Ryding, Mauritz Johan; Zatula, Alexey S; Andersson, Patrik Urban; Uggerud, Einar
2011-01-28
Pyridine containing water clusters, H(+)(pyridine)(m)(H(2)O)(n), have been studied both experimentally by a quadrupole time-of-flight mass spectrometer and by quantum chemical calculations. In the experiments, H(+)(pyridine)(m)(H(2)O)(n) with m = 1-4 and n = 0-80 are observed. For the cluster distributions observed, there are no magic numbers, neither in the abundance spectra, nor in the evaporation spectra from size selected clusters. Experiments with size-selected clusters H(+)(pyridine)(m)(H(2)O)(n), with m = 0-3, reacting with D(2)O at a center-of-mass energy of 0.1 eV were also performed. The cross-sections for H/D isotope exchange depend mainly on the number of water molecules in the cluster and not on the number of pyridine molecules. Clusters having only one pyridine molecule undergo D(2)O/H(2)O ligand exchange, while H(+)(pyridine)(m)(H(2)O)(n), with m = 2, 3, exhibit significant H/D scrambling. These results are rationalized by quantum chemical calculations (B3LYP and MP2) for H(+)(pyridine)(1)(H(2)O)(n) and H(+)(pyridine)(2)(H(2)O)(n), with n = 1-6. In clusters containing one pyridine, the water molecules form an interconnected network of hydrogen bonds associated with the pyridinium ion via a single hydrogen bond. For clusters containing two pyridines, the two pyridine molecules are completely separated by the water molecules, with each pyridine being positioned diametrically opposite within the cluster. In agreement with experimental observations, these calculations suggest a "see-saw mechanism" for pendular proton transfer between the two pyridines in H(+)(pyridine)(2)(H(2)O)(n) clusters.
ERIC Educational Resources Information Center
Jantzi, Kevin L.; Wiltrakis, Susan; Wolf, Lauren; Weber, Anna; Cardinal, Josh; Krieter, Katie
2011-01-01
A critical factor for the increased nucleophilicity of the pyridine nitrogen in 4-(dimethylamino)pyridine (DMAP) is electron donation via resonance from the amino group into the aromatic ring that increases electron density on the pyridine nitrogen. To explore how important this resonance effect is, 4-(dimethylaminomethyl)pyridine (DMAMP) was…
Energetics of a Li Atom adsorbed on B/N doped graphene with monovacancy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Babita, E-mail: babitabaghla15@gmail.com; Department of Physics, Punjabi University, Patiala 147002; Jindal, V.K.
We use density functional theory (DFT) to study the adsorption properties and diffusion of Li atom across B/N-pyridinic graphene. Regardless of the dopant type, B atoms of B-pyridinic graphene lose electron density. On the other hand, N atoms (p-type dopants) have tendency to gain electron density in N-pyridinic graphene. Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene are responsible for stronger binding of Li with the substrates as compared to pristine graphene. The binding energy of Li with B/N-pyridinic graphene exceeds the cohesive energy of bulk Li, making it energetically unfavourable for Li to form clusters on these substrates.more » Li atom gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals while Li on B-pyridinic prefers the ionic bonding. Also, significant distortion of N-pyridinic graphene upon Li adsorption is a consequence of the change in bonding mechanism between Li atom and the substrate. Our results show that bonding character and hence binding energies between Li and graphene can be tuned with the help of B/N doping of monovacancy defects. Further, the sites for most stable adsorption are different for the two types of doped and defective graphene, leading to greater Li uptake capacity of B-pyridinic graphene near the defect. In addition, B-pyridinic graphene offering lower diffusion barrier, ensures better Li kinetics. Thus, B-pyridinic graphene presents itself as a better anode material for LIBs as compared to N-pyridinic graphene. - Graphical abstract: Adsorption and diffusion of Li atom across the B/N doped monovacancy graphene is studied using ab-initio DFT calculations. Our results show that bonding mechanism and binding of Li with graphene can be tuned with the help of N/B doping of defects. Also, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries as compared to N-pyridinic graphene. Display Omitted - Highlights: • Density functional theory (DFT) calculations are employed to study the effect of B/N doping of monovacancy graphene on the adsorption and diffusion of Li atom across the sheet using VASP. • Higher chemical reactivity and electronic conductivity of B/N-pyridinic graphene (p-type semiconductors) as compared to pristine graphene lead to stronger binding of Li. It also exceeds the cohesive energy of bulk Li. Thus, uniform distribution of Li atoms is possible on both substrates. • Li gets adsorbed stably at centre of defect in N-pyridinic graphene. B-pyridinic graphene has stable adsorption of Li at hollow site of hexagon, neighboring the defect, having only one boron atom. It leads to maximum Li uptake capacity of B-pyridinic graphene. • Li gets better adsorbed on N-pyridinic graphene due to an additional p-p hybridization of the orbitals. This change in bonding mechanism causes significant distortion of the substrate. On the other hand, Li on B-pyridinic graphene shows ionic bonding character. • B-pyridinic graphene offers lower energy barrier for Li to diffuse across the substrate in comparison to N-pyridinic graphene. Thus, B-pyridinic graphene presents itself as a better anode material for lithium ion batteries due to optimal Li adsorption and better diffusion kinetics.« less
Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system.
Liu, Xiaodong; Wu, Shijing; Zhang, Dejin; Shen, Jinyou; Han, Weiqing; Sun, Xiuyun; Li, Jiansheng; Wang, Lianjun
2018-05-01
Simultaneous pyridine biodegradation and nitrogen removal were successfully achieved in a sequencing batch reactor (SBR) based on aerobic granules. In a typical SBR cycle, nitritation occurred obviously after the majority of pyridine was removed, while denitrification occurred at early stage of the cycle when oxygen consumption was aggravated. The effect of several key operation parameters, i.e., air flow rate, influent NH 4 + -N concentration, influent pH and pyridine concentration, on nitritation, pyridine degradation and total nitrogen (TN) removal, was systematically investigated. The results indicated that high air flow rate had a positive effect on both pyridine degradation and nitritation but a negative impact of overhigh air flow rate. With the increase of NH 4 + dosage, both nitritation and TN removal could be severely inhibited. Slightly alkaline condition, i.e., pH7.0-8.0, was beneficial for both pyridine degradation and nitritation. High pyridine dosage often resulted in the delay of both pyridine degradation and nitritation. Besides, extracellular polymeric substances production was affected by air flow rate, NH 4 + dosage, pyridine dosage and pH. In addition, high-throughput sequencing analysis demonstrated that Bdellovibrio and Paracoccus were the dominant species in the aerobic granulation system. Coexistence of pyridine degrader, nitrification related species, denitrification related species, polymeric substances producer and self-aggregation related species was also confirmed by high-throughput sequencing. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Nagasaka, Masanari; Yuzawa, Hayato; Kosugi, Nobuhiro
2018-05-01
Intermolecular interactions of pyridine in liquid and in aqueous solution are studied by using soft X-ray absorption spectroscopy (XAS) at the C, N, and O K-edges. XAS of liquid pyridine shows that the N 1s→π* peak is blue shifted and the C 1s→π* peak of the meta and para sites is red shifted, respectively, as compared with XAS of pyridine gas. These shifts in liquid are smaller than those in clusters, indicating that the intermolecular interaction of liquid pyridine is weaker than that of pyridine cluster, as supported by the combination of quantum chemical calculations of the core excitation and molecular dynamics simulations of the liquid structure. On the other hand, XAS spectra of aqueous pyridine solutions (C5H5N)x(H2O)1-x measured at different molar fractions show that in the pyridine rich region, x>0.7, the C and N 1s→π* peak energies are not so different from pure liquid pyridine (x=1.0). In this region, antiparallel displaced structures of pyridine molecules are dominant as in pure pyridine liquid. In the O K-edge XAS, the pre-edge peaks sensitive to the hydrogen bond (HB) network of water molecules show the red shift of -0.15 eV from that of bulk water, indicating that small water clusters with no large-scale HB network are formed in the gap space of structured pyridine molecules. In the water rich region, 0.7>x, the N 1s→π* peaks and the O 1s pre-edge peaks are blue shifted, and the C 1s→π* peaks of the meta and para sites are red-shifted by increasing molar fraction of water. The HB network of bulk water is dominant, but quantum chemical calculations indicate that small pyridine clusters with the HB interaction between the H atom in water and the N atom in pyridine are still existent even in very dilute pyridine solutions.
Pirsa, Sajad; Alizadeh, Naader
2011-12-15
Polypyrrole (PPy) gas sensor has been prepared by polymerization of pyrrole on surfaces of commercial polymer fibers in the presence of an oxidizing agent. The sensing behavior of PPy gas sensor was investigated in the presence of pyridine derivatives. The resistive responses of the PPy gas sensor to pyridine derivatives were in the order of quinoline>pyridine>4-methyl pyridine and 2-methyl pyridine. The PPy gas sensor was used as gas chromatography (GC) detector and exhibited linear responses to pyridine derivatives in the ranges 40-4,000 ng. Dispersive liquid-liquid microextraction (DLLME) combined with GC/PPy gas sensor has been developed for simultaneous determination of pyridine derivatives and quinoline. The purposed method was used for determination of pyridine derivatives from cigarette smoke. The GC runs were completed in 4 min. The reproducibility of this method is suitable and good standard deviations were obtained. RSD value is less than 10% for all analytes. Copyright © 2011 Elsevier B.V. All rights reserved.
Adsorption of Pyridine at the Au(100)-Solution Interface.
1987-09-25
quatiatively characterize the energetics of pyridine adsorption onto a gold ( 100) single crystal electrode surface. Over the potential region investigated...0.8 to +0.6 A., three orientationis of the pyridine molecules on the gold surface have been observed. The pyridine orientation Is strongly 1nflue ied by...the electrode potential. At a positively charged surface, the pyridine assumes a verticle orientation with .fie nitrogen atom facing the gold surface
Competition for electrons between mono-oxygenations of pyridine and 2-hydroxypyridine.
Yang, Chao; Tang, Yingxia; Xu, Hua; Yan, Ning; Li, Naiyu; Zhang, Yongming; Rittmann, Bruce E
2018-05-21
Pyridine and its heterocyclic derivatives are widely encountered in industrial wastewaters, and they are relatively recalcitrant to biodegradation. Pyridine biodegradation is initiated by two mono-oxygenation reactions that compete for intracellular electron donor (2H). In our experiments, UV photolysis of pyridine generated succinate, whose oxidation augmented the intracellular electron donor and accelerated pyridine biodegradation and mineralization. The first mono-oxygenation reaction always was faster than the second one, because electrons provided by intracellular electron donors were preferentially utilized by the first mono-oxygenase; this was true even when the concentration of 2HP was greater than the concentration of pyridine. In addition, the first mono-oxygenation had faster kinetics because it had higher affinity for its substrate (pyridine), along with less substrate self-inhibition.
Mizumori, Tomoya; Hata, Takeshi; Urabe, Hirokazu
2015-01-02
A new regioselective alkylation of pyridines at their 4-position was achieved with styrenes in the presence of yttrium trichloride, BuLi, and diisobutylaluminium hydride (DIBAL-H) in THF. Alternatively, similar products were more simply prepared from pyridines and benzyl Grignard reagents. These reactions are not only a useful preparation of 4-substituted pyridines but are also complementary to other relevant reactions usually giving 2-substituted pyridines. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Degradation of pyridine and quinoline in aqueous solution by gamma radiation
NASA Astrophysics Data System (ADS)
Chu, Libing; Yu, Shaoqing; Wang, Jianlong
2018-03-01
In present work, the degradation of two N-heteroaromatic pollutants, i.e., pyridine and quinoline was investigated by gamma irradiation in the presence of TiO2 nanoparticle. The experimental results showed that quinoline has a higher degradation rate than pyridine. The removal efficiency of the pollutants, TOC and TN reached 93.0%, 11.9% and 12.0% for quinoline, 71.0%, 10.6% and 4.4% for pyridine, respectively at 7.0 kGy and initial concentration of 50 mg/L. Ammonium was detected for both pyridine and quinoline within the absorbed doses, suggesting that the organic nitrogen was transformed into ammonium. The degradation rate constant of pyridine and quinoline was increased by 1.1-1.5 times with addition of TiO2. TiO2 nanoparticles were especially effective to enhance the mineralization. The removal efficiency of TOC and TN was increased by 15-12% for pyridine and 23-25% for quinoline, respectively in the presence of 2.0 g/L TiO2. Following gamma irradiation, 2-hydroxypyridine, 3-hydroxypyridine, oxalic acid and formic acid were identified for pyridine and the hydroxyl quinoline and formic acid were detected for quinoline. Accordingly, the degradation mechanism of pyridine and quinoline by gamma irradiation was tentatively proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koech, Phillip K.; Polikarpov, Evgueni; Rainbolt, James E.
2010-11-05
Pyridine-based host materials were synthesized via Grignard metathesis of bromopyridines to provide the required organometallic reagent. The isomeric hosts (4-(9H-carbazol-9-yl)phenyl)(phenyl)(pyridin-3-yl)phosphine oxide (HM-A4), (5-(9H-carbazol-9-yl)pyridin-2-yl)diphenylphosphine oxide (HM-A5), and (5-(diphenylamino)pyridin-2-yl)diphenylphosphine oxide (HM-A6), (4-(diphenylamino)phenyl)(phenyl)(pyridin-3-yl)phosphine oxide (HM-A8) have similar frontier orbital energies. Organic light emitting devices (OLEDs) fabricated using the series of the host materials demonstrate that small structural modification of the host results in significant change in charge transporting ability.
Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.
Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan
2017-03-01
Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO 3 - , and CO 3 2- on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.
A practical two-step synthesis of imidazo[1,2-a]pyridines from N-(prop-2-yn-1-yl)pyridin-2-amines.
Sucunza, David; Samadi, Abdelouahid; Chioua, Mourad; Silva, Daniel B; Yunta, Cristina; Infantes, Lourdes; Carmo Carreiras, M; Soriano, Elena; Marco-Contelles, José
2011-05-07
The Sandmeyer reaction of differently C-2 substituted N-(prop-2-yn-1-ylamino)pyridines is an efficient, mild, new and practical method for the stereospecific synthesis of (E)-exo-halomethylene bicyclic pyridones bearing the imidazo[1,2-a]pyridine heterocyclic ring system. © The Royal Society of Chemistry 2011
Tavagnacco, Letizia; Mason, Philip E; Neilson, George W; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W
2018-05-31
Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.
Ravi, Manjula; Allu, Srinivasarao; Swamy, K C Kumara
2017-03-03
An efficient Rh(III)-catalyzed ortho-alkylation of phenoxy substrates with diazo compounds has been achieved for the first time using pyrimidine or pyridine as the directing group. Furthermore, bis-alkylation has also been achieved using para-substituted phenoxypyrimidine and 3 mol equiv of the diazo ester. The ortho-alkylated derivatives of phenoxy products possessing the ester functionality undergo decarboxylative pyrimidine/pyridine migratory cyclization (rather than deprotection of pyrimidine/pyridine group) using 20% NaOEt in EtOH affording a novel class of 3-(pyrimidin-2(1H)-ylidene)benzofuran-2(3H)-ones and 6-methyl-3-(pyridin-2(1H)-ylidene)benzofuran-2(3H)-one. The ortho-alkylated phenoxypyridine possessing ester functionality also undergoes decarboxylative pyridine migratory cyclization using MeOTf/NaOMe in toluene providing 6-methyl-3-(1-methylpyridin-2(1H)-ylidene)benzofuran-2(3H)-one.
NASA Astrophysics Data System (ADS)
Hamid, Ahmed M.; El-Shall, M. Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G.
2014-08-01
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N+.(HCN)n and C4H4N2+.(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH+(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CHδ+⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH+⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH+⋯NCH..NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CHδ+⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CHδ+⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CHδ+ centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.
Hamid, Ahmed M; El-Shall, M Samy; Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G
2014-08-07
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C5H5N(+·)(HCN)n and C4H4N2 (+·)(HCN)n clusters, respectively, with n = 1-4. For comparison, the binding of 1-4 HCN molecules to the protonated pyridine C5H5NH(+)(HCN)n has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH(δ+)⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH(+)⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH(+)⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH(δ+)⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11-12 kcal/mol) are stronger than the similar (CH(δ+)⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH(δ+) centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.
Basicity of pyridine and some substituted pyridines in ionic liquids.
Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella
2010-06-04
The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.
Saeed, Sohail; Rashid, Naghmana; Butcher, Ray J.; Öztürk Yildirim, Sema; Hussain, Rizwan
2012-01-01
The asymmetric unit of the title compound, C16H13N2O+·NCS−·C16H12N2O, contains two N-(pyridin-4-yl)naphthalene-2-carboxamide molecules, both are partially protonated in the pyridine moiety, i.e. the H atom attached to the pyridine N atom is partially occupied with an occupancy factor of 0.61 (3) and 0.39 (3), respectively. In the crystal, protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide molecules are linked by N—H⋯N hydrogen bonding; the thiocyanate counter-ion links with both protonated and neutral N-(pyridin-4-yl)naphthalene-2-carboxamide molecules via N—H⋯S and N—H⋯N hydrogen bonding. The dihedral angles between the pyridine ring and naphthalene ring systems are 11.33 (6) and 9.51 (6)°, respectively. π–π stacking is observed in the crystal structure, the shortest centroid–centroid distance being 3.5929 (8) Å. The crystal structure was determined from a nonmerohedral twin {ratio of the twin components = 0.357 (1):0.643 (1) and twin law [-100 0-10 -101]}. PMID:23125774
On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices
NASA Astrophysics Data System (ADS)
McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.
2016-06-01
The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.
Yu, Xianglin; Wan, Jiaqi; Chen, Shao; Li, Miao; Gao, Junkuo; Yang, Li; Wang, Huisheng; Chen, Dugang; Pan, Zhiquan; Li, Junbo
2017-11-01
Novel pyridine-ring containing twisttetraazaacene 9,14-diphenylpyreno[4,5-g]isoquinoline (1) and its full-carbon derivative 9,14-diphenyldibenzo[de,qr]tetracene (2) have been synthesized and fully characterized. Studies showed that compound 1 could identify picric acid (PA) over other common nitro compounds with high selectivity and sensitivity. Upon the addition of PA, the emission peak of compound 1 in CH 3 CN was red shifted from 447 to 555nm with a fluorescence quenching efficiency as high as 95%, the detection limit was calculated to be 2.42μM, while its full-carbon derivative (2) could not exhibit this kind of performance. The possible mechanism with the enhanced PA detection efficiency in pyridine-ring containing twisttetraazaacene (1) than its full-carbon derivative (2) was also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Pham, Duyen N. K.; Roy, Mrittika; Kreider-Mueller, Ava; Golen, James A.; Manke, David R.
2018-01-01
The solid-state structures of two metal–pyridine–sulfate compounds, namely catena-poly[[tetrakis(pyridine-κN)iron(II)]-μ-sulfato-κ2 O:O′], [Fe(SO4)(C5H5N)4]n, (1), and catena-poly[[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ2 O:O′-[tetrakis(pyridine-κN)cobalt(II)]-μ-sulfato-κ3 O,O′:O′′-[tris(pyridine-κN)cobalt(II)]-μ-sulfato-κ2 O:O′], [Co3(SO4)3(C5H5N)11]n, (2), are reported. The iron compound (1) displays a polymeric structure, with infinite chains of FeII atoms adopting octahedral N4O2 coordination environments that involve four pyridine ligands and two bridging sulfate ligands. The cobalt compound (2) displays a polymeric structure, with infinite chains of CoII atoms. Two of the three Co centers have an octahedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. The third Co center has an octahedral N3O3 coordination environment that involves three pyridine ligands, and two bridging sulfate ligands with one sulfate chelating the cobalt atom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu; Hilal, Rifaat
2014-08-07
Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than themore » HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.« less
Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk, E-mail: hammer@phys.au.dk
2016-04-28
The adsorption, diffusion, and dissociation of pyridine, C{sub 5}H{sub 5}N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom.more » The origin of the diffusion pathway is discussed in terms of the C{sub 2}–Pt π-bond being stronger than the corresponding CN–Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).« less
Zhang, Fang; Zhang, Song; Duan, Xin-Fang
2012-11-02
The unprecedented substitution of a nitro group with aryl or alkenyl groups of Grignard reagents affords 2-aryl or alkenylpyridine N-oxides in modest to high yields with high chemoselectivity. This protocol allows a simple and clean synthesis of various 2-substituted pyridine N-oxides and the corresponding pyridine derivatives. Furthermore, straightforward one-pot iterative functionality of pyridine N-oxides could also be achieved simply by successive applications of two Grignard reagents.
NASA Astrophysics Data System (ADS)
Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet
2016-09-01
A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.
Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B; Alfred Cecil Raj, S
2008-10-18
In the title compound, [Ni(2)(CO(3))(C(5)H(6)N(2))(8)(H(2)O)]Cl(2)·5H(2)O, one of the the Ni(II) ions is six-coordinated in a distorted octa-hedral geometry, with the equatorial plane defined by four pyridine N atoms from four amino-pyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other Ni(II) ion is also six-coordinated, by four other pyridine N atoms from four other amino-pyridine ligands and two carbonate O atoms to complete a distorted octa-hedral geometry. In the crystal structure, mol-ecules are linked into an infinite three-dimensional network by O-H⋯O, N-H⋯Cl, N-H⋯O, O-H⋯N, C-H⋯O, C-H⋯N and C/N-H⋯π inter-actions involving the pyridine rings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shardin, Rosidah; Pui, Law Kung; Yamin, Bohari M.
A simple mononuclear octahedral copper(II) complex was attempted from the reaction of three moles of 1-benzoyl-3-(pyridin-2-yl)-1H-pyrazole and one mole of copper(II) perchlorate hexahydrate in methanol. However, the product of the reaction was confirmed to be a dinuclear copper(II) complex with μ-(3-(pyridin-2-yl)-pyrazolato) and 3-(pyridin-2-yl)-1H-pyrazole ligands attached to each of the Cu(II) centre atom. The copper(II) ion assisted the cleavage of the C{sub benzoyl}N bond afforded a 3-(pyridin-2-yl)-1H-pyrazole molecule. Deprotonation of the 3-(pyridin-2-yl)-1H-pyrazole gave a 3-(pyridin-2-yl)-pyrazolato, which subsequently reacted with the Cu(II) ion to give the (3-(pyridin-2-yl)-pyrazolato)(3-(pyridin-2-yl)-1H-pyrazole)Cu(II) product moiety. The structure of the dinuclear complex was confirmed by x-ray crystallography. The complexmore » crystallized in a monoclinic crystal system with P2(1)/n space group and cell dimensions of a = 12.2029(8) Å, b = 11.4010(7) Å, c = 14.4052(9) Å and β = 102.414(2)°. The compound was further characterized by mass spectrometry, CHN elemental analysis, infrared and UV-visible spectroscopy and the results concurred with the x-ray structure. The presence of d-d transition at 671 nm (ε = 116 dm{sup 3} mol{sup −1} cm{sup −1}) supports the presence of Cu(II) centres.« less
40 CFR 721.8750 - Halogenated substituted pyridine.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...
40 CFR 721.8750 - Halogenated substituted pyridine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...
40 CFR 721.8750 - Halogenated substituted pyridine.
Code of Federal Regulations, 2011 CFR
2011-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...
40 CFR 721.8750 - Halogenated substituted pyridine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...
40 CFR 721.8750 - Halogenated substituted pyridine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8750 Halogenated substituted pyridine. (a) Chemical substances and significant new uses... pyridine (PMN P-86-838) is subject to reporting under this section for the significant new uses described...
SERS spectra of pyridine adsorbed on nickel film prepared by magnetron sputtering
NASA Astrophysics Data System (ADS)
Li, Daoyong; Ouyang, Yu; Chen, Li; Cao, Weiran; Shi, Shaohua
2011-02-01
As a repeating well and cheaper enhancement substrate, the nickel film was fabricated with magnetron sputtering coating instrument. Surface enhanced Raman spectra (SERS) of pyridine adsorbed on this nickel film are compared with the experimental values of gaseous pyridine, the theoretical value of pyridine solution listed in other literatures and our method is better than electro-chemical etching electrode method for large scale preparation. The enhancement factor of the nickel film is calculated and the result indicates that magnetron sputtering coating technology is feasible for obtaining good SERS active surface.
Griswold, Wait R; Toney, Michael D
2011-09-21
Pyridoxal 5'-phosphate (PLP; vitamin B(6))-catalyzed reactions have been well studied, both on enzymes and in solution, due to the variety of important reactions this cofactor catalyzes in nitrogen metabolism. Three functional groups are central to PLP catalysis: the C4' aldehyde, the O3' phenol, and the N1 pyridine nitrogen. In the literature, the pyridine nitrogen has traditionally been assumed to be protonated in enzyme active sites, with the protonated pyridine ring providing resonance stabilization of carbanionic intermediates. This assumption is certainly correct for some PLP enzymes, but the structures of other active sites are incompatible with protonation of N1, and, consequently, these enzymes are expected to use PLP in the N1-unprotonated form. For example, aspartate aminotransferase protonates the pyridine nitrogen for catalysis of transamination, while both alanine racemase and O-acetylserine sulfhydrylase are expected to maintain N1 in the unprotonated, formally neutral state for catalysis of racemization and β-elimination. Herein, kinetic results for these three enzymes reconstituted with 1-deazapyridoxal 5'-phosphate, an isosteric analogue of PLP lacking the pyridine nitrogen, are compared to those for the PLP enzyme forms. They demonstrate that the pyridine nitrogen is vital to the 1,3-prototropic shift central to transamination, but not to reactions catalyzed by alanine racemase or O-acetylserine sulfhydrylase. Not all PLP enzymes require the electrophilicity of a protonated pyridine ring to enable formation of carbanionic intermediates. It is proposed that modulation of cofactor electrophilicity plays a central role in controlling reaction specificity in PLP enzymes.
Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing.
Jin, Yang; Yue, Qinyan; Yang, Kunlun; Wu, Suqing; Li, Shengjie; Gao, Baoyu; Gao, Yuan
2018-01-01
A novel cathodic-anodic-electrolysis packing (CAEP) used in the treatment of pyridine wastewater was researched, which mainly consisted of 4,4'-diamino-2,2'-disulfonic acid (DSD acid) industrial iron sludge. The physical properties and morphology of the packing were studied. The CAEP was used in a column reactor during the pretreatment of pyridine wastewater. The influence of pH, hydraulic retention time (HRT), the air-liquid ratio (A/L) and the initial concentration of pyridine were investigated by measuring the removal of total organic carbon (TOC) and pyridine. The characterization results showed that the bulk density, grain density, water absorption percentage and specific surface area were 921kg/m 3 , 1086kg/m 3 , 25% and 29.89m 2 /g, respectively; the removal of TOC and pyridine could reach 50% and 58% at the optimal experimental conditions (pH=3, HRT=8hr, A/L=2). Notably, the surface of the packing was renewed constantly during the running of the filter, and the handling capacity was stable after running for three months. Copyright © 2017. Published by Elsevier B.V.
2-Aminobenzoic acid–4-(pyridin-4-yldisulfanyl)pyridine (1/1)
Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.
2011-01-01
The title 1:1 co-crystal, C7H7NO2·C10H8N2S2, features a highly twisted 4-(pyridin-4-yldisulfanyl)pyridine molecule [dihedral angle between the pyridine rings = 89.06 (10)°]. A small twist is evident in the 2-aminobenzoic acid molecule, with the C—C—C—O torsion angle being −7.7 (3)°. An N—H⋯O hydrogen bond occurs in the 2-aminobenzoic acid molecule. In the crystal, molecules are linked by O—H⋯N and N—H⋯N hydrogen bonds into a supramolecular chain along the b axis. These are connected into layers by π–π interactions occurring between pyridine rings [centroid–centroid distance = 3.8489 (15) Å]. The layers are connected along the a axis by C—H⋯O contacts. The crystal studied was a racemic twin. PMID:22199855
Fun, Hoong-Kun; Sinthiya, A; Jebas, Samuel Robinson; Ravindran Durai Nayagam, B.; Alfred Cecil Raj, S.
2008-01-01
In the title compound, [Ni2(CO3)(C5H6N2)8(H2O)]Cl2·5H2O, one of the the NiII ions is six-coordinated in a distorted octahedral geometry, with the equatorial plane defined by four pyridine N atoms from four aminopyridine ligands, the axial positions being occupied by one water O and a carbonate O atom. The other NiII ion is also six-coordinated, by four other pyridine N atoms from four other aminopyridine ligands and two carbonate O atoms to complete a distorted octahedral geometry. In the crystal structure, molecules are linked into an infinite three-dimensional network by O—H⋯O, N—H⋯Cl, N—H⋯O, O—H⋯N, C—H⋯O, C—H⋯N and C/N—H⋯π interactions involving the pyridine rings. PMID:21580879
2015-01-01
1H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective 1H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process. PMID:24528143
Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; He, Ping; Groome, Kirsten A; Best, Quinn A; Shi, Fan; Goodson, Boyd M; Shchepin, Roman V; Coffey, Aaron M; Waddell, Kevin W; Chekmenev, Eduard Y
2014-03-05
(1)H NMR signal amplification by reversible exchange (SABRE) was observed for pyridine and pyridine-d5 at 9.4 T, a field that is orders of magnitude higher than what is typically utilized to achieve the conventional low-field SABRE effect. In addition to emissive peaks for the hydrogen spins at the ortho positions of the pyridine substrate (both free and bound to the metal center), absorptive signals are observed from hyperpolarized orthohydrogen and Ir-complex dihydride. Real-time kinetics studies show that the polarization build-up rates for these three species are in close agreement with their respective (1)H T1 relaxation rates at 9.4 T. The results suggest that the mechanism of the substrate polarization involves cross-relaxation with hyperpolarized species in a manner similar to the spin-polarization induced nuclear Overhauser effect. Experiments utilizing pyridine-d5 as the substrate exhibited larger enhancements as well as partial H/D exchange for the hydrogen atom in the ortho position of pyridine and concomitant formation of HD molecules. While the mechanism of polarization enhancement does not explicitly require chemical exchange of hydrogen atoms of parahydrogen and the substrate, the partial chemical modification of the substrate via hydrogen exchange means that SABRE under these conditions cannot rigorously be referred to as a non-hydrogenative parahydrogen induced polarization process.
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.
2014-01-01
The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.
2014-01-01
The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.
Artali, Roberto; Botta, Mauro; Cavallotti, Camilla; Giovenzana, Giovanni B; Palmisano, Giovanni; Sisti, Massimo
2007-08-07
A novel pyridine-containing DTPA-like ligand, carrying additional hydroxymethyl groups on the pyridine side-arms, was synthesized in 5 steps. The corresponding Gd(III) complex, potentially useful as an MRI contrast agent, was prepared and characterized in detail by relaxometric methods and its structure modeled by computational methods.
Nitrogen: Unraveling the Secret to Stable Carbon-Supported Pt-Alloy Electrocatalysts
2013-10-01
materials reveal broad N1s spectra, indicative of formation of multiple functionalities including but not limited to pyridinic, graphitic and pyrrolic ...network along with nitrogen substitutional defects, while high-dosage increases vacancy agglomerations and pyridinic and pyrrolic nitrogen defects...Article Online highly oriented pyrolytic graphite (HOPG) surface. Simulated defects included pyridinic (Npyridinic), pyrrolic (Npyrrolic), graphitic
NASA Astrophysics Data System (ADS)
Dudnik, Alexander S.; Weidner, Victoria L.; Motta, Alessandro; Delferro, Massimiliano; Marks, Tobin J.
2014-12-01
Developing earth-abundant, non-platinum metal catalysts for high-value chemical transformations is a critical challenge to contemporary chemical synthesis. Dearomatization of pyridine derivatives is an important transformation to access a wide range of valuable nitrogenous natural products, pharmaceuticals and materials. Here, we report an efficient 1,2-regioselective organolanthanide-catalysed pyridine dearomatization process using pinacolborane, which is compatible with a broad range of pyridines and functional groups and employs equimolar reagent stoichiometry. Regarding the mechanism, derivation of the rate law from NMR spectroscopic and kinetic measurements suggests first order in catalyst concentration, fractional order in pyridine concentration and inverse first order in pinacolborane concentration, with C=N insertion into the La-H bond as turnover-determining. An energetic span analysis affords a more detailed understanding of experimental activity trends and the unusual kinetic behaviour, and proposes the catalyst ‘resting’ state and potential deactivation pathways.
Testing of Experimental Compounds for Efficacy Against Leishmania.
1990-10-31
quinolines, pyridines, heavey metal complexes, berberine derivatives, and pyrazine or quinazoline inhibitors of dihydrofolate reductase. were among those...Quinolines, pyridines, and heavy metal complexes (for example sulfonamides) were active while pyrazine or quinazoline inhibitors of dihydrofolate...braziliensis panamensis 8-aminoquinolines pyridines dihydrofolate reductase inhibitors rAce For]"..toa T ] NTAISOeaO.&. 0Stkia:.oouned Id SJut If leaat i
Zhang, Song; Liao, Lian-Yan; Zhang, Fang; Duan, Xin-Fang
2013-03-15
A facile arylation, alkenylation, and alkylation of functionalized 2-halopyridine N-oxides with various Grignard reagents was developed. It represented a highly efficient and selective C-H bond functionalization of pyridine derivatives in the presence of reactive C-Cl or C-Br bonds. Using Cl or Br as a blocking group, C2/C6 site-controllable functionalization of pyridine derivatives has been achieved. Various pyridine compounds can be prepared as illustrated in the total syntheses of Onychine, dielsine, and PARP-1 inhibitor GPI 16539.
6-[6-(Pyridin-2-yl)-1,2,4,5-tetra-zin-3-yl]pyridin-3-amine monohydrate.
Broichhagen, Johannes; Klingl, Yvonne E; Trauner, Dirk; Mayer, Peter
2016-02-01
The packing of the title compound, C12H9N7·H2O, is dominated by hydrogen bonding and π-stacking. Layers parallel to [010] are established by hydrogen bonds involving all amine donor functions and one of the water donor functions, while the remaining water donor function enables the stacking of the layers along [10-1], which is accompanied by π-stacking. In the molecule, the plane of the central tetra-zine ring forms angles of 5.33 (7) and 19.84 (8)° with the adjacent 3-amine-pyridine and pyridine rings, respectively.
Werner, Julia; Jess, Inke; Näther, Christian
2015-06-01
The crystal structure of the title compound, [Cd(NCS)2(C6H7NO)2] n is made up of Cd(2+) cations that are coordinated by three thio-cyanate ligands and three 4-(hy-droxy-meth-yl)pyridine ligands within distorted N4OS octa-hedra. The asymmetric unit consists of one Cd(2+) cation, two thio-cyanate anions and two 4-(hy-droxy-meth-yl)pyridine ligands in general positions. Two Cd(2+) cations are linked by two μ-1,3 N- and S-bonding thio-ycanate anions into dimers which are further linked into branched chains along [100] by two μ-1,6 N- and O-bonding 4-(hy-droxy-meth-yl)pyridine ligands. One additional N-bonded 4-(hy-droxy-meth-yl)pyridine ligand and one additional N-bonded thio-cyanate anion are only terminally bonded to the metal cation. Inter-chain O-H⋯S hydrogen bonds between the hy-droxy H atoms and one of the thio-cyanate S atoms connect the chains into a three-dimensional network.
Lawrence, Mark A. W.; Celestine, Michael J.; Artis, Edward T.; Joseph, Lorne S.; Esquivel, Deisy L.; Ledbetter, Abram J.; Cropek, Donald M.; Jarrett, William L.; Bayse, Craig A.; Brewer, Matthew I.; Holder, Alvin A.
2018-01-01
[Co(dmgBF2)2(H2O)2] 1 (where dmgBF2 = difluoroboryldimethylglyoximato) was used to synthesize [Co(dmgBF2)2(H2O)(py)]·0.5(CH3)2CO 2 (where py = pyridine) in acetone. The formulation of complex 2 was confirmed by elemental analysis, high resolution MS, and various spectroscopic techniques. The complex [Co(dmgBF2)2(solv)(py)] (where solv = solvent) was readily formed in situ upon the addition of pyridine to complex 1. A spectrophotometric titration involving complex 1 and pyridine proved the formation of such a species, with formation constants, log K = 5.5, 5.1, 5.0, 4.4, and 3.1 in 2-butanone, dichloromethane, acetone, 1,2-difluorobenzene/acetone (4 : 1, v/v), and acetonitrile, respectively, at 20 °C. In strongly coordinating solvents, such as acetonitrile, the lower magnitude of K along with cyclic voltammetry, NMR, and UV-visible spectroscopic measurements indicated extensive dissociation of the axial pyridine. In strongly coordinating solvents, [Co(dmgBF2)2(solv)(py)] can only be distinguished from [Co(dmgBF2)2(solv)2] upon addition of an excess of pyridine, however, in weakly coordinating solvents the distinctions were apparent without the need for excess pyridine. The coordination of pyridine to the cobalt(II) centre diminished the peak current at the Epc value of the CoI/0 redox couple, which was indicative of the relative position of the reaction equilibrium. Herein we report the first experimental and theoretical 59Co NMR spectroscopic data for the formation of Co(I) species of reduced cobaloximes in the presence and absence of py (and its derivatives) in CD3CN. From spectroelectrochemical studies, it was found that pyridine coordination to a cobalt(I) metal centre is more favourable than coordination to a cobalt(II) metal centre as evident by the larger formation constant, log K = 4.6 versus 3.1, respectively, in acetonitrile at 20 °C. The electrosynthesis of hydrogen by complexes 1 and 2 in various solvents demonstrated the dramatic effects of the axial ligand and the solvent on the turnover number of the respective catalyst. PMID:27244471
Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells - Oral Presentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Alison J.
2015-08-25
Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100 degree Celsius for 90 minutes followed by 120 degree Celsius for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure weremore » studied using x-ray diffraction, UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulkphotoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.« less
Investigating the Effect of Pyridine Vapor Treatment on Perovskite Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ong, Alison
2015-08-20
Perovskite photovoltaics have recently come to prominence as a viable alternative to crystalline silicon based solar cells. In an effort to create consistent and high-quality films, we studied the effect of various annealing conditions as well as the effect of pyridine vapor treatment on mixed halide methylammonium lead perovskite films. Of six conditions tested, we found that annealing at 100°C for 90 minutes followed by 120°C for 15 minutes resulted in the purest perovskite. Perovskite films made using that condition were treated with pyridine for various amounts of time, and the effects on perovskite microstructure were studied using x-ray diffraction,more » UV-Vis spectroscopy, and time-resolved photoluminescence lifetime analysis (TRPL). A previous study found that pyridine vapor caused perovskite films to have higher photoluminescence intensity and become more homogenous. In this study we found that the effects of pyridine are more complex: while films appeared to become more homogenous, a decrease in bulk photoluminescence lifetime was observed. In addition, the perovskite bandgap appeared to decrease with increased pyridine treatment time. Finally, X-ray diffraction showed that pyridine vapor treatment increased the perovskite (110) peak intensity but also often gave rise to new unidentified peaks, suggesting the formation of a foreign species. It was observed that the intensity of this unknown species had an inverse correlation with the increase in perovskite peak intensity, and also seemed to be correlated with the decrease in TRPL lifetime.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Yongsoon; Wang, Chong M.; Engelhard, Mark H.
2009-07-01
A simple, direct synthesis of a mesoporous carbon containing pyridine rings is described. This synthesis utilizes the SiCl4 induced cyclotrimerization of 2,6-diacetylpyridine to make a dendritic polymer, built of alternating benzene and pyridine rings. The cyclotrimerization allows for a high degree of crosslinking to take place at low temperatures stabilizing the mesostructure and allowing the carbonization to be carried out at only 600°C, the lowest temperature reported to date for an N-doped mesoporous carbon. The functional mesoporous carbon so formed was found to have a surface area of 1275 m2/g, 35Å pores, and contain 6.8% N.
NASA Astrophysics Data System (ADS)
McDivitt, Lindsey M.; Himes, Korrina M.; Bailey, Josiah R.; McMahon, Timothy J.; Bird, Ryan G.
2017-06-01
The ground state rotational spectra of the three methylamine substituted pyridines, 2-, 3-, and 4-picolylamine, were collected and analyzed over the frequency range of 7-17.5 GHz using chirped-pulsed Fourier transform microwave spectroscopy. All three molecules show a distinctive quadrupole splitting, which is representative of the local electronic environment around the two different ^{14}N nuclei, with the pyridine nitrogen being particularly sensitive to the pi-electron distribution within the ring. The role that the position of the methylamine group plays on the quadrupole coupling constants on both nitrogens will be discussed and compared to other substituted pyridines.
6-[6-(Pyridin-2-yl)-1,2,4,5-tetrazin-3-yl]pyridin-3-amine monohydrate
Broichhagen, Johannes; Klingl, Yvonne E.; Trauner, Dirk; Mayer, Peter
2016-01-01
The packing of the title compound, C12H9N7·H2O, is dominated by hydrogen bonding and π-stacking. Layers parallel to [010] are established by hydrogen bonds involving all amine donor functions and one of the water donor functions, while the remaining water donor function enables the stacking of the layers along [10-1], which is accompanied by π-stacking. In the molecule, the plane of the central tetrazine ring forms angles of 5.33 (7) and 19.84 (8)° with the adjacent 3-amine-pyridine and pyridine rings, respectively. PMID:26958397
[Analysis of core virion polypeptides from the pathogen causing chicken egg-drop syndrome].
Iurov, G K; Dadykov, V A; Neugodova, G L; Naroditskiĭ, B S
1998-01-01
The cores of egg-drop syndrome virus (EDS-76) were isolated by the pyridine technique. EDS-76 proved to be much more resistant to pyridine disruption than other adenoviruses and treatment with 10% pyridine did not lead to complete dissociation of capsid and cores; only increase of pyridine concentration to 20% produced satisfactory results. At least three polypeptides (24, 10.5, and 6.5 kDa) were found in the core by SDS-PAGE, whereas the 40 kDa reacting with the core is most probably not a core component. Much more intensive reactions of the core with EDS-76 virion capsid suggest that its virion structure differs from that of other adenoviruses.
NASA Astrophysics Data System (ADS)
Dega-Szafran, Zofia; Kania, Anna; Grundwald-Wyspiańska, Monika; Szafran, Mirosław; Tykarska, Ewa
1996-07-01
Complexes of five pyridines and nine pyridine N-oxides with 2,6-dichloro-4-nitrophenol (DCNP) in solution and the solid state were studied by Fourier transform IR and UV spectroscopy, by quantum-mechanical calculations with the semiempirical parametric method 3 (PM3) and by X-ray analysis. The crystals of the 1 : 1 complex of 4-methoxy-2,6-dimethylpyridine N-oxide with DCNP are monoclinic, space group {P2 1}/{n}, a = 4.5936(5) Å, b = 21.953(3) Å, c = 15.664(2) Å, β = 92.87(1)°, V = 1577.6(8) Å3, Z = 4. The molecules of the complex are joined together by an N +OH⋯O - hydrogen bond with an O⋯O distance of 2.425(3) Å, a CO - distance of 1.286(3) Å and a (N +O)H⋯O - angle of 152.9°. The PM3 method predicts for all the investigated complexes two minima, the deeper one for B⋯HA complexes and the shallower one for the B +H⋯A - forms. For the 4-methylpyridine complex the N +H⋯O - distance is reproduced correctly but for the 4-methoxy-2,6-dimethylpyridine N-oxide complex the N +H⋯O - distance is too long. The predicted hydrogen-bond angles differ from the experimental values by more than 10°. In solid state complexes of pyridines the N⋯O distances and the broad absorption due to a protic vibration are not directly related to Δp Ka. This is due to the crystal packing forces. In solution the broad absorption varies with Δp Ka. A band in the 3500 cm -1 region due to the solvated phenol is present in all investigated complexes in solution. Absorption in the 3000-2000 cm -1 region of pyridine complexes is more intense than that of the pyridine N-oxides, in agreement with the difference in N⋯O and NO⋯O distances. The broad absorption in the spectra of pyridine complexes is more influenced by solvent effects than in the pyridine N-oxide complexes. The UV spectra of the pyridine complexes show two bands due to B⋯HA (305-315 nm) and B +H⋯A - (382-395 nm) forms. The UV spectra of complexes of pyridine N-oxides of intermediate strengths in CH 2Cl 2 are not combinations of the spectra of phenol and phenolate. The band in the intermediate position denotes that neither species close to phenol nor to phenoxide ion is present. In these complexes the proton is probably localized in a single minimum and the minimum moves from the donor to the acceptor or, what is more probable, reorganization of the solvent molecules around the complex is faster than the time range of UV spectroscopy. In acetonitrile the situation is quite different as two bands are present, in agreement with a prototropic equilibrium. Effects of solvent, concentration and stoichiometry on interactions of DCNP with pyridines and pyridine N-oxides are compared and discussed. An extended mechanism of the proton-transfer reaction is proposed.
Fearon, Daren; Westwood, Isaac M; van Montfort, Rob L M; Bayliss, Richard; Jones, Keith; Bavetsias, Vassilios
2018-07-15
Screening a 3-aminopyridin-2-one based fragment library against a 26-kinase panel representative of the human kinome identified 3-amino-5-(1-methyl-1H-pyrazol-4-yl)pyridin-2(1H)-one (2) and 3-amino-5-(pyridin-4-yl)pyridin-2(1H)-one (3) as ligand efficient inhibitors of the mitotic kinase Monopolar Spindle 1 (MPS1) and the Aurora kinase family. These kinases are well recognised as attractive targets for therapeutic intervention for treating cancer. Elucidation of the binding mode of these fragments and their analogues has been carried out by X-ray crystallography. Structural studies have identified key interactions with a conserved lysine residue and have highlighted potential regions of MPS1 which could be targeted to improve activity and selectivity. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Faizi, Md Serajul Haque; Dege, Necmi; Goleva, Kateryna
2017-06-01
The title dinuclear mercury(II) complex, [Hg 2 Cl 4 (C 16 H 19 N 3 ) 2 ], synthesized from the pyridine-derived Schiff base ( E )- N 1 , N 1 -diethyl- N 4 -[(pyridin-2-yl)methyl-idene]benzene-1,4-di-amine (DPMBD), has inversion symmetry. The five-coordinated Hg II atoms have distorted square-pyramidal stereochemistry comprising two N-atom donors from bidentate chelate BPMBD ligands and three Cl-atom donors, two bridging and one monodentate. The dihedral angle between the benzene and the pyridine rings in the BPMBD ligand is 7.55 (4)°. In the crystal, the dinuclear mol-ecules are linked by weak C-H⋯Cl hydrogen bonds, forming zigzag ribbons lying parallel to [001]. Also present in the structure are π-π inter-actions between benzene and pyridine rings [minimum ring-centroid separation = 3.698 (8) Å].
Synthesis of Polysubstituted Pyridines via a One-Pot Metal-Free Strategy.
Wei, Hongbo; Li, Yun; Xiao, Ke; Cheng, Bin; Wang, Huifei; Hu, Lin; Zhai, Hongbin
2015-12-18
An efficient strategy for the one-pot synthesis of polysubstituted pyridines via a cascade reaction from aldehydes, phosphorus ylides, and propargyl azide is reported. The reaction sequence involves a Wittig reaction, a Staudinger reaction, an aza-Wittig reaction, a 6π-3-azatriene electrocyclization, and a 1,3-H shift. This protocol provides quick access to the polysubstituted pyridines from readily available substrates in good to excellent yields.
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1981-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego
2013-06-01
In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2} n , the coordination environment of the cationic Cu(II) atom is distorted octa-hedral, formed by pairs of symmetry-equivalent 1,2-bis-(pyridin-4-yl)diazene ligands, bridging 1,2-bis-(pyridin-4-yl)diazene ligands and two non-equivalent water mol-ecules. The 1,2-bis-(pyridin-4-yl)diazene mol-ecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the Cu(II) atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium-strong O-H⋯O hydrogen bonds with graph set R 4 (4)(12). The water mol-ecules, which are coordinated to the Cu(II) atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π-π inter-action [centroid-centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C-H⋯O inter-actions also occur.
