from ventricular/subventricular zone (VZ/SVZ) to the cerebral cortex by transducing neuronal precursors in the VZ/SVZ of newborn rats/mice with Tomato/green fluorescent protein-encoding lentivectors. We have identified a pool of postmitotic pyramidal precursors in the dm part of the neonatal VZ/SVZ that migrate into the medial limbic cortex during the first postnatal week. Time-lapse imaging demonstrates that these cells migrate on radial glial fibers by locomotion and display morphological and behavioral changes as they travel through the white matter and enter into the cortical gray matter. In the granular retrosplenial cortex, these cells give rise to a Satb2+ pyramidal subtype and develop dendritic bundles in layer I. Our observations provide the first insight into the patterns and dynamics of cell migration into the medial limbic cortex.

  10. HYPERFORIN MODULATES DENDRITIC SPINE MORPHOLOGY IN HIPPOCAMPAL PYRAMIDAL NEURONS BY ACTIVATING Ca2+-PERMEABLE TRPC6 CHANNELS

    PubMed Central

    Leuner, Kristina; Li, Wei; Amaral, Michelle D.; Rudolph, Stephanie; Calfa, Gaston; Schuwald, Anita M.; Harteneck, Christian; Inoue, Takafumi; Pozzo-Miller, Lucas

    2012-01-01

    The standardized extract of the St. John’s wort plant (Hypericum perforatum) is commonly used to treat mild to moderate depression. Its active constituent is hyperforin, a phloroglucinol derivative that reduces the reuptake of serotonin and norepinephrine by increasing intracellular Na+ concentration through the activation of non-selective cationic TRPC6 channels. TRPC6 channels are also Ca2+-permeable, resulting in intracellular Ca2+ elevations. Indeed, hyperforin activates TRPC6-mediated currents and Ca2+ transients in rat PC12 cells, which induce their differentiation, mimicking the neurotrophic effect of NGF. Here, we show that hyperforin modulates dendritic spine morphology in CA1 and CA3 pyramidal neurons of hippocampal slice cultures through the activation of TRPC6 channels. Hyperforin also evoked intracellular Ca2+ transients and depolarizing inward currents sensitive to the TRPC channel blocker La3+, thus resembling the actions of the neurotrophin BDNF in hippocampal pyramidal neurons. These results suggest that the antidepressant actions of St. John’s wort are mediated by a mechanism similar to that engaged by BDNF. PMID:22815087

  11. Increased Synaptic Excitation and Abnormal Dendritic Structure of Prefrontal Cortex Layer V Pyramidal Neurons following Prolonged Binge-Like Consumption of Ethanol

    PubMed Central

    Klenowski, Paul M.; Fogarty, Matthew J.; Shariff, Masroor; Belmer, Arnauld

    2016-01-01

    Abstract Long-term alcohol use causes a multitude of neurochemical changes in cortical regions that facilitate the transition to dependence. Therefore, we used a model of long-term, binge-like ethanol consumption in rats to determine the effects on morphology and synaptic physiology of medial prefrontal cortex (mPFC) layer V pyramidal neurons. Following 10 weeks of ethanol consumption, we recorded synaptic currents from mPFC neurons and used neurobiotin filling to analyze their morphology. We then compared these data to measurements obtained from age-matched, water-drinking control rats. We found that long-term ethanol consumption caused a significant increase in total dendrite arbor length of mPFC layer V pyramidal neurons. Dendritic restructuring was primarily observed in basal dendrite arbors, with mPFC neurons from animals engaged in long-term ethanol drinking having significantly larger and more complex basal arbors compared with controls. These changes were accompanied by significantly increased total spine densities and spontaneous postsynaptic excitatory current frequency, suggesting that long-term binge-like ethanol consumption enhances basal excitatory synaptic transmission in mPFC layer V pyramidal neurons. Our results provide insights into the morphological and functional changes in mPFC layer V pyramidal neuronal physiology following prolonged exposure to ethanol and support changes in mPFC activity during the development of alcohol dependence. PMID:28032119

  12. Role of low-voltage-activated calcium current and extracellular calcium in controlling the firing pattern of developing CA1 pyramidal neurons.

    PubMed

    Sánchez-Aguilera, Alberto; Sánchez-Alonso, José Luis; Vicente-Torres, María Ángeles; Colino, Asunción

    2017-03-06

    The firing pattern of individual neurons is an important element for information processing and storing. During the first weeks of development, there is a transitional period during which CA1 pyramidal neurons display burst-spiking behavior in contrast to the adult regular-firing pattern. Spike after-depolarizations (ADPs) constitute a major factor underlying burst-spiking behavior. Using current-clamp recordings, we studied ADP waveforms and firing patterns in CA1 pyramidal neurons of Wistar rats from 9 to 19 postnatal days (P9-19). The percentage of burst-spiking neurons increased up to P16, in correlation with the emergence of an active component in the ADP. The application of low-voltage-activated (LVA) calcium channel blockers such as nickel or mibefradil suppressed the generation of the active ADP component and burst-spiking behavior. In agreement with the development of the ADP waveform and burst-spiking behavior, voltage-clamp experiments in dissociated pyramidal neurons showed an increase in the LVA calcium current in P16-19 vs P9-12. Finally, we found that a reduction of extracellular calcium levels decreases the percentage of burst-spiking cells due to a reduction in the active component of the ADP. We conclude that a major contribution of LVA calcium channels to ADP determines the bursting capability of CA1 pyramidal neurons during a transitional postnatal period in contrast to adulthood.

  13. Properties of BK-type Ca++-dependent K+ channel currents in medial prefrontal cortex pyramidal neurons in rats of different ages

    PubMed Central

    Książek, Aneta; Ładno, Wioletta; Szulczyk, Bartłomiej; Grzelka, Katarzyna; Szulczyk, Paweł

    2013-01-01

    The medial prefrontal cortex (PFC) is involved in cognitive functions, which undergo profound changes during adolescence. This alteration of the PFC function derives from neuron activity, which, in turn, may depend on age-dependent properties and the expression of neuronal ion channels. BK-type channels are involved in controlling both the Ca++ ion concentration in the cell interior and cell excitability. The purpose of this study was to test the properties of BK currents in the medial PFC pyramidal neurons of young (18- to 22-day-old), adolescent (38- to 42-day-old), and adult (60- to 65-day-old) rats. Whole-cell currents evoked by depolarizing voltage steps were recorded from dispersed medial PFC pyramidal neurons. A selective BK channel blocker – paxilline (10 μM) – irreversibly decreased the non-inactivating K+ current in neurons that were isolated from the young and adult rats. This current was not significantly affected by paxilline in the neurons obtained from adolescent rats. The properties of single-channel K+ currents were recorded from the soma of dispersed medial PFC pyramidal neurons in the cell-attached configuration. Of the K+ channel currents that were recorded, ~90% were BK and leak channel currents. The BK-type channel currents were dependent on the Ca++ concentration and the voltage and were inhibited by paxilline. The biophysical properties of the BK channel currents did not differ among the pyramidal neurons isolated from young, adolescent, and adult rats. Among all of the recorded K+ channel currents, 38.9, 12.7, and 21.1% were BK-type channel currents in the neurons isolated from the young, adolescent, and adult rats, respectively. Furthermore, application of paxilline effectively prolonged the half-width of the action potential in pyramidal neurons in slices isolated from young and adult rats but not in neurons isolated from adolescent rats. We conclude that the availability of BK channel currents decreases in medial PFC pyramidal

  14. Numbers, Neurons and Tides, Oh My!

    ERIC Educational Resources Information Center

    Ortiz, Mary Theresa

    2006-01-01

    Mathematical applications to biology are presented in Anatomy & Physiology, General and Marine Biology. Body measurements and anatomical terminology are integrated, and problems involving neuron conduction speed, red blood cells, hemoglobin and glomerular filtration presented. General Biology applications include trans-membrane potential and…

  15. Effects of low frequency electric fields on synaptic integration in hippocampal CA1 pyramidal neurons: implications for power line emissions

    PubMed Central

    Cavarretta, Francesco; Carnevale, Nicholas T.; Tegolo, Domenico; Migliore, Michele

    2014-01-01

    The possible cognitive effects of low frequency external electric fields (EFs), such as those generated by power lines, are poorly understood. Their functional consequences for mechanisms at the single neuron level are very difficult to study and identify experimentally, especially in vivo. The major open problem is that experimental investigations on humans have given inconsistent or contradictory results, making it difficult to estimate the possible effects of external low frequency electric fields on cognitive functions. Here we investigate this issue with realistic models of hippocampal CA1 pyramidal neurons. Our findings suggest how and why EFs, with environmentally observed frequencies and intensities far lower than what is required for direct neural activation, can perturb dendritic signal processing and somatic firing of neurons that are crucially involved in cognitive tasks such as learning and memory. These results show that individual neuronal morphology, ion channel dendritic distribution, and alignment with the electric field are major determinants of overall effects, and provide a physiologically plausible explanation of why experimental findings can appear to be small and difficult to reproduce, yet deserve serious consideration. PMID:25346660

  16. Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice

    PubMed Central

    2011-01-01

    Background Erythropoietin (EPO) and its receptor (EPOR) are expressed in the developing brain and their transcription is upregulated in adult neurons and glia upon injury or neurodegeneration. We have shown neuroprotective effects and improved cognition in patients with neuropsychiatric diseases treated with EPO. However, the critical EPO targets in brain are unknown, and separation of direct and indirect effects has remained difficult, given the role of EPO in hematopoiesis and brain oxygen supply. Results Here we demonstrate that mice with transgenic expression of a constitutively active EPOR isoform (cEPOR) in pyramidal neurons of cortex and hippocampus exhibit enhancement of spatial learning, cognitive flexibility, social memory, and attentional capacities, accompanied by increased impulsivity. Superior cognitive performance is associated with augmented long-term potentiation of cEPOR expressing neurons in hippocampal slices. Conclusions Active EPOR stimulates neuronal plasticity independent of any hematopoietic effects and in addition to its neuroprotective actions. This property of EPOR signaling should be exploited for defining novel strategies to therapeutically enhance cognitive performance in disease conditions. PMID:21527022

  17. Enhanced sensitivity of hippocampal pyramidal neurons from mdx mice to hypoxia-induced loss of synaptic transmission.

    PubMed Central

    Mehler, M F; Haas, K Z; Kessler, J A; Stanton, P K

    1992-01-01

    The gene at the Duchenne/Becker muscular dystrophy locus encodes dystrophin, a member of a protein superfamily that links the actin cytoskeleton to transmembrane plasmalemmal proteins. In mature skeletal myocytes, the absence of dystrophin is associated with decreased membrane stability, altered kinetics of several calcium channels, and increased intracellular calcium concentration. In the central nervous system, dystrophin is restricted to specific neuronal populations that show heightened susceptibility to excitotoxic damage and is localized in proximal dendrites and the neuronal somata. We report that CA1 pyramidal neurons in a hippocampal slice preparation from a dystrophin-deficient mouse genetic model of Duchenne muscular dystrophy (the mdx mouse) exhibit significant increased susceptibility to hypoxia-induced damage to synaptic transmission. This selective vulnerability was substantially ameliorated by pretreatment with diphenylhydantoin, an anticonvulsant that blocks both sodium-dependent action potentials and low-threshold transient calcium conductances. These findings suggest that dystrophin deficiency could predispose susceptible neuronal populations to cumulative hypoxic insults that may contribute to the development of cognitive deficits in Duchenne/Becker muscular dystrophy patients and that the effects of such periods of hypoxia may be pharmacologically remediable. PMID:1549609

  18. Microarray analysis of CA1 pyramidal neurons in a mouse model of tauopathy reveals progressive synaptic dysfunction

    PubMed Central

    Alldred, Melissa J.; Duff, Karen E.; Ginsberg, Stephen D.

    2011-01-01

    The hTau mouse model of tauopathy was utilized to assess gene expression changes in vulnerable hippocampal CA1 neurons. CA1 pyramidal neurons were microaspirated via laser capture microdissection followed by RNA amplification in combination with custom-designed microarray analysis and qPCR validation in hTau mice and nontransgenic (ntg) littermates aged 11-14 months. Statistical analysis revealed ∼8% of all the genes on the array platform were dysregulated, with notable downregulation of several synaptic-related markers including synaptophysin (Syp), synaptojanin, and synaptobrevin, among others. Downregulation was also observed for select glutamate receptors (GluRs), Psd-95, TrkB, and several protein phosphatase subunits. In contrast, upregulation of tau isoforms and a calpain subunit were found. Microarray assessment of synaptic-related markers in a separate cohort of hTau mice at 7-8 months of age indicated only a few alterations compared to the 11-14 month cohort, suggesting progressive synaptic dysfunction occurs as tau accumulates in CA1 pyramidal neurons. An assessment of SYP and PSD-95 expression was performed in the hippocampal CA1 sector of hTau and ntg mice via confocal laser scanning microscopy along with hippocampal immunoblot analysis for protein-based validation of selected microarray observations. Results indicate significant decreases in SYP-immunoreactive and PSD-95-immunoreactive puncta as well as downregulation of SYP-immunoreactive and PSD-95-immunoreactive band intensity in hTau mice compared to age-matched ntg littermates. In summary, the high prevalence of downregulation of synaptic-related genes indicates that the moderately aged hTau mouse may be a model of tau-induced synaptodegeneration, and has profound effects on how we perceive progressive tau pathology affecting synaptic transmission in AD. PMID:22079237

  19. Postnatal development of A-type and Kv1- and Kv2-mediated potassium channel currents in neocortical pyramidal neurons

    PubMed Central

    Guan, Dongxu; Horton, Leslie R.; Armstrong, William E.

    2011-01-01

    Potassium channels regulate numerous aspects of neuronal excitability, and several voltage-gated K+ channel subunits have been identified in pyramidal neurons of rat neocortex. Previous studies have either considered the development of outward current as a whole or divided currents into transient, A-type and persistent, delayed rectifier components but did not differentiate between current components defined by α-subunit type. To facilitate comparisons of studies reporting K+ currents from animals of different ages and to understand the functional roles of specific current components, we characterized the postnatal development of identified Kv channel-mediated currents in pyramidal neurons from layers II/III from rat somatosensory cortex. Both the persistent/slowly inactivating and transient components of the total K+ current increased in density with postnatal age. We used specific pharmacological agents to test the relative contributions of putative Kv1- and Kv2-mediated currents (100 nM α-dendrotoxin and 600 nM stromatoxin, respectively). A combination of voltage protocol, pharmacology, and curve fitting was used to isolate the rapidly inactivating A-type current. We found that the density of all identified current components increased with postnatal age, approaching a plateau at 3–5 wk. We found no significant changes in the relative proportions or kinetics of any component between postnatal weeks 1 and 5, except that the activation time constant for A-type current was longer at 1 wk. The putative Kv2-mediated component was the largest at all ages. Immunocytochemistry indicated that protein expression for Kv4.2, Kv4.3, Kv1.4, and Kv2.1 increased between 1 wk and 4–5 wk of age. PMID:21451062

  20. Tonic current through GABAA receptors and hyperpolarization-activated cyclic nucleotide-gated channels modulate resonance properties of rat subicular pyramidal neurons.

    PubMed

    Sah, Nirnath; Sikdar, Sujit K

    2014-07-01

    The subiculum, considered to be the output structure of the hippocampus, modulates information flow from the hippocampus to various cortical and sub-cortical areas such as the nucleus accumbens, lateral septal region, thalamus, nucleus gelatinosus, medial nucleus and mammillary nuclei. Tonic inhibitory current plays an important role in neuronal physiology and pathophysiology by modulating the electrophysiological properties of neurons. While the alterations of various electrical properties due to tonic inhibition have been studied in neurons from different regions, its influence on intrinsic subthreshold resonance in pyramidal excitatory neurons expressing hyperpolarization-activated cyclic nucleotide-gated (HCN) channels is not known. Using pharmacological agents, we show the involvement of α5βγ GABAA receptors in the picrotoxin-sensitive tonic current in subicular pyramidal neurons. We further investigated the contribution of tonic conductance in regulating subthreshold electrophysiological properties using current clamp and dynamic clamp experiments. We demonstrate that tonic GABAergic inhibition can actively modulate subthreshold properties, including resonance due to HCN channels, which can potentially alter the response dynamics of subicular pyramidal neurons in an oscillating neuronal network.

  1. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate.

    PubMed

    Miyoshi, Goichi; Fishell, Gord

    2012-06-21

    Pyramidal cells of the cerebral cortex are born in the ventricular zone and migrate through the intermediate zone to enter into the cortical plate. In the intermediate zone, these migrating precursors move tangentially and initiate the extension of their axons by transiently adopting a characteristic multipolar morphology. We observe that expression of the forkhead transcription factor FoxG1 is dynamically regulated during this transitional period. By utilizing conditional genetic strategies, we show that the downregulation of FoxG1 at the beginning of the multipolar cell phase induces Unc5D expression, the timing of which ultimately determines the laminar identity of pyramidal neurons. In addition, we demonstrate that the re-expression of FoxG1 is required for cells to transit out of the multipolar cell phase and to enter into the cortical plate. Thus, the dynamic expression of FoxG1 during migration within the intermediate zone is essential for the proper assembly of the cerebral cortex.

  2. Evidence for Alzheimer’s disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons

    PubMed Central

    Neuman, Krystina M.; Molina-Campos, Elizabeth; Musial, Timothy F.; Price, Andrea L.; Oh, Kwang-Jin; Wolke, Malerie L.; Buss, Eric W.; Scheff, Stephen W.; Mufson, Elliott J.; Nicholson, Daniel A.

    2014-01-01

    Alzheimer’s disease (AD) is associated with alterations in the distribution, number, and size of inputs to hippocampal neurons. Some of these changes are thought to be neurodegenerative, whereas others are conceptualized as compensatory, plasticity-like responses, wherein the remaining inputs reactively innervate vulnerable dendritic regions. Here, we provide evidence that the axospinous synapses of human AD cases and mice harboring AD-linked genetic mutations (the 5XFAD line) exhibit both, in the form of synapse loss and compensatory changes in the synapses that remain. Using array tomography, quantitative conventional electron microscopy, immunogold electron microscopy for AMPARs, and whole-cell patch-clamp physiology, we find that hippocampal CA1 pyramidal neurons in transgenic mice are host to an age-related synapse loss in their distal dendrites, and that the remaining synapses express more AMPA-type glutamate receptors. Moreover, the number of axonal boutons that synapse with multiple spines is significantly reduced in the transgenic mice. Through serial section electron microscopic analyses of human hippocampal tissue, we further show that putative compensatory changes in synapse strength are also detectable in axospinous synapses of proximal and distal dendrites in human AD cases, and that their multiple synapse boutons may be more powerful than those in non-cognitively impaired human cases. Such findings are consistent with the notion that the pathophysiology of AD is a multivariate product of both neurodegenerative and neuroplastic processes, which may produce adaptive and/or maladaptive responses in hippocampal synaptic strength and plasticity. PMID:25031178

  3. Burst generation in rat pyramidal neurones by regenerative potentials elicited in a restricted part of the basilar dendritic tree

    PubMed Central

    Milojkovic, Bogdan A; Radojicic, Mihailo S; Goldman-Rakic, Patricia S; Antic, Srdjan D

    2004-01-01

    The common preconception about central nervous system neurones is that thousands of small postsynaptic potentials sum across the entire dendritic tree to generate substantial firing rates, previously observed in in vivo experiments. We present evidence that local inputs confined to a single basal dendrite can profoundly influence the neuronal output of layer V pyramidal neurones in the rat prefrontal cortical slices. In our experiments, brief glutamatergic stimulation delivered in a restricted part of the basilar dendritic tree invariably produced sustained plateau depolarizations of the cell body, accompanied by bursts of action potentials. Because of their small diameters, basolateral dendrites are not routinely accessible for glass electrode measurements, and very little is known about their electrical properties and their role in information processing. Voltage-sensitive dye recordings were used to follow membrane potential transients in distal segments of basal branches during sub- and suprathreshold glutamate and synaptic stimulations. Recordings were obtained simultaneously from multiple dendrites and multiple points along individual dendrites, thus showing in a direct way how regenerative potentials initiate at the postsynaptic site and propagate decrementally toward the cell body. The glutamate-evoked dendritic plateau depolarizations described here are likely to occur in conjunction with strong excitatory drive during so-called ‘UP states’, previously observed in in vivo recordings from mammalian cortices. PMID:15155788

  4. Estrogen induces rapid decrease in dendritic thorns of CA3 pyramidal neurons in adult male rat hippocampus

    SciTech Connect

    Tsurugizawa, Tomokazu; Mukai, Hideo

    2005-12-02

    Modulation of hippocampal synaptic plasticity by estrogen has been attracting much attention. Thorns of thorny excrescences of CA3 hippocampal neurons are post-synaptic regions whose presynaptic partners are mossy fiber terminals. Here we demonstrated the rapid effect of estradiol on the density of thorns of thorny excrescences, by imaging Lucifer Yellow-injected CA3 neurons in adult male rat hippocampal slices. The application of 1 nM estradiol induced rapid decrease in the density of thorns on pyramidal neurons within 2 h. The estradiol-mediated decrease in the density of thorns was blocked by CNQX (AMPA receptor antagonist) and PD98059 (MAP kinase inhibitor), but not by MK-801 (NMDA receptor antagonist). ER{alpha} agonist PPT induced the same suppressive effect as that induced by estradiol on the density of thorns, but ER{beta} agonist DPN did not affect the density of thorns. Note that a 1 nM estradiol treatment did not affect the density of spines in the stratum radiatum and stratum oriens. A search for synaptic ER{alpha} was performed using purified RC-19 antibody. The localization of ER{alpha} (67 kDa) in the CA3 mossy fiber terminals and thorns was demonstrated using immunogold electron microscopy. These results imply that estradiol drives the signaling pathway including ER{alpha} and MAP kinase.

  5. HCN1 Channels Constrain Synaptically Evoked Ca2+ Spikes in Distal Dendrites of CA1 Pyramidal Neurons

    PubMed Central

    Tsay, David; Dudman, Joshua T.; Siegelbaum, Steven A.

    2008-01-01

    SUMMARY HCN1 hyperpolarization-activated cation channels act as an inhibitory constraint of both spatial learning and synaptic integration and long-term plasticity in the distal dendrites of hippocampal CA1 pyramidal neurons. However, as HCN1 channels provide an excitatory current, the mechanism of their inhibitory action remains unclear. Here we report that HCN1 channels also constrain CA1 distal dendritic Ca2+ spikes, which have been implicated in the induction of LTP at distal excitatory synapses. Our experimental and computational results indicate that HCN1 channels provide both an active shunt conductance that decreases the temporal integration of distal EPSPs and a tonic depolarizing current that increases resting inactivation of T-type and N-type voltage-gated Ca2+ channels, which contribute to the Ca2+ spikes. This dual mechanism may provide a general means by which HCN channels regulate dendritic excitability. PMID:18093528

  6. Expression of Serotonin2C Receptors in Pyramidal and GABAergic Neurons of Rat Prefrontal Cortex: A Comparison with Striatum.

    PubMed

    Santana, Noemí; Artigas, Francesc

    2016-06-01

    The prefrontal cortex (PFC) is enriched in several serotonin receptors, including 5-HT1A-R, 5-HT2A-R, and 5-HT3-R. These receptors modulate PFC activity due to their expression in large neuronal populations (5-HT1A-R, 5-HT2A-R) or in selected GABAergic populations (5-HT3-R). They are also relevant for antidepressant and antipsychotic drug action. Less is known about the localization of 5-HT2C-R, for which atypical antipsychotics show high affinity. Here, we report on the cellular distribution of 5-HT2C-R in rat PFC and striatum, using double in situ hybridization histochemistry. In PFC, 5-HT2C-R are expressed in pyramidal (VGLUT1-positive) and GABAergic (GAD-positive) neurons, including parvalbumin-positive neurons. There is a marked dorso-ventral gradient in the proportion of VGLUT1-positive cells expressing 5-HT2C-R (9% in the cingulate cortex, 61% in the tenia tecta and 66% in the piriform cortex), less marked for GABAergic neurons (13-27%). There is also a laminar gradient, with more cells expressing 5-HT2C-R in deep (V-VI) than in intermediate (II-III) layers. In common with 5-HT3-R, layer I GABAergic cells express 5-HT2C-R. The proportion of 5-HT2C-R-expressing striatal neurons was 23% (dorsolateral caudate-putamen), 37% (ventromedial caudate-putamen), 53% (nucleus accumbens-core), and 49% (nucleus accumbens-shell). These results help to better understand the serotonergic modulation of PFC-based networks, including basal ganglia circuits, and atypical antipsychotic drug action.

  7. Selective shunting of the NMDA EPSP component by the slow afterhyperpolarization in rat CA1 pyramidal neurons.

    PubMed

    Fernández de Sevilla, David; Fuenzalida, Marco; Porto Pazos, Ana B; Buño, Washington

    2007-05-01

    Pyramidal neuron dendrites express voltage-gated conductances that control synaptic integration and plasticity, but the contribution of the Ca(2+)-activated K(+)-mediated currents to dendritic function is not well understood. Using dendritic and somatic recordings in rat hippocampal CA1 pyramidal neurons in vitro, we analyzed the changes induced by the slow Ca(2+)-activated K(+)-mediated afterhyperpolarization (sAHP) generated by bursts of action potentials on excitatory postsynaptic potentials (EPSPs) evoked at the apical dendrites by perforant path-Schaffer collateral stimulation. Both the amplitude and decay time constants of EPSPs (tau(EPSP)) were reduced by the sAHP in somatic recordings. In contrast, the dendritic EPSP amplitude remained unchanged, whereas tau(EPSP) was reduced. Temporal summation was reduced and spatial summation linearized by the sAHP. The amplitude of the isolated N-methyl-D-aspartate component of EPSPs (EPSP(NMDA)) was reduced, whereas tau(NMDA) was unaffected by the sAHP. In contrast, the sAHP did not modify the amplitude of the isolated EPSP(AMPA) but reduced tau(AMPA) both in dendritic and somatic recordings. These changes are attributable to a conductance increase that acted mainly via a selective "shunt" of EPSP(NMDA) because they were absent under voltage clamp, not present with imposed hyperpolarization simulating the sAHP, missing when the sAHP was inhibited with isoproterenol, and reduced under block of EPSP(NMDA). EPSPs generated at the basal dendrites were similarly modified by the sAHP, suggesting both a somatic and apical dendritic location of the sAHP channels. Therefore the sAHP may play a decisive role in the dendrites by regulating synaptic efficacy and temporal and spatial summation.

  8. Properties of single voltage-dependent K+ channels in dendrites of CA1 pyramidal neurones of rat hippocampus

    PubMed Central

    Chen, Xixi; Johnston, Daniel

    2004-01-01

    Voltage-dependent K+ channels in the apical dendrites of CA1 pyramidal neurones play important roles in regulating dendritic excitability, synaptic integration, and synaptic plasticity. Using cell-attached, voltage-clamp recordings, we found a large variability in the waveforms of macroscopic K+ currents in the dendrites. With single-channel analysis, however, we were able to identify four types of voltage-dependent K+ channels and we categorized them as belonging to delayed-rectifier, M-, D-, or A-type K+ channels previously described from whole-cell recordings. Delayed-rectifier-type K+ channels had a single-channel conductance of 19 ± 0.5 pS, and made up the majority of the sustained K+ current uniformly distributed along the apical dendrites. The M-type K+ channels had a single-channel conductance of 11 ± 0.8 pS, did not inactivate with prolonged membrane depolarization, deactivated with slow kinetics (time constant 100 ± 6 ms at −40 mV), and were inhibited by bath-applied muscarinic agonist carbachol (10 μm). The D-type K+ channels had a single-channel conductance of around 18 pS, and inactivated with a time constant of 98 ± 4 ms at +54 mV. The A-type K+ channels had a single-channel conductance of 6 ± 0.6 pS, inactivated with a time constant of 23 ± 2 ms at +54 mV, and contributed to the majority of the transient K+ current previously described. These results suggest both functional and molecular complexity for K+ channels in dendrites of CA1 pyramidal neurones. PMID:15218076

  9. Calcium-activated potassium conductances contribute to action potential repolarization at the soma but not the dendrites of hippocampal CA1 pyramidal neurons.

    PubMed

    Poolos, N P; Johnston, D

    1999-07-01

    Evidence is accumulating that voltage-gated channels are distributed nonuniformly throughout neurons and that this nonuniformity underlies regional differences in excitability within the single neuron. Previous reports have shown that Ca2+, Na+, A-type K+, and hyperpolarization-activated, mixed cation conductances have varying distributions in hippocampal CA1 pyramidal neurons, with significantly different densities in the apical dendrites compared with the soma. Another important channel mediates the large-conductance Ca2+-activated K+ current (IC), which is responsible in part for repolarization of the action potential (AP) and generation of the afterhyperpolarization that follows the AP recorded at the soma. We have investigated whether this current is activated by APs retrogradely propagating in the dendrites of hippocampal pyramidal neurons using whole-cell dendritic patch-clamp recording techniques. We found no IC activation by back-propagating APs in distal dendritic recordings. Dendritic APs activated IC only in the proximal dendrites, and this activation decayed within the first 100-150 micrometer of distance from the soma. The decay of IC in the proximal dendrites occurred despite AP amplitude, plus presumably AP-induced Ca2+ influx, that was comparable with that at the soma. Thus we conclude that IC activation by action potentials is nonuniform in the hippocampal pyramidal neuron, which may represent a further example of regional differences in neuronal excitability that are determined by the nonuniform distribution of voltage-gated channels in dendrites.

  10. Immediate Effects of Repetitive Magnetic Stimulation on Single Cortical Pyramidal Neurons

    PubMed Central

    Banerjee, Jineta; Sorrell, Mary E.; Celnik, Pablo A.; Pelled, Galit

    2017-01-01

    Repetitive Transcranial Magnetic Stimulation (rTMS) has been successfully used as a non-invasive therapeutic intervention for several neurological disorders in the clinic as well as an investigative tool for basic neuroscience. rTMS has been shown to induce long-term changes in neuronal circuits in vivo. Such long-term effects of rTMS have been investigated using behavioral, imaging, electrophysiological, and molecular approaches, but there is limited understanding of the immediate effects of TMS on neurons. We investigated the immediate effects of high frequency (20 Hz) rTMS on the activity of cortical neurons in an effort to understand the underlying cellular mechanisms activated by rTMS. We used whole-cell patch-clamp recordings in acute rat brain slices and calcium imaging of cultured primary neurons to examine changes in neuronal activity and intracellular calcium respectively. Our results indicate that each TMS pulse caused an immediate and transient activation of voltage gated sodium channels (9.6 ± 1.8 nA at -45 mV, p value < 0.01) in neurons. Short 500 ms 20 Hz rTMS stimulation induced action potentials in a subpopulation of neurons, and significantly increased the steady state current of the neurons at near threshold voltages (at -45 mV: before TMS: I = 130 ± 17 pA, during TMS: I = 215 ± 23 pA, p value = 0.001). rTMS stimulation also led to a delayed increase in intracellular calcium (153.88 ± 61.94% increase from baseline). These results show that rTMS has an immediate and cumulative effect on neuronal activity and intracellular calcium levels, and suggest that rTMS may enhance neuronal responses when combined with an additional motor, sensory or cognitive stimulus. Thus, these results could be translated to optimize rTMS protocols for clinical as well as basic science applications. PMID:28114421

  11. Changing numbers of neuronal and non-neuronal cells underlie postnatal brain growth in the rat

    PubMed Central

    Bandeira, Fabiana; Lent, Roberto; Herculano-Houzel, Suzana

    2009-01-01

    The rat brain increases >6× in mass from birth to adulthood, presumably through the addition of glial cells and increasing neuronal size, without the addition of neurons. To test this hypothesis, here we investigate quantitatively the postnatal changes in the total number of neuronal and non-neuronal cells in the developing rat brain, and examine how these changes correlate with brain growth. Total numbers of cells were determined with the isotropic fractionator in the brains of 53 Wistar rats, from birth to young adulthood. We find that at birth, >90% of the cells in the rat brain are neurons. Following a dormant period of ≈3 days after birth, the net number of neurons in the cerebral cortex, hippocampus, and remaining tissue (excluding cerebellum and olfactory bulb) doubles during the first week, then is reduced by 70% during the second postnatal week, concurrently with net gliogenesis. A second round of net addition of 6 million neurons is observed in the cerebral cortex over the following 2 weeks. During the first postnatal week, brain growth relates mainly to increased numbers of neurons of larger average size. In the second and third weeks, it correlates with increased numbers of non-neuronal cells that are smaller in size than the preexisting neurons. Postnatal rat brain development is thus characterized by dramatic changes in the cellular composition of the brain, whose growth is governed by different combinations of cell addition and loss, and changes in average cell size during the first months after birth. PMID:19666520

  12. In vivo effect of 5-HT₇ receptor agonist on pyramidal neurons in medial frontal cortex of normal and 6-hydroxydopamine-lesioned rats: an electrophysiological study.