Zhang, Jianxun; Ji, Houwei; Sun, Shihao; Mao, Duobin; Liu, Huwei; Guo, Yinlong
2007-10-01
The application of perfluorotributylamine (PFTBA) ions/analyte molecule reaction ionization for the selective determination of tobacco pyridine alkaloids by ion trap mass spectrometry (IT-MS) is reported. The main three PFTBA ions (CF(3)(+), C(3)F(5)(+), and C(5)F(10)N(+)) are generated in the external source and then introduced into ion trap for reaction with analytes. Because the existence of the tertiary nitrogen atom in the pyridine makes it possible for PFTBA ions to react smoothly with pyridine and forms adduct ions, pyridine alkaloids in tobacco were selectively ionized and formed quasi-molecular ion [M + H](+)and adduct ions, including [M + 69](+), [M + 131](+), and [M + 264](+), in IT-MS. These ions had distinct abundances and were regarded as the diagnostic ions of each tobacco pyridine alkaloid for quantitative analysis in selected-ion monitoring mode. Results show that the limit of detection is 0.2 microg/mL, and the relative standard deviations for the seven alkaloids are in the range of 0.71% to 6.8%, and good recovery of 95.6% and 97.2%. The proposed method provides substantially greater selectivity and sensitivity compared with the conventional approach and offers an alternative approach for analysis of tobacco alkaloids.
Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.
Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2014-11-14
Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.
Characterization of Trinuclear Oxo Bridged Cobalt Complexes in Isolation
NASA Astrophysics Data System (ADS)
Lang, Johannes; Fries, Daniela V.; Niedner-Schatteburg, Gereon
2018-05-01
This study elucidates molecular structures, fragmentation pathways and relative stabilities of isolated trinuclear oxo bridged cobalt complexes of the structural type [Co3O(OAc)6(Py)n]+ (OAc=acetate, Py=pyridine, n=0, 1, 2, 3). We present infrared multiple photon dissociation (IR-MPD) spectra in combination with quantum chemical calculations. They indicate that the coordination of axial pyridine ligands to the [Co3O(OAc)6]+ subunit disturbs the triangular geometry of the Co3O core. [Co3O(OAc)6]+ exhibits a nearly equilateral triangular Co3O core geometry. The coordination of one or two pyridine ligands disturbs this arrangement resulting in isosceles triangular Co3O core geometries (in the cases of n=1 and 2). Coordination of three pyridine ligands (n=3) results in an equilateral triangular Co3O core geometry as in the case of n=0. Collision induced dissociation (CID) studies reveal that the complexes undergo a consecutive elimination of pyridine and acetate ligands with increasing excitation energy. Relative stabilities of the complexes decrease with the number of coordinated pyridine ligands. The presented results help to gain a fundamental insight into the molecular structure of trinuclear oxo bridged cobalt complexes void of any external effects such as crystal packing or solvation.
Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki
2015-11-01
The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.
Para-hydrogen induced polarization without incorporation of para-hydrogen into the analyte.
Atkinson, Kevin D; Cowley, Michael J; Duckett, Simon B; Elliott, Paul I P; Green, Gary G R; López-Serrano, Joaquín; Khazal, Iman G; Whitwood, Adrian C
2009-01-19
The cationic iridium complexes [Ir(COD)(PR3)2]BF4 (1a-c) (a, R = Ph; b, R = p-tolyl; c, R = p-C6H4-OMe) react with parahydrogen in the presence of pyridine to give trans, cis, cis-[Ir(PR3)2(py)2(H)2]+ (2a-c) and small amounts of fac, cis-[Ir(PR3)(py)3(H)2]+ (3a-c), each of which exhibit polarized hydride resonances due to the magnetic inequivalence associated with the resultant AA"XX" spin system when 15N-labeled pyridine is employed. The pyridine ligands in 2 are labile, exchanging slowly into free pyridine with a rate constant of 0.4 s(-1) for 2a at 335 K in a dissociative process where DeltaH(double dagger) = 134 +/- 1 kJ mol(-1) and DeltaS(double dagger) = 151 +/- 5 J mol(-1) K(-1). Pyridine ligand exchange in 2 proves to be slower than that determined for 3. Parahydrogen induced polarization (PHIP) based on the hydride ligands of 2 and 3 is transferred efficiently to the 15N nuclei of the bound pyridine ligand by suitable insensitive-nuclei-enhanced-by-polarization-transfer (INEPT) based procedures. Related methods are then used to facilitate the sensitization of the free pyridine 15N signal by a factor of 120-fold through ligand exchange even though this substrate does not contain parahydrogen. This therefore corresponds to the successful polarization of an analyte by parahydrogen induced polarization methods without the need for the actual chemical incorporation of any parahydrogen derived nuclei into it.
Katahira, Riko; Ashihara, Hiroshi
2009-12-01
As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.
Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)
Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.
2012-01-01
A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)]- anionic complex
NASA Astrophysics Data System (ADS)
Graham, Jacob D.; Buytendyk, Allyson M.; Zhang, Xinxing; Kim, Seong K.; Bowen, Kit H.
2015-11-01
The [Co(Pyridine)(CO2)]- anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)]- in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
Carbon dioxide is tightly bound in the [Co(Pyridine)(CO2)](-) anionic complex.
Graham, Jacob D; Buytendyk, Allyson M; Zhang, Xinxing; Kim, Seong K; Bowen, Kit H
2015-11-14
The [Co(Pyridine)(CO2)](-) anionic complex was studied through the combination of photoelectron spectroscopy and density functional theory calculations. This complex was envisioned as a primitive model system for studying CO2 binding to negatively charged sites in metal organic frameworks. The vertical detachment energy (VDE) measured via the photoelectron spectrum is 2.7 eV. Our calculations imply a structure for [Co(Pyridine)(CO2)](-) in which a central cobalt atom is bound to pyridine and CO2 moieties on either sides. This structure was validated by acceptable agreement between the calculated and measured VDE values. Based on our calculations, we found CO2 to be bound within the anionic complex by 1.4 eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rybakov, V. B., E-mail: Rybakov20021@yandex.ru; Babaev, E. V.; Paronikyan, E. G., E-mail: Ervand.paronikyan@mail.ru
Seven new, previously unknown, bicyclic and tricyclic heterocycles based on derivatives of 3-cyanopyrid-2-ones are obtained: 2-oxo-2,5,6,7,8,9-hexahydro-1H-cyclohepta[b]pyridine-3-carbonitrile, C{sub 11}H{sub 12}N{sub 2}O (1a); 2-[2-(4-chlorophenyl)-2-oxoethoxy]-6,7,8,9-tetrahydro-5H-cyclohepta[b] pyridine-3-carbonitrile, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (2a); (3-amino-6,7,8,9-tetrahydro-5H-cyclohepta[b]furo[3,2-e]pyridin-2-yl)(4- chlorophenyl)methanone, C{sub 19}H{sub 17}ClN{sub 2}O{sub 2} (3); 2-oxo-1,2,5,6,7,8,9,10-octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 12}H{sub 16}N{sub 2}O{sub 2} (4); 2-[2-(4-chorophenyl)-2-oxoethoxy]-5,6,7,8,9,10 -hexahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5a); 1-[2-(4-chlorophenyl)-2-oxoethyl]-2-oxo-1,2,5,6,7,8,9,10 -octahydrocycloocta[b]pyridine-3-carboxamide, C{sub 20}H{sub 21}ClN{sub 2}O{sub 3} (5b); and 2-[2-(4-chlorophenyl)-2-oxoethoxy]-5,6,7,8,9,10-hexahydrocycloocta[b] pyridine-3-carbonitrile, C{sub 20}H{sub 19}ClN{sub 2}O{sub 2}, (6). All compounds are characterized by {sup 1}H NMR spectroscopy, and their crystal structures are determined by X-ray diffraction.
Improved methodologies for the preparation of highly substituted pyridines.
Fernández Sainz, Yolanda; Raw, Steven A; Taylor, Richard J K
2005-11-25
[reaction: see text] Two separate strategies have been developed for the preparation of highly substituted pyridines from 1,2,4-triazines via the inverse-electron-demand Diels-Alder reaction: a microwave-promoted, solvent-free procedure and a tethered imine-enamine (TIE) approach. Both routes avoid the need for a discrete aromatization step and offer significant advantages over the classical methods, giving a wide variety of tri-, tetra-, and penta-substituted pyridines in high, optimized yields.
Functional conjugated pyridines via main-group element tuning.
Stolar, Monika; Baumgartner, Thomas
2018-03-29
Pyridine-based materials have seen widespread attention for the development of n-type organic materials. In recent years, the incorporation of main-group elements has also explored significant advantages for the development and tunability of organic conjugated materials. The unique chemical and electronic structure of main-group elements has led to several enhancements in conventional organic materials. This Feature article highlights recent main-group based pyridine materials by discussing property enhancements and application in organic electronics.
Ballestero-Martínez, Ernesto; Campos-Fernández, Cristian Saul; Soto-Tellini, Victor Hugo; Gonzalez-Montiel, Simplicio; Martínez-Otero, Diego
2013-01-01
In the title compound, {[Cu(C10H8N4)3(H2O)2](ClO4)2}n, the coordination environment of the cationic CuII atom is distorted octahedral, formed by pairs of symmetry-equivalent 1,2-bis(pyridin-4-yl)diazene ligands, bridging 1,2-bis(pyridin-4-yl)diazene ligands and two non-equivalent water molecules. The 1,2-bis(pyridin-4-yl)diazene molecules form polymeric chains parallel to [-101] via azo bonds which are situated about inversion centres. Since the CuII atom is situated on a twofold rotation axis, the monomeric unit has point symmetry 2. The perchlorate anions are disordered in a 0.536 (9):0.464 (9) ratio and are acceptors of water H atoms in medium–strong O—H⋯O hydrogen bonds with graph set R 4 4(12). The water molecules, which are coordinated to the CuII atom and are hydrogen-bonded to the perchlorate anions, form columns parallel to [010]. A π–π interaction [centroid–centroid distance = 3.913 (2) Å] occurs between pyridine rings, and weak C—H⋯O interactions also occur. PMID:23794983
Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu
2017-01-27
The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
Yu, Jipan; Jin, Yunhe; Zhang, Hao; Yang, Xiaobo; Fu, Hua
2013-12-02
A novel, efficient, and practical method for the synthesis of imidazopyridine derivatives has been developed through the copper-catalyzed aerobic oxidative C-H functionalization of substituted pyridines with N-(alkylidene)-4H-1,2,4-triazol-4-amines. The procedure occurs by cleavage of the N-N bond in the N-(alkylidene)-4H-1,2,4-triazol-4-amines and activation of an aryl C-H bond in the substituted pyridines. This is the first example of the preparation of imidazopyridine derivatives by using pyridines as the substrates by transition-metal-catalyzed C-H functionalization. This method should provide a novel and efficient strategy for the synthesis of other nitrogen heterocycles. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Chi-Heon; Moon, Suk-Hee; Park, Ki-Min; Kang, Youngjin
2016-12-01
In the title compound, [Ir(C 11 H 8 N) 2 (C 18 H 14 N)], the Ir III ion adopts a distorted octa-hedral coordination environment defined by three C , N -chelating ligands, one stemming from a 2-(4-phenyl-5-methyl-pyridin-2-yl)phenyl ligand and two from 2-(pyridin-2-yl)phenyl ligands, arranged in a facial manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. In the crystal, inter-molecular π-π stacking inter-actions, as well as inter-molecular C-H⋯π inter-actions, are present, leading to a three-dimensional network.
Collisional quenching dynamics and reactivity of highly vibrationally excited molecules
NASA Astrophysics Data System (ADS)
Liu, Qingnan
Highly excited molecules are of great importance in many areas of chemistry including photochemistry. The dynamics of highly excited molecules are affected by the intermolecular and intramolecular energy flow between many different kinds of motions. This thesis reports investigations of the collisional quenching and reactivity of highly excited molecules aimed at understanding the dynamics of highly excited molecules. There are several important questions that are addressed. How do molecules behave in collisions with a bath gas? How do the energy distributions evolve in time? How is the energy partitioned for both the donor and bath molecules after collisions? How do molecule structure, molecule state density and intermolecular potential play the role during collisional energy transfer? To answer these questions, collisional quenching dynamics and reactivity of highly vibrationally excited azabenzene molecules have been studied using high resolution transient IR absorption spectroscopy. The first study shows that the alkylated pyridine molecules that have been excited with Evib˜38,800 cm-1 impart less rotational and translational energy to CO2 than pyridine does. Comparison between the alkylated donors shows that the strong collisions are reduced for donors with longer alkyl chains by lowering the average energy per mode but longer alkyl chain have increased flexibility and higher state densities that enhance energy loss via strong collisions. In the second study, the role of hydrogen bonding interactions is explored in collision of vibrationally excited pyridines with H2O. Substantial difference in the rotational energy of H 2O is correlated with the structure of the global energy minimum. A torque-inducing mechanism is proposed that involves directed movement of H 2O between sigma and pi-hydrogen bonding interactions with the pyridine donors. In the third study the dynamics of strong and weak collisions for highly vibrationally excited methylated pyridine molecules with HOD are reported. Lower limits to the overall collision rate are directly determined from experimental measurements and compared to Lennard-Jones models which underestimate the collision rate for highly vibrationally excited azabenzenes with HOD. The fourth study explores reactive collisions of highly vibrationally excited pyridine molecules. D-atom abstraction reactions of highly vibrationally excited pyridine-d5 molecules and chlorine radical show a rate enhancement of ˜90 relative to the reaction of room temperature pyridine-d5 with chlorine radical. A single quantum of C-D stretching vibration is observed to be used for the vibrational driven reaction. Reactions of 2-picoline-d3 with chlorine radical do not show a similar enhancement. For this case, the fast rotation of --CD3 group in highly vibrationally excited 2-picoline-d3 inhibits the D-atom abstraction.
Synthesis and evaluation of heterocyclic analogues of bromoxynil.
Cutulle, Matthew A; Armel, Gregory R; Brosnan, James T; Best, Michael D; Kopsell, Dean A; Bruce, Barry D; Bostic, Heidi E; Layton, Donovan S
2014-01-15
One attractive strategy to discover more active and/or crop-selective herbicides is to make structural changes to currently registered compounds. This strategy is especially appealing for those compounds with limited herbicide resistance and whose chemistry is accompanied with transgenic tools to enable herbicide tolerance in crop plants. Bromoxynil is a photosystem II (PSII) inhibitor registered for control of broadleaf weeds in several agronomic and specialty crops. Recently at the University of Tennessee-Knoxville several analogues of bromoxynil were synthesized including a previously synthesized pyridine (2,6-dibromo-5-hydroxypyridine-2-carbonitrile sodium salt), a novel pyrimidine (4,6-dibromo-5-hydroxypyrimidine-2-carbonitrile sodium salt), and a novel pyridine N-oxide (2,6-dibromo-1-oxidopyridin-1-ium-4-carbonitrile). These new analogues of bromoxynil were also evaluated for their herbicidal activity on soybean (Glycine max), cotton (Gossypium hirsutum), redroot pigweed (Amaranthus retroflexus), velvetleaf (Abutilon theophrasti), large crabgrass (Digitaria sanguinalis), and pitted morningglory ( Ipomoea lacunose ) when applied at 0.28 kg ha(-1). A second study was conducted on a glyphosate-resistant weed (Amaranthus palmeri) with the compounds being applied at 0.56 kg ha(-1). Although all compounds were believed to inhibit PSII by binding in the quinone binding pocket of D1, the pyridine and pyridine-N-oxide analogues were clearly more potent than bromoxynil on Amaranthus retroflexus. However, application of the pyrimidine herbicide resulted in the least injury to all species tested. These variations in efficacy were investigated using molecular docking simulations, which indicate that the pyridine analogue may form a stronger hydrogen bond in the pocket of the D1 protein than the original bromoxynil. A pyridine analogue was able to control the glyphosate-resistant Amaranthus palmeri with >80% efficacy. The pyridine analogues of bromoxynil showed potential to have a different weed control spectrum compared to bromoxynil. A pyridine analogue of bromoxynil synthesized in this research controlled several weed species greater than bromoxynil itself, potentially due to enhanced binding within the PSII binding pocket. Future research should compare this analogue to bromoxynil using optimized formulations at higher application rates.
Lambert-Eaton Myasthenic Syndrome
... giving drugs such as di-amino pyridine or pyridostigmine bromide (Mestinon). For patients with small cell lung cancer, ... giving drugs such as di-amino pyridine or pyridostigmine bromide (Mestinon). For patients with small cell lung cancer, ...
Study of the adsorbed layer on a solid electrode surface by specular reflection measurement
NASA Astrophysics Data System (ADS)
Kusu, Fumiyo; Takamura, Kiyoko
1985-07-01
Specular reflection measurements were carried out to study the adsorbed layers of certain heterocyclic compounds such as adenine, barbital, 2'-deoxyadenosine, phenobarbital, pyridine and thymine. When pyridine was present in 0.1M NaClO 4, a marked decrease in the reflectivity of a gold electrode was observed. In the potential range near the point of zero charge on the reflectivity-potential curve, the decrease was due to the adsorption of pyridine. Assuming the reflectivity change to be proportional to the surface coverage, the potential and concentration dependence of pyridine adsorption was determined and analysed on the basis of a Langmuir-type adsorption isotherm. The refractive indices and extinction coefficients for the adsorbed layers of the compounds investigated were evaluated using the observed reflectivity change, according to relations proposed by McIntyre and Aspnes.
Adachi, Naoya; Kaneko, Yuki; Sekiguchi, Kazuki; Sugiyama, Hiroki; Sugeno, Masafumi
2015-12-01
Poly(p-pyridinium phenylene ethynylene)s (PPyPE) functionalized with alternating donor-acceptor repeat units were synthesized by a Pd-catalyzed Sonogashira coupling reaction between diethynyl monomer and di-iodopyridine for use as a pH-responsive fluorescence chemical sensor. The synthesized PPyPE, containing pyridine units, was characterized by FT-IR, (1)H and (13)C NMR, UV-visible and fluorescence spectroscopies. We investigated the relationship between changes of optical properties and protonation/deprotonation of PPyPE containing pyridine units in solution. Addition of HCl decreased and red-shifted the fluorescence intensity of the conjugated polymers that contained pyridine rings; fluorescence intensity of the polymers increased upon addition of NaOH solution. The synthesized PPyPE was found to be an effective and reusable chemical sensor for pH sensing. Copyright © 2015 John Wiley & Sons, Ltd.
Ouizem, Sabrina; Rosario Amorin, Daniel; Dickie, Diane A.; ...
2015-05-09
For syntheses of new multidentate chelating ligands ((6,6'4(1,4-diazepane-1,4-diyl)bis(methylene))bis(pyridine-6,2-diyl))bis(methylene))bis(diphenylphosphine oxide) (2) and 6,6'-((1,4-diazepane1,4-diyl)bis(methylene))bis(2-((diphenylphosphoryl)methyl)pyridine 1-oxide) (3), based upon a 1,4-diazepane platform functionalized with 2-(diphenylphosphinoylmethyl)pyridine P-oxide and 2-(diphenylphosphinoylmethyl)pyridine NP-dioxide fragments, respectively, the results are reported. Our results from studies of the coordination chemistry of the ligands with selected lanthanide nitrates and Cu(BF 4)(2) are outlined, and crystal structures for two complexes, [Cu(2)](BF 4) 2 and [Cu(3)](BF 4) 2, are described along with survey Eu(III) and Am(III) solvent extraction analysis, for 3.
Yu, Renyuan Pony; Darmon, Jonathan M.; Milsmann, Carsten; Margulieux, Grant W.; E. Stieber, S. Chantal; DeBeer, Serena
2013-01-01
The bis(arylimidazol-2-ylidene)pyridine cobalt methyl complex, (iPrCNC)CoCH3, was evaluated for the catalytic hydrogenation of alkenes. At 22 °C and 4 atm of H2 pressure, (iPrCNC)CoCH3 is an effective pre-catalyst for the hydrogenation of sterically hindered, unactivated alkenes such as trans-methylstilbene, 1-methyl-1-cyclohexene and 2,3-dimethyl-2-butene, representing one of the most active cobalt hydrogenation catalysts reported to date. Preparation of the cobalt hydride complex, (iPrCNC)CoH was accomplished by hydrogenation of (iPrCNC)CoCH3. Over the course of 3 hours at 22 °C, migration of the metal-hydride to the 4-position of the pyridine ring yielded (4-H2-iPrCNC)CoN2. Similar alkyl migration was observed upon treatment of (iPrCNC)CoH with 1,1-diphenylethylene. This reactivity raised the question as to whether this class of chelate is redoxactive, engaging in radical chemistry with the cobalt center. A combination of structural, spectroscopic and computational studies was conducted and provided definitive evidence for bis(arylimidazol-2-ylidene)pyridine radicals in reduced cobalt chemistry. Spin density calculations established that the radicals were localized on the pyridine ring, accounting for the observed reactivity and suggest a wide family of pyridine-based pincers may also be redox active. PMID:23968297
Yu, Renyuan Pony; Darmon, Jonathan M; Milsmann, Carsten; Margulieux, Grant W; Stieber, S Chantal E; DeBeer, Serena; Chirik, Paul J
2013-09-04
The bis(arylimidazol-2-ylidene)pyridine cobalt methyl complex, ((iPr)CNC)CoCH3, was evaluated for the catalytic hydrogenation of alkenes. At 22 °C and 4 atm of H2 pressure, ((iPr)CNC)CoCH3 is an effective precatalyst for the hydrogenation of sterically hindered, unactivated alkenes such as trans-methylstilbene, 1-methyl-1-cyclohexene, and 2,3-dimethyl-2-butene, representing one of the most active cobalt hydrogenation catalysts reported to date. Preparation of the cobalt hydride complex, ((iPr)CNC)CoH, was accomplished by hydrogenation of ((iPr)CNC)CoCH3. Over the course of 3 h at 22 °C, migration of the metal hydride to the 4-position of the pyridine ring yielded (4-H2-(iPr)CNC)CoN2. Similar alkyl migration was observed upon treatment of ((iPr)CNC)CoH with 1,1-diphenylethylene. This reactivity raised the question as to whether this class of chelate is redox-active, engaging in radical chemistry with the cobalt center. A combination of structural, spectroscopic, and computational studies was conducted and provided definitive evidence for bis(arylimidazol-2-ylidene)pyridine radicals in reduced cobalt chemistry. Spin density calculations established that the radicals were localized on the pyridine ring, accounting for the observed reactivity, and suggest that a wide family of pyridine-based pincers may also be redox-active.
Isomers and conformational barriers of gas phase nicotine, nornicotine and their protonated forms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoshida, Tomoki; Farone, William A.; Xantheas, Sotiris S.
We report extensive conformational searches of the neutral nicotine, nornicotine and their protonated analogs that are based on ab-initio second order Møller-Plesset perturbation (MP2) electronic structure calculations. Initial searches were performed with the 6-31G(d,p) and the energetics of the most important structures were further refined from geometry optimizations with the aug-cc-pVTZ basis set. Based on the calculated free energies at T=298 K for the gas phase molecules, neutral nicotine has two dominant trans conformers, whereas neutral nornicotine is a mixture of several conformers. For nicotine, the protonation on both the pyridine and the pyrrolidine sites is energetically competitive, whereas nornicotinemore » prefers protonation on the pyridine nitrogen. The protonated form of nicotine is mainly a mixture of two pyridine-protonated trans conformers and two pyrrolidine-protonated trans conformers, whereas the protonated form of nornicotine is a mixture of four pyridine-protonated trans conformers. Nornicotine is conformationally more flexible than nicotine, however it is less protonated at the biologically important pyrrolidine nitrogen site. The lowest energy isomers for each case were found to interconvert via low (< 6 kcal/mol) rotational barriers around the pyridine-pyrrolidine bond.« less
Benny, Paul D; Fugate, Glenn A; Barden, Adam O; Morley, Jennifer E; Silva-Lopez, Elsa; Twamley, Brendan
2008-04-07
Reaction of [NEt4]2[ReBr3(CO)3] with 2,4-pentanedione (acac) yields a complex of the type fac-Re(acac)(OH2)(CO)3 (1) under aqueous conditions. 1 was further reacted with a monodentate ligand (pyridine) to yield a fac-Re(acac)(pyridine)(CO)3 complex (2). Complex 1 was found to react with primary amines to generate a Schiff base (imine) in aqueous solutions. When a mixed-nitrogen donor bidentate ligand, 2-(2-aminoethyl)pyridine, that has different coordination affinities for fac-Re(acac)(OH2)(CO)3 was utilized, a unique tridentate ligand was formed in situ utilizing a metal-assisted Schiff base formation to yield a complex fac-Re(CO)3(3[(2-phenylethyl)imino]-2-pentanone) (3). Tridentate ligand formation was found to occur only with the Re-coordinated acac ligand. Reactions of acac with fac-Re(CO)3Br(2-(2-aminoethyl)pyridine) (4) or a mixture of [NEt4]2[ReBr3(CO)3], acac, and 2-(2-aminoethyl)pyridine did not yield the formation of complex 3 in water.
1-[(6-Chloro-3-pyridyl)methyl]-5-ethoxy-8-nitro-1,2,3,5,6,7-hexahydroimidazo[1,2-a]pyridine
Tian, Zhongzhen; Li, Dongmei; Li, Zhong
2009-01-01
In the title compound, C15H19ClN4O3, an active agrochemical possessing insecticidal activity, the dihedral angle between the mean planes passing through the pyridine ring and the five-membered ring is 87.3 (2)°. The fused pyridine ring adopts a twisted sofa conformation. The molecular structure features close intramolecular C—H⋯N and C—H⋯O hydrogen bonding. PMID:21577964
Nuclear alkylated pyridine aldehyde polymers and conductive compositions thereof
NASA Technical Reports Server (NTRS)
Rembaum, A.; Singer, S. (Inventor)
1970-01-01
A thermally stable, relatively conductive polymer was disclosed. The polymer was synthesized by condensing in the presence of catalyst a 2, 4, or 6 nuclear alklylated 2, 3, or 4 pyridine aldehyde or quaternary derivatives thereof to form a polymer. The pyridine groups were liked by olefinic groups between 2-4, 2-6, 2-3, 3-4, 3-6 or 4-6 positions. Conductive compositions were prepared by dissolving the quaternary polymer and an organic charge transfer complexing agent such as TCNQ in a mutual solvent such as methanol.
Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes
NASA Astrophysics Data System (ADS)
Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.
2015-01-01
In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.
Integrated Risk Information System (IRIS)
Pyridine ; CASRN 110 - 86 - 1 Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Effects
Bolla, Geetha; Nangia, Ashwini
2016-01-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778
Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao
2016-03-18
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Loso, Michael R; Benko, Zoltan; Buysse, Ann; Johnson, Timothy C; Nugent, Benjamin M; Rogers, Richard B; Sparks, Thomas C; Wang, Nick X; Watson, Gerald B; Zhu, Yuanming
2016-02-01
Sap-feeding insect pests constitute a major insect pest complex that includes a range of aphids, whiteflies, planthoppers and other insect species. Sulfoxaflor (Isoclast™ active), a new sulfoximine class insecticide, targets sap-feeding insect pests including those resistant to many other classes of insecticides. A structure activity relationship (SAR) investigation of the sulfoximine insecticides revealed the importance of a 3-pyridyl ring and a methyl substituent on the methylene bridge linking the pyridine and the sulfoximine moiety to achieving strong Myzus persicae activity. A more in depth QSAR investigation of pyridine ring substituents revealed a strong correlation with the calculated logoctanol/water partition coefficient (SlogP). Model development resulted in a highly predictive model for a set of 18 sulfoximines including sulfoxaflor. The model is consistent with and helps explain the highly optimized pyridine substitution pattern for sulfoxaflor. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bolla, Geetha; Nangia, Ashwini
2016-03-01
A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).
Gotoh, Kazuma; Ishida, Hiroyuki
2017-07-01
The crystal structures of two hydrogen-bonded compounds, namely 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1), C 13 H 14.59 N 2 ·C 8 H 7.67 O 3 ·C 8 H 7.74 O 3 , (I), and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2), C 14 H 9.43 O 4 ·C 6 H 7.32 NO·C 6 H 7.25 NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-meth-oxy-benzoic acid mol-ecules and one 1,3-bis-(pyridin-4-yl)propane mol-ecule. The asymmetric unit of (II) comprises one biphenyl-4,4'-di-carb-oxy-lic acid mol-ecule and two independent 4-meth-oxy-pyridine mol-ecules. In each crystal, the acid and base mol-ecules are linked by short O-H⋯N/N-H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C-H⋯π, π-π and C-H⋯O inter-actions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π-π and C-H⋯O inter-actions.
Kang, Youngjin; Park, Ki-Min; Kim, Jinho
2017-12-01
The asymmetric unit of the title compound, [Ir(C 17 H 11 F 2 N 2 ) 3 ]·0.5CH 3 (CH 2 ) 4 CH 3 ·0.5CH 2 Cl 2 , comprises one Ir III atom, three 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands and half each of an n -hexane and a di-chloro-methane solvent mol-ecule located about crystallographic inversion centres. The Ir III atom displays a distorted octa-hedral coordination geometry, having three C , N -chelating 2,6-di-fluoro-3-[5-(2-fluoro-phen-yl)pyridin-2-yl]pyridin-4-yl ligands arranged in a meridional manner. The Ir III ion lies almost in the equatorial plane [deviation = 0.0069 (15) Å]. The average distance [2.041 (3) Å] of Ir-C bonds is slightly shorter than that [2.076 (3) Å] of Ir-N bonds. A variety of intra- and inter-molecular C-H⋯F and C-H⋯π hydrogen bonds, as well as inter-molecular C-F⋯π inter-actions, contribute to the stabilization of the mol-ecular and crystal structures, and result in the formation of a two-dimensional network parallel to the ab plane. No inter-actions between n -hexane solvent mol-ecules and the other components in the title compound are observed.
Regulation of Ion Channels by Pyridine Nucleotides
Kilfoil, Peter J.; Tipparaju, Srinivas M.; Barski, Oleg A.; Bhatnagar, Aruni
2014-01-01
Recent research suggests that in addition to their role as soluble electron carriers, pyridine nucleotides [NAD(P)(H)] also regulate ion transport mechanisms. This mode of regulation seems to have been conserved through evolution. Several bacterial ion–transporting proteins or their auxiliary subunits possess nucleotide-binding domains. In eukaryotes, the Kv1 and Kv4 channels interact with pyridine nucleotide–binding β-subunits that belong to the aldo-keto reductase superfamily. Binding of NADP+ to Kvβ removes N-type inactivation of Kv currents, whereas NADPH stabilizes channel inactivation. Pyridine nucleotides also regulate Slo channels by interacting with their cytosolic regulator of potassium conductance domains that show high sequence homology to the bacterial TrkA family of K+ transporters. These nucleotides also have been shown to modify the activity of the plasma membrane KATP channels, the cystic fibrosis transmembrane conductance regulator, the transient receptor potential M2 channel, and the intracellular ryanodine receptor calcium release channels. In addition, pyridine nucleotides also modulate the voltage-gated sodium channel by supporting the activity of its ancillary subunit—the glycerol-3-phosphate dehydrogenase-like protein. Moreover, the NADP+ metabolite, NAADP+, regulates intracellular calcium homeostasis via the 2-pore channel, ryanodine receptor, or transient receptor potential M2 channels. Regulation of ion channels by pyridine nucleotides may be required for integrating cell ion transport to energetics and for sensing oxygen levels or metabolite availability. This mechanism also may be an important component of hypoxic pulmonary vasoconstriction, memory, and circadian rhythms, and disruption of this regulatory axis may be linked to dysregulation of calcium homeostasis and cardiac arrhythmias. PMID:23410881
Bohlmann-Rahtz cyclodehydration of aminodienones to pyridines using N-iodosuccinimide.
Bagley, Mark C; Glover, Christian
2010-04-30
Cyclodehydration of Bohlmann-Rahtz aminodienone intermediates using N-iodosuccinimide as a Lewis acid proceeds at low temperature under very mild conditions to give the corresponding 2,3,6-trisubstituted pyridines in high yield and with total regiocontrol.
Ugi-Smiles couplings of 4-substituted pyridine derivatives: a fast access to chloroquine analogues.
El Kaïm, Laurent; Grimaud, Laurence; Pravin, Patil
2012-01-20
4-Hydroxy and mercapto pyridines were successfully tested in Ugi-Smiles couplings. Such multicomponent reactions applied to quinoline derivatives afford a very convenient and short synthesis of antimalarial analogues. © 2011 American Chemical Society
SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS
Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...
Bender, Tobias; von Zezschwitz, Paultheo
2009-07-01
The structure of a new secondary metabolite from Streptomyces sp. was determined as 4-acetyl-1,3-dihydroimidazo[4,5-c]pyridin-2-one by synthesis of the natural product itself and of the regioisomeric 7-acetylimidazo[4,5-b]pyridine derivative. The former compound was prepared, in 28% overall yield, in a sequence of nitration, reduction, condensation, and Stille reaction of 4-aminopyridine, while the regioisomer was obtained in 5% overall yield by amination, nitration, reduction, condensation, and oxidation of 4-ethylpyridine.
Synthesis and anticandidal activity of some imidazopyridine derivatives.
Kaplancikli, Zafer Asim; Turan-Zitouni, Gülhan; Ozdemir, Ahmet; Revial, Gilbert
2008-12-01
New hydrazide derivatives of imidazo[1,2-a]pyridine have been synthesized and evaluated for anticandidal activity. The reaction of imidazo[1,2-a]pyridine-2-carboxylic acid hydrazides with various benzaldehydes gave N-(benzylidene)imidazo[ 1,2-a]pyridine-2-carboxylic acid hydrazide derivatives. Their anticandidal activities against Candida albicans and Candida glabrata (isolates obtained from Osmangazi University, Faculty of Medicine, Eskisehir, Turkey), Candida albicans (ATCC 90028), Candida utilis (NRLL Y-900), Candida tropicalis (NRLL Y-12968), Candida krusei (NRLL Y-7179), Candida zeylanoides (NRLL Y-1774), and Candida parapsilosis (NRLL Y-12696) were investigated.
Effect of pyridine on infrared absorption spectra of copper phthalocyanine.
Singh, Sukhwinder; Tripathi, S K; Saini, G S S
2008-02-01
Infrared absorption spectra of copper phthalocyanine in KBr pellet and pyridine solution in 400-1625 and 2900-3200 cm(-1)regions are reported. In the IR spectra of solid sample, presence of weak bands, which are forbidden according to the selection rules of D4h point group, is explained on the basis of distortion in the copper phthalocyanine molecule caused by the crystal packing effects. Observation of a new band at 1511 cm(-1) and change in intensity of some other bands in pyridine are interpreted on the basis of coordination of the solvent molecule with the central copper ion.
Chioua, Mourad; Samadi, Abdelouahid; Soriano, Elena; Lozach, Olivier; Meijer, Laurent; Marco-Contelles, José
2009-08-15
The synthesis and biological evaluation of a number of differently substituted 3,6-diamino-1H-pyrazolo[3,4-b]pyridine derivatives are reported. From the inhibition results on a selection of disease-relevant protein kinases [IC(50) (microM) DYRK1A=11; CDK5=0.41; GSK-3=1.5] we have observed that 3,6-diamino-4-phenyl-1H-pyrazolo[3,4-b]pyridine-5-carbonitrile (4) constitutes a potential new and simple lead compound in the search of drugs for the treatment of Alzheimer's disease.
Bis[μ-N-(pyridin-2-yl)methanesulfonamido-κ2 N:N′]silver(I)
Hu, Hui-Ling; Yeh, Chun-Wei
2013-01-01
In the title compound, [Ag2(C6H7N2O2S)2], the AgI atom is coordinated by two N atoms from two N-(pyridin-2-yl)methanesulfonamidate anions in a slightly bent linear geometry [N—Ag—N = 166.03 (7)°]. The AgI atoms are bridged by the N-(pyridin-2-yl)methanesulfonamidate anions, forming a centrosymmetric dinuclear molecule, in which the Ag⋯Ag distance is 2.7072 (4) Å. PMID:24860285
4-(4-Methoxyphenyl)-1-phenylpyridine-2,6(1H,3H)-dione
Das, Ushati; Chheda, Shardul B.; Pednekar, Suhas R.; Karambelkar, Narendra P.; Guru Row, T. N.
2009-01-01
In the title compound, C18H15NO3, the pyridine-2,6-dione ring adopts an envelope conformation. The phenyl ring lies approximately perpendicular to the mean plane of the pyridine-2,6-dione ring [dihedral angle = 81.5 (1)°], while the methoxyphenyl ring is tilted to the same plane by a dihedral angle of 34.8 (1)°. Intermolecular C—H⋯O interactions link the molecules into chains along [100]. PMID:21583176
Thioanalogues of N-1-methylanabasine and nicotine - Synthesis and structure
NASA Astrophysics Data System (ADS)
Wojciechowska-Nowak, Marzena; Boczoń, Władysław; Warżajtis, Beata; Rychlewska, Urszula; Jasiewicz, Beata
2011-03-01
The synthesis, spectral characteristics and structures of N-1-methyl-6-(pyridin-3-yl)piperidine-2-thione ( 1) (thioanalogue of N-1-methylanabasine) and N-1-methyl-(5-pyridin-3-yl)pyrrolidine-2-thione ( 2) (thioanalogue of nicotine) are reported. Both compounds were obtained using Lawesson's reagent. The structures of compounds 1 and 2 are confirmed by NMR, IR, UV and mass spectroscopy, as well as, by X-ray diffraction analysis. Pyridine ring of compound 1 adopts a pseudo-axial orientation in solution, as well as in a solid state. A substantial lengthening of the C dbnd S bond in the crystals of 1 is interpreted as a sign of an enhanced electron delocalization within the thiolactam group due to the presence of several C sbnd H groups in the nearest vicinity of the sulfur atom. In the crystals of 2, which differ from 1 in that the relatively puckered piperidine-2-thione moiety is replaced by the flat pyrrolidine-2-thione ring, no short CH⋯S( dbnd C) contacts are observed. Instead, the packing is governed by stacking interactions between pyridine rings. The pyrrolidine and pyridine rings in 2 are nearly perpendicular to each other and the pyrrolidine moiety adopts a flattened half-chair conformation.
Yang, Fang; Yang, Cheng-Xiong; Yan, Xiu-Ping
2015-05-01
Effective separation of tocopherols is challenging and significant due to their structural similarity and important biological role. Here we report the post-synthetic modification of metal-organic framework (MOF) MIL-101(Cr) with pyridine for high-performance liquid chromatographic (HPLC) separation of tocopherols. Baseline separation of four tocopherols was achieved on a pyridine-grafted MIL-101(Cr) packed column within 10 min using hexane/isopropanol (96:4, v/v) as the mobile phase at a flow rate of 0.5 mL min(-1). The pyridine-grafted MIL-101(Cr) packed column gave high column efficiency (85,000 plates m(-1) for δ-tocopherol) and good precision (0.2-0.3% for retention time, 1.8-3.4% for peak area, 2.6-2.7% for peak height), and also offered much better performance than unmodified MIL-101(Cr) and commercial amino-bonded silica packed column for HPLC separation of tocopherols. The results not only show the promising application of pyridine-grafted MIL-101(Cr) as a novel stationary phase for HPLC separation of tocopherols, but also reveal a facile post-modification of MOFs to expand the application of MOFs in separation sciences. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zare, Nahid; Zabardasti, Abedien; Dusek, Michal; Eigner, Vaclav
2018-07-01
Two novel Schiff bases 2-((pyridin-4-yl)methelenamino)-3-aminomaleonitrile (L1) and 2,3-bis((pyridin-yl)methylenamino)maleonitrile (L2) were synthesized by the condensation of 2,3-diaminomaleonitrile and 4-pyridine carboxaldehyde using the reflux in absolute methanol. The light yellow crystalline precipitates of L1 were used for single-crystal X-ray crystallography. Two ligans L1 and L2 were characterized by UV-Vis, FT-IR and 1H/13C NMR spectroscopy. Also the FT-IR, 1H NMR and 13C NMR spectra of the compounds were calculated at the B3LYP/6-31 + G(d) level of theory. The Schiff base L1 with unit cell parameters: a = 19.8380(9), b = 4.7221(2), c = 12.9703(6) Å, V = 1215.02(9) Å3, Z = 4 crystallizes in the orthorhombic crystal system with space group Pna21. The crystal structure was solved by charge flipping using single crystal X-ray diffraction data collected at 120 K. For both ligands, the experimentally obtained NMR and IR spectra were a good agreement with their calculated counterparts.
Pyridine nucleotides in regulation of cell death and survival by redox and non-redox reactions.
Novak Kujundžić, Renata; Žarković, Neven; Gall Trošelj, Koraljka
2014-01-01
Changes of the level and ratios of pyridine nucleotides determine metabolism- dependent cellular redox status and the activity of poly(ADP-ribose) polymerases (PARPs) and sirtuins, thereby influencing several processes closely related to cell survival and death. Pyridine nucleotides participate in numerous metabolic reactions whereby their net cellular level remains constant, but the ratios of NAD+/NADP+ and NADH/NADPH oscillate according to metabolic changes in response to diverse stress signals. In non-redox reactions, NAD+ is degraded and quickly, afterward, resynthesized in the NAD+ salvage pathway, unless overwhelming activation of PARP-1 consumes NAD+ to the point of no return, when the cell can no longer generate enough ATP to accommodate NAD+ resynthesis. The activity of PARP-1 is mandatory for the onset of cytoprotective autophagy on sublethal stress signals. It has become increasingly clear that redox status, largely influenced by the metabolism-dependent composition of the pyridine nucleotides pool, plays an important role in the synthesis of pro-apoptotic and anti-apoptotic sphingolipids. Awareness of the involvement of the prosurvival sphingolipid, sphingosine-1-phosphate, in transition from inflammation to malignant transformation has recently emerged. Here, the participation of pyridine nucleotides in redox and non-redox reactions, sphingolipid metabolism, and their role in cell fate decisions is reviewed.
Chernia, Zelig; Tsori, Yoav
2018-03-14
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
Substituent Effects on the [N-I-N](+) Halogen Bond.
Carlsson, Anna-Carin C; Mehmeti, Krenare; Uhrbom, Martin; Karim, Alavi; Bedin, Michele; Puttreddy, Rakesh; Kleinmaier, Roland; Neverov, Alexei A; Nekoueishahraki, Bijan; Gräfenstein, Jürgen; Rissanen, Kari; Erdélyi, Máté
2016-08-10
We have investigated the influence of electron density on the three-center [N-I-N](+) halogen bond. A series of [bis(pyridine)iodine](+) and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine](+) BF4(-) complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by (15)N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N-I-N](+) halogen bond resulted in >100 ppm (15)N NMR coordination shifts. Substituent effects on the (15)N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N-I-N](+) halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine](+) complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N](+) bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N-I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N-X-N](+) halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen](+)-type synthetic reagents.
Substituent Effects on the [N–I–N]+ Halogen Bond
2016-01-01
We have investigated the influence of electron density on the three-center [N–I–N]+ halogen bond. A series of [bis(pyridine)iodine]+ and [1,2-bis((pyridine-2-ylethynyl)benzene)iodine]+ BF4– complexes substituted with electron withdrawing and donating functionalities in the para-position of their pyridine nitrogen were synthesized and studied by spectroscopic and computational methods. The systematic change of electron density of the pyridine nitrogens upon alteration of the para-substituent (NO2, CF3, H, F, Me, OMe, NMe2) was confirmed by 15N NMR and by computation of the natural atomic population and the π electron population of the nitrogen atoms. Formation of the [N–I–N]+ halogen bond resulted in >100 ppm 15N NMR coordination shifts. Substituent effects on the 15N NMR chemical shift are governed by the π population rather than the total electron population at the nitrogens. Isotopic perturbation of equilibrium NMR studies along with computation on the DFT level indicate that all studied systems possess static, symmetric [N–I–N]+ halogen bonds, independent of their electron density. This was further confirmed by single crystal X-ray diffraction data of 4-substituted [bis(pyridine)iodine]+ complexes. An increased electron density of the halogen bond acceptor stabilizes the [N···I···N]+ bond, whereas electron deficiency reduces the stability of the complexes, as demonstrated by UV-kinetics and computation. In contrast, the N–I bond length is virtually unaffected by changes of the electron density. The understanding of electronic effects on the [N–X–N]+ halogen bond is expected to provide a useful handle for the modulation of the reactivity of [bis(pyridine)halogen]+-type synthetic reagents. PMID:27265247
NASA Astrophysics Data System (ADS)
Chernia, Zelig; Tsori, Yoav
2018-03-01
Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.
Shukla, Rashmi; Singh, Ajeet P; Sonar, Pankaj K; Mishra, Mudita; Saraf, Shailendra K
2016-01-01
Schiff bases have a broad spectrum of biological activities like antiinflammatory, analgesic, antimicrobial, anticonvulsant, antitubercular, anticancer, antioxidant, anthelmintic and so forth. Thus, after a thorough perusal of literature, it was decided to conjugate benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine with aromatic and heteroaromatic aldehydes to get a series of Schiff bases. Synthesis, characterization, in-silico toxicity profiling and anticonvulsant activity of the Schiff bases of Benzothiazol-2-ylamine and Thiazolo [5, 4-b] pyridin-2-ylamine. Aniline/4-aminopyridine was converted to the corresponding thiourea derivatives, which were cyclized to obtain benzothiazol-2-ylamine/thiazolo [5, 4-b] pyridin-2-ylamine. Finally, these were condensed with various aromatic and heteroaromatic aldehydes to obtain Schiff bases of benzothiazol-2-ylamine and thiazolo [5, 4-b] pyridin-2-ylamine. The synthesized compounds were characterized and screened for their anticonvulsant activity using maximal electroshock (MES) test and isoniazid (INH) induced convulsions test. In-silico toxicity profiling of all the synthesized compounds was done through "Lazar" and "Osiris" properties explorer. Majority of the compounds were more potent against MES induced convulsions than INH induced convulsions. Schiff bases of benzothiazol-2-ylamine were more effective than thiazolo [5, 4-b] pyridin-2-ylamine against MES induced convulsions. The compound benzothiazol-2-yl-(1H-indol-2-ylmethylene)-amine (VI) was the most potent member of the series against both types of convulsions. Compound VI exhibited the most significant activity profile in both the models. The compounds did not exhibit any carcinogenicity or acute toxicity in the in-silico studies. Thus, it may be concluded that the Schiff bases of benzothiazol-2-ylamine exhibit the potential to be promising and non-toxic anticonvulsant agents.
Nasri, Soumaya; Amiri, Nesrine; Turowska-Tyrk, Ilona; Daran, Jean-Claude; Nasri, Habib
2016-01-01
In the title compound, [Zn(C72H44N4O8)(C6H4N2)]·C6H4N2 or [Zn(TPBP)(4-CNpy]·(4-CNpy) [where TPBP and 4-CNpy are 5,10,15,20-(tetraphenylbenzoate)porphyrinate and 4-cyanopyridine, respectively], the ZnII cation is chelated by four pyrrole-N atoms of the porphyrinate anion and coordinated by a pyridyl-N atom of the 4-CNpy axial ligand in a distorted square-pyramidal geometry. The average Zn—N(pyrrole) bond length is 2.060 (6) Å and the Zn—N(4-CNpy) bond length is 2.159 (2) Å. The zinc cation is displaced by 0.319 (1) Å from the N4C20 mean plane of the porphyrinate anion toward the 4-cyanopyridine axial ligand. This porphyrinate macrocycle exhibits major saddle and moderate ruffling and doming deformations. In the crystal, the [Zn(TPBP)(4-CNpy)] complex molecules are linked together via weak C—H⋯N, C—H⋯O and C—H⋯π interactions, forming supramolecular channels parallel to the c axis. The non-coordinating 4-cyanopyridine molecules are located in the channels and linked with the complex molecules, via weak C—H⋯N interactions and π-π stacking or via weak C—H⋯O and C—H⋯π interactions. The non-coordinating 4-cyanopyridine molecule is disordered over two positions with an occupancy ratio of 0.666 (4):0.334 (4). PMID:26958379
40 CFR 721.8675 - Halogenated pyridines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8775 - Substituted pyridines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8775 Substituted pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8775 - Substituted pyridines.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8775 Substituted pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8675 - Halogenated pyridines.
Code of Federal Regulations, 2014 CFR
2014-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8675 - Halogenated pyridines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8675 Halogenated pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8775 - Substituted pyridines.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8775 Substituted pyridines. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
Weilandt, Torsten; Löw, Nora L; Schnakenburg, Gregor; Daniels, Jörg; Nieger, Martin; Schalley, Christoph A; Lützen, Arne
2012-12-21
A series of ten palladium-bis(pyridine) complexes, as well as their corresponding platinum complexes, have been synthesized. The pyridine ligands in each series carried different σ-donor and/or π-acceptor/donor substituents at the para-position of their pyridine rings. These complexes were analysed by NMR spectroscopy, X-ray crystallography, (tandem) MS, and isothermal titration calorimetry (ITC) to validate whether these methods allowed us to obtain a concise and systematic picture of the relative and absolute thermodynamic stabilities of the complexes, as determined by the electronic effects of the substituents. Interestingly, the NMR spectroscopic data hardly correlated with the expected substituent effects but the heteronuclear platinum-phosphorus coupling constants did. Crystallographic data were found to be blurred by packing effects. Instead, tandem MS and ITC data were in line with each other and followed the expected trends. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Egalahewa, Sathsara; Albayer, Mohammad; Aprile, Antonino; Dutton, Jason L
2017-02-06
We report the outcomes of the reactions of aromatic group 16 thiophene, selenophene, and tellurophene rings with the I(III) oxidants PhI(OAc)(OTf) and [PhI(Pyr) 2 ][OTf] 2 (Pyr = pyridine). In all reactions, oxidative processes take place, with generation of PhI as the reduction product. However, with the exception of tellurophene with PhI(OAc)(OTf), +4 oxidation state complexes are not observed, but rather a variety of other processes occur. In general, where a C-H unit is available on the 5-membered ring, an electrophilic aromatic substitution reaction of either -IPh or pyridine onto the ring occurs. When all positions are blocked, reactions with PhI(OAc)(OTf) give acetic and triflic anhydride as the identifiable oxidative byproducts, while [PhI(Pyr) 2 ][OTf] 2 gives pyridine electrophilic aromatic substitution onto the peripheral rings. Qualitative mechanistic studies indicate that the presence of the oxidizable heteroatom is required for pyridine to act as an electrophile in a substantial manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lapierre, Jean-Marc; Eathiraj, Sudharshan; Vensel, David
The work in this paper describes the optimization of the 3-(3-phenyl-3H-imidazo[4,5-b]pyridin-2-yl)pyridin-2-amine chemical series as potent, selective allosteric inhibitors of AKT kinases, leading to the discovery of ARQ 092 (21a). The cocrystal structure of compound 21a bound to full-length AKT1 confirmed the allosteric mode of inhibition of this chemical class and the role of the cyclobutylamine moiety. Compound 21a demonstrated high enzymatic potency against AKT1, AKT2, and AKT3, as well as potent cellular inhibition of AKT activation and the phosphorylation of the downstream target PRAS40. Compound 21a also served as a potent inhibitor of the AKT1-E17K mutant protein and inhibited tumormore » growth in a human xenograft mouse model of endometrial adenocarcinoma.« less
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1987-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1987-05-19
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 6 figs.
Optrode for sensing hydrocarbons
Miller, H.; Milanovich, F.P.; Hirschfeld, T.B.; Miller, F.S.
1988-09-13
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons. 5 figs.
Optrode for sensing hydrocarbons
Miller, Holly; Milanovich, Fred P.; Hirschfeld, Tomas B.; Miller, Fred S.
1988-01-01
A two-phase system employing the Fujiwara reaction is provided for the fluorometric detection of halogenated hydrocarbons. A fiber optic is utilized to illuminate a column of pyridine trapped in a capillary tube coaxially attached at one end to the illuminating end of the fiber optic. A strongly alkaline condition necessary for the reaction is maintained by providing a reservoir of alkali in contact with the column of pyridine, the surface of contact being adjacent to the illuminating end of the fiber optic. A semipermeable membrane caps the other end of the capillary tube, the membrane being preferentially permeable to the halogenated hydrocarbon and but preferentially impermeable to water and pyridine. As the halogenated hydrocarbon diffuses through the membrane and into the column of pyridine, fluorescent reaction products are formed. Light propagated by the fiber optic from a light source, excites the fluorescent products. Light from the fluorescence emission is also collected by the same fiber optic and transmitted to a detector. The intensity of the fluorescence gives a measure of the concentration of the halogenated hydrocarbons.
Shooter, Jesse; Allen, Caleb J; Tinsley, Colby W K; Zakharov, Lev N; Abbey, Eric R
2017-11-01
The title compound [systematic name: 4-(di-methyl-amino)-pyridine-4-meth-oxy-phenyl-borane (1/1)], C 14 H 19 BN 2 O, contains two independent mol-ecules in the asymmetric unit. Both molecules exhibit coplanar, mostly sp 2 -hybridized meth-oxy and di-methyl-amino substituents on their respective aromatic rings, consistent with π-donation into the aromatic systems. The B-H groups exhibit an intra-molecular close contact with a C-H group of the pyridine ring, which may be evidence of electrostatic attraction between the hydridic B-H and the electropositive aromatic C-H. There appears to be weak C-H⋯π(arene) inter-actions between two of the H atoms of an amino-methyl group and the meth-oxy-substituted benzene ring of the other independent mol-ecule, and another C-H⋯π (arene) inter-action between one of the pyridine ring H atoms and the same benzene ring.
Hoogenboom, Richard; Moore, Brian C; Schubert, Ulrich S
2006-06-23
3,6-Di(pyridin-2-yl)pyridazines are an interesting class of compounds because of their metal-coordinating ability resulting in the self-assembly into [2x2] gridlike metal complexes with copper(I) or silver(I) ions. These and other substituted pyridazines can be prepared by the inverse-electron-demand Diels-Alder reactions between acetylenes and 1,2,4,5-tetrazines. In this contribution, the effect of (superheated) microwave conditions on these generally slow cycloadditions is described. The cycloaddition of acetylenes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine could be accelerated from several days reflux in toluene or N,N-dimethylformamide to several hours in dichloromethane at 150 degrees C. In addition, the unexpected cycloaddition of the enol tautomers of various ketones and aldehydes to 3,6-di(pyridin-2-yl)-1,2,4,5-tetrazine is described in detail providing an alternative route for the synthesis of (substituted) pyridazines.
Regioselectivity of pyridine deprotonation in the gas phase.
Schafman, Bonnie S; Wenthold, Paul G
2007-03-02
The regioselective deprotonation of pyridine in the gas phase has been investigated by using chemical reactivity studies. The mixture of regioisomers, trapped as carboxylates, formed in an equilibrium mixture is determined to result from 70-80% deprotonation in the 4-position, and 20-30% deprotonation at the 3-position. The ion formed by deprotonation in the 2-position is not measurably deprotonated at equilibrium because the ion is destabilized by lone-pair repulsion. From the composition of the mixture, the gas-phase acidities (DeltaH degrees acid) at the 4-, 3-, and 2-positions are determined to be 389.9 +/- 2.0, 391.2-391.5, and >391.5 kcal/mol, respectively. The relative acidities of the 4- and 3-positions are explained by using Hammett-Taft parameters, derived by using the measured gas-phase acidities of pyridine carboxylic acids. The values of sigmaF and sigmaR are -0.18 and 0.74, respectively, showing the infused nitrogen in pyridine to have a strong pi electron-withdrawing effect, but with little sigma-inductive effect.
El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa
2012-03-01
Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.
NASA Astrophysics Data System (ADS)
Zhou, Xiangting; Hockless, David C. R.; Willis, Anthony C.; Jackson, W. Gregory
2005-04-01
The synthesis and characterisation of Co(III) complexes derived from a condensation reaction with a central or terminal nitrogen of a dien ligand and the α-carbon of a range of substituted bis(pyridin-2-yl)methane ligands are described. Aerial oxidation of bpm {bis(pyridin-2-yl)methane with Co(II)/dien or direct reaction with Co(dien)Cl 3 provided in low yield a single C-N condensation product 1 (at the primary terminal NH 2) after the pyridyl -CH 2- is formally oxidised to -CH +-. The methyl substituted ligand bpe {1,1-bis(pyridin-2-yl)ethane} behaves likewise, except both terminal (prim) and central (sec) amines condense to yield isomeric products 2 and 3. Two of these three materials have been characterised by single crystal X-ray crystallography. The corresponding reactions for the bis(pyridyl) ligand bpk {bis(pyridin-2-yl)ketone} provided C-N condensation products without the requirement for oxidation at the α-C center; two carbinolamine complexes in different geometrical configurations resulted, mer-anti-[Co(dienbpc)Cl]ZnCl 4, 5, and unsym- fac-[Co(dienbpc)Cl]ZnCl 4, 6, {dienbpc=[2-(2-aminoethylamino)-ethylamino]-di-pyridin-2-yl-methanol}. In addition, a novel complex, [Co(bpk)(bpd-OH)Cl]ZnCl 4, 4, in which one bidentate N, N-bonded bpk ligand and one tridentate N, O, N-bonded bpd (the diol from bpk+OH -) were coordinated, was obtained via the Co(II)/O 2 synthetic route. When the bpc ligand (bpc=bis(pyridin-2-yl)methanol) was employed directly as a reagent along with dien, no condensation reactions were observed, but rather a single isomeric complex [Co(dien)(bpc)]Cl.ZnCl 4, 7, in which the ligand bpc acted as a N,N,O-bonded tridentate ligand rather than as a N,N-bidentate ligand was isolated. 13C, 1D and 2D 1H NMR studies are reported for all the complexes; they establish the structures unambiguously.
Jalil, AbdelAziz; Clymer, Rebecca N; Hamilton, Clifton R; Vaddypally, Shivaiah; Gau, Michael R; Zdilla, Michael J
2017-03-01
Due to the flammability of liquid electrolytes used in lithium ion batteries, solid lithium ion conductors are of interest to reduce danger and increase safety. The two dominating general classes of electrolytes under exploration as alternatives are ceramic and polymer electrolytes. Our group has been exploring the preparation of molecular solvates of lithium salts as alternatives. Dissolution of LiCl or LiPF 6 in pyridine (py) or vinylpyridine (VnPy) and slow vapor diffusion with diethyl ether gives solvates of the lithium salts coordinated by pyridine ligands. For LiPF 6 , the solvates formed in pyridine and vinylpyridine, namely tetrakis(pyridine-κN)lithium(I) hexafluorophosphate, [Li(C 5 H 5 N) 4 ]PF 6 , and tetrakis(4-ethenylpyridine-κN)lithium(I) hexafluorophosphate, [Li(C 7 H 7 N) 4 ]PF 6 , exhibit analogous structures involving tetracoordinated lithium ions with neighboring PF 6 - anions in the I-4 and Aea2 space groups, respectively. For LiCl solvates, two very different structures form. catena-Poly[[(pyridine-κN)lithium]-μ 3 -chlorido], [LiCl(C 5 H 5 N)] n , crystalizes in the P2 1 2 1 2 1 space group and contains channels of edge-fused LiCl rhombs templated by rows of π-stacked pyridine ligands, while the structure of the LiCl-VnPy solvate, namely di-μ-chlorido-bis[bis(4-ethenylpyridine-κN)lithium], [Li 2 Cl 2 (C 7 H 7 N) 4 ], is described in the P2 1 /n space group as dinuclear (VnPy) 2 Li(μ-Cl) 2 Li(VnPy) 2 units packed with neighbors via a dense array of π-π interactions.
Bowman, Amanda C; Milsmann, Carsten; Bill, Eckhard; Turner, Zoë R; Lobkovsky, Emil; DeBeer, Serena; Wieghardt, Karl; Chirik, Paul J
2011-11-02
Three new N-alkyl substituted bis(imino)pyridine iron imide complexes, ((iPr)PDI)FeNR ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = 1-adamantyl ((1)Ad), cyclooctyl ((Cy)Oct), and 2-adamantyl ((2)Ad)) were synthesized by addition of the appropriate alkyl azide to the iron bis(dinitrogen) complex, ((iPr)PDI)Fe(N(2))(2). SQUID magnetic measurements on the isomeric iron imides, ((iPr)PDI)FeN(1)Ad and ((iPr)PDI)FeN(2)Ad, established spin crossover behavior with the latter example having a more complete spin transition in the experimentally accessible temperature range. X-ray diffraction on all three alkyl-substituted bis(imino)pyridine iron imides established essentially planar compounds with relatively short Fe-N(imide) bond lengths and two-electron reduction of the redox-active bis(imino)pyridine chelate. Zero- and applied-field Mössbauer spectroscopic measurements indicate diamagnetic ground states at cryogenic temperatures and established low isomer shifts consistent with highly covalent molecules. For ((iPr)PDI)FeN(2)Ad, Mössbauer spectroscopy also supports spin crossover behavior and allowed extraction of thermodynamic parameters for the S = 0 to S = 1 transition. X-ray absorption spectroscopy and computational studies were also performed to explore the electronic structure of the bis(imino)pyridine alkyl-substituted imides. An electronic structure description with a low spin ferric center (S = 1/2) antiferromagnetically coupled to an imidyl radical (S(imide) = 1/2) and a closed-shell, dianionic bis(imino)pyridine chelate (S(PDI) = 0) is favored for the S = 0 state. An iron-centered spin transition to an intermediate spin ferric ion (S(Fe) = 3/2) accounts for the S = 1 state observed at higher temperatures. Other possibilities based on the computational and experimental data are also evaluated and compared to the electronic structure of the bis(imino)pyridine iron N-aryl imide counterparts.
Kojima, Akihiko; Takita, Satoshi; Sumiya, Tatsunobu; Ochiai, Koji; Iwase, Kazuhiko; Kishi, Tetsuya; Ohinata, Akira; Yageta, Yuichi; Yasue, Tokutaro; Kohno, Yasushi
2013-10-01
We previously identified KCA-1490 [(-)-6-(7-methoxy-2-trifluoromethyl-pyrazolo[1,5-a]pyridin-4-yl)-5-methyl-4,5-dihydro-3-(2H)-pyridazinone], a dual PDE3/4 inhibitor. In the present study, we found highly potent selective PDE4 inhibitors derived from the structure of KCA-1490. Among them, N-(3,5-dichloropyridin-4-yl)-7-methoxy-2-(trifluoromethyl)pyrazolo[1,5-a]pyridine-4-carboxamide (2a) had good anti-inflammatory effects in an animal model. Copyright © 2013 Elsevier Ltd. All rights reserved.
Novel semiconducting boron carbide/pyridine polymers for neutron detection at zero bias
NASA Astrophysics Data System (ADS)
Echeverría, Elena; James, Robinson; Chiluwal, Umesh; Pasquale, Frank L.; Colón Santana, Juan A.; Gapfizi, Richard; Tae, Jae-Do; Driver, M. Sky; Enders, A.; Kelber, Jeffry A.; Dowben, P. A.
2015-01-01
Thin films containing aromatic pyridine moieties bonded to boron, in the partially dehydrogenated boron-rich icosahedra (B10C2HX), prove to be an effective material for neutron detection applications when deposited on n-doped (100) silicon substrates. The characteristic I-V curves for the heterojunction diodes exhibit strong rectification and largely unperturbed normalized reverse bias leakage currents with increasing pyridine content. The neutron capture generated pulses from these heterojunction diodes were obtained at zero bias voltage although without the signatures of complete electron-hole collection. These results suggest that modifications to boron carbide may result in better neutron voltaic materials.
40 CFR 721.8700 - Halogenated alkyl pyridine.
Code of Federal Regulations, 2013 CFR
2013-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
40 CFR 721.8700 - Halogenated alkyl pyridine.
Code of Federal Regulations, 2012 CFR
2012-07-01
... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...
NASA Astrophysics Data System (ADS)
Huang, Jing; Liu, Tong-Peng; Huo, Li-Hua; Deng, Zhao-Peng; Gao, Shan
2017-01-01
Assembly of six isomeric pyridine-diamine-based molecules, N,N‧-bis(pyridin-4-ylmethyl)ethane-1,2-diamine (M1), N,N‧-bis(pyridin-3-ylmethyl)ethane-1,2-diamine (M2), N,N‧-bis(pyridin-2-ylmethyl)ethane-1,2-diamine (M3), N,N‧-bis(pyridin-4-ylmethyl)propane-1,3-diamine (M4), N,N‧-bis(pyridin-3-ylmethyl)propane-1,2-diamine (M5), and N,N‧-bis(pyridin-2-ylmethyl)propane-1,3-diamine (M6), with phosphoric acid (H3PO4) in different ratio (1:2 and 1:4), leads to the formation of nine salts, H2M12+·2H2PO4-·4H2O (1), H2M22+·2H2PO4-·2H2O (2), H2M32+·2H2PO4-·2H2O (3), H4M14+·4H2PO4- (4), H4M24+·4H2PO4- (5), H4M34+·4H2PO4- (6), H2M42+·2H2PO4-·3H2O (7), 2H2M52+·4H2PO4-·2H3PO4 (8), and H2M62+·2H2PO4- (9), which have been characterized by elemental analysis, IR, TG, PL, powder and single-crystal X-ray diffraction. Structural analyses indicate that hydrogen-bonding patterns of H2PO4- anions, conformation of protonated cations can effectively influence the supramolecular architectures through diverse non-covalent interactions. Hydrous salts 1-3 and 7 present 2D and 3D host-guest supramolecular networks, in which the connection of H2PO4- anions and water molecules generates diverse tape and layer motifs. H2PO4- anions in anhydrous salts 4-6 interconnect with each other through hydrogen bonds to form two types of layers, which are joined by discrete H4M4+ cations into 3D inorganic-organic hybrid supramolecular networks. Salts 8-9 also present 2D and 3D host-guest supramolecular networks where the interconnection of H2PO4- anions and its combination with H3PO4 molecules leads to diverse layers. Luminescent analyses indicate that salts 1-9 exhibit violet and blue emission maximum in the range of 390-467 nm at room temperature.
Nayak, Prakash S; Narayana, Badiadka; Yathirajan, Hemmige S; Hosten, Eric C; Betz, Richard; Glidewell, Christopher
2014-11-01
The structures of a chalcone and of its cyclocondensation product with guanidine are reported. In (2E)-3-(6-methoxynaphthalen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one, C19H15NO2, (I), the planes of the pyridine and naphthalene units make dihedral angles with that of the central spacer unit of 23.61 (13) and 23.57 (15)°, respectively, and a dihedral angle of 47.24 (9)° with each other. The molecules of (I) are linked into sheets by a combination of C-H···O and C-H···π(arene) hydrogen bonds. In the cyclocondensation product (4RS)-2-amino-4-(6-methoxynaphthalen-2-yl)-6-(pyridin-3-yl)-3,4-dihydropyrimidine monohydrate, C20H18N4O·H2O, (II), the dihydropyrimidine ring adopts a conformation best described as a shallow boat. The molecular components are linked by two N-H···O hydrogen bonds, two O-H···N hydrogen bonds and one N-H···N hydrogen bond to form complex sheets, with the methoxynaphthalene interdigitated between inversion-related pairs of sheets.
2011-01-01
Background Fused heterocyclic 1,2,4-triazoles have acquired much importance because of their interesting biological properties. Although a number of methods have been reported in the literature which includes oxidation with phosphorus oxychloride, lead tetraacetate, bromine, etc., hypervalent iodine reagents have emerged as reagents of choice for various synthetically useful transformations due to their low toxicity, ready availability and ease of handling. Results A series of new 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines 4 has been conveniently synthesized by oxidative cyclization of 2-(3-aryl-1-phenyl-1H-pyrazol-4-yl)methylene)-1-(pyridin-2-yl)hydrazines 3 promoted with iodobenzene diacetate under mild conditions (up to 90% isolated yields). All the new compounds were tested in vitro for their antimicrobial activity. Conclusions Iodine(III)-mediated oxidative approach has offered an easy access to new 3-(3-aryl-1-phenyl-1H-pyrazol-4-yl)-[1,2,4]triazolo[4,3-a]pyridines 4. The antibacterial and antifungal activities of newly synthesized compounds have proved them potent antimicrobial agents. PMID:22373059
Preparation and Luminescence Thermochromism of Tetranuclear Copper(I)-Pyridine-Iodide Clusters
ERIC Educational Resources Information Center
Parmeggiani, Fabio; Sacchetti, Alessandro
2012-01-01
A simple and straightforward synthesis of a tetranuclear copper(I)-pyridine-iodide cluster is described as a laboratory experiment for advanced inorganic chemistry undergraduate students. The product is used to demonstrate the fascinating and visually impressive phenomenon of luminescence thermochromism: exposed to long-wave UV light, the…
USDA-ARS?s Scientific Manuscript database
Teratogenic alkaloids can cause developmental defects due to inhibition of fetal movement that results from desensitization of fetal muscletype nicotinic acetylcholine receptors (nAChRs). We investigated the ability of two known teratogens, the piperidinyl-pyridine anabasine and its 1,2-dehydropiper...
Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams.
Bolla, Geetha; Nangia, Ashwini
2015-11-04
SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.
One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor
Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher
2013-01-01
Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407
3-Ethyl-5-(4-methoxyphenoxy)-2-(pyridin-4-yl)-3H-imidazo[4,5-b]pyridine
Ranjith, S.; SubbiahPandi, A.; Suresh, A. D.; Pitchumani, K.
2011-01-01
In the title compound, C20H18N4O2, the imidazopyridine fused ring system is almost perpendicular to the benzene ring [dihedral angle = 87.6 (5)°]. The pyridine ring makes a dihedral angle of 35.5 (5)° with the mean plane of the imidazopyridine fragment. The crystal structure is stabilized by an aromatic π–π stacking interaction between the phenyl rings of neighbouring molecules [centroid–centroid distance = 3.772 (2) Å, interplanar distance = 3.546 (2) Å and slippage = 1.286 (2) Å]. PMID:21837144
Ab initio Hartree-Fock investigation of 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid
NASA Astrophysics Data System (ADS)
Ramek, Michael; Tomić, Sanja
2001-09-01
The potential energy surface of 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid has been investigated via RIIF/6-31G* calculations. The stationary points and reaction paths for syn orientation of the COOH group were determined and are compared with those of the derivatives of 3-indole acetic acid, which act as plant growth hormones. 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid forms a kinetically stable conformer with a strong intramolecular hydrogen bond, in which the COOH group is in anti orientation. The influence of this hydrogen bond on bond lengths and vibration frequencies is described.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-26
... practice the inventions embodied in U.S. Provisional Patent Application 60/010,737, entitled... Patent Application 60/021,191, entitled ``Dihydropyridine, pyridine-, benzopyran one-, and... [HHS Ref. No. E-225-1995/1-US-1], PCT Application PCT/US97/01252, entitled ``Dihydropyridine, pyridine...
(E)-N-[(6-Bromopyridin-2-yl)methylidene]-4-methylaniline
Cai, Mingjian; Ma, Penggao; Wang, Xiuge; Sun, Tao
2011-01-01
The title compound, C13H11BrN2, a Schiff base obtained from 6-bromopicolinaldehyde and p-toluidine, has an E configuration about the C=N bond. The dihedral angle between the benzene and pyridine rings is 30.4 (1)°. PMID:22058956
Fourier transfer Raman spectroscopy of pyridine adsorbed onto Y-zeolites
NASA Astrophysics Data System (ADS)
Ferwerda, R.; van der Maas, John H.
1994-01-01
FT near-infrared excited Raman spectroscopy is used to get a better insight in the adsorption of pyridine onto NaxHyY zeolites. It appears that five different adsorption sites can be monitored; `physisorbed,' OH bonded, Lewis and two distinct Bronsted sites. Comparison to infrared spectroscopy reveals better understanding of the vibrational spectra.
USDA-ARS?s Scientific Manuscript database
Piperidine and pyridine alkaloids are found in many species of plants including Lobelia spp., Conium spp., Nicotiana spp., and Lupinus spp. Some of these alkaloids cause multiple congenital contracture deformities (MCC) and cleft palates in cattle, pigs, sheep, and goats. The mechanism behind MCC ...
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1980-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Polyvinyl pyridine microspheres
NASA Technical Reports Server (NTRS)
Rembaum, Alan (Inventor); Gupta, Amitava (Inventor); Volksen, Willi (Inventor)
1979-01-01
Microspheres are produced by cobalt gamma radiation initiated polymerization of a dilute aqueous vinyl pyridine solution. Addition of cross-linking agent provides higher surface area beads. Addition of monomers such as hydroxyethylmethacrylate acrylamide or methacrylamide increases hydrophilic properties and surface area of the beads. High surface area catalytic supports are formed in the presence of controlled pore glass substrate.
Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi
2015-11-01
A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physical Properties of Pyridinium Fluorohydrogenate, [pyridine · H+][H2F3]-
NASA Astrophysics Data System (ADS)
Hulse, Ryan; Singh, Rajiv
2008-12-01
Ionic liquids (ILs), also referred to as molten salts, have found application as electrolytes for batteries and super-capacitors, in electroplating baths, as designer solvents, and as reaction media. A few of the desired properties of a super-capacitor electrolyte are nonflammability, thermal stability, and electrochemical stability. ILs containing aromatic cations have been shown to have low viscosity which results in a high electrochemical conductivity. There is a delicate balance between increasing the thermal stability, or decreasing the melting point, and increasing the electrochemical conductivity of the IL. This study focuses on pyridinium fluorohydrogenate, [pyridine · H+][H2F3]-. Pyridinium fluorohydrogenate has been synthesized by the reaction of pyridine and anhydrous hydrofluoric acid. This IL has a relatively high electrical conductivity (~98 mS · cm-1 at 23 °C), a wide electrochemical window, and a boiling point of 186 °C. A stable gel can also be formed by combining [pyridine · H+][H2F3]- and a super absorbent polymer such as polyacrylic acid. The gel adds mechanical stability to the matrix while not greatly affecting the conductivity of the IL.
NASA Astrophysics Data System (ADS)
Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier
2018-02-01
Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.
NASA Astrophysics Data System (ADS)
Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining
2018-01-01
In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chumakov, Yu. M.; Paholnitcaia, A. Yu.; Petrenko, P. A.
Two crystal modifications of nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper (I and II) and two modifications of chloro-(2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) copper (III and IV) have been synthesized and studied by X-ray diffraction. In structures I and II, the copper atoms coordinate a monodeprotonated molecule of the organic ligand, nitrate ions, and a water molecule. In crystals of I, the complexes are monomeric, whereas complexes II are linked via nitrate ions to form polymeric chains. In both structures the coordination polyhedron of the copper atom can be described as a distorted tetragonal bipyramid—(4 + 1 + 1) in I and (4 + 2) in II. These coordinationmore » polyherdra have different compositions. In structures III and IV, the metal atoms coordinate a monodeprotonated (2-[2-phenyl(pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazole molecule and chloride ions. In III the complex-forming ion has square-planar coordination geometry, whereas structure IV consists of centrosymmetric dimers with two bridging chlorine atoms. It was found that nitrato-(2-[2-(1-pyridine-2-ylethylidene)hydrazine]-1,3-benzothiazolo) aquacopper possesses antitumor activity.« less
Lesnard, Hervé; Bocquet, Marie-Laure; Lorente, Nicolas
2007-04-11
We have performed a theoretical study on the dehydrogenation of benzene and pyridine molecules on Cu(100) induced by a scanning tunneling microscope (STM). Density functional theory calculations have been used to characterize benzene, pyridine, and different dehydrogenation products. The adiabatic pathways for single and double dehydrogenation have been evaluated with the nudge elastic band method. After identification of the transition states, the analysis of the electronic structure along the reaction pathway yields interesting information on the electronic process that leads to H-scission. The adiabatic barriers show that the formation of double dehydrogenated fragments is difficult and probably beyond reach under the actual experimental conditions. However, nonadiabatic processes cannot be ruled out. Hence, in order to identify the final dehydrogenation products, the inelastic spectra are simulated and compared with the experimental ones. We can then assign phenyl (C6H5) and alpha-pyridil (alpha-C5H4N) as the STM-induced dehydrogenation products of benzene and pyridine, respectively. Our simulations permit us to understand why phenyl, pyridine, and alpha-pyridil present tunneling-active C-H stretch modes in opposition to benzene.
Hökelek, Tuncer; Akduran, Nurcan; Özen, Azer; Uğurlu, Güventürk; Necefoğlu, Hacali
2017-03-01
The asymmetric unit of the title compound, [Cd 2 (C 7 H 4 NO 4 ) 4 (C 6 H 4 N 2 ) 4 ], contains one Cd II atom, two 3-nitro-benzoate (NB) anions and two 3-cyano-pyridine (CPy) ligands. The two CPy ligands act as monodentate N(pyridine)-bonding ligands, while the two NB anions act as bidentate ligands through the carboxyl-ate O atoms. The centrosymmetric dinuclear complex is generated by application of inversion symmetry, whereby the Cd II atoms are bridged by the carboxyl-ate O atoms of two symmetry-related NB anions, thus completing the distorted N 2 O 5 penta-gonal-bipyramidal coordination sphere of each Cd II atom. The benzene and pyridine rings are oriented at dihedral angles of 10.02 (7) and 5.76 (9)°, respectively. In the crystal, C-H⋯N hydrogen bonds link the mol-ecules, enclosing R 2 2 (26) ring motifs, in which they are further linked via C-H⋯O hydrogen bonds, resulting in a three-dimensional network. In addition, π-π stacking inter-actions between parallel benzene rings and between parallel pyridine rings of adjacent mol-ecules [shortest centroid-to-centroid distances = 3.885 (1) and 3.712 (1) Å, respectively], as well as a weak C-H⋯π inter-action, may further stabilize the crystal structure.
NASA Astrophysics Data System (ADS)
Devi, Jai; Batra, Nisha; Malhotra, Rajesh
2012-11-01
New Schiff bases pyrazine-2-carboxylicacid (phenyl-pyridin-2-yl-methylene)-hydrazide (Hpch-bp) HL1 and pyrazine-2-carboxylicacid (pyridin-2-ylmethylene)-hydrazide (Hpch-pc) HL2 derived from condensation of pyrazine carboxylic hydrazide (Hpch) with 2-benzoyl pyridine (bp) or pyridine 2-carbaldehyde (pc) and their transition metal complexes of type ML(1-2)2 have been synthesized, where M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Characterization of ligands and their metal complexes was carried out by elemental analysis, conductimetric studies, magnetic susceptibility, spectroscopic techniques (IR, UV-VIS, NMR, ESR, Mass) and thermogravimetric analysis. The physico-chemical studies revealed octahedral geometry or distorted octahedral geometry around metal ion. These azomethine Schiff base ligands acted as tridentate ? coordinating through carbonyl, azomethine and pyridine nitrogen present in the ligand. The thermodynamic and thermal properties of the complexes have been investigated and it was observed on the basis of these studies that thermal stability of complexes follows the order Mn < Zn < Cu < Co < Ni. The ligands and their complexes were tested for in vitro antibacterial activity at different concentrations against bacteria viz. Gram positive Bacillus subtilis, Micrococcus luteus and Gram negative Pseudomonas aeruginosa, Pseudomonas mendocina. A marked enhancement in biocidal activity of the ligands under similar experimental conditions was observed as a consequence of coordination with metal ions. The trend of growth inhibition in the complexes was found to be in the order: Cu > Mn > Ni > Co > Zn.
NASA Astrophysics Data System (ADS)
Dumpala, Rama Mohana Rao; Rawat, Neetika; Tomar, B. S.
2017-06-01
Neptunyl ion as NpO2+ is the least reacting and most mobile radioactive species among all the actinides. The picolinic acid used for decontamination is co-disposed along with the radioactive waste. Thus, in long term storage of HLW, there is high possibility of interaction of actinides and long lived fission products with the picolinate and can cause migration. The complexation of NpO2+ with the three structural isomers of pyridine monocarboxylates provides an insight to explore the role of hetero atom (nitrogen) with respect to key binding moiety (carboxylate). In the present study, the log β values, speciation and spectral properties of NpO2+ complexes with pyridine monocarboxylates viz. picolinate, nicotinate and isonicotinate, have been studied at 298 K in 0.1 M NaClO4 medium using spectrophotometry. The complexation reactions involving protonated ligands are always accompanied by protonation/deprotonation process; thus, the protonation constants of all the three pyridine monocarboxylates under same conditions were also determined by potentiometry. The spectrophotometric data analysis for complexation of NpO2+ with pyridine monocarboxylates indicated the presence of ML and ML2 complexes with log β values of 2.96 ± 0.04, 5.67 ± 0.08 for picolinate, 1.34 ± 0.09, 1.65 ± 0.12 for nicotinate and 1.52 ± 0.04, 2.39 ± 0.06 for isonicotinate. The higher values of log β for picolinate were attributed to chelation while in other two isomers, the binding is through carboxylate group only. Density Functional Theory (DFT) calculations were carried out to get optimized geometries and electrostatic charges on various atoms of the complexes and free pyridine monocarboxylates to support the experimental data. The higher stability of NpO2+ nicotinate and isonicotinate complexes compared to simple carboxylates and the difference in log β between the two is due to the charge polarization from unbound nitrogen to the bound carboxylate oxygen atoms.
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
Micelles for the self-assembly of "off-on-off" fluorescent sensors for pH windows.
Diaz-Fernandez, Yuri; Foti, Francesco; Mangano, Carlo; Pallavicini, Piersandro; Patroni, Stefano; Perez-Gramatges, Aurora; Rodriguez-Calvo, Simon
2006-01-11
A micellar approach is proposed to build a series of systems featuring an "off-on-off" fluorescent window response with changes in pH. The solubilizing properties of micelles are used to self-assemble, in water, plain pyrene with lipophilized pyridine and tertiary amine moieties. Since these components are contained in the small volume of the same micelle, pyrene fluorescence is influenced by the basic moieties: protonated pyridines and free tertiary amines behave as quenchers. Accordingly, fluorescence transitions from the "off" to the "on" state, and viceversa, take place when the pH crosses the pK(a) values of the amine and pyridine fragments. To obtain an "off-on-off" fluorescent response in this investigation we use either a set of dibasic lipophilic molecules (containing covalently linked pyridine and tertiary amine groups) or combinations of separate, lipophilic pyridines and tertiary amines. The use of combinations of dibasic and monobasic lipophilic molecules also gives a window-shaped fluorescence response with changes in pH: it is the highest pyridine pK(a) and the lowest tertiary amine pK(a) that determine the window limits. The pK(a) values of all the examined lipophilic molecules were determined in micelles, and compared with the values found for the same molecules in solvent mixtures in which they are molecularly dispersed. The effect of micellization is to significantly lower the observed protonation constants of the lipophilized species. Moreover, the more lipophilic a molecule is, the lower the observed logK value is. Accordingly, changing the substituents on the basic moieties or modifying their structure, tuning the lipophilicity of the mono- or dibases, and choosing among a large set of possible combination of lipophilized mono- and dibases have allowed us to tune, almost at will, both the width and the position along the pH axis of the obtained fluorescent window.
Thies, Steffen; Bornholdt, Claudia; Köhler, Felix; Sönnichsen, Frank D; Näther, Christian; Tuczek, Felix; Herges, Rainer
2010-09-03
Nickel-porphyrins, with their rigid quadratic planar coordination framework, provide an excellent model to study the coordination-induced spin crossover (CISCO) effect because bonding of one or two axial ligands to the metal center leads to a spin transition from S=0 to S=1. Herein, both equilibrium constants K(1S) and K(2), and for the first time also the corresponding thermodynamic parameters DeltaH(1S), DeltaH(2), DeltaS(1S), and DeltaS(2), are determined for the reaction of a nickel-porphyrin (Ni-tetrakis(pentafluorophenyl)porphyrin) with different 4-substituted pyridines by temperature-dependent NMR spectroscopy. The association constants K(1S) and K(2) are correlated with the basicity of the 4-substituted pyridines (R: OMe>H>CO(2)Et>NO(2)) whereas the DeltaH(1S) values exhibit a completely different order (OMe
Gotoh, Kazuma; Ishida, Hiroyuki
2017-01-01
The crystal structures of two hydrogen-bonded compounds, namely 4-methoxybenzoic acid–1,3-bis(pyridin-4-yl)propane (2/1), C13H14.59N2·C8H7.67O3·C8H7.74O3, (I), and biphenyl-4,4′-dicarboxylic acid–4-methoxypyridine (1/2), C14H9.43O4·C6H7.32NO·C6H7.25NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-methoxybenzoic acid molecules and one 1,3-bis(pyridin-4-yl)propane molecule. The asymmetric unit of (II) comprises one biphenyl-4,4′-dicarboxylic acid molecule and two independent 4-methoxypyridine molecules. In each crystal, the acid and base molecules are linked by short O—H⋯N/N—H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C—H⋯π, π–π and C—H⋯O interactions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π–π and C—H⋯O interactions. PMID:28932435
Granifo, Juan; Suarez, Sebastián; Baggio, Ricardo
2015-01-01
The centrosymmetric dinuclear complex bis(μ-3-carboxy-6-methylpyridine-2-carboxylato)-κ3 N,O 2:O 2;κ3 O 2:N,O 2-bis[(2,2′-bipyridine-κ2 N,N′)(nitrato-κO)cadmium] methanol monosolvate, [Cd2(C8H6NO4)2(NO3)2(C10H8N2)2]·CH3OH, was isolated as colourless crystals from the reaction of Cd(NO3)2·4H2O, 6-methylpyridine-2,3-dicarboxylic acid (mepydcH2) and 2,2′-bipyridine in methanol. The asymmetric unit consists of a CdII cation bound to a μ-κ3 N,O 2:O 2-mepydcH− anion, an N,N′-bidentate 2,2′-bipyridine group and an O-monodentate nitrate anion, and is completed with a methanol solvent molecule at half-occupancy. The Cd complex unit is linked to its centrosymmetric image through a bridging mepydcH− carboxylate O atom to complete the dinuclear complex molecule. Despite a significant variation in the coordination angles, indicating a considerable departure from octahedral coordination geometry about the CdII atom, the Cd—O and Cd—N distances in this complex are surprisingly similar. The crystal structure consists of O—H⋯O hydrogen-bonded chains parallel to a, further bound by C—H⋯O contacts along b to form planar two-dimensional arrays parallel to (001). The juxtaposed planes form interstitial columnar voids that are filled by the methanol solvent molecules. These in turn interact with the complex molecules to further stabilize the structure. A search in the literature showed that complexes with the mepydcH− ligand are rare and complexes reported previously with this ligand do not adopt the μ-κ3 coordination mode found in the title compound. PMID:26396748
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attah, Isaac K.; Platt, Sean P.; Meot-Ner, Michael
2014-03-21
The bonding energies of proton-bound homodimers BH{sup +}B were measured by ion mobility equilibrium studies and calculated at the DFT B3LYP/6-311++G{sup **} level, for a series of nitrogen heterocyclic molecules (B) with electron-withdrawing in-ring N and on-ring F substituents. The binding energies (ΔH°{sub dissoc}) of the proton-bound dimers (BH{sup +}B) vary significantly, from 29.7 to 18.1 kcal/mol, decreasing linearly with decreasing the proton affinity of the monomer (B). This trend differs significantly from the constant binding energies of most homodimers of other organic nitrogen and oxygen bases. The experimentally measured ΔH°{sub dissoc} for (1,3-diazine){sub 2}H{sup +}, i.e., (pyrimidine){sub 2}H{sup +}more » and (3-F-pyridine){sub 2}H{sup +} are 22.7 and 23.0 kcal/mol, respectively. The measured ΔH°{sub dissoc} for the pyrimidine{sup ·+}(3-F-pyridine) radical cation dimer (19.2 kcal/mol) is signifcantly lower than that of the proton-bound homodimers of pyrimidine and 3-F-pyridine, reflecting the stronger interaction in the ionic H-bond of the protonated dimers. The calculated binding energies for (1,2-diazine){sub 2}H{sup +}, (pyridine){sub 2}H{sup +}, (2-F-pyridine){sub 2}H{sup +}, (3-F-pyridine){sub 2}H{sup +}, (2,6-di-F-pyridine){sub 2}H{sup +}, (4-F-pyridine){sub 2}H{sup +}, (1,3-diazine){sub 2}H{sup +}, (1,4-diazine){sub 2}H{sup +}, (1,3,5-triazine){sub 2}H{sup +}, and (pentafluoropyridine){sub 2}H{sup +} are 29.7, 24.9, 24.8, 23.3, 23.2, 23.0, 22.4, 21.9, 19.3, and 18.1 kcal/mol, respectively. The electron-withdrawing substituents form internal dipoles whose electrostatic interactions contribute to both the decreased proton affinities of (B) and the decreased binding energies of the protonated dimers BH{sup +}B. The bonding energies also vary with rotation about the hydrogen bond, and they decrease in rotamers where the internal dipoles of the components are aligned efficiently for inter-ring repulsion. For compounds substituted at the 3 or 4 (meta or para) positions, the lowest energy rotamers are T-shaped with the planes of the two rings rotated by 90° about the hydrogen bond, while the planar rotamers are weakened by repulsion between the ortho hydrogen atoms of the two rings. Conversely, in ortho-substituted (1,2-diazine){sub 2}H{sup +} and (2-F-pyridine){sub 2}H{sup +}, attractive interactions between the ortho (C–H) hydrogen atoms of one ring and the electronegative ortho atoms (N or F) of the other ring are stabilizing, and increase the protonated dimer binding energies by up to 4 kcal/mol. In all of the dimers, rotation about the hydrogen bond can involve a 2–4 kcal/mol barrier due to the relative energies of the rotamers.« less
Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use
P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor
1987-01-01
Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...
Synthesis of isoxazolo[5,4-b]pyridines by microwave-assisted multi-component reactions in water.
Tu, Shu-Jiang; Zhang, Xiao-Hong; Han, Zheng-Guo; Cao, Xu-Dong; Wu, Shan-Shan; Yan, Shu; Hao, Wen-Juan; Zhang, Ge; Ma, Ning
2009-01-01
A series of new polycyclic-fused isoxazolo[5,4-b]pyridines were obtained by a one-pot tandem reaction under microwave irradiation in water. Without any use of additional reagent or catalyst, the synthetic protocol represents a green one and makes this methodology suitable for library synthesis in drug discovery efforts.
Kim, Dong-Su; Park, Jung-Woo; Jun, Chul-Ho
2012-11-28
A new methodology has been developed for the synthesis of pyridines from allyl amines and alkynes, which involves sequential Cu(II)-promoted dehydrogenation of the allylamine and Rh(III)-catalyzed N-annulation of the resulting α,β-unsaturated imine and alkyne.
Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.
Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.
NMR analysis and tacticity determination of poly(lactic acid) in C5D5N
USDA-ARS?s Scientific Manuscript database
In this work tacticity assignments of poly(lactic acid), (PLA), are reported for the NMR peaks from CH carbon and CH3 proton at the tetrad level in deuterated pyridine. The methyl protons are better resolved in pyridine due to solvent effects such as ring current shielding of the aromatic ring and ...
Coal liquefaction process streams characterization and evaluation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.; Davis, A.; Burke, F.P.
1991-12-01
This study demonstrated the use of the gold tube carbonization technique and reflectance microscopy analysis for the examination of process-derived materials from direct coal liquefaction. The carbonization technique, which was applied to coal liquefaction distillation resids, yields information on the amounts of gas plus distillate, pyridine-soluble resid, and pyridine-insoluble material formed when a coal liquid sample is heated to 450{degree}C for one hour at 5000 psi in an inert atmosphere. The pyridine-insolubles then are examined by reflectance microscopy to determine the type, amount, and optical texture of isotropic and anisotropic carbon formed upon carbonization. Further development of these analytical methodsmore » as process development tools may be justified on the basis of these results.« less
Cetyltrimethyl Ammonium Bromide as Corrosion Inhibitor for Zinc Used in Hydrochloric Acid
NASA Astrophysics Data System (ADS)
Sun, C. X.; Du, J. J.; Ma, Z. W.; Huang, C. S.; Wu, J. Y.
2018-05-01
A compound inhibitor composed of cetyltrimethyl ammonium bromide (CTAB) and bromohexadecyl pyridine was tested as corrosion inhibitor for zinc in hydrochloric acid. The results of static coupon test show that the compound inhibitor can effectively protect zinc from corrosion and the best concentration ratio is CTAB 50 mg/L and bromohexadecyl pyridine 200 mg/L. The polarization results show that the compound inhibitor will cause a negative shift of E0 of zinc in hydrochloric acid. The EIS (electrchemical impedance spectra) results show that the inhibitor leads to a bigger radius and has one time constant. SEM results show that the CTAB and bromohexadecyl pyridine form a uniform and compact membrane on the surface of zinc that can protect zinc from corroding effectively.
Direct Alkynylation of 3H-Imidazo[4,5-b]pyridines Using gem-Dibromoalkenes as Alkynes Source.
Aziz, Jessy; Baladi, Tom; Piguel, Sandrine
2016-05-20
C2 direct alkynylation of 3H-imidazo[4,5-b]pyridine derivatives is explored for the first time. Stable and readily available 1,1-dibromo-1-alkenes, electrophilic alkyne precursors, are used as coupling partners. The simple reaction conditions include an inexpensive copper catalyst (CuBr·SMe2 or Cu(OAc)2), a phosphine ligand (DPEphos) and a base (LiOtBu) in 1,4-dioxane at 120 °C. This C-H alkynylation method revealed to be compatible with a variety of substitutions on both coupling partners: heteroarenes and gem-dibromoalkenes. This protocol allows the straightforward synthesis of various 2-alkynyl-3H-imidazo[4,5-b]pyridines, a valuable scaffold in drug design.
Positron scattering from pyridine
NASA Astrophysics Data System (ADS)
Stevens, D.; Babij, T. J.; Machacek, J. R.; Buckman, S. J.; Brunger, M. J.; White, R. D.; García, G.; Blanco, F.; Ellis-Gibbings, L.; Sullivan, J. P.
2018-04-01
We present a range of cross section measurements for the low-energy scattering of positrons from pyridine, for incident positron energies of less than 20 eV, as well as the independent atom model with the screening corrected additivity rule including interference effects calculation, of positron scattering from pyridine, with dipole rotational excitations accounted for using the Born approximation. Comparisons are made between the experimental measurements and theoretical calculations. For the positronium formation cross section, we also compare with results from a recent empirical model. In general, quite good agreement is seen between the calculations and measurements although some discrepancies remain which may require further investigation. It is hoped that the present study will stimulate development of ab initio level theoretical methods to be applied to this important scattering system.