    PubMed

    Fan, L L; Zhang, Q J; Liu, J; Feng, J; Gui, Z H; Ali, U; Zhang, L; Hou, C; Wang, T; Hui, Y P; Sun, Y N; Wu, Z H

    2011-09-08

    The 5-hydroxytryptamine (5-HT)-7 receptor began to be cloned and pharmacologically characterized close to 20 years ago. It couples positively via G-proteins to adenylyl cyclase and activation of this receptor increases neuronal excitability, and several studies have shown that degeneration of the nigrostriatal pathway leads to an impairment of 5-HT system. Here we reported that systemic and local administration of 5-HT₇ receptor agonist AS 19 produced excitation, inhibition and no change in the firing rate of pyramidal neurons in medial prefrontal cortex (mPFC) of normal and 6-hydroxydopamine-lesioned rats. In normal rats, the mean response of the pyramidal neurons to AS 19 by systemic and local administration in mPFC was excitatory. The inhibitory effect by systemic administration of AS 19 was reversed by GABA(A) receptor antagonist picrotoxinin. Systemic administration of picrotoxinin excited all the neurons examined in normal rats, and after treatment with picrotoxinin, the local administration of AS 19 further increased the firing rate of the neurons. In the lesioned rats, systemic administration of AS 19, at the same doses, also increased the mean firing rate of the pyramidal neurons. However, cumulative dose producing excitation in the lesioned rats was higher than that of normal rats. Systemic administration of AS 19 produced inhibitory effect in the lesioned rats, which was partially reversed by picrotoxinin. The local administration of AS 19, at the same dose, did not change the firing rate of the neurons in the lesioned rats. Systemic administration of picrotoxinin and the local administration of AS 19 did not affect the firing rate of the neurons in the lesioned rats. These results indicate that activity of mPFC pyramidal neurons is regulated through activation of 5-HT₇ receptor by direct or indirect action, and degeneration of the nigrostriatal pathway leads to decreased response of these neurons to AS 19, suggesting dysfunction and/or down

  13. Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex.

    PubMed

    Cheriyan, John; Kaushik, Mahesh K; Ferreira, Ashley N; Sheets, Patrick L

    2016-01-01

    Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex.

  14. Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis.

    PubMed

    Malik, Ruchi; Dougherty, Kelly Ann; Parikh, Komal; Byrne, Connor; Johnston, Daniel

    2016-03-01

    Differences in behavioral roles, anatomical connectivity, and gene expression patterns in the dorsal, intermediate, and ventral regions of the hippocampus are well characterized. Relatively fewer studies have, however, focused on comparing the physiological properties of neurons located at different dorsoventral extents of the hippocampus. Recently, we reported that dorsal CA1 neurons are less excitable than ventral neurons. There is little or no information for how neurons in the intermediate hippocampus compare to those from the dorsal and ventral ends. Also, it is not known whether the transition of properties along the dorsoventral axis is gradual or segmented. In this study, we developed a statistical model to predict the dorsoventral position of transverse hippocampal slices. Using current clamp recordings combined with this model, we found that CA1 neurons in dorsal, intermediate, and ventral hippocampus have distinct electrophysiological and morphological properties and that the transition in most (but not all) of these properties from the ventral to dorsal end is gradual. Using linear and segmented regression analyses, we found that input resistance and resting membrane potential changed linearly along the V-D axis. Interestingly, the transition in resonance frequency, rebound slope, dendritic branching in stratum radiatum, and action potential properties was segmented along the V-D axis. Together, the findings from this study highlight the heterogeneity in CA1 neuronal properties along the entire longitudinal axis of hippocampus.

  15. Seizure-induced plasticity of h channels in entorhinal cortical layer III pyramidal neurons.

    PubMed

    Shah, Mala M; Anderson, Anne E; Leung, Victor; Lin, Xiaodi; Johnston, Daniel

    2004-10-28

    The entorhinal cortex (EC) provides the predominant excitatory drive to the hippocampal CA1 and subicular neurons in chronic epilepsy. Discerning the mechanisms underlying signal integration within EC neurons is essential for understanding network excitability alterations involving the hippocampus during epilepsy. Twenty-four hours following a single seizure episode when there were no behavioral or electrographic seizures, we found enhanced spontaneous activity still present in the rat EC in vivo and in vitro. The increased excitability was accompanied by a profound reduction in I(h) in EC layer III neurons and a significant decline in HCN1 and HCN2 subunits that encode for h channels. Consequently, dendritic excitability was enhanced, resulting in increased neuronal firing despite hyperpolarized membrane potentials. The loss of I(h) and the increased neuronal excitability persisted for 1 week following seizures. Our results suggest that dendritic I(h) plays an important role in determining the excitability of EC layer III neurons and their associated neural networks.

  16. Mapping the electrophysiological and morphological properties of CA1 pyramidal neurons along the longitudinal hippocampal axis

    PubMed Central

    Ruchi, Malik; Ann, Dougherty Kelly; Komal, Parikh; Connor, Byrne; Daniel, Johnston

    2015-01-01

    Differences in behavioral roles, anatomical connectivity and gene expression patterns in the dorsal, intermediate and ventral regions of the hippocampus are well characterized. Relatively fewer studies have, however, focused on comparing the physiological properties of neurons located at different dorsoventral extents of the hippocampus. Recently we reported that dorsal CA1 neurons are less excitable than ventral neurons. There is little or no information for how neurons in the intermediate hippocampus compare to those from the dorsal and ventral ends. Also, it is not known whether the transition of properties along the dorsoventral axis is gradual or segmented. In this study, we developed a statistical model to predict the dorsoventral position of transverse hippocampal slices. Using current clamp recordings combined with this model, we found that CA1 neurons in dorsal, intermediate and ventral hippocampus have distinct electrophysiological and morphological properties and that the transition in most (but not all) of these properties from the ventral to dorsal end is gradual. Using linear and segmented regression analyses, we found that input resistance and resting membrane potential changed linearly along the V–D axis. Interestingly, the transition in resonance frequency, rebound slope, dendritic branching in stratum radiatum and action potential properties was segmented along the V–D axis. Together, the findings from this study highlight the heterogeneity in CA1 neuronal properties along the entire longitudinal axis of hippocampus. PMID:26333017

  17. Acetylcholine Facilitates a Depolarization-Induced Enhancement of Inhibition in Rat CA1 Pyramidal Neurons.

    PubMed

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2017-01-01

    Cholinergic mechanisms in the hippocampus regulate forms of synaptic plasticity linked with cognition and spatial navigation, but the underlying mechanisms remain largely unknown. Here, in rat hippocampal CA1 pyramidal cells under blockade of ionotropic glutamate receptors, we report that a single acetylcholine pulse and repeated depolarization activated a robust and enduring postsynaptic depolarization-induced enhancement of inhibition (DEI) that masked a presynaptic depolarization-induced suppression of inhibition (DSI). Increased cytosolic Ca2+ and M1-muscarinic receptor activation caused the rise in voltage-sensitive α5βγ2-containing γ-aminobutyric acid type-A receptors that generated DEI. In summary, this muscarinic-mediated activity-dependent plasticity rapidly transfers depolarization effects on inhibition from presynaptic suppression or DSI to postsynaptic enhancement or DEI, a change potentially relevant in behavior.

  18. Loss of functional A-type potassium channels in the dendrites of CA1 pyramidal neurons from a mouse model of fragile X syndrome.

    PubMed

    Routh, Brandy N; Johnston, Daniel; Brager, Darrin H

    2013-12-11

    Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K(+) currents (I(KA)) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of I(KA) using cell-attached patch-clamp recordings revealed that there was significantly less I(KA) in the dendrites of CA1 neurons from fmr1-/y mice. Interestingly, the midpoint of activation for A-type K(+) channels was hyperpolarized for fmr1-/y neurons compared with wild-type, which might partially compensate for the lower current density. Because of the rapid time course for recovery from steady-state inactivation, the dendritic A-type K(+) current in CA1 neurons from both wild-type and fmr1-/y mice is likely mediated by K(V)4 containing channels. The net effect of the differences in I(KA) was that back-propagating action potentials had larger amplitudes producing greater calcium influx in the distal dendrites of fmr1-/y neurons. Furthermore, CA1 pyramidal neurons from fmr1-/y mice had a lower threshold for LTP induction. These data suggest that loss of I(KA) in hippocampal neurons may contribute to dendritic pathophysiology in Fragile X syndrome.

  19. Loss of Functional A-Type Potassium Channels in the Dendrites of CA1 Pyramidal Neurons from a Mouse Model of Fragile X Syndrome

    PubMed Central

    Routh, Brandy N.; Johnston, Daniel

    2013-01-01

    Despite the critical importance of voltage-gated ion channels in neurons, very little is known about their functional properties in Fragile X syndrome: the most common form of inherited cognitive impairment. Using three complementary approaches, we investigated the physiological role of A-type K+ currents (IKA) in hippocampal CA1 pyramidal neurons from fmr1-/y mice. Direct measurement of IKA using cell-attached patch-clamp recordings revealed that there was significantly less IKA in the dendrites of CA1 neurons from fmr1-/y mice. Interestingly, the midpoint of activation for A-type K+ channels was hyperpolarized for fmr1-/y neurons compared with wild-type, which might partially compensate for the lower current density. Because of the rapid time course for recovery from steady-state inactivation, the dendritic A-type K+ current in CA1 neurons from both wild-type and fmr1-/y mice is likely mediated by KV4 containing channels. The net effect of the differences in IKA was that back-propagating action potentials had larger amplitudes producing greater calcium influx in the distal dendrites of fmr1-/y neurons. Furthermore, CA1 pyramidal neurons from fmr1-/y mice had a lower threshold for LTP induction. These data suggest that loss of IKA in hippocampal neurons may contribute to dendritic pathophysiology in Fragile X syndrome. PMID:24336711

  20. Axonal action-potential initiation and Na+ channel densities in the soma and axon initial segment of subicular pyramidal neurons.

    PubMed

    Colbert, C M; Johnston, D

    1996-11-01

    A long-standing hypothesis is that action potentials initiate first in the axon hillock/initial segment (AH-IS) region because of a locally high density of Na+ channels. We tested this idea in subicular pyramidal neurons by using patch-clamp recordings in hippocampal slices. Simultaneous recordings from the soma and IS confirmed that orthodromic action potentials initiated in the axon and then invaded the soma. However, blocking Na+ channels in the AH-IS with locally applied tetrodotoxin (TTX) did not raise the somatic threshold membrane potential for orthodromic spikes. TTX applied to the axon beyond the AH-IS (30-60 microm from the soma) raised the apparent somatic threshold by approximately 8 mV. We estimated the Na+ current density in the AH-IS and somatic membranes by using cell-attached patch-clamp recordings and found similar magnitudes (3-4 pA/microm2). Thus, the present results suggest that orthodromic action potentials initiate in the axon beyond the AH-IS and that the minimum threshold for spike initiation of the neuron is not determined by a high density of Na+ channels in the AH-IS region.

  1. The spatio-temporal characteristics of action potential initiation in layer 5 pyramidal neurons: a voltage imaging study

    PubMed Central

    Popovic, Marko A; Foust, Amanda J; McCormick, David A; Zecevic, Dejan

    2011-01-01

    Abstract The spatial pattern of Na+ channel clustering in the axon initial segment (AIS) plays a critical role in tuning neuronal computations, and changes in Na+ channel distribution have been shown to mediate novel forms of neuronal plasticity in the axon. However, immunocytochemical data on channel distribution may not directly predict spatio-temporal characteristics of action potential initiation, and prior electrophysiological measures are either indirect (extracellular) or lack sufficient spatial resolution (intracellular) to directly characterize the spike trigger zone (TZ). We took advantage of a critical methodological improvement in the high sensitivity membrane potential imaging (Vm imaging) technique to directly determine the location and length of the spike TZ as defined in functional terms. The results show that in mature axons of mouse cortical layer 5 pyramidal cells, action potentials initiate in a region ∼20 μm in length centred between 20 and 40 μm from the soma. From this region, the AP depolarizing wave invades initial nodes of Ranvier within a fraction of a millisecond and propagates in a saltatory fashion into axonal collaterals without failure at all physiologically relevant frequencies. We further demonstrate that, in contrast to the saltatory conduction in mature axons, AP propagation is non-saltatory (monotonic) in immature axons prior to myelination. PMID:21669974

  2. Dietary cholesterol modulates the excitability of rabbit hippocampal CA1 pyramidal neurons.

    PubMed

    Wang, Desheng; Schreurs, Bernard G

    2010-08-02

    Previous work has shown high dietary cholesterol can affect learning and memory including rabbit eyeblink conditioning and this effect may be due to increased membrane cholesterol and enhanced hippocampal amyloid beta production. This study investigated whether dietary cholesterol modulates rabbit hippocampal CA1 neuron membrane properties known to be involved in rabbit eyeblink conditioning. Whole-cell current clamp recordings in hippocampal neurons from rabbits fed 2 percent cholesterol or normal chow for 8 weeks revealed changes including decreased after-hyperpolarization amplitudes (AHPs) - an index of membrane excitability shown to be important for rabbit eyeblink conditioning. This index was reversed by adding copper to drinking water - a dietary manipulation that can retard rabbit eyeblink conditioning. Evidence of cholesterol effects on membrane excitability was provided by application of methyl-beta-cyclodextrin, a compound that reduces membrane cholesterol, which increased the excitability of hippocampal CA1 neurons.

  3. ACTIVITY-DEPENDENT STRUCTURAL PLASTICITY AFTER AVERSIVE EXPERIENCES IN AMYGDALA AND AUDITORY CORTEX PYRAMIDAL NEURONS

    PubMed Central

    Gruene, Tina; Flick, Katelyn; Rendall, Sam; Cho, Jin Hyung; Gray, Jesse; Shansky, Rebecca

    2016-01-01

    The brain is highly plastic and undergoes changes in response to many experiences. Learning especially can induce structural remodeling of dendritic spines, which is thought to relate to memory formation. Classical Pavlovian fear conditioning (FC) traditionally pairs an auditory cue with an aversive footshock, and has been widely used to study neural processes underlying associative learning and memory. Past research has found dendritic spine changes after FC in several structures. But, due to heterogeneity of cells within brain structures and limitations of traditional neuroanatomical techniques, it is unclear if all cells included in analyses were actually active during learning processes, even if known circuits are isolated. In this study, we employed a novel approach to analyze structural plasticity explicitly in neurons activated by exposure to either cued or uncued footshocks. We used male and female Arc-dVenus transgenic mice, which express the Venus fluorophore driven by the activity-related Arc promoter, to identify neurons that were active during either scenario. We then targeted fluorescent microinjections to Arc+ and neighboring Arc− neurons in the basolateral area of the amygdala (BLA) and auditory association cortex (TeA). In both BLA and TeA, Arc+ neurons had reduced thin and mushroom spine densities compared to Arc− neurons. This effect was present in males and females alike and also in both cued and uncued shock groups. Overall, this study adds to our understanding of how neuronal activity affects structural plasticity, and represents a methodological advance in the ways we can directly relate structural changes to experience-related neural activity. PMID:27155146

  4. Transient Receptor Potential Vanilloid 4 Inhibits γ-Aminobutyric Acid-Activated Current in Hippocampal Pyramidal Neurons

    PubMed Central

    Hong, Zhiwen; Tian, Yujing; Qi, Mengwen; Li, Yingchun; Du, Yimei; Chen, Lei; Liu, Wentao; Chen, Ling

    2016-01-01

    The balance between excitatory and inhibitory neurotransmitter systems is crucial for the modulation of neuronal excitability in the central nervous system (CNS). The activation of transient receptor potential vanilloid 4 (TRPV4) is reported to enhance the response of hippocampal glutamate receptors, but whether the inhibitory neurotransmitter system can be regulated by TRPV4 remains unknown. γ-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the CNS. Here, we show that application of transient receptor potential vanilloid 4 (TRPV4) synthetic (GSK1016790A or 4α-PDD) or endogenous agonist (5,6-EET) inhibited GABA-activated current (IGABA) in hippocampal CA1 pyramidal neurons, which was blocked by specific antagonists of TRPV4 and of GABAA receptors. GSK1016790A increased the phosphorylated AMP-activated protein kinase (p-AMPK) and decreased the phosphorylated protein kinase B (p-Akt) protein levels, which was attenuated by removing extracellular calcium or by a calcium/calmodulin-dependent protein kinase kinase-β antagonist. GSK1016790A-induced decrease of p-Akt protein level was sensitive to an AMPK antagonist. GSK1016790A-inhibited IGABA was blocked by an AMPK antagonist or a phosphatidyl inositol 3 kinase (PI3K) agonist. GSK1016790A-induced inhibition of IGABA was also significantly attenuated by a protein kinase C (PKC) antagonist but was unaffected by protein kinase A or calcium/calmodulin-dependent protein kinase II antagonist. We conclude that activation of TRPV4 inhibits GABAA receptor, which may be mediated by activation of AMPK and subsequent down-regulation of PI3K/Akt signaling and activation of PKC signaling. Inhibition of GABAA receptors may account for the neuronal hyperexcitability caused by TRPV4 activation. PMID:27616980

  5. Coordinated scaling of cortical and cerebellar numbers of neurons.

    PubMed

    Herculano-Houzel, Suzana

    2010-01-01

    While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species - an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble.

  6. Coordinated Scaling of Cortical and Cerebellar Numbers of Neurons

    PubMed Central

    Herculano-Houzel, Suzana

    2010-01-01

    While larger brains possess concertedly larger cerebral cortices and cerebella, the relative size of the cerebral cortex increases with brain size, but relative cerebellar size does not. In the absence of data on numbers of neurons in these structures, this discrepancy has been used to dispute the hypothesis that the cerebral cortex and cerebellum function and have evolved in concert and to support a trend towards neocorticalization in evolution. However, the rationale for interpreting changes in absolute and relative size of the cerebral cortex and cerebellum relies on the assumption that they reflect absolute and relative numbers of neurons in these structures across all species – an assumption that our recent studies have shown to be flawed. Here I show for the first time that the numbers of neurons in the cerebral cortex and cerebellum are directly correlated across 19 mammalian species of four different orders, including humans, and increase concertedly in a similar fashion both within and across the orders Eulipotyphla (Insectivora), Rodentia, Scandentia and Primata, such that on average a ratio of 3.6 neurons in the cerebellum to every neuron in the cerebral cortex is maintained across species. This coordinated scaling of cortical and cerebellar numbers of neurons provides direct evidence in favor of concerted function, scaling and evolution of these brain structures, and suggests that the common notion that equates cognitive advancement with neocortical expansion should be revisited to consider in its stead the coordinated scaling of neocortex and cerebellum as a functional ensemble. PMID:20300467

  7. Impaired Memory and Evidence of Histopathology in CA1 Pyramidal Neurons through Injection of Aβ1-42 Peptides into the Frontal Cortices of Rat

    PubMed Central

    Eslamizade, Mohammad Javad; Madjd, Zahra; Rasoolijazi, Homa; Saffarzadeh, Fatemeh; Pirhajati, Vahid; Aligholi, Hadi; Janahmadi, Mahyar; Mehdizadeh, Mehdi

    2016-01-01

    Introduction: Alzheimer’s disease (AD) is one of the most common neurodegenerative disorders, which has much benefited from animal models to find the basics of its pathophysiology. In our previous work (Haghani, Shabani, Javan, Motamedi, & Janahmadi, 2012), a non-transgenic rat model of AD was used in electrophysiological studies. However, we did not investigate the histological aspects in the mentioned study. Methods: An AD model was developed through bilateral injection of amyloid-β peptides (Aβ) into the frontal cortices. Behavioral and histological methods were used to assess alterations in the memory and (ultra)structures. Furthermore, melatonin has been administered to assess its efficacy on this AD model. Results: Passive avoidance showed a progressive decline in the memory following Aβ injection. Furthermore, Nissl staining showed that Aβ neurotoxicity caused shrinkage of the CA1 pyramidal neurons. Neurodegeneration was clearly evident from Fluoro-jade labeled neurons in Aβ treated rats. Moreover, higher NF-κB immunoreactive CA1 pyramidal neurons were remarkably observed in Aβ treated rats. Ultrastructural analysis using electron microscopy also showed the evidence of subcellular abnormalities. Melatonin treatment in this model of AD prevented Aβ-induced increased NF-κB from immunoreaction and neurodegeneration. Discussion: This study suggests that injection of Aβ into the frontal cortices results in the memory decline and histochemical disturbances in CA1 pyramidal neurons. Furthermore, melatonin can prevent several histological changes induced by Aβ. PMID:27303597

  8. Properties of voltage-gated potassium currents in nucleated patches from large layer 5 cortical pyramidal neurons of the rat

    PubMed Central

    Bekkers, John M

    2000-01-01

    Voltage-gated potassium currents were studied in nucleated outside-out patches obtained from large layer 5 pyramidal neurons in acute slices of sensorimotor cortex from 13- to 15-day-old Wistar rats (22–25 °C).Two main types of current were found, an A-current (IA) and a delayed rectifier current (IK), which were blocked by 4-aminopyridine (5 mm) and tetraethylammonium (30 mm), respectively.Recovery from inactivation was mono-exponential (for IA) or bi-exponential (for IK) and strongly voltage dependent. Both IA and IK could be almost fully inactivated by depolarising prepulses of sufficient duration. Steady-state inactivation curves were well fitted by the Boltzmann equation with half-maximal voltage (V½) and slope factor (k) values of −81.6 mV and −6.7 mV for IA, and −66.6 mV and −9.2 mV for IK. Peak activation curves were described by the Boltzmann equation with V½ and k values of −18.8 mV and 16.6 mV for IA, and −9.6 mV and 13.2 mV for IK.IA inactivated mono-exponentially during a depolarising test pulse, with a time constant (∼7 ms) that was weakly dependent on membrane potential. IK inactivated bi-exponentially with time constants (∼460 ms, ∼4.2 s) that were also weakly voltage dependent. The time to peak of both IA and IK depended strongly on membrane potential. The kinetics of IA and IK were described by a Hodgkin-Huxley-style equation of the form mNh, where N was 3 for IA and 1 for IK.These results provide a basis for understanding the role of voltage-gated potassium currents in the firing properties of large layer 5 pyramidal neurons of the rat neocortex. PMID:10856115

  9. Functional and molecular differences between voltage-gated K+ channels of fast-spiking interneurons and pyramidal neurons of rat hippocampus.

    PubMed

    Martina, M; Schultz, J H; Ehmke, H; Monyer, H; Jonas, P

    1998-10-15

    We have examined gating and pharmacological characteristics of somatic K+ channels in fast-spiking interneurons and regularly spiking principal neurons of hippocampal slices. In nucleated patches isolated from basket cells of the dentate gyrus, a fast delayed rectifier K+ current component that was highly sensitive to tetraethylammonium (TEA) and 4-aminopyridine (4-AP) (half-maximal inhibitory concentrations <0.1 mM) predominated, contributing an average of 58% to the total K+ current in these cells. By contrast, in pyramidal neurons of the CA1 region a rapidly inactivating A-type K+ current component that was TEA-resistant prevailed, contributing 61% to the total K+ current. Both types of neurons also showed small amounts of the K+ current component mainly found in the other type of neuron and, in addition, a slow delayed rectifier K+ current component with intermediate properties (slow inactivation, intermediate sensitivity to TEA). Single-cell RT-PCR analysis of mRNA revealed that Kv3 (Kv3.1, Kv3.2) subunit transcripts were expressed in almost all (89%) of the interneurons but only in 17% of the pyramidal neurons. In contrast, Kv4 (Kv4.2, Kv4.3) subunit mRNAs were present in 87% of pyramidal neurons but only in 55% of interneurons. Selective block of fast delayed rectifier K+ channels, presumably assembled from Kv3 subunits, by 4-AP reduced substantially the action potential frequency in interneurons. These results indicate that the differential expression of Kv3 and Kv4 subunits shapes the action potential phenotypes of principal neurons and interneurons in the cortex.

  10. Activity-dependent bidirectional regulation of GABAA receptor channels by the 5-HT4 receptor-mediated signalling in rat prefrontal cortical pyramidal neurons

    PubMed Central

    Cai, Xiang; Flores-Hernandez, Jorge; Feng, Jian; Yan, Zhen

    2002-01-01

    Emerging evidence has implicated a potential role for 5-HT4 receptors in cognition and anxiolysis. One of the main target structures of 5-HT4 receptors on ‘cognitive and emotional’ pathways is the prefrontal cortex (PFC). As GABAergic signalling plays a key role in regulating PFC functions, we examined the effect of 5-HT4 receptors on GABAA receptor channels in PFC pyramidal neurons. Application of 5-HT4 receptor agonists produced either an enhancement or a reduction of GABA-evoked currents in PFC neurons, which are both mediated by anchored protein kinase A (PKA). Although PKA phosphorylation of GABAA receptor β3 or β1 subunits leads to current enhancement or reduction respectively in heterologous expression systems, we found that β3 and β1 subunits are co-expressed in PFC pyramidal neurons. Interestingly, altering PKA activation levels can change the direction of the dual effect, switching enhancement to reduction and vice versa. In addition, increased neuronal activity in PFC slices elevated the PKA activation level, changing the enhancing effect of 5-HT4 receptors on the amplitude of GABAergic inhibitory postsynaptic currents (IPSCs) to a reduction. These results suggest that 5-HT4 receptors can modulate GABAergic signalling bidirectionally, depending on the basal PKA activation levels that are determined by neuronal activity. This modulation provides a unique and flexible mechanism for 5-HT4 receptors to dynamically regulate synaptic transmission and neuronal excitability in the PFC network. PMID:11986365

  11. Glutamatergic neurons of the mouse medial septum and diagonal band of Broca synaptically drive hippocampal pyramidal cells: relevance for hippocampal theta rhythm.

    PubMed

    Huh, Carey Y L; Goutagny, Romain; Williams, Sylvain

    2010-11-24

    Neurons of the medial septum and diagonal band of Broca (MS-DBB) provide an important input to the hippocampus and are critically involved in learning and memory. Although cholinergic and GABAergic MS-DBB neurons are known to modulate hippocampal activity, the role of recently described glutamatergic MS-DBB neurons is unknown. Here, we examined the electrophysiological properties of glutamatergic MS-DBB neurons and tested whether they provide a functional synaptic input to the hippocampus. To visualize the glutamatergic neurons, we used MS-DBB slices from transgenic mice in which the green fluorescent protein is expressed specifically by vesicular glutamate transporter 2-positive neurons and characterized their properties using whole-cell patch-clamp technique. For assessing the function of the glutamatergic projection, we used an in vitro septohippocampal preparation, electrically stimulated the fornix or chemically activated the MS-DBB using NMDA microinfusions and recorded postsynaptic responses in CA3 pyramidal cells. We found that glutamatergic MS-DBB neurons as a population display a highly heterogeneous set of firing patterns including fast-, cluster-, burst-, and slow-firing. Remarkably, a significant proportion exhibited fast-firing properties, prominent I(h), and rhythmic spontaneous firing at theta frequencies similar to those found in GABAergic MS-DBB neurons. Activation of the MS-DBB led to fast, AMPA receptor-mediated glutamatergic responses in CA3 pyramidal cells. These results describe for the first time the electrophysiological signatures of glutamatergic MS-DBB neurons, their rhythmic firing properties, and their capacity to drive hippocampal principal neurons. Our findings suggest that the glutamatergic septohippocampal pathway may play an important role in hippocampal theta oscillations and relevant cognitive functions.

  12. Translational profiling of stress-induced neuroplasticity in the CA3 pyramidal neurons of BDNF Val66Met mice.

    PubMed

    Gray, J D; Rubin, T G; Kogan, J F; Marrocco, J; Weidmann, J; Lindkvist, S; Lee, F S; Schmidt, E F; McEwen, B S

    2016-12-13

    Genetic susceptibility and environmental factors (such as stress) can interact to affect the likelihood of developing a mood disorder. Stress-induced changes in the hippocampus have been implicated in mood disorders, and mutations in several genes have now been associated with increased risk, such as brain-derived neurotrophic factor (BDNF). The hippocampus has important anatomical subdivisions, and pyramidal neurons of the vulnerable CA3 region show significant remodeling after chronic stress, but the mechanisms underlying their unique plasticity remain unknown. This study characterizes stress-induced changes in the in vivo translating mRNA of this cell population using a CA3-specific enhanced green fluorescent protein (EGFP) reporter fused to the L10a large ribosomal subunit (EGFPL10a). RNA-sequencing after isolation of polysome-bound mRNAs allows for cell-type-specific, genome-wide characterization of translational changes after stress. The data demonstrate that acute and chronic stress produce unique translational profiles and that the stress history of the animal can alter future reactivity of CA3 neurons. CA3-specific EGFPL10a mice were then crossed to the stress-susceptible BDNF Val66Met mouse line to characterize how a known genetic susceptibility alters both baseline translational profiles and the reactivity of CA3 neurons to stress. Not only do Met allele carriers exhibit distinct levels of baseline translation in genes implicated in ion channel function and cytoskeletal regulation, but they also activate a stress response profile that is highly dissimilar from wild-type mice. Closer examination of genes implicated in the mechanisms of neuroplasticity, such as the NMDA and AMPA subunits and the BDNF pathway, reveal how wild-type mice upregulate many of these genes in response to stress, but Met allele carriers fail to do so. These profiles provide a roadmap of stress-induced changes in a genetically homogenous population of hippocampal neurons and

  13. Dendritic sodium spikes are required for long-term potentiation at distal synapses on hippocampal pyramidal neurons

    PubMed Central

    Kim, Yujin; Hsu, Ching-Lung; Cembrowski, Mark S; Mensh, Brett D; Spruston, Nelson

    2015-01-01

    Dendritic integration of synaptic inputs mediates rapid neural computation as well as longer-lasting plasticity. Several channel types can mediate dendritically initiated spikes (dSpikes), which may impact information processing and storage across multiple timescales; however, the roles of different channels in the rapid vs long-term effects of dSpikes are unknown. We show here that dSpikes mediated by Nav channels (blocked by a low concentration of TTX) are required for long-term potentiation (LTP) in the distal apical dendrites of hippocampal pyramidal neurons. Furthermore, imaging, simulations, and buffering experiments all support a model whereby fast Nav channel-mediated dSpikes (Na-dSpikes) contribute to LTP induction by promoting large, transient, localized increases in intracellular calcium concentration near the calcium-conducting pores of NMDAR and L-type Cav channels. Thus, in addition to contributing to rapid neural processing, Na-dSpikes are likely to contribute to memory formation via their role in long-lasting synaptic plasticity. DOI: http://dx.doi.org/10.7554/eLife.06414.001 PMID:26247712

  14. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons.