Diaquabis[2-(2-hydroxyethyl)pyridine-κ2 N,O]cobalt(II) dichloride
Zeghouan, Ouahida; Guenifa, Fatiha; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine
2013-01-01
In the title salt, [Co(C7H9NO)2(H2O)2]Cl2, the CoII cation, located on an inversion center, is N,O-chelated by two hydroxyethylpyridine ligands and coordinated by two water molecules in a distorted O4N2 octahedral geometry. In the crystal, the Cl− anions link with the complex cations via O—H⋯Cl hydrogen bonds, forming a three-dimensional supramolecular architecture. π–π stacking is observed between the pyridine rings of adjacent molecules [centroid–centroid distance = 3.5810 (11) Å]. PMID:24109269
Martínez-Palou, Rafael; Zepeda, L Gerardo; Höpfl, Herbert; Montoya, Ascensión; Guzmán-Lucero, Diego J; Guzmán, Javier
2005-01-01
A versatile route to 40-membered library of 2-long alkyl chain substituted benzoazoles (1 and 2) and azole[4,5-b]pyridines (3 and 4) via microwave-assisted combinatorial synthesis was developed. The reactions were carried out in both monomode and multimode microwave oven. With the latter, all reactions were performed in high-throughput experimental settings consisting of an 8 x 5 combinatorial library designed to synthesize 40 compounds. Each step, from the addition of reagents to the recovery of final products, was automated. The microwave-assisted N-long chain alkylation reactions of 2-alkyl-1H-benzimidazole (1) and 2-alkyl-1H-benzimidazole[4,5-b] pyridines (3) were also studied.
NASA Astrophysics Data System (ADS)
Ren, Xiu-Hui; Wang, Peng; Cheng, Jun-Yan; Dong, Yu-Bin
2018-06-01
Three M(II)-coordination polymers (M dbnd Zn(II), Mn(II)) were synthesized based on a pyridine N-oxide bridging ligand 3,5-bis(4-carboxylphenyl)-pyridine N-oxide (L1). Compounds 1-3 all have novel complicated structures. Compound 1 (Zn(L1)2(H2O)2) and 2 (Zn2(L1)2(H2O)2) are two single crystals obtained in "one pot" and 1 features 1D double chains motif and 2 features 3D network structure. Compound 3 shows 3D network structure with triangular tunnels. The thermogravimetric analyses and photoluminescence properties were also used to investigate the title compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soorkia, Satchin; Taatjes, Craig A.; Osborn, David L.
The reaction of the ground state methylidyne radical CH (X2Pi) with pyrrole (C4H5N) has been studied in a slow flow tube reactor using Multiplexed Photoionization Mass Spectrometry coupled to quasi-continuous tunable VUV synchrotron radiation at room temperature (295 K) and 90 oC (363 K), at 4 Torr (533 Pa). Laser photolysis of bromoform (CHBr3) at 248 nm (KrF excimer laser) is used to produce CH radicals that are free to react with pyrrole molecules in the gaseous mixture. A signal at m/z = 79 (C5H5N) is identified as the product of the reaction and resolved from 79Br atoms, and themore » result is consistent with CH addition to pyrrole followed by Helimination. The Photoionization Efficiency curve unambiguously identifies m/z = 79 as pyridine. With deuterated methylidyne radicals (CD), the product mass peak is shifted by +1 mass unit, consistent with the formation of C5H4DN and identified as deuterated pyridine (dpyridine). Within detection limits, there is no evidence that the addition intermediate complex undergoes hydrogen scrambling. The results are consistent with a reaction mechanism that proceeds via the direct CH (CD) cycloaddition or insertion into the five-member pyrrole ring, giving rise to ring expansion, followed by H atom elimination from the nitrogen atom in the intermediate to form the resonance stabilized pyridine (d-pyridine) molecule. Implications to interstellar chemistry and planetary atmospheres, in particular Titan, as well as in gas-phase combustion processes, are discussed.« less
ESI-MS of Cucurbituril Complexes Under Negative Polarity.
Rodrigues, Maria A A; Mendes, Débora C; Ramamurthy, Vaidhyanathan; Da Silva, José P
2017-11-01
Electrospray ionization mass spectrometry (ESI-MS) is a powerful tool to study host-guest supramolecular interactions. ESI-MS can be used for detailed gas-phase reactivity studies, to clarify the structure, or simply to verify the formation of complexes. Depending on the structure of the host and of the guest, negative and/or positive ESI are used. Here we report the unexpected formation of host-guest complexes between cucurbit[n]urils (n = 7, 8, CB[n]) and amine, styryl pyridine, and styryl pyridine dimer cations, under negative ESI. Non-complexed CB[n] form double charged halide (Br - , Cl - , F - ) adducts. Under negative ESI, halide ions interact with CB[n] outer surface hydrogen atoms. One to one host-guest complexes (1:1) of CB[n] with positive charged guests were also observed as single and double charged ions under negative ESI. The positive charge of guests is neutralized by ion-pairing with halide anions. Depending on the number of positive charges guests retain in the gas phase, one or two additional halide ions are required for neutralization. Complexes 1:2 of CB[8] with styryl pyridines retain two halide ions in the gas phase, one per guest. Styryl pyridine dimers form 1:1 complexes possessing a single extra halide ion and therefore a single positive charge. Negative ESI is sensitive to small structural differences between complexes, distinguishing between 1:2 complexes of styryl pyridine-CB[8] and corresponding 1:1 complexes with the dimer. Negative ESI gives simpler spectra than positive ESI and allows the determination of guest charge state of CB[n] complexes in the gas phase. Graphical Abstract ᅟ.
Lead optimization of a pyridine-carboxamide series as DGAT-1 inhibitors.
Ting, Pauline C; Lee, Joe F; Zorn, Nicolas; Kim, Hyunjin M; Aslanian, Robert G; Lin, Mingxiang; Smith, Michelle; Walker, Scott S; Cook, John; Van Heek, Margaret; Lachowicz, Jean
2013-02-15
The structure-activity relationship studies of a novel series of carboxylic acid derivatives of pyridine-carboxamides as DGAT-1 inhibitors is described. The optimization of the initial lead compound 6 based on in vitro and in vivo activity led to the discovery of key compounds 10j and 17h. Copyright © 2013 Elsevier Ltd. All rights reserved.
(E)-4-{[(Pyridin-4-ylmethylidene)amino]methyl}benzoic acid
Han, Sun Hwa; Lee, Soon W.
2012-01-01
The title molecule, C14H12N2O2, exhibits a V-shaped conformation with a dihedral angle of 59.69 (3)° between the benzene and pyridine rings. In the crystal, O—H⋯N hydrogen bonds link the molecules into zigzag chains along [010]. PMID:22346932
ERIC Educational Resources Information Center
Santaniello, Brandi S.; Price, Matthew J.; Murray, James K., Jr.
2017-01-01
A straightforward synthesis of 2-phenylimidazo[1,2-a]pyridine is described. The reaction is designed to demonstrate to students the preparation of a bridged N-heterocycle, in which the heteroatom occupies a bridgehead position. The product is obtained in moderate to high yield and is highly crystalline. The compound can be purified either by…
1-(Benzylideneamino)pyridinum iodide
Cui, Yong-Tao; Wang, Jian-Qiang; Ji, Chun-Xiang; Wu, Cong-Ren; Guo, Cheng
2009-01-01
In the title compound, C12H11N2 +·I−, the aromatic rings are oriented at a dihedral angle of 73.40 (3)°. In the crystal structure, π–π contacts between the pyridine rings and the benzene and pyridine rings [centroid–centroid distances = 3.548 (3) and 4.211 (3) Å] may stabilize the structure. PMID:21581846
5-Bromo-2-methylpyridine N-oxide
Liu, Bo-Nian; Tang, Shi-Gui; Li, Hao-Yuan; Xu, Ye-Ming; Guo, Cheng
2008-01-01
In the molecule of the title compound, C6H6BrNO, the methyl C and oxide O atoms lie in the pyridine ring plane, while the Br atom is displaced by 0.103 (3) Å. In the crystal structure, intermolecular C—H⋯O hydrogen bonds link the molecules into centrosymmetric dimers. PMID:21202579
Polyorganometallosiloxane-2- or -4-pyridine coatings
Sugama, Toshifumi
1997-01-01
A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their allows. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided.
Nitta, I; Ueda, T; Nojima, T; Watanabe, K
1995-10-01
We demonstrate here that a high concentration (40-70%) of pyridine, an aromatic tertiary amine catalyst, is able to promote translation on ribosomes without the presence of soluble protein factors or chemical energy sources. Compared with Monro's fragment reaction [Methods Enzymol. 20, 472-481 (1971)] which reflects only the peptidyltransferase step, this novel translation system can produce polypeptides with chain lengths of at least several tens of residues depending on the template RNA. In the presence of 60% pyridine, poly(U) and poly(UC) promoted incorporation of the respective amino acids, phenylalanine and serine-leucine, twofold, whereas poly(A) promoted the incorporation of lysine by only 25%. The degrees of polymerization of phenylalanine and lysine were up to the decamer and around 40mer, respectively. In poly(UC)-dependent oligo(serine-leucine) synthesis, oligopeptides with a serine and leucine alternate sequence were the main products. This novel pyridine system evidently differs from the non-enzymatic translation system reported by Gavrilova and Spirin [FEBS Lett. 17, 324-326 (1971)]; the former system displays partial resistance toward deproteinization reagents such as SDS and proteinase K, whereas the latter system is completely sensitive.
Highly optical transparency and thermally stable polyimides containing pyridine and phenyl pendant.
Yao, Jianan; Wang, Chunbo; Tian, Chengshuo; Zhao, Xiaogang; Zhou, Hongwei; Wang, Daming; Chen, Chunhai
2017-01-01
In order to obtain highly optical transparency polyimides, two novel aromatic diamine monomers containing pyridine and kinky structures, 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]diphenylmethane (BAPDBP) and 1,1-bis[4-(5-amino-2-pyridinoxy)phenyl]-1-phenylethane (BAPDAP), were designed and synthesized. Polyimides based on BAPDBP, BAPDAP, 2,2-bis[4-(5-amino-2-pyridinoxy)phenyl]propane (BAPDP) with various commercial dianhydrides were prepared for comparison and structure-property relationships study. The structures of the polyimides were characterized by Fourier transform infrared (FT-IR) spectrometer, wide-angle X-ray diffractograms (XRD) and elemental analysis. Film properties including solubility, optical transparency, water uptake, thermal and mechanical properties were also evaluated. The introduction of pyridine and kinky structure into the backbones that polyimides presented good optical properties with 91-97% transparent at 500 nm and a low cut-off wavelength at 353-398 nm. Moreover, phenyl pendant groups of the polyimides showed high glass transition temperatures ( T g ) in the range of 257-281 °C. These results suggest that the incorporating pyridine, kinky and bulky substituents to polymer backbone can improve the optical transparency effectively without sacrificing the thermal properties.
Zhao, Yuzheng; Zhang, Zhuo; Zou, Yejun; Yang, Yi
2018-01-20
Beyond their roles as redox currency in living organisms, pyridine dinucleotides (NAD + /NADH and NADP + /NADPH) are also precursors or cosubstrates of great significance in various physiologic and pathologic processes. Recent Advances: For many years, it was challenging to develop methodologies for monitoring pyridine dinucleotides in situ or in vivo. Recent advances in fluorescent protein-based sensors provide a rapid, sensitive, specific, and real-time readout of pyridine dinucleotide dynamics in single cells or in vivo, thereby opening a new era of pyridine dinucleotide bioimaging. In this article, we summarize the developments in genetically encoded fluorescent sensors for NAD + /NADH and NADP + /NADPH redox states, as well as their applications in life sciences and drug discovery. The strengths and weaknesses of individual sensors are also discussed. These sensors have the advantages of being specific and organelle targetable, enabling real-time monitoring and subcellular-level quantification of targeted molecules in living cells and in vivo. NAD + /NADH and NADP + /NADPH have distinct functions in metabolic and redox regulation, and thus, a comprehensive evaluation of metabolic and redox states must be multiplexed with a combination of various metabolite sensors in a single cell. Antioxid. Redox Signal. 28, 213-229.
Observation of the Hydrogen Migration in the Cation-Induced Fragmentation of the Pyridine Molecules.
Wasowicz, Tomasz J; Pranszke, Bogusław
2016-02-25
The ability to selectively control chemical reactions related to biology, combustion, and catalysis has recently attracted much attention. In particular, the hydrogen atom relocation may be used to manipulate bond-breaking and new bond-forming processes and may hold promise for far-reaching applications. Thus, the hydrogen atom migration preceding fragmentation of the gas-phase pyridine molecules by the H(+), H2(+), He(+), He(2+), and O(+) impact has been studied experimentally in the energy range of 5-2000 eV using collision-induced luminescence spectroscopy. Formation of the excited NH(A(3)Π) radicals was observed among the atomic and diatomic fragments. The structure of the pyridine molecule is lacking of the NH group, therefore observation of its A(3)Π → X(3)Σ(-) emission bands is an evidence of the hydrogen atom relocation prior to the cation-induced fragmentation. The NH(A(3)Π) emission yields indicate that formation of the NH radicals depends on the type of selected projectile and can be controlled by tuning its velocity. The plausible collisional mechanisms as well as fragmentation channels for NH formation in pyridine are discussed.
An explanation of the very low fluorescence and phosphorescence in pyridine: a CASSCF/CASMP2 study
NASA Astrophysics Data System (ADS)
Varras, Panayiotis C.; Gritzapis, Panagiotis S.; Fylaktakidou, Konstantina C.
2018-01-01
In this work, we applied the multiconfigurational complete active space self-consistent field method and the multiconfigurational second-order perturbation theory CASMP2 to study the fundamental excited states of pyridine and its possible photophysical and photochemical transformations. Our calculations, which are in agreement with the experimental results corresponding to excitations around the 0-0 transition, showed that the very low experimentally observed fluorescence of pyridine is due to the presence of two almost isoenergetic crossings, one of triple character, S1/T1/S0 and the other of S1/S0 character. Both crossings are below the minimum of S1(nπ*) and have a common transition state (S1(TS)) with a very low energy barrier (1.85 kcal/mol or 0.08 eV at the CASMP2 level of theory) separating them. A third triple crossing of the type S1/T1/S0 lying lower with respect to the other two elucidates the observed T1→S0 radiationless transition. This explains not only pyridine's very low fluorescence and phosphorescence but also its almost negligible photochemistry, showing that photophysics is the prevalent process in this molecule.
Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J
2011-10-13
The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.
Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.
2011-01-01
The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126
NASA Astrophysics Data System (ADS)
Soleimannejad, Janet; Nazarnia, Esfandiar
2016-07-01
A new Ga(III) supramolecular compound (4,4‧-bipyH2)[Ga(hpydc)2]2·7H2O (2) (where H2hpydc = 4-hydroxy-pyridine-2,6-dicarboxylic acid and 4,4‧-bipy = 4,4‧-bipyridine) was synthesized using the proton transfer reaction. Compound 2 was structurally characterized using single crystal X-ray diffraction, and it was shown that its asymmetric unit consists of two independent anionic Ga(III) complexes, one fully protonated 4,4‧-bipyridine and seven uncoordinated water molecules. In order to understand the effect of pyridine OH substituent on supramolecular interactions and crystal packing, compound 2 was compared with (bipyH2)[Ga(pydc)2]·(H2pydc)·4H2O (1) (where H2pydc = pyridine-2,6-dicarboxylic acid), that does not have an OH group on the pyridine ligand. The Density Functional Theory (DFT) and Natural Bond Orbital (NBO) calculations and also Atoms in Molecules (AIM) analysis were used to analyze the non-covalent interactions in both complexes. The calculation of non-covalent interactions' energy provides a useful means to investigate their effects in the crystal packing.
Rastogi, Neeraj; Tyagi, Nidhi; Singh, Ovender; Hemanth Kumar, B S; Singh, Udai P; Ghosh, Kaushik; Roy, Raja
2017-12-01
We report the synthesis and characterization of manganese(II) complexes having pentadentate ligands L 1 (2,6-bis(1-(2-phenyl-2-(pyridin-2-yl)hydrazono)ethyl)pyridine), L 2 (methyl 2,6-bis((E)-1-(2-phenyl-2-(pyridin-2yl)hydrazono)ethyl)isonicotinate), L 3 (N-(2-(1H-indol-3-yl)ethyl)-2,6-bis((E)-1-(2-phenyl-2-(pyridin2yl)hydrazono)ethyl)isonicotiamide) and their application as dual contrast agents for simultaneous T 1 and T 2 weighted magnetic resonance imaging. Single crystal analysis of all the complexes [Mn II L 1 , Mn II L 2 and Mn II L 3 ] confirm the formation of novel seven-coordinate manganese complexes with an inner sphere water and perchlorate ion. The Magnetic Resonance Imaging (MRI) contrast agent [MnL 2 ] was further modified by incorporating tryptamine as a binding moiety specific to Amyloid Beta-fibrils (Aβ-fibrils) in Alzhiemer's disease (AD) and it's in vitro evaluation for specific binding with Aβ-fibrils indicated as a bio-marker of AD. Copyright © 2017 Elsevier Inc. All rights reserved.
Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei
2018-02-07
Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.
Lense, Sheri; Piro, Nicholas A; Kassel, Scott W; Wildish, Andrew; Jeffery, Brent
2016-08-01
The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6'-dihy-droxy-2,2'-bi-pyridine ligand in a distorted octa-hedral geometry. Both complexes co-crystallize with a non-coordinating tetra-hydro-furan (THF) solvent mol-ecule and exhibit inter-molecular but not intra-molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter-molecular hydrogen bonding between a hy-droxy group from the 6,6'-dihy-droxy-2,2'-bi-pyridine ligand and the halide ligand from a neighboring complex. The THF mol-ecule is hydrogen bonded to the remaining hy-droxy group.
Argibay-Otero, Saray; Carballo, Rosa; Vázquez-López, Ezequiel M
2017-10-01
The asymmetric unit of the title compound, [ReCl(C 5 H 5 NO) 2 (CO) 3 ]·C 5 H 5 NO, contains one mol-ecule of the complex fac -[ReCl(4-pyOH) 2 (CO) 3 ] (where 4-pyOH represents 4-hy-droxy-pyridine) and one mol-ecule of pyridin-4(1 H )-one (4-HpyO). In the mol-ecule of the complex, the Re atom is coordinated to two N atoms of the two 4-pyOH ligands, three carbonyl C atoms, in a facial configuration, and the Cl atom. The resulting geometry is slightly distorted octa-hedral. In the crystal structure, both fragments are associated by hydrogen bonds; two 4-HpyO mol-ecules bridge between two mol-ecules of the complex using the O=C group as acceptor for two different HO- groups of coordinated 4-pyOH from two neighbouring metal complexes. The resulting square arrangements are extented into infinite chains by hydrogen bonds involving the N-H groups of the 4-HpyO mol-ecule and the chloride ligands. The chains are further stabilized by π-stacking inter-actions.
Cao, Yanjing; Guan, Qing; Sun, Tuanqi; Qi, Wanshu; Guo, Yinlong
2016-09-21
N-(1-chloroalkyl)pyridinium quaternization was developed for the derivatization of fatty aldehydes. Differing from common pre-charged reagents, non-charged pyridine and thionyl chloride were designed to add permanently charged tag on aldehydes. Pyridine was far less competitive than charged derivatives in ionization. Thionyl chloride in excess was quenched by deionized water, converting into less residual sulfur dioxide bubbles. Thus solutions could be tested directly by mass spectrometry without further post-treatments. Pyridine-d5 labeled fatty aldehydes were prepared as internal standards. Mixed derivatives were then analyzed by high performance liquid chromatography coupled to positive electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS). Analytical parameters including reaction yield, stability, precision, linearity, and detection limits (LODs < 0.3 pg mL(-1)) were carefully validated. This method facilitated the analysis low content (ng mL(-1)) levels of free aliphatic aldehydes (C6C18) in human thyroid carcinoma and para-carcinoma tissue with a simple pretreatment procedure. Content of long chain nonvolatile aldehydes (C10C18) remarkably increased in thyroid carcinoma tissues (p < 0.05). Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, G.; Davis, A.; Burke, F.P.
1991-12-01
This study demonstrated the use of the gold tube carbonization technique and reflectance microscopy analysis for the examination of process-derived materials from direct coal liquefaction. The carbonization technique, which was applied to coal liquefaction distillation resids, yields information on the amounts of gas plus distillate, pyridine-soluble resid, and pyridine-insoluble material formed when a coal liquid sample is heated to 450{degree}C for one hour at 5000 psi in an inert atmosphere. The pyridine-insolubles then are examined by reflectance microscopy to determine the type, amount, and optical texture of isotropic and anisotropic carbon formed upon carbonization. Further development of these analytical methodsmore » as process development tools may be justified on the basis of these results.« less
Mössbauer spectroscopic characterization of iron methyl pyropheophorbide a and its derivatives
NASA Astrophysics Data System (ADS)
Inoue, H.; Soeda, K.; Akahori, H.; Nonomura, Y.; Yoshioka, N.
1994-12-01
Two kinds of iron chlorophylls, i.e. (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct, were prepared and characterized by57Fe Mössbauer spectroscopy. (Methyl pyropheophorbide a)iron(III) chloride gave an asymmetric quadrupole-split doublet typical of high-spin iron(III) chlorophylls, while its bis-pyridine adduct showed a symmetric quadrupole-split doublet characteristic of low-spin iron(II) chlorophylls. The isomer shift and quadrupole splitting obtained for (methyl pyropheophorbide a)iron(III) chloride and its bis-pyridine adduct have led to the following conclusions. The substitution of the bulky phytyl group for the methyl group hardly affects the electronic state of the iron(II,III) ion, but the elimination of the methoxycarbonyl group increases the planarity of the macrocyclic chlorin ligand.
Crystal structure of (pyridine-κN)bis(quinolin-2-olato-κ2 N,O)copper(II) monohydrate
Hawks, Benjamin; Yan, Jingjing; Basa, Prem; Burdette, Shawn
2015-01-01
The title complex, [Cu(C9H6NO)2(C5H4N)]·H2O, adopts a slightly distorted square-pyramidal geometry in which the axial pyridine ligand exhibits a long Cu—N bond of 2.305 (3) Å. The pyridine ligand forms dihedral angles of 79.5 (5) and 88.0 (1)° with the planes of the two quinolin-2-olate ligands, while the dihedral angle between the quinoline groups of 9.0 (3)° indicates near planarity. The water molecule connects adjacent copper complexes through O—H⋯O hydrogen bonds to phenolate O atoms, forming a network interconnecting all the complexes in the crystal lattice. PMID:25878845
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasbinder, Michael John
2006-01-01
Chapters 1 and 2 dealt with the chemistry of superoxo-, hydroperoxo-, and oxo- complexes of chromium, rhodium and cobalt. Chapter 3 dealt with the mechanism of oxygen-atom transfer catalyzed by an oxo-complex of rhenium. In Chapter 1, it was shown that hydroperoxometal complexes of cobalt and rhodium react with superoxochromium and chromyl ions, generating reduced chromium species while oxidizing the hydroperoxometal ions to their corresponding superoxometal ions. It was shown that the chromyl and superoxochromium ions are the more powerful oxidants. Evidence supports hydrogen atom transfer from the hydroperoxometal ion to the oxidizing superoxochromium or chromyl ion as the reactionmore » mechanism. There is a significant H/D kinetic isotope effect. Comparisons to the rate constants of other known hydrogen atom transfer reactions show the expected correlation with bond dissociation energies. In Chapter 2, it was found that the superoxometal complexes Cr{sub aq}OO 2+ and Rh(NH 3) 4(H 2O)OO 2+ oxidize stable nitroxyl radicals of the TEMPO series with rate constants that correlate with the redox potentials of both the oxidant and reductant. These reactions fit the Marcus equation for electron transfer near the theoretical value. Acid catalysis is important to the reaction, especially the thermodynamically limited cases involving Rh(NH 3) 4(H 2O)OO 2+ as the oxidant. The rate constants are notably less than those measured in the reaction between the same nitroxyl radicals and other strong free-radical oxidants, an illustration of the delocalized and stabilized nature of the superoxometal ions. Chapter 3 showed that oxo-rhenium catalysts needed a nucleophile to complete the catalytic oxygen-atom transfer from substituted pyridine-N-oxides to triphenylphosphine. The reaction was studied by introducing various pyridine-derived nucleophiles and monitoring their effect on the rate, then fitting the observed rate constants to the Hammett correlation. It was found that the values of the Hammett reaction constant PN were -1.0(1) for 4-nitro-2-methylpyridine-N-oxide and -2.6(4) for 4-methylpyridine-N-oxide as substrates. The negative value confirms pyridine is acting as a nucleophile. Nucleophiles other than pyridine derivatives were also tested. In the end, it was found that the most effective nucleophiles were the pyridine-N-oxides themselves, meaning that a second equivalent of substrate serves as the most efficient promoter of this oxygen-atom transfer reaction. This relative nucleophilicity of pyridines and pyridine-N-oxides is similar to what is observed in other OAT reactions generating high-valent metal-oxo species.« less
Polyorganometallosiloxane-2- or -4-pyridine coatings
Sugama, T.
1997-12-30
A new family of polyorganometallosiloxane-2- or -4-pyridine compounds are provided for corrosion resistant coatings on light metals such as aluminum, magnesium, zinc, steel and their alloys. The novel compounds contain backbones modified by metal alkoxides, metallocenes and metallophthalocyanates where the metal is Zr, Ti, Mo, V, Hf, Nb, Si, B and combinations thereof. Methods of making the new compounds are also provided. 13 figs.
ERIC Educational Resources Information Center
Liu, Hanlin; Zaplishnyy, Vladimir; Mikhaylichenko, Lana
2016-01-01
A multistep synthesis of thieno[2,3-"b"]pyridine derivatives is described that is suitable for the upper-level undergraduate organic laboratory. This experiment exposes students to various hands-on experimental techniques as well as methods of product characterization such as IR and [superscript 1]H NMR spectroscopy, and…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patnaik, Samarjit; Stevens, Kirk L.; Gerding, Roseanne
2009-07-23
Exploration of the SAR around a series of 3,5-disubstituted-1H-pyrrolo[2,3-b]pyridines led to the discovery of novel pyrrolopyridine inhibitors of the IGF-1R tyrosine kinase. Several compounds demonstrated nanomolar potency in enzyme and cellular mechanistic assays.
Pure white OLED based on an organic small molecule: 2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine
NASA Astrophysics Data System (ADS)
Liu, Jian
2015-10-01
2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine (DBIP) was synthesized. The single-crystal structure of DBIP was resolved. DBIP-based OLED was fabricated. The electroluminescence for the device corresponds to a pure white emission. In addition, thermal stability, UV-vis, photoluminescence and electrochemical behaviors of DBIP were investigated as well.
Synthesis of pyridine-fused perylene imides with an amidine moiety for hydrogen bonding.
Ito, Satoru; Hiroto, Satoru; Shinokubo, Hiroshi
2013-06-21
Pyridine-fused perylene tetracarboxylic acid bisimides (PBIs) were synthesized via Suzuki-Miyaura coupling and acid condensation. The fused PBIs with electron-donating substituents exhibited an intramolecular charge transfer interaction. One of the N-alkyl substituents was selectively removed with BBr3 to create an amidine guest binding site. A hydrogen bonding interaction with pentafluorobenzoic acid changed the absorption spectra and enhanced fluorescence.
Thermometric titration of acids in pyridine.
Vidal, R; Mukherjee, L M
1974-04-01
Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.
Hussain, Munawar; Banchelin, Thomas Sainte-Luce; Andersson, Hans; Olsson, Roger; Almqvist, Fredrik
2013-01-04
The synthesis of optically active piperidines by enantioselective addition of aryl Grignard reagents to pyridine N-oxides and lithium binolate followed by reduction is reported for the first time. The reaction results in high yields (51-94%) in combination with good ee (54-80%). Some of these products were subsequently recrystallized, affording enhanced optical purities (>99% ee).
beta-1,2,3-Triazolyl-nucleosides as nicotinamide riboside mimics.
Amigues, E J; Armstrong, E; Dvorakova, M; Migaud, M E; Huang, M
2009-03-01
The synthesis of a series of pyridine- and piperidine-substituted 1,2,3-triazolides linked to a riboside moiety is described. The presence of a triazolide substituent on the pyridine moiety permitted the facile reduction of the latter under mild hydrogenation conditions. These analogues were modelled as to define their similarity to nicotinamide riboside and quantify their ability to bind NAD-dependent protein deacetylases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sylvester, Sven O.; Cole, Jacqueline M.; Waddell, Paul G.
2014-07-24
Thermally-reversible solid-state linkage SO2 photoisomers of three complexes in the [Ru(NH3)4SO2X]tosylate2 family are captured in their metastable states using photocrystallography, where X = pyridine (1), 3-Cl-pyridine (2) and 4-Cl-pyridine (3). This photoisomerism only exists in the single-crystal form; accordingly, the nature of the crystalline environment surrounding the photo-active species controls its properties. In particular, the structural role of the tosylate anion needs to be understood against possible chemical influences due to varying the trans ligand, X. The photo-excited geometries, photoconversion levels and thermal stabilities of the photoisomers that form in 1-3 are therefore studied. 1 and 2 yield two photo-isomersmore » at 100 K: the O-bound end-on n1-SO2 Page 1 of 32 ACS Paragon Plus Environment The Journal of Physical Chemistry (MS1) configuration and the side-bound n2-SO2 (MS2), while 3 only exhibits the more thermally stable MS2 geometry. The decay kinetics of the MS2 geometry for 1-3 demonstrate that the greater the free volume of the GS SO2 ligand for a given counterion, the greater the MS2 thermal stability. Furthermore, a rationalization is sought for the SO2 phototriggered molecular rotation of the phenyl ring in the tosylate anion; this is selectively observed in 2, manifesting as nanomechanical molecular transduction. This molecular transduction was not observed in 1, despite the presence of the MS1 geometry due to the close intermolecular interactions between the MS1 SO2 and the neighbouring tosylate ion. The decay of this anionic molecular rotor in 2, however, follows a non-traditional decay pathway, as determined by time-resolved crystallographic analysis; this contrasts with the well-behaved first-order kinetic decay of its MS1 SO2 phototrigger.« less
Pratik, Saied Md; Datta, Ayan
2016-08-04
Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.
Kraft, Bradley M; Brennessel, William W; Ryan, Amy E; Benjamin, Candace K
2015-12-01
The cations in the title salts, [Si(OPO)3]Cl·2CDCl3, (I), [Si(OPO)3]Cl·xCH3CN, (II), and fac-[Si(OPTO)3]Cl·2CDCl3, (III) (OPO = 1-oxo-2-pyridin-one, C5H4NO2, and OPTO = 1-oxo-2-pyridine-thione, C5H4NOS), have distorted octa-hedral coordination spheres. The first two structures contain the same cation and anion, but different solvents of crystallization led to different solvates and packing arrangements. In structures (I) and (III), the silicon complex cations and chloride anions are well separated, while in (II), there are two C-H⋯Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the planar flips of themselves [(I): 0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15); (II): 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13)], demonstrating that both fac and mer isomers are co-crystallized. In (II), highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9-18] function of program PLATON, which determined there to be 54 electrons in 225 Å(3) accounted for per unit cell (25 electrons in 109 Å(3) in one channel, and 29 electrons in 115 Å(3) in the other). In (I) and (II), all species lie on general positions. In (III), all species are located along crystallographic threefold axes.
Electrochemical Reduction of CO 2 Catalyzed by Re(pyridine-oxazoline)(CO) 3 Cl Complexes
Nganga, John K.; Samanamu, Christian R.; Tanski, Joseph M.; ...
2017-03-09
In a series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO 2 reduction ability. We reported complexes are of the type Re(N-N)(CO) 3Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO 2 by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO 2 reduction by 1 in acetonitrile using densitymore » functional theory (DFT) supports the C–O bond cleavage step being the rate-determining step (RDS) (ΔG ‡ = 27.2 kcal mol –1). Furthermore, the dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C–O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO) 3Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (i cat/i p) 2, up to 7 times larger than that of I.« less
Lindgren, Anders; Eklund, Göran; Turek, Dominika; Malmquist, Jonas; Swahn, Britt-Marie; Holenz, Jörg; von Berg, Stefan; Karlström, Sofia; Bueters, Tjerk
2013-05-01
Recently, the discovery of the aminoisoindoles as potent and selective inhibitors of β-secretase was reported, including the close structural analogs compound (S)-1-pyridin-4-yl-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine [(S)-25] and (S)-1-(2-(difluoromethyl)pyridin-4-yl)-4-fluoro-1-(3-(pyrimidin-5-yl)phenyl)-1H-isoindol-3-amine hemifumarate (AZD3839), the latter being recently progressed to the clinic. The biotransformation of (S)-25 was investigated in vitro and in vivo in rat, rabbit, and human and compared with AZD3839 to further understand the metabolic fate of these compounds. In vitro, CYP3A4 was the major responsible enzyme and metabolized both compounds to a large extent in the commonly shared pyridine and pyrimidine rings. The main proposed metabolic pathways in various in vitro systems were N-oxidation of the pyridine and/or pyrimidine ring and conversion to 4-pyrimidone and pyrimidine-2,4-dione. Both compounds were extensively metabolized, and more than 90% was excreted in feces after intravenous administration of radiolabeled compound to the rat. Here, the main pathways were N-oxidation of the pyridine and/or pyrimidine ring and a ring contraction of the pyrimidine ring into an imidazole ring. Ring-contracted metabolites accounted for 25% of the total metabolism in the rat for (S)-25, whereas the contribution was much smaller for AZD3839. This metabolic pathway was not foreseen on the basis of the obtained in vitro data. In conclusion, we discovered an unusual metabolic pathway of aryl-pyrimidine-containing compounds by a ring-opening reaction followed by elimination of a carbon atom and a ring closure to form an imidazole ring.
Igawa, Hideyuki; Takahashi, Masashi; Shirasaki, Mikio; Kakegawa, Keiko; Kina, Asato; Ikoma, Minoru; Aida, Jumpei; Yasuma, Tsuneo; Okuda, Shoki; Kawata, Yayoi; Noguchi, Toshihiro; Yamamoto, Syunsuke; Fujioka, Yasushi; Kundu, Mrinalkanti; Khamrai, Uttam; Nakayama, Masaharu; Nagisa, Yasutaka; Kasai, Shizuo; Maekawa, Tsuyoshi
2016-06-01
Melanin-concentrating hormone (MCH) is an attractive target for antiobesity agents, and numerous drug discovery programs are dedicated to finding small-molecule MCH receptor 1 (MCHR1) antagonists. We recently reported novel pyridine-2(1H)-ones as aliphatic amine-free MCHR1 antagonists that structurally featured an imidazo[1,2-a]pyridine-based bicyclic motif. To investigate imidazopyridine variants with lower basicity and less potential to inhibit cytochrome P450 3A4 (CYP3A4), we designed pyridine-2(1H)-ones bearing various less basic bicyclic motifs. Among these, a lead compound 6a bearing a 1H-benzimidazole motif showed comparable binding affinity to MCHR1 to the corresponding imidazopyridine derivative 1. Optimization of 6a afforded a series of potent thiophene derivatives (6q-u); however, most of these were found to cause time-dependent inhibition (TDI) of CYP3A4. As bioactivation of thiophenes to form sulfoxide or epoxide species was considered to be a major cause of CYP3A4 TDI, we introduced electron withdrawing groups on the thiophene and found that a CF3 group on the ring or a Cl adjacent to the sulfur atom helped prevent CYP3A4 TDI. Consequently, 4-[(5-chlorothiophen-2-yl)methoxy]-1-(2-cyclopropyl-1-methyl-1H-benzimidazol-6-yl)pyridin-2(1H)-one (6s) was identified as a potent MCHR1 antagonist without the risk of CYP3A4 TDI, which exhibited a promising safety profile including low CYP3A4 inhibition and exerted significant antiobesity effects in diet-induced obese F344 rats. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sagar, Belakavadi K; Harsha, Kachigere B; Yathirajan, Hemmige S; Rangappa, Kanchugarakoppal S; Rathore, Ravindranath S; Glidewell, Christopher
2017-03-01
In each of 1-(4-fluorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 F 4 N 3 O 2 S, (I), 1-(4-chlorophenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 21 H 19 ClF 3 N 3 O 2 S, (II), and 1-(3-methylphenyl)-5-methylsulfonyl-3-[4-(trifluoromethyl)phenyl]-4,5,6,7-tetrahydro-1H-pyrazolo[4,3-c]pyridine, C 22 H 22 F 3 N 3 O 2 S, (III), the reduced pyridine ring adopts a half-chair conformation with the methylsulfonyl substituent occupying an equatorial site. Although compounds (I) and (II) are not isostructural, having the space groups Pbca and P2 1 2 1 2 1 , respectively, their molecular conformations are very similar, but the conformation of compound (III) differs from those of (I) and (II) in the relative orientation of the N-benzyl and methylsulfonyl substituents. In compounds (II) and (III), but not in (I), the trifluoromethyl groups are disordered over two sets of atomic sites. Molecules of (I) are linked into centrosymmetric dimers by C-H...π(arene) hydrogen bonds, molecules of (II) are linked by two C-H...O hydrogen bonds to form ribbons of R 3 3 (18) rings, which are themselves further linked by a C-Cl...π(arene) interaction, and a combination of C-H...O and C-H...π(arene) hydrogen bonds links the molecules of (III) into sheets. Comparisons are made with the structures of some related compounds.
Catalyzed Atomic Layer Deposition of Silicon Oxide at Ultralow Temperature Using Alkylamine.
Mayangsari, Tirta R; Park, Jae-Min; Yusup, Luchana L; Gu, Jiyeon; Yoo, Jin-Hyuk; Kim, Heon-Do; Lee, Won-Jun
2018-06-12
We report the catalyzed atomic layer deposition (ALD) of silicon oxide using Si 2 Cl 6 , H 2 O, and various alkylamines. The density functional theory (DFT) calculations using the periodic slab model of the SiO 2 surface were performed for the selection of alternative Lewis base catalysts with high catalytic activities. During the first half-reaction, the catalysts with less steric hindrance such as pyridine would be more effective than bulky alkylamines despite lower nucleophilicity. On the other hand, during the second half-reaction, the catalysts with a high nucleophilicity such as triethylamine (Et 3 N) would be more efficient because the steric hindrance is less critical. The in situ process monitoring shows that the calculated atomic charge is a good indicator for expecting the catalyst activity in the ALD reaction. The use of Et 3 N in the second half-reaction was essential to improving the growth rate as well as the step coverage of the film because the Et 3 N-catalyzed process deposited a SiO 2 film with a step coverage of 98% that is better than 93% of the pyridine-catalyzed process. The adsorption of pyridine, ammonia (NH 3 ), or trimethylamine (Me 3 N) salts was more favorable than that of Et 3 N, n-Pr 3 N, or i Pr 3 N salts. Therefore, Et 3 N was expected to incorporate less amine salts in the film as compared to pyridine, and the compositional analyses confirmed that the concentrations of Cl and N by the Et 3 N-catalyzed process were significantly lower than those by the pyridine-catalyzed process.
Zorina-Tikhonova, Ekaterina N; Chistyakov, Aleksandr S; Kiskin, Mikhail A; Sidorov, Aleksei A; Dorovatovskii, Pavel V; Zubavichus, Yan V; Voronova, Eugenia D; Godovikov, Ivan A; Korlyukov, Alexander A; Eremenko, Igor L; Vologzhanina, Anna V
2018-05-01
Photoinitiated solid-state reactions are known to affect the physical properties of coordination polymers, such as fluorescence and sorption behaviour, and also afford extraordinary architectures ( e.g. three-periodic structures with polyorganic ligands). However, the construction of novel photo-sensitive coordination polymers requires an understanding of the factors which govern the mutual disposition of reactive fragments. A series of zinc(II) malonate complexes with 1,2-bis(pyridin-4-yl)ethylene and its photo-insensitive analogues has been synthesized for the purpose of systematic analysis of their underlying nets and mutual disposition of N -donor ligands. The application of a big data-set analysis for the prediction of a variety of possible complex compositions, coordination environments and networks for a four-component system has been demonstrated for the first time. Seven of the nine compounds possess one of the highly probable topologies for their underlying nets; in addition, two novel closely related four-coordinated networks were obtained. Complexes containing 1,2-bis(pyridin-4-yl)ethylene and 1,2-bis(pyridin-4-yl)ethane form isoreticular compounds more readily than those with 4,4'-bipyridine and 1,2-bis(pyridin-4-yl)ethylene. The effects of the precursor, either zinc(II) nitrate or zinc(II) acetate, on the composition and dimensionality of the resulting architecture are discussed. For three of the four novel complexes containing 1,2-bis(pyridin-4-yl)ethylene, the single-crystal-to-single-crystal [2 + 2] cycloaddition reactions were carried out. UV irradiation of these crystals afforded either the 0D→1D or the 3D→3D transformations, with and without network changes. One of the two 3D→3D transformations was accompanied by solvent (H 2 O) cleavage.
NASA Astrophysics Data System (ADS)
Mahesh, K.; Priyanka, V.; Vijai Anand, A. S.; Karpagam, S.
2018-02-01
Three simple and small donor-acceptor type conjugated moieties, namely (2Z, 2‧Z)-3,3'-((hexylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) (DPA-PA-1), (2Z, 2‧Z)-3,3'-((dodecylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) (DPA-PA-2), (2Z,2‧Z)-3,3'-((allylazanediyl)bis (4,1-phenylene))bis (2-(pyridin-2-yl)acrylonitrile) DPA-PA-3 have been synthesized according to the Knoevenagel condensation. Here alkyl (hexyl, dodecyl, allyl) diphenylamine (DPA) moieties acts as an electron donor and pyridine-acetonitrile (PA) moiety acts as an electron acceptor. These moieties are recently showing great interest in optoelectronic applications. The structures of the DPA-PA-1-3 were confirmed by FT-IR, 1H NMR and 13C NMR. The final products showed great solubility in common organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to the alkyl chains. The absorption maximum of DPA-PA-1-3 appeared at 440, 433, 447 nm in chloroform solution. The optical band gaps are 2.33, 2.29, and 2.25 eV calculated from thin film absorption edges. The photoluminescence spectra of three molecules were exhibited a maximum peak at 511, 513, 529 nm with greenish fluorescence in chloroform solution and 553, 541, 554 nm as in thin film state. DPA-PA-1-3 showed a delay fluorescence decay time (τ1) of 35, 16 and 14 μs respectively. The lower electrochemical band gaps 1.90 and 1.80 eV was observed by cyclic voltammetry. The morphological images were indicated that spherical shaped particles were observed with lower surface roughness. These types of low bandgap materials have much attention for their various potential applications in optoelectronic devices.
Ali, Akram; Potaskalov, Vadim A.
2017-01-01
In the title mononuclear complex, [Ru(C14H20O2)2(C10H8N2)], the RuII ion has a distorted octahedral coordination environment defined by two N atoms of the chelating 2,2′-bipyridine ligand and four O atoms from two 3,5-di-tert-butyl-o-benzoquinone ligands. In the crystal, the complex molecules are linked by intermolecular C—H⋯O hydrogen bonds and π–π stacking interactions between the 2,2′-bipyridine ligands [centroid–centroid distance = 3.538 (3) Å], resulting in a layer structure extending parallel to the ab plane. PMID:28316832
NASA Astrophysics Data System (ADS)
De Cola, Luisa; Barigelletti, Francesco; Balzani, Vincenzo; Hage, Ronald; Haasnoot, Jaap G.; Reedijk, Jan; Vos, Johannes G.
1991-04-01
The luminescence and photochemical properties of the two isomeric heterobimetallic [(bpy) 2Ru(bpt)Os(bpy) 2] 3+ and [(bpy) 2Os(bpt)Ru(bpy) 2] 3+ complexes have been investigated (bpy=2,2'-pyridine; bpt -=3,5-bis(pyridin-2-yl)-1,2,4-triazolate ion). The properties of the two isomeric compounds are compared with those of the corresponding dinuclear homometallic inert and exhibit luminescence only from the Os-based component. Excitation in the Ru-based component is followed by ≈ 100% efficient energy transfer to the Os-based component. The energy-transfer mechanism is briefly discussed. The one-electron oxidation products (which contain Os in the 3+ oxidation state) are not luminescent because of the presence of a low-energy intervalence transfer level.
Separation of americium from europium using 3,3'-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6-pyridine
Hill, Talon G.; Chin, Ai Lin; Tai, Serene; ...
2017-03-22
Development of liquid-liquid separation processes for the effective removal of the minor actinide Am(III) from used nuclear fuel using ligand-based strategies continues to be an area of significant research focus. The current investigation demonstrates the efficacy of a nitrogen-based bis-triazinyl pyridine (BTP) derivative to selectively extract Am(III) from nitric acid solutions containing light lanthanides. The performance of 3,3’-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6- pyridine (MOB-BTP) was compared to that of a camphor substituted BTP (CA-BTP). The results of this investigation demonstrate the novel 3,3’-methoxy-BTP extractant dissolved in a polar diluent was a more efficient extractant for Am(III) at a lower concentration than CA-BTP under comparablemore » conditions.« less
Separation of americium from europium using 3,3'-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6-pyridine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Talon G.; Chin, Ai Lin; Tai, Serene
Development of liquid-liquid separation processes for the effective removal of the minor actinide Am(III) from used nuclear fuel using ligand-based strategies continues to be an area of significant research focus. The current investigation demonstrates the efficacy of a nitrogen-based bis-triazinyl pyridine (BTP) derivative to selectively extract Am(III) from nitric acid solutions containing light lanthanides. The performance of 3,3’-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6- pyridine (MOB-BTP) was compared to that of a camphor substituted BTP (CA-BTP). The results of this investigation demonstrate the novel 3,3’-methoxy-BTP extractant dissolved in a polar diluent was a more efficient extractant for Am(III) at a lower concentration than CA-BTP under comparablemore » conditions.« less
Synthesis and Characterization of Thianthrene-Based Polyamides
1994-07-15
pyrrolidinone using triphenyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...pyrrolidinone using triphonyl phosphite and pyridine. The fused-ring thianthrene-based polyamides were more soluble than analogous poly(thloether amide)s...sodium hydroxide, and triphenyl phosphite (TPP) was vacuum distilled. UCI and CaCI2 were dried at 180 OC for 48 hours under vacuum. 4,4’-Oxydianiline
Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors.
Pastor, Joaquín; Oyarzabal, Julen; Saluste, Gustavo; Alvarez, Rosa María; Rivero, Virginia; Ramos, Francisco; Cendón, Elena; Blanco-Aparicio, Carmen; Ajenjo, Nuria; Cebriá, Antonio; Albarrán, M I; Cebrián, David; Corrionero, Ana; Fominaya, Jesús; Montoya, Guillermo; Mazzorana, Marco
2012-02-15
PIM kinases have become targets of interest due to their association with biochemical mechanisms affecting survival, proliferation and cytokine production. 1,2,3-Triazolo[4,5-b]pyridines were identified as PIM inhibitors applying a scaffold hopping approach. Initial exploration around this scaffold and X-ray crystallographic data are hereby described. Copyright © 2012 Elsevier Ltd. All rights reserved.
Park, Jeung Kuk; Kim, Sunmin; Han, Yu Jin; Kim, Seong Hwan; Kang, Nam Sook; Lee, Hyuk; Park, SangYoun
2016-06-01
p21-Activated kinases (PAKs) which belong to the family of ste20 serine/threonine protein kinases regulate cytoskeletal reorganization, cell motility, cell proliferation, and oncogenic transformation which are all related to the cellular functions during cancer induction and metastasis. The fact that PAK mutations are detected in multiple tumor tissues makes PAKs a novel therapeutic drug target. In this study, an imidazo[4,5-b]pyridine-based PAK4 inhibitor, KY-04045 (6-Bromo-2-(3-isopropyl-1-methyl-1H-pyrazol-4-yl)-1H-imidazo[4,5-b]pyridine), was discovered using a virtual site-directed fragment-based drug design and was validated using an inhibition assay. Although PAK4 affinity to KY-04045 seems much weaker than that of the reported PAK4 inhibitors, the location of KY-04045 is clearly defined in the structure of PAK4 co-crystallized with KY-04045. The crystal structure illustrates that the pyrazole and imidazopyridine rings of KY-04045 are sufficient for mediating PAK4 hinge loop interaction. Hence, we believe that KY-04045 can be exploited as a basic building block in designing novel imidazo[4,5-b]pyridine-based PAK4 inhibitors. Copyright © 2016 Elsevier Ltd. All rights reserved.
Liu, Hui; Du, Hongchen; Wang, Guixiang; Liu, Yan; Gong, Xuedong
2012-04-01
Two new nitramine compounds containing pyridine, 1,3,5,7-tetranitro-8-(nitromethyl) -4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine and its N-oxide 1,3,5,7-tetranitro-8- (nitromethyl)-4-imidazolino[4,5-b]4-imidazolino-[4,5-e]pyridine-4-ol were proposed. Density functional theory (DFT) has been employed to study the molecular geometries, electronic structures, infrared spectra, and thermodynamic properties at the B3LYP/6-31G* level. Their detonation performances evaluated using the Kamlet-Jacobs equations with the calculated densities and heats of formation are superior to those of HMX. The predicted densities of them were ca. 2 g cm(-3), detonation velocities were over 9 km s(-1), and detonation pressures were about 40 GPa, showing that they may be potential candidates of high energy density materials (HEDMs). The natural bond orbital analysis indicated that N-NO(2) bond is the trigger bond during thermolysis process. The stability of the title compounds is slightly lower than that of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12- hexaazaisowurtzitane (CL-20). The results of this study may provide basic information for the molecular design of new HEDMs.
NASA Astrophysics Data System (ADS)
Nechipadappu, Sunil Kumar; Trivedi, Darshak R.
2017-08-01
Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.
Nagy, Tibor; Kuki, Ákos; Nagy, Lajos; Zsuga, Miklós; Kéki, Sándor
2018-03-01
Direct analysis in real-time mass spectrometry (DART-MS) with in situ silylation was used for the rapid analysis of the flavonoids silybin ((2R,3R)-3,5,7-trihydroxy-2-[3-(4-hydroxy-3-methoxyphenyl)-2-hydroxymethyl-2,3-dihydrobenzo[1,4]dioxin-6-yl]chroman-4-one) and rutin (quercetin-3-O-rutinoside). Three different derivatization reagents, hexamethyldisilazane/trimethylchlorosilane/pyridine (HMDS/TMCS/pyridine), N,O-bis(trimethylsilyl)acetamide/trimethylchlorosilane/N-trimethylsilyimidazole (BSA/TMCS/TMSI), and N,O-bis(trimethylsilyl)trifluoroacetamide/trimethylchlorosilane (BSTFA/TMCS), were applied. Silybin and rutin were detected with various degrees of silylation, and the formation of dimers with pyridine and imidazole was also observed. HMDS/TMCS/pyridine was the best choice for the DART-MS analysis of silybin, and BSA/TMCS/TMSI was the most effective for the detection of rutin. The effects of the DART source temperature on desorption, ionization, in-source fragmentation, dimer formation, and hydrolysis of the trimethylsilyl groups were also studied. In addition, the collision-induced dissociation properties of the derivatized silybin and rutin were explored. With our in situ silylation method, the derivatized bioactive compounds in intact medical pills could also be detected by DART-MS. Copyright © 2017 John Wiley & Sons, Ltd.
Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.
Ashihara, Hiroshi; Deng, Wei-Wei
2012-11-01
Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-(14)C]nicotinamide, [2-(14)C]nicotinic acid and [carboxyl-(14)C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied (14)C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-(14)C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO(2). The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.
Busquets, R; Puignou, L; Galceran, M T; Wakabayashi, K; Skog, K
2007-10-31
Several cooked meats such as beef (fried, coated-fried), pork (fried, coated-fried), and chicken (fried, griddled, coated-fried, roasted) were analyzed for the heterocyclic amine 2-amino-1-methyl-6-(4-hydroxyphenyl)imidazo[4,5- b]pyridine (4'-OH-PhIP) not commonly determined in food and 2-amino-1-methyl-6-phenylimidazo[4,5- b]pyridine (PhIP). The highest content of 4'-OH-PhIP was found in fried and griddled chicken breast, the concentration being 43.7 and 13.4 ng/g, respectively, whereas the corresponding PhIP concentrations were 19.2 and 5.8 ng/g. The estimated concentration of both pyridines in fried pork loin, in fried pork sausages, and in coated-fried chicken was below 2.5 ng/g. In the rest of the samples, 4'-OH-PhIP was not detected. The analyses were performed by solid-phase extraction and LC-MS/MS. The fragmentation of 4'-OH-PhIP in an ion trap mass analyzer was studied in order to provide information for the identification of 4'-OH-PhIP. Additionally, the effect of red wine marinades on the formation of 4'-OH-PhIP in fried chicken was examined, finding a notable reduction (69%) in the amine's occurrence.
Bis{2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium} tetracyanidoplatinate(II) tetrahydrate
Gámez-Heredia, Raquel; Navarro, Rosa E.; Höpfl, Herbert; Cruz-Enríquez, Adriana; Campos-Gaxiola, José J.
2013-01-01
The asymmetric unit of the title hydrated complex salt, (C18H14N5)2[Pt(CN)4]·4H2O, consists of one 2-[2,5-bis(pyridin-2-yl)-1H-imidazol-4-yl]pyridinium cation, half a tetracyanidoplatinate(II) dianion, which is located about a crystallographic inversion center, and two water molecules of crystallization. The PtII atom has a square-planar coordination environment, with Pt—CCN distances of 1.992 (4) and 2.000 (4) Å. In the cation, there is an N—H⋯N hydrogen bond linking adjacent pyridinium and pyridine rings in positions 4 and 5. Despite this, the organic component is non-planar, as shown by the dihedral angles of 10.3 (2), 6.60 (19) and 15.66 (18)° between the planes of the central imidazole ring and the pyridine/pyridinium substituents in the 2-, 4- and 5-positions. In the crystal, cations and anions are linked via O—H⋯O, O—H⋯N and N—H⋯O hydrogen bonds, forming a three-dimensional network. Additional π–π, C—H⋯O and C—H⋯N contacts provide stabilization to the crystal lattice. PMID:23794972
Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.
Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar
2018-07-05
Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Barczak, Mariusz
2018-02-01
A series of pyridine-functionalized mesoporous silicas have been prepared for the first time via direct co-condensation of tetraethoxysilane (TEOS) and 2-(2-pyridyl)ethyltrimethoxysilane (PETS) using the block copolymer Pluronic P123 as a structure-directing agent. The obtained materials were fully characterized by a wide range of instrumental techniques and employed as adsorbents for the removal of a diclofenac which is considered a priority hazardous drug. The synthesized materials exhibit a high adsorption capacities and rapid adsorption rates. The structural and adsorption properties depend largely on the relative amount of PETS/TEOS ratio: the gradual degradation of ordered structure and porosity was observed with the increasing amount of PETS. However due to the highest loading of pyridine units the most structurally degraded material had the highest adsorption uptake (631 mg g-1) indicating that the surface chemistry plays - along with porosity - an important role in governing the adsorption process. The experimental adsorption data were modelled using the Langmuir, Freundlich and Langmuir-Freundlich isotherms - among them the Langmuir-Freundlich model turned out to be the most suitable for describing adsorption behaviour of diclofenac onto the materials. The collected data show that the pyridine-functionalized mesoporous silicas can be a promising absorbent of pharmaceuticals.
Mohareb, Rafat M; Abouzied, Amr S; Abbas, Nermeen S
2018-02-07
Among a wide range of pyridines, 3-cyanopyridines acquired a special attention due to their wide range of pharmacological activities especially the therapeutic activities. Many pharmacological drugs containing the pyridine nucleus were known in the market. The aim of this work was to synthesize target molecules not only possess anti-tumor activities but also kinase inhibitors. To achieve this goal, our strategy was to synthesize a series of 3-cyanopyridine derivatives using 2-aminoprop-1-ene-1,1,3-tricarbonitrile (1) as the key starting material for many heterocyclization reactions. Muticoponent reactions were adopted using compound 1 to get different pyridine derivatives that were capable for different heterocyclization reactions. Antiproliferative evaluations and c-Met kinase, Pim-1 kinse inhibitions were perform where some compounds gave high activities. Compounds that showed high antiprolifeative activity were tested gor c-Met-independent and the results showed that compounds 5c, 5e, 5f, 7c, 7f and 16d were more active than foretinib. The Pim-1 kinase inhibition activity of some selected compounds showed that compounds 5e and 16c were high potent to inhibit Pim-1 activity. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
(2E)-3-(4-Methylphenyl)-1-(pyridin-3-yl)prop-2-en-1-one
de Sousa Oliveiria, Mauricio; Costa de Souza, Wanderson; Napolitano, Hamilton B.; Oliver, Allen G.
2012-01-01
The title compound, C15H13NO, has two crystallographically independent molecules in the asymmetric unit which differ principally in the periplanar angle formed by the benzene and pyridine rings [41.41 (3) and 17.92 (5)°]. The molecules exhibit an E conformation between the keto group with respect to the olefin double bond. PMID:22905010
Dong, Lin; Huang, Ji-Rong; Qu, Chuan-Hua; Zhang, Qian-Ru; Zhang, Wei; Han, Bo; Peng, Cheng
2013-09-28
A simple approach for synthesis of novel aza-fused scaffolds such as pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines was developed by Rh(III)-catalyzed direct oxidative coupling between alkenes and unactivated alkynes without an extra directing group. The method would allow a broad substrate scope, providing fused heterocycles with potential biological properties.
Pure white OLED based on an organic small molecule: 2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine.
Liu, Jian
2015-10-05
2,6-Di(1H-benzo[d]imidazol-2-yl)pyridine (DBIP) was synthesized. The single-crystal structure of DBIP was resolved. DBIP-based OLED was fabricated. The electroluminescence for the device corresponds to a pure white emission. In addition, thermal stability, UV-vis, photoluminescence and electrochemical behaviors of DBIP were investigated as well. Copyright © 2015 Elsevier B.V. All rights reserved.
Enhanced Fuel Cell Catalyst Durability with Nitrogen Modified Carbon Supports
2013-02-12
detected in the undoped and JM5000 materials are related to the presence of a single nitrogen peak attributed to either amine, cyano or pyrrolic ...functionalities, including pyrrolic , pyridinic, amine and graphitic N. The bulk Ru:Pt ratio, measured with X-ray fluorescence (XRF), consistently...analysis suggests that the specific roles of pyridinic, pyrrollic , cyano, and graphic N are complex in nature and that the presence of two or more N
(E)-N′-(4-Methoxybenzylidene)pyridine-3-carbohydrazide dihydrate
Novina, J. Josephine; Vasuki, G.; Suresh, M.; Padusha, M. Syed Ali
2013-01-01
In the title compound, C14H13N3O2·2H2O, the hydrazone molecule adopts an E conformation with respect to the C=N bond. The dihedral angle between the benzene and pyridine rings is 8.55 (10)°. The methylidene–hydrazide [–C(=O)–N–N=C–] fragment is essentially planar, with a maximum deviation of 0.0375 (13) Å. The mean planes of the benzene and pyridine rings make dihedral angles of 2.71 (14) and 11.25 (13)°, respectively, with mean plane of the methylidene-hydrazide fragment. In the crystal, the benzohydrazide and water molecules are linked by N—H⋯O, O—H⋯O and O—H⋯N hydrogen bonds into a three-dimensional network. PMID:24046719
Brusilowskij, Boris; Dzyuba, Egor V; Troff, Ralf W; Schalley, Christoph A
2011-12-07
3,3'-Bis(pyridin-[n]-ylethynyl)biphenyl (n = 3, 4) and the corresponding 2,2'-bipyridines assemble with (dppp)Pt(II) triflate into metallo-supramolecular polygons. Depending on the position of the terminal pyridine N atoms, the assembly reaction leads to different equilibrium products. With the slow ligand exchange on Pt(II) complexes, the equilibrium is reached on a many-hour time-scale. During the assembly process, larger polygons form under kinetic control. This was confirmed by time-dependent (1)H and (31)P NMR spectroscopy in line with complementary ESI mass spectrometric experiments. The constitutional difference in the pyridine N-atom position is reflected in the tandem mass spectra of the complex ions. In addition, a highly specific fragmentation process of mass-selected M(3)L(3) ions was observed, which proceeds through a ring contraction yielding smaller M(2)L(2) ions.
NASA Astrophysics Data System (ADS)
Padmos, J.; van Veen, A.
A number of salts of hexakis(pyridine N-oxide)zinc(II) complexes decompose in alkali halide pellets. Initially ion exchange occurs, often followed by the formation of Zn(pyno) 3X 2 (pyno = pyridine N-oxide; X = Br, Cl). The analogous cobalt and nickel compounds are nearly always stable. A mull between alkali halide plates gives greater amounts of the same product Washing this product with toluene gives Zn(pyno) 2X 2. Examples of i.r. and far i.r. spectra are given. Energetical and structural effects are discussed. Far i.r. spectra of M(pyno) 3X 2(M = Co, Zn) confirm the structure [M(pyno) 6][MX 4] for these compounds. New compounds are [Zn(pyno) 2(NO 3) 2], [Zn(pyno- d5) 2[NO 3) 2], [Zn(pyno- d5) 6](NO 3) 2 and [Zn(pyno) 6]I 2.
Yorsaeng, Sakkawet; Tsutsumi, Ken; Kitiyanan, Boonyarach; Nomura, Kotohiro
2015-10-14
Tungsten carbonyl dimers bridged with oligo(2,5-dialkoxy-1,4-phenylene vinylene)s through coordination with pyridine as the end groups, expressed as [W(CO)5]2-(nPV-Py2) [n = 1, 3; alkoxy = O(CH2)2OSi(i)Pr3], have been prepared from W(CO)5(THF) with nPV-Py2 in THF, and their structures were determined by X-ray crystallography. Both increase in absorbance and redshift in the λmax values in [W(CO)5]2-(nPV-Py2) from their nPV-Py2 were observed in the UV-vis spectra, due to increase in the conjugation length through tungsten by coordination of the pyridine moiety; an extension of the conjugation was also confirmed by the crystallographic analysis as well as fluorescence spectra.
Roos, Michael; Uhl, Benedikt; Künzel, Daniela; Hoster, Harry E; Groß, Axel
2011-01-01
Summary The competition between intermolecular interactions and long-range lateral variations in the substrate–adsorbate interaction was studied by scanning tunnelling microscopy (STM) and force field based calculations, by comparing the phase formation of (sub-) monolayers of the organic molecules (i) 2-phenyl-4,6-bis(6-(pyridin-3-yl)-4-(pyridin-3-yl)pyridin-2-yl)pyrimidine (3,3'-BTP) and (ii) 3,4,9,10-perylene tetracarboxylic-dianhydride (PTCDA) on graphene/Ru(0001). For PTCDA adsorption, a 2D adlayer phase was formed, which extended over large areas, while for 3,3'-BTP adsorption linear or ring like structures were formed, which exclusively populated the areas between the maxima of the moiré structure of the buckled graphene layer. The consequences for the competing intermolecular interactions and corrugation in the adsorption potential are discussed and compared with the theoretical results. PMID:22003444
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state
NASA Astrophysics Data System (ADS)
Sánchez-Portillo, Paola; Arenaza-Corona, Antonino; Hernández-Ahuactzi, Irán F.; Barba, Victor
2017-04-01
Twelve boronic esters (1a-1l) synthesized from 4-halo- substituted arylboronic acids (halo = F, Cl, Br, I and CF3) with 2-amino-2- alkyl (H, Me) -1,3-propanediol in presence of (3- or 4)-pyridine carboxaldehyde are described. A solvent mixture toluene/methanol 1:4 ratio was used. All compounds include both donor/acceptor functional groups, which are the necessary elements to self-assembly of the molecular species. Several secondary interactions as I⋯N, Br⋯Br, Br⋯B, F⋯B, Csbnd H⋯N, Csbnd H⋯O, Br⋯π and Csbnd H⋯π support the 1D and 2D polymeric frameworks in solid state. The coordination of the nitrogen atom from the pyridine moiety with the boron atom was not observed in either solution or solid state.
Moon, Dohyun; Choi, Jong-Ha
2015-01-01
The structure of the title compound, (NH4)[Cr(pydc)2] (pydc is pyridine-2,6-dicarboxylate, C7H3NO4), has been determined from synchrotron data. The CrIII ion and the N atom of the ammonium cation are located on a crystallographic fourfold rotoinversion axis (-4). The CrIII cation is coordinated by four O atoms and the two N atoms of two meridional pydc ligands, displaying a distorted octahedral geometry. The Cr—N and Cr—O bond lengths are 1.9727 (15) and 1.9889 (9) Å, respectively. The crystal structure is stabilized by intermolecular hydrogen bonds involving the N–H groups of the ammonium cation and pyridine C–H groups as donors and the non-coordinating carbonyl O atoms as acceptors. PMID:25878821
Competitive Inhibitors of the CphA Metallo-β-Lactamase from Aeromonas hydrophila▿
Horsfall, L. E.; Garau, G.; Liénard, B. M. R.; Dideberg, O.; Schofield, C. J.; Frère, J. M.; Galleni, M.
2007-01-01
Various inhibitors of metallo-β-lactamases have been reported; however, none are effective for all subgroups. Those that have been found to inhibit the enzymes of subclass B2 (catalytically active with one zinc) either contain a thiol (and show less inhibition towards this subgroup than towards the dizinc members of B1 and B3) or are inactivators behaving as substrates for the dizinc family members. The present work reveals that certain pyridine carboxylates are competitive inhibitors of CphA, a subclass B2 enzyme. X-ray crystallographic analyses demonstrate that pyridine-2,4-dicarboxylic acid chelates the zinc ion in a bidentate manner within the active site. Salts of these compounds are already available and undergoing biomedical testing for various nonrelated purposes. Pyridine carboxylates appear to be useful templates for the development of more-complex, selective, nontoxic inhibitors of subclass B2 metallo-β-lactamases. PMID:17307979
Discovery of pyridine-based agrochemicals by using Intermediate Derivatization Methods.
Guan, Ai-Ying; Liu, Chang-Ling; Sun, Xu-Feng; Xie, Yong; Wang, Ming-An
2016-02-01
Pyridine-based compounds have been playing a crucial role as agrochemicals or pesticides including fungicides, insecticides/acaricides and herbicides, etc. Since most of the agrochemicals listed in the Pesticide Manual were discovered through screening programs that relied on trial-and-error testing and new agrochemical discovery is not benefiting as much from the in silico new chemical compound identification/discovery techniques used in pharmaceutical research, it has become more important to find new methods to enhance the efficiency of discovering novel lead compounds in the agrochemical field to shorten the time of research phases in order to meet changing market requirements. In this review, we selected 18 representative known agrochemicals containing a pyridine moiety and extrapolate their discovery from the perspective of Intermediate Derivatization Methods in the hope that this approach will have greater appeal to researchers engaged in the discovery of agrochemicals and/or pharmaceuticals. Copyright © 2015 Elsevier Ltd. All rights reserved.
Review of thermal properties of graphite composite materials
NASA Technical Reports Server (NTRS)
Kourtides, D. A.
1987-01-01
Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.
Jennifer, Samson Jegan; Muthiah, Packianathan Thomas
2014-01-01
The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).
Kraft, Bradley M.; Brennessel, William W.; Ryan, Amy E.; Benjamin, Candace K.
2015-01-01
The cations in the title salts, [Si(OPO)3]Cl·2CDCl3, (I), [Si(OPO)3]Cl·xCH3CN, (II), and fac-[Si(OPTO)3]Cl·2CDCl3, (III) (OPO = 1-oxo-2-pyridinone, C5H4NO2, and OPTO = 1-oxo-2-pyridinethione, C5H4NOS), have distorted octahedral coordination spheres. The first two structures contain the same cation and anion, but different solvents of crystallization led to different solvates and packing arrangements. In structures (I) and (III), the silicon complex cations and chloride anions are well separated, while in (II), there are two C—H⋯Cl distances that fall just within the sum of the van der Waals radii of the C and Cl atoms. The pyridine portions of the OPO ligands in (I) and (II) are modeled as disordered with the planar flips of themselves [(I): 0.574 (15):0.426 (15), 0.696 (15):0.304 (15), and 0.621 (15):0.379 (15); (II): 0.555 (13):0.445 (13), 0.604 (14):0.396 (14) and 0.611 (13):0.389 (13)], demonstrating that both fac and mer isomers are co-crystallized. In (II), highly disordered solvent, located in two independent channels along [100], was unable to be modeled. Reflection contributions from this solvent were fixed and added to the calculated structure factors using the SQUEEZE [Spek (2015 ▸). Acta Cryst. C71, 9–18] function of program PLATON, which determined there to be 54 electrons in 225 Å3 accounted for per unit cell (25 electrons in 109 Å3 in one channel, and 29 electrons in 115 Å3 in the other). In (I) and (II), all species lie on general positions. In (III), all species are located along crystallographic threefold axes. PMID:26870422
Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B; Evano, Gwilherm
2012-01-01
We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions.
Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites
Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J.
2011-01-01
The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear (31P and 1H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study. PMID:21516167
Self-Assembly of Coordinative Supramolecular Polygons with Open Binding Sites.
Zheng, Yao-Rong; Wang, Ming; Kobayashi, Shiho; Stang, Peter J
2011-04-27
The design and synthesis of coordinative supramolecular polygons with open binding sites is described. Coordination-driven self-assembly of 2,6-bis(pyridin-4-ylethynyl)pyridine with 60° and 120° organoplatinum acceptors results in quantitative formation of a supramolecular rhomboid and hexagon, respectively, both bearing open pyridyl binding sites. The structures were determined by multinuclear ((31)P and (1)H) NMR spectroscopy and electrospray ionization (ESI) mass spectrometry, along with a computational study.
2016-01-01
A method for the preparation of aryl and heteroaryl sulfonamides using 2,4,6-trichlorophenyl chlorosulfate (TCPC) is described. The reaction of 2-pyridylzinc reagents with TCPC resulted in 2,4,6-trichlorophenyl (TCP) pyridine-2-sulfonates, and the parent pyridine-2-sulfonate was shown to react with amines. Less electron-rich aryl- and heteroarylzinc reagents reacted with TCPC to afford sulfonyl chlorides that were converted in situ to sulfonamides. PMID:26065317
Abhervé, Alexandre; Clemente-León, Miguel; Coronado, Eugenio; Gómez-García, Carlos J; López-Jordà, Maurici
2014-07-07
Combining Fe(ii) with the carboxylate-functionalized 2,6-bis(pyrazol-1-yl)pyridine (bppCOOH) ligand results in the spin-crossover compound [Fe(bppCOOH)2](ClO4)2 which shows an abrupt spin transition with a T1/2 of ca. 380 K and a TLIESST of 60 K due to the presence of a hydrogen-bonded linear network of complexes.
Design and Synthesis of Bifunctional Oxime Reactivators of OP- inhibited Cholinesterase
2013-08-01
was introduce the 2- aldehyde as a nitrile via the pyridine N-oxide. Another approach (II), was to simply perform 2- hydoxymethylation of pyridines...original design plan called for introducing an aldehyde that could be coupled to various amines and diamines through reductive amination. Interestingly...chromatography DCM: MeOH (90:10) as a yellow oil. Synthesis of 37 (Oxime formation general procedure) To the ketone 36 (340 mg, 1,123 mmol) in 1
NASA Astrophysics Data System (ADS)
Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.
2016-09-01
This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.
Reainthippayasakul, W; Paosawatyanyong, B; Bhanthumnavin, W
2013-05-01
Conjugated meso-alkynyl 5,15-dimesitylporphyrin metal complexes have been synthesized by Sonogashira coupling reaction in good yields. Alkynyl groups were chosen as a link at the meso positions in order to extend the pi-conjugated length of porphyrin rings. These synthesized porphyrin derivatives were characterized by 1H NMR spectroscopy and MALDI-TOF mass spectrometry. Moreover, UV-visible spectroscopy and fluorescence spectroscopy were also used to investigate their photophysical properties. It has been demonstrated that central metal ions as well as meso substituents on porphyrin rings affected the electronic absorption and emission spectra of the compounds. Spectroscopic results revealed that alkyne-linked porphyrin metal complexes showed higher pi-conjugation compared with porphyrin building blocks resulting in red shifts in both absorption and emission spectra. Coordination properties of synthesized porphyrins were preliminarily investigated by UV-visible absorption and fluorescence emission spectroscopic titration with pyridine as axial ligand. The formation of porphyrin-pyridine complexes resulted in significant red shifts in absorption spectra and decrease of fluorescence intensity in emission spectra. Moreover, the 1H NMR titration experiments suggested that central metal ions play an important role to coordinate with pyridine and the coordination of porphyrin zinc(II) complex with pyridine occur in a 1:1 ratio. From these spectroscopic results, alkyne-linked porphyrin metal complexes offer potential applications as materials for optical organic nanosensors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savilov, S.V., E-mail: savilov@chem.msu.ru; N.S. Kurnakov Institute of General and Inorganic Chemistry Of Russian Academy of Sciences, Leninsky avenue, 31, Moscow 119991; Arkhipova, E.A.
2015-09-15
Highlights: • Carbon nanoflakes doped with nitrogen were produced by a pyrolytic technique. • Quarternary, pyrrolic and pyridinic types of nitrogen are confirmed by XPS. • Nitrogen content depends on precursor used and temperature processed. • Specific surface area values decrease with increasing of synthesis duration. • N-doped carbon nanoflakes may be suitable for electrochemical applications. - Abstract: Nitrogen doped carbon nanoflakes, which are very important for many electrochemical applications, were synthesized by pyrolysis of nitrogen containing organic compounds over metal oxide template. Acetonitrile, pyridine and butylamine, which are of different volatility were tested as N-containing precursors. Morphology, structure andmore » chemical composition of the as-synthesized materials were investigated by scanning electron microscopy (SEM), high resolution transmission electron microscopy (TEM), Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). It was found that materials are highly defective and consist of a few malformed graphene layers. X-ray photoelectron spectra reflect the dominant graphitic and pyridinic N-bonding configuration. It was also noted that specific surface area depends on the duration and temperature of the reaction. Increase in duration and temperature led to decrease of the specific surface area from 1000 to 160 m{sup 2}/g, 1170 to 210 m{sup 2}/g and 1180 to 480 m{sup 2}/g for acetonitrile, butylamine and pyridine precursors, respectively.« less
Chartrand, Daniel; Castro Ruiz, Carlos A; Hanan, Garry S
2012-12-03
The synthesis and characterization of a novel family of positively charged fac-[Re(bpy)(CO)(3)(L)]PF(6) (bpy = 2,2'-bipyridine) complexes are reported, where L is a pyridine functionalized in para or meta position with a fulvene moiety, namely, 4-fluoren-9-ylidenemethyl-pyridine (pFpy) and 3-fluoren-9-ylidenemethyl-pyridine (mFpy). The complexes were prepared in high yield (86%) by direct addition at room temperature of the corresponding pyridine to the tetrahydrofuran (THF) adduct fac-[Re(bpy)(CO)(3)(THF)][PF(6)] precursor. Both ligand and complex structures were fully characterized by a variety of techniques including X-ray crystallography. The complexes did not exhibit the expected triplet mixed metal-ligand-to-ligand charge transfer (MLLCT) emission, because of its deactivation by the non-emissive triplet excited state of fulvene. The absorption profile shows that the MLLCT is overshadowed by the fulvene centered π-π* transition of higher molar absorptivity as shown by time dependent density functional theory (TD-DFT) calculations. The position of the fulvene on the pyridyl ring has a large effect on this transition, the para position displaying a much higher absorption coefficient (21.3 × 10(3) M(-1) cm(-1)) at lower energy (364 nm) than the meta position (331 nm, 16.0 × 10(3) M(-1) cm(-1)).
NASA Astrophysics Data System (ADS)
Adnan, S. N. A. M.; Hasan, S.; Zakaria, S.; Yusof, Y. M.
2017-02-01
Fluorescent chemosensors for the detection and measurement of metal ions, especially for cations environmental interest such as Fe3+, Co2+, Mn2+, Cu2+, and Zn2+ are actively investigated because it shows simplicity, high sensitivity and fast response. New benzenyl derivative bearing pyridine group has been synthesized and studied as fluorescent chemosensor for Zn2+ ion. Chemosensor N-{2-[(4-Dimethylamino-benzylidene)-amino]-ethyl}-N’-pyridin-2-ylmethylene-ethane-1,2-diamine was synthesized by condensation of p-dimethylaminobenzaldehyde, diethylenetriamine and o-pyridinecarbaldehyde and characterized by FT-IR, 1H-NMR and elemental analysis (CHN). FT-IR showed the appearance of peak azomethine (C=NH) at 1639.46 cm-1, pyridine (C-N) at 1591 cm-1and disappearance of NH2 peak at 3278.78 cm-1 after the condensation reaction in between aldehyde and amine. 1H-NMR signal at 8.19 ppm, 3.12 ppm and 8.08 ppm was assigned to C=NH, N(CH3)2 and C-N respectively, confirmed the formation of N-{2-[(4-Dimethylamino-benzylidene)-amino]-ethyl}-N’-pyridin-2-ylmethylene-ethane-1,2-diamine. The elemental analysis was found closed to the theoretical value and the percent composition of A is 91.82%. Sensor A exhibits high selectivity and sensitivity towards Zn2+. Other metal ions such Cu2+, Fe3+, Co2+ and Ni2+ had no such significant effect on the fluorescence. The detection limit of N-{2-[(4-Dimethylamino-benzylidene)-amino]-ethyl}-N’-pyridin-2-ylmethylene-ethane-1,2-diamine for Zn2+ was 3.5 x 10-5 M. M. This sensor exhibits a very good fluorescence sensing ability to Zn2+ over a wide range of pH. Therefore it is capable of being a practical system for the monitoring of Zn2+ concentrations in real water sample.
Li, Ying; Chen, Hongmei; Liu, Dian; Wang, Wenxi; Liu, Ye; Zhou, Shaobing
2015-06-17
In this study, we developed a pH-responsive shape-memory polymer nanocomposite by blending poly(ethylene glycol)-poly(ε-caprolactone)-based polyurethane (PECU) with functionalized cellulose nanocrystals (CNCs). CNCs were functionalized with pyridine moieties (CNC-C6H4NO2) through hydroxyl substitution of CNCs with pyridine-4-carbonyl chloride and with carboxyl groups (CNC-CO2H) via 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) mediated surface oxidation, respectively. At a high pH value, the CNC-C6H4NO2 had attractive interactions from the hydrogen bonding between pyridine groups and hydroxyl moieties; at a low pH value, the interactions reduced or disappeared due to the protonation of pyridine groups, which are a Lewis base. The CNC-CO2H responded to pH variation in an opposite manner. The hydrogen bonding interactions of both CNC-C6H4NO2 and CNC-CO2H can be readily disassociated by altering pH values, endowing the pH-responsiveness of CNCs. When these functionalized CNCs were added in PECU polymer matrix to form nanocomposite network which was confirmed with rheological measurements, the mechanical properties of PECU were not only obviously improved but also the pH-responsiveness of CNCs could be transferred to the nanocomposite network. The pH-sensitive CNC percolation network in polymer matrix served as the switch units of shape-memory polymers (SMPs). Furthermore, the modified CNC percolation network and polymer molecular chains also had strong hydrogen bonding interactions among hydroxyl, carboxyl, pyridine moieties, and isocyanate groups, which could be formed or destroyed through changing pH value. The shape memory function of the nanocomposite network was only dependent on the pH variation of the environment. Therefore, this pH-responsive shape-memory nancomposite could be potentially developed into a new smart polymer material.
Maiore, Laura; Cinellu, Maria Agostina; Nobili, Stefania; Landini, Ida; Mini, Enrico; Gabbiani, Chiara; Messori, Luigi
2012-03-01
Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox(R))Cl(2)][PF(6)], [pyox(R)=(S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N'OH)Cl(2)], III, and [Au(N,N',O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2-carboxamide, N,N'H,OH, resulting from ring opening of bound pyox(R) ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC(50) values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghiasuddin; Akram, Muhammad; Adeel, Muhammad; Khalid, Muhammad; Tahir, Muhammad Nawaz; Khan, Muhammad Usman; Asghar, Muhammad Adnan; Ullah, Malik Aman; Iqbal, Muhammad
2018-05-01
Carbon-carbon coupling play a vital role in the synthetic field of organic chemistry. Two novel pyridine derivatives: 3-bromo-5-(2,5-difluorophenyl)pyridine (1) and 3,5-bis(naphthalen-1-yl)pyridine (2) were synthesized via carbon-carbon coupling, characterized by XRD, spectroscopic techniques and also investigated by using density functional theory (DFT). XRD data and optimized DFT studies are found to be in good correspondence with each other. The UV-Vis analysis of compounds under study i.e. (1) and (2) was obtained by using "TD-DFT/B3LYP/6-311 + G(d,p)" level of theory to explain the vertical transitions. Calculated FT-IR and UV-Vis results are found to be in good agreement with experimental FT-IR and UV-Vis findings. Natural bond orbital (NBO) study was performed using B3LYP/6-311 + G(d,p) level to find the most stable molecular structure of the compounds. Frontier molecular orbital (FMO) analysis were performed at B3LYP/6-311 + G(d,p) level of theory, which indicates that the molecules might be bioactive. Moreover, the bioactivity of compounds (1) and (2) have been confirmed by the experimental activity in terms of zones of inhibition against bacteria and fungus. Chemical reactivity of compounds (1) and (2) was indicated by mapping molecular electrostatic potential (MEP) over the entire stabilized geometries of the compounds under study. The nonlinear optical properties were computed with B3LYP/6-311 + G(d,p) level of theory which are found greater than the value of urea due to conjugation effect. Two state model has been further employed to explain the nonlinear optical properties of compounds under investigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu
2015-09-14
a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pairmore » of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.« less
Girgis, N S; Cottam, H B; Larson, S B; Robins, R K
1987-01-01
The synthesis of two new analogs of 2'-deoxyguanosine, 6-amino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H-pyrrolo[3,2-c] pyridin-4(5H)-one (8) and 6-amino-1-beta-D-arabinofuranosyl-1H-pyrrolo[3,2-c]-pyridin-4(5H)-one (13) has been accomplished by glycosylation of the sodium salt of ethyl 2-cyanomethyl-1H-pyrrole-3-carboxylate (4c) using 1-chloro-2-deoxy-3,5-di-O-p-toluoyl-alpha-D-erythro-pentofuranose( 5) and 1-chloro-2,3,5-tri-O-benzyl-alpha-D-arabinofuranose (9), respectively. The resulting blocked nucleosides, ethyl 2-cyanomethyl-1-(2-deoxy-3,5-di-O-p-toluoyl-beta-D-erythro- pentofuranosyl)-1H-pyrrole-3-carboxylate (6) and ethyl 2-cyanomethyl-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)- 1H-pyrrole-3-carboxylate, were ring closed with hydrazine to form 5-amino-6-hydrazino-1-(2-deoxy-beta-D-erythro-pentofuranosyl)-1H- pyrrolo[3,2-c]-pyridin-4(5H)-one (7) and 5,6-diamino-1-(2,3,5-tri-O-benzyl-beta-D-arabinofuranosyl)-1H- pyrrolo[3,2-c]pyridin-4(5H)-one (11), respectively. Treatment of 7 with Raney nickel provided the 2'-deoxyguanosine analog 8 while reaction of 11 with Raney nickel followed by palladium hydroxide/cyclohexene treatment gave the 2'-deoxyguanosine analog 13. The anomeric configuration of 8 was assigned as beta by proton NMR, while that of 13 was confirmed as beta by single-crystal X-ray analysis of the deblocked precursor ethyl 2-cyanomethyl-1-beta-D-arabinofuranosyl-1H-pyrrole-3-carboxylate (10a). PMID:3593477
Gati, Wafa; Rammah, Mohamed M; Rammah, Mohamed B
2012-01-01
Summary We have developed a general synthesis of polysubstituted 1,4-dihydropyridines and pyridines based on a highly regioselective lithiation/6-endo-dig intramolecular carbolithiation from readily available N-allyl-ynamides. This reaction, which has been successfully applied to the formal synthesis of the anti-dyskinesia agent sarizotan, further extends the use of ynamides in organic synthesis and further demonstrates the synthetic efficiency of carbometallation reactions. PMID:23365632
Liebig, Timo; Lüning, Ulrich; Grotemeyer, Jürgen
2006-01-01
For the first time the formation of supramolecular clusters between concave pyridines and different carbohydrates could be observed in the gas phase. The different clusters have been investigated by means of laser desorption into a supersonic beam followed by resonant multi photon excitation yielding mass spectra with high intensity of the different cluster. These preliminary results open a way for the investigations of the hydrogen bonds in these compounds.
NASA Technical Reports Server (NTRS)
Ryan, Margaret A. (Inventor); Jewell, April D. (Inventor); Taylor, Charles (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Manatt, Kenneth S. (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor); Homer, Margie L. (Inventor); Shevade, Abhijit V. (Inventor)
2012-01-01
Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
Flame-retardant composite materials
NASA Technical Reports Server (NTRS)
Kourtides, Demetrius A.
1991-01-01
The properties of eight different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: VPSP/BMI, a blend of vinylpolystyryl pyridine and bismaleimide; BMI, a bismaleimide; and phenolic and PSP, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that VPSP/BMI with the graphite tape was the optimum design giving the lowest heat release rate.
2015-01-01
α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241
Yin, Jianhao; Ye, Qingyu; Hao, Wei; Du, Shuaijing; Gu, Yucheng; Zhang, Wen-Xiong; Xi, Zhenfeng
2017-01-06
Reactions between 1,4-dibromo-1,3-butadienes and 2,5-disubstituted pyrroles afforded cyclopenta[c]pyridine derivatives in high yield, catalyzed by palladium and a cyclopentadiene-phosphine ligand (L1). Insertion of one terminal carbon of the butadienyl skeleton into one C═C double bond in the pyrrole ring resulted in ring expansion, along with a 1,2-shift of an alkyl or an aryl substituent on the butadienes.
Masurier, Nicolas; Aruta, Roberta; Gaumet, Vincent; Denoyelle, Séverine; Moreau, Emmanuel; Lisowski, Vincent; Martinez, Jean; Maillard, Ludovic T
2012-04-06
A series of 20 optically pure 3,4-dihydro-5H-pyrido[1',2':1,2]imidazo[4,5-d][1,3]diazepin-5-ones which form a new family of azaheterocycle-fused [1,3]diazepines were synthesized in four steps with 17-66% overall yields. The key step consists of a selective C-acylation reaction of easily accessible 2-aminoimidazo[1,2-a]pyridine at C-3.
Wang, Cheng; Yang, Li; Chang, Guanjun
2018-03-01
Crosslinked high-performance polymers have many industrial applications, but are difficult to recycle or rework. A novel class of recyclable crosslinking Cu(II)-metallo-supramolecular coordination polymers are successfully prepared, which possess outstanding thermal stability and mechanical property. More importantly, the Cu 2+ coordination interactions can be further removed via external pyrophosphate to recover the linear polymers, which endow the crosslinking polymers with recyclability. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Tetrazolo(1,5-A)pyridines and Furazano(4,5-B)pyridine-1-oxides as Energetic Materials
1989-04-01
alpyridine was isolated, contaminated with about 10% of 16. The azido compound was charac- terized by IR and NMR spectroscopy, and the structure (15...Applications of Nuclear Magnetic Resonance Spectroscopy to Organic Chemistry," Record of Chemical Progress, 23 ( 1962 ), p. 223. 16. A. J. Boulton and A. R...Katritzky. "A New Heterocyclic Rearrangement," Proc. Chem. Soc. ( 1962 ), p. 257. 1 7. A. P. Chafin and D. W. Moore. Unpublished results; F. A. L. Anet
Zampieri, Daniele; Mamolo, Maria Grazia; Vio, Luciano; Romano, Maurizio; Skoko, Nataša; Baralle, Marco; Pau, Valentina; De Logu, Alessandro
2016-07-15
N(1)-[1-[1-aryl-3-[4-(1H-imidazol-1-yl)phenyl]-3-oxo]propyl]-pyridine-2-carboxamidrazone derivatives were design, synthesized and tested for their in vitro antimycobacterial activity. The new compounds showed a moderate antimycobacterial activity against the tested strain of Mycobacterium tuberculosis H37Ra and a significant antimycobacterial activity against several mycobacteria other than tuberculosis strains. Copyright © 2016 Elsevier Ltd. All rights reserved.
Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines
Schmidt, Elmar; Andrä, Michal; Duhs, Marcel-Antoine; Linder, Igor
2009-01-01
Summary A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines. PMID:19936264
Using 2H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE
Norcott, Philip; Burns, Michael J.; Rayner, Peter J.; Mewis, Ryan E.
2018-01-01
By introducing a range of 2H labels into pyridine and the para‐substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T 1 relaxation for the remaining 1H nuclei are increased and show how this leads to a concomitant increase in the level of 1H and 13C hyperpolarization that can ultimately be detected. PMID:29274294
Mechanistic Study of Oxygen Atom Transfer Catalyzed by Rhenium Compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Xiaopeng
2003-01-01
Two ionic and one neutral methyl(oxo)rhenium(V) compounds were synthesized and structurally characterized. They were compared in reactivity towards the ligands triphenylphosphane, pyridines, pyridine N-oxides. Assistance from Broensted bases was found on ligand displacement of ionic rhenium compounds as well as nucleophile assistance on oxidation of all compounds. From the kinetic data, crystal structures, and an analysis of the intermediates, a structural formula of PicH +3 - and mechanisms of ligand displacement and oxidation were proposed.
NASA Technical Reports Server (NTRS)
Ryan, Margaret A. (Inventor); Homer, Margie L. (Inventor); Yen, Shiao-Pin S. (Inventor); Kisor, Adam (Inventor); Jewell, April D. (Inventor); Shevade, Abhijit V. (Inventor); Manatt, Kenneth S. (Inventor); Taylor, Charles (Inventor); Blanco, Mario (Inventor); Goddard, William A. (Inventor)
2010-01-01
Embodiments include a sensor comprising a co-polymer, the co-polymer comprising a first monomer and a second monomer. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is polystyrene and the second monomer is poly-2-vinyl pyridinium propylamine chloride. For some embodiments, the first monomer is poly-4-vinyl pyridine, and the second monomer is poly-4-vinyl pyridinium benzylamine chloride. Other embodiments are described and claimed.
Latli, Bachir; Hrapchak, Matt; Cheveliakov, Maxim; Reeves, Jonathan T; Marsini, Maurice; Busacca, Carl A; Senanayake, Chris H
2018-05-15
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described. Copyright © 2018 John Wiley & Sons, Ltd.
Sladowska, H; Szkatuła, D; Filipek, B; Maciag, D; Sapa, J; Zygmunt, M
2001-02-01
The synthesis of 2-(4-substituted)butyl derivatives of 4-alkoxy-2,3-dihydro-6-methyl-1,3-dioxo-1H-pyrrolo[3,4-c]pyridine (10-15) and the results of preliminary pharmacological screening are described in this paper. All the compounds tested showed a strong analgesic action, suppressed spontaneous locomotor activity and prolonged barbiturate sleep. Except 10, all significantly decreased systolic and diastolic blood pressure.
Park, Sangjune; Kim, Hyunseok; Son, Jeong-Yu; Um, Kyusik; Lee, Sooho; Baek, Yonghyeon; Seo, Boram; Lee, Phil Ho
2017-10-06
The Cu-catalyzed, formal aza-[3 + 2] cycloaddition reaction of pyridine derivatives with α-diazo oxime ethers in trifluoroethanol was used to synthesize imidazopyridines via the release of molecular nitrogen and elimination of alcohol. These methods enabled modular synthesis of a wide range of N-heterobicyclic compounds such as imidazopyridazines, imidazopyrimidines, and imidazopyrazines with an α-imino Cu-carbenoid generated from the α-diazo oxime ethers and copper.
Shi, Yi; Gulevich, Anton V; Gevorgyan, Vladimir
2014-12-15
A general and efficient NH insertion reaction of rhodium pyridyl carbenes derived from pyridotriazoles was developed. Various NH-containing compounds, including amides, anilines, enamines, and aliphatic amines, smoothly underwent the NH insertion reaction to afford 2-picolylamine derivatives. The developed transformation was further utilized in a facile one-pot synthesis of imidazo[1,5-a]pyridines. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hit generation and exploration: imidazo[4,5-b]pyridine derivatives as inhibitors of Aurora kinases.
Bavetsias, Vassilios; Sun, Chongbo; Bouloc, Nathalie; Reynisson, Jóhannes; Workman, Paul; Linardopoulos, Spiros; McDonald, Edward
2007-12-01
A hit generation and exploration approach led to the discovery of 31 (2-(4-(6-chloro-2-(4-(dimethylamino)phenyl)-3H-imidazo[4,5-b]pyridin-7-yl)piperazin-1-yl)-N-(thiazol-2-yl)acetamide), a potent, novel inhibitor of Aurora-A, Aurora-B and Aurora-C kinases with IC(50) values of 0.042, 0.198 and 0.227microM, respectively. Compound 31 inhibits cell proliferation and has good microsomal stability.
3-Fluorobenzoic acid–4-acetylpyridine (1/1) at 100 K
Craig, Gavin A.; Thomas, Lynne H.; Adam, Martin S.; Ballantyne, Angela; Cairns, Andrew; Cairns, Stephen C.; Copeland, Gary; Harris, Clifford; McCalmont, Eve; McTaggart, Robert; Martin, Alan R. G.; Palmer, Sarah; Quail, Jenna; Saxby, Harriet; Sneddon, Duncan J.; Stewart, Graeme; Thomson, Neil; Whyte, Alex; Wilson, Chick C.; Parkin, Andrew
2009-01-01
In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one molecule and the pyridine N atom of the other. The benzoic acid molecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern. PMID:21581976
Cai, Ming-Guang; Wu, Yang; Chang, Jun
2016-05-15
With an intention to find more potent antibacterial agents, four halogen disubstituted thiazolineone derivatives (2a-d), five halogen monosubstituted thiazolineone derivatives (2e-i), and eleven 2-arylimino-3-pyridin-thiazolineone derivatives (2j-t) were synthesized and screened for their antibacterial activity, bactericidal activity, cytotoxicity, and erythrocyte hemolysis. Most of the synthesized derivatives showed antibacterial activity in inhibiting the growth of S. epidermidis and MRSA, and exhibited safety in the cytotoxicity study on the Vero cells and hemolytic activities test on healthy human erythrocytes. 2-Arylimino-3-pyridin-thiazolineone derivatives not only improved the clog P, but also showed potent antibacterial activity in inhibiting the growth of S. epidermidis and MRSA. In particularly, several compounds (2f, 2i, 2r and 2t) showed bactericidal activity, in which compound 2r displayed the best inhibitory capacity among the synthesized compounds, and further druggability research is on going. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T.; Halpern, Malka
2015-01-01
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness. PMID:26122961
Pyridine-type alkaloid composition affects bacterial community composition of floral nectar.
Aizenberg-Gershtein, Yana; Izhaki, Ido; Santhanam, Rakesh; Kumar, Pavan; Baldwin, Ian T; Halpern, Malka
2015-06-30
Pyridine-type alkaloids are most common in Nicotiana species. To study the effect of alkaloid composition on bacterial community composition in floral nectar, we compared the nicotine-rich wild type (WT) N. attenuata, the nicotine biosynthesis-silenced N. attenuata that was rich in anatabine and the anabasine-rich WT N. glauca plants. We found that the composition of these secondary metabolites in the floral nectar drastically affected the bacterial community richness, diversity and composition. Significant differences were found between the bacterial community compositions in the nectar of the three plants with a much greater species richness and diversity in the nectar from the transgenic plant. The highest community composition similarity index was detected between the two wild type plants. The different microbiome composition and diversity, caused by the different pyridine-type alkaloid composition, could modify the nutritional content of the nectar and consequently, may contribute to the change in the nectar consumption and visitation. These may indirectly have an effect on plant fitness.