    PubMed

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca(2+) spike. The same stimulation induced LTD following manipulations that reduced the Ca(2+) spike and Ca(2+) signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information.

  15. Ablation of SNX6 leads to defects in synaptic function of CA1 pyramidal neurons and spatial memory

    PubMed Central

    Niu, Yang; Dai, Zhonghua; Liu, Wenxue; Zhang, Cheng; Yang, Yanrui; Guo, Zhenzhen; Li, Xiaoyu; Xu, Chenchang; Huang, Xiahe; Wang, Yingchun; Shi, Yun S; Liu, Jia-Jia

    2017-01-01

    SNX6 is a ubiquitously expressed PX-BAR protein that plays important roles in retromer-mediated retrograde vesicular transport from endosomes. Here we report that CNS-specific Snx6 knockout mice exhibit deficits in spatial learning and memory, accompanied with loss of spines from distal dendrites of hippocampal CA1 pyramidal cells. SNX6 interacts with Homer1b/c, a postsynaptic scaffold protein crucial for the synaptic distribution of other postsynaptic density (PSD) proteins and structural integrity of dendritic spines. We show that SNX6 functions independently of retromer to regulate distribution of Homer1b/c in the dendritic shaft. We also find that Homer1b/c translocates from shaft to spines by protein diffusion, which does not require SNX6. Ablation of SNX6 causes reduced distribution of Homer1b/c in distal dendrites, decrease in surface levels of AMPAR and impaired AMPAR-mediated synaptic transmission. These findings reveal a physiological role of SNX6 in CNS excitatory neurons. DOI: http://dx.doi.org/10.7554/eLife.20991.001 PMID:28134614

  16. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons.

    PubMed

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABA A Rs). Although, the enhancing effects of ACh on GABA A Rs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABA A currents ( t GABA A ) and puff-evoked GABA A currents ( p GABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with p GABAA and t GABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals.

  17. Status epilepticus decreases glutamate receptor 2 mRNA and protein expression in hippocampal pyramidal cells before neuronal death

    PubMed Central

    Grooms, Sonja Y.; Opitz, Thoralf; Bennett, Michael V. L.; Zukin, R. Suzanne

    2000-01-01

    Kainic acid (KA)-induced status epilepticus in adult rats leads to delayed, selective death of pyramidal neurons in the hippocampal CA1 and CA3. Death is preceded by down-regulation of glutamate receptor 2 (GluR2) mRNA and protein [the subunit that limits Ca2+ permeability of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] in CA1 and CA3, as indicated by in situ hybridization, immunolabeling, and quantitative Western blotting. GluR1 mRNA and protein are unchanged or slightly increased before cell death. These changes could lead to formation of GluR2-lacking, Ca2+-permeable AMPA receptors and increased toxicity of endogenous glutamate. GluR2 immunolabeling is unchanged in granule cells of the dentate gyrus, which are resistant to seizure-induced death. Thus, formation of Ca2+-permeable AMPA receptors may be a critical mediator of delayed neurodegeneration after status epilepticus. PMID:10725374

  18. Contrasting roles of axonal (pyramidal cell) and dendritic (interneuron) electrical coupling in the generation of neuronal network oscillations

    NASA Astrophysics Data System (ADS)

    Traub, Roger D.; Pais, Isabel; Bibbig, Andrea; Lebeau, Fiona E. N.; Buhl, Eberhard H.; Hormuzdi, Sheriar G.; Monyer, Hannah; Whittington, Miles A.

    2003-02-01

    Electrical coupling between pyramidal cell axons, and between interneuron dendrites, have both been described in the hippocampus. What are the functional roles of the two types of coupling? Interneuron gap junctions enhance synchrony of oscillations (25-70 Hz) in isolated interneuron networks and also in networks containing both interneurons and principal cells, as shown in mice with a knockout of the neuronal (primarily interneuronal) connexin36. We have recently shown that pharmacological gap junction blockade abolishes kainate-induced oscillations in connexin36 knockout mice; without such gap junction blockade, oscillations do occur in the knockout mice, albeit at reduced power compared with wild-type mice. As interneuronal dendritic electrical coupling is almost absent in the knockout mice, these pharmacological data indicate a role of axonal electrical coupling in generating the oscillations. We construct a network model of an experimental oscillation, known to be regulated by both types of electrical coupling. In our model, axonal electrical coupling is required for the oscillation to occur at all; interneuron dendritic gap junctions exert a modulatory effect.

  19. Hdac Activity is Required for Bdnf to Increase Quantal Neurotransmitter Release and Dendritic Spine Density in CA1 Pyramidal Neurons

    PubMed Central

    Calfa, Gaston; Chapleau, Christopher A.; Campbell, Susan; Inoue, Takafumi; Morse, Sarah J.; Lubin, Farah D.; Pozzo-Miller, Lucas

    2012-01-01

    Molecular mechanisms involved in the strengthening and formation of synapses include the activation and repression of specific genes or subsets of genes by epigenetic modifications that do not alter the genetic code itself. Chromatin modifications mediated by histone acetylation have been shown to be critical for synaptic plasticity at hippocampal excitatory synapses and hippocampal-dependent memory formation. Considering that brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity and behavioral adaptations, it is not surprising that regulation of this gene is subject to histone acetylation changes during synaptic plasticity and hippocampal-dependent memory formation. Whether the effects of BDNF on dendritic spines and quantal transmitter release require histone modifications remains less known. By using two different inhibitors of histone deacetylases (HDAC), we describe here that their activity is required for BDNF to increase dendritic spine density and excitatory quantal transmitter release onto CA1 pyramidal neurons in hippocampal slice cultures. These results suggest that histone acetylation/deacetylation is a critical step in the modulation of hippocampal synapses by BDNF. Thus, mechanisms of epigenetic modulation of synapse formation and function are novel targets to consider for the amelioration of symptoms of intellectual disabilities and neurodegenerative disorders associated with cognitive and memory deficits. PMID:22161912

  20. Muscarinic Long-Term Enhancement of Tonic and Phasic GABAA Inhibition in Rat CA1 Pyramidal Neurons

    PubMed Central

    Domínguez, Soledad; Fernández de Sevilla, David; Buño, Washington

    2016-01-01

    Acetylcholine (ACh) regulates network operation in the hippocampus by controlling excitation and inhibition in rat CA1 pyramidal neurons (PCs), the latter through gamma-aminobutyric acid type-A receptors (GABAARs). Although, the enhancing effects of ACh on GABAARs have been reported (Dominguez et al., 2014, 2015), its role in regulating tonic GABAA inhibition has not been explored in depth. Therefore, we aimed at determining the effects of the activation of ACh receptors on responses mediated by synaptic and extrasynaptic GABAARs. Here, we show that under blockade of ionotropic glutamate receptors ACh, acting through muscarinic type 1 receptors, paired with post-synaptic depolarization induced a long-term enhancement of tonic GABAA currents (tGABAA) and puff-evoked GABAA currents (pGABAA). ACh combined with depolarization also potentiated IPSCs (i.e., phasic inhibition) in the same PCs, without signs of interactions of synaptic responses with pGABAA and tGABAA, suggesting the contribution of two different GABAA receptor pools. The long-term enhancement of GABAA currents and IPSCs reduced the excitability of PCs, possibly regulating plasticity and learning in behaving animals. PMID:27833531

  1. Bidirectional Hebbian Plasticity Induced by Low-Frequency Stimulation in Basal Dendrites of Rat Barrel Cortex Layer 5 Pyramidal Neurons

    PubMed Central

    Díez-García, Andrea; Barros-Zulaica, Natali; Núñez, Ángel; Buño, Washington; Fernández de Sevilla, David

    2017-01-01

    According to Hebb's original hypothesis (Hebb, 1949), synapses are reinforced when presynaptic activity triggers postsynaptic firing, resulting in long-term potentiation (LTP) of synaptic efficacy. Long-term depression (LTD) is a use-dependent decrease in synaptic strength that is thought to be due to synaptic input causing a weak postsynaptic effect. Although the mechanisms that mediate long-term synaptic plasticity have been investigated for at least three decades not all question have as yet been answered. Therefore, we aimed at determining the mechanisms that generate LTP or LTD with the simplest possible protocol. Low-frequency stimulation of basal dendrite inputs in Layer 5 pyramidal neurons of the rat barrel cortex induces LTP. This stimulation triggered an EPSP, an action potential (AP) burst, and a Ca2+ spike. The same stimulation induced LTD following manipulations that reduced the Ca2+ spike and Ca2+ signal or the AP burst. Low-frequency whisker deflections induced similar bidirectional plasticity of action potential evoked responses in anesthetized rats. These results suggest that both in vitro and in vivo similar mechanisms regulate the balance between LTP and LTD. This simple induction form of bidirectional hebbian plasticity could be present in the natural conditions to regulate the detection, flow, and storage of sensorimotor information. PMID:28203145

  2. Differential responses of fast- and slow-conducting pyramidal tract neurons to changes in accuracy demands during locomotion

    PubMed Central

    Stout, Erik E; Beloozerova, Irina N

    2013-01-01

    Most movements need to be accurate. The neuronal mechanisms controlling accuracy during movements are poorly understood. In this study we compare the activity of fast- and slow-conducting pyramidal tract neurons (PTNs) of the motor cortex in cats as they walk over both a flat surface, a task that does not require accurate stepping and can be accomplished without the motor cortex, as well as along a horizontal ladder, a task that requires accuracy and the activity of the motor cortex to be successful. Fast- and slow-conducting PTNs are known to have distinct biophysical properties as well as different afferent and efferent connections. We found that while the activity of all PTNs changes substantially upon transition from simple locomotion to accurate stepping on the ladder, slow-conducting PTNs respond in a much more concerted manner than fast-conducting ones. As a group, slow-conducting PTNs increase discharge rate, especially during the late stance and early swing phases, decrease discharge variability, have a tendency to shift their preferred phase of the discharge into the swing phase, and almost always produce a single peak of activity per stride during ladder locomotion. In contrast, the fast-conducting PTNs do not display such concerted changes to their activity. In addition, upon transfer from simple locomotion to accurate stepping on the ladder slow-conducting PTNs more profoundly increase the magnitude of their stride-related frequency modulation compared with fast-conducting PTNs. We suggest that slow-conducting PTNs are involved in control of accuracy of locomotor movements to a greater degree than fast-conducting PTNs. PMID:23381901

  3. Back-propagating action potentials in pyramidal neurons: a putative signaling mechanism for the induction of Hebbian synaptic plasticity.

    PubMed

    Colbert, C M

    2001-01-01

    A hallmark of synaptic plasticity is the associative, or Hebbian, nature of its induction. By associative, we mean that the timing relationships between activity of the pre- and postsynaptic elements of a synapse determine whether synaptic strengths are modified. lt is well-established that associativity results, in large part, from the dual requirements for activation of the N-methyl-D-aspartate receptor-ionophore, namely presynaptic neurotransmitter release and postsynaptic depolarization. However, the specific dendritic events that provide the postsynaptic depolarization have been relatively unexplored. Increasing evidence suggests that back-propagating (i.e., antidromic) Na(+) action potentials provide the necessary postsynaptic depolarization to allow induction of associative synaptic plasticities. In hippocampal CAI and neocortical layer V pyramidal neurons, these action potentials provide much greater levels of dendritic depolarization than would be expected from synaptic currents alone. Moreover, they provide a relatively brief and synchronous depolarization throughout the dendritic arbor, allowing timing relationships to more directly reflect pre- and postsynaptic cell firing. Interestingly, certain properties of the back-propagating actions potentials differ from axonal or somatic action potentials in ways that seem to reflect their function. For example, the all-or-none property of action potential amplitude does not hold in the dendrites. In this review we discuss the back-propagating action potential as a dendritic signal that provides information to synapses about the firing state of the postsynaptic neuron. First, we consider the evidence that action potentials propagate back from the axon. Second, we describe the characteristics of the back-propagating action potential in terms of interactions of its underlying ionic currents. Third, we describe how these properties contribute to the timing aspects of the induction of long-term potentiation. Finally

  4. Effect of prenatal exposure to mobile phone on pyramidal cell numbers in the mouse hippocampus: a stereological study.

    PubMed

    Rağbetli, Murat Cetin; Aydinlioğlu, Atif; Koyun, Necat; Rağbetli, Cennet; Karayel, Metin

    2009-01-01

    Because of the possible risk factor for the health, World Health Organization (WHO) recommended the study with animals on the developing nervous system concerning the exposure to radiofrequency (RF) field. A few studies related to hippocampal exposure are available, which indicate the impact of RF field in some parameters. The present study investigated the effect of exposure to mobile phone on developing hippocampus. Male and female Swiss albino mice were housed as control and mobile phone exposed groups. The pregnant animals in tested group were exposed to the effects of mobile phone in a room possessing the exposure system. The left hemispheres of the brains were processed by frozen microtome. The sections obtained were stained with Hematoxylin & Eosin. For cell counting by the optical fractionator method, a pilot study was first performed. Hippocampal areas were analyzed using Axiovision software running on a personal computer. The optical dissector, systematically and randomly spaced, was focused to the widest profile of the pyramidal cell nucleus. No significant difference in pyramidal cell number of total Cornu Ammonis (CA) sectors of hippocampus was found between the control and the mobile phone exposed groups (p > .05). It was concluded that further study is needed in this field due to popular use of mobile telephones and relatively high exposure to the developing brain.

  5. The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats.

    PubMed

    Hermawati, Ery; Sari, Dwi Cahyani Ratna; Partadiredja, Ginus

    2015-09-01

    Monosodium glutamate (MSG) is believed to exert deleterious effects on various organs, including the hippocampus, likely via the oxidative stress pathway. Garlic (Alium sativum L.), which is considered to possess potent antioxidant activity, has been used as traditional remedy for various ailments since ancient times. We have investigated the effects of black garlic, a fermented form of garlic, on spatial memory and estimated the total number of pyramidal cells of the hippocampus in adolescent male Wistar rats treated with MSG. Twenty-five rats were divided into five groups: C- group, which received normal saline; C+ group, which was exposed to 2 mg/g body weight (bw) of MSG; three treatment groups (T2.5, T5, T10), which were treated with black garlic extract (2.5, 5, 10 mg/200 g bw, respectively) and MSG. The spatial memory test was carried out using the Morris water maze (MWM) procedure, and the total number of pyramidal cells of the hippocampus was estimated using the physical disector design. The groups treated with black garlic extract were found to have a shorter path length than the C- and C+ groups in the escape acquisition phase of the MWM test. The estimated total number of pyramidal cells in the CA1 region of the hippocampus was higher in all treated groups than that of the C+ group. Based on these results, we conclude that combined administration of black garlic and MSG may alter the spatial memory functioning and total number of pyramidal neurons of the CA1 region of the hippocampus of rats.

  6. Neonatal Propofol and Etomidate Exposure Enhance Inhibitory Synaptic Transmission in Hippocampal Cornus Ammonis 1 Pyramidal Neurons

    PubMed Central

    Zhang, Jia-Qiang; Xu, Wan-Ying; Xu, Chang-Qing

    2016-01-01

    Background: Propofol and etomidate are the most important intravenous general anesthetics in the current clinical use and that mediate gamma-aminobutyric acid's (GABAergic) synaptic transmission. However, their long-term effects on GABAergic synaptic transmission induced by neonatal propofol or etomidate exposure remain unclear. We investigated the long-term GABAergic neurotransmission alterations, following neonatal propofol and etomidate administration. Methods: Sprague-Dawley rat pups at postnatal days 4–6 were underwent 6-h-long propofol-induced or 5-h-long etomidate-induced anesthesia. We performed whole-cell patch-clamp recording from pyramidal cells in the cornus ammonis 1 area of acute hippocampal slices of postnatal 80–90 days. Spontaneous and miniature inhibitory GABAergic currents (spontaneous inhibitory postsynaptic currents [sIPSCs] and miniature inhibitory postsynaptic currents [mIPSCs]) and their kinetic characters were measured. The glutamatergic tonic effect on inhibitory transmission and the effect of bumetanide on neonatal propofol exposure were also examined. Results: Neonatal propofol exposure significantly increased the frequency of mIPSCs (from 1.87 ± 0.35 Hz to 3.43 ± 0.51 Hz, P < 0.05) and did not affect the amplitude of mIPSCs and sIPSCs. Both propofol and etomidate slowed the decay time of mIPSCs kinetics (168.39 ± 27.91 ms and 267.02 ± 100.08 ms vs. 68.18 ± 12.43 ms; P < 0.05). Bumetanide significantly blocked the frequency increase and reversed the kinetic alteration of mIPSCs induced by neonatal propofol exposure (3.01 ± 0.45 Hz and 94.30 ± 32.56 ms). Conclusions: Neonatal propofol and etomidate exposure has long-term effects on inhibitory GABAergic transmission. Propofol might act at pre- and post-synaptic GABA receptor A (GABAA) receptors within GABAergic synapses and impairs the glutamatergic tonic input to GABAergic synapses; etomidate might act at the postsynaptic site. PMID:27824005

  7. Ongoing epileptiform activity in the post-ischemic hippocampus is associated with a permanent shift of the excitatory-inhibitory synaptic balance in CA3 pyramidal neurons.

    PubMed

    Epsztein, Jérôme; Milh, Mathieu; Bihi, Rachid Id; Jorquera, Isabel; Ben-Ari, Yehezkel; Represa, Alfonso; Crépel, Valérie

    2006-06-28

    Ischemic strokes are often associated with late-onset epilepsy, but the underlying mechanisms are poorly understood. In the hippocampus, which is one of the regions most sensitive to ischemic challenge, global ischemia induces a complete loss of CA1 pyramidal neurons, whereas the resistant CA3 pyramidal neurons display a long-term hyperexcitability several months after the insult. The mechanisms of this long-term hyperexcitability remain unknown despite its clinical implication. Using chronic in vivo EEG recordings and in vitro field recordings in slices, we now report spontaneous interictal epileptiform discharges in the CA3 area of the hippocampus from post-ischemic rats several months after the insult. Whole-cell recordings from CA3 pyramidal neurons, revealed a permanent reduction in the frequency of spontaneous and miniature GABAergic IPSCs and a parallel increase in the frequency of spontaneous and miniature glutamatergic postsynaptic currents. Global ischemia also induced a dramatic loss of GABAergic interneurons and terminals together with an increase in glutamatergic terminals in the CA3 area of the hippocampus. Altogether, our results show a morpho-functional reorganization in the CA3 network several months after global ischemia, resulting in a net shift in the excitatory-inhibitory balance toward excitation that may constitute a substrate for the generation of epileptiform discharges in the post-ischemic hippocampus.

  8. Photolysis of postsynaptic caged Ca2+ can potentiate and depress mossy fiber synaptic responses in rat hippocampal CA3 pyramidal neurons.

    PubMed

    Wang, Jun; Yeckel, Mark F; Johnston, Daniel; Zucker, Robert S

    2004-04-01

    The induction of mossy fiber-CA3 long-term potentiation (LTP) and depression (LTD) has been variously described as being dependent on either pre- or postsynaptic factors. Some of the postsynaptic factors for LTP induction include ephrin-B receptor tyrosine kinases and a rise in postsynaptic Ca2+ ([Ca2+]i). Ca2+ is also believed to be involved in the induction of the various forms of LTD at this synapse. We used photolysis of caged Ca2+ compounds to test whether a postsynaptic rise in [Ca2+]i is sufficient to induce changes in synaptic transmission at mossy fiber synapses onto rat hippocampal CA3 pyramidal neurons. We were able to elevate postsynaptic [Ca2+]i to approximately 1 microm for a few seconds in pyramidal cell somata and dendrites. We estimate that CA3 pyramidal neurons have approximately fivefold greater endogenous Ca2+ buffer capacity than CA1 neurons, limiting the rise in [Ca2+]i achievable by photolysis. This [Ca2+]i rise induced either a potentiation or a depression at mossy fiber synapses in different preparations. Neither the potentiation nor the depression was accompanied by consistent changes in paired-pulse facilitation, suggesting that these forms of plasticity may be distinct from synaptically induced LTP and LTD at this synapse. Our results are consistent with a postsynaptic locus for the induction of at least some forms of synaptic plasticity at mossy fiber synapses.

  9. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurones.

    PubMed

    Kim, Jinhyun; Wei, Dong-Sheng; Hoffman, Dax A

    2005-11-15

    A-type potassium channels regulate neuronal firing frequency and the back-propagation of action potentials (APs) into dendrites of hippocampal CA1 pyramidal neurones. Recent molecular cloning studies have found several families of voltage-gated K(+) channel genes expressed in the mammalian brain. At present, information regarding the relationship between the protein products of these genes and the various neuronal functions performed by voltage-gated K(+) channels is lacking. Here we used a combination of molecular, electrophysiological and imaging techniques to show that one such gene, Kv4.2, controls AP half-width, frequency-dependent AP broadening and dendritic action potential propagation. Using a modified Sindbis virus, we expressed either the enhanced green fluorescence protein (EGFP)-tagged Kv4.2 or an EGFP-tagged dominant negative mutant of Kv4.2 (Kv4.2g(W362F)) in CA1 pyramidal neurones of organotypic slice cultures. Neurones expressing Kv4.2g(W362F) displayed broader action potentials with an increase in frequency-dependent AP broadening during a train compared with control neurones. In addition, Ca(2)(+) imaging of Kv4.2g(W362F) expressing dendrites revealed enhanced AP back-propagation compared to control neurones. Conversely, neurones expressing an increased A-type current through overexpression of Kv4.2 displayed narrower APs with less frequency dependent broadening and decreased dendritic propagation. These results point to Kv4.2 as the major contributor to the A-current in hippocampal CA1 neurones and suggest a prominent role for Kv4.2 in regulating AP shape and dendritic signalling. As Ca(2)(+) influx occurs primarily during AP repolarization, Kv4.2 activity can regulate cellular processes involving Ca(2)(+)-dependent second messenger cascades such as gene expression and synaptic plasticity.

  10. Group I mGluRs increase excitability of hippocampal CA1 pyramidal neurons by a PLC-independent mechanism.

    PubMed

    Ireland, David R; Abraham, Wickliffe C

    2002-07-01

    Previous studies have implicated phospholipase C (PLC)-linked Group I metabotropic glutamate receptors (mGluRs) in regulating the excitability of hippocampal CA1 pyramidal neurons. We used intracellular recordings from rat hippocampal slices and specific antagonists to examine in more detail the mGluR receptor subtypes and signal transduction mechanisms underlying this effect. Application of the Group I mGluR agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) suppressed slow- and medium-duration afterhyperpolarizations (s- and mAHP) and caused a consequent increase in cell excitability as well as a depolarization of the membrane and an increase in input resistance. Interestingly, with the exception of the suppression of the mAHP, these effects were persistent, and in the case of the sAHP lasting for more than 1 h of drug washout. Preincubation with the specific mGluR5 antagonist, 2-methyl-6-(phenylethynyl)-pyridine (MPEP), reduced but did not completely prevent the effects of DHPG. However, preincubation with both MPEP and the mGluR1 antagonist LY367385 completely prevented the DHPG-induced changes. These results demonstrate that the DHPG-induced changes are mediated partly by mGluR5 and partly by mGluR1. Because Group I mGluRs are linked to PLC via G-protein activation, we also investigated pathways downstream of PLC activation, using chelerythrine and cyclopiazonic acid to block protein kinase C (PKC) and inositol 1,4,5-trisphosphate-(IP(3))-activated Ca(2+) stores, respectively. Neither inhibitor affected the DHPG-induced suppression of the sAHP or the increase in excitability nor did an inhibitor of PLC itself, U-73122. Taken together, these results argue that in CA1 pyramidal cells in the adult rat, DHPG activates mGluRs of both the mGluR5 and mGluR1 subtypes, causing a long-lasting suppression of the sAHP and a consequent persistent increase in excitability via a PLC-, PKC-, and IP(3)-independent transduction pathway.

  11. Selective neurofilament (SMI-32, FNP-7 and N200) expression in subpopulations of layer V pyramidal neurons in vivo and in vitro.

    PubMed

    Voelker, Courtney C J; Garin, Nathalie; Taylor, Jeremy S H; Gähwiler, Beat H; Hornung, Jean-Pierre; Molnár, Zoltán

    2004-11-01

    There are two main types of layer V pyramidal neurons in rat cortex. Type I neurons have tufted apical dendrites extending into layer I, produce bursts of action potentials and project to subcortical targets (spinal cord, superior colliculus and pontine nuclei). Type II neurons have apical dendrites, which arborize in layers II-IV, do not produce bursts of action potentials and project to ipsilateral and contralateral cortex. The specific expression of different genes and proteins in these two distinct layer V neurons is unknown. To distinguish between distinct subpopulations, fluorescent microspheres were injected into subcortical targets (labeling type I neurons) or primary somatosensory cortex (labeling type II neurons) of adult rats. After transport, cortical sections were processed for immunohistochemistry using various antibodies. This study demonstrated that antigens recognized by SMI-32, N200 and FNP-7 antibodies were only expressed in subcortical (type I)--but not in contralateral (type II)--projecting neurons. NR1, NR2a/b, PLCbeta1, BDNF, NGF and TrkB antigens were highly expressed in all neuronal subpopulations examined. Organotypic culture experiments demonstrated that the development of neurofilament expression and laminar specificity does not depend on the presence of the subcortical targets. This study suggests specific markers for the subcortical projecting layer V neuron subpopulations.

  12. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways.

    PubMed

    Taylor, Ruth D T; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP ) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP , resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons.

  13. Postnatal development of dendritic structure of layer III pyramidal neurons in the medial prefrontal cortex of marmoset.

    PubMed

    Sasaki, Tetsuya; Aoi, Hirosato; Oga, Tomofumi; Fujita, Ichiro; Ichinohe, Noritaka

    2015-11-01

    In the primate cerebral cortex, dendritic spines rapidly increase in number after birth up to infancy or mid-childhood, and then decrease towards adulthood. Abnormalities in these processes accompany several psychiatric disorders. In this study, we examined developmental changes of basal dendrites and spines of layer III pyramidal cells in the medial prefrontal cortex (mPFC) of the common marmoset. The mPFC consists of several areas with distinct features in layer organization, histochemistry, connections, and, in humans, vulnerability to psychiatric disorders. We selected three areas for examination: granular dorsomedial prefrontal (area 8B/9), dysgranular ventromedial prefrontal (area 14r), and agranular anterior cingulate (area 24) cortices. Dendritic field areas, lengths, number of branching points, and total spine number reached a peak at 2-3 postnatal months in all three areas. However, the profiles of spine formation and pruning differed across the three areas with different degrees of granularity; the amount of spine loss from the peak to adulthood was less in areas 24 (33%) and 14r (29%) than in area 8B/9 (43%). Disturbance of this modest spine pruning in the less granular cortical areas may lead to an excessive loss of spines reported for areas 24 and 14r of schizophrenic patients.

  14. Associative pairing enhances action potential back-propagation in radial oblique branches of CA1 pyramidal neurons

    PubMed Central

    Gasparini, Sonia; Losonczy, Attila; Chen, Xixi; Johnston, Daniel; Magee, Jeffrey C

    2007-01-01

    Back-propagating action potentials (bAPs) are involved in associative synaptic plasticity and the modulation of dendritic excitability. We have used high-speed confocal and two-photon imaging to measure calcium and voltage signals associated with action potential propagation into oblique branches of CA1 pyramidal neurons in adult hippocampal slices. The spatial profile of the bAP-associated Ca2+ influx was biphasic, with an initial increase in the proximity of the branch point followed by a progressive decrease. Voltage imaging in the branches showed that bAP amplitude was initially constant and then steadily declined with distance from the soma. To determine the role of transient K+ channels in this profile, we used external Ba2+ (150 μm) as a channel blocker, after characterizing its effect on A-type K+ channels in the apical trunk. Bath application of Ba2+ significantly reduced the A-type K+ current in outside-out patches and nearly eliminated the distance-dependent decrease in bAP amplitude and its associated Ca2+ signal. Finally, small amplitude bAPs at more distal oblique branch locations could be boosted by simultaneous branch depolarization, such that the paired Ca2+ signal became nearly the same for proximal and distal oblique dendrites. These data suggest that dendritic K+ channels regulate the amplitude of bAPs to create a dendritic Ca2+ signal whose magnitude is inversely related to the electrotonic distance from the soma when bAPs are not associated with a significant amount of localized synaptic input. This distance-dependent Ca2+ signal from bAPs, however, can be amplified and a strong associative signal is produced once the proper correlation between synaptic activation and AP output is achieved. We hypothesize that these two signals may be involved in the regulation of the expression and activity of dendritic voltage- and ligand-gated ion channels. PMID:17272353

  15. TRPV1 receptors augment basal synaptic transmission in CA1 and CA3 pyramidal neurons in epilepsy.

    PubMed

    Saffarzadeh, F; Eslamizade, M J; Mousavi, S M M; Abraki, S B; Hadjighassem, M R; Gorji, A

    2016-02-09

    Temporal lobe epilepsy in human and animals is attributed to alterations in brain function especially hippocampus formation. Changes in synaptic activity might be causally related to the alterations during epileptogenesis. Transient receptor potential vanilloid 1 (TRPV1) as one of the non-selective ion channels has been shown to be involved in synaptic transmission. However, the potential role of TRPV1 receptors in synaptic function in the epileptic brain needs to be elucidated. In the present study, we used quantitative real-time PCR (qRT-PCR), western blotting, and immunohistochemistry to assess hippocampal TRPV1 mRNA expression, protein content, and distribution. Moreover, the effects of pharmacologic activation and inhibition of TRPV1 receptors on the slope of evoked field excitatory postsynaptic potentials (fEPSPs) were analyzed in CA1 and CA3 pyramidal neurons, after 3months of pilocarpine-induced status epilepticus (SE). SE induced an upregulation of TRPV1 mRNA and protein content in the whole hippocampal extract, as well as its distribution in both CA1 and CA3 regions. Activation and inhibition of TRPV1 receptors (via capsaicin 1μM and capsazepine 10μM, respectively) did not influence basal synaptic transmission in CA1 and CA3 regions of control slices, however, capsaicin increased and capsazepine decreased synaptic transmission in both regions in tissues from epileptic animals. Taken together, these findings suggest that a higher expression of TRPV1 in the epileptic condition is accompanied by alterations in basal synaptic transmission.

  16. Effects of deprivation of oxygen or glucose on the neural activity in the guinea pig hippocampal slice--intracellular recording study of pyramidal neurons.

    PubMed

    Takata, T; Okada, Y

    1995-06-12

    The block of synaptic transmission and neural activity during deprivation of oxygen or glucose has been simply attributed to the lack of energy due to the disorder of energy production. To clarify the interrelation between neural activity and energy metabolism during hypoxia or glucose deprivation, we studied the changes in ATP levels and electrical events of pyramidal neurons in the CA3 region and [Ca2+]i mobilization of the dendritic and cellular region of CA3 area, using guinea pig hippocampal slices. The studies of field potentials and intracellular recording from the pyramidal cell of CA3 area during hypoxia or glucose deprivation revealed that the cessation of synaptic activity and the depolarization of resting potential occurred earlier than during glucose deprivation while the increase of [Ca2+]i was slow during hypoxia but rapid during glucose deprivation although the ATP level of CA3 area was maintained at its original level for 20 min during both conditions. When glucose was replaced by lactate, ATP concentration was not reduced but the electrical activity decayed and [Ca2+]i increased with the similar time course as observed during lack of glucose, only. These results suggest that different mechanisms underlie the block of synaptic transmission in the CA3 pyramidal neurons during hypoxia and glucose deprivation and that lactate cannot substitute for glucose in the maintenance of neural activity.