Cox, Hazel; Norris, Caroline; Wu, Guohua; Guan, Jingang; Hessey, Stephen; Stace, Anthony J
2011-11-14
Singly and doubly charged atomic ions of zinc and copper have been complexed with pyridine and held in an ion trap. Complexes involving Zn(II) and Cu(I) (3d(10)) display a strong tendency to bind with H(2)O, whilst the Zn(I) (3d(10)4s(1)) complexes exhibit a strong preference for the attachment of O(2). DFT calculations show that this latter result can be interpreted as internal oxidation leading to the formation of superoxide complexes, [Zn(II)O(2)(-)](pyridine)(n), in the gas phase. The calculations also show that the oxidation of Zn(I) to form Zn(II)O(2)(-) is promoted by a mixing of the occupied 4s and vacant 4p orbitals on the metal cation, and that this process is facilitated by the presence of the pyridine ligands.
Fluorescent chemosensor for pyridine based on N-doped carbon dots.
Campos, B B; Abellán, C; Zougagh, M; Jimenez-Jimenez, J; Rodríguez-Castellón, E; Esteves da Silva, J C G; Ríos, A; Algarra, M
2015-11-15
Fluorescent carbon dots (CDs) and its nitrogen doped (N-CDs) nanoparticles have been synthesized from lactose as precursor using a bottom-up hydrothermal methodology. The synthesized nanoparticles have been characterized by elemental analysis, FTIR, Raman, TEM, DLS, XPS, and steady-state and life-time fluorescence. The synthesized carbon nanoparticles, CDs and N-CDs, have a size at about 7.7±2.4 and 50±15nm, respectively, and quantum yields of 8% (CDs) and 11% (N-CDs). These techniques demonstrated the effectiveness of the synthesis procedure and the functionalization of the CDs surface with amine and amide groups in the presence of NH3 in aqueous media. The effect of excitation wavelength and pH on the luminescent properties was studied. Under the optimal conditions, the nitrogen doped nanoparticles can be used as pyridine sensor in aqueous media because they show an enhancement of its fluorescence with a good linear relationship. The analytical method is simple, reproducible and very sensitive for pyridine determination. Copyright © 2015 Elsevier Inc. All rights reserved.
Krishnaiah, Maddeboina; Jin, Cheng Hua; Sreenu, Domalapally; Subrahmanyam, Vura Bala; Rao, Kota Sudhakar; Son, Do-Hyun; Park, Hyun-Ju; Kim, Seung Won; Sheen, Yhun Yhong; Kim, Dae-Kee
2012-11-01
A series of 2-benzylamino-4(5)-(6-methylpyridin-2-yl)-5(4)-([1,2,4]triazolo[1,5-a]pyridin-6-yl)thiazoles 12a-ab, 13a, 13b, and 18a-d has been synthesized and evaluated for their ALK5 inhibitory activity in an enzyme assay and in a cell-based luciferase reporter assay. The N-(3-fluorobenzyl)-4-(6-methylpyridin-2-yl)-5-([1,2,4]triazolo[1,5-a]pyridin-6-yl)thiazol-2-amine (12b) inhibited ALK5 phosphorylation with an IC(50) value of 7.01 nM and showed 61% inhibition at 30 nM in a luciferase reporter assay using HaCaT cells permanently transfected with p3TP-luc reporter construct. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Theoretical studies of surface enhanced hyper-Raman spectroscopy: The chemical enhancement mechanism
NASA Astrophysics Data System (ADS)
Valley, Nicholas; Jensen, Lasse; Autschbach, Jochen; Schatz, George C.
2010-08-01
Hyper-Raman spectra for pyridine and pyridine on the surface of a tetrahedral 20 silver atom cluster are calculated using static hyperpolarizability derivatives obtained from time dependent density functional theory. The stability of the results with respect to choice of exchange-correlation functional and basis set is verified by comparison with experiment and with Raman spectra calculated for the same systems using the same methods. Calculated Raman spectra were found to match well with experiment and previous theoretical calculations. The calculated normal and surface enhanced hyper-Raman spectra closely match experimental results. The chemical enhancement factors for hyper-Raman are generally larger than for Raman (102-104 versus 101-102). Integrated hyper-Raman chemical enhancement factors are presented for a set of substituted pyridines. A two-state model is developed to predict these chemical enhancement factors and this was found to work well for the majority of the molecules considered, providing a rationalization for the difference between hyper-Raman and Raman enhancement factors.
Velasco, V.; Aguilà, D.; Barrios, L. A.; ...
2014-09-29
The aerobic reaction of the multidentate ligand 2,6-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-pyridine, H 4L, with Co (II) salts in strong basic conditions produces the clusters [Co 4(L) 2(OH)(py) 7]NO 3 (1) and [Co 8Na 4(L) 4(OH) 2(CO 3) 2(py) 10](BF 4) 2 (2). Analysis of their structure unveils unusual coordination features including a very rare bridging pyridine ligand or two trapped carbonate anions within one coordination cage, forced to stay at an extremely close distance (d O···O = 1.946 Å). This unprecedented non-bonding proximity represents a meeting point between long covalent interactions and “intermolecular” contacts. These original motifs have been analysed here through DFTmore » calculations, which have yielded interaction energies and the reduced repulsion energy experimented by both CO 3 2- anions when located in close proximity inside the coordination cage.« less
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D
2017-09-01
1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. 19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.
Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Elaasser, Mahmoud M; Nissan, Yassin M
2017-04-07
Various thiourea derivatives have been used as starting materials for compounds with better biological activities. Molecular modeling tools are used to explore their mechanism of action. A new series of thioureas were synthesized. Fluorinated pyridine derivative 4a showed the highest antimicrobial activity (with MIC values ranged from 1.95 to 15.63 µg/mL). Interestingly, thiadiazole derivative 4c and coumarin derivative 4d exhibited selective antibacterial activities against Gram positive bacteria. Fluorinated pyridine derivative 4a was the most active against HepG2 with IC50 value of 4.8 μg/mL. Molecular docking was performed on the active site of MK-2 with good results. Novel compounds were obtained with good anticancer and antibacterial activity especially fluorinated pyridine derivative 4a and molecular docking study suggest good activity as mitogen activated protein kinase-2 inhibitor. Graphical abstract Compound 4a in the active site of MK-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matz, Dallas L.; Schalnat, Matthew C.; Pemberton, Jeanne E.
The reaction between small organic molecules and low work function metals is of interest in organometallic, astronomical, and optoelectronic device chemistry. Here, thin, solid-state, amorphous benzene and pyridine films are reacted with Ca at 30 K under ultrahigh vacuum with the reaction progress monitored by Raman spectroscopy. Although both films react with Ca to produce product species identifiable by their vibrational spectroscopic signatures, benzene is less reactive with Ca than pyridine. Benzene reacts by electron transfer from Ca to benzene producing multiple species including the phenyl radical anion, the phenyl radical, and the benzyne diradical. Pyridine initially reacts along amore » similar electron transfer pathway as indicated by the presence of the corresponding pyridyl radical and pyridyne diradical species, but these pyridyl radicals are less stable and subject to further ring-opening reactions that lead to a complex array of smaller molecule reaction products and ultimately amorphous carbon. The elucidation of this reaction pathway provides insight into the reactions of aromatics with Ca that are relevant in the areas of catalysis, astrochemistry, and organic optoelectronics.« less
Samal, Monica; Mohapatra, Priya Ranjan; Yun, Kyu Sik
2015-09-01
A diblock copolymer poly(2-vinyl pyridine)-b-poly(n-hexyl isocyanate) (P2VP-b-PHIC) is used for the present study. It has two blocks; a rod-shaped PHIC block that adopts a helical conformation, and a coil shaped P2VP block. In a polar solvent such as THF both PHIC and P2VP blocks are soluble. In mixtures of two solvents, such as THF and methanol, while the solubility of P2VP component is augmented that of PHIC is decreased leading to formation of reversed micelles. The pyridine nitrogen in P2VP block is a reactive site. It forms complexes with a suitable metal ion, such as Cd2+. The micelle is employed as a nanoreactor for synthesis of CdS quantum dot (QD). In this paper, the micellization behaviour of the copolymer and the use of the micelles for synthesis and controlled growth of CdS nanocrystals are demonstrated.
O2 Activation and Double C-H Oxidation by a Mononuclear Manganese(II) Complex.
Deville, Claire; Padamati, Sandeep K; Sundberg, Jonas; McKee, Vickie; Browne, Wesley R; McKenzie, Christine J
2016-01-11
A Mn(II) complex, [Mn(dpeo)2](2+) (dpeo=1,2-di(pyridin-2-yl)ethanone oxime), activates O2, with ensuing stepwise oxidation of the methylene group in the ligands providing an alkoxide and ultimately a ketone group. X-ray crystal-structure analysis of an intermediate homoleptic alkoxide Mn(III) complex shows tridentate binding of the ligand via the two pyridyl groups and the newly installed alkoxide moiety, with the oxime group no longer coordinated. The structure of a Mn(II) complex of the final ketone ligand, cis-[MnBr2(hidpe)2] (hidpe=2-(hydroxyimino)-1,2-di(pyridine-2-yl)ethanone) shows that bidentate oxime/pyridine coordination has been resumed. H2(18)O and (18)O2 labeling experiments suggest that the inserted O atoms originate from two different O2 molecules. The progress of the oxygenation was monitored through changes in the resonance-enhanced Raman bands of the oxime unit. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Theoretical and Experimental Spectroscopic Analysis of Cyano-Substituted Styrylpyridine Compounds
Castro, Maria Eugenia; Percino, Maria Judith; Chapela, Victor M.; Ceron, Margarita; Soriano-Moro, Guillermo; Lopez-Cruz, Jorge; Melendez, Francisco J.
2013-01-01
A combined theoretical and experimental study on the structure, infrared, UV-Vis and 1H NMR data of trans-2-(m-cyanostyryl)pyridine, trans-2-[3-methyl-(m-cyanostyryl)] pyridine and trans-4-(m-cyanostyryl)pyridine is presented. The synthesis was carried out with an efficient Knoevenagel condensation using green chemistry conditions. Theoretical geometry optimizations and their IR spectra were carried out using the Density Functional Theory (DFT) in both gas and solution phases. For theoretical UV-Vis and 1H NMR spectra, the Time-Dependent DFT (TD-DFT) and the Gauge-Including Atomic Orbital (GIAO) methods were used, respectively. The theoretical characterization matched the experimental measurements, showing a good correlation. The effect of cyano- and methyl-substituents, as well as of the N-atom position in the pyridine ring on the UV-Vis, IR and NMR spectra, was evaluated. The UV-Vis results showed no significant effect due to electron-withdrawing cyano- and electron-donating methyl-substituents. The N-atom position, however, caused a slight change in the maximum absorption wavelengths. The IR normal modes were assigned for the cyano- and methyl-groups. 1H NMR spectra showed the typical doublet signals due to protons in the trans position of a double bond. The theoretical characterization was visibly useful to assign accurately the signals in IR and 1H NMR spectra, as well as to identify the most probable conformation that could be present in the formation of the styrylpyridine-like compounds. PMID:23429190
NASA Astrophysics Data System (ADS)
Shaikh, Ruqaya; Memon, Najma; Solangi, Amber R.; Shaikh, Huma I.; Agheem, Muhammad Hassan; Ali, Syed Abid; Shah, Muhammad Raza; Kandhro, Aftab
2017-02-01
Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3 +. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11 nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3 + induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3 + shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518 nm). Moreover, to demonstrate the applicability of method, Cr3 + was determined in the presence of Cr (VI) which shows 96% recovery.
NASA Astrophysics Data System (ADS)
Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf
2018-01-01
In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.
Su, Meng-xiang; Song, Min; Yang, Da-song; Shi, Jin-fang; Di, Bin; Hang, Tai-jun
2015-05-15
A sensitive and selective liquid chromatography tandem mass spectrometric method was developed and validated for the simultaneous determination of five pyridine alkaloids contained in tripterygium glycosides tablets (triptolide, wilforine, wilforgine, wilfording and wilfortrine) in dog plasma. The analysis was carried out on a Sepax GP-Phenyl column using a mixture of methanol and 10mmol/L ammonium formate buffer solution containing 0.1% formic acid (75:25, v/v) as the mobile phase pumped at a flow-rate of 1.0mL/min. All MS data were obtained in the positive ESI mode with selective multiple reaction monitoring of ion transitions. The method was fully validated to be accurate and precise with a linear range of 0.2-1000ng/mL for triptolide and 0.05-1000ng/mL for the other four pyridine alkaloids. The intra-day and inter-day precisions (relative standard deviation, RSD, %) were within 10.6% and 14.0%, respectively, and the relative error (RE, %) were all less than 13.1%. The method was successfully applied to multi-components pharmacokinetic study of the five pyridine alkaloids in beagle dogs after a single oral administration of 3mg/kg and 30mg/kg tripterygium glycosides tablets, respectively, and a multiple oral administration of 30mg/kg for 6 consecutive days. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.
2011-05-01
The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.
De Rosa, Michael; Arnold, David; Hartline, Douglas; Truong, Linda; Verner, Roman; Wang, Tianwei; Westin, Christian
2015-12-18
Reaction of 3-aminopyrrole (as its salt) with trifluoromethyl-β-diketones gave γ-1H-pyrrolo[3,2-b]pyridines via reaction at the less reactive carbonyl group. The trifluoromethyl group increased the electrophilicity of the adjacent carbonyl group and decreased the basicity of the hydroxyl group of the CF3 amino alcohol formed. This amino alcohol was formed faster, but its subsequent dehydration to the β-enaminone was slow resulting in the preferential formation of the γ-regioisomer. Reaction of 4,4,4-trifluoro-1-phenyl-1,3-butadione with 3-aminopyrrole was carried out using a series of 6 amine buffers. Yields of the α-1H-pyrrolo[3,2-b]pyridine increased as the pKa of the amine buffer decreased. Surprisingly the yield went down at higher pKas. There was a change in mechanism as the reaction mixture became more basic. With strong amines trifluoromethyl-β-diketones were present mainly or completely as the enolate. Under reductive conditions (3-nitropyrrole/Sn/AcOH/trifluoromethyl-β-diketone) the α-1H-pyrrolo[3,2-b]pyridine was the major product as a result of Lewis acid catalysis by Sn(2+). Similar α-regiochemistry was observed when the reaction of the 3-aminopyrrole salt with trifluoromethyl-β-diketones was carried out in the presence of base and tin(II) acetate.
A DFT study of volatile organic compounds adsorption on transition metal deposited graphene
NASA Astrophysics Data System (ADS)
Kunaseth, Manaschai; Poldorn, Preeyaporn; Junkeaw, Anchalee; Meeprasert, Jittima; Rungnim, Chompoonut; Namuangruk, Supawadee; Kungwan, Nawee; Inntam, Chan; Jungsuttiwong, Siriporn
2017-02-01
Recently, elevated global emission of volatile organic compounds (VOCs) was associated to the acceleration and increasing severity of climate change worldwide. In this work, we investigated the performance of VOCs removal via modified carbon-based adsorbent using density functional theory. Here, four transition metals (TMs) including Pd, Pt, Ag, and Au were deposited onto single-vacancy defective graphene (SDG) surface to increase the adsorption efficiency. Five prototypical VOCs including benzene, furan, pyrrole, pyridine, and thiophene were used to study the adsorption capability of metal-deposited graphene adsorbent. Calculation results revealed that Pd, Pt, Au, and Ag atoms and nanoclusters bind strongly onto the SDG surface. In this study, benzene, furan and pyrrole bind in the π-interaction mode using delocalized π-electron in aromatic ring, while pyridine and thiophene favor X- interaction mode, donating lone pair electron from heteroatom. In terms of adsorption, pyridine VOC adsorption strengths to the TM-cluster doped SDG surfaces are Pt4 (-2.11 eV) > Pd4 (-2.05 eV) > Ag4 (-1.53 eV) > Au4 (-1.87 eV). Our findings indicate that TM-doped SDG is a suitable adsorbent material for VOC removal. In addition, partial density of states analysis suggests that benzene, furan, and pyrrole interactions with TM cluster are based on p-orbitals of carbon atoms, while pyridine and thiophene interactions are facilitated by hybridized sp2-orbitals of heteroatoms. This work provides a key insight into the fundamentals of VOCs adsorption on carbon-based adsorbent.
Das, Prasanta; Bahou, Mohammed; Lee, Yuan-Pern
2013-02-07
With infrared absorption spectra we investigated the reaction between Cl atom and pyridine (C(5)H(5)N) in a para-hydrogen (p-H(2)) matrix. Pyridine and Cl(2) were co-deposited with p-H(2) at 3.2 K; a planar C(5)H(5)N-Cl(2) complex was identified from the observed infrared spectrum of the Cl(2)/C(5)H(5)N/p-H(2) matrix. Upon irradiation at 365 nm to generate Cl atom in situ and annealing at 5.1 K for 3 min to induce secondary reaction, the 1-chloropyridinyl radical (C(5)H(5)N-Cl) was identified as the major product of the reaction Cl + C(5)H(5)N in solid p-H(2); absorption lines at 3075.9, 1449.7, 1200.6, 1148.8, 1069.3, 1017.4, 742.9, and 688.7 cm(-1) were observed. The assignments are based on comparison of observed vibrational wavenumbers and relative IR intensities with those predicted using the B3PW91/6-311++G(2d, 2p) method. The observation of the preferential addition of Cl to the N-site of pyridine to form C(5)H(5)N-Cl radical but not 2-, 3-, or 4-chloropyridine (ClC(5)H(5)N) radicals is consistent with the reported theoretical prediction that formation of the former proceeds via a barrierless path.
Schnute, Mark E; O'Brien, Patrick M; Nahra, Joe; Morris, Mark; Howard Roark, W; Hanau, Cathleen E; Ruminski, Peter G; Scholten, Jeffrey A; Fletcher, Theresa R; Hamper, Bruce C; Carroll, Jeffery N; Patt, William C; Shieh, Huey S; Collins, Brandon; Pavlovsky, Alexander G; Palmquist, Katherine E; Aston, Karl W; Hitchcock, Jeffrey; Rogers, Michael D; McDonald, Joseph; Johnson, Adam R; Munie, Grace E; Wittwer, Arthur J; Man, Chiu-Fai; Settle, Steven L; Nemirovskiy, Olga; Vickery, Lillian E; Agawal, Arun; Dyer, Richard D; Sunyer, Teresa
2010-01-15
Potent, highly selective and orally-bioavailable MMP-13 inhibitors have been identified based upon a (pyridin-4-yl)-2H-tetrazole scaffold. Co-crystal structure analysis revealed that the inhibitors bind at the S(1)(') active site pocket and are not ligands for the catalytic zinc atom. Compound 29b demonstrated reduction of cartilage degradation biomarker (TIINE) levels associated with cartilage protection in a preclinical rat osteoarthritis model. Copyright 2009 Elsevier Ltd. All rights reserved.
Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).
Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan
2012-06-01
The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.
Kore, Nitin; Pazdera, Pavel
2016-12-22
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
Chloridotetrakis(pyridine-4-carbaldehyde-κN)copper(II) chloride
Meng, Xiu-Jin; Zhang, Shu-Hua; Yang, Ge-Ge; Huang, Xue-Ren; Jiang, Yi-Min
2009-01-01
In the molecular structure of the title compound, [CuCl(C6H5NO)4]Cl, the CuII atom is coordinated by four N atoms of four pyridine-4-carboxaldehyde ligands and one chloride anion in a slightly distorted square-pyramidal coordination geometry. There is also a non-coordinating Cl− anion in the crystal structure. The CuII atom and both Cl atoms are situated on fourfold rotation axes. A weak C—H⋯Cl interaction is also present. PMID:21578129
Kumar, Kuppusamy Senthil; Šalitroš, Ivan; Moreno-Pineda, Eufemio; Ruben, Mario
2017-08-14
A simple "isomer-like" variation of the spacer group in a set of Fe(ii) spin crossover (SCO) complexes designed to probe spin state dependence of electrical conductivity in graphene-based molecular spintronic junctions led to the observation of remarkable variations in the thermal- and light-induced magnetic characteristics, paving a simple route for the design of functional SCO complexes with different temperature switching regimes based on a 2,6-bis(pyrazol-1-yl)pyridine ligand skeleton.
Ethyl methyl 1,4-dihydro-4-(3-nitrophenyl)-2, 6-bis(1-piperidylmethyl)pyridine-3,5-dicarboxylate.
Duque, J; Novoa De Armas, H; Pomés Hernández, R; Suárez Navarro, M; Ochoa Rodríguez, E; Salfrán, E; Verdecia Reyes, Y; Blaton, N M; Peeters, O M; De Ranter, C J
2000-11-01
In the title compound, C(28)H(38)N(4)O(6), the 4-aryl substituent occupies a pseudo-axial position approximately orthogonal to the plane of the dihydropyridine ring [88.1 (3) degrees ]. The dihydropyridine ring adopts a flattened boat conformation. The H atom on the pyridine N atom is involved in a bifurcated intramolecular hydrogen bond, the acceptors being the N atoms of the two piperidylmethyl groups [N.N 2.629 (4) and 2.695 (4) A].
NASA Technical Reports Server (NTRS)
Ware, Jacqueline; Hammond, Ernest C., Jr.
1989-01-01
The compound, 2-(2,4-dinitrobenzyl) pyridine, was synthesized in the laboratory; an introductory level electron microscopy study of the macro-crystalline structure was conducted using the scanning electron microscope (SEM). The structure of these crystals was compared with the macrostructure of the crystal of 2-(2,4-dinitrobenzyl) pyridinium bromide, the hydrobromic salt of the compound which was also synthesized in the laboratory. A scanning electron microscopy crystal study was combined with a study of the principle of the electron microscope.
2,6-Bis[1-(2-isopropylphenylimino)ethyl]pyridine
Agrifoglio, Giuseppe; Reyes, Julian; Atencio, Reinaldo; Briceño, Alexander
2008-01-01
The title compound, C27H31N3, has E substitution at each imine double bond where the two N atoms adopt a trans–trans relationship. The benzene rings are twisted out of the mean plane of the pyridine ring; the mean planes of the aromatic groups are rotated by 63.0 (1) and 72.58 (8)°. The crystal structure is sustained mainly by C—H⋯π and hydrophobic methyl–methyl interactions. PMID:21200845
Kamble, Ganesh S; Kolekar, Sanjay S; Han, Sung H; Anuse, Mansing A
2010-05-15
Synergistic liquid-liquid extractive spectrophotometric determination of gold(III) using 1-(2',4'-dinitro aminophenyl)-4,4,6-trimethyl-1,4-dihydro pyrimidine-2-thiol [2',4'-dinitro APTPT] has been described. Equal volumes (5cm(3)) of the 2',4'-dinitro APTPT (0.02molL(-1)) in the presence of pyridine (0.5molL(-1)) form an orange-red coloured ternary complex with gold(III) of molar ratio 1:1:1 at pH 1.8-2.4 with 5min of shaking. The absorbance of coloured organic layer in 1,2-dichloroethane is measured spectrophotometrically at 445nm against reagent blank. A pronounced synergism has been observed by the binary mixture of 2',4'-dinitro APTPT and pyridine, which shows that the enhancement in the absorbance is observed in the presence of pyridine by the adduct formation in the organic phase. Beer's law was obeyed in the concentration range 2.5-20.0microgmL(-1), with molar absorptivity and Sandell's sensitivity values of 8.7x10(3)dm(3)mol(-1)cm(-1) and 0.023microgcm(-2) respectively. A repetition of the method was checked by finding relative standard deviation (R.S.D.) (n=10) which was 0.17%. The composition of the gold(III)-2',4'-dinitro APTPT-pyridine adduct was established by slope analysis, molar ratio and Job's method. The ternary complex was stable for more than 48h. The influence of various factors such as pH, 2',4'-dinitro APTPT concentration, solvent and pyridine on the degree of complexation has been established. A number of foreign ions tested for their interferences and use of suitable masking agents wherever necessary are tabulated, which show that selectivity of the method has been enhanced. The method is successfully employed for the determination of gold(III) in binary, synthetic mixtures and ayurvedic samples. The reliability of the method is assured by inter-comparison of experimental values, using an atomic absorption spectrometer.
Cao, Xiaoji; Zhang, Feifei; Zhu, Kundan; Ye, Xuemin; Shen, Lingxiao; Chen, Jiaoyu; Mo, Weimin
2014-05-15
Esomeprazole analogs are a class of important proton pump inhibitors for the treatment of gastro-esophageal reflux diseases. Understanding the fragmentation reaction mechanism of the protonated esomeprazole analogs will facilitate the characterization of their complex metabolic fate in humans. In this paper, the kinetic method and theoretical calculations were applied to evaluate the fragmentation of protonated esomeprazole analogs. All collision-induced dissociation (CID) mass spectrometry experiments were carried out using electrospray ionization (ESI) ion trap mass spectrometry in positive ion mode. Also the accurate masses of fragments were measured on by ESI quadrupole time-of-flight (QTOF) MS in positive ion mode. Theoretical calculations were carried out by the density functional theory (DFT) method with the 6-31G(d) basis set in the Gaussian 03 program. In the fragmentation of the protonated esomeprazole analogs, C-S bond breakage is observed, which gives rise to protonated 2-(sulfinylmethylene)pyridines and protonated benzimidazoles. DFT calculations demonstrate that the nitrogen atom of the pyridine part is the thermodynamically most favorable protonation site, and the C-S bond cleavage is triggered by the transfer of this ionizing proton from the nitrogen atom of the pyridine part to the carbon atom of the benzimidazole part to which the sulfinyl is attached. Moreover, with the kinetic plot, the intensity ratios of two protonated product ions yield a linear relationship with the differences in proton affinities of the corresponding neutral molecules, which provides strong experimental evidence that the reaction proceeds via proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complex intermediates. The kinetic method combined with theoretical calculations was successfully applied to probe the proton transfer reaction by proton-bound 2-(sulfinylmethylene)pyridine/benzimidazole complexes in the fragmentation of protonated esomeprazole analogs by ESI CID MS, which is a strong evidence that the kinetic method can be applied in identifying a proton-bound dimeric intermediate in the fragmentation of protonated ions. Copyright © 2014 John Wiley & Sons, Ltd.
Poster 6: Influence of traces elements in the organic chemistry of upper atmosphere of Titan
NASA Astrophysics Data System (ADS)
Mathe, Christophe; Carrasco, Nathalie; Trainer, Melissa G.; Gautier, Thomas; Gavilan, Lisseth; Dubois, David; Li, Xiang
2016-06-01
In the upper atmosphere of Titan, complex chemistry leads to the formation of organic aerosols. Since the work of Khare et al. in 1984, several experiments investigated the formation of Titan aerosols, so called tholins, in the laboratory. It has been suggested that nitrogen-containing compounds may contribute significantly to the aerosols formation process. In this study, we focused on the influence of pyridine, the simplest nitrogenous aromatic hydrocarbon, on the chemistry of Titan's atmosphere and on aerosol formation. To assess the effect of pyridine on aerosol formation chemistry, we used two different experimental setups : a capacitively coupled radio-frequency (electronic impact), and a VUV Deuterium lamp (photochemistry) in a collaboration between LATMOS (Guyancourt) and NASA-GSFC (Greenbelt), respectively. Aerosols produced with both setups were first analyzed using a FTIR-ATR (Fourier Transform Infrared spectroscopy - Attenuated Total Reflection) with a spectral range of 4000-800 cm-1 to characterize their optical properties. Next the samples were analysed using a Bruker Autoflex Speed MALDI mass spectrometer with a m/z range up to 2000 Da in order to infer their composition. Infrared spectroscopy analysis showed that tholins produced with a nitrogen-methane gas mixture (95:5) and nitrogenpyridine gas mixture (99:250ppm) present very similar spectra features. Tholins produced with a mixture of nitrogenmethane-pyridine (99:1:250ppm) do not present aliphatic CH2 or CH3 vibrational signatures. This could indicate a cyclic polymerization by a pyridine skeleton. Mass spectrometry is still in progress to confirm this.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nganga, John K.; Samanamu, Christian R.; Tanski, Joseph M.
In a series of rhenium tricarbonyl complexes coordinated by asymmetric diimine ligands containing a pyridine moiety bound to an oxazoline ring were synthesized, structurally and electrochemically characterized, and screened for CO 2 reduction ability. We reported complexes are of the type Re(N-N)(CO) 3Cl, with N-N = 2-(pyridin-2-yl)-4,5-dihydrooxazole (1), 5-methyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (2), and 5-phenyl-2-(pyridin-2-yl)-4,5-dihydrooxazole (3). The electrocatalytic reduction of CO 2 by these complexes was observed in a variety of solvents and proceeds more quickly in acetonitrile than in dimethylformamide (DMF) and dimethyl sulfoxide (DMSO). The analysis of the catalytic cycle for electrochemical CO 2 reduction by 1 in acetonitrile using densitymore » functional theory (DFT) supports the C–O bond cleavage step being the rate-determining step (RDS) (ΔG ‡ = 27.2 kcal mol –1). Furthermore, the dependency of the turnover frequencies (TOFs) on the donor number (DN) of the solvent also supports that C–O bond cleavage is the rate-determining step. Moreover, the calculations using explicit solvent molecules indicate that the solvent dependence likely arises from a protonation-first mechanism. Unlike other complexes derived from fac-Re(bpy)(CO) 3Cl (I; bpy = 2,2'-bipyridine), in which one of the pyridyl moieties in the bpy ligand is replaced by another imine, no catalytic enhancement occurs during the first reduction potential. Remarkably, catalysts 1 and 2 display relative turnover frequencies, (i cat/i p) 2, up to 7 times larger than that of I.« less
Lapinski, Leszek; Gerega, Anna; Sobolewski, Andrzej L; Nowak, Maciej J
2008-01-17
Photochemical transformations of N-hydroxypyridine-2(1H)-thione and its deuterated isotopologue were studied using the matrix-isolation technique. Low-temperature Ar and N2 matrixes containing monomers of this compound were irradiated with continuous-wave near-UV light. Photogeneration of two products was observed in these experiments. The relative population of these photogenerated species was found to be dependent on the wavelength of the UV light used for irradiation. By comparison of the IR spectra of the photoproducts with the spectra simulated theoretically at the DFT(B3LYP)/6-311++G(d, p) level, the final and the intermediate products were identified as rotameric forms of 2-hydroxysulfanyl-pyridine. This is the first report on generation of this thioperoxy derivative of pyridine. The mechanism of photogeneration of 2-hydroxysulfanyl-pyridine involves a photoinduced cleavage of the N-O bond in N-hydroxypyridine-2(1H)-thione, generation of the .OH radical weakly bound with the remaining pyridylthiyl radical, and recombination of these two radicals by formation of the new -S-O- bond. A theoretical model supporting this interpretation was constructed on the basis of approximate coupled cluster (CC2) calculations of the potential energy surfaces of the ground and first excited singlet electronic states of the system. After electronic excitation of the monomeric N-hydroxypyridine-2(1H)-thione, the molecule evolves to the conical intersection with the potential energy surface of the ground state and then to the global minimum corresponding to 2-hydroxysulfanyl-pyridine.
Kalinowska-Lis, Urszula; Szewczyk, Eligia M; Chęcińska, Lilianna; Wojciechowski, Jakub M; Wolf, Wojciech M; Ochocki, Justyn
2014-01-01
Two silver(I) complexes--[Ag(4-pmOpe)]NO₃}(n) and [Ag(2-bimOpe)₂]NO₃--and three copper(II) complexes--[Cu₄Cl₆O(2-bimOpe)₄], [CuCl₂(4-pmOpe)₂], and [CuCl₂(2-bis(pm)Ope]--were synthesized by reaction of silver(I) nitrate or copper(II) chloride with phosphate derivatives of pyridine and benzimidazole, namely diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe), 1H-benzimidazol-2-ylmethyl diethyl phosphate (2-bimOpe), and ethyl bis(pyridin-2-ylmethyl)phosphate (2-bis(pm)Ope). These compounds were characterized by ¹H, ¹³C, and ³¹P NMR as well as IR spectroscopy, elemental analysis, and ESIMS spectrometry. Additionally, molecular and crystal structures of {[Ag(4-pmOpe)]NO₃}n and [Cu₄Cl₆O(2-bimOpe)₄] were determined by single-crystal X-ray diffraction analysis. The antimicrobial profiles of synthesized complexes and free ligands against test organisms from the ATCC and clinical sources were determined. Silver(I) complexes showed good antimicrobial activities against Candida albicans strains (MIC values of ∼19 μM). [Ag(2-bimOpe)₂]NO₃ was particularly active against Pseudomonas aeruginosa and methicillin-resistant Staphylococcus epidermidis, with MIC values of ∼5 and ∼10 μM, respectively. Neither copper(II) complexes nor the free ligands inhibited the growth of test organisms at concentrations below 500 μg mL⁻¹. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Moon, Dohyun; Choi, Jong-Ha
2014-01-01
In the asymmetric unit of the title compound, [CrF2(C5H5N)4][ZnCl3(C5H5N)]·H2O, there are two independent complex cations, one trichlorido(pyridine-κN)zincate anion and one solvent water molecule. The cations lie on inversion centers. The CrIII ions are coordinated by four pyridine (py) N atoms in the equatorial plane and two F atoms in a trans axial arrangement, displaying a slightly distorted octahedral geometry. The Cr—N(py) bond lengths are in the range 2.0873 (14) to 2.0926 (17) Å while the Cr—F bond lengths are 1.8609 (10) and 1.8645 (10) Å. The [ZnCl3(C5H5N)]− anion has a distorted tetrahedral geometry. The Cl atoms of the anion were refined as disordered over two sets of sites in a 0.631 (9):0.369 (9) ratio. In the crystal, two anions and two water molecules are linked via O—H⋯Cl hydrogen bonds, forming centrosymmetric aggregates. In addition, weak C—H⋯Cl, C—H⋯π and π–π stacking interactions [centroid–centroid distances = 3.712 (2) and 3.780 (2)Å] link the components of the structure into a three-dimensional network. PMID:25484725
Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V
2004-11-15
The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.
Krishnaiah, Maddeboina; Jin, Cheng Hua; Sheen, Yhun Yhong; Kim, Dae-Kee
2015-11-15
To further optimize a clinical candidate 5 (EW-7197), a series of 5-(3-, 4-, or 5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19a-l have been synthesized and evaluated for their TGF-β type I receptor kinase (ALK5) and p38α MAP kinase inhibitory activity in an enzyme assay. The 5-(5-fluoro-substituted-6-methylpyridin-2-yl)-4-([1,2,4]triazolo[1,5-a]pyridin-6-yl)imidazoles 19h-l displayed the similar level of potency to that of 5 against both ALK5 (IC50=7.68-13.70 nM) and p38α MAP kinase (IC50=1240-3370 nM). Among them, 19j inhibited ALK5 with IC50 value of 7.68 nM in a kinase assay and displayed 82% inhibition at 100 nM in a luciferase reporter assay. Copyright © 2015 Elsevier Ltd. All rights reserved.
Kinetics of coal conversion to soluble products. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsen, J.W.
1994-04-12
The objectives of this work are (1) to measure the kinetics of the conversion of coals to soluble products under model liquefaction conditions using GPS techniques to count the number of bonds broken; (2) to analyze these data using kinetic schemes based on the behavior of crosslinked macromolecular networks. The product was Soxhlet extracted with pyridine until the pyridine solution was clear. A gel permeation chromatogram of the pyridine soluble is shown in Figure 2A. The improved mass sensitive detector system requires only about 500 ng to acquire a chromatogram having fairly good S/N ratio. Apparently, no disturbance is causedmore » by the remaining tetralin and naphthalene formed by dehydrogenation of tetralin. These seriously affect the lower molecular weight region when IR or UV detectors are used. It is a notable advantage of the mass sensitive detector that suitable adjustment of the nebulizer and of the evaporator completely suppressed the contribution of solvent to the chromatogram. The molecular weight distribution of liquefaction product appears to be almost unimodal if the small shoulder at the lower elution volume side is neglected.« less
Liu, Xiao-Jing; Hamilton, I P; Han, Ke-Li; Tang, Zi-Chao
2010-09-21
Activation of the C-H bond of pyridine by [M(m)](-) (M = Cu, Ag, Au, m = 1-3) is investigated by experiment and theory. Complexes of coinage metal clusters and the pyridyl group, [M(m)-C(5)H(4)N](-), are produced from reactions between metal clusters formed by laser ablation of coinage metal samples and pyridine molecules seeded in argon carrier gas. We examine the structure and formation mechanism of these pyridyl-coinage metal complexes. Our study shows that C(5)H(4)N bonds to the metal clusters through a M-C sigma bond and [M(m)-C(5)H(4)N](-) is produced via a stepwise mechanism. The first step is a direct insertion reaction between [M(m)](-) and C(5)H(5)N with activation of the C-H bond to yield the intermediate [HM(m)-C(5)H(4)N](-). The second step is H atom abstraction by a neutral metal atom to yield [M(m)-C(5)H(4)N](-).
New organic binary solids with phenolic coformers for NLO applications
NASA Astrophysics Data System (ADS)
Draguta, Sergiu; Fonari, Marina S.; Leonova, Evgenia; Timofeeva, Tatiana V.
2015-10-01
Five binary adducts between N,N-dimethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 1, N,N-diethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 2, N,N-dimethyl-4-[(E)-pyridin-3-yldiazenyl]aniline 3, and coformers that include 4-nitrophenol I, 4-nitrobenzoic acid II, benzene-1,3-diol III, and 2,4-dinitrophenol IV were synthesized to follow the factors influencing the formation of polar crystals. New solids were characterized by melting points and absorption spectra, while their structures were proven by single crystal X-ray diffraction. Adducts differ by the components' ratio and position of the acidic hydrogen atom, thus giving examples of four new cocrystals and one salt. The single crystal X-ray analysis revealed the acentric packing for two compounds, 1 (I) and 3(3) (III) that crystallize in the Pca21 and P1 space groups. The melting point data and the cut-off wavelength from absorption spectra show that these materials are stable till relatively high temperatures and transparent in a wide range of spectrum.
Spada, Lorenzo; Tasinato, Nicola; Vazart, Fanny; Barone, Vincenzo; Caminati, Walther; Puzzarini, Cristina
2017-04-06
The 1:1 complex of ammonia with pyridine is characterized by using state-of-the-art quantum-chemical computations combined with pulsed-jet Fourier-transform microwave spectroscopy. The computed potential energy landscape indicates the formation of a stable σ-type complex, which is confirmed experimentally: analysis of the rotational spectrum shows the presence of only one 1:1 pyridine-ammonia adduct. Each rotational transition is split into several components owing to the internal rotation of NH 3 around its C 3 axis and to the hyperfine structure of both 14 N quadrupolar nuclei, thus providing unequivocal proof that the two molecules form a σ-type complex involving both a N-H⋅⋅⋅N and a C-H⋅⋅⋅N hydrogen bond. The dissociation energy (BSSE- and ZPE-corrected) is estimated to be 11.5 kJ mol -1 . This work represents the first application of an accurate yet efficient computational scheme, designed for the investigation of small biomolecules, to a molecular cluster. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Spada, Lorenzo; Tasinato, Nicola; Vazart, Fanny; Barone, Vincenzo; Caminati, Walther; Puzzarini, Cristina
2017-06-01
The 1:1 complex of ammonia with pyridine has been characterized by using state-of-the-art quantum-chemical computations combined with pulsed-jet Fourier-Transform microwave spectroscopy. The computed potential energy landscape pointed out the formation of a stable σ-type complex, which has been confirmed experimentally: the analysis of the rotational spectrum showed the presence of only one 1:1 pyridine - ammonia adduct. Each rotational transition is split into several components due to the internal rotation of NH_3 around its C_3 axis and to the hyperfine structure of both ^{14}N quadrupolar nuclei, thus providing the unequivocal proof that the two molecules form a σ-type complex involving both a N-H\\cdotsN and a C-H\\cdotsN hydrogen bond. The dissociation energy (BSSE and ZPE corrected) has been estimated to be 11.5 kJ\\cdotmol^{-1}. This work represents the first application of an accurate, yet efficient computational scheme, designed for the investigation of small biomolecules, to a molecular cluster.
Song, Li-Cheng; Cao, Meng; Wang, Yong-Xiang
2015-04-21
The homodinuclear complexes [Ni(RNPyS4)]2 (; RNPyS4 = 2,6-bis(2-mercaptophenylthiomethyl)-4-R-pyridine; R = H, MeO, Cl, Br, i-Pr) were found to be prepared by reactions of the in situ generated Li2[Ni(1,2-S2C6H4)2] with 2,6-bis[(tosyloxy)methyl]pyridine and its substituted derivatives 2,6-bis[(tosyloxy)methyl]-4-R-pyridine. Further reactions of with Fe3(CO)12 gave both heterotrinuclear complexes NiFe2(RNPyS4)(CO)5 () and mononuclear complexes Fe(RNPyS4)(CO) (), unexpectedly. Interestingly, complexes and could be regarded as models for the active sites of [NiFe]- and [Fe]-hydrogenases, respectively. All the prepared complexes were characterized by elemental analysis, spectroscopy, and particularly for some of them, by X-ray crystallography. In addition, the electrochemical properties of and as well as the electrocatalytic H2 production catalyzed by and were investigated by CV techniques.
Low-energy electron-induced dissociation in gas-phase nicotine, pyridine, and methyl-pyrrolidine
NASA Astrophysics Data System (ADS)
Ryszka, Michal; Alizadeh, Elahe; Li, Zhou; Ptasińska, Sylwia
2017-09-01
Dissociative electron attachment to nicotine, pyridine, and N-methyl-pyrrolidine was studied in the gas phase in order to assess their stability with respect to low-energy electron interactions. Anion yield curves for different products at electron energies ranging from zero to 15 eV were measured, and the molecular fragmentation pathways were proposed. Nicotine does not form a stable parent anion or a dehydrogenated anion, contrary to other biological systems. However, we have observed complex dissociation pathways involving fragmentation at the pyrrolidine side accompanied by isomerization mechanisms. Combining structure optimization and enthalpy calculations, performed with the Gaussian09 package, with the comparison with a deuterium-labeled N-methyl-d3-pyrrolidine allowed for the determination of the fragmentation pathways. In contrast to nicotine and N-methylpyrrolidine, the dominant pathway in dissociative electron attachment to pyridine is the loss of hydrogen, leading to the formation of an [M—H]- anion. The presented results provide important new information about the stability of nicotine and its constituent parts and contribute to a better understanding of the fragmentation mechanisms and their effects on the biological environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin Zhengzhong; Chen Lian; Yue Chengyang
2006-04-15
Assembly of InCl{sub 3} with 1,3,5-benzenetricarboxylic acid (H{sub 3}btc) and pyridine or pyridine derivatives under hydrothermal conditions produces a series of isostructural coordination polymers with the interesting frameworks: {l_brace}(HL)[In{sub 4}(OH){sub 4}(btc){sub 3}].L.3H{sub 2}O{r_brace} {sub n} {sub ,} L=pyridine (1); L=2-picoline (2); L=4-picoline (3) and {l_brace}(Hdpea)[In{sub 4}(OH){sub 4}(btc){sub 3}].3H{sub 2}O{r_brace} {sub n} (4) (dpea=1,2-di(4-pyridyl)ethane). In these four complexes, carboxyl and hydroxyl oxygen atoms bridge indium(III) centers to form octahedral chain-like sinusoidal curves, which are further interlinked by btc{sup 3-} moieties to generate 3-D frameworks with 1-D channels. The protonated guests HL in 1-3 located at the channels can be fully exchangedmore » by K{sup +} ion or partially exchanged by Sr{sup 2+}, and Ba{sup 2+} ions.« less
Similarity of SABRE field dependence in chemically different substrates
NASA Astrophysics Data System (ADS)
Dücker, Eibe B.; Kuhn, Lars T.; Münnemann, Kerstin; Griesinger, Christian
2012-01-01
The Non-Hydrogenative Parahydrogen-Induced Polarization (NH-PHIP) technique, which is referred to as Signal Amplification by Reversible Exchange (SABRE), has been reported to be applicable to various substrates and catalysts. For more detailed studies, pyridine was mainly examined in the past. Here, we examined several pyrazole derivatives towards their amenability to this method using Crabtree's Catalyst, which is the polarization transfer catalyst that is best documented. Additionally, the dependence of the signal enhancement on the field strength, at which the polarization step takes place, was examined for pyridine and four different pyrazoles. To achieve this, the polarization step was performed at numerous previously determined magnetic fields in the stray field of the NMR spectrometer. The substrate dependence of the field dependence proved to be relatively small for the different pyrazoles and a strong correlation to the field dependence for pyridine was observed. Reducing the number of spins in the catalyst by deuteration leads to increased enhancement. This indicates that more work has to be invested in order to be able to reproduce the SABRE field dependence by simulations.
Total synthesis of the thiopeptide antibiotic amythiamicin D.
Hughes, Rachael A; Thompson, Stewart P; Alcaraz, Lilian; Moody, Christopher J
2005-11-09
The thiopeptide (or thiostrepton) antibiotics are a class of sulfur containing highly modified cyclic peptides with interesting biological properties, including reported activity against MRSA and malaria. Described herein is the total synthesis of the thiopeptide natural product amythiamicin D, which utilizes a biosynthesis-inspired hetero-Diels-Alder route to the pyridine core of the antibiotic as a key step. Preliminary studies using a range of serine-derived 1-ethoxy-2-azadienes established that hetero-Diels-Alder reaction with N-acetylenamines proceeded efficiently under microwave irradiation to give 2,3,6-trisubstituted pyridines. The thiazole building blocks of the antibiotic were obtained by either classical Hantzsch reactions or by dirhodium(II)-catalyzed chemoselective carbene N-H insertion followed by thionation, and were combined to give the bis-thiazole that forms the left-hand fragment of the antibiotic. The key Diels-Alder reaction of a tris-thiazolyl azadiene with benzyl 2-(1-acetylaminoethenyl)thiazole-4-carboxylate gave the core tetrathiazolyl pyridine, which was elaborated into the natural product by successive incorporation of glycine and bis-thiazole fragments followed by macrocyclization.
Gung, Benjamin W; Wekesa, Francis; Barnes, Charles L
2008-03-07
The stacking interactions between an aromatic ring and a pyridine or a pyrimidine ring are studied by using a series of triptycene-derived scaffolds. The indicative ratios of the syn and anti conformers were determined by variable-temperature NMR spectroscopy. The syn conformer aligns the attached aromatic ring and the heterocycle in a parallel-displaced orientation while the anti conformer sets the two rings apart from each other. Comparing to the corresponding control compounds where a benzene ring is in the position of the heterocycle, higher attractive interactions are observed as indicated by the higher syn/anti ratios. In general, the attractive interactions are much less sensitive to the substituent effects than the corresponding nonheterocycles. The greatest attractive interactions were observed between a pyrimidine ring and a N,N-dimethylaminobenzene, consistent with a predominant donor-acceptor interaction. The interactions between a pyridine ring and a substituted benzene ring show that the pyridine is comparable to that of a NO2- or a CN-substituted benzene ring except for the unpredictable substituent effects.
Lin, Chih-Kai
2018-03-05
As nitrogen-doped graphene has been widely applied in optoelectronic devices and catalytic reactions, in this work we have investigated where the nitrogen atoms tend to reside in the material and how they affect the electron density and spectroscopic properties from a theoretical point of view. DFT calculations on N-doped hexagonal and rectangular graphene nanoflakes (GNFs) showed that nitrogen atoms locating on zigzag edges are obviously more stable than those on armchair edges or inside flakes, and interestingly, the N-hydrogenated pyridine moiety could be preferable to pure pyridine moiety in large models. The UV-vis absorption spectra of these nitrogen-doped GNFs display strong dependence on flake sizes, where the larger flakes have their major peaks in lower energy ranges. Moreover, the spectra exhibit different connections to various dopant types and positions: the graphitic-type dopant species present large variety in absorption profiles, while the pyridinic-type ones show extraordinary uniform stability and spectra independent of dopant positions/numbers and hence are hardly distinguishable from each other. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.