  17. Fluoxetine (Prozac) and Serotonin Act on Excitatory Synaptic Transmission to Suppress Single Layer 2/3 Pyramidal Neuron-Triggered Cell Assemblies in the Human Prefrontal Cortex

    PubMed Central

    Komlósi, Gergely; Molnár, Gábor; Rózsa, Márton; Oláh, Szabolcs; Barzó, Pál

    2012-01-01

    Selective serotonin reuptake inhibitors are the most widely prescribed drugs targeting the CNS with acute and chronic effects in cognitive, emotional and behavioral processes. This suggests that microcircuits of the human cerebral cortex are powerfully modulated by selective serotonin reuptake inhibitors, however, direct measurements of serotonergic regulation on human synaptic interactions are missing. Using multiple whole-cell patch-clamp recordings from neurons in acute cortical slices derived from nonpathological human samples of the prefrontal cortex, we show that neuronal assemblies triggered by single action potentials of individual neurons in the human cortex are suppressed by therapeutic doses of fluoxetine (Prozac). This effect is boosted and can be mimicked by physiological concentrations of serotonin through 5HT-2A and 5HT-1A receptors. Monosynaptic excitatory connections from pyramidal cells to interneurons were suppressed by application of serotonin leaving the monosynaptic output of GABAergic cells unaffected. Changes in failure rate, in paired-pulse ratio, and in the coefficient of variation of the amplitude of EPSPs suggest a presynaptic action of serotonin. In conclusion, activation of neuronal assemblies, which were suggested as building blocks of high order cognitive processes, are effectively downregulated by the acute action of selective serotonin reuptake inhibitors or serotonin at the site of pyramidal output in human microcircuits. PMID:23152619

  18. cAMP response element-binding protein-mediated gene expression increases the intrinsic excitability of CA1 pyramidal neurons.

    PubMed

    Lopez de Armentia, Mikel; Jancic, Dragana; Olivares, Roman; Alarcon, Juan M; Kandel, Eric R; Barco, Angel

    2007-12-12

    To investigate the role of CREB-mediated gene expression on the excitability of CA1 pyramidal neurons, we obtained intracellular recordings from pyramidal neurons of transgenic mice expressing a constitutively active form of CREB, VP16-CREB, in a regulated and restricted manner. We found that transgene expression increased the neuronal excitability and inhibited the slow and medium afterhyperpolarization currents. These changes may contribute to the reduced threshold for LTP observed in these mice. When strong transgene expression was turned on for prolonged period of time, these mice also showed a significant loss of hippocampal neurons and sporadic epileptic seizures. These deleterious effects were dose dependent and could be halted, but not reversed by turning off transgene expression. Our experiments reveal a new role for hippocampal CREB-mediated gene expression, identify the slow afterhyperpolarization as a primary target of CREB action, provide a new mouse model to investigate temporal lobe epilepsy and associated neurodegeneration, and illustrate the risks of cell death associated to a sustained manipulation of this pathway. As a result, our study has important implications for both the understanding of the cellular bases of learning and memory and the consideration of therapies targeted to the CREB pathway.

  19. Synaptic circuit abnormalities of motor-frontal layer 2/3 pyramidal neurons in a mutant mouse model of Rett syndrome

    PubMed Central

    Wood, Lydia; Shepherd, Gordon M. G.

    2010-01-01

    Motor and cognitive functions are severely impaired in Rett syndrome (RTT). Here, we examined local synaptic circuits of layer 2/3 (L2/3) pyramidal neurons in motor-frontal cortex of male hemizygous MeCP2-null mice at 3–4 weeks of age. We mapped local excitatory input to L2/3 neurons using glutamate uncaging and laser scanning photostimulation, and compared synaptic input maps recorded from MeCP2-null and wild type (WT) mice. Local excitatory input was significantly reduced in the mutants. The strongest phenotype was observed for lateral (horizontal, intralaminar) inputs, that is, L2/3→2/3 inputs, which showed a large reduction in MeCP2−/y animals. Neither the amount of local inhibitory input to these L2/3 pyramidal neurons nor their intrinsic electrophysiological properties differed by genotype. Our findings provide further evidence that excitatory networks are selectively reduced in RTT. We discuss our findings in the context of recently published parallel studies using selective MeCP2 knockdown in individual L2/3 neurons. PMID:20138994

  20. Run-down of the GABAA response under experimental ischaemia in acutely dissociated CA1 pyramidal neurones of the rat.

    PubMed Central

    Harata, N; Wu, J; Ishibashi, H; Ono, K; Akaike, N

    1997-01-01

    1. The effect of experimental ischaemia on the response to gamma-aminobutyric acid (GABA) was assessed in acutely dissociated CA1 pyramidal neurones of rats, using the patch-clamp technique. 2. Rapid application of 3 x 10(-5) M GABA induced a bicuculline-sensitive inward Cl- current (IGABA) at a holding potential (Vh) of -44 mV. The peak amplitude of IGABA showed a time-dependent decrease (run-down) when it was recorded with the conventional whole-cell mode without internal ATP. The run-down was not observed when the intracellular ATP concentration ([ATP]i) was maintained by the nystatin-perforated recording with an intracellular Na+ concentration ([Na+]i) of 0 mM. 3. When [Na+]i was increased to more than 30 mM, the IGABA run-down was observed even with the nystatin-perforated recording. 4. The IGABA run-down observed at 60 mM [Na+]i with the nystatin method was further enhanced under experimental ischaemia without changes in the reversal potential of IGABA. The enhanced run-down was suppressed by application of the Na+,K(+)-ATPase inhibitors, ouabain and SPAI-1. 5. IGABA run-down during ischaemia was also accompanied by an outward holding current and a concomitant increase in intracellular free Ca2+ concentration ([Ca2+]i) in 48.5% of the neurones. The outward current was a Ca(2+)-activated K+ current, which was blocked by 3 x 10(-7) M charybdotoxin. 6. In the inside-out mode of the single-channel analysis, GABA activated three subconductance states with conductances of 33.4, 22.7 and 15.2 pS. Reduction of ATP concentration from 2 to 0 mM on the intracellular side suppressed the channel activities, while an increase in Ca2+ concentration from 0.7 x 10(-9) to 1.1 x 10(-6) M had no effect. 7. These results suggest that ischaemia induces the run-down of the postsynaptic GABA response at the GABAA receptor level, and that this run-down is triggered by a decrease in [ATP]i. Images Figure 3 Figure 4 Figure 5 Figure 6 PMID:9161985

  1. Deletion of Kv4.2 gene eliminates dendritic A-type K+ current and enhances induction of long-term potentiation in hippocampal CA1 pyramidal neurons.

    PubMed

    Chen, Xixi; Yuan, Li-Lian; Zhao, Cuiping; Birnbaum, Shari G; Frick, Andreas; Jung, Wonil E; Schwarz, Thomas L; Sweatt, J David; Johnston, Daniel

    2006-11-22

    Dendritic, backpropagating action potentials (bAPs) facilitate the induction of Hebbian long-term potentiation (LTP). Although bAPs in distal dendrites of hippocampal CA1 pyramidal neurons are attenuated when propagating from the soma, their amplitude can be increased greatly via downregulation of dendritic A-type K+ currents. The channels that underlie these currents thus may represent a key regulatory component of the signaling pathways that lead to synaptic plasticity. We directly tested this hypothesis by using Kv4.2 knock-out mice. Deletion of the Kv4.2 gene and a loss of Kv4.2 protein resulted in a specific and near-complete elimination of A-type K+ currents from the apical dendrites of CA1 pyramidal neurons. The absence of dendritic Kv4.2-encoded A-type K+ currents led to an increase of bAP amplitude and an increase of concurrent Ca2+ influx. Furthermore, CA1 pyramidal neurons lacking dendritic A-type K+ currents from Kv4.2 knock-out mice exhibited a lower threshold than those of wild-type littermates for LTP induction with the use of a theta burst pairing protocol. LTP triggered with the use of a saturating protocol, on the other hand, remained indistinguishable between Kv4.2 knock-out and wild-type neurons. Our results support the hypothesis that dendritic A-type K+ channels, composed of Kv4.2 subunits, regulate action potential backpropagation and the induction of specific forms of synaptic plasticity.

  2. Expression of 5-HT2A receptors in prefrontal cortex pyramidal neurons projecting to nucleus accumbens. Potential relevance for atypical antipsychotic action.

    PubMed

    Mocci, Giuseppe; Jiménez-Sánchez, Laura; Adell, Albert; Cortés, Roser; Artigas, Francesc

    2014-04-01

    The prefrontal cortex (PFC) is involved in higher brain functions altered in schizophrenia. Classical antipsychotic drugs modulate information processing in cortico-limbic circuits via dopamine D2 receptor blockade in nucleus accumbens (NAc) whereas atypical antipsychotic drugs preferentially target cortical serotonin (5-HT) receptors. The brain networks involved in the therapeutic action of atypical drugs are not fully understood. Previous work indicated that medial PFC (mPFC) pyramidal neurons projecting to ventral tegmental area express 5-HT2A receptors suggesting that atypical antipsychotic drugs modulate dopaminergic activity distally, via 5-HT2A receptor (5-HT2A-R) blockade in PFC. Since the mPFC also projects heavily to NAc, we examined whether NAc-projecting pyramidal neurons also express 5-HT2A-R. Using a combination of retrograde tracing experiments and in situ hybridization we report that a substantial proportion of mPFC-NAc pyramidal neurons in rat brain express 5-HT2A-R mRNA in a layer- and area-specific manner (up to 68% in layer V of contralateral cingulate). The functional relevance of 5-HT2A-R to modulate mPFC-NAc projections was examined in dual-probe microdialysis experiments. The application of the preferential 5-HT2A-R agonist DOI into mPFC enhanced glutamate release locally (+66 ± 18%) and in NAc (+74 ± 12%) indicating that cortical 5-HT2A-R activation augments glutamatergic transmission in NAc. Since NAc integrates glutamatergic and dopaminergic inputs, blockade of 5-HT2A-R by atypical drugs may reduce cortical excitatory inputs onto GABAergic neurons of NAc, adding to dopamine D2 receptor blockade. Together with previous observations, the present results suggest that atypical antipsychotic drugs may control the activity of the mesolimbic pathway at cell body and terminal level.

  3. A comparison of 15 Hz sine on-line and off-line magnetic stimulation affecting the voltage-gated sodium channel currents of prefrontal cortex pyramidal neurons

    NASA Astrophysics Data System (ADS)

    Zheng, Yu; Dong, Lei; Gao, Yang; Dou, Jun-Rong; Li, Ze-yan

    2016-10-01

    Combined with the use of patch-clamp techniques, repetitive transcranial magnetic stimulation (rTMS) has proven to be a noninvasive neuromodulation tool that can inhibit or facilitate excitability of neurons after extensive research. The studies generally focused on the method: the neurons are first stimulated in an external standard magnetic exposure device, and then moved to the patch-clamp to record electrophysiological characteristics (off-line magnetic exposure). Despite its universality, real-time observation of the effects of magnetic stimulation on the neurons is more effective (on-line magnetic stimulation). In this study, we selected a standard exposure device for magnetic fields acting on mouse prefrontal cortex pyramidal neurons, and described a new method that a patch-clamp setup was modified to allow on-line magnetic stimulation. By comparing the off-line exposure and on-line stimulation of the same magnetic field intensity and frequency affecting the voltage-gated sodium channel currents, we succeeded in proving the feasibility of the new on-line stimulation device. We also demonstrated that the sodium channel currents of prefrontal cortex pyramidal neurons increased significantly under the 15 Hz sine 1 mT, and 2 mT off-line magnetic field exposure and under the 1 mT and 2 mT on-line magnetic stimulation, and the rate of acceleration was most significant on 2 mT on-line magnetic stimulation. This study described the development of a new on-line magnetic stimulator and successfully demonstrated its practicability for scientific stimulation of neurons.

  4. BDNF enhances dendritic Ca2+ signals evoked by coincident EPSPs and back-propagating action potentials in CA1 pyramidal neurons

    PubMed Central

    Pozzo-Miller, Lucas

    2009-01-01

    BDNF, a member of the neurotrophin family, is emerging as a key modulator of synaptic structure and function in the CNS. Due to the critical role of postsynaptic Ca2+ signals in dendritic development and synaptic plasticity, we tested whether long-term exposure to BDNF affects Ca2+ elevations evoked by coincident excitatory postsynaptic potentials (EPSPs) and back-propagating action potentials (bAPs) in spiny dendrites of CA1 pyramidal neurons within hippocampal slice cultures. In control neurons, a train of 5 coincident EPSPs and bAPs evoked Ca2+ elevations in oblique radial branches of the main apical dendrite that were of similar amplitude than those evoked by a train of 5 bAPs alone. On the other hand, dendritic Ca2+ signals evoked by coincident EPSPs and bAPs were always larger than those triggered by bAPs in CA1 neurons exposed to BDNF for 48 h. This difference was not observed after blockade of NMDA receptors (NMDARs) with D,L-APV, but only in BDNF-treated neurons, suggesting that Ca2+ signals in oblique radial dendrites include a synaptic NMDAR-dependent component. Co-treatment with the receptor tyrosine kinase inhibitor k-252a prevented the effect of BDNF on coincident dendritic Ca2+ signals, suggesting the involvement of neurotrophin Trk receptors. These results indicate that long-term exposure to BDNF enhances Ca2+ signaling during coincident pre- and postsynaptic activity in small spiny dendrites of CA1 pyramidal neurons, representing a potential functional consequence of neurotrophin-mediated dendritic remodeling in developing neurons. PMID:16797499

  5. Competition between Persistent Na+ and Muscarine-Sensitive K+ Currents Shapes Perithreshold Resonance and Spike Tuning in CA1 Pyramidal Neurons

    PubMed Central

    Vera, Jorge; Alcayaga, Julio; Sanhueza, Magdalena

    2017-01-01

    Neurons from many brain regions display intrinsic subthreshold theta-resonance, responding preferentially to theta-frequency oscillatory stimuli. Resonance may contribute to selective communication among neurons and to orchestrate brain rhythms. CA1 pyramidal neurons receive theta activity, generating place fields. In these neurons the expression of perithreshold frequency preference is controversial, particularly in the spiking regime, with evidence favoring either non-resonant (integrator-like) or resonant behavior. Perithreshold dynamics depends on the persistent Na+ current INaP developing above −70 mV and the muscarine-sensitive K+ current IM activating above −60 mV. We conducted current and voltage clamp experiments in slices to investigate perithreshold excitability of CA1 neurons under oscillatory stimulation. Around 20% of neurons displayed perithreshold resonance that is expressed in spiking. The remaining neurons (~80%) acted as low-pass filters lacking frequency preference. Paired voltage clamp measurement of INaP and IM showed that perithreshold activation of IM is in general low while INaP is high enough to depolarize neurons toward threshold before resonance expression, explaining the most abundant non-resonant perithreshold behavior. Partial blockade of INaP by pharmacological tools or dynamic clamp changed non-resonant to resonant behavior. Furthermore, shifting IM activation toward hyperpolarized potentials by dynamic clamp also transformed non-resonant neurons into resonant ones. We propose that the relative levels of INaP and IM control perithreshold behavior of CA1 neurons constituting a gating mechanism for theta resonance in the spiking regime. Both currents are regulated by intracellular signaling and neuromodulators which may allow dynamic switching of perithreshold behavior between resonant and non-resonant. PMID:28337126

  6. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes

    PubMed Central

    Chen, Bai Hui; Park, Joon Ha; Ahn, Ji Hyeon; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Won, Moo-Ho; Lee, Choong-Hyun; Hwang, In Koo; Kim, Jong-Dai; Kang, Il Jun; Cho, Jun Hwi; Shin, Bich Na; Kim, Yang Hee; Lee, Yun Lyul; Park, Seung Min

    2017-01-01

    Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.

  7. Further characterization of the effect of ethanol on voltage-gated Ca2+ channel function in developing CA3 hippocampal pyramidal neurons

    PubMed Central

    Morton, Russell A.; Valenzuela, C. Fernando

    2015-01-01

    Developmental ethanol exposure damages the hippocampus, a brain region involved in learning and memory. Alterations in synaptic transmission and plasticity may play a role in this effect of ethanol. We previously reported that acute and repeated exposure to ethanol during the 3rd trimester-equivalent inhibits long-term potentiation of GABAA receptor-dependent synaptic currents in CA3 pyramidal neurons through a mechanism that depends on retrograde release of brain-derived neurotrophic factor driven by activation of voltage-gated Ca2+ channels (Zucca and Valenzuela, 2010). We found evidence indicating that voltage-gated Ca2+ channels are inhibited in the presence of ethanol, an effect that may play a role in its mechanism of action. Here, we further investigated the acute effect of ethanol on the function of voltage-gated Ca2+ channels in CA3 pyramidal neurons using Ca2+ imaging techniques. These experiments revealed that acute ethanol exposure inhibits voltage-gated Ca2+ channels both in somatic and proximal dendritic compartments. To investigate the long-term consequences of ethanol on voltage-gated Ca2+ channels, we used patch-clamp electrophysiological techniques to assess the function of L-type voltage-gated Ca2+ channels during and following ten days of vapor ethanol exposure. During ethanol withdrawal periods, the function of these channels was not significantly affected by vapor chamber exposure. Taken together with our previous findings, our results suggest that 3rd trimester-equivalent ethanol exposure transiently inhibits L-type voltage-gated Ca2+ channel function in CA3 pyramidal neurons and that compensatory mechanisms restore their function during ethanol withdrawal. Transient inhibition of these channels by ethanol may be, in part, responsible for the hippocampal abnormalities associated with developmental exposure to this agent. PMID:26711851

  8. Elevated potassium elicits recurrent surges of large GABAA-receptor-mediated post-synaptic currents in hippocampal CA3 pyramidal neurons.

    PubMed

    Shin, Damian Seung-Ho; Yu, Wilson; Sutton, Alex; Calos, Megan; Carlen, Peter Louis

    2011-03-01

    Previously, we found that rat hippocampal CA3 interneurons become hyperactive with increasing concentrations of extracellular K(+) up to 10 mM. However, it is unclear how this enhanced interneuronal activity affects pyramidal neurons. Here we voltage-clamped rat hippocampal CA3 pyramidal neurons in vitro at 0 mV to isolate γ-aminobutyric acid (GABA)-activated inhibitory post-synaptic currents (IPSCs) and measured these in artificial cerebrospinal fluid (aCSF) and with 10 mM K(+) bath perfusion. In aCSF, small IPSCs were present with amplitudes of 0.053 ± 0.007 nA and a frequency of 0.27 ± 0.14 Hz. With 10 mM K(+) perfusion, IPSCs increased greatly in frequency and amplitude, culminating in surge events with peak amplitudes of 0.56 ± 0.08 nA, that appeared and disappeared cyclically with durations lasting 2.02 ± 0.37 min repeatedly, up to 10 times over a 30-min bath perfusion of elevated K(+). These large IPSCs were GABA(A)-receptor mediated and did not involve significant desensitization of this receptor. Perfusion of a GABA transporter inhibitor (NO-711), glutamate receptor inhibitors CNQX and APV, or a gap junctional blocker (carbenoxolone) prevented the resurgence of large IPSCs. Pressure ejected sucrose resulted in the abolishment of subsequent surges. No elevated K(+)-mediated surges were observed in CA3 interneurons from the stratum oriens layer. In conclusion, these cyclic large IPSC events observable in CA3 pyramidal neurons in 10 mM KCl may be due to transient GABA depletion from continuously active interneuronal afferents.

  9. Cytoarchitecture, areas, and neuron numbers of the Etruscan shrew cortex.

    PubMed

    Naumann, R K; Anjum, F; Roth-Alpermann, C; Brecht, M

    2012-08-01

    The Etruscan shrew, Suncus etruscus, is one of the smallest mammals. Etruscan shrews can recognize prey shape with amazing speed and accuracy, based on whisker-mediated tactile cues. Because of its small size, quantitative analysis of the Etruscan shrew cortex is more tractable than in other animals. To quantitatively assess the anatomy of the Etruscan shrew's brain, we sectioned brains and applied Nissl staining and NeuN (neuronal nuclei) antibody staining. On the basis of these stains, we estimated the number of neurons of 10 cortical hemispheres by using Stereoinvestigator and Neurolucida (MBF Bioscience) software. On average, the neuron number per hemisphere was found to be ~1 million. We also measured cortical surface area and found an average of 11.1 mm² (n = 7) and an average volume of 5.3 mm³ (n = 10) per hemisphere. We identified 13 cortical regions by cytoarchitectonic boundaries in coronal, sagittal, and tangential sections processed for Nissl substance, myelin, cytochrome oxidase, ionic zinc, neurofilaments, and vesicular glutamate transporter 2 (VGluT2). The Etruscan shrew is a highly tactile animal with a large somatosensory cortex, which contains a barrel field, but the barrels are much less clearly defined than in rodents. The anatomically derived cortical partitioning scheme roughly corresponds to physiologically derived maps of neocortical sensory areas.

  10. Effects of hypothyroidism on the karyometric development of pyramidal neurons of the hippocampus (CA1), area 6 and area 17 in the male mouse.

    PubMed Central

    Pérez-Delgado, M M; Ferres-Torres, R; Castañeyra-Perdomo, A; González-Hernández, T

    1987-01-01

    This study has examined the karyometric changes within pyramidal neurons of the hippocampus, motor area 6 and visual area 17 in a hypothyroid group of male mice treated with propylthiouracil, with or without interruption of treatment at the 35th postnatal day. Hypothyroidism resulted in decrease of nuclear size in the three areas before puberty and even after puberty in the hippocampus. Where the treatment was continued throughout the experimental period there was a progressive increase of nuclear size in both visual and motor areas. PMID:3654337

  11. Contribution of Dopamine D1/5 Receptor Modulation of Post-Spike/Burst Afterhyperpolarization to Enhance Neuronal Excitability of Layer V Pyramidal Neurons in Prepubertal Rat Prefrontal Cortex

    PubMed Central

    Yi, Feng; Zhang, Xue-Han; Yang, Charles R.; Li, Bao-ming

    2013-01-01

    Dopamine (DA) receptors in the prefrontal cortex (PFC) modulate both synaptic and intrinsic plasticity that may contribute to cognitive processing. However, the ionic basis underlying DA actions to enhance neuronal plasticity in PFC remains ill-defined. Using whole-cell patch-clamp recordings in layer V-VI pyramidal cells in prepubertal rat PFC, we showed that DA, via activation of D1/5, but not D2/3/4, receptors suppress a Ca2+-dependent, apamin-sensitive K+ channel that mediates post-spike/burst afterhyperpolarization (AHP) to enhance neuronal excitability of PFC neurons. This inhibition is not dependent on HCN channels. The D1/5 receptor activation also enhanced an afterdepolarizing potential (ADP) that follows the AHP. Additional single-spike analyses revealed that DA or D1/5 receptor activation suppressed the apamin-sensitive post-spike mAHP, further contributing to the increase in evoked spike firing to enhance the neuronal excitability. Taken together, the D1/5 receptor modulates intrinsic mechanisms that amplify a long depolarizing input to sustain spike firing outputs in pyramidal PFC neurons. PMID:23977170

  12. Enhanced intrinsic excitability and EPSP-spike coupling accompany enriched environment-induced facilitation of LTP in hippocampal CA1 pyramidal neurons.

    PubMed

    Malik, Ruchi; Chattarji, Sumantra

    2012-03-01

    Environmental enrichment (EE) is a well-established paradigm for studying naturally occurring changes in synaptic efficacy in the hippocampus that underlie experience-induced modulation of learning and memory in rodents. Earlier research on the effects of EE on hippocampal plasticity focused on long-term potentiation (LTP). Whereas many of these studies investigated changes in synaptic weight, little is known about potential contributions of neuronal excitability to EE-induced plasticity. Here, using whole-cell recordings in hippocampal slices, we address this gap by analyzing the impact of EE on both synaptic plasticity and intrinsic excitability of hippocampal CA1 pyramidal neurons. Consistent with earlier reports, EE increased contextual fear memory and dendritic spine density on CA1 cells. Furthermore, EE facilitated LTP at Schaffer collateral inputs to CA1 pyramidal neurons. Analysis of the underlying causes for enhanced LTP shows EE to increase the frequency but not amplitude of miniature excitatory postsynaptic currents. However, presynaptic release probability, assayed using paired-pulse ratios and use-dependent block of N-methyl-d-aspartate receptor currents, was not affected. Furthermore, CA1 neurons fired more action potentials (APs) in response to somatic depolarization, as well as during the induction of LTP. EE also reduced spiking threshold and after-hyperpolarization amplitude. Strikingly, this EE-induced increase in excitability caused the same-sized excitatory postsynaptic potential to fire more APs. Together, these findings suggest that EE may enhance the capacity for plasticity in CA1 neurons, not only by strengthening synapses but also by enhancing their efficacy to fire spikes-and the two combine to act as an effective substrate for amplifying LTP.

  13. Pituitary adenylate cyclase-activating polypeptide (PACAP) inhibits the slow afterhyperpolarizing current sIAHP in CA1 pyramidal neurons by activating multiple signaling pathways

    PubMed Central

    Taylor, Ruth DT; Madsen, Marita Grønning; Krause, Michael; Sampedro-Castañeda, Marisol; Stocker, Martin; Pedarzani, Paola

    2014-01-01

    The slow afterhyperpolarizing current (sIAHP) is a calcium-dependent potassium current that underlies the late phase of spike frequency adaptation in hippocampal and neocortical neurons. sIAHP is a well-known target of modulation by several neurotransmitters acting via the cyclic AMP (cAMP) and protein kinase A (PKA)-dependent pathway. The neuropeptide pituitary adenylate cyclase activating peptide (PACAP) and its receptors are present in the hippocampal formation. In this study we have investigated the effect of PACAP on the sIAHP and the signal transduction pathway used to modulate intrinsic excitability of hippocampal pyramidal neurons. We show that PACAP inhibits the sIAHP, resulting in a decrease of spike frequency adaptation, in rat CA1 pyramidal cells. The suppression of sIAHP by PACAP is mediated by PAC1 and VPAC1 receptors. Inhibition of PKA reduced the effect of PACAP on sIAHP, suggesting that PACAP exerts part of its inhibitory effect on sIAHP by increasing cAMP and activating PKA. The suppression of sIAHP by PACAP was also strongly hindered by the inhibition of p38 MAP kinase (p38 MAPK). Concomitant inhibition of PKA and p38 MAPK indicates that these two kinases act in a sequential manner in the same pathway leading to the suppression of sIAHP. Conversely, protein kinase C is not part of the signal transduction pathway used by PACAP to inhibit sIAHP in CA1 neurons. Our results show that PACAP enhances the excitability of CA1 pyramidal neurons by inhibiting the sIAHP through the activation of multiple signaling pathways, most prominently cAMP/PKA and p38 MAPK. Our findings disclose a novel modulatory action of p38 MAPK on intrinsic excitability and the sIAHP, underscoring the role of this current as a neuromodulatory hub regulated by multiple protein kinases in cortical neurons. © 2013 The Authors. Hippocampus Published by Wiley Periodicals, Inc. PMID:23996525

  14. Resurgent Na+ current in pyramidal neurones of rat perirhinal cortex: axonal location of channels and contribution to depolarizing drive during repetitive firing

    PubMed Central

    Castelli, Loretta; Biella, Gerardo; Toselli, Mauro; Magistretti, Jacopo

    2007-01-01

    The perirhinal cortex (PRC) is a supra-modal cortical area that collects and integrates information originating from uni- and multi-modal neocortical regions and directed to the hippocampus. The mechanisms that underlie the specific excitable properties of the different PRC neuronal types are still largely unknown, and their elucidation may be important in understanding the integrative functions of PRC. In this study we investigated the expression and properties of resurgent Na+ current (INaR) in pyramidal neurones of rat PRC area 35 (layer II). Patch-clamp experiments in acute PRC slices were first carried out. A measurable INaR was expressed by a large majority of neurones (31 out of 35 cells). INaR appeared as an inward, slowly decaying current elicited upon step repolarization after depolarizations sufficient to induce nearly complete inactivation of the transient Na+ current (INaT). INaR had a peak amplitude of ∼2.5% that of INaT, and showed the typical biophysical properties also observed in other neuronal types (i.e. cerebellar Purkinje and granule cells), including a bell-shaped current–voltage relationship with a peak at approximately −40 mV, and a characteristic acceleration of activation and decay speed at potentials negative to −45 mV. Current-clamp experiments were then carried out in which repetitive action-potential discharge at various frequencies was induced with depolarizing current injection. The voltage signals thus obtained were then used as command waveforms for voltage-clamp recordings. These experiments showed that a Na+ current identifiable as INaR activates in the early interspike phase even at relatively high firing frequencies (20 Hz), thereby contributing to the depolarizing drive and possibly enhancing repetitive discharge. In acutely dissociated area 35 layer II neurones, as well as in nucleated patches from the same neurones, INaR was never observed, despite the presence of typical INaTs. Since in both preparations neuronal

  15. Slow recovery from inactivation of Na+ channels underlies the activity-dependent attenuation of dendritic action potentials in hippocampal CA1 pyramidal neurons.

    PubMed

    Colbert, C M; Magee, J C; Hoffman, D A; Johnston, D

    1997-09-01

    Na+ action potentials propagate into the dendrites of pyramidal neurons driving an influx of Ca2+ that seems to be important for associative synaptic plasticity. During repetitive (10-50 Hz) firing, dendritic action potentials display a marked and prolonged voltage-dependent decrease in amplitude. Such a decrease is not apparent in somatic action potentials. We investigated the mechanisms of the different activity dependence of somatic and dendritic action potentials in CA1 pyramidal neurons of adult rats using whole-cell and cell-attached patch-clamp methods. There were three main findings. First, dendritic Na+ currents decreased in amplitude when repeatedly activated by brief (2 msec) depolarizations. Recovery was slow and voltage-dependent. Second, Na+ currents decreased much less in somatic than in dendritic patches. Third, although K+ currents remained constant during trains, K+ currents were necessary for dendritic action potential amplitude to decrease in whole-cell experiments. These results suggest that regional differences in Na+ and K+ channels determine the differences in the activity dependence of somatic and dendritic action potential amplitudes.

  16. Brain-derived neurotrophic factor-mediated retrograde signaling required for the induction of long-term potentiation at inhibitory synapses of visual cortical pyramidal neurons.

    PubMed

    Inagaki, Tsuyoshi; Begum, Tahamina; Reza, Faruque; Horibe, Shoko; Inaba, Mie; Yoshimura, Yumiko; Komatsu, Yukio

    2008-06-01

    High-frequency stimulation (HFS) induces long-term potentiation (LTP) at inhibitory synapses of layer 5 pyramidal neurons in developing rat visual cortex. This LTP requires postsynaptic Ca2+ rise for induction, while the maintenance mechanism is present at the presynaptic site, suggesting presynaptic LTP expression and the necessity of retrograde signaling. We investigated whether the supposed signal is mediated by brain-derived neurotrophic factor (BDNF), which is expressed in pyramidal neurons but not inhibitory interneurons. LTP did not occur when HFS was applied in the presence of the Trk receptor tyrosine kinase inhibitor K252a in the perfusion medium. HFS produced LTP when bath application of K252a was started after HFS or when K252a was loaded into postsynaptic cells. LTP did not occur in the presence of TrkB-IgG scavenging BDNF or function-blocking anti-BDNF antibody in the medium. In cells loaded with the Ca2+ chelator BAPTA, the addition of BDNF to the medium enabled HFS to induce LTP without affecting baseline synaptic transmission. These results suggest that BDNF released from postsynaptic cells activates presynaptic TrkB, leading to LTP. Because BDNF, expressed activity dependently, regulates the maturation of cortical inhibition, inhibitory LTP may contribute to this developmental process, and hence experience-dependent functional maturation of visual cortex.

  17. Altered Intrinsic Pyramidal Neuron Properties and Pathway-Specific Synaptic Dysfunction Underlie Aberrant Hippocampal Network Function in a Mouse Model of Tauopathy

    PubMed Central

    Booth, Clair A.; Witton, Jonathan; Nowacki, Jakub; Tsaneva-Atanasova, Krasimira; Jones, Matthew W.; Randall, Andrew D.

    2016-01-01

    The formation and deposition of tau protein aggregates is proposed to contribute to cognitive impairments in dementia by disrupting neuronal function in brain regions, including the hippocampus. We used a battery of in vivo and in vitro electrophysiological recordings in the rTg4510 transgenic mouse model, which overexpresses a mutant form of human tau protein, to investigate the effects of tau pathology on hippocampal neuronal function in area CA1 of 7- to 8-month-old mice, an age point at which rTg4510 animals exhibit advanced tau pathology and progressive neurodegeneration. In vitro recordings revealed shifted theta-frequency resonance properties of CA1 pyramidal neurons, deficits in synaptic transmission at Schaffer collateral synapses, and blunted plasticity and imbalanced inhibition at temporoammonic synapses. These changes were associated with aberrant CA1 network oscillations, pyramidal neuron bursting, and spatial information coding in vivo. Our findings relate tauopathy-associated changes in cellular neurophysiology to altered behavior-dependent network function. SIGNIFICANCE STATEMENT Dementia is characterized by the loss of learning and memory ability. The deposition of tau protein aggregates in the brain is a pathological hallmark of dementia; and the hippocampus, a brain structure known to be critical in processing learning and memory, is one of the first and most heavily affected regions. Our results show that, in area CA1 of hippocampus, a region involved in spatial learning and memory, tau pathology is associated with specific disturbances in synaptic, cellular, and network-level function, culminating in the aberrant encoding of spatial information and spatial memory impairment. These studies identify several novel ways in which hippocampal information processing may be disrupted in dementia, which may provide targets for future therapeutic intervention. PMID:26758828

  18. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.

    PubMed

    Magee, J C; Johnston, D

    1995-08-15

    1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega

  19. Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons.

    PubMed Central

    Magee, J C; Johnston, D

    1995-01-01

    1. We have used dendrite-attached patch-clamp techniques to record single Na+ and Ca2+ channel activity from the apical dendrites (up to 350 microns away from soma) of CA1 pyramidal neurons in rat hippocampal slices (ages: 2-8 weeks). 2. Na+ channels were found in every patch examined (range: 2 to > 20 channels per patch). Channel openings, which had a slope conductance of 15 +/- 0.3 pS (mean +/- S.E.M.), began with test commands to around -50 mV and consisted of both early transient channel activity and also later occurring prolonged openings of 5-15 ms. All Na+ channel activity was suppressed by inclusion of TTX (1 microM) in the recording pipette. 3. Ca2+ channel activity was recorded in about 80% of the patches examined (range: 1 to > 10 channels per patch). Several types of channel behaviour were observed in these patches. Single channel recordings in 110 mM BaCl2, revealed an approximately 10 pS channel of small unitary current amplitude (-0.5 pA at -20 mV). These channels began activating at relatively hyperpolarized potentials (-50 mV) and ensemble averages of this low voltage-activated (LVA) channel activity showed rapid inactivation. 4. A somewhat heterogeneous population of high voltage-activated, moderate conductance (HVAm; approximately 17 pS), Ca2+ channel activity was also encountered. These channels exhibited a relatively large unitary amplitude (-0.8 pA at 0 mV) and ensemble averages demonstrated moderate inactivation. The HVAm population of channels could be tentatively subdivided into two separate groups based upon mean channel open times. 5. Less frequently, HVA, large conductance (27 pS) Ca2+ channel activity (HVA1) was also observed. This large unitary amplitude (-1.5 pA at 0 mV) channel activity began with steps to approximately 0 mV and ensemble averages did not show any time-dependent inactivation. The dihydropyridine Ca2+ channel agonist Bay K 8644 (0.5 or 1 microM) was found to characteristically prolong these channel openings. 6. omega

  20. Sequential Loss of LC Noradrenergic and Dopaminergic Neurons Results in a Correlation of Dopaminergic Neuronal Number to Striatal Dopamine Concentration

    PubMed Central

    Szot, Patricia; Franklin, Allyn; Sikkema, Carl; Wilkinson, Charles W.; Raskind, Murray A.

    2012-01-01

    Noradrenergic neurons in the locus coeruleus (LC) are significantly reduced in Parkinson’s disease (PD) and the LC exhibits neuropathological changes early in the disease process. It has been suggested that a loss of LC neurons can enhance the susceptibility of dopaminergic neurons to damage. To determine if LC noradrenergic innervation protects dopaminergic neurons from damage, the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was administered to adult male C57Bl/6 mice 3 days after bilateral LC administration of 6-hydroxydopamine (6OHDA), a time when there is a significant reduction in LC neuronal number and innervation to forebrain regions. To assess if LC loss can affect dopaminergic loss four groups of animals were studied: control, 6OHDA, MPTP, and 6OHDA + MPTP; animals sacrificed 3 weeks after MPTP administration. The number of dopaminergic neurons in the substantia nigra (SN) and ventral tegmental area (VTA), and noradrenergic neurons in the LC were determined. Catecholamine levels in striatum were measured by high-pressure liquid chromatography. The loss of LC neurons did not affect the number of dopaminergic neurons in the SN and VTA compared to control; however, LC 6OHDA significantly reduced striatal dopamine (DA; 29% reduced) but not norepinephrine (NE) concentration. MPTP significantly reduced SN and VTA neuronal number and DA concentration in the striatum compared to control; however, there was not a correlation of striatal DA concentration with SN or VTA neuronal number. Administration of 6OHDA prior to MPTP did not enhance MPTP-induced damage despite an effect of LC loss on striatal DA concentration. However, the loss of LC neurons before MPTP resulted now in a correlation between SN and VTA neuronal number to striatal DA concentration. These results demonstrate that the loss of either LC or DA neurons can affect the function of each others systems, indicating the importance of both the noradrenergic and

  1. Genotype-specific effects of Mecp2 loss-of-function on morphology of Layer V pyramidal neurons in heterozygous female Rett syndrome model mice.

    PubMed

    Rietveld, Leslie; Stuss, David P; McPhee, David; Delaney, Kerry R

    2015-01-01

    Rett syndrome (RTT) is a progressive neurological disorder primarily caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). The heterozygous female brain consists of mosaic of neurons containing both wild-type MeCP2 (MeCP2+) and mutant MeCP2 (MeCP2-). Three-dimensional morphological analysis was performed on individually genotyped layer V pyramidal neurons in the primary motor cortex of heterozygous (Mecp2(+/-) ) and wild-type (Mecp2(+/+) ) female mice ( > 6 mo.) from the Mecp2(tm1.1Jae) line. Comparing basal dendrite morphology, soma and nuclear size of MeCP2+ to MeCP2- neurons reveals a significant cell autonomous, genotype specific effect of Mecp2. MeCP2- neurons have 15% less total basal dendritic length, predominantly in the region 70-130 μm from the cell body and on average three fewer branch points, specifically loss in the second and third branch orders. Soma and nuclear areas of neurons of mice were analyzed across a range of ages (5-21 mo.) and X-chromosome inactivation (XCI) ratios (12-56%). On average, MeCP2- somata and nuclei were 15 and 13% smaller than MeCP2+ neurons respectively. In most respects branching morphology of neurons in wild-type brains (MeCP2 WT) was not distinguishable from MeCP2+ but somata and nuclei of MeCP2 WT neurons were larger than those of MeCP2+ neurons. These data reveal cell autonomous effects of Mecp2 mutation on dendritic morphology, but also suggest non-cell autonomous effects with respect to cell size. MeCP2+ and MeCP2- neuron sizes were not correlated with age, but were correlated with XCI ratio. Unexpectedly the MeCP2- neurons were smallest in brains where the XCI ratio was highly skewed toward MeCP2+, i.e., wild-type. This raises the possibility of cell non-autonomous effects that act through mechanisms other than globally secreted factors; perhaps competition for synaptic connections influences cell size and morphology in the genotypically mosaic brain of RTT model mice.

  2. Fast drum strokes: novel and convergent features of sonic muscle ultrastructure, innervation, and motor neuron organization in the Pyramid Butterflyfish (Hemitaurichthys polylepis).

    PubMed

    Boyle, Kelly S; Dewan, Adam K; Tricas, Timothy C

    2013-04-01

    Sound production that is mediated by intrinsic or extrinsic swim bladder musculature has evolved multiple times in teleost fishes. Sonic muscles must contract rapidly and synchronously to compress the gas-filled bladder with sufficient velocity to produce sound. Muscle modifications that may promote rapid contraction include small fiber diameter, elaborate sarcoplasmic reticulum (SR), triads at the A-I boundary, and cores of sarcoplasm. The diversity of innervation patterns indicate that sonic muscles have independently evolved from different trunk muscle precursors. The analysis of sonic motor pathways in distantly related fishes is required to determine the relationships between sonic muscle evolution and function in acoustic signaling. We examined the ultrastructure of sonic and adjacent hypaxial muscle fibers and the distribution of sonic motor neurons in the coral reef Pyramid Butterflyfish (Chaetodontidae: Hemitaurichthys polylepis) that produces sound by contraction of extrinsic sonic muscles near the anterior swim bladder. Relative to adjacent hypaxial fibers, sonic muscle fibers were sparsely arranged among the endomysium, smaller in cross-section, had longer sarcomeres, a more elaborate SR, wider t-tubules, and more radially arranged myofibrils. Both sonic and non-sonic muscle fibers possessed triads at the Z-line, lacked sarcoplasmic cores, and had mitochondria among the myofibrils and concentrated within the peripheral sarcoplasm. Sonic muscles of this derived eutelost possess features convergent with other distant vocal taxa (other euteleosts and non-euteleosts): small fiber diameter, a well-developed SR, and radial myofibrils. In contrast with some sonic fishes, however, Pyramid Butterflyfish sonic muscles lack sarcoplasmic cores and A-I triads. Retrograde nerve label experiments show that sonic muscle is innervated by central and ventrolateral motor neurons associated with spinal nerves 1-3. This restricted distribution of sonic motor neurons in the

  3. Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons

    PubMed Central

    Bhattarai, Janardhan Prasad; Han, Seong Kyu

    2014-01-01

    Background: In Nepali and Indian system of traditional medicine, Withania somnifera (WS) is considered as a rejuvenative medicine to maintain physical and mental health and has also been shown to improve memory consolidation. Objective: In this study, a methanolic extract of WS (mWS) was applied on mice hippocampal CA1 neurons to identify the receptors activated by the WS. Materials and Methods: The whole cell patch clamp recordings were performed on CA1 pyramidal neurons from immature mice (7-20 postnatal days). The cells were voltage clamped at -60 mV. Extract of WS root were applied to identify the effect of mWS. Results: The application of mWS (400 ng/μl) induced remarkable inward currents (-158.1 ± 28.08 pA, n = 26) on the CA1 pyramidal neurons. These inward currents were not only reproducible but also concentration dependent. mWS-induced inward currents remained persistent in the presence of amino acid receptor blocking cocktail (AARBC) containing blockers for the ionotropic glutamate receptors, glycine receptors and voltage-gated Na+ channel (Control: -200.3 ± 55.42 pA, AARBC: -151.5 ± 40.58 pA, P > 0.05) suggesting that most of the responses by mWS are postsynaptic events. Interestingly, these inward currents were almost completely blocked by broad GABAA receptor antagonist, bicuculline- 20 μM (BIC) (BIC: -1.46 ± 1.4 pA, P < 0.001), but only partially by synaptic GABAA receptor blocker gabazine (1 μM) (GBZ: -18.26 ± 4.70 pA, P < 0.01). Conclusion: These results suggest that WS acts on synaptic/extrasynaptic GABAA receptors and may play an important role in the process of memory and neuroprotection via activation of synaptic and extrasynaptic GABAA receptors. PMID:25624695

  4. Potentiation of convergent synaptic inputs onto pyramidal neurons in somatosensory cortex: dependence on brain wave frequencies and NMDA receptor subunit composition.

    PubMed

    Pilli, J; Kumar, S S

    2014-07-11

    N-methyl-d-aspartate receptors (NMDARs) at layer (L)1/primary whisker motor cortex synaptic inputs are distinct from thalamic/striatal (Str) synaptic inputs onto L5 pyramidal neurons in the rat somatosensory cortex. However, the consequences of differential expression of putative GluN3A-containing triheteromeric NMDARs at L1 inputs and GluN2A-containing diheteromeric NMDARs at Str inputs on plasticity of the underlying synapses at the respective inputs remain unknown. Here we demonstrate that L1, but not Str, synapses are potentiated following delta burst stimulation (dBS). This potentiation is blocked by d-serine and/or intracellular 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) suggesting that it is subunit-specific and dependent on elevations in intracellular Ca(2+). Interestingly, ifenprodil, the GluN2B-preferring antagonist, suppresses baseline L1 responses but does not prevent induction of dBS-evoked potentiation. Unlike L1, Str synapses are maximally potentiated following theta burst stimulation (tBS) and this potentiation is blocked with BAPTA and/or the GluN2A-preferring antagonist NVP-AAM077. We show further that while dBS is both necessary and sufficient to potentiate L1 synapses, tBS is most effective in potentiating Str synapses. Our data suggest distinct potentiating paradigms for the two convergent inputs onto pyramidal neurons in the somatosensory cortex and co-dependence of synaptic potentiation on brain wave-tuned frequencies of burst stimulation and subunit composition of underlying NMDARs. A model for predicting the likelihood of enhancing synaptic efficacy is proposed based on Ca(2+) influx through these receptors and integration of EPSPs at these inputs. Together, these findings raise the possibility of input-specific enhancements of synaptic efficacy in neurons as a function of the animal's behavioral state and/or arousal in vivo.

  5. Modifications of inhibitory transmission onto pyramidal neurons by postnatal exposure to MK-801: Effects of enriched environment.

    PubMed

    Shojaei, Amir; Anaraki, Afsaneh Kamali; Mirnajafi-Zadeh, Javad; Atapour, Nafiseh

    2017-04-01

    Early enriched environment (EE) prevents several deficits associated with postnatal MK-801 [N-Methyl-d-Aspartate (NMDA) receptor antagonist] treatment such as cognitive and locomotor deficits. We sought physiological correlates to such changes by looking at inhibitory synaptic inputs onto pyramidal cells in a prefrontal cortex slice preparation. Pharmacologically isolated γ-amino-butyric acid A (GABAA) receptor-mediated currents were measured using whole-cell patch clamp recordings. Wistar rats were raised in standard or EE from birth up to the time of experiments and were injected with saline or MK-801 (1mg/kg) on postnatal days (P) 6-10. We recorded miniature inhibitory post-synaptic currents (mIPSCs) of pyramidal cells in layer II/III of prefrontal cortex and measured their frequency, amplitude and kinetics. In control animals, the amplitude and frequency of mIPSCs increased strikingly during development from P21 to P28. MK-801 accelerated the development of mIPSCs frequency but caused a significant decrease in the amplitude of mIPSCs on P28 suggesting a significant reduction of inhibition onto pyramidal cells. EE per se led to a significant increase in both frequency and amplitude of mIPSCs, but its application to MK-801-treated rats resulted in moderate rescue of GABAergic transmission on P28. We conclude that postnatal MK-801 leads to reduced inhibitory transmission onto pyramidal cells of prefrontal cortex at adolescence which may underlie behavioural and morphological differences detected in vivo in rats. EE presentation from birth rather prevents GABAergic alterations associated with postnatal MK-801 treatment at adolescence.

  6. Epileptiform activity induces distance-dependent alterations of the Ca2+ extrusion mechanism in the apical dendrites of subicular pyramidal neurons.

    PubMed

    Srinivas, Kalyan V; Sikdar, Sujit K

    2008-12-01

    The cellular and molecular mechanisms that underlie acquired changes in Ca(2+) dynamics of different neuronal compartments are important in the induction and maintenance of epileptiform activity. Simultaneous electrophysiology and Ca(2+) imaging techniques were used to understand the basic properties of dendritic Ca(2+) signaling in rat subicular pyramidal neurons during epileptiform activity. Distance-dependent changes in the Ca(2+) decay kinetics locked to spontaneous epileptiform discharges and back-propagating action potentials were observed in the apical dendrites. A decrement in the mean tau value of Ca(2+) decay was observed in distal parts (95-110 mum) of the apical dendrites compared with proximal segments (30-45 mum) in in-vitro epileptic conditions but not in control. Pharmacological agents that block Ca(2+) transporters, i.e. Na(+)/ Ca(2+) exchangers (Benzamil), plasma membrane Ca(2+)-ATPase pumps (Calmidazolium) and smooth endoplasmic reticulum Ca(2+)-ATPase pumps (Thapsigargin), were applied locally to the proximal and distal part of the apical dendrites in both experimental conditions to understand the molecular aspects of the Ca(2+) extrusion mechanisms. The relative contribution of Na(+)/Ca(2+) exchangers in Ca(2+) extrusion was higher in the distal apical dendrites in the in-vitro epileptic condition and this property modulated the excitability of the neuron in simulation. The Ca(2+) homeostatic mechanisms that restore normal Ca(2+) levels could play a major neuroprotective role in the distal dendrites that receive synaptic inputs.

  7. Effect of soy milk on circulating 17- β estradiol, number of neurons in cerebral cortex and hippocampus and determination of their ratio in neonatal ovariectomized rats

    PubMed Central

    Marzban Abbasabadi, Behrokh; Tadjalli, Mina

    2016-01-01

    This study was conducted to evaluate the effect of soy milk on serum 17- β estradiol level and number of neurons in cerebral cortex and hippocampus as well as determination of the ratio of neurons in cortical and hippocampal regions in neonatal ovariectomized rats. Thirty female rats (one day old) were divided into six groups of five. At day 7, ovariectomy surgery was performed in four groups and two other groups were assumed as sham and control groups. Three groups of ovareictomaized rats were fed with soy milk at the doses of 0.75, 1.50 and 3.00 mL kg-1 per day since they were 14. At day 60, the blood samples were collected to measure the17- β estradiol concentration, and then the brain of rats were prepared for histological studies. The serum 17- β estradiol level significantly increased in ovariectomized rats fed with soy milk compared to ovariectomized rats with no soy milk supplementation. In addition, the results showed that soy milk significantly increased the number of neurons in CA1, CA2 and dentate gyrus regions of hippocampus and granular layer of cerebral cortex in ovariectomized rats, whereas there was no significant change in number of neurons in CA3 zone of hippocampus and molecular, pyramidal and multiform layers of cerebral cortex in ovariectomized rats fed with soy milk. The ratio of cerebral cortex neurons to hippocampal neurons had no significant changes among the experimental groups. PMID:28144428

  8. Autocrine Boost of NMDAR Current in Hippocampal CA1 Pyramidal Neurons by a PMCA-Dependent, Perisynaptic, Extracellular pH Shift

    PubMed Central

    Chen, Huei-Ying

    2015-01-01

    The plasma membrane Ca2+-ATPase (PMCA) is found near postsynaptic NMDARs. This transporter is a Ca2+-H+ exchanger that raises cell surface pH. We tested whether the PMCA acts in an autocrine fashion to boost pH-sensitive, postsynaptic NMDAR currents. In mouse hippocampal slices, NMDAR EPSCs in a singly activated CA1 pyramidal neuron were reduced when buffering was augmented by exogenous carbonic anhydrase (XCAR). This effect was blocked by the enzyme inhibitor benzolamide and mimicked by the addition of HEPES buffer. Similar EPSC reduction occurred when PMCA activation was prevented by dialysis of BAPTA or the PMCA inhibitor carboxyeosin. Using HEPES, BAPTA, or carboxyeosin, the effect of XCAR was completely occluded. XCAR similarly curtailed NMDAR EPSCs of minimal amplitude, but had no effect on small AMPAR responses. These results indicate that a significant fraction of the postsynaptic NMDAR current is reliant on a perisynaptic extracellular alkaline shift generated by the PMCA. PMID:25609607

  9. Low concentrations of alcohol inhibit BDNF-dependent GABAergic plasticity via L-type Ca2+ channel inhibition in developing CA3 hippocampal pyramidal neurons.

    PubMed

    Zucca, Stefano; Valenzuela, C Fernando

    2010-05-12

    Fetal alcohol spectrum disorder (FASD) is associated with learning and memory alterations that could be, in part, a consequence of hippocampal damage. The CA3 hippocampal subfield is one of the regions affected by ethanol (EtOH), including exposure during the third trimester-equivalent (i.e., neonatal period in rats). However, the mechanism of action of EtOH is poorly understood. In CA3 pyramidal neurons from neonatal rats, dendritic BDNF release causes long-term potentiation of the frequency of GABAA receptor-mediated spontaneous postsynaptic currents (LTP-GABAA) and this mechanism is thought to play a role in GABAergic synapse maturation. Here, we show that short- and long-term exposure of neonatal male rats to low EtOH concentrations abolishes LTP-GABAA by inhibiting L-type voltage-gated Ca2+ channels. These findings support the recommendation that even light drinking should be avoided during pregnancy.

  10. A seizure-induced gain-of-function in BK channels is associated with elevated firing activity in neocortical pyramidal neurons

    PubMed Central

    Shruti, Sonal; Clem, Roger L.; Barth, Alison L.

    2009-01-01

    SUMMARY A heritable gain-of-function in BK channel activity has been associated with spontaneous seizures in both rodents and humans. We find that chemoconvulsant-induced seizures induce a gain-of-function in BK channel current that is associated with abnormal, elevated network excitability. Action potential half-width, evoked firing rate, and spontaneous network activity in vitro were all altered 24 hrs following picrotoxin-induced seizures in layer 2/3 pyramidal cells in the neocortex of young mice (P13-P16). Action potential half-width and firing output could be normalized to control values by application of BK channel antagonists in vitro. Thus, both inherited and acquired BK channel gain-of-functions are linked to abnormal excitability. Because BK channel antagonists can reduce elevated firing activity in neocortical neurons, BK channels might serve as a new target for anticonvulsant therapy. PMID:18387812

  11. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes.

  12. Dopamine Modulates Spike Timing-Dependent Plasticity and Action Potential Properties in CA1 Pyramidal Neurons of Acute Rat Hippocampal Slices

    PubMed Central

    Edelmann, Elke; Lessmann, Volkmar

    2011-01-01

    Spike timing-dependent plasticity (STDP) is a cellular model of Hebbian synaptic plasticity which is believed to underlie memory formation. In an attempt to establish a STDP paradigm in CA1 of acute hippocampal slices from juvenile rats (P15–20), we found that changes in excitability resulting from different slice preparation protocols correlate with the success of STDP induction. Slice preparation with sucrose containing ACSF prolonged rise time, reduced frequency adaptation, and decreased latency of action potentials in CA1 pyramidal neurons compared to preparation in conventional ASCF, while other basal electrophysiological parameters remained unaffected. Whereas we observed prominent timing-dependent long-term potentiation (t-LTP) to 171 ± 10% of controls in conventional ACSF, STDP was absent in sucrose prepared slices. This sucrose-induced STDP deficit could not be rescued by stronger STDP paradigms, applying either more pre- and/or postsynaptic stimuli, or by a higher stimulation frequency. Importantly, slice preparation with sucrose containing ACSF did not eliminate theta-burst stimulation induced LTP in CA1 in field potential recordings in our rat hippocampal slices. Application of dopamine (for 10–20 min) to sucrose prepared slices completely rescued t-LTP and recovered action potential properties back to levels observed in ACSF prepared slices. Conversely, acute inhibition of D1 receptor signaling impaired t-LTP in ACSF prepared slices. No similar restoring effect for STDP as seen with dopamine was observed in response to the β-adrenergic agonist isoproterenol. ELISA measurements demonstrated a significant reduction of endogenous dopamine levels (to 61.9 ± 6.9% of ACSF values) in sucrose prepared slices. These results suggest that dopamine signaling is involved in regulating the efficiency to elicit STDP in CA1 pyramidal neurons. PMID:22065958

  13. Kynurenic acid inhibits glutamatergic transmission to CA1 pyramidal neurons via α7 nAChR-dependent and -independent mechanisms.

    PubMed

    Banerjee, Jyotirmoy; Alkondon, Manickavasagom; Albuquerque, Edson X

    2012-10-15

    Glutamatergic hypofunction and elevated levels of kynurenic acid (KYNA) in the brain are common features of patients with schizophrenia. In vivo studies indicate that in the hippocampus KYNA decreases glutamate levels, presumably via inhibition of α7 nicotinic receptors (nAChRs). Here we tested the hypothesis that basal synaptic glutamate activity in the hippocampus is regulated by tonically active α7 nAChRs and is sensitive to inhibition by KYNA. To this end, spontaneous excitatory postsynaptic currents (EPSCs), sensitive to AMPA receptor antagonist CNQX (10 μM), were recorded from CA1 pyramidal neurons at -70 mV in rat hippocampal slices. The α7 nAChR antagonists α-bungarotoxin (α-BGT, 100 nM) and methyllycaconitine (MLA, 1-50 nM), and the NMDA receptor antagonist 2-amino-5-phosphonovaleric acid (APV, 50 μM) reduced the frequency of EPSCs. MLA and α-BGT had no effect on miniature EPSCs (mEPSCs). The effect of MLA decreased in the presence of APV (50 μM), with 1 nM MLA becoming completely ineffective. KYNA (1-20 μM) suppressed the frequency of EPSCs, without affecting mEPSCs. The effect of KYNA decreased in the presence of MLA (1 nM) or α-BGT (100 nM), with 1 μM KYNA being devoid of any effect. In the presence of both MLA (10 nM) and APV (50 μM) higher KYNA concentrations (5-20 μM) still reduced the frequency of EPSCs. These results suggest that basal synaptic glutamate activity in CA1 pyramidal neurons is maintained in part by tonically active α7 nAChRs and NMDA receptors and is inhibited by micromolar concentrations of KYNA, acting via α7 nAChR-dependent and -independent mechanisms.

  14. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake.

    PubMed

    Warthen, Daniel M; Lambeth, Philip S; Ottolini, Matteo; Shi, Yingtang; Barker, Bryan Scot; Gaykema, Ronald P; Newmyer, Brandon A; Joy-Gaba, Jonathan; Ohmura, Yu; Perez-Reyes, Edward; Güler, Ali D; Patel, Manoj K; Scott, Michael M

    2016-01-01

    The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control.

  15. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake

    PubMed Central

    Warthen, Daniel M.; Lambeth, Philip S.; Ottolini, Matteo; Shi, Yingtang; Barker, Bryan Scot; Gaykema, Ronald P.; Newmyer, Brandon A.; Joy-Gaba, Jonathan; Ohmura, Yu; Perez-Reyes, Edward; Güler, Ali D.; Patel, Manoj K.; Scott, Michael M.

    2016-01-01

    The medial prefrontal cortex (mPFC) is involved in a wide range of executive cognitive functions, including reward evaluation, decision-making, memory extinction, mood, and task switching. Manipulation of the mPFC has been shown to alter food intake and food reward valuation, but whether exclusive stimulation of mPFC pyramidal neurons (PN), which form the principle output of the mPFC, is sufficient to mediate food rewarded instrumental behavior is unknown. We sought to determine the behavioral consequences of manipulating mPFC output by exciting PN in mouse mPFC during performance of a panel of behavioral assays, focusing on food reward. We found that increasing mPFC pyramidal cell output using designer receptors exclusively activated by designer drugs (DREADD) enhanced performance in instrumental food reward assays that assess food seeking behavior, while sparing effects on affect and food intake. Specifically, activation of mPFC PN enhanced operant responding for food reward, reinstatement of palatable food seeking, and suppression of impulsive responding for food reward. Conversely, activation of mPFC PN had no effect on unconditioned food intake, social interaction, or behavior in an open field. Furthermore, we found that behavioral outcome is influenced by the degree of mPFC activation, with a low drive sufficient to enhance operant responding and a higher drive required to alter impulsivity. Additionally, we provide data demonstrating that DREADD stimulation involves a nitric oxide (NO) synthase dependent pathway, similar to endogenous muscarinic M3 receptor stimulation, a finding that provides novel mechanistic insight into an increasingly widespread method of remote neuronal control. PMID:27065827

  16. Roles of HIF-1α, VEGF, and NF-κB in Ischemic Preconditioning-Mediated Neuroprotection of Hippocampal CA1 Pyramidal Neurons Against a Subsequent Transient Cerebral Ischemia.

    PubMed

    Lee, Jae-Chul; Tae, Hyun-Jin; Kim, In Hye; Cho, Jeong Hwi; Lee, Tae-Kyeong; Park, Joon Ha; Ahn, Ji Hyeon; Choi, Soo Young; Bai, Hui Chen; Shin, Bich-Na; Cho, Geum-Sil; Kim, Dae Won; Kang, Il Jun; Kwon, Young-Guen; Kim, Young-Myeong; Won, Moo-Ho; Bae, Eun Joo

    2016-10-26

    Ischemic preconditioning (IPC) provides neuroprotection against subsequent severe ischemic insults by specific mechanisms. We tested the hypothesis that IPC attenuates post-ischemic neuronal death in the gerbil hippocampal CA1 region (CA1) throughout hypoxia inducible factor-1α (HIF-1α) and its associated factors such as vascular endothelial growth factor (VEGF) and nuclear factor-kappa B (NF-κB). Lethal ischemia (LI) without IPC increased expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) in CA1 pyramidal neurons at 12 h and/or 1-day post-LI; thereafter, their expressions were decreased in the CA1 pyramidal neurons with time and newly expressed in non-pyramidal cells (pericytes), and the CA1 pyramidal neurons were dead at 5-day post-LI, and, at this point in time, their immunoreactivities were newly expressed in pericytes. In animals with IPC subjected to LI (IPC/LI)-group), CA1 pyramidal neurons were well protected, and expressions of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) were significantly increased compared to the sham-group and maintained after LI. Whereas, treatment with 2ME2 (a HIF-1α inhibitor) into the IPC/LI-group did not preserve the IPC-mediated increases of HIF-1α, VEGF, and p-IκB-α (/and translocation of NF-κB p65 into nucleus) expressions and did not show IPC-mediated neuroprotection. In brief, IPC protected CA1 pyramidal neurons from LI by upregulation of HIF-1α, VEGF, and p-IκB-α expressions. This study suggests that IPC increases HIF-1α expression in CA1 pyramidal neurons, which enhances VEGF expression and NF-κB activation and that IPC may be a strategy for a therapeutic intervention of cerebral ischemic injury.

  17. The reduction of EPSC amplitude in CA1 pyramidal neurons by the peroxynitrite donor SIN-1 requires Ca2+ influx via postsynaptic non-L-type voltage gated calcium channels.