2016-11-04
A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ 6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ 6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid, 2C 15H 13N 3O 4S·C 7H 6O 4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809(2):0.191(2) ratio. In the crystal, extensive hydrogenmore » bonding between the components forms layers propagating in theabplane.« less
Synthesis and characterization of photo-crosslinkable 4-styryl-pyridine modified alginate.
Elsayed, Nadia H; Monier, M; Alatawi, Raedah A S
2016-07-10
In this article photo-crosslinkablestyryl-pyridine modified alginate (ASP-Alg) was prepared and entirely investigated utilizing different instrumental techniques such as Elemental analysis, Fourier transform infrared (FTIR),(13)C and (1)H nuclear magnetic resonance (NMR), ultraviolet-visible light (UV-vis), X-ray diffraction (XRD) spectra and scanning electron microscope (SEM). Upon irradiation in the UV region, the casted ASP-Alg membranes were cross-linked through the [2π+2π] cycloaddition reaction of the inserted photo-active styryl pyridine moieties. Both cross-linking density and kinetics were monitored by examining the UV-vis light spectra of the irradiated membrane at predetermined time intervals and the obtained results were found to fit with the second order mathematical kinetic model, revealing the performance of the cross-linking via bimolecular [2π+2π] cycloaddition reaction. Also, the swelling behaviors along with biodegradability were also studied, and the results indicated the decrease of the swelling ratio and degradation rate by increasing the cross-linking density. Moreover, the mechanical properties were also examined under both wet and dry conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Zamudio-Medina, Angel; García-González, Ailyn N; Herrera-Carrillo, Genesis K; Zárate-Zárate, Daniel; Benavides-Macías, Adriana; Tamariz, Joaquín; Ibarra, Ilich A; Islas-Jácome, Alejandro; González-Zamora, Eduardo
2018-03-27
We describe the one-pot synthesis of twenty polyheterocyclic pyrrolo[3,4- b ]pyridin-5-ones via a cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization) in 20 to 95% overall yields, as well as four pharmacologically promising analogues via an improved cascade process (Ugi-3CR/aza Diels-Alder/ N -acylation/aromatization/S N 2): two piperazine-linked pyrrolo[3,4- b ]pyridin-5-ones in 33 and 34%, and a couple of Falipamil aza-analogues in 30 and 35% overall yields. It is worth highlighting the good substrate scope found, because final products are furnished with alkyl, aryl, and heterocyclic substituents. The use of chain-ring tautomerizable isocyanides (as key reagents for the Ugi-type three component reaction) allowed for a rapid and efficient assembly of the polysubstituted oxindoles, which were used in situ toward the complex products, conferring features like robustness, sustainability, and the one-pot approach to this synthetic methodology.
Martinez-Cuezva, Alberto; Pastor, Aurelia; Cioncoloni, Giacomo; Orenes, Raul-Angel; Alajarin, Mateo; Symes, Mark D.
2015-01-01
A cyclic network of chemical reactions has been conceived for exchanging the dynamic behaviour of di(acylamino)pyridine-based rotaxanes and surrogates. X-ray diffraction studies revealed the intercomponent interactions in these interlocked compounds and were consistent with those found in solution by dynamic NMR experiments. This particular binding site was incorporated into a molecular shuttle enabled for accessing two states with an outstanding positional discrimination through chemical manipulation. Furthermore, the ability of the di(acylamino)pyridine domain to associate with external binders with a complementary array of HB donor and acceptor sites was exploited for the advance of an unprecedented electrochemical switch operating through a reversible anion radical recognition process. PMID:28706682
Crystal structure of bis-(3-bromo-pyridine-κN)bis-(O-ethyl di-thio-carbonato-κ(2) S,S')nickel(II).
Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu
2015-01-01
In the title mol-ecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni(2+) cation is located on a centre of inversion and has a distorted octa-hedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C-S bond lengths of the thio-carboxyl-ate group are indicative of a delocalized bond and the O-Csp (2) bond is considerably shorter than the O-Csp (3) bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the mol-ecules is stabilized by C-H⋯S and C-H⋯π inter-actions. In addition, π-π inter-actions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, mol-ecules are arranged in rows along [100], forming layers parallel to (010) and (001).
Dai, Hong; Zhu, Peng-Fei; Zhu, Yu-Jun; Fang, Jian-Xin; Shi, Yu-Jun
2011-01-01
In the title molecule, C18H13Cl2F3N4O2, the intramolecular distance between the centroids of the benzene and pyridine rings is 3.953 (3) Å, and the trifluoromethyl group is rotationally disordered over two orientations in a 0.678 (19):0.322 (19) ratio. The crystal packing exhibits weak intermolecular C—H⋯F interactions. PMID:22199756
3-(4-Carboxy-5-carboxylato-1H-imidazol-2-yl)pyridin-1-ium monohydrate
Liu, Guang-Jun; Zhao, Guang-Wang; Li, Li; Gao, Hong-Tao
2011-01-01
In the zwitterionic molecule of the title compound, C10H7N3O4·H2O, one carboxyl group is deprotonated and the pyridine N atom is protonated. The pyridinium and imidazole rings form a dihedral angle of 5.23 (1)°. An intramolecular O—H⋯O hydrogen bond occurs. In the crystal, intermolecular N—H⋯O, O—H⋯N and O—H⋯O hydrogen bonds link the zwitterions and water molecules into sheets parallel to (102). PMID:21523144
Oppositines A and B, Sesquiterpene Pyridine Alkaloids from a Sri Lankan Pleurostylia opposita
Whitson, Emily L.; Mala, S.M.V. Damayanthi; Veltri, Charles. A.; Bugni, Tim S.; de Silva, E. Dilip; Ireland, Chris M.
2008-01-01
Two new sesquiterpene pyridine alkaloids, oppositines A (1) and B (2), have been isolated from the plant, Pleurostylia opposita (Celastraceae), collected in Sri Lanka. The compounds were isolated and purified by solvent/solvent partitioning, column chromatography and HPLC. Their structures were assigned on the basis of extensive 1D and 2D NMR studies as well as analysis by HRESIMS. Oppositines A (1) and B (2) showed moderate cytotoxicity against HCT116 cell lines with EC50 values of 27 ± 2 and 26 ± 3 μM, respectively. PMID:17190474
2012-09-14
nitro- gen impregnation is a complex process, as retaining the ni- trogen, which can exist in numerous forms—many of which are not basic (e.g., pyrrole ...identity 398.1 35.4 Pyridinic 400.7 57.3 Pyrrolic 403.1 7.3 Pyridine-N-oxide ACFC. The coal-derived BPL™ has been measured to con- tain a significant amount...functionalities as pyrrolic functionalities (Boudou 2003). Others have shown simi- lar results for ammonia-treated carbons (Stohr et al. 1991; Mangun
Galli, Ubaldina; Ciraolo, Elisa; Massarotti, Alberto; Margaria, Jean Piero; Sorba, Giovanni; Hirsch, Emilio; Tron, Gian Cesare
2015-09-18
A novel series of 4-aryl-3-cyano-2-(3-hydroxyphenyl)-6-morpholino-pyridines have been designed as potential phosphatidylinositol-3-kinase (PI3K) inhibitors. The compounds have been synthesized using the Guareschi reaction to prepare the key 4-aryl-3-cyano-2,6-dihydroxypyridine intermediate. A different selectivity according to the nature of the aryl group has been observed. Compound 9b is a selective inhibitor against the PI3Kα isoform, maintaining a good inhibitory activity. Docking studies were also performed in order to rationalize its profile of selectivity.
Lu, Shuai; Zhu, Xinju; Li, Ke; Guo, Yu-Jing; Wang, Meng-Dan; Zhao, Xue-Mei; Hao, Xin-Qi; Song, Mao-Ping
2016-09-16
A novel iron-involved tosylmethylation of imidazo[1,2-α]pyridines with p-toluenesulfonylmethyl isocyanide in a solvent mixture of H2O and PEG400 under an Ar atmosphere has been developed. This protocol provides a facile synthetic route for the functionalization of the imidazo[1,2-α]pyridine scaffold with broad substrate compatibility, which is less expensive and environmentally friendly. The current methodology could further enable regioselective C-H tosylmethylation of indole at the C3 position. Also, p-toluenesulfonylmethyl isocyanide was utilized as the tosylmethylating reagent for the first time.
Dissociative Ionization of Pyridine by Electron Impact
NASA Technical Reports Server (NTRS)
Dateo, Christopher; Huo, Winifred; Kwak, Dochan (Technical Monitor)
2002-01-01
In order to understand the damage of biomolecules by electrons, a process important in radiation damage, we undertake a study of the dissociative ionization (DI) of pyridine (C5H5N) from the low-lying ionization channels. The methodology used is the same as in the benzene study. While no experimental DI data are available, we compare the dissociation products from our calculations with the dissociative photoionization measurements of Tixier et al. using dipole (e, e(+) ion) coincidence spectroscopy. Comparisons with the DI of benzene is also made so as to understand the difference in DI between a heterocyclic and an aromatic molecule.
Tris(5,6-dimethyl-1H-benzimidazole-κN 3)(pyridine-2,6-dicarboxylato-κ3 O 2,N,O 6)nickel(II)
Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan
2012-01-01
The title mononuclear complex, [Ni(C7H3NO4)(C9H10N2)3], shows a central NiII atom which is coordinated by two carboxylate O atoms and the N atom from a pyridine-2,6-dicarboxylate ligand and by three N atoms from different 5,6-dimethyl-1H-benzimidazole ligands in a distorted octahedral geometry. The crystal structure shows intermolecular N—H⋯O hydrogen bonds. PMID:22719301
Using 2 H labelling to improve the NMR detectability of pyridine and its derivatives by SABRE.
Norcott, Philip; Burns, Michael J; Rayner, Peter J; Mewis, Ryan E; Duckett, Simon B
2018-07-01
By introducing a range of 2 H labels into pyridine and the para-substituted agents, methyl isonicotinate and isonicotinamide, we significantly improve their NMR detectability in conjunction with the signal amplification by reversible exchange process. We describe how the rates of T 1 relaxation for the remaining 1 H nuclei are increased and show how this leads to a concomitant increase in the level of 1 H and 13 C hyperpolarization that can ultimately be detected. © 2017 The Authors. Magnetic Resonance in Chemistry published by John Wiley & Sons Ltd.
Paine, A J; Villa, P; Hockin, L J
1980-01-01
The loss of cytochrome P-450 in cultured rat hepatocytes can be prevented by substituted pyridines, especially isonicotinamide, 3-hydroxypyridine and metyrapone. The effect of these compounds is independent of protein synthesis, suggesting that they maintain pre-existing cytochrome P-450. The efficiency of pyridines at maintaining cytochrome P-450 in hepatocyte culture is highly correlated with their ability to bind to this cytochrome, suggesting that ligand formation with cytochrome P-450 prevents its accelerated turnover in liver cell culture. PMID:7470047
Lytwak, Lauren A; Stanley, Julie M; Mejía, Michelle L; Holliday, Bradley J
2010-09-07
A bromo tricarbonyl rhenium(I) complex with a thiophene-functionalized bis(pyrazolyl) pyridine ligand (L), ReBr(L)(CO)(3) (1), has been synthesized and characterized by variable temperature and COSY 2-D (1)H NMR spectroscopy, single-crystal X-ray diffraction, and photophysical methods. Complex 1 is highly luminescent in both solution and solid-state, consistent with phosphorescence from an emissive (3)MLCT excited state with an additional contribution from a LC (3)(pi-->pi*) transition. The single-crystal X-ray diffraction structure of the title ligand is also reported.
Lee, Seul Ki; Park, Jin Kyoon
2015-04-03
A mild and efficient one-pot synthesis of 3-aryl imidazo[1,2-a]pyridines in up to 88% yield was developed. An adduct was formed after the simple mixing of 2-amino-4-methylpyridine, 2-phenylacetaldehyde, and N-iodosuccinimide in CH2Cl2, and the structure of the adduct was characterized by 2D NMR, IR, and high-resolution mass analysis. The adduct was readily cyclized by treatment with a saturated aqueous solution of NaHCO3. The reactions proceeded to completion after several hours at room temperature.
NASA Astrophysics Data System (ADS)
Prajapati, R.; Mishra, L.; Grabowski, S. J.; Govil, G.; Dubey, S. K.
2008-05-01
Organic compounds namely pyridyl chalcone viz. 3-[4-(3-oxo-3-pyridin-2-yl-propenyl)-phenyl]-1-pyridin-2-yl-propenone (L 1), p-cholorophenyldiazopentane-2,4-dione (L 2) and p-methyl phenyldiazopentane-2,4-dione (L 3) have been characterized by their single-crystal X-ray crystallographic studies. Several structural motifs resulting upon their self-association through probable non-covalent interactions have been discussed. The studies of related motifs found in Cambridge Structural Database are performed and the results are related to the structural data obtained for crystal structures reported here in.
Van Emelen, K; De Wit, T; Hoornaert, G J; Compernolle, F
2000-10-05
Indanol intermediates 5, prepared via Michael addition of 1-indanone beta-ketoester and acrylonitrile followed by reduction or Grignard reaction of the ketone group, were submitted to intramolecular Ritter reaction using various acid reaction conditions to produce tricyclic lactams 4. This cis-fused hexahydro-4aH-indeno[1,2-b]pyridine ring system, substituted at both angular positions 4a and 9b, provides access to constrained analogues of non-peptide NK(1)-antagonists with monocyclic piperidine structure.
Identical acyl transfer reactions between pyridine N-oxides and their N-acylonium salts
NASA Astrophysics Data System (ADS)
Rybachenko, V. I.; Shroeder, G.; Chotii, K. Yu.; Kovalenko, V. V.; Red'Ko, A. N.; Gierzyk, B.
2007-10-01
28 identical acyl exchange reactions R-CO-Nu+, X- + Nu between pyridine N-oxides in acetonitrile were studied. Here, X- = BPh{4/-} and R = methyl, N,N-dimethylamino, N,N-diethylamino, 4-morpholino, 1-piperidino, N-methyl, N-phenylamino, or N,N-diphenylamino group. The IR and NMR spectroscopic characteristics of acyloxypyridinium salts were determined, and the quantum-chemical parameters of all reagents calculated. The results were subjected to correlation analysis. It was found that the rate of identical acyl transfer reactions was controlled by the interaction of frontier orbitals in the transition state.
NASA Astrophysics Data System (ADS)
Hora, Nicholas J.; Wahl, Benjamin M.; Soares, Camilla; Lara, Skylee A.; Lanska, John R.; Phillips, James A.
2018-04-01
The nature of the interactions between silicon tetrafluoride and series of nitrogen bases, including nitriles (RCN, with R > CH3), pyridine, and various fluoro-substituted pyridines, has been investigated via quantum-chemical computations, low-temperature IR spectroscopy, and bulk reactivity experiments. Using (primarily) M06 with the 6-311+G(2df,2pd) basis set, we obtained equilibrium structures, binding energies, harmonic frequencies, and N-Si potentials in the gas-phase and in bulk dielectric media for an extensive series of 1:1 molecular complexes, including: C6H5CH2CN-SiF4, CH3CH2CN-SiF4, (CH3)3CCN-SiF4, C5H5N-SiF4, 4-FC5H4N-SiF4, 3,5-C5F2H3N-SiF4, 2,6-C5F2H3N-SiF4 and 3,4,5-C5F3H2N-SiF4. In addition, for the analogous 2:1 complexes of pyridine and 3,5-difluororpyridine, we obtained equilibrium structures, binding energies, and harmonic frequencies. The N-Si distances in the 1:1 nitrile complexes are fairly long, ranging from 2.84 Å to 2.88 Å, and the binding energies range from 4.0 to 4.2 kcal/mol (16.7-17.6 kJ/mol). Also, computations predict extremely anharmonic N-Si potentials, for which the inner portions of the curve are preferentially stabilized in dielectric media, which predict an enhancement of these interactions in condensed-phases. However, we see no evidence of bulk reactivity between C6H5CH2CN, CH3CH2CN, or (CH3)3CCN and SiF4, nor any significant interaction between (CH3)3CCN and SiF4 in low temperature IR spectra of solid, (CH3)3CCN/SiF4 thin films. Conversely, the interactions in four of the five 1:1, pyridine-SiF4 complexes are generally stronger; binding energies range from 5.7 to 9.6 kcal/mol (23.8-40.2 kJ/mol), and correspondingly the N-Si distances are relatively short (2.12-2.25 Å). The exception is 2,6-C5F2H3N-SiF4, for which the binding energy is only 3.6 kcal/mol (15.1 kJ/mol), and the N-Si distance is quite long (3.12 Å). In addition, both pyridine and 3,5-difluororpyridine were found to form stable reaction products with SiF4; but no analogous product was obtained with 2,6-difluororpyridine and SiF4, nor was any significant interaction indicated in low-temperature IR spectra of 2,6-difluororpyridine/SiF4 films. By contrast, low temperature spectra of pyridine/SiF4 and 3,5-difluororpyridine/SiF4 thin films are consistent with the presence of a distinct 2:1 reaction product. Moreover, the observed frequencies agree reasonably well with those predicted for the cis, octahedral coordination isomers of the 2:1 molecular complexes, in which the N-Si bonds are compressed slightly relative to those in the predicted gas-phase structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matanovic, Ivana; Artyushkova, Kateryna; Strand, Matthew B.
A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ~400 eV. Experimental core level shifts were obtained for a set of model materials, namely N-doped carbon nanospheres, Fe–N–carbon nanospheres, polypyrrole, polypyridine, and pyridinium chloride, and were compared to the shifts calculated using density functional theory. The results confirm that the broad peak positioned at ~400.7 eV in the N 1s XPS spectra of N-containingmore » catalysts, which is typically assigned to pyrrolic nitrogen, contains contributions from other hydrogenated nitrogen species such as hydrogenated pyridinic functionalities. Namely, N 1s BEs of hydrogenated pyridinic-N and pyrrolic-N were calculated as 400.6 and 400.7 eV, respectively, using the Perdew–Burke–Ernzerhof exchange-correlation functional. A special emphasis was placed on the study of the differences in the XPS imprint of N-containing defects that are situated in the plane and on the edges of the graphene sheet. Density functional theory calculations for BEs of the N 1s of in-plane and edge defects show that hydrogenated N defects are more sensitive to the change in the chemical environment in the carbon matrix than the non-hydrogenated N defects. In conclusion, calculations also show that edge-hydrogenated pyridinic-N and pyrrolic-N defects only contribute to the N 1s XPS peak located at ~400.7 eV if the graphene edges are oxygenated or terminated with bare carbon atoms.« less
NASA Astrophysics Data System (ADS)
Büyükkıdan, Nurgün; Yenikaya, Cengiz; İlkimen, Halil; Karahan, Ceyda; Darcan, Cihan; Korkmaz, Tülin; Süzen, Yasemin
2015-12-01
The new water-soluble and air stable compounds (H2ppz)[Co(dipic)2]·6H2O (1), (H2ppz)[Ni(dipic)2]·6H2O (2) and (H2ppz)[Zn(dipic)2]·6H2O (3) were prepared by the reaction of corresponding metal(II) acetates and a proton transfer salt, (H2ppz) (Hdipic)2, (4) of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-(piperazin-1-yl)ethanol (ppz). The compounds 1-3 were characterized by elemental, IR, UV-vis. thermal analyses, magnetic measurement and single crystal X-ray diffraction studies. The molecular structures of the title compounds consist of one 1-(2-hydroxyethyl)piperazine-1,4-diium (H2ppz+2) cation, one bis(pyridine-2,6-dicarboxylate)metal(II) [M(dipic)2]2- anion, and six uncoordinated water molecules. In compounds 1-3 the metal ions coordinate to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral environment. Antimicrobial activities against Gram (-) wild type (Escherichia coli and Pseudomonas aeruginosa), Gram (+) wild type (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus and Bacillus subtilis) and clinical isolate (Morganella morganii, Proteus vulgaris and Enterobacter aeruginosa) were also studied. The results were reported, discussed and compared with the corresponding starting materials ((H2ppz) (Hdipic)2 (4), H2dipic and ppz). MIC (Minimal Inhibition Concentration) values of the newly synthesized compounds were determined as 4000 μg/ml (except B. subtilis and clinical isolate E. aeruginosa, >4000 μg/ml).
Matanovic, Ivana; Artyushkova, Kateryna; Strand, Matthew B.; ...
2016-12-07
A combination of N 1s X-ray photoelectron spectroscopy (XPS) and first principles calculations of nitrogen-containing model electrocatalysts was used to elucidate the nature of the nitrogen defects that contribute to the binding energy (BE) range of the N 1s XPS spectra of these materials above ~400 eV. Experimental core level shifts were obtained for a set of model materials, namely N-doped carbon nanospheres, Fe–N–carbon nanospheres, polypyrrole, polypyridine, and pyridinium chloride, and were compared to the shifts calculated using density functional theory. The results confirm that the broad peak positioned at ~400.7 eV in the N 1s XPS spectra of N-containingmore » catalysts, which is typically assigned to pyrrolic nitrogen, contains contributions from other hydrogenated nitrogen species such as hydrogenated pyridinic functionalities. Namely, N 1s BEs of hydrogenated pyridinic-N and pyrrolic-N were calculated as 400.6 and 400.7 eV, respectively, using the Perdew–Burke–Ernzerhof exchange-correlation functional. A special emphasis was placed on the study of the differences in the XPS imprint of N-containing defects that are situated in the plane and on the edges of the graphene sheet. Density functional theory calculations for BEs of the N 1s of in-plane and edge defects show that hydrogenated N defects are more sensitive to the change in the chemical environment in the carbon matrix than the non-hydrogenated N defects. In conclusion, calculations also show that edge-hydrogenated pyridinic-N and pyrrolic-N defects only contribute to the N 1s XPS peak located at ~400.7 eV if the graphene edges are oxygenated or terminated with bare carbon atoms.« less
Lehner, Martin D; Marx, Degenhard; Boer, Rainer; Strub, Andreas; Hesslinger, Christian; Eltze, Manfrid; Ulrich, Wolf-Rüdiger; Schwoebel, Frank; Schermuly, Ralph Theo; Barsig, Johannes
2006-04-01
Excessive release of nitric oxide from inducible nitric-oxide synthase (iNOS) has been postulated to contribute to pathology in a number of inflammatory diseases. We recently identified imidazopyridine derivatives as a novel class of potent nitricoxide synthase inhibitors with high selectivity for the inducible isoform. In the present study, we tested the in vivo potency of BYK191023 [2-[2-(4-methoxy-pyridin-2-yl)-ethyl]-3H-imidazo-[4,5-b]pyridine], a selected member of this inhibitor class, in three different rat models of lipopolysaccharide-induced systemic inflammation. Delayed administration of BYK191023 dose-dependently suppressed the lipopolysaccharide-induced increase in plasma nitrate/nitrite (NO(x)) levels with an ED(50) of 14.9 micromol/kg/h. In a model of systemic hypotension following high-dose lipopolysaccharide challenge, curative administration of BYK191023 at a dose that inhibited 83% of the NO(x) increase completely prevented the gradual decrease in mean arterial blood pressure observed in vehicle-treated control animals. The vasopressor effect was specific for endotoxemic animals since BYK191023 did not affect blood pressure in saline-challenged controls. In addition, in a model of lipopolysaccharide-induced vascular hyporesponsiveness, BYK191023 infusion partially restored normal blood pressure responses to norepinephrine and sodium nitroprusside via an l-arginine competitive mechanism. Taken together, BYK191023 is a member of a novel class of highly isoform-selective iNOS inhibitors with promising in vivo activity suitable for mechanistic studies on the role of selective iNOS inhibition as well as clinical development.
Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe
2015-06-01
Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. Copyright © 2015 Elsevier Inc. All rights reserved.
Self-Assembled Pyridine-Dipyrrolate Cages.
Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L
2016-04-06
An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.
Singh, Satbir; Raj, Tilak; Singh, Amarpal; Kaur, Navneet
2016-06-01
The present research work describes the comparative analysis and performance characteristics of 4-pyridine based monomer and polymer capped ZnO dye-sensitized solar cells. The N, N-dimethyl-N4-((pyridine-4yl)methylene) propaneamine (4,monomer) and polyamine-4-pyridyl Schiff base (5, polymer) dyes were synthesized through one step condensation reaction between 4-pyridinecarboxaldehyde 1 and N, N-dimethylpropylamine 2/polyamine 3. Products obtained N, N-dimethyl-N4-((pyridine-4yl)methylene)propaneamine (4) and polyamine-4-pyridyl Schiff base (5) were purified and characterized using 1H, 13C NMR, mass, IR and CHN spectroscopy. Both the dyes 4 and 5 were further coated over ZnO nanoparticles and characterized using SEM, DLS and XRD analysis. Absorption profile and emission profile was monitored using fluorescence and UV-Vis absorption spectroscopy. A thick layer of these inbuilt dye linked ZnO nanoparticles of dyes (4) and (5) was pasted on one of the conductive side of ITO glass followed with a liquid electrolyte and counter electrode of the same conductive glass. Polyamine-4-pyridyl Schiff base polymer (5) decorated dye sensitized solar cell has shown better exciting photovoltaic properties in the form of short circuit current density (J(sc) = 6.3 mA/cm2), open circuit photo voltage (V(oc) = 0.7 V), fill factor (FF = 0.736) than monomer decorated dye sensitized solar cell. Polymer dye (5) based ZnO solar cell has shown a maximum solar power to electrical conversion efficiency of 3.25%, which is enhanced by 2.16% in case of monomer dye based ZnO solar cell under AM 1.5 sun illuminations.
NASA Astrophysics Data System (ADS)
Vela, Sergi; Verot, Martin; Fromager, Emmanuel; Robert, Vincent
2017-02-01
The present paper reports the application of a computational framework, based on the quantum master equation, the Fermi's golden Rule, and conventional wavefunction-based methods, to describe electron transport through a spin crossover molecular junction (Fe(bapbpy) (NCS)2, 1, bapbpy = N-(6-(6-(Pyridin-2-ylamino)pyridin-2-yl)pyridin-2-yl)-pyridin-2-amine). This scheme is an alternative to the standard approaches based on the relative position and nature of the frontier orbitals, as it evaluates the junction's Green's function by means of accurate state energies and wavefunctions. In the present work, those elements are calculated for the relevant states of the high- and low-spin species of 1, and they are used to evaluate the output conductance within a given range of bias- and gate-voltages. The contribution of the ground and low-lying excited states to the current is analyzed, and inspected in terms of their 2S + 1 Ms-states. In doing so, it is shown the relevance of treating not only the ground state in its maximum-Ms projection, as usually done in most computational-chemistry packages, but the whole spectrum of low-energy states of the molecule. Such improved representation of the junction has a notable impact on the total conductivity and, more importantly, it restores the equivalence between alpha and beta transport, which means that no spin polarization is observed in the absence of Zeeman splitting. Finally, this work inspects the strong- and weak-points of the suggested theoretical framework to understand electron transport through molecular switchable materials, identifies a pathway for future improvement, and offers a new insight into concepts that play a key role in spintronics.
Rein, Francisca N; Chen, Weizhong; Scott, Brian L; Rocha, Reginaldo C
2015-09-01
We report the structural characterization of [6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine](2,2'-bi-pyridine)-chlorido-ruthenium(II) hexa-fluorido-phosphate, [RuCl(C10H8N2)(C30H20N6)]PF6, which contains the bidentate ligand 2,2'-bi-pyridine (bpy) and the tridendate ligand 6',6''-bis-(pyridin-2-yl)-2,2':4',4'':2'',2'''-quaterpyridine (tpy-tpy). The [RuCl(bpy)(tpy-tpy)](+) monocation has a distorted octa-hedral geometry at the central Ru(II) ion due to the restricted bite angle [159.32 (16)°] of the tridendate ligand. The Ru-bound tpy and bpy moieties are nearly planar and essentially perpendicular to each other with a dihedral angle of 89.78 (11)° between the least-squares planes. The lengths of the two Ru-N bonds for bpy are 2.028 (4) and 2.075 (4) Å, with the shorter bond being opposite to Ru-Cl. For tpy-tpy, the mean Ru-N distance involving the outer N atoms trans to each other is 2.053 (8) Å, whereas the length of the much shorter bond involving the central N atom is 1.936 (4) Å. The Ru-Cl distance is 2.3982 (16) Å. The free uncoordinated moiety of tpy-tpy adopts a trans,trans conformation about the inter-annular C-C bonds, with adjacent pyridyl rings being only approximately coplanar. The crystal packing shows significant π-π stacking inter-actions based on tpy-tpy. The crystal structure reported here is the first for a tpy-tpy complex of ruthenium.
Jose, Gilish; Suresha Kumara, Tholappanavara H; Sowmya, Haliwana B V; Sriram, Dharmarajan; Guru Row, Tayur N; Hosamani, Amar A; More, Sunil S; Janardhan, Bhavya; Harish, B G; Telkar, Sandeep; Ravikumar, Yalegara Siddappa
2017-05-05
In this report, we describe the synthesis and biological evaluation of a new series of pyrrolo[3,2-c]pyridine Mannich bases (7a-v). The Mannich bases were obtained in good yields by one-pot three component condensation of pyrrolo[3,2-c]pyridine scaffold (6a-c) with secondary amines and excess of formaldehyde solution in AcOH. The chemical structures of the compounds were characterized by 1 H NMR, 13 C NMR, LC/MS and elemental analysis. Single crystal X-ray diffraction has been recorded for compound 7k ([C 23 H 29 ClN 4 ] +2 , H 2 O). The in vitro antimicrobial activities of the compounds were evaluated against various bacterial and fungal strains using Agar diffusion method and Broth micro dilution method. Compounds 7e, 7f, 7r, 7t, and 7u were showed good Gram-positive antibacterial activity against S. aureus, B. flexus, C. sporogenes and S. mutans. Furthermore, in vitro antimycobacterial activity was evaluated against Mycobacterium tuberculosis H37Rv (ATCC 27294) using MABA. Compounds 7r, 7t, and 7u were showed good antitubercular activity against Mtb (MIC ≥6.25 μg/mL). Among the tested compounds, 1-((4-chloro-2-(cyclohexylmethyl)-1H-pyrrolo[3,2-c]pyridin-3-yl)methyl)piperidine-3-carboxamide (7t) was showed excellent antimycobacterial activity against Mtb (MIC <0.78 μg/mL) and low cytotoxicity against the HEK-293T cell line (SI >25). Molecular docking of the active compounds against glutamate racemase (MurI) and Mtb glutamine synthetase were explained the structure-activity observed in vitro. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Giannopoulos, Dimosthenis P; Wilson-Konderka, Cody; Gagnon, Kevin J; Teat, Simon J; Escuer, Albert; Metallinos, Costa; Stamatatos, Theocharis C
2015-03-07
The successful organic synthesis of a new dipyrazole/pyridine-dicarbonyl organic molecule, namely pyridine-2,6-diylbis(pyrazine-2-ylmethanone) [(pz)CO(py)CO(pz)], followed by its employment in Mn coordination chemistry has yielded the neutral cluster compound [Mn3Na2O(N3)3(L)3] (1), where L(2-) is the (pz)C(CH2COCH3)(O(-))(py)C(CH2COCH3)(O(-))(pz) dianion. The latter group was formed in situ, presumably by the nucleophilic attack of the carbanion (-)CH2COCH3 to the carbonyl carbon atoms of (pz)CO(py)CO(pz), in the presence of Mn(n+) ions under basic conditions and in solvent Me2CO. Complex 1 possesses an almost ideal trigonal bipyramidal topology, with the two Na(I) ions occupying the apical positions and the three Mn(III) ions residing in the equatorial trigonal plane. The bridging ligation about the metal ions is provided by a μ3-O(2-) ion and six μ-OR(-) groups from the L(2-) ligand, while peripheral ligation is completed by three terminal azido groups and the pyridine N and carbonyl O atoms of L(2-). Magnetic susceptibility studies revealed the presence of predominant antiferromagnetic exchange interactions between the paramagnetic Mn(III) centres; the use of an anisotropic, equilateral Mn(III)3 triangle model allowed us to fit the magnetic data and obtain the best-fit parameters: J = -10.8 cm(-1), D = -5.3 cm(-1), and g = 1.99. The combined results demonstrate the rich chemical reactivity of carbonyl groups and the ability of poly-ketone ligands to stabilize cluster compounds with unprecedented structural motifs and interesting architectures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Haitao, E-mail: xuhaitao@ecust.edu.cn; Gou, Yongxia; Ye, Jing
2016-05-15
Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadiene for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. 1Fe exhibits a two-dimensional extended-grid network, whereas 2Fe exhibits a stair-like double-chain; the N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Furthermore, selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF; micro/nanoparticles of the layered MOF were therefore investigated for new potential applications of micro/nano MOFs. - Graphical abstract: Iron metal–organic frameworks (MOFs) [Fe(L){sub 2}(SCN){sub 2}]{sub ∝} (L1: 4-bpdh=2,5-bis(4-pyridyl)-3,4-diaza-2,4-hexadienemore » for 1Fe; and L2: 3-bpdh=2,5-bis(3-pyridyl)-3,4-diaza-2,4-hexadiene for 2Fe) were assembled in a MeOH–H{sub 2}O solvent system. The N-position within the pyridine ring of the complexes was observed to regulate the MOF structure as layers or chains. Selectively catalytic activity was observed for the layered MOF but not the chain-structured MOF. - Highlights: • Synthesis and structure of metal–organic framework [Fe(L){sub 2}(SCN){sub 2}]{sub ∝}. • Selectively catalytic activity depending on the N-position within the pyridine ring. • The degradation and conversion of methyl orange.« less
Binding of group 15 and group 16 oxides by a concave host containing an isophthalamide unit.
Eckelmann, Jens; Saggiomo, Vittorio; Fischmann, Svenja; Lüning, Ulrich
2012-01-01
A bi-macrocycle with an incorporated isophthalamide substructure was synthesized by double amide formation between an isophthaloyl dichloride and two equivalents of a bis(alkenyloxy)aniline, followed by ring-closing metathesis and hydrogenation. In contrast to many related isophthalamides, the concave host exhibits a better binding for oxides, such as DMSO or pyridine-N-oxide, than for halide anions. A general method for a quick estimation of the strength of binding derived from only a few data points is presented and gives an estimated K(ass) of pyridine-N-oxide of ca. 40 M(-1), NMR titration confirms 25 M(-1).
Pyrrole-pyridine and pyrrole-naphthyridine hosts for anion recognition.
García, M Angeles; Farrán, M Angeles; María, Dolores Santa; Claramunt, Rosa M; Torralba, M Carmen; Torres, M Rosario; Jaime, Carlos; Elguero, José
2015-05-27
The association constants of the complexes formed by two hosts containing pyrrole, amide and azine (pyridine and 1,8-naphthyridine) groups and six guests, all monoanions (Cl-, CH3CO2-, NO3-, H2PO4-, BF4-, PF6-), have been determined using NMR titrations. The X-ray crystal structure of the host N2,N5-bis(6-methylpyridin-2-yl)-3,4-diphenyl-1H-pyrrole- 2,5-dicarboxamide (1) has been solved (P21/c monoclinic space group). B3LYP/6-31G(d,p) and calculations were carried out in an attempt to rationalize the trends observed in the experimental association constants.
Pyridine radical cation and its fluorine substituted derivatives
Bondybey, V.E.; English, J.H.; Shiley, R.H.
1982-01-01
The spectra and relaxation of the pyridine cation and of several of its fluorinated derivatives are studied in low temperature Ne matrices. The ions are generated by direct photoionization of the parent compounds. Of the compounds studied, laser induced → and → fluorescence is observed only for the 2, 6‐difluoropyridine cation. The analysis of the spectrum indicates that the ion is planar both in the and states. The large variety in the spectroscopic and relaxation behavior of fluoropyridine radical cations is explained in terms of their electronic structure and of the differential shifts of the individual electronic states caused by the fluorine substitution.
N′-[(E)-3-Chloro-2-fluorobenzylidene]-6-methylnicotinohydrazide monohydrate
Fun, Hoong-Kun; Quah, Ching Kheng; Shyma, P. C.; Kalluraya, Balakrishna; Vidyashree, J. H. S.
2012-01-01
The title compound, C14H11ClFN3O·H2O, exists in an E conformation with respect to the N=C bond. The pyridine ring forms a dihedral angle of 5.00 (9)° with the benzene ring. In the crystal, the ketone O atom accepts one O—H⋯O and one C—H⋯O hydrogen bond, the water O atom accepts one N—H⋯O and two C—H⋯O hydrogen bonds and the pyridine N atom accepts one O—H⋯N hydrogen bond, forming layers parallel to the ab plane. PMID:22798798
Dimacrolide Sesquiterpene Pyridine Alkaloids from the Stems of Tripterygium regelii.
Fan, Dongsheng; Zhu, Guo-Yuan; Li, Ting; Jiang, Zhi-Hong; Bai, Li-Ping
2016-08-29
Two new dimacrolide sesquiterpene pyridine alkaloids (DMSPAs), dimacroregelines A (1) and B (2), were isolated from the stems of Tripterygium regelii. The structures of both compounds were characterized by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. Compounds 1 and 2 are two rare DMSPAs possessing unique 2-(3'-carboxybutyl)-3-furanoic acid units forming the second macrocyclic ring, representing the first example of DMSPAs bearing an extra furan ring in their second macrocyclic ring system. Compound 2 showed inhibitory effects on the proliferation of human rheumatoid arthritis synovial fibroblast cell (MH7A) at a concentration of 20 μM.
NASA Astrophysics Data System (ADS)
Alex, Ancy Smitha; Kumar, Vijendra; Sekkar, V.; Bandyopadhyay, G. G.
2017-07-01
Hydroxyl-terminated polybutadiene (HTPB) is the workhorse propellant binder for launch vehicle and missile applications. Accurate determination of the hydroxyl value (OHV) of HTPB is crucial for tailoring the ultimate mechanical and ballistic properties of the propellant derived. This article describes a fast and effective methodology free of pyridine based on acetic anhydride, N-methyl imidazole, and toluene for the determination of OHV of nonpolar polymers like HTPB and other hydroxyl compounds. This method gives accurate and reproducible results comparable to standard methods and is superior to existing methods in terms of user friendliness, efficiency, and time requirement.
Manzanera-Estrada, Mayra; Flores-Alamo, Marcos; Grevy M., Jean-Michel; Ruiz-Azuara, Lena; Ortiz-Frade, Luis
2012-01-01
In the title compound, [Cu(C16H20N2S2)(H2O)](NO3)2·CH3CN, the CuII atom displays a distorted square-pyramidal coordination, in which a water molecule occupies the apical position and the basal plane is formed by two N atoms and two S atoms of a 1,8-bis(pyridin-2-yl)-3,6-dithiaoctane ligand. The crystal packing is stabilized by O—H⋯O and C—H⋯O hydrogen bonds. PMID:22346819
Methods for the synthesis of deuterated vinyl pyridine monomers
Hong, Kunlun; Yang, Jun; Bonnesen, Peter V
2014-02-25
Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.
Methods for the synthesis of deuterated vinyl pyridine monomers
Hong, Kunlun; Yang, Jun; Bonnesen, Peter V
2015-01-13
Methods for synthesizing deuterated vinylpyridine compounds of the Formula (1), wherein the method includes: (i) deuterating an acyl pyridine of the Formula (2) in the presence of a metal catalyst and D.sub.2O, wherein the metal catalyst is active for hydrogen exchange in water, to produce a deuterated acyl compound of Formula (3); (ii) reducing the compound of Formula (3) with a deuterated reducing agent to convert the acyl group to an alcohol group, and (iii) dehydrating the compound produced in step (ii) with a dehydrating agent to afford the vinylpyridine compound of Formula (1). The resulting deuterated vinylpyridine compounds are also described.
Cuccia, Louis A; Ruiz, Eliseo; Lehn, Jean-Marie; Homo, Jean-Claude; Schmutz, Marc
2002-08-02
The synthesis and characterization of an alternating pyridine-pyridazine strand comprising thirteen heterocycles are described. Spontaneous folding into a helical secondary structure is based on a general molecular self-organization process enforced by the conformational information encoded within the primary structure of the molecular strand itself. Conformational control based on heterocyclic "helicity codons" illustrates a strategy for designing folding properties into synthetic oligomers (foldamers). Strong intermolecular interactions of the highly ordered lock-washer subunits of compound 3 results in hierarchical supramolecular self-assembly into protofibrils and fibrils. Compound 3 also forms mechanically stable two-dimensional Langmuir-Blodgett and cast thin films.
Kuzmina, Olesya M; Knochel, Paul
2014-10-03
We report a CrCl2-catalyzed oxidative arylation of various pyridines, aryl oxazolines, and aryl imines using aromatic Grignard reagents in the presence of 2,3-dichlorobutane (DCB). Most of the reactions proceed rapidly at 25 °C and do not require any additional ligand. Benzo[h]quinoline, 2-arylpyridine, aryl oxazoline, and imines were successfully arylated in good yields under these conditions. A TMS-substituent was used to prevent double arylation. After oxidative cross-coupling the TMS-group was further converted to a second ortho-aryl substituent. Remarkably, inexpensive aryl N-butylimine derivatives are excellent substrates for this oxidative arylation.
Sribalan, Rajendran; Banuppriya, Govindharasu; Kirubavathi, Maruthan; Jayachitra, A; Padmini, Vediappen
2016-12-01
A series of fifteen new chemical entities, 3-(pyridin-4-yl)-1H-pyrazole-5-carboxamide chalcones (6a-o), were synthesized as new hybrids with enriched biological activities compared to their parent molecules. The compounds were characterized by 1 H NMR, 13 C NMR, Mass and IR spectral studies. Their antibacterial, anti-inflammatory and antioxidant activities have been evaluated. These compounds showed moderate to good antibacterial, anti-inflammatory and antioxidant activities. The molecular docking analysis was performed with cyclooxygenase enzyme to ascertain the probable binding model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ghorab, Mostafa M; Ragab, Fatma A; Heiba, Helmy I; Agha, Hebaallah M; Nissan, Yassin M
2012-01-01
A series of novel 4-(4-substituted-thiazol-2-ylamino)-N-(pyridin-2-yl) benzene-sulfonamides were synthesized and screened for their cytotoxic activity against human breast cancer cell line (MCF-7). Compounds 6, 7, 9, 10, 11, and 14 displayed significant activity against MCF-7 when compared to doxorubicin, which was used as a reference drug. The synergistic effect of Gamma radiation for the most active derivatives 7, 9, and 11 was also studied and their IC(50) values markedly decreased to 11.9 μM, 11.7 μM, and 11.6 μM, respectively.
2011-01-01
Resonant Raman study reveals the noticeable effect of the ligand exchange on the nanocrystal (NC) surface onto the phonon spectra of colloidal CdTe NC of different size and composition. The oleic acid ligand exchange for pyridine ones was found to change noticeably the position and width of the longitudinal optical (LO) phonon mode, as well as its intensity ratio to overtones. The broad shoulder above the LO peak frequency was enhanced and sharpened after pyridine treatment, as well as with decreasing NC size. The low-frequency mode around 100 cm-1 which is commonly related with the disorder-activated acoustical phonons appears in smaller NCs but is not enhanced after pyridine treatment. Surprisingly, the feature at low-frequency shoulder of the LO peak, commonly assigned to the surface optical phonon mode, was not sensitive to ligand exchange and concomitant close packing of the NCs. An increased structural disorder on the NC surface, strain and modified electron-phonon coupling is discussed as the possible reason of the observed changes in the phonon spectrum of ligand-exchanged CdTe NCs. PACS: 63.20.-e, 78.30.-j, 78.67.-n, 78.67.Bf PMID:21711581
The effect of gold(I) coordination on the dual fluorescence of 4-(dimethylamino)pyridine.
López-de-Luzuriaga, José M; Manso, Elena; Monge, Miguel; Olmos, M Elena; Rodríguez-Castillo, María; Sampedro, Diego
2015-06-28
The reactions of 4(dimethylamino)pyridine (DMAP) with the gold(I) precursors [AuR(tht)] (R = C6F5, C6Cl2F3 or C6Cl5; tht = tetrahydrothiophene) lead to complexes [AuR(DMAP)] (R = C6F5 (1), C6Cl2F3 (2) or C6Cl5 (3)). X-ray diffraction studies of the complexes reveal the presence of discrete molecules in which aurophilic contacts are absent, with π-stacking (1) or hydrogen bond (2) interactions being responsible for the supramolecular arrangements found in the solid state. All complexes display fluorescence in solution in solvents of different polarities such as toluene, chloroform or acetonitrile. In all cases the emission energy is similar to the low-energy Twisted Intramolecular Charge Transfer (TICT) emission of free DMAP. TDDFT calculations confirm that the fluorescence of complexes 1-3 arises from the ICT excited state of bonded DMAP in which a 90° distortion of the pyridine ring and -NMe2 planes is observed. Model calculations based on experimental parameters show a higher degree of polarization of DMAP upon coordination to Au(I) organometallic fragments.
Eurtivong, Chatchakorn; Semenov, Victor; Semenova, Marina; Konyushkin, Leonid; Atamanenko, Olga; Reynisson, Jóhannes; Kiselyov, Alex
2017-01-15
A series of 3-amino-thieno[2,3-b]pyridines was prepared and tested in a phenotypic sea urchin embryo assay to identify potent and specific molecules that affect tubulin dynamics. The most active compounds featured a tricyclic core ring system with a fused cycloheptyl or cyclohexyl substituent and unsubstituted or alkyl-substituted phenyl moiety tethered via a carboxamide. Low nano-molar potency was observed in the sea urchin embryos for the most active compounds (1-5) suggestive of a microtubule-destabilising effect. The molecular modelling studies indicated that the tubulin colchicine site is inhibited, which often leads to microtubule-destabilisation in line with the sea urchin embryo results. Finally, the identified hits displayed a robust growth inhibition (GI 50 of 50-250nM) of multidrug-resistant melanoma MDA-MB-435 and breast MDA-MB-468 human cancer cell lines. This work demonstrates that for the thieno[2,3-b]pyridines the most effective mechanism of action is microtubule-destabilisation initiated by binding to the colchicine pocket. Copyright © 2016 Elsevier Ltd. All rights reserved.
Anilkumar, Nirvanappa C.; Sundaram, Mahalingam S.; Mohan, Chakrabhavi Dhananjaya; Rangappa, Shobith; Bulusu, Krishna C.; Fuchs, Julian E.; Girish, Kesturu S.; Bender, Andreas; Basappa; Rangappa, Kanchugarakoppal S.
2015-01-01
Drugs such as necopidem, saripidem, alpidem, zolpidem, and olprinone contain nitrogen-containing bicyclic, condensed-imidazo[1,2-α]pyridines as bioactive scaffolds. In this work, we report a high-yield one pot synthesis of 1-(2-methyl-8-aryl-substitued-imidazo[1,2-α]pyridin-3-yl)ethan-1-onefor the first-time. Subsequently, we performed in silico mode-of-action analysis and predicted that the synthesized imidazopyridines targets Phospholipase A2 (PLA2). In vitro analysis confirmed the predicted target PLA2 for the novel imidazopyridine derivative1-(2-Methyl-8-naphthalen-1-yl-imidazo [1,2-α]pyridine-3-yl)-ethanone (compound 3f) showing significant inhibitory activity towards snake venom PLA2 with an IC50 value of 14.3 μM. Evidently, the molecular docking analysis suggested that imidazopyridine compound was able to bind to the active site of the PLA2 with strong affinity, whose affinity values are comparable to nimesulide. Furthermore, we estimated the potential for oral bioavailability by Lipinski's Rule of Five. Hence, it is concluded that the compound 3f could be a lead molecule against snake venom PLA2. PMID:26196520
Discovery of novel scaffolds for γ-secretase modulators without an arylimidazole moiety.