    PubMed

    Zhaowei, Liu; Yongling, Xie; Jiajia, Yang; Zhuo, Yang

    2014-02-01

    The peroxynitrite free radical (ONOO(-)) modulation of miniature excitatory postsynaptic currents (mEPSCs) and spontaneous excitatory postsynaptic currents (sEPSCs) was investigated in rat CA1 pyramidal neurons using the whole-cell patch clamp technique. SIN-1(3-morpholino-sydnonimine), which can lead the simultaneous generation of superoxide anion and nitric oxide, and then form the highly reactive species ONOO(-), induced dose-dependent inhibition in amplitudes of both mEPSCs and sEPSCs. The SIN-1 action on mEPSC amplitude was completely blocked by U0126, a selective MEK inhibitor, suggesting that MEK contributed to the action of ONOO(-) on mEPSCs. The effect of SIN-1 was completely occluded either in the presence of the calcium chelator EGTA or the non-selective calcium channel antagonist Cd(2+). Furthermore, the application of nifedipine (20 μM), the L-type calcium channel blocker, had no effect on the ONOO(-)-induced decrease in mEPSC amplitude, excluding a role for L-type voltage-gated Ca(2+) channels in this process. SIN-1 inhibited the frequency of sEPSCs but had no effect on mEPSC frequency, which suggested a presynaptic action potential-dependent the action of ONOO(-) at CA1 pyramidal neuron synapses. The best-known glutamatergic input to CA1 pyramidal neurons is via Schaffer collaterals from CA3 area. However, no changes were observed in slices treated with SIN-1 on the spontaneous firing rates of CA3 pyramidal neurons. These findings suggested that SIN-1 inhibited glutamatergic synaptic transmission of CA1 pyramidal neurons by a postsynaptic non-L-type voltage gated calcium channel-dependent mechanism.

  18. Specific Targeting of the Basolateral Amygdala to Projectionally Defined Pyramidal Neurons in Prelimbic and Infralimbic Cortex123

    PubMed Central

    Ferreira, Ashley N.

    2016-01-01

    Abstract Adjacent prelimbic (PL) and infralimbic (IL) regions in the medial prefrontal cortex have distinct roles in emotional learning. A complete mechanistic understanding underlying this dichotomy remains unclear. Here we explored targeting of specific PL and IL neurons by the basolateral amygdala (BLA), a limbic structure pivotal in pain and fear processing. In mice, we used retrograde labeling, brain-slice recordings, and adenoviral optogenetics to dissect connectivity of ascending BLA input onto PL and IL neurons projecting to the periaqueductal gray (PAG) or the amygdala. We found differential targeting of BLA projections to PL and IL cortex. Activating BLA projections evoked excitatory and inhibitory responses in cortico-PAG (CP) neurons in layer 5 (L5) of both PL and IL cortex. However, all inhibitory responses were polysynaptic and monosynaptic BLA input was stronger to CP neurons in IL cortex. Conversely, the BLA preferentially targeted corticoamygdalar (CA) neurons in layer 2 (L2) of PL over IL cortex. We also reveal that BLA input is projection specific by showing preferential targeting of L5 CP neurons over neighboring L3/5 CA neurons in IL cortex. We conclude by showing that BLA input is laminar-specific by producing stronger excitatory responses CA neurons in L3/5 compared with L2 in IL cortex. Collectively, this study reveals differential targeting of the BLA to PL and IL cortex, which depends both on laminar location and projection target of cortical neurons. Overall, our findings should have important implications for understanding the processing of pain and fear input by the PL and IL cortex. PMID:27022632

  19. Development of GABA-mediated, chloride-dependent inhibition in CA1 pyramidal neurones of immature rat hippocampal slices.

    PubMed Central

    Zhang, L; Spigelman, I; Carlen, P L

    1991-01-01

    1. gamma-Aminobutyric acid (GABA)-mediated, Cl(-)-dependent inhibitory postsynaptic potentials (IPSPs) and GABA currents in immature rat hippocampal CA1 neurones were studied using the whole-cell recording technique in brain slices. 2. IPSPs evoked by electrical stimulation were observed in postnatal 2- to 5- (PN2-5), 8- to 13-(PN8-13) and 15- to 20-(PN15-20)day-old CA1 neurones. In the presence of glutamate receptor blockers 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and D-2-amino-5-phosphonovaleric acid (APV), the reversal potential for the IPSP (EIPSP) was near the resting membrane potential (RMP) in the PN2-5 neurones, but 13 and 25 mV more negative than the RMP in PN8-13 and PN15-20 neurones respectively. IPSPs and GABA currents were blocked by the GABAA-receptor antagonists bicuculline or picrotoxin. 3. The reversal potential for somatic GABA currents (EGABA) was examined in the presence of tetrodotoxin (TTX). There was a strong dependence of the EGABA upon the patch pipette [Cl-] ([Cl-]p). indicating that the GABA currents were mediated by a Cl- conductance. In PN2-5 neurones, EGABA agreed with the value predicted by the Goldman-Hodgkin-Katz equation at given concentrations of internal and external anions permeable through GABA-activated Cl- channels, whereas EGABA in older neurones was 8-18 mV more negative. 4. Examination of the relations between EGABA, holding potential, [Cl-]p and resting conductance indicated that the membrane of the PN2-5 neurones was readily permeable to Cl- which followed a passive Donnan equilibrium. Passive distribution of Cl- played a decreasing role in PN8-13 neurones and in PN15-20 neurones. 5. To assess the contribution of outward Cl- co-transport, bath applications of high K+ or furosemide were performed. High K+ and furosemide caused a reversible positive shift of EGABA in PN15-20 neurones. Raising the temperature moved EGABA to a more negative potential, with a Q10 of 5 mV. A similar change of EGABA in response to high K

  20. Activity-dependent release of endogenous BDNF from mossy fibers evokes a TRPC3 current and Ca2+ elevations in CA3 pyramidal neurons.

    PubMed

    Li, Yong; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D; Pozzo-Miller, Lucas

    2010-05-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca(2+) elevations in CA3 pyramidal neurons with the same pharmacological profile of the transient receptor potential canonical 3 (TRPC3)-mediated I(BDNF) activated in CA1 neurons by brief localized applications of recombinant BDNF. Indeed, sensitivity to both the extracellular BDNF scavenger tropomyosin-related kinase B (TrkB)-IgG and small hairpin interference RNA-mediated TRPC3 channel knockdown confirms the identity of this conductance as such, henceforth-denoted MF-I(BDNF). Consistent with such activity-dependent release of BDNF, these MF-I(BDNF) responses were insensitive to manipulations of extracellular Zn(2+) concentration. Brief theta burst stimulation of MFs induced a long-lasting depression in the amplitude of excitatory postsynaptic currents (EPSCs) mediated by both AMPA and N-methyl-d-aspartate (NMDA) receptors without changes in the NMDA receptor/AMPA receptor ratio, suggesting a reduction in neurotransmitter release. This depression of NMDAR-mediated EPSCs required activity-dependent release of endogenous BDNF from MFs and activation of Trk receptors, as it was sensitive to the extracellular BDNF scavenger TrkB-IgG and the tyrosine kinase inhibitor k-252b. These results uncovered the most immediate response to endogenously released--native--BDNF in hippocampal neurons and lend further credence to the relevance of BDNF signaling for synaptic function in the hippocampus.

  1. Activity-Dependent Release of Endogenous BDNF From Mossy Fibers Evokes a TRPC3 Current and Ca2+ Elevations in CA3 Pyramidal Neurons

    PubMed Central

    Li, Yong; Calfa, Gaston; Inoue, Takafumi; Amaral, Michelle D.

    2010-01-01

    Multiple studies have demonstrated that brain-derived neurotrophic factor (BDNF) is a potent modulator of neuronal structure and function in the hippocampus. However, the majority of studies to date have relied on the application of recombinant BDNF. We herein report that endogenous BDNF, released via theta burst stimulation of mossy fibers (MF), elicits a slowly developing cationic current and intracellular Ca2+ elevations in CA3 pyramidal neurons with the same pharmacological profile of the transient receptor potential canonical 3 (TRPC3)-mediated IBDNF activated in CA1 neurons by brief localized applications of recombinant BDNF. Indeed, sensitivity to both the extracellular BDNF scavenger tropomyosin-related kinase B (TrkB)-IgG and small hairpin interference RNA-mediated TRPC3 channel knockdown confirms the identity of this conductance as such, henceforth-denoted MF-IBDNF. Consistent with such activity-dependent release of BDNF, these MF-IBDNF responses were insensitive to manipulations of extracellular Zn2+ concentration. Brief theta burst stimulation of MFs induced a long-lasting depression in the amplitude of excitatory postsynaptic currents (EPSCs) mediated by both AMPA and N-methyl-d-aspartate (NMDA) receptors without changes in the NMDA receptor/AMPA receptor ratio, suggesting a reduction in neurotransmitter release. This depression of NMDAR-mediated EPSCs required activity-dependent release of endogenous BDNF from MFs and activation of Trk receptors, as it was sensitive to the extracellular BDNF scavenger TrkB-IgG and the tyrosine kinase inhibitor k-252b. These results uncovered the most immediate response to endogenously released—native—BDNF in hippocampal neurons and lend further credence to the relevance of BDNF signaling for synaptic function in the hippocampus. PMID:20220070

  2. Bursting response to current-evoked depolarization in rat CA1 pyramidal neurons is correlated with lucifer yellow dye coupling but not with the presence of calbindin-D28k

    SciTech Connect

    Baimbridge, K.G.; Peet, M.J.; McLennan, H.; Church, J. )

    1991-04-01

    Calbindin-D28k (CaBP) immunohistochemistry has been combined with electrophysiological recording and Lucifer Yellow (LY) cell identification in the CA1 region of the rat hippocampal formation. CaBP is shown to be contained within a distinct sub-population of CA1 pyramidal cells which is equivalent to the superficial layer described by Lorente de No (1934). The neurogenesis of these CaBP-positive neurons occurs 1-2 days later than the CaBP-negative neurons in the deep pyramidal cell layer, as shown by 3H-thymidine autoradiography. No correlation could be found between the presence or absence of CaBP and the type of electrophysiological response to current-evoked depolarizing pulses. The latter could be separated into bursting or non-bursting types, and the bursting-type response was nearly always found to be associated with the presence of LY dye coupling. Furthermore, when dye coupling involved three neurons, a characteristic pattern was observed which may represent the coupling of phenotypically identical neurons into distinct functional units within the CA1 pyramidal cell layer. In this particular case the three neurons were all likely to be CaBP-positive.

  3. The role of dendritic action potentials and Ca2+ influx in the induction of homosynaptic long-term depression in hippocampal CA1 pyramidal neurons.

    PubMed

    Christie, B R; Magee, J C; Johnston, D

    1996-01-01

    Long-term depression (LTD) of synaptic efficacy at CA1 synapses is believed to be a Ca(2+)-dependent process. We used high-speed fluorescence imaging and patch-clamp techniques to quantify the spatial distribution of changes in intracellular Ca2+ accompanying the induction of LTD at Schaffer collateral synapses in CA1 pyramidal neurons. Low-frequency stimulation (3 Hz), which was subthreshold for action potentials, produced small changes in [Ca2+]i and failed to elicit LTD. Increasing the stimulus strength so that action potentials were generated produced both robust LTD and increases in [Ca2+]i. Back-propagating action potentials at 3 Hz in the absence of synaptic stimulation also produced increases in [Ca2+]i, but failed to induce LTD. When subthreshold synaptic stimulation was paired with back-propagating action potentials, however, large increases in [Ca2+]i were observed and robust LTD was induced. The LTD was blocked by the N-methyl-D-aspartate receptor (NMDAr) antagonist APV, and stimulus-induced increases in [Ca2+]i were reduced throughout the neuron under these conditions. The LTD was also dependent on Ca2+ influx via voltage-gated Ca2+ channels (VGCCs), because LTD was severely attenuated or blocked by both nimodipine and Ni2+. These findings suggest that back-propagating action potentials can exert a powerful control over the induction of LTD and that both VGCCs and NMDArs are involved in the induction of this form of plasticity.

  4. Stereological investigation of the CA1 pyramidal cell layer in untreated and lithium-treated 3xTg-AD and wild-type mice.

    PubMed

    Schaeffer, Evelin L; Catanozi, Sergio; West, Mark J; Gattaz, Wagner F

    2017-01-01

    Pyramidal neuron loss in the hippocampal CA1 region is a very early hallmark of Alzheimer disease (AD). Lithium might be a therapeutic strategy for AD due to its neuroprotective and neurotrophic properties. This study used modern stereological techniques to investigate possible CA1 pyramidal neuron loss in 11-month-old triple transgenic AD (3xTg-AD) mice, and also the effects of therapeutic and subtherapeutic lithium doses on the number and density of CA1 pyramidal neurons and volume of CA1 pyramidal layer in 3xTg-AD and wild-type mice treated from 3 to 11 months of age. 3xTg-AD mice displayed CA1 pyramidal layer atrophy that is likely due to reduced neuronal volume because of the absence of neuronal loss. Both lithium treatments of 3xTg-AD mice, which already expressed AD-like pathology, had no effect on CA1 atrophy. However, lithium treatment of wild-type mice, at low (subtherapeutic) doses, induced a significant increase in total CA1 pyramidal neuron number that led to a significant increase in total CA1 pyramidal layer volume. The lithium-induced increase in CA1 neuron number is highly consistent with previous evidence that adult neurogenesis can be exogenously induced in the CA1 pyramidal layer with impact on total CA1 neuron number, thus raising the possibility of the chronic use of low-dose lithium as a strategy to help compensate for neuronal loss in CA1 and perhaps other typically non-neurogenic brain regions in various neurological diseases. With regard to AD, low-dose lithium intervention must be initiated as early as possible in the course of neuropathology for beneficial effects to occur.

  5. Activation of 5‐HT2A receptors by TCB‐2 induces recurrent oscillatory burst discharge in layer 5 pyramidal neurons of the mPFC in vitro

    PubMed Central

    Spindle, Michael S.; Thomas, Mark P.

    2014-01-01

    Abstract The medial prefrontal cortex (mPFC) is a region of neocortex that plays an integral role in several cognitive processes which are abnormal in schizophrenic patients. As with other cortical regions, large‐bodied layer 5 pyramidal neurons serve as the principle subcortical output of microcircuits of the mPFC. The coexpression of both inhibitory serotonin 5‐HT1A receptors on the axon initial segments, and excitatory 5‐HT2A receptors throughout the somatodendritic compartments, by layer 5 pyramidal neurons allows serotonin to provide potent top–down regulation of input–output relationships within cortical microcircuits. Application of 5‐HT2A agonists has previously been shown to enhance synaptic input to layer 5 pyramidal neurons, as well as increase the gain in neuronal firing rate in response to increasing depolarizing current steps. Using whole‐cell patch‐clamp recordings obtained from layer 5 pyramidal neurons of the mPFC of C57/bl6 mice, the aim of our present study was to investigate the modulation of long‐term spike trains by the selective 5‐HT2A agonist TCB‐2. We found that in the presence of synaptic blockers, TCB‐2 induced recurrent oscillatory bursting (ROB) after 15–20 sec of tonic spiking in 7 of the 14 cells. In those seven cells, ROB discharge was accurately predicted by the presence of a voltage sag in response to a hyperpolarizing current injection. This effect was reversed by 5–10 min of drug washout and ROB discharge was inhibited by both synaptic activity and coapplication of the 5‐HT2A/2C antagonist ketanserin. While the full implications of this work are not yet understood, it may provide important insight into serotonergic modulation of cortical networks. PMID:24844635

  6. Human cortex development: estimates of neuronal numbers indicate major loss late during gestation.

    PubMed

    Rabinowicz, T; de Courten-Myers, G M; Petetot, J M; Xi, G; de los Reyes, E

    1996-03-01

    This morphometric study explores temporal and topographic changes in the estimated neuronal number in human neocortex during the latter half of gestation and early infancy. Neuronal estimates are calculated from standardized measurements of cortical layer thickness and neuronal density in 6 neocortical regions in 9 human brains ranging from 17 weeks of gestation to 13 weeks postnatally. Layer thickness increases linearly with age while the average neuronal density first increases, then reaches a maximum at 20 weeks of gestation, and progressively declines. The sum of layer thickness times layer density estimates the number of neurons in a cortical column with a fixed surface area and a length that is equal to the cortical thickness. To derive an estimate of potentially overproduced neurons, the number of neurons in each cortical column was corrected for surface growth and for cortex gyration. These data show that a large percent of cortical neurons present at 20 weeks of gestation are used to populate the expanding cortex. Nevertheless, the growth-corrected data suggest that a substantial overproduction and secondary reduction of cortical neurons takes place mainly during the last quarter of gestation. The corrected mean number of neurons reaches a maximum at 28 weeks of gestation and then declines by approximately 70% to achieve a stable number of neurons around birth. This estimated number of neurons is significantly higher at 28 to 32 weeks of gestation than at 17 to 20 gestational weeks and at 0 to 13 postnatal weeks. These data imply that physiologic neuronal death (apoptosis) may play a major role in early human cortex development.

  7. Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons

    PubMed Central

    Park, Yul Young; Johnston, Daniel

    2013-01-01

    The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na+ current (which we have called INaS) that shared many biophysical properties with the persistent Na+ current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na+ current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na+ current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na+ channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability. PMID:23236005

  8. Slowly inactivating component of Na+ current in peri-somatic region of hippocampal CA1 pyramidal neurons.

    PubMed

    Park, Yul Young; Johnston, Daniel; Gray, Richard

    2013-03-01

    The properties of voltage-gated ion channels on the neuronal membrane shape electrical activity such as generation and backpropagation of action potentials, initiation of dendritic spikes, and integration of synaptic inputs. Subthreshold currents mediated by sodium channels are of interest because of their activation near rest, slow inactivation kinetics, and consequent effects on excitability. Modulation of these currents can also perturb physiological responses of a neuron that might underlie pathological states such as epilepsy. Using nucleated patches from the peri-somatic region of hippocampal CA1 neurons, we recorded a slowly inactivating component of the macroscopic Na(+) current (which we have called INaS) that shared many biophysical properties with the persistent Na(+) current, INaP, but showed distinctively faster inactivating kinetics. Ramp voltage commands with a velocity of 400 mV/s were found to elicit this component of Na(+) current reliably. INaS also showed a more hyperpolarized I-V relationship and slower inactivation than those of the fast transient Na(+) current (INaT) recorded in the same patches. The peak amplitude of INaS was proportional to the peak amplitude of INaT but was much smaller in amplitude. Hexanol, riluzole, and ranolazine, known Na(+) channel blockers, were tested to compare their effects on both INaS and INaT. The peak conductance of INaS was preferentially blocked by hexanol and riluzole, but the shift of half-inactivation voltage (V1/2) was only observed in the presence of riluzole. Current-clamp measurements with hexanol suggested that INaS was involved in generation of an action potential and in upregulation of neuronal excitability.

  9. Relative number and distribution of murine hypothalamic proopiomelanocortin neurons innervating distinct target sites.

    PubMed

    King, Connie M; Hentges, Shane T

    2011-01-01

    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences.

  10. Relative Number and Distribution of Murine Hypothalamic Proopiomelanocortin Neurons Innervating Distinct Target Sites

    PubMed Central

    King, Connie M.; Hentges, Shane T.

    2011-01-01

    Proopiomelanocortin (POMC) neurons send projections widely throughout the brain consistent with their role in regulating numerous homeostatic processes and mediating analgesia and reward. Recent data suggest that POMC neurons located in the rostral and caudal extents of the arcuate nucleus of the hypothalamus may mediate selective actions, however it is not clear if POMC neurons in these regions of the arcuate nucleus innervate specific target sites. In the present study, fluorescent microspheres and cholera toxin B were used to retrogradely label POMC neurons in POMC-DsRed transgenic mice. The number and location of POMC cells projecting to the supraoptic nucleus, periaqueductal gray, ventral tegmental area, paraventricular nucleus, lateral hypothalamic nucleus, amygdala and the dosal vagal complex was determined. Tracer injected unilaterally labeled POMC neurons in both sides of the arcuate nucleus. While the total number of retrogradely labeled cells in the arcuate nucleus varied by injection site, less than 10% of POMC neurons were labeled with tracer injected into any target area. Limited target sites appear to be preferentially innervated by POMC neurons that reside in the rostral or caudal extremes of the arcuate nucleus, whereas the majority of target sites are innervated by diffusely distributed POMC neurons. The modest number of cells projecting to each target site indicates that relatively few POMC neurons may mediate potent and specific physiologic responses and therefore disturbed signaling in a very few POMC neurons may have significant consequences. PMID:21991375

  11. The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons

    PubMed Central

    Gulyás, Attila I.; Freund, Tamás F.; Káli, Szabolcs

    2016-01-01

    In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In

  12. The Effects of Realistic Synaptic Distribution and 3D Geometry on Signal Integration and Extracellular Field Generation of Hippocampal Pyramidal Cells and Inhibitory Neurons.

    PubMed

    Gulyás, Attila I; Freund, Tamás F; Káli, Szabolcs

    2016-01-01

    In vivo and in vitro multichannel field and somatic intracellular recordings are frequently used to study mechanisms of network pattern generation. When interpreting these data, neurons are often implicitly considered as electrotonically compact cylinders with a homogeneous distribution of excitatory and inhibitory inputs. However, the actual distributions of dendritic length, diameter, and the densities of excitatory and inhibitory input are non-uniform and cell type-specific. We first review quantitative data on the dendritic structure and synaptic input and output distribution of pyramidal cells (PCs) and interneurons in the hippocampal CA1 area. Second, using multicompartmental passive models of four different types of neurons, we quantitatively explore the effect of differences in dendritic structure and synaptic distribution on the errors and biases of voltage clamp measurements of inhibitory and excitatory postsynaptic currents. Finally, using the 3-dimensional distribution of dendrites and synaptic inputs we calculate how different inhibitory and excitatory inputs contribute to the generation of local field potential in the hippocampus. We analyze these effects at different realistic background activity levels as synaptic bombardment influences neuronal conductance and thus the propagation of signals in the dendritic tree. We conclude that, since dendrites are electrotonically long and entangled in 3D, somatic intracellular and field potential recordings miss the majority of dendritic events in some cell types, and thus overemphasize the importance of perisomatic inhibitory inputs and belittle the importance of complex dendritic processing. Modeling results also suggest that PCs and inhibitory neurons probably use different input integration strategies. In PCs, second- and higher-order thin dendrites are relatively well-isolated from each other, which may support branch-specific local processing as suggested by studies of active dendritic integration. In

  13. Activity-dependent downregulation of D-type K+ channel subunit Kv1.2 in rat hippocampal CA3 pyramidal neurons

    PubMed Central

    Hyun, Jung Ho; Eom, Kisang; Lee, Kyu-Hee; Ho, Won-Kyung; Lee, Suk-Ho

    2013-01-01

    The intrinsic excitability of neurons plays a critical role in the encoding of memory at Hebbian synapses and in the coupling of synaptic inputs to spike generation. It has not been studied whether somatic firing at a physiologically relevant frequency can induce intrinsic plasticity in hippocampal CA3 pyramidal cells (CA3-PCs). Here, we show that a conditioning train of 20 action potentials (APs) at 10 Hz causes a persistent reduction in the input conductance and an acceleration of the AP onset time in CA3-PCs, but not in CA1-PCs. Induction of such long-term potentiation of intrinsic excitability (LTP-IE) was accompanied by a reduction in the D-type K+ current, and was abolished by the inhibition of endocytosis or protein tyrosine kinase (PTK). Consistently, the CA3-PCs from Kv1.2 knock-out mice displayed no LTP-IE with the same conditioning. Furthermore, the induction of LTP-IE depended on the back-propagating APs (bAPs) and intact distal apical dendrites. These results indicate that LTP-IE is mediated by the internalization of Kv1.2 channels from the distal regions of apical dendrites, which is triggered by bAP-induced dendritic Ca2+ signalling and the consequent activation of PTK. PMID:23981714

  14. Effect of Dopaminergic D1 Receptors on Plasticity Is Dependent of Serotoninergic 5-HT1A Receptors in L5-Pyramidal Neurons of the Prefrontal Cortex

    PubMed Central

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective. PMID:25775449

  15. Effect of dopaminergic D1 receptors on plasticity is dependent of serotoninergic 5-HT1A receptors in L5-pyramidal neurons of the prefrontal cortex.

    PubMed

    Meunier, Claire Nicole Jeanne; Callebert, Jacques; Cancela, José-Manuel; Fossier, Philippe

    2015-01-01

    Major depression and schizophrenia are associated with dysfunctions of serotoninergic and dopaminergic systems mainly in the prefrontal cortex (PFC). Both serotonin and dopamine are known to modulate synaptic plasticity. 5-HT1A receptors (5-HT1ARs) and dopaminergic type D1 receptors are highly represented on dendritic spines of layer 5 pyramidal neurons (L5PyNs) in PFC. How these receptors interact to tune plasticity is poorly understood. Here we show that D1-like receptors (D1Rs) activation requires functional 5HT1ARs to facilitate LTP induction at the expense of LTD. Using 129/Sv and 5-HT1AR-KO mice, we recorded post-synaptic currents evoked by electrical stimulation in layer 2/3 after activation or inhibition of D1Rs. High frequency stimulation resulted in the induction of LTP, LTD or no plasticity. The D1 agonist markedly enhanced the NMDA current in 129/Sv mice and the percentage of L5PyNs displaying LTP was enhanced whereas LTD was reduced. In 5-HT1AR-KO mice, the D1 agonist failed to increase the NMDA current and orientated the plasticity towards L5PyNs displaying LTD, thus revealing a prominent role of 5-HT1ARs in dopamine-induced modulation of plasticity. Our data suggest that in pathological situation where 5-HT1ARs expression varies, dopaminergic treatment used for its ability to increase LTP could turn to be less and less effective.

  16. Intact long-term potentiation but reduced connectivity between neocortical layer 5 pyramidal neurons in a mouse model of Rett syndrome.

    PubMed

    Dani, Vardhan S; Nelson, Sacha B

    2009-09-09

    Mutations in MECP2 cause Rett syndrome and some related forms of mental retardation and autism. Mecp2-null mice exhibit symptoms reminiscent of Rett syndrome including deficits in learning. Previous reports demonstrated impaired long-term potentiation (LTP) in slices of symptomatic Mecp2-null mice, and decreased excitatory neurotransmission, but the causal relationship between these phenomena is unclear. Reduced plasticity could lead to altered transmission, or reduced excitatory transmission could alter the ability to induce LTP. To help distinguish these possibilities, we compared LTP induction and baseline synaptic transmission at synapses between layer 5 cortical pyramidal neurons in slices of wild-type and Mecp2-null mice. Paired recordings reveal that LTP induction mechanisms are intact in Mecp2-null connections, even after the onset of symptoms. However, fewer connections were found in Mecp2-null mice and individual connections were weaker. These data suggest that loss of MeCP2 function reduces excitatory synaptic connectivity and that this precedes deficits in plasticity.

  17. Activation of InsP3 receptors is sufficient for inducing graded intrinsic plasticity in rat hippocampal pyramidal neurons

    PubMed Central

    Ashhad, Sufyan; Johnston, Daniel

    2014-01-01

    The synaptic plasticity literature has focused on establishing necessity and sufficiency as two essential and distinct features in causally relating a signaling molecule to plasticity induction, an approach that has been surprisingly lacking in the intrinsic plasticity literature. In this study, we complemented the recently established necessity of inositol trisphosphate (InsP3) receptors (InsP3R) in a form of intrinsic plasticity by asking if InsP3R activation was sufficient to induce intrinsic plasticity in hippocampal neurons. Specifically, incorporation of d-myo-InsP3 in the recording pipette reduced input resistance, maximal impedance amplitude, and temporal summation but increased resonance frequency, resonance strength, sag ratio, and impedance phase lead. Strikingly, the magnitude of plasticity in all these measurements was dependent on InsP3 concentration, emphasizing the graded dependence of such plasticity on InsP3R activation. Mechanistically, we found that this InsP3-induced plasticity depended on hyperpolarization-activated cyclic nucleotide-gated channels. Moreover, this calcium-dependent form of plasticity was critically reliant on the release of calcium through InsP3Rs, the influx of calcium through N-methyl-d-aspartate receptors and voltage-gated calcium channels, and on the protein kinase A pathway. Our results delineate a causal role for InsP3Rs in graded adaptation of neuronal response dynamics, revealing novel regulatory roles for the endoplasmic reticulum in neural coding and homeostasis. PMID:25552640

  18. Requirement of cannabinoid CB(1) receptors in cortical pyramidal neurons for appropriate development of corticothalamic and thalamocortical projections.

    PubMed

    Wu, Chia-Shan; Zhu, Jie; Wager-Miller, Jim; Wang, Shan; O'Leary, Dennis; Monory, Krisztina; Lutz, Beat; Mackie, Ken; Lu, Hui-Chen

    2010-09-01

    A role for endocannabinoid signaling in neuronal morphogenesis as the brain develops has recently been suggested. Here we used the developing somatosensory circuit as a model system to examine the role of endocannabinoid signaling in neural circuit formation. We first show that a deficiency in cannabinoid receptor type 1 (CB(1)R), but not G-protein-coupled receptor 55 (GPR55), leads to aberrant fasciculation and pathfinding in both corticothalamic and thalamocortical axons despite normal target recognition. Next, we localized CB(1)R expression to developing corticothalamic projections and found little if any expression in thalamocortical axons, using a newly established reporter mouse expressing GFP in thalamocortical projections. A similar thalamocortical projection phenotype was observed following removal of CB(1)R from cortical principal neurons, clearly demonstrating that CB(1)R in corticothalamic axons was required to instruct their complimentary connections, thalamocortical axons. When reciprocal thalamic and cortical connections meet, CB(1)R-containing corticothalamic axons are intimately associated with elongating thalamocortical projections containing DGLβ, a 2-arachidonoyl glycerol (2-AG) synthesizing enzyme. Thus, 2-AG produced in thalamocortical axons and acting at CB(1)Rs on corticothalamic axons is likely to modulate axonal patterning. The presence of monoglyceride lipase, a 2-AG degrading enzyme, in both thalamocortical and corticothalamic tracts probably serves to restrict 2-AG availability. In summary, our study provides strong evidence that endocannabinoids are a modulator for the proposed 'handshake' interactions between corticothalamic and thalamocortical axons, especially for fasciculation. These findings are important in understanding the long-term consequences of alterations in CB(1)R activity during development, a potential etiology for the mental health disorders linked to prenatal cannabis use.

  19. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity.

    PubMed

    Corty, Megan M; Freeman, Marc R

    2013-11-11

    Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.

  20. Motor Training Promotes Both Synaptic and Intrinsic Plasticity of Layer II/III Pyramidal Neurons in the Primary Motor Cortex

    PubMed Central

    Kida, Hiroyuki; Tsuda, Yasumasa; Ito, Nana; Yamamoto, Yui; Owada, Yuji; Kamiya, Yoshinori; Mitsushima, Dai

    2016-01-01

    Motor skill training induces structural plasticity at dendritic spines in the primary motor cortex (M1). To further analyze both synaptic and intrinsic plasticity in the layer II/III area of M1, we subjected rats to a rotor rod test and then prepared acute brain slices. Motor skill consistently improved within 2 days of training. Voltage clamp analysis showed significantly higher α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate (AMPA/NMDA) ratios and miniature EPSC amplitudes in 1-day trained rats compared with untrained rats, suggesting increased postsynaptic AMPA receptors in the early phase of motor learning. Compared with untrained controls, 2-days trained rats showed significantly higher miniature EPSC amplitude and frequency. Paired-pulse analysis further demonstrated lower rates in 2-days trained rats, suggesting increased presynaptic glutamate release during the late phase of learning. One-day trained rats showed decreased miniature IPSC frequency and increased paired-pulse analysis of evoked IPSC, suggesting a transient decrease in presynaptic γ-aminobutyric acid (GABA) release. Moreover, current clamp analysis revealed lower resting membrane potential, higher spike threshold, and deeper afterhyperpolarization in 1-day trained rats—while 2-days trained rats showed higher membrane potential, suggesting dynamic changes in intrinsic properties. Our present results indicate dynamic changes in glutamatergic, GABAergic, and intrinsic plasticity in M1 layer II/III neurons after the motor training. PMID:27193420

  1. Characterization of L-type Voltage-Gated Ca2+ Channel Expression and Function in Developing CA3 Pyramidal Neurons

    PubMed Central

    Morton, Russell A.; Norlin, Mackenzie S.; Vollmer, Cyndel C.; Valenzuela, C. Fernando

    2013-01-01

    Voltage gated calcium channels (VGCCs) play a major role during the development of the central nervous system (CNS). Ca2+ influx via VGCCs regulates axonal growth and neuronal migration as well as synaptic plasticity. Specifically, L-type VGCCs have been well characterized to be involved in the formation and refinement of the connections within the CA3 region of the hippocampus. The majority of the growth, formation, and refinement in the CNS occurs during the human third trimester. An equivalent developmental time period in rodents occurs during the first two weeks of post-natal life, and the expression pattern of L-type VGCCs during this time period has not been well characterized. In this study, we show that Cav1.2 channels are more highly expressed during this developmental period compared to adolescence (post-natal day 30) and that L-type VGCCs significantly contribute to the overall Ca2+ currents. These findings suggest that L-type VGCCs are functionally expressed during the crucial developmental period. PMID:23415785

  2. Neurons selective to the number of visual items in the corvid songbird endbrain

    PubMed Central

    Ditz, Helen M.; Nieder, Andreas

    2015-01-01

    It is unknown whether anatomical specializations in the endbrains of different vertebrates determine the neuronal code to represent numerical quantity. Therefore, we recorded single-neuron activity from the endbrain of crows trained to judge the number of items in displays. Many neurons were tuned for numerosities irrespective of the physical appearance of the items, and their activity correlated with performance outcome. Comparison of both behavioral and neuronal representations of numerosity revealed that the data are best described by a logarithmically compressed scaling of numerical information, as postulated by the Weber–Fechner law. The behavioral and neuronal numerosity representations in the crow reflect surprisingly well those found in the primate association cortex. This finding suggests that distantly related vertebrates with independently developed endbrains adopted similar neuronal solutions to process quantity. PMID:26056278

  3. Age-Dependent Neurogenesis and Neuron Numbers within the Olfactory Bulb and Hippocampus of Homing Pigeons

    PubMed Central

    Meskenaite, Virginia; Krackow, Sven; Lipp, Hans-Peter

    2016-01-01

    Many birds are supreme long-distance navigators that develop their navigational ability in the first months after fledgling but update the memorized environmental information needed for navigation also later in life. We studied the extent of juvenile and adult neurogenesis that could provide such age-related plasticity in brain regions known to mediate different mechanisms of pigeon homing: the olfactory bulb (OB), and the triangular area of the hippocampal formation (HP tr). Newly generated neurons (visualized by doublecortin, DCX) and mature neurons were counted stereologically in 35 pigeon brains ranging from 1 to 168 months of age. At the age of 1 month, both areas showed maximal proportions of DCX positive neurons, which rapidly declined during the first year of life. In the OB, the number of DCX-positive periglomerular neurons declined further over time, but the number of mature periglomerular cells appeared unchanged. In the hippocampus, the proportion of DCX-positive neurons showed a similar decline yet to a lesser extent. Remarkably, in the triangular area of the hippocampus, the oldest birds showed nearly twice the number of neurons as compared to young adult pigeons, suggesting that adult born neurons in these regions expanded the local circuitry even in aged birds. This increase might reflect navigational experience and, possibly, expanded spatial memory. On the other hand, the decrease of juvenile neurons in the aging OB without adding new circuitry might be related to the improved attachment to the loft characterizing adult and old pigeons. PMID:27445724

  4. Early postnatal administration of growth hormone increases tuberoinfundibular dopaminergic neuron numbers in Ames dwarf mice.

    PubMed

    Khodr, Christina E; Clark, Sara; Bokov, Alex F; Richardson, Arlan; Strong, Randy; Hurley, David L; Phelps, Carol J

    2010-07-01

    Hypothalamic tuberoinfundibular dopaminergic (TIDA) neurons secrete dopamine, which inhibits pituitary prolactin (PRL) secretion. PRL has demonstrated neurotrophic effects on TIDA neuron development in PRL-, GH-, and TSH-deficient Ames (df/df) and Snell (dw/dw) dwarf mice. However, both PRL and PRL receptor knockout mice exhibit normal-sized TIDA neuron numbers, implying GH and/or TSH influence TIDA neuron development. The current study investigated the effect of porcine (p) GH on TIDA neuron development in Ames dwarf hypothalamus. Normal (DF/df) and dwarf mice were treated daily with pGH or saline beginning at 3 d of age for a period of 42 d. After treatment, brains were analyzed using catecholamine histofluorescence, tyrosine hydroxylase immunocytochemistry, and bromodeoxyuridine (BrdU) immunocytochemistry to detect BrdU incorporation. DF/df males and df/df treated with pGH experienced increased (P neuron numbers than df/df, regardless of treatment. TIDA neuron number in pGH-treated df/df was greater (P neurons were not affected by treatment or genotype. There was no effect of genotype or treatment on BrdU incorporation in the arcuate nucleus, median eminence, or periventricular region surrounding the third ventricle. Saline-treated df/df experienced decreased (P neuron development, although this effect is less potent than that of PRL, and likely GH-induced preservation of TIDA neurons rather than generation of new TIDA neurons via neurogenesis.

  5. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    PubMed

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  6. Dendritic signals from rat hippocampal CA1 pyramidal neurons during coincident pre- and post-synaptic activity: a combined voltage- and calcium-imaging study

    PubMed Central

    Canepari, Marco; Djurisic, Maja; Zecevic, Dejan

    2007-01-01

    The non-linear and spatially inhomogeneous interactions of dendritic membrane potential signals that represent the first step in the induction of activity-dependent long-term synaptic plasticity are not fully understood, particularly in dendritic regions which are beyond the reach of electrode measurements. We combined voltage-sensitive-dye recordings and Ca2+ imaging of hippocampal CA1 pyramidal neurons to study large regions of the dendritic arbor, including branches of small diameter (distal apical and oblique dendrites). Dendritic membrane potential transients were monitored at high spatial resolution and correlated with supra-linear [Ca2+]i changes during one cycle of a repetitive patterned stimulation protocol that typically results in the induction of long-term potentiation (LTP). While the increase in the peak membrane depolarization during coincident pre- and post-synaptic activity was required for the induction of supra-linear [Ca2+]i signals shown to be necessary for LTP, the change in the baseline-to-peak amplitude of the backpropagating dendritic action potential (bAP) was not critical in this process. At different dendritic locations, the baseline-to-peak amplitude of the bAP could be either increased, decreased or unaltered at sites where EPSP–AP pairing evoked supra-linear summation of [Ca2+]i transients. We suggest that modulations in the bAP baseline-to-peak amplitude by local EPSPs act as a mechanism that brings the membrane potential into the optimal range for Ca2+ influx through NMDA receptors (0 to −15 mV); this may require either boosting or the reduction of the bAP, depending on the initial size of both signals. PMID:17272348

  7. Differential Vulnerability of CA1 versus CA3 Pyramidal Neurons After Ischemia: Possible Relationship to Sources of Zn2+ Accumulation and Its Entry into and Prolonged Effects on Mitochondria.

    PubMed

    Medvedeva, Yuliya V; Ji, Sung G; Yin, Hong Z; Weiss, John H

    2017-01-18

    Excitotoxic mechanisms contribute to the degeneration of hippocampal pyramidal neurons after recurrent seizures and brain ischemia. However, susceptibility differs, with CA1 neurons degenerating preferentially after global ischemia and CA3 neurons after limbic seizures. Whereas most studies address contributions of excitotoxic Ca(2+) entry, it is apparent that Zn(2+) also contributes, reflecting accumulation in neurons either after synaptic release and entry through postsynaptic channels or upon mobilization from intracellular Zn(2+)-binding proteins such as metallothionein-III (MT-III). Using mouse hippocampal slices to study acute oxygen glucose deprivation (OGD)-triggered neurodegeneration, we found evidence for early contributions of excitotoxic Ca(2+) and Zn(2+) accumulation in both CA1 and CA3, as indicated by the ability of Zn(2+) chelators or Ca(2+) entry blockers to delay pyramidal neuronal death in both regions. However, using knock-out animals (of MT-III and vesicular Zn(2+) transporter, ZnT3) and channel blockers revealed substantial differences in relevant Zn(2+) sources, with critical contributions of presynaptic release and its permeation through Ca(2+)- (and Zn(2+))-permeable AMPA channels in CA3 and Zn(2+) mobilization from MT-III predominating in CA1. To assess the consequences of the intracellular Zn(2+) accumulation, we used OGD exposures slightly shorter than those causing acute neuronal death; under these conditions, cytosolic Zn(2+) rises persisted for 10-30 min after OGD, followed by recovery over ∼40-60 min. Furthermore, the recovery appeared to be accompanied by mitochondrial Zn(2+) accumulation (via the mitochondrial Ca(2+) uniporter MCU) in CA1 but not in CA3 neurons and was markedly diminished in MT-III knock-outs, suggesting that it depended upon Zn(2+) mobilization from this protein.

  8. Hippocampal Neuron Number Is Unchanged 1 Year After Fractionated Whole-Brain Irradiation at Middle Age

    SciTech Connect

    Shi Lei Molina, Doris P.; Robbins, Michael E.; Wheeler, Kenneth T.; Brunso-Bechtold, Judy K.

    2008-06-01

    Purpose: To determine whether hippocampal neurons are lost 12 months after middle-aged rats received a fractionated course of whole-brain irradiation (WBI) that is expected to be biologically equivalent to the regimens used clinically in the treatment of brain tumors. Methods and Materials: Twelve-month-old Fischer 344 X Brown Norway male rats were divided into WBI and control (CON) groups (n = 6 per group). Anesthetized WBI rats received 45 Gy of {sup 137}Cs {gamma} rays delivered as 9 5-Gy fractions twice per week for 4.5 weeks. Control rats were anesthetized but not irradiated. Twelve months after WBI completion, all rats were anesthetized and perfused with paraformaldehyde, and hippocampal sections were immunostained with the neuron-specific antibody NeuN. Using unbiased stereology, total neuron number and the volume of the neuronal and neuropil layers were determined in the dentate gyrus, CA3, and CA1 subregions of hippocampus. Results: No differences in tissue integrity or neuron distribution were observed between the WBI and CON groups. Moreover, quantitative analysis demonstrated that neither total neuron number nor the volume of neuronal or neuropil layers differed between the two groups for any subregion. Conclusions: Impairment on a hippocampal-dependent learning and memory test occurs 1 year after fractionated WBI at middle age. The same WBI regimen, however, does not lead to a loss of neurons or a reduction in the volume of hippocampus.

  9. Differences in Number of Midbrain Dopamine Neurons Associated with Summer and Winter Photoperiods in Humans

    PubMed Central

    Aumann, Tim D.; Raabus, Mai; Tomas, Doris; Prijanto, Agustinus; Churilov, Leonid; Spitzer, Nicholas C.; Horne, Malcolm K.

    2016-01-01

    Recent evidence indicates the number of dopaminergic neurons in the adult rodent hypothalamus and midbrain is regulated by environmental cues, including photoperiod, and that this occurs via up- or down-regulation of expression of genes and proteins that are important for dopamine (DA) synthesis in extant neurons (‘DA neurotransmitter switching’). If the same occurs in humans, it may have implications for neurological symptoms associated with DA imbalances. Here we tested whether there are differences in the number of tyrosine hydroxylase (TH, the rate-limiting enzyme in DA synthesis) and DA transporter (DAT) immunoreactive neurons in the midbrain of people who died in summer (long-day photoperiod, n = 5) versus winter (short-day photoperiod, n = 5). TH and DAT immunoreactivity in neurons and their processes was qualitatively higher in summer compared with winter. The density of TH immunopositive (TH+) neurons was significantly (~6-fold) higher whereas the density of TH immunonegative (TH-) neurons was significantly (~2.5-fold) lower in summer compared with winter. The density of total neurons (TH+ and TH- combined) was not different. The density of DAT+ neurons was ~2-fold higher whereas the density of DAT- neurons was ~2-fold lower in summer compared with winter, although these differences were not statistically significant. In contrast, midbrain nuclear volume, the density of supposed glia (small TH- cells), and the amount of TUNEL staining were the same in summer compared with winter. This study provides the first evidence of an association between environmental stimuli (photoperiod) and the number of midbrain DA neurons in humans, and suggests DA neurotransmitter switching underlies this association. PMID:27428306

  10. Stereological Analysis of Neuron, Glial and Endothelial Cell Numbers in the Human Amygdaloid Complex

    PubMed Central

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm3 and mean cell numbers (x106) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals’ age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions. PMID:22719923

  11. Stereological analysis of neuron, glial and endothelial cell numbers in the human amygdaloid complex.

    PubMed

    García-Amado, María; Prensa, Lucía

    2012-01-01

    Cell number alterations in the amygdaloid complex (AC) might coincide with neurological and psychiatric pathologies with anxiety imbalances as well as with changes in brain functionality during aging. This stereological study focused on estimating, in samples from 7 control individuals aged 20 to 75 years old, the number and density of neurons, glia and endothelial cells in the entire AC and in its 5 nuclear groups (including the basolateral (BL), corticomedial and central groups), 5 nuclei and 13 nuclear subdivisions. The volume and total cell number in these territories were determined on Nissl-stained sections with the Cavalieri principle and the optical fractionator. The AC mean volume was 956 mm(3) and mean cell numbers (x10(6)) were: 15.3 neurons, 60 glial cells and 16.8 endothelial cells. The numbers of endothelial cells and neurons were similar in each AC region and were one fourth the number of glial cells. Analysis of the influence of the individuals' age at death on volume, cell number and density in each of these 24 AC regions suggested that aging does not affect regional size or the amount of glial cells, but that neuron and endothelial cell numbers respectively tended to decrease and increase in territories such as AC or BL. These accurate stereological measures of volume and total cell numbers and densities in the AC of control individuals could serve as appropriate reference values to evaluate subtle alterations in this structure in pathological conditions.

  12. Accelerated dendritic development of rat cortical pyramidal cells and interneurons after biolistic transfection with BDNF and NT4/5.

    PubMed

    Wirth, Marcus J; Brun, Annika; Grabert, Jochen; Patz, Silke; Wahle, Petra

    2003-12-01

    Neurotrophins are candidate molecules for regulating dendritogenesis. We report here on dendritic growth of rat visual cortex pyramidal and interneurons overexpressing 'brain-derived neurotrophic factor' BDNF and 'neurotrophin 4/5' NT4/5. Neurons in organotypic cultures were transfected with plasmids encoding either 'enhanced green fluorescent protein' EGFP, BDNF/EGFP or NT4/5/EGFP either at the day of birth with analysis at 5 days in vitro, or at 5 days in vitro with analysis at 10 days in vitro. In pyramidal neurons, both TrkB ligands increased dendritic length and number of segments without affecting maximum branch order and number of primary dendrites. In the early time window, only infragranular neurons were responsive. Neurons in layers II/III became responsive to NT4/5, but not BDNF, during the later time window. BDNF and NT4/5 transfectants at 10 days in vitro had still significantly shorter dendrites than adult pyramidal neurons, suggesting a massive growth spurt after 10 days in vitro. However, segment numbers were already in the range of adult neurons. Although this suggested a role for BDNF, long-term activity-deprived, and thus BDNF-deprived, pyramidal cells developed a dendritic complexity not different from neurons in active cultures except for higher spine densities on neurons of layers II/III and VI. Neutralization of endogenous NT4/5 causes shorter and less branched dendrites at 10 days in vitro suggesting an essential role for NT4/5. Neutralization of BDNF had no effect. Transfected multipolar interneurons became identifiable during the second time window. Both TrkB ligands significantly increased number of segments and branch order towards the adult state with little effects on dendritic length. The results suggested that early in development BDNF and NT4/5 probably accelerate dendritogenesis in an autocrine fashion. In particular, branch formation was advanced towards the adult pattern in pyramidal cells and interneurons.

  13. Stereological estimation of the number of neurons in the human amygdaloid complex.

    PubMed

    Schumann, Cynthia Mills; Amaral, David G

    2005-10-31

    Pathological changes in neuronal density in the amygdaloid complex have been associated with various neurological disorders. However, due to variable shrinkage during tissue processing, the only way to determine changes in neuron number unambiguously is to estimate absolute counts, rather than neuronal density. As the first stage in evaluating potential neuropathology of the amygdala in autism, the total number of neurons was estimated in the control human amygdaloid complex by using stereological sampling. The intact amygdaloid complex from one hemisphere of 10 brains was frozen and sectioned. One 100-microm section was selected every 500 microm and stained by the standard Nissl method. The entire amygdaloid complex was outlined and then further partitioned into five reliably defined subdivisions: 1) the lateral nucleus, 2) the basal nucleus, 3) the accessory basal nucleus, 4) the central nucleus, and 5) the remaining nuclei (including anterior cortical, anterior amygdaloid area, periamygdaloid cortex, medial, posterior cortical, nucleus of the lateral olfactory tract, amygdalohippocampal area, and intercalated nuclei). The number of neurons was measured by using an optical fractionator with Stereoinvestigator software. The mean number of neurons (x 10(6)) for each region was as follows: lateral nucleus 4.00, basal nucleus 3.24, accessory basal nucleus 1.28, central nucleus 0.36, remaining nuclei 3.33, and total amygdaloid complex 12.21. The stereological assessment of neuron number in the human amygdala provides an essential baseline for comparison of patient populations, such as autism, in which the amygdala may develop abnormally. To facilitate these types of analyses, this paper provides a detailed anatomical description of the methods used to define subdivisions of the human amygdaloid complex.

  14. Dissociation between two subgroups of the suprachiasmatic nucleus affected by the number of damped oscillated neurons

    NASA Astrophysics Data System (ADS)

    Gu, Changgui; Yang, Huijie; Rohling, Jos HT

    2017-03-01

    In mammals, the main clock located in the suprachiasmatic nucleus (SCN) of the brain synchronizes the body rhythms to the environmental light-dark cycle. The SCN is composed of about 2 ×104 neurons which can be classified into three oscillatory phenotypes: self-sustained oscillators, damped oscillators, and arrhythmic neurons. Exposed to an artificial external light-dark cycle with a period of 22 h instead of 24 h , two subgroups of the SCN can become desynchronized (dissociated). The ventrolateral (VL) subgroup receives photic input and is entrained to the external cycle and a dorsomedial (DM) subgroup oscillates with its endogenous (i.e., free running) period and is synchronized to the external light-dark cycle through coupling from the VL. In the present study, we examined the effects of damped oscillatory neurons on the dissociation between VL and DM under an external 22 h cycle. We found that, with increasing numbers of damped oscillatory neurons located in the VL, the dissociation between the VL and DM emerges, but if these neurons are increasingly present in the DM the dissociation disappears. Hence, the damped oscillatory neurons in different subregions of the SCN play distinct roles in the dissociation between the two subregions of the SCN. This shows that synchrony between SCN subregions is affected by the number of damped oscillatory neurons and the location of these cells. We suggest that more knowledge on the number and the location of these cells may explain why some species do show a dissociation between the subregions and others do not, as the distribution of oscillatory types of neurons offers a plausible and novel candidate mechanism to explain heterogeneity.

  15. Birds have primate-like numbers of neurons in the forebrain

    PubMed Central

    Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel

    2016-01-01

    Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365

  16. Computing the size and number of neuronal clusters in local circuits.

    PubMed

    Perin, Rodrigo; Telefont, Martin; Markram, Henry

    2013-01-01

    The organization of connectivity in neuronal networks is fundamental to understanding the activity and function of neural networks and information processing in the brain. Recent studies show that the neocortex is not only organized in columns and layers but also, within these, into synaptically connected clusters of neurons (Ko et al., 2011; Perin et al., 2011). The recently discovered common neighbor rule, according to which the probability of any two neurons being synaptically connected grows with the number of their common neighbors, is an organizing principle for this local clustering. Here we investigated the theoretical constraints for how the spatial extent of neuronal axonal and dendritic arborization, heretofore described by morphological reach, the density of neurons and the size of the network determine cluster size and numbers within neural networks constructed according to the common neighbor rule. In the formulation we developed, morphological reach, cell density, and network size are sufficient to estimate how many neurons, on average, occur in a cluster and how many clusters exist in a given network. We find that cluster sizes do not grow indefinitely as network parameters increase, but tend to characteristic limiting values.

  17. Primates exposed to cocaine in utero display reduced density and number of cerebral cortical neurons.

    PubMed

    Lidow, M S; Song, Z M

    2001-07-02

    This study examined the effects of cocaine use during the second trimester of pregnancy on cerebral neocortical volume and density, and total number of neocortical neurons and glia in offspring. We also evaluated the extent of postnatal recovery of cytoarchitectural abnormalities previously observed in the neocortex of two-month-old primates born from cocaine-treated mothers (Lidow [1995] Synapse 21:332-334). Pregnant monkeys received cocaine orally (20 mg/kg/day) from the 40th to 102nd days of pregnancy (embryonic day [E]40-E102). On E64 and E65, the animals were injected with [(3)H]thymidine. Cerebral hemispheres of the offspring were examined at three years of age. We found a reduction in the neocortical volume and density and total number of neocortical neurons. The observed reduction in neuronal number within the neocortex was not accounted for by the increase in the number of neurons in the white matter of cocaine-exposed animals, because the number of these "extra" neurons was equal to only half that of missing neurons. We detected no significant changes in the number of neocortical glia. The cytoarchitectural abnormalities in the neocortex of prenatally cocaine-exposed three-year-old monkeys closely resembled previously described neocortical abnormalities in similarly exposed two-month-old animals: the neocortex lacked a discernible lamination; the majority of the cells labeled by [(3)H]thymidine injected during neocortical neurogenesis did not reach their proper position within the cortical plate. Therefore, postnatal maturation is not associated with significant improvement in neocortical organization in primates prenatally exposed to cocaine. There was, however, a postnatal recovery of low glial fibrillary acidic protein (GFAP) immunoreactivity previously observed in 2-month-old cocaine-exposed animals.

  18. No relative expansion of the number of prefrontal neurons in primate and human evolution

    PubMed Central

    Gabi, Mariana; Neves, Kleber; Masseron, Carolinne; Ribeiro, Pedro F. M.; Ventura-Antunes, Lissa; Torres, Laila; Mota, Bruno; Kaas, Jon H.; Herculano-Houzel, Suzana

    2016-01-01

    Human evolution is widely thought to have involved a particular expansion of prefrontal cortex. This popular notion has recently been challenged, although controversies remain. Here we show that the prefrontal region of both human and nonhuman primates holds about 8% of cortical neurons, with no clear difference across humans and other primates in the distribution of cortical neurons or white matter cells along the anteroposterior axis. Further, we find that the volumes of human prefrontal gray and white matter match the expected volumes for the number of neurons in the gray matter and for the number of other cells in the white matter compared with other primate species. These results indicate that prefrontal cortical expansion in human evolution happened along the same allometric trajectory as for other primate species, without modification of the distribution of neurons across its surface or of the volume of the underlying white matter. We thus propose that the most distinctive feature of the human prefrontal cortex is its absolute number of neurons, not its relative volume. PMID:27503881

  19. Early undernutrition decreases the number of neurons in the locus coeruleus of rats.

    PubMed

    Pinos, Helena; Collado, Paloma; Salas, Manuel; Pérez-Torrero, Esther

    2006-01-01

    The effects of perinatal undernutrition on the number of neurons and apoptotic cells of the locus coeruleus (LC) of female and male rats at postpartum days 7, 12, 20, 30 and 60 were studied. Undernutrition reduces the number of neurons in both sexes without affecting cell death, as indicated by the ratio of apoptotic cells to neurons. The data suggest that in the undernourished groups lower rates of neurogenesis and proliferation (neurogenetic/proliferation rates) might avoid these animals achieving the number of LC neurons as in the control subjects. Although food restriction in both sexes apparently provokes the loss of cells, the effect does not appear to be equal in females and males, as shown by post weaning food rehabilitation. The results suggest that severe food deprivation may interfere with the ontogenetic processes underlying neuronal differentiation of the LC. Morphological damage in the LC due to undernutrition might alter the physiology of sexual and/or feeding behaviours in which this structure is implicated.

  20. Metabolic constraint imposes tradeoff between body size and number of brain neurons in human evolution

    PubMed Central

    Fonseca-Azevedo, Karina; Herculano-Houzel, Suzana

    2012-01-01

    Despite a general trend for larger mammals to have larger brains, humans are the primates with the largest brain and number of neurons, but not the largest body mass. Why are great apes, the largest primates, not also those endowed with the largest brains? Recently, we showed that the energetic cost of the brain is a linear function of its numbers of neurons. Here we show that metabolic limitations that result from the number of hours available for feeding and the low caloric yield of raw foods impose a tradeoff between body size and number of brain neurons, which explains the small brain size of great apes compared with their large body size. This limitation was probably overcome in Homo erectus with the shift to a cooked diet. Absent the requirement to spend most available hours of the day feeding, the combination of newly freed time and a large number of brain neurons affordable on a cooked diet may thus have been a major positive driving force to the rapid increased in brain size in human evolution. PMID:23090991

  1. Early-life environmental intervention may increase the number of neurons, astrocytes, and cellular proliferation in the hippocampus of rats.

    PubMed

    Winkelmann-Duarte, Elisa C; Padilha-Hoffmann, Camila B; Martins, Daniel F; Schuh, Artur F S; Fernandes, Marilda C; Santin, Ricardo; Merlo, Suelen; Sanvitto, Gilberto L; Lucion, Aldo B

    2011-11-01

    Neonatal handling reduces the stress response in adulthood due to a feedback mechanism. The present study analyzed the effects of repeated neonatal environmental intervention (daily handling during the first 10 days after birth) on neuron-, astroglial cell density, and cellular proliferation of the hippocampal (CA1, CA2, and CA3) pyramidal cell layers in female rats. Pups were divided into two groups, nonhandled and handled, which were submitted to repeated handling sessions between postnatal days 1 and 10. Histological and immunohistochemical procedures were used to determine changes in neuron density, astroglial cell density, and cellular proliferation. We found an increase in neuron density in each pyramidal cell layer of the hippocampus (CA1, CA2, and CA3) in female rats (11 and 90 day old) that were handled during the neonatal period. Furthermore, we found an increase in astroglial cell density in both hemispheres of the brain in the handled group. Finally, we observed an increase in cellular proliferation in both hippocampi (CA1, CA2, and CA3) of the brain in female pups (11 days old) handled during the neonatal period. This study demonstrates that an early-life environmental intervention may induce morphological changes in a structure involved with several functions, including the stress response. The results of the current study suggest that neonatal handling may influence the animals' responses to environmental adversities later in life.

  2. Novel bio-spectroscopic imaging reveals disturbed protein homeostasis and thiol redox with protein aggregation prior to hippocampal CA1 pyramidal neuron death induced by global brain ischemia in the rat.

    PubMed

    Hackett, Mark J; Smith, Shari E; Caine, Sally; Nichol, Helen; George, Graham N; Pickering, Ingrid J; Paterson, Phyllis G

    2015-12-01

    occur in the same CA1 pyramidal neurons 1 day after global ischemia. Further, analysis of serial tissue sections using X-ray absorption spectroscopy at the sulfur K-edge has revealed that CA1 pyramidal neurons have increased disulfide levels, a direct indicator of oxidative stress, at this time point. These changes at 1 day after ischemia precede a massive increase in aggregated protein and disulfide levels concomitant with loss of neuron integrity 2 days after ischemia. Therefore, this study has provided direct support for a correlative mechanistic link in both spatial and temporal domains between oxidative stress, protein aggregation and altered protein homeostasis prior to irreparable neuron damage following global ischemia.

  3. Organization of the histaminergic system in adult zebrafish (Danio rerio) brain: neuron number, location, and cotransmitters.

    PubMed

    Sundvik, Maria; Panula, Pertti

    2012-12-01

    Histamine is an essential factor in the ascending arousal system (AAS) during motivated behaviors. Histamine and hypocretin/orexin (hcrt) are proposed to be responsible for different aspects of arousal and wakefulness, histamine mainly for cognitive and motivated behaviors. In this study we visualized the entire histaminergic neuron population in adult male and female zebrafish brain and quantified the histaminergic neuron numbers. There were 40-45 histaminergic neurons in both male and female zebrafish brain. Further, we identified cotransmitters of histaminergic neurons in the ventrocaudal hypothalamus, i.e., around the posterior recess (PR) in adult zebrafish. Galanin, γ-aminobutyric acid (GABA), and thyrotropin-releasing hormone (TRH) were colocalized with histamine in some but not all neurons, a result that was verified by intracerebroventricular injections of colchicine into adult zebrafish. Fibers immunoreactive (ir) for galanin, GABA, TRH, or methionine-enkephalin (mENK) were dense in the ventrocaudal hypothalamus around the histaminergic neurons. In histamine-ir fibers TRH and galanin immunoreactivities were also detected in the ventral telencephalon. All these neurotransmitters are involved in maintaining the equilibrium of the sleep-wake state. Our results are in accordance with results from rats, further supporting the use of zebrafish as a tool to study molecular mechanisms underlying complex behaviors.

  4. Reduced number of axonal mitochondria and tau hypophosphorylation in mouse P301L tau knockin neurons.

    PubMed

    Rodríguez-Martín, Teresa; Pooler, Amy M; Lau, Dawn H W; Mórotz, Gábor M; De Vos, Kurt J; Gilley, Jonathan; Coleman, Michael P; Hanger, Diane P

    2016-01-01

    Expression of the frontotemporal dementia-related tau mutation, P301L, at physiological levels in adult mouse brain (KI-P301L mice) results in overt hypophosphorylation of tau and age-dependent alterations in axonal mitochondrial transport in peripheral nerves. To determine the effects of P301L tau expression in the central nervous system, we examined the kinetics of mitochondrial axonal transport and tau phosphorylation in primary cortical neurons from P301L knock-in (KI-P301L) mice. We observed a significant 50% reduction in the number of mitochondria in the axons of cortical neurons cultured from KI-P301L mice compared to wild-type neurons. Expression of murine P301L tau did not change the speed, direction of travel or likelihood of movement of mitochondria. Notably, the angle that defines the orientation of the mitochondria in the axon, and the volume of individual moving mitochondria, were significantly increased in neurons expressing P301L tau. We found that murine tau phosphorylation in KI-P301L mouse neurons was diminished and the ability of P301L tau to bind to microtubules was also reduced compared to tau in wild-type neurons. The P301L mutation did not influence the ability of murine tau to associate with membranes in cortical neurons or in adult mouse brain. We conclude that P301L tau is associated with mitochondrial changes and causes an early reduction in murine tau phosphorylation in neurons coupled with impaired microtubule binding of tau. These results support the association of mutant tau with detrimental effects on mitochondria and will be of significance for the pathogenesis of tauopathies.

  5. Preservation of hippocampal neuron numbers and hippocampal subfield volumes in behaviorally characterized aged tree shrews.

    PubMed

    Keuker, Jeanine I H; de Biurrun, Gabriel; Luiten, Paul G M; Fuchs, Eberhard

    2004-01-19

    Aging is associated with a decreased ability to store and retrieve information. The hippocampal formation plays a critical role in such memory processes, and its integrity is affected during normal aging. We used tree shrews (Tupaia belangeri) as an animal model of aging, because in many characteristics, tree shrews are closer to primates than they are to rodents. Young and aged male tree shrews performed a holeboard spatial memory task, which permits assessment of reference and working memory. Upon completion of the behavioral measurements, we carried out modified stereological analyses of neuronal numbers in various subdivisions of the hippocampus and used the Cavalieri method to calculate the volumes of these subfields. Results showed that the working memory of aged tree shrews was significantly impaired compared with that of young animals, whereas the hippocampus-dependent reference memory remained unchanged by aging. Estimation of the number of neurons revealed preserved neuron numbers in the subiculum, in the subregions CA1, CA2, CA3, and in the hilus of the dentate gyrus. Volume measurements showed no aging-related changes in the volume of any of these hippocampal subregions, or in the molecular and granule cell layers of the dentate gyrus of tree shrews. We conclude that the observed changes in memory performance in aging tree shrews are not accompanied by observable reductions of hippocampal neuron numbers or hippocampal volume, rather, the changes in memory performance are more likely the result of modified subcellular mechanisms that are affected by the aging process.

  6. Neuron numbers in sensory cortices of five delphinids compared to a physeterid, the pygmy sperm whale.

    PubMed

    Poth, C; Fung, C; Güntürkün, O; Ridgway, S H; Oelschläger, H H A

    2005-09-15

    With its large mass and enormous gyrification, the neocortex of whales and dolphins has always been a challenge to neurobiologists. Here we analyse the relationship between neuron number per cortical unit in three different sensory areas and brain mass in six different toothed whale species, five delphinids and one physeterid. Cortex samples, including primary cortical areas of the auditory, visual, and somatosensory systems were taken from both hemispheres of brains fixed in 10% buffered formalin. The samples were embedded in paraffin, sectioned at 25 microm thickness and stained with cresyl violet. Because cortical thickness varies among toothed whale species, cell counts were done in cortical units measuring 150mum in width, 25 microm in thickness, and extending from the pial surface to the white matter. By arranging the delphinid brains according to their total mass, 834-6052 g, we found decreasing neuron numbers in the investigated areas with increasing brain mass. The pigmy sperm whale (Kogia breviceps), a physeterid with an adult brain weight of 1000 g had a distinctly lower neuron number per cortical unit. As had been expected, an increase in adult brain weight in delphinid cetaceans (family Delphinidae) is not correlated with an increase in neuron number per cortical unit.

  7. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism

    ERIC Educational Resources Information Center

    Vaccarino, Flora M.; Grigorenko, Elena L.; Smith, Karen Muller; Stevens, Hanna E.

    2009-01-01

    Increased brain size is common in children with autism spectrum disorders. Here we propose that an increased number of cortical excitatory neurons may underlie the increased brain volume, minicolumn pathology and excessive network excitability, leading to sensory hyper-reactivity and seizures, which are often found in autism. We suggest that…

  8. The total number of neurons and calcium binding protein positive neurons during aging in the cochlear nucleus of CBA/CaJ mice: a quantitative study.

    PubMed

    Idrizbegovic, E; Canlon, B; Bross, L S; Willott, J F; Bogdanovic, N

    2001-08-01

    The quantitative stereological method, the optical fractionator, was used for determining the total number of neurons and the total number of neurons immunostained with parvalbumin, calbindin-D28k (calbindin), and calretinin in the dorsal and posteroventral cochlear nucleus (DCN and PVCN) in CBA/CaJ (CBA) mice during aging (1-39 months old). CBA mice have only a modest sensorineural pathology late in life. An age-related decrease of the total number of neurons was demonstrated in the DCN (r=-0.54, P<0.03), while the total number of neurons in the PVCN did not show any significant age-related differences (r=0.16, P=0.57). In the DCN 5.5% of neurons were parvalbumin positive in the very old (30-39 months) mice, vs. 2.2% in the 1 month old mice. In the DCN 3% of the neurons were calbindin immunopositive in the 30-39 months mice compared to 1.9% in the 1 month old group. In the PVCN, 20% of the neurons in the very old mice were parvalbumin immunopositive, compared to 12% in the young mice. Calbindin did not show any significant age-related differences in the PVCN. The total number of calretinin immunopositive neurons both in the DCN and PVCN did not show any significant change with increasing age. In conclusion, the total neuronal number in the DCN and PVCN was age-related and region-specific. While the neuronal number in the DCN and PVCN was decreased or unchanged, respectively, the calcium binding protein positive neuronal number showed a graded increase during aging in a region-specific and protein-specific manner.

  9. Progesterone increases dopamine neurone number in differentiating mouse embryonic stem cells.

    PubMed

    Díaz, N F; Díaz-Martínez, N E; Velasco, I; Camacho-Arroyo, I

    2009-08-01

    Progesterone participates in the regulation of several functions in mammals, including brain differentiation and dopaminergic transmission, but the role of progesterone in dopaminergic cell differentiation is unknown. We investigated the effects of progesterone on dopaminergic differentiation of embryonic stem cells using a five-stage protocol. Cells were incubated with different progesterone concentrations during the proliferation (stage 4) or differentiation (stage 5) phases. Progesterone added at 1, 10 and 100 nm during stage 4 increased the number of dopamine neurones at stage 5 by 72%, 80% and 62%, respectively, compared to the control group. The administration of progesterone at stage 5 did not induce significant changes in the number of dopamine neurones. These actions were not mediated by the activation of intracellular progesterone receptors because RU 486 did not block the positive effects of progesterone on differentiation to dopaminergic neurones. The results obtained suggest that progesterone should prove useful with respect to producing higher proportions of dopamine neurones from embryonic stem cells in the treatment of Parkinson's disease.

  10. Putting the Pyramid into Practice. Science Topics.

    ERIC Educational Resources Information Center

    Texas Child Care, 1994

    1994-01-01

    Explains the new U.S. Department of Agriculture (USDA) Food Guide Pyramid, which can help children and adults visualize the basics of sound nutrition. The pyramid chart places five food groups from top to bottom in inverse proportion to the number of servings that should be consumed. Special symbols are used to indicate fat content and added…

  11. Estimate of size and total number of neurons in superior cervical ganglion of rat, capybara and horse.

    PubMed

    Ribeiro, Antonio Augusto Coppi Maciel; Davis, Christine; Gabella, Giorgio

    2004-08-01

    The superior (cranial) cervical ganglion was investigated by light microscopy in adult rats, capybaras (Hydrochaeris hydrochaeris) and horses. The ganglia were vascularly perfused, embedded in resin and cut into semi-thin sections. An unbiased stereological procedure (disector method) was used to estimate ganglion neuron size, total number of ganglion neurons, neuronal density. The volume of the ganglion was 0.5 mm3 in rats, 226 mm3 in capybaras and 412 mm3 in horses. The total number of neurons per ganglion was 18,800, 1,520,000 and 3,390,000 and the number of neurons per cubic millimetre was 36,700, 7,000 and 8,250 in rats, capybaras and horses, respectively. The average neuronal size (area of the largest sectional profile of a neuron) was 358, 982 and 800 microm2, and the percentage of volume occupied by neurons was 33, 21 and 17% in rats, capybaras and horses, respectively. When comparing the three species (average body weight: 200 g, 40 kg and 200 kg), most of the neuronal quantitative parameters change in line with the variation of body weight. However, the average neuronal size in the capybara deviates from this pattern in being larger than that of in the horse. The rat presented great interindividual variability in all the neuronal parameters. From the data in the literature and our new findings in the capybara and horse, we conclude that some correlations exist between average size of neurons and body size and between total number of neurons and body size. However, these correlations are only approximate and are based on averaged parameters for large populations of neurons: they are less likely to be valid if one considers a single quantitative parameter. Several quantitative features of the nervous tissue have to be taken into account together, rather than individually, when evolutionary trends related to size are considered.

  12. Effects of amyloid-β plaque proximity on the axon initial segment of pyramidal cells.

    PubMed

    León-Espinosa, Gonzalo; DeFelipe, Javier; Muñoz, Alberto

    2012-01-01

    The output of cortical pyramidal cells reflects the balance between excitatory inputs of cortical and subcortical origin, and inhibitory inputs from distinct populations of cortical GABAergic interneurons, each of which selectively innervate different domains of neuronal pyramidal cells (i.e., dendrites, soma and axon initial segment [AIS]). In Alzheimer's disease (AD), the presence of amyloid-β (Aβ) plaques alters the synaptic input to pyramidal cells in a number of ways. However, the effects of Aβ plaques on the AIS have still not been investigated to date. This neuronal domain is involved in input integration, as well as action potential initiation and propagation, and it exhibits Ca2+- and activity-dependent structural plasticity. The AIS is innervated by GABAergic axon terminals from chandelier cells, which are thought to exert a strong influence on pyramidal cell output. In the AβPP/PS1 transgenic mouse model of AD, we have investigated the effects of Aβ plaques on the morphological and neurochemical features of the AIS, including the cisternal organelle, using immunocytochemistry and confocal microscopy, as well as studying the innervation of the AIS by chandelier cell axon terminals. There is a strong reduction in GABAergic terminals that appose AIS membrane surfaces that are in contact with Aβ plaques, indicating altered inhibitory synapsis at the AIS. Thus, despite a lack of gross structural alterations in the AIS, this decrease in GABAergic innervation may deregulate AIS activity and contribute to the hyperactivity of neurons in contact with Aβ plaques.

  13. Urban public health: is there a pyramid?

    PubMed

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-28

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000-2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development.

  14. Urban Public Health: Is There a Pyramid?

    PubMed Central

    Su, Meirong; Chen, Bin; Yang, Zhifeng; Cai, Yanpeng; Wang, Jiao

    2013-01-01

    Early ecologists identified a pyramidal trophic structure in terms of number, biomass and energy transfer. In 1943, the psychologist Maslow put forward a pyramid model to describe layers of human needs. It is indicated that the pyramid principle is universally applicable in natural, humanistic and social disciplines. Here, we report that a pyramid structure also exists in urban public health (UPH). Based on 18 indicators, the UPH states of four cities (Beijing, Tokyo, New York, and London) are compared from the point of view of five aspects, namely physical health, living conditions, social security, environmental quality, and education and culture. A pyramid structure was found in each city when focusing on 2000–2009 data. The pyramid of Beijing is relatively similar to that of Tokyo, and the pyramids of New York and London are similar to each other. A general development trend in UPH is proposed and represented by different pyramid modes. As a basic conjecture, the UPH pyramid model can be verified and developed with data of more cities over a longer period, and be used to promote healthy urban development. PMID:23358233

  15. Social condition and oxytocin neuron number in the hypothalamus of naked mole-rats (Heterocephalus glaber).

    PubMed

    Mooney, S J; Holmes, M M

    2013-01-29

    The naked mole-rat is a subterranean colonial rodent. In each colony, which can grow to as many as 300 individuals, there is only one female and 1-3 males that are reproductive and socially dominant. The remaining animals are reproductively suppressed subordinates that contribute to colony survival through their cooperative behaviors. Oxytocin is a peptide hormone that has shown relatively widespread effects on prosocial behaviors in other species. We examined whether social status affects the number of oxytocin-immunoreactive neurons in the paraventricular nucleus and the supraoptic nucleus by comparing dominant breeding animals to subordinate non-breeding workers from intact colonies. We also examined these regions in subordinate animals that had been removed from their colony and paired with an opposite- or same-sex conspecific for 6 months. Stereological analyses indicated that subordinates had significantly more oxytocin neurons in the paraventricular nucleus than breeders. Animals in both opposite- and same-sex pairs showed a decreased oxytocin neuron number compared to subordinates suggesting that status differences may be due to social condition rather than the reproductive activity of the animal per se. The effects of social status appear to be region specific as no group differences were found for oxytocin neuron number in the supraoptic nucleus. Given that subordinate naked mole-rats are kept reproductively suppressed through antagonism by the queen, we speculate that status differences are due either to oxytocin's anxiolytic properties to combat the stress of this antagonism or to its ability to promote the prosocial behaviors of subordinates.

  16. Differential time-course of slow afterhyperpolarizations and associated Ca2+ transients in rat CA1 pyramidal neurons: further dissociation by Ca2+ buffer.

    PubMed

    Jahromi, B S; Zhang, L; Carlen, P L; Pennefather, P

    1999-01-01

    Hippocampal neurons exhibit a slow afterhyperpolarization following membrane depolarization; this is thought to reflect an underlying Ca2+-dependent K+ current. This current is potentiated by intermediate concentrations (0.1-1.0 mM) of exogenous Ca2+ buffer [Schwindt P. C. et al. (1992) Neuroscience 47, 571-578; Zhang L. et al. (1995) J. Neurophysiol. 74, 2225-2241]. The relationship between the slow afterhyperpolarization and associated Ca2+ transients was investigated in the presence and absence of added exogenous Ca2+ buffer. Slow afterhyperpolarizations and underlying K+ currents were measured using whole-cell patch-clamp recordings from hippocampal CA1 neurons in acute rat brain slices. Inclusion of fluorescent Ca2+ indicators in the patch pipette solution allowed simultaneous measurement of the evoked subcellular Ca2+ transients using a confocal microscope. The peak Ca2+ signal exhibited an incremental increase with each action potential. This increase eventually reached a plateau with increasing numbers of action potentials, suggesting dye saturation with peak Ca2+ concentrations. As the K(D) for Ca2+ of the indicator dyes used was between 200 and 300 nM, it is predicted that saturation will occur when the peak Ca2+ signal exceeds 1 microM. This occurred with fewer action potentials in dendritic vs somatic compartments. Neither compartment exhibited averaged Ca2+ transients matching the slow afterhyperpolarization time-course, dendritic Ca2+ transients being most divergent. Intracellular accumulation of exogenous Ca2+ buffer, either by inclusion in the patch pipette or by incubation of the brain slice with its membrane-permeable form, caused a prolongation of the slow afterhyperpolarization but not of the somatic Ca2+ transient. The initial rate of decline of the dendritic Ca2+ transient was diminished, but remained faster than that of the slow afterhyperpolarization. We conclude that neither dendritic nor somatic Ca2+ signals match the slow

  17. Blockade by ifenprodil of high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones: comparison with N-methyl-D-aspartate receptor antagonist actions.

    PubMed Central

    Church, J; Fletcher, E J; Baxter, K; MacDonald, J F

    1994-01-01

    1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7834201

  18. Self-assembly of colloidal pyramids in magnetic fields.

    PubMed

    Helseth, L E

    2005-08-02

    We study routes toward the construction of 2D colloidal pyramids. We find that magnetic beads may self-assemble into pyramids near a nonmagnetic 1D boundary as long as the number of beads in the pyramid does not exceed 10. We have also found that a strong magnetic field gradient could act as a boundary, thus assisting the self-assembly of magnetic colloids in water, and have observed the formation of stable microscopic pyramids within a certain magnetic field range. Our results indicate that colloidal pyramids can be formed in a number of ways by utilizing external fields.

  19. Increased number of orexin/hypocretin neurons with high and prolonged external stress-induced depression.

    PubMed

    Jalewa, Jaishree; Wong-Lin, KongFatt; McGinnity, T Martin; Prasad, Girijesh; Hölscher, Christian

    2014-10-01

    It has been found that dysregulation in the orexin/hypocretin (Ox/HCRT) neuropeptide system in the lateral hypothalamus (LHA) is known to affect sleep disorder, depression and motor activities. However, to date there is no common agreement regarding the resulting specific changes induced in the Ox system. In this study, we inject corticosterone to produce stress-induced depressed mice and investigate the Ox neuronal and corresponding behavioural changes. Different doses (10, 20, 50mg/kgbw) of corticosterone were injected in adult mice, and then were tested in the open field test, forced swim test, tail suspension test, elevated plus maze test and motor activity measurements to validate the depressed animal model. Significant dose-dependent behavioural changes were observed in correlation with the doses of corticosterone. The effect is most significant and robust in the high 50mg/kgbw dose group five weeks after injection. Interestingly, we found on average a reduction in motor activity during the 12-hour dark phase (awake) of the depressed mice and no significant change during the light phase (asleep). Finally, using confocal microscopy, immunofluorescence (IF) analysis shows a significant increase (∼20%) in the number of Ox neurons in the LHA of the depressed mice as compared to the age-matched controls. This study suggests that an increase in Ox neuronal signaling may be functionally linked to high and prolonged external stress-induced depression.

  20. Preserved number of entorhinal cortex layer II neurons in aged macaque monkeys

    NASA Technical Reports Server (NTRS)

    Gazzaley, A. H.; Thakker, M. M.; Hof, P. R.; Morrison, J. H.; Bloom, F. E. (Principal Investigator)

    1997-01-01

    The perforant path, which consists of the projection from the layer II neurons of the entorhinal cortex to the outer molecular layer of the dentate gyrus, is a critical circuit involved in learning and memory formation. Accordingly, disturbances in this circuit may contribute to age-related cognitive deficits. In a previous study, we demonstrated a decrease in N-methyl-D-aspartate receptor subunit 1 immunofluorescence intensity in the outer molecular layer of aged macaque monkeys. In this study, we used the optical fractionator, a stereological method, to determine if a loss of layer II neurons occurred in the same animals in which the N-methyl-D-aspartate receptor subunit 1 alteration was observed. Our results revealed no significant differences in the number of layer II neurons between juvenile, young adult, and aged macaque monkeys. These results suggest that the circuit-specific decrease in N-methyl-D-aspartate receptor subunit 1 reported previously occurs in the absence of structural compromise of the perforant path, and thus may be linked to an age-related change in the physiological properties of this circuit.

  1. Deletion of the L-type Calcium Channel CaV1.3 but not CaV1.2 Results in a Diminished sAHP in Mouse CA1 Pyramidal Neurons

    PubMed Central

    Gamelli, Amy E.; McKinney, Brandon C.; White, Jessica A.; Murphy, Geoffrey G.

    2009-01-01

    Trains of action potentials in CA1 pyramidal neurons are followed by a prolonged calcium-dependent post-burst afterhyperpolarization (AHP) that serves to limit further firing to a sustained depolarizing input. A reduction in the AHP accompanies acquisition of several types of learning and increases in the AHP are correlated with age-related cognitive impairment. The AHP develops primarily as the result of activation of outward calcium-activated potassium currents; however the precise source of calcium for activation of the AHP remains unclear. There is substantial experimental evidence suggesting that calcium influx via voltage-gated L-type calcium channels (L-VGCCs) contributes to the generation of the AHP. Two L-VGCC subtypes are predominately expressed in the hippocampus, CaV1.2 and CaV1.3, however it is not known which L-VGCC subtype is involved in generation of the AHP. This ambiguity is due in large part to the fact that at present there are no subunit-specific agonists or antagonists. Therefore, using mice in which the gene encoding CaV1.2 or CaV1.3 was deleted, we sought to determine the impact of alterations in levels of these two L-VCGG subtypes on neuronal excitability. No differences in any AHP measure were seen between neurons from CaV1.2 knockout mice and controls. However, the total area of the AHP was significantly smaller in neurons from CaV1.3 knockout mice as compared to neurons from wildtype controls. A significant reduction in the amplitude of the AHP was also seen at the 1 sec time point in neurons from CaV1.3 knockout mice as compared to those from controls. Reductions in both the area and 1 sec amplitude suggest the involvement of calcium influx via CaV1.3 in the slow AHP (sAHP). Thus, the results of our study demonstrate that deletion of CaV1.3, but not CaV1.2, significantly impacts the generation of the sAHP. PMID:20014384

  2. Morphological Characteristics of Electrophysiologically Characterized Layer Vb Pyramidal Cells in Rat Barrel Cortex

    PubMed Central

    Loucif, Alexandre J. C.; Schubert, Dirk; Möck, Martin

    2016-01-01

    Layer Vb pyramidal cells are the major output neurons of the neocortex and transmit the outcome of cortical columnar signal processing to distant target areas. At the same time they contribute to local tactile information processing by emitting recurrent axonal collaterals into the columnar microcircuitry. It is, however, not known how exactly the two types of pyramidal cells, called slender-tufted and thick-tufted, contribute to the local circuitry. Here, we investigated in the rat barrel cortex the detailed quantitative morphology of biocytin-filled layer Vb pyramidal cells in vitro, which were characterized for their intrinsic electrophysiology with special emphasis on their action potential firing pattern. Since we stained the same slices for cytochrome oxidase, we could also perform layer- and column-related analyses. Our results suggest that in layer Vb the unambiguous action potential firing patterns "regular spiking (RS)" and "repetitive burst spiking (RB)" (previously called intrinsically burst spiking) correlate well with a distinct morphology. RS pyramidal cells are somatodendritically of the slender-tufted type and possess numerous local intralaminar and intracolumnar axonal collaterals, mostly reaching layer I. By contrast, their transcolumnar projections are less well developed. The RB pyramidal cells are somatodendritically of the thick-tufted type and show only relatively sparse local axonal collaterals, which are preferentially emitted as long horizontal or oblique infragranular collaterals. However, contrary to many previous slice studies, a substantial number of these neurons also showed axonal collaterals reaching layer I. Thus, electrophysiologically defined pyramidal cells of layer Vb show an input and output pattern which suggests RS cells to be more "locally segregating" signal processors whereas RB cells seem to act more on a "global integrative" scale. PMID:27706253

  3. Imipramine treatment increases the number of hippocampal synapses and neurons in a genetic animal model of depression.

    PubMed

    Chen, Fenghua; Madsen, Torsten M; Wegener, Gregers; Nyengaard, Jens R

    2010-12-01

    The aim was to investigate treatment effects of the antidepressant imipramine on the markers of neuronal plasticity. We investigated changes in neuron and synapse numbers in a rat strain that displays a genetic susceptibility to depressive behavior, the Flinders Sensitive and Resistant Lines (FSL/FRL). All rats were treated with imipramine (15 mg/kg) or saline (i.p) once daily for 25 days. The volume, neuron and synapse numbers in the hippocampus were estimated using design-based stereological methods. Under untreated conditions, the volume and the number of neurons and synapses were significantly smaller in the FSL saline group (untreated "depressed" rats) compared with the FRL saline group (normal rats), showing correlation to the observed decreased immobility in the forced swim test. Imipramine treatment significantly increased the number of neurons in the granule cell layer (GCL) and spine synapses in the CA1 in the FSL imipramine group (treated "depressed" rats) compared with the FSL saline group. The neuron numbers in the GCL and Hilus showed no differences in the FSL imipramine group compared to the FRL saline group. In conclusion, baseline levels of the volume and the number of neurons and spine synapses in hippocampus were significantly smaller in the untreated FSL rats. Our findings indicate that chronic imipramine treatment reverses the suppression of neurogenesis and synaptogenesis in the hippocampus of the "depressed" FSL rats, and this occurs in correlation with behavioral effects. Our results support the neuronal plasticity hypothesis that depressive disorders may be related to impairments of structural plasticity and neuronal viability in hippocampus, furthermore, antidepressant treatment counteracts the structural impairments.

  4. Pyramid beam splitter

    DOEpatents

    McKeown, Mark H.; Beason, Steven C.; Fairer, George

    1992-01-01

    The apparatus of the present invention provides means for obtaining accurate, dependable, measurement of bearings and directions for geologic mapping in subterranean shafts, such as, for example, nuclear waste storage investigations. In operation, a laser beam is projected along a reference bearing. A pyramid is mounted such that the laser beam is parallel to the pyramid axis and can impinge on the apex of the pyramid thus splitting the beam several ways into several beams at right angles to each other and at right angles to the reference beam. The pyramid is also translatable and rotatable in a plane perpendicular to the reference beam.

  5. Cajal body number and nucleolar size correlate with the cell body mass in human sensory ganglia neurons.

    PubMed

    Berciano, Maria T; Novell, Mariona; Villagra, Nuria T; Casafont, Iñigo; Bengoechea, Rocio; Val-Bernal, J Fernado; Lafarga, Miguel

    2007-06-01

    This paper studies the cell size-dependent organization of the nucleolus and Cajal bodies (CBs) in dissociated human dorsal root ganglia (DRG) neurons from autopsy tissue samples of patients without neurological disease. The quantitative analysis of nucleoli with an anti-fibrillarin antibody showed that all neurons have only one nucleolus. However, the nucleolar volume and the number of fibrillar centers per nucleolus significantly increase as a function of cell body size. Immunostaining for coilin demonstrated the presence of numerous CBs in DRG neurons (up to 20 in large size neurons). The number of CBs per neuron correlated positively with the cell body volume. Light and electron microscopy immunocytochemical analysis revealed the concentration of coilin, snRNPs, SMN and fibrillarin in CBs of DRG neurons. CBs were frequently associated with the nucleolus, active chromatin domains and PML bodies, but not with telomeres. Our results support the view that the nucleolar volume and number of both fibrillar centers and CBs depend on the cell body mass, a parameter closely related to transcriptional and synaptic activity in mammalian neurons. Moreover, the unusual large number of CBs could facilitate the transfer of RNA processing components from CBs to nucleolar and nucleoplasmic sites of RNA processing.

  6. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain.

    PubMed

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-02-24

    Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons.

  7. Regulation of differentiation flux by Notch signalling influences the number of dopaminergic neurons in the adult brain

    PubMed Central

    Trujillo-Paredes, Niurka; Valencia, Concepción; Guerrero-Flores, Gilda; Arzate, Dulce-María; Baizabal, José-Manuel; Guerra-Crespo, Magdalena; Fuentes-Hernández, Ayari; Zea-Armenta, Iván; Covarrubias, Luis

    2016-01-01

    ABSTRACT Notch signalling is a well-established pathway that regulates neurogenesis. However, little is known about the role of Notch signalling in specific neuronal differentiation. Using Dll1 null mice, we found that Notch signalling has no function in the specification of mesencephalic dopaminergic neural precursor cells (NPCs), but plays an important role in regulating their expansion and differentiation into neurons. Premature neuronal differentiation was observed in mesencephalons of Dll1-deficient mice or after treatment with a Notch signalling inhibitor. Coupling between neurogenesis and dopaminergic differentiation was indicated from the coincident emergence of neuronal and dopaminergic markers. Early in differentiation, decreasing Notch signalling caused a reduction in NPCs and an increase in dopaminergic neurons in association with dynamic changes in the proportion of sequentially-linked dopaminergic NPCs (Msx1/2+, Ngn2+, Nurr1+). These effects in differentiation caused a significant reduction in the number of dopaminergic neurons produced. Accordingly, Dll1 haploinsufficient adult mice, in comparison with their wild-type littermates, have a consistent reduction in neuronal density that was particularly evident in the substantia nigra pars compacta. Our results are in agreement with a mathematical model based on a Dll1-mediated regulatory feedback loop between early progenitors and their dividing precursors that controls the emergence and number of dopaminergic neurons. PMID:26912775

  8. The GLP-1 Receptor Agonist Liraglutide Improves Memory Function and Increases Hippocampal CA1 Neuronal Numbers in a Senescence-Accelerated Mouse Model of Alzheimer's Disease.

    PubMed

    Hansen, Henrik H; Fabricius, Katrine; Barkholt, Pernille; Niehoff, Michael L; Morley, John E; Jelsing, Jacob; Pyke, Charles; Knudsen, Lotte Bjerre; Farr, Susan A; Vrang, Niels

    2015-01-01

    Recent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.c.) or vehicle once daily for 4 months. Vehicle-dosed age-matched 50% back-crossed as well as untreated young (4-month-old) SAMP8 mice were used as control groups for normal memory function. Vehicle-dosed 10-month-old SAMP8 mice showed significant learning and memory retention deficits in an active-avoidance T-maze, as compared to both control groups. Also, 10-month-old SAMP8 mice displayed no immunohistological signatures of amyloid-β plaques or hyperphosphorylated tau, indicating the onset of cognitive deficits prior to deposition of amyloid plaques and neurofibrillary tangles in this AD model. Liraglutide significantly increased memory retention and total hippocampal CA1 pyramidal neuron numbers in SAMP8 mice, as compared to age-matched vehicle-dosed SAMP8 mice. In conclusion, liraglutide delayed or partially halted the progressive decline in memory function associated with hippocampal neuronal loss in a mouse model of pathological aging with characteristics of neurobehavioral and neuropathological impairments observed in early-stage sporadic AD.

  9. Rebuilding the Food Pyramid.

    ERIC Educational Resources Information Center

    Willet, Walter C.; Stampfer, Meir J.

    2003-01-01

    Discusses the old food guide pyramid released in 1992 by the U.S. Department of Agriculture. Contradicts the message that fat is bad, which was presented to the public by nutritionists, and the effects of plant oils on cholesterol. Introduces a new food pyramid. (YDS)

  10. A Very Large Number of GABAergic Neurons Are Activated in the Tuberal Hypothalamus during Paradoxical (REM) Sleep Hypersomnia

    PubMed Central

    Sapin, Emilie; Bérod, Anne; Léger, Lucienne; Herman, Paul A.; Luppi, Pierre-Hervé; Peyron, Christelle

    2010-01-01

    We recently discovered, using Fos immunostaining, that the tuberal and mammillary hypothalamus contain a massive population of neurons specifically activated during paradoxical sleep (PS) hypersomnia. We further showed that some of the activated neurons of the tuberal hypothalamus express the melanin concentrating hormone (MCH) neuropeptide and that icv injection of MCH induces a strong increase in PS quantity. However, the chemical nature of the majority of the neurons activated during PS had not been characterized. To determine whether these neurons are GABAergic, we combined in situ hybridization of GAD67 mRNA with immunohistochemical detection of Fos in control, PS deprived and PS hypersomniac rats. We found that 74% of the very large population of Fos-labeled neurons located in the tuberal hypothalamus after PS hypersomnia were GAD-positive. We further demonstrated combining MCH immunohistochemistry and GAD67 in situ hybridization that 85% of the MCH neurons were also GAD-positive. Finally, based on the number of Fos-ir/GAD+, Fos-ir/MCH+, and GAD+/MCH+ double-labeled neurons counted from three sets of double-staining, we uncovered that around 80% of the large number of the Fos-ir/GAD+ neurons located in the tuberal hypothalamus after PS hypersomnia do not contain MCH. Based on these and previous results, we propose that the non-MCH Fos/GABAergic neuronal population could be involved in PS induction and maintenance while the Fos/MCH/GABAergic neurons could be involved in the homeostatic regulation of PS. Further investigations will be needed to corroborate this original hypothesis. PMID:20668680

  11. Effects of prolonged abstinence from METH on the hippocampal BDNF levels, neuronal numbers and apoptosis in methamphetamine-sensitized rats.

    PubMed

    Hajheidari, Samira; Sameni, Hamid Reza; Bandegi, Ahmad Reza; Miladi-Gorji, Hossein

    2017-04-03

    Methamphetamine (METH) use is associated with neuronal damage in various regions of brain, while effects of prolonged abstinence on METH-induced damage are not quite clear. This study evaluated serum and hippocampal BDNF levels, neuronal numbers and apoptosis in METH-sensitized and abstinent rats. Rats were sensitized to METH (2mg/kg, daily/18 days, s.c.). All rats were evaluated for neuron counting, the TUNEL test and serum and hippocampal BDNF levels after 30 days of forced abstinence from METH. The results showed that increased BDNF levels in the hippocampus and serum of METH-sensitized rats returned to control level after 30 days of abstinence. The number of neuron