Sekioka, Ryuichi; Honjo, Eriko; Honda, Shugo; Fuji, Hideyoshi; Akashiba, Hiroki; Mitani, Yasuyuki; Yamasaki, Shingo
2018-01-15
Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer's disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole. High-throughput screening identified 2-methyl-8-[(2-methylbenzyl)oxy]-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3a), which inhibited the cellular production of Aβ42 (IC 50 = 7.1 µM) without changing total production of Aβ. Structural optimization of this series of compounds identified 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethylisoindolin-1-one (3m) as a potent inhibitor of Aβ42 (IC 50 = 0.39 µM) but not CYP3A4. Further, 3m demonstrated a sustained pharmacokinetic profile in mice and sufficiently penetrated the brain. Copyright © 2017. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Uçar, İbrahim; Bulut, Ahmet; Karadağ, Ahmet; Kazak, Canan
2007-06-01
Two new dipicolinate complexes of cobalt, [Co(dpc)(na)(H 2O) 2]·H 2O ( 1) and [Co(dpc)(ina)(H 2O) 2] ( 2) [dpc is dipicolinate or pyridine-2,6-dicarboxylate, na is nicotinamide and ina is isonicotinamide], have been prepared and characterized by thermal analysis, IR spectroscopy and X-ray diffraction techniques. The complex ( 1) crystallizes in triclinic system, whereas the complex ( 2) crystallizes in monoclinic system. The Co(II) ion in both complexes is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of na ( 1) or ina ( 2), forming the distorted octahedral geometry. The complex molecules ( 1) and ( 2) are connected via N sbnd H⋯O and O sbnd H⋯O hydrogen bonds. The voltammetric behaviour of complexes ( 1) and ( 2) was also investigated in DMSO (dimethylsulfoxide) solution by cyclic voltammetry using n-Bu 4NClO 4 supporting electrolyte. The complexes exhibit only metal centered electroactivity in the potential ±1.25 V versus Ag/AgCl reference electrode.
Widger, Leland R.; Siegler, Maxime A.
2013-01-01
The unsymmetrical iron(II) bis(imino)pyridine complexes [FeII(LN3SMe)(H2O)3](OTf)2 (1), and [FeII(LN3SMe)Cl2] (2) were synthesized and their reactivity with O2 was examined. Complexes 1 and 2 were characterized by single crystal X-ray crystallography, LDI-MS, 1H-NMR and elemental analysis. The LN3SMe ligand was designed to incorporate a single sulfide donor and relies on the bis(imino)pyridine scaffold. This scaffold was selected for its ease of synthesis and its well-precedented ability to stabilize Fe(II) ions. Complexes 1 and 2 ware prepared via a metal-assisted template reaction from the unsymmetrical pyridyl ketone precursor 2-(O=CMe)-6-(2,6-(iPr2-C6H3N=CMe)-C5H3N. Reaction of 1 with O2 was shown to afford the S-oxygenated sulfoxide complex [Fe(LN3S(O)Me)(OTf)]2+(3), whereas compound 2, under the same reaction conditions, afforded the corresponding sulfone complex [Fe(LN3S(O2)Me)Cl]2+ (4). PMID:23878411
Raman, Gurusamy; Mohan, KasiNadar; Manohar, Venkat; Sakthivel, Natarajan
2014-02-01
Tobacco wastes that contain nicotine alkaloids are harmful to human health and the environment. In the investigation, a novel nicotine-biodegrading bacterium TND35 was isolated and identified as Pseudomonas plecoglossicida on the basis of phenotypic, biochemical characteristics and 16S rRNA sequence homology. We have studied the nicotine biodegradation potential of strain TND35 by detecting the intermediate metabolites using an array of approaches such as HPLC, GC-MS, NMR and FT-IR. Biotransformation metabolites, N-methylmyosmine, 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and other three new intermediate metabolites namely, 3,5-bis (1-methylpyrrolidin-2-yl) pyridine, 2,3-dihydro-1-methyl-5-(pyridin-3-yl)-1H-pyrrol-2-ol and 5-(pyridin-3-yl)-1H-pyrrol-2(3H)-one have been identified. Interestingly, these intermediate metabolites suggest that the strain TND35 employs a novel nicotine biodegradation pathway, which is different from the reported pathways of Aspergillus oryzae 112822, Arthrobacter nicotinovorans pAO1, Agrobacterium tumefaciens S33 and other species of Pseudomonas. The metabolite, HPB reported in this study can also be used as biochemical marker for tobacco related cancer studies.
Protonmotive force: development of electrostatic drivers for synthetic molecular motors.
Crowley, James D; Steele, Ian M; Bosnich, Brice
2006-12-04
Ferrocene has been investigated as a platform for developing protonmotive electrostatic drivers for molecular motors. When two 3-pyridine groups are substituted to the (rapidly rotating) cyclopentadienyl (Cp) rings of ferrocene, one on each Cp, it is shown that the (Cp) eclipsed, pi-stacked rotameric conformation is preferred both in solution and in the solid state. Upon quaternization of both of the pyridines substituents, either by protonation or by alkylation, it is shown that the preferred rotameric conformation is one where the pyridinium groups are rotated away from the fully pi-stacked conformation. Electrostatic calculations indicate that the rotation is caused by the electrostatic repulsion between the charges. Consistently, when the pi-stacking energy is increased pi-stacked population increases, and conversely when the electrostatic repulsion is increased pi-stacked population is decreased. This work serves to provide an approximate estimate of the amount of torque that the electrostatically driven ferrocene platform can generate when incorporated into a molecular motor. The overall conclusion is that the electrostatic interaction energy between dicationic ferrocene dipyridyl systems is similar to the pi-stacking interaction energy and, consequently, at least tricationic systems are required to fully uncouple the pi-stacked pyridine substituents.
NASA Astrophysics Data System (ADS)
Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge
2016-05-01
Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.
Experimental and theoretical studies of 3-benzyloxy-2-nitropyridine
NASA Astrophysics Data System (ADS)
Sun, Wenting; Cui, Yu; Liu, Huimin; Zhao, Haitao; Zhang, Wenqin
2012-10-01
The structure of 3-benzyloxy-2-nitropyridine has been investigated both experimentally and theoretically. The X-ray crystallography results show that the nitro group is tilted out of the pyridine ring plane by 66.4(4)°, which is mainly attributed to the electron-electron repulsions of the lone pairs in O atom of the 3-benzyloxy moiety with O atom in nitro group. An interesting centrosymmetric π-stacking molecular pair has been found in the crystalline state, which results in the approximate coplanarity of the pyridine ring with the benzene ring. The calculated results show that the dihedral angle between the nitro group and pyridine ring from the X3LYP method is much closer to the experimental data than that from the M06-2X one. The existing two conformational isomers of 3-benzyloxy-2-nitropyridine with equal energy explain well the disorder of the nitro group at room temperature. In addition, the vibrational frequencies are also calculated by the X3LYP and M06-2X methods and compared with the experimental results. The prediction from the X3LYP method coincides with the locations of the experimental frequencies well.
Greyling, Guilaume; Pasch, Harald
2017-08-25
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Rao, R Nishanth; Mm, Balamurali; Maiti, Barnali; Thakuria, Ranjit; Chanda, Kaushik
2018-03-12
An expeditious catalyst-free heteroannulation reaction for imidazo[1,2- a]pyridines/pyrimidines/pyrazines was developed in green solvent under microwave irradiation. Using H 2 O-IPA as the reaction medium, various substituted 2-aminopyridines/pyrazines/pyrimidines underwent annulation reaction with α-bromoketones under microwave irradiation to provide the corresponding imidazo[1,2- a]pyridines/pyrimidines/pyrazines in excellent yields. The synthetic methodology appears to be very simple and superior to the already reported procedures with the high abundance of commercial reagents and great ability in expanding the molecular diversity. The present synthetic sequence is visualized as an environmentally benign process which allows the introduction of three points of structural diversity to expand chemical space with excellent purity and yields. The anti-inflammatory and antimicrobial activities of the derivatives were evaluated. Screening results uncovered three derivatives with strong inhibition of albumin denaturation and two derivatives were active on Proteus and Klebsiella bacteria. These positive bioassay results implied that the library of potential anti-inflammatory agents could be rapidly prepared in an ecofriendly manner, and provided new insights into drug discovery for medicinal chemists.
NASA Astrophysics Data System (ADS)
Rodrigues, Claudia; Delolo, Fábio G.; Ferreira, Lucas M.; da S. Maia, Pedro I.; Deflon, Victor M.; Rabeah, Jabor; Brückner, Angelika; Norinder, Jakob; Börner, Armin; Bogado, André L.; Batista, Alzir A.
2016-05-01
In this work, five ruthenium(III) complexes containing phosphine and pyridine based ligands with general formula mer-[RuCl3(dppb)(N)] [where dppb = 1,4-bis(diphenylphosphino)butane and N = pyridine (py), 4-methylpyridine (4-Mepy), 4-vinylpyridine (4-Vpy), 4-tert-butylpyridine (4-tBupy) and 4-phenylpyridine (4-Phpy)] were synthesized and characterized using spectroscopic and electrochemical techniques, as well as magnetic susceptibility to check the paramagnetism of these compounds. These complexes were tested as catalytic precursors in hydrogenation reactions with cyclohexene, undecanal and cyclohexanecarboxaldehyde, as compounds bearing Cdbnd C and Cdbnd O groups. Broad screening was carried out in order to find the optimal reaction conditions with the highest conversion. It was found that by using a ratio of Ru-catalyst/substrate = 1:530 at 80 °C and 15 bar of H2 for 24 h, cyclohexene can be reduced. Hydrogenation of undecanal was possible using a Ru-catalyst/substrate ratio of 1:100 at 160 °C and 100 bar for 24 h, and for the reduction of cyclohexanecarboxaldehyde the reaction conditions were Ru-catalyst/substrate ratio of 1:100 at 160 °C and 50 bar for 24 h.
Liu, Lei-Lei; Zhou, Yan; Li, Ping; Tian, Jiang-Ya
2014-02-01
In poly[[μ2-1,2-bis(pyridin-4-yl)ethene-κ(2)N:N'][μ2-2,2'-(diazenediyl)dibenzoato-κ(3)O,O':O'']cadmium(II)], [Cd(C14H8N2O4)(C12H10N2)]n, the asymmetric unit contains one Cd(II) cation, one 2,2'-(diazenediyl)dibenzoate anion (denoted L(2-)) and one 1,2-bis(pyridin-4-yl)ethene ligand (denoted bpe). Each Cd(II) centre is six-coordinated by four O atoms of bridging/chelating carboxylate groups from three L(2-) ligands and by two N atoms from two bpe ligands, forming a distorted octahedron. The Cd(II) cations are bridged by L(2-) and bpe ligands to give a two-dimensional (4,4) layer. The layers are interlinked through bridging carboxylate O atoms from L(2-) ligands, generating a two-dimensional bilayered structure with a 3(6)4(13)6(2) topology. The bilayered structures are further extended to form a three-dimensional supramolecular architecture via a combination of hydrogen-bonding and aromatic stacking interactions.
Crystal structure of bis(3-bromopyridine-κN)bis(O-ethyl dithiocarbonato-κ2 S,S′)nickel(II)
Kant, Rajni; Kour, Gurvinder; Anthal, Sumati; Neerupama; Sachar, Renu
2015-01-01
In the title molecular complex, [Ni(C3H5OS2)2(C5H4BrN)2], the Ni2+ cation is located on a centre of inversion and has a distorted octahedral N2S4 environment defined by two chelating xanthate ligands and two monodentate pyridine ligands. The C—S bond lengths of the thiocarboxylate group are indicative of a delocalized bond and the O—Csp 2 bond is considerably shorter than the O—Csp 3 bond, consistent with a significant contribution of one resonance form of the xanthate anion that features a formal C=O+ unit and a negative charge on each of the S atoms. The packing of the molecules is stabilized by C—H⋯S and C—H⋯π interactions. In addition, π–π interactions between the pyridine rings [centroid-to-centroid distance = 3.797 (3) Å] are also present. In the crystal structure, molecules are arranged in rows along [100], forming layers parallel to (010) and (001). PMID:25705471
Binding of group 15 and group 16 oxides by a concave host containing an isophthalamide unit
Eckelmann, Jens; Saggiomo, Vittorio; Fischmann, Svenja
2012-01-01
Summary A bi-macrocycle with an incorporated isophthalamide substructure was synthesized by double amide formation between an isophthaloyl dichloride and two equivalents of a bis(alkenyloxy)aniline, followed by ring-closing metathesis and hydrogenation. In contrast to many related isophthalamides, the concave host exhibits a better binding for oxides, such as DMSO or pyridine-N-oxide, than for halide anions. A general method for a quick estimation of the strength of binding derived from only a few data points is presented and gives an estimated K ass of pyridine-N-oxide of ca. 40 M−1, NMR titration confirms 25 M−1. PMID:22423268
Current Status on Biochemistry and Molecular Biology of Microbial Degradation of Nicotine
Gurusamy, Raman; Natarajan, Sakthivel
2013-01-01
Bioremediation is one of the most promising methods to clean up polluted environments using highly efficient potent microbes. Microbes with specific enzymes and biochemical pathways are capable of degrading the tobacco alkaloids including highly toxic heterocyclic compound, nicotine. After the metabolic conversion, these nicotinophilic microbes use nicotine as the sole carbon, nitrogen, and energy source for their growth. Various nicotine degradation pathways such as demethylation pathway in fungi, pyridine pathway in Gram-positive bacteria, pyrrolidine pathway, and variant of pyridine and pyrrolidine pathways in Gram-negative bacteria have been reported. In this review, we discussed the nicotine-degrading pathways of microbes and their enzymes and biotechnological applications of nicotine intermediate metabolites. PMID:24470788
catena-Poly[[bis[4-(dimethylamino)pyridine-κN 1]cobalt(II)]-di-μ-azido-κ4 N 1:N 3
Guenifa, Fatiha; Zeghouan, Ouahida; Hadjadj, Nasreddine; Bendjeddou, Lamia; Merazig, Hocine
2013-01-01
The title layered polymer, [Co(N3)2(C7H10N2)2]n, contains CoII, azide and 4-(dimethylamino)pyridine (4-DMAP) species with site symmetries m2m, 2 and m, respectively. The Co2+ ion adopts an octahedral coordination geometry in which four N atoms from azide ligands lie in the equatorial plane and two 4-DMAP N atoms occupy the axial positions. The CoII atoms are connected by two bridging azide ligands, resulting in a chain parallel to the c axis. PMID:23476514
Synthesis and anti-cancer activity of chiral tetrahydropyrazolo[1,5-a]pyridine-fused steroids.
Lopes, Susana M M; Sousa, Emanuel P; Barreira, Luísa; Marques, Cátia; Rodrigues, Maria João; Pinho E Melo, Teresa M V D
2017-06-01
Regio- and stereoselective synthesis of novel chiral 4,5,6,7-tetrahydropyrazolo[1,5-a]pyridine-fused steroids via [8π+2π] cycloaddition of diazafulvenium methides with steroidal scaffolds is reported. The biological evaluation of the new family of hexacyclic steroids as anti-cancer agents was also carried out. Hexacyclic steroids bearing a benzyl group at C-22, derived from 16-dehydropregnenolone and 16-dehydroprogesterone, show considerable cytotoxicity against EL4 (murine T-lymphoma) in contrast with the corresponding C-22-unsubstituted derivatives showing low cytotoxicity. Thus, results indicate that the presence of the benzyl group is important to ensure cytotoxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Synthesis and Cytotoxic Evaluation of Steroidal Copper (Cu (II)) Complexes
Huang, Yanmin; Kong, Erbin; Zhan, Junyan; Chen, Shuang; Gan, Chunfang; Liu, Zhiping; Pang, Liping
2017-01-01
Using estrone and pregnenolone as starting materials, some steroidal copper complexes were synthesized by the condensation of steroidal ketones with thiosemicarbazide or diazanyl pyridine and then complexation of steroidal thiosemicarbazones or steroidal diazanyl pyridines with Cu (II). The complexes were characterized by IR, NMR, and HRMS. The synthesized compounds were screened for their cytotoxicity against HeLa, Bel-7404, and 293T cell lines in vitro. The results show that all steroidal copper (II) complexes display obvious antiproliferative activity against the tested cancer cells. The IC50 values of complexes 5 and 12 against Bel-7404 (human liver carcinoma) are 5.0 and 7.0 μM. PMID:29180937
3-(4-Hydroxyphenyl)-1,5-bis(pyridin-2-yl)pentane-1,5-dione
Pan, Lixia; Shi, Huaduan; Ma, Zhen
2013-01-01
In the title molecule, C21H18N2O3, the pyridine rings make a dihedral angle of 13.1 (1)°. The phenyl ring is approximately perpendicular to both of them, forming dihedral angles of 87.4 (1)and 81.9 (1)°. In the crystal, pairs of O—H⋯N hydrogen bonds link the molecules into centrosymmetric dimers. Additional C—H⋯O, π–π [centroid–centroid distance = 3.971 (2) Å] and C—H⋯π interactions consolidate the dimers into a three-dimensional network. PMID:24098256
NASA Technical Reports Server (NTRS)
Worstell, J. H.; Daniel, S. R.
1981-01-01
The influence of substituted pyridines, pyrroles, indoles, and quinolines on the storage stability of conventional Jet A turbine fuel is evaluated. Significant increases in the amount of deposit formed in accelerated storage tests are found upon addition of these compounds at levels as low as one ppm nitrogen. While the effect is correlated with basicity of the nitrogen compound within a given compound class, the correlation does not hold between classes (pyridines, quinolines, etc.). Steric hindrance at the nitrogen atom greatly inhibits deposit promotion. The characteristics, but not the elemental composition, of deposits vary with the identity of the added nitrogen compound and with deposition temperature.
Sladowska, Helena; Sabiniarz, Aleksandra; Sapa, Jacek; Filipek, Barbara
2009-01-01
Synthesis of 2-(2-hydroxy-3-amino)propyl derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (24-35) is described. The chlorides used in the above synthesis exist mainly in the cyclic forms (18, 20-23). Only chloride with benzhydryl substituent at the nitrogen atom of piperazine has the chain structure (19). Among the studied imides the most active analgesics in the "writhing" syndrome test proved to be compounds 30 and 31 (with LD50 > 2000 mg/kg) containing 4-benzylpiperidino group. Furthermore, all imides suppressed significantly spontaneous locomotor activity of mice.
Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz
2002-11-01
Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.
Crystal structure of poly[{μ-N,N′-bis[(pyridin-4-yl)methyl]oxalamide}-μ-oxalato-cobalt(II)
Zou, Hengye; Qi, Yanjuan
2014-01-01
In the polymeric title compound, [Co(C2O4)(C14H14N4O2)]n, the CoII atom is six-coordinated by two N atoms from symmetry-related bis[(pyridin-4-yl)methyl]oxalamide (BPMO) ligands and four O atoms from two centrosymmetric oxalate anions in a distorted octahedral coordination geometry. The CoII atoms are linked by the oxalate anions into a chain running parallel to [100]. The chains are linked by the BPMO ligands into a three-dimensional architecture. In addition, N—H⋯O hydrogen bonds stabilize the crystal packing. PMID:25309173
NASA Astrophysics Data System (ADS)
Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.
2012-12-01
The 2:2 ionic crystals of pyridine betaine (PyB) with squaric acid (H2SQ) belong to monoclinic space group C2/c. Supramolecular structure of the crystals investigated is formed by the loss of one proton from every two squaric acid molecules. Pyridine betaines form a homoconjugated cation, [(PyB)2H]+, through a short, symmetric COO⋯H⋯OOC hydrogen bond of 2.463(2) Å. The hydrogen squarate anions are linked into a homoconjugated anion, [(HSQ)2H]-, by a short symmetric, non-linear O⋯H⋯O hydrogen bond of 2.453(1) Å, with the H-atom located on the twofold axis. The bis(hydrogen squarate)hydrogen anions are linked into a centrosymmetric cyclic dimer by two identical asymmetric Osbnd H⋯O hydrogen bonds of 2.536(2) Å. The (PyB)2H cation and cyclic dimer of hydrogen squarate anions are placed around two different systems of inversion centers in the unit cell. The FTIR spectrum is consistent with the X-ray results. The 13C chemical shift of the Cdbnd O atom confirms the presence of the hydrogen squarate anion in the complex studied. The complex decomposed in three thermal stages.
Karade, Hitendra N; Raviraju, G; Acharya, B N; Valiveti, Aditya Kapil; Bhalerao, Uma; Acharya, Jyotiranjan
2016-09-15
Previously (Karade et al., 2014), we have reported the synthesis and in vitro evaluation of bis-pyridinium derivatives of pyridine-3-yl-(2-hydroxyimino acetamide), as reactivators of sarin and VX inhibited hAChE. Few of the molecules showed superior in vivo protection efficacy (mice model) (Kumar et al., 2014; Swami et al., 2016) in comparison to 2-PAM against DFP and sarin poisoning. Encouraged by these results, herein we report the synthesis and in vitro evaluation of isonicotinamide derivatives of pyridine-3-yl-(2-hydroxyimino acetamide) (4a-4d) against sarin and VX inhibited erythrocyte ghost hAChE. Reactivation kinetics of these compounds was studied and the determined kinetic parameters were compared with that of commercial reactivators viz. 2-PAM and obidoxime. In comparison to 2-PAM and obidoxime, oxime 4a and 4b exhibited enhanced reactivation efficacy toward sarin inhibited hAChE while oxime 4c showed far greater reactivation efficacy toward VX inhibited hAChE. The acid dissociation constant and IC50 values of these oximes were determined and correlated with the observed reactivation potential. Copyright © 2016 Elsevier Ltd. All rights reserved.
Velasco, V.; Aguilà, D.; Barrios, L. A.; Borilovic, I.; Roubeau, O.; Ribas-Ariño, J.; Fumanal, M.; Teat, S. J.
2015-01-01
The aerobic reaction of the multidentate ligand 2,6-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-pyridine, H4L, with Co(ii) salts in strong basic conditions produces the clusters [Co4(L)2(OH)(py)7]NO3 (1) and [Co8Na4(L)4(OH)2(CO3)2(py)10](BF4)2 (2). Analysis of their structure unveils unusual coordination features including a very rare bridging pyridine ligand or two trapped carbonate anions within one coordination cage, forced to stay at an extremely close distance (d O···O = 1.946 Å). This unprecedented non-bonding proximity represents a meeting point between long covalent interactions and “intermolecular” contacts. These original motifs have been analysed here through DFT calculations, which have yielded interaction energies and the reduced repulsion energy experimented by both CO3 2– anions when located in close proximity inside the coordination cage. PMID:28616127
Riener, Korbinian; Pöthig, Alexander; Cokoja, Mirza; Herrmann, Wolfgang A; Kühn, Fritz E
2015-08-01
In recent years, the use of copper N-heterocyclic carbene (NHC) complexes has expanded to fields besides catalysis, namely medicinal chemistry and luminescence applications. In the latter case, multinuclear copper NHC compounds have attracted interest, however, the number of these complexes in the literature is still quite limited. Bis[μ-1,3-bis(3-tert-butylimidazolin-2-yliden-1-yl)pyridine]-1κ(4)C(2),N:N,C(2');2κ(4)C(2),N:N,C(2')-dicopper(I) bis(hexafluoridophosphate), [Cu2(C19H25N5)2](PF6)2, is a dimeric copper(I) complex bridged by two CNC, i.e. bis(N-heterocyclic carbene)pyridine, ligands. Each Cu(I) atom is almost linearly coordinated by two NHC ligands and interactions are observed between the pyridine N atoms and the metal centres, while no cuprophilic interactions were observed. Very strong absorption bands are evident in the UV-Vis spectrum at 236 and 274 nm, and an emission band is observed at 450 nm. The reported complex is a new example of a multinuclear copper NHC complex and a member of a compound class which has only rarely been reported.
NASA Astrophysics Data System (ADS)
Lang, Carolin; Seifert, Karlheinz; Dettner, Konrad
2012-11-01
Rove beetles of the genus Stenus Latreille and the genus Dianous Leach possess pygidial glands containing a multifunctional secretion of piperidine and pyridine-derived alkaloids as well as several terpenes. One important character of this secretion is the spreading potential of its different compounds, stenusine, norstenusine, 3-(2-methyl-1-butenyl)pyridine, cicindeloine, α-pinene, 1,8-cineole and 6-methyl-5-heptene-2-one. The individual secretion composition enables the beetles to skim rapidly and far over the water surface, even when just a small amount of secretion is emitted. Ethological investigations of several Stenus species revealed that the skimming ability, skimming velocity and the skimming behaviour differ between the Stenus species. These differences can be linked to varied habitat claims and secretion saving mechanisms. By means of tensiometer measurements using the pendant drop method, the spreading pressure of all secretion constituents as well as some naturally identical beetle secretions on the water surface could be established. The compound 3-(2-methyl-1-butenyl)pyridine excelled stenusine believed to date to be mainly responsible for skimming relating to its surface activity. The naturally identical secretions are not subject to synergistic effects of the single compounds concerning the spreading potential. Furthermore, evolutionary aspects of the Steninae's pygidial gland secretion are discussed.
NASA Astrophysics Data System (ADS)
Wang, Li; Yan, Wei; He, Chi; Wen, Hang; Cai, Zhang; Wang, Zixuan; Chen, Zhengzheng; Liu, Weifeng
2018-03-01
Nitrogen-doped biochars derived from Phragmites australis (PA) were prepared using ammonium chloride (AC) and ammonium acetate (AA) as nitrogen sources by phosphoric acid activation via microwave assisted treatment. Their physicochemical properties, acid red 18 (AR18) adsorption performance and possible mechanisms were systematically evaluated. Nitrogen was successfully doped onto the biochar's surface in the formation of pyrrole-N, pyridine-N and oxidized-N with pyridine-N being the major component (64%). The pHiep and basic foundational groups of the biochars increased consequently however their surface areas slightly decreased. The adsorption kinetic data were best fit to the pseudo-second order model and the equilibrium data were well simulated by Freundlich model for all biochars, indicating the important role of chemical interactions. The maximum AR18 adsorption capacities of PAB-AA and PAB-AC were 1.41 and 1.18 times higher compared with the non N-doped biochar, which were mainly attributed to the π-π EDA interaction between the pyridine-N and AR18 as revealed by the comparison of XPS analyses before and after AR18 adsorption. Meanwhile, other mechanisms such as pore filling effect, Lewis acid-base interaction, electrostatic attraction and hydrogen bonding also existed as demonstrated by BET, XPS and FTIR analyses.
Klemens, Tomasz; Czerwińska, Katarzyna; Szlapa-Kula, Agata; Kula, Slawomir; Switlicka, Anna; Kotowicz, Sonia; Siwy, Mariola; Bednarczyk, Katarzyna; Krompiec, Stanisław; Smolarek, Karolina; Maćkowski, Sebastian; Danikiewicz, Witold; Schab-Balcerzak, Ewa; Machura, Barbara
2017-07-25
Nine rhenium(i) complexes possessing three carbonyl groups together with a bidentate coordinated 2,6-di(thiazol-2-yl)pyridine derivative were synthesized to examine the impact of structure modification of the triimine ligand on the photophysical, thermal and electrochemical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)]. The Re(i) complexes were fully characterized using IR, 1 H and 13 C, HRMS-ESI and single crystal X-ray analysis. Their thermal properties were evaluated using DSC and TGA measurements. Photoluminescence spectra of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were investigated in solution and in the solid state, at 298 and 77 K. Both emission wavelengths and quantum yields of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)] were found to be structure-related, demonstrating a crucial role of the substituent attached to the 2,6-di(thiazol-2-yl)pyridine skeleton. In order to fully understand the photophysical properties of [ReCl(CO) 3 (4-R n -dtpy-κ 2 N)], density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were performed. Furthermore, the complexes which showed appropriate solubility in chloroform were tested as an emissive active layer in OLED devices.
Synthesis, extraction and electronic structure of Ce@C2n
NASA Astrophysics Data System (ADS)
Liu, Bing-Bing; Zou, Guang-Tian; Yang, Hai-Bin; Yu, San; Lu, Jin-Shan; Liu, Zi-Yang; Liu, Shu-Ying; Xu, Wen-Guo
1997-11-01
In view of the growing interest in endohedral lanthanide fullerenes, Ce, as a typical+ 4 oxidation state lanthanide element, has been systematically studied. The synthesis, extraction and electronic structure of Ce @ C2n are investigated. Soot containing Ce@C2n was synthesized in high yield by carbonizing CeO2-containing graphite rods and are back-burning the CeC2-enriched cathode deposit in a DC arc plasma apparatus. Ce@C2n dominated by Ce@C82, can be efficiently extracted from the insoluble part of the soot after toluene Soxhlet extraction by pyridine at high temperature and high pressure in a closed vessel. About 60% Ce@C2n(2n = 82, 80, 78, 76) and 35% Ce@C82 can be enriched in the pyridine extract. This fact is identified by desorption electron impact mass spectrometry (DEI MS). The electronic structure of Ce@C2n is analyzed by using X-ray photoemission spectroscopy (XPS) of pyridine-free film. It is suggested that the encapsulated Ce atom is in a charge state close to+ 3 and was effectively protected from reaction with water and oxygen by the enclosing fullerene cage. Unlike theoretical expectation, the electronic state of Ce@C82 is formally described as Ce+3@C3-82.
Megally Abdo, Nadia Youssef; Kamel, Mona Monir
2015-01-01
A series of 5-(pyridin-4-yl)-N-substituted-1,3,4-oxadiazol-2-amines (3a-d), 5-(pyridin-4-yl)-N-substituted-1,3,4-thiadiazol-2-amines (4a-d) and 5-(pyridin-4-yl)-4-substituted-1,2,4-triazole-3-thiones (5a-d) were obtained by the cyclization of hydrazinecarbothioamide derivatives 2a-d derived from isonicotinic acid hydrazide. Aminoalkylation of compounds 5a-d with formaldehyde and various secondary amines furnished the Mannich bases 6a-p. The structures of the newly synthesized compounds were confirmed on the basis of their spectral data and elemental analyses. All the compounds were screened for their in vitro anticancer activity against six human cancer cell lines and normal fibroblast cells. Sixteen of the tested compounds exhibited significant cytotoxicity against most cell lines. Among these derivatives, the Mannich bases 6j, 6m and 6p were found to exhibit the most potent activity. The Mannich base 6m showed more potent cytotoxic activity against gastric cancer NUGC (IC50=0.021 µM) than the standard CHS 828 (IC50=0.025 µM). Normal fibroblast cells WI38 were affected to a much lesser extent (IC50>10 µM).
NASA Astrophysics Data System (ADS)
Priyanka, V.; Vijai Anand, A. S.; Mahesh, K.; Karpagam, S.
2017-11-01
The new donor-acceptor type conjugated moiety, namely 3-([4-(2-Cyano-2pyridine-2yl-vinyl)-phenyl]-dodecyl-amino)-phenyl)-2-pyridine-2-yl-acrylonitrile (DPA-PA) has been synthesized according to the Knoevenagel condensation. Here dodecyloxy diphenylamine moiety acts as an electron donor and cyano-pyridyl moiety acts as an electron acceptor. These moieties are recently showing great interest in optoelectronic applications. The structure of the DPA-PA was confirmed by FT-IR, 1H NMR. The final product showed great solubility in common organic solvents such as toluene, tetrahydrofuran, ethyl acetate, dichloromethane, chloroform etc due to the dodecyl chain. The absorption maximum of DPA-PA appeared at 433 nm in chloroform solution. The optical band gap is 2.2 eV calculated from thin film absorption edge (550 nm). The photoluminescence spectra exhibited a maximum peak at 513 nm with greenish fluorescence in chloroform solution and at 541 nm as the thin film state. The emission spectra of thin film state are 28 nm red shifted with broadening peak. The lower electrochemical band gap 1.55 eV was observed by cyclic voltammetry. This type of low band gap materials has much attention for their various potential applications in optoelectronic devices.
Marco, José L; De Los Ríos, Cristóbal; Carreiras, María C; Baños, Josep E; Badia, Albert; Vivas, Nuria M
2002-07-01
The acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition activities of a series of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro[2, 3-b]quinolines (10-12)/4-amino-5, 6, 7, 8-tetrahydro-2, 3-diphenylthieno[2, 3-b]quinoline (14) and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo[2, 3-b]pyridine (13)/4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-phenylcyclohepta[e]thieno[2, 3-b]pyridine (15) are described. These compounds are tacrine (THA) analogues which have been prepared either from readily available 2-amino-3-cyano-4, 5-diarylfurans (16-18) or from 2-amino-3-cyano-4, 5-diphenylthiophene (19), via Friedländer condensation with cyclohexanone or cycloheptanone. These compounds are competitive inhibitors for acetylcholinesterase, the more potent being compound (13) which is three-fold less active than tacrine. The butyrylcholinesterase inhibition activity is significant only in compounds 10 and133, which are ten-fold less active than tacrine. It is found that the products 11 and 12 strongly inhibit acetylcholinesterase, and show excellent selectivity regarding butyrylcholinesterase.
NASA Astrophysics Data System (ADS)
Xu, Shengxian; Wang, Jinglan; Liu, Shaobo; Zhao, Feng; Xia, Hongying; Wang, Yibo
2018-02-01
Three four-coordinate N-heterocyclic carbene (NHC) copper(I) complexes, [Cu(Ph-BenIm-Py)(POP)]PF6 (1), [Cu(Naph-BenIm-Py)(POP)]PF6 (2), and [Cu(Anthr-BenIm-Py)(POP)]PF6 (3) (Ph-BenIm-Py = 3-benzyl-1-(pyridin-2-yl)-1H-benzimidazolylidene, Naph-BenIm-Py = 3-(naphthalen-2-yl-1-(pyridin-2-yl)-1H- benzimidazolylidene, Anthr-BenIm-Py = 3-(anthracen-9-yl)-1-(pyridin-2-yl)-1H-benzimidazolylidene, and POP = bis[2-diphenylphosphino]-phenyl)ether) have been synthesized and characterized. The different aryl substituents (phenyl, naphthyl, and anthracyl groups) were introduced into NHC ligands and the corresponding photophysical properties of the complexes were systematically investigated. The absorption spectra of all NHCsbnd Cu(I) complexes show a characteristic feature of metal-to-ligand charge transfer (MLCT) in the lower-energy region. Complex 1 exhibited good photoluminescence (PL) properties companying with the high quantum yields and long excited-state lifetimes, whereas 2 and 3 with naphthyl and anthracyl groups show the low PL efficiency caused by the strong π-π stacking interactions. Density functional theory (DFT) and time dependent density functional theory (TDDFT) calculations were employed to rationalize the photophysical properties of the NHCsbnd Cu(I) complexes.
Zago, E B; Castilho, R F; Vercesi, A E
2000-07-28
Acetoacetate, an NADH oxidant, stimulated the ruthenium red-insensitive rat liver mitochondrial Ca(2+) efflux without significant release of state-4 respiration, disruption of membrane potential (Deltapsi) or mitochondrial swelling. This process is compatible with the opening of the currently designated low conductance state of the permeability transition pore (PTP) and, under our experimental conditions, was associated with a partial oxidation of the mitochondrial pyridine nucleotides. In contrast, diamide, a thiol oxidant, induced a fast mitochondrial Ca(2+) efflux associated with a release of state-4 respiration, a disruption of Deltapsi and a large amplitude mitochondrial swelling. This is compatible with the opening of the high conductance state of the PTP and was associated with extensive oxidation of pyridine nucleotides. Interestingly, the addition of carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone to the acetoacetate experiment promoted a fast shift from the low to the high conductance state of the PTP. Both acetoacetate and diamide-induced mitochondrial permeabilization were inhibited by exogenous catalase. We propose that the shift from a low to a high conductance state of the PTP can be promoted by the oxidation of NADPH. This impairs the antioxidant function of the glutathione reductase/peroxidase system, strongly strengthening the state of mitochondrial oxidative stress.
NASA Astrophysics Data System (ADS)
Mondal, Supriya; Gupta, Abhisek; Shaw, Bikash Kumar; Saha, Shyamal K.
2017-11-01
Although, graphene is a unique electronic material, its optical property especially photoluminescence behavior is very poor. Several techniques have been developed to invoke optical property in graphene. Among these, functionalization is the most powerful technique to introduce optical property in graphene. In the present work, graphene oxide is functionalized by Diaminopyridine to achieve bright blue-green emission and subsequently Eu2+ ions are attached to the nitrogen due to electrostatic interaction between Eu2+ and the loan pair electrons of pyridinic nitrogen to tune the photoluminescence peak more broaden (extended upto green) and intense. This enhancement of photoluminescence property has been used to achieve superior photocurrent. By inducing photons, the conductivity of the device structure ITO/PEDOT: PSS/RGO-Amino-Pyridine-Eu2+/Al is better changed than that of the dark condition. It is also investigated the concentration of Eu2+ and thickness dependent photocurrent to optimize the photocurrent. Time correlated Single Photon Counting (TCSPC) spectra, Density Functional Theory (DFT) and Band structure have been used to explain this enhancement in photoluminescence and photocurrent. The formation of layered type materials with Eu2+ attached to pyridine moiety has also been confirmed by FTIR, Raman spectroscopy, AFM, XPS, TEM, and FESEM.
NASA Astrophysics Data System (ADS)
Keypour, Hassan; Shayesteh, Maryam; Rezaeivala, Majid; Chalabian, Firoozeh; Valencia, Laura
2013-01-01
A new symmetrical [N4O2] hexadentate Schiff base ligand, (E)-N-(pyridin-2-ylmethylene)-2-(3-(2-((E)-pyridin-2-lmethyleneamino)phenoxy)naphthalen-2-yloxy)benzenamine, abbreviated to L, and its complexes of Ni(II), Cu(II), Zn(II), Co(II), Cd(II) and Mn(II) have been synthesized in the presence of metal ions. The complexes were structurally characterized by elemental analyses, IR, UV-Vis, NMR and molar conductivity. The crystal structures of two complexes, [NiL(ONO2)2]·2H2O and [CoLCl2]CH3OH·0.5H2O, have been determined by a single crystal X-ray diffraction study. In these complexes, the ligand is coordinated in a neutral form via pyridine and azomethine nitrogen atoms. The metal ions complete their six coordination with two coordinated nitrate or chloride ions, forming a distorted octahedral geometry. The synthesized compounds have antibacterial activity against the three Gram-positive bacteria: Enterococcus faecalis, Bacillus cereus and Staphylococcus epid and also against the three Gram-negative bacteria: Citrobacter freundii, Enterobacter aerogenes and Salmonella typhi. The activity data show that the complexes are more potent antibacterials than the parent Schiff base.
Sinha, Reema; Sara, Udai Vir Singh; Khosa, Ratan Lal; Stables, James; Jain, Jainendra
2013-06-01
A series of twelve compounds (Compounds RNH1-RNH12) of acid hydrazones of pyridine-3-carbohydrazide or nicotinic acid hydrazide was synthesized and evaluated for anticonvulsant activity by MES, scPTZ, minimal clonic seizure and corneal kindling seizure test. Neurotoxicity was also determined for these compounds by rotarod test. Results showed that halogen substitution at meta and para position of phenyl ring exhibited better protection than ortho substitution. Compounds RNH4 and RNH12, were found to be the active analogs displaying 6Hz ED50 of 75.4 and 14.77 mg/kg while the corresponding MES ED50 values were 113.4 and 29.3 mg/kg respectively. In addition, compound RNH12 also showed scPTZ ED50 of 54.2 mg/kg. In the series, compound RNH12 with trifluoromethoxy substituted phenyl ring was the most potent analog exhibiting protection in all four animal models of epilepsy. Molecular docking study has also shown significant binding interactions of these two compounds with 1OHV, 2A1H and 1PBQ receptors. Thus, N-[(meta or para halogen substituted) benzylidene] pyridine-3-carbohydrazides could be used as lead compounds in anticonvulsant drug design and discovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Mingye; Wang, Lu, E-mail: lwang22@suda.edu.cn, E-mail: yyli@suda.edu.cn; Li, Min
2015-06-15
By using first-principles calculations, we investigate the structural stability of nitrogen-doped (N-doped) graphene with graphitic-N, pyridinic-N and pyrrolic-N, and the transition metal (TM) atoms embedded into N-doped graphene. The structures and energetics of TM atoms from Sc to Ni embedded into N-doped graphene are studied. The TM atoms at N{sub 4}V {sub 2} forming a 4N-centered structure shows the strongest binding and the binding energies are more than 7 eV. Finally, we investigate the catalytic performance of N-doped graphene with and without TM embedding for O{sub 2} dissociation, which is a fundamental reaction in fuel cells. Compared to the pyridinic-N,more » the graphitic-N is more favorable to dissociate O{sub 2} molecules with a relatively low reaction barrier of 1.15 eV. However, the catalytic performance on pyridinic-N doped structure can be greatly improved by embedding TM atoms, and the energy barrier can be reduced to 0.61 eV with V atom embedded. Our results provide the stable structure of N-doped graphene and its potential applications in the oxygen reduction reactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turte, K.I.; Bulgak, I.I.; Stukan, R.A.
1986-07-01
(..cap alpha..-Benzil dioximato-1)(..cap alpha..-benzil dioximato-2)di(pyridine)iron(III) in the form of the diacetone solvate (II) is spontaneously converted at room temperature into (..cap alpha..-benzil dioximato-1)(..cap alpha..-benzil dioximato-2)di(pyridine)iron(II) (III). The quantitative composition of a sample containing complexes II and III has been determined as a function of the temperature and the time by gamma-resonance spectroscopy, which made it possible to investigate the kinetics of this reaction. The changes obtained in the percentage of complex II in the sample as a function of time at a given temperature was treated with the use of the Kolmogorov-Erofeev equation for a topochemical reaction of the typemore » A/sub s/ ..-->.. B/sub s/ + C/sub g/. The rate constants of the reaction at various temperatures and the activation energy *E have been determined. In the temperature range from 293 to 304/sup 0/K *E = 25.6 kcal/mole. The possibilities of gamma-resonance spectroscopy in the investigation of topochemical reactions associated with changes in the oxidation state of iron ions have been demonstrated.« less
Gu, Shaojin; Xu, Daichao; Chen, Wanzhi
2011-02-21
Mono- and polynuclear complexes containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L), [NiL(2)](PF(6))(2) (2), [CoL(2)](PF(6))(3) (3), [PtLCl](PF(6)) (4), [PdAgL(2)](PF(6))(3) (5), [PdCuL(2)](PF(6))(3) (6), [Pd(2)L(2)Cl(2)](PF(6))(2) (7), and [Pd(3)L(2)Cl(4)](PF(6))(2) (8) have been prepared and fully characterized by NMR, ESI-MS spectroscopy, and X-ray crystallography. In complexes 2-4, the ligand binds to metals in a pincer NNC fashion with the pyridine group uncoordinated. Complexes 5 and 6 are isostructural to each other in which the palladium ions are surrounded by two pyridines and two imidazolylidenes and Ag(I) or Cu(I) is coordinated by two 1,10-phenanthroline moieties. In the trinuclear palladium complex 8, one palladium ion has an identical coordination mode as in 5 and 6, and the other two palladium ions are bonded to the 1,10-phenanthroline. Complex 6 exhibits excellent catalytic activity for the tandem click/Sonogashira reaction of 1-(bromomethyl)-4-iodobenzene, NaN(3), and ethynylbenzene in which three C-N bonds and one C-C bond are formed in a single flask.
Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering
NASA Astrophysics Data System (ADS)
Rajagopalan, S.; Asthalter, T.; Rabe, V.; Laschat, S.
2016-12-01
Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe3(μ 3-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe3(μ 3-O) in pyridine solution, Fe3(μ 3-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe3(μ 3-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe(III)(C5H5N)2(O2CCH3)2]+ and Fe(II)(C5H5N)4(O2CCH3)2, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.
NASA Astrophysics Data System (ADS)
Ishikawa, Shigeru; Nemoto, Tetsushi; Yamabe, Tokio
2018-06-01
Hydrogen storage in a truncated triangular pyramid molecule C33H21N3, which consists of three pyridine rings and one benzene ring bridged by six vinylene groups, is studied by quantum chemical methods. The molecule is derived by substituting three benzene rings in a truncated tetrahedron hydrocarbon C36H24 with pyridine rings. The optimized molecular structure under C 3v symmetry shows no imaginary vibrational modes at the B3LYP/cc-pVTZ level of theory. The hydrogen storage process is investigated based on the MP2/cc-pVTZ method. Like the structure before substitution, the C33H21N3 molecule has a cavity that stores a hydrogen molecule with a binding energy of - 140 meV. The Langmuir isotherm shows that this cavity can store hydrogen at higher temperatures and lower pressures than usual physisorption materials. The C33H21N3 molecule has a kinetic advantage over the C36H24 molecule because the former molecule has a lower barrier (+ 560 meV) for the hydrogen molecule entering the cavity compared with the latter molecule (+ 730 meV) owing to the lack of hydrogen atoms narrowing the opening.
DeStefano, Matthew R.; Lewis, Robert A.
2017-01-01
Copper(II) complexes of benzimidazole are known to exhibit biological activity that makes them of interest for chemotherapeutic and other pharmaceutical uses. The complex bis(acetato-κO){5,6-dimethyl-2-(pyridin-2-yl)-1-[(pyridin-2-yl)methyl]-1H-benzimidazole-κ2 N 2,N 3}copper(II), has been prepared. The absorption spectrum has features attributed to intraligand and ligand-field transitions and the complex exhibits ligand-centered room-temperature luminescence in solution. The acetonitrile monosolvate, [Cu(C2H3O2)2(C20H18N4)]·C2H3N (1), and the ethanol hemisolvate, [Cu(C2H3O2)2(C20H18N4)]·0.5C2H6O (2), have been structurally characterized. Compound 2 has two copper(II) complexes in the asymmetric unit. In both 1 and 2, distorted square-planar N2O2 coordination geometries are observed and the Cu—N(Im) bond distance is slightly shorter than the Cu—N(py) bond distance. Intermolecular π–π interactions are found in 1 and 2. A weak C—H⋯π interaction is observed in 1. PMID:29152336
Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products
NASA Astrophysics Data System (ADS)
Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.
2007-12-01
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.
Peng, Yan; Mereacre, Valeriu; Baniodeh, Amer; Lan, Yanhua; Schlageter, Martin; Kostakis, George E; Powell, Annie K
2016-01-04
The synthesis and characterization of three Dy2 compounds, [Dy2(HL1)2(NO3)4] (1), [Dy2(L2)2(NO3)4] (2), and [Dy2(HL3)2(NO3)4] (3), formed using related tripodal ligands with a central tertiary amine bearing picolyl and alkoxy arms, 2-[(2-hydroxy-ethyl)-pyridin-2-ylmethylamino]-ethanol (H2L1), 2-(bis-pyridin-2-ylmethylamino)-ethanol (HL2), and 2-(bis-pyridin-2-ylmethylamino)-propane-1,3-diol (H2L3), are reported. The compounds are rare examples of alkoxide-bridged {Dy2} complexes and display capped square antiprism coordination geometry around each Dy(III) ion. Changes in the ligand field environment around the Dy(III) ions brought about through variations in the ligand donors can be gauged from the magnetic properties, with compounds 1 and 2 showing antiparallel coupling between the Dy(III) ions and 3 showing parallel coupling. Furthermore, slow relaxation of the magnetization typical of SMM behavior could be observed for compounds 2 and 3, suggesting that small variations in the ligand field can have a significant influence on the slow relaxation processes responsible for SMM behavior of Dy(III)-based systems.
NASA Astrophysics Data System (ADS)
Sun, Yunlong; Chen, Changlin; Xu, Heng; Lei, Kun; Xu, Guanzhe; Zhao, Li; Lang, Meidong
2017-10-01
Silicon (111) wafer was modified by triethoxyvinylsilane containing double bond as an intermedium, and then P4VP (polymer 4-vinyl pyridine) brush was "grafted" onto the surface of silicon wafer containing reactive double bonds by adopting the "grafting from" way and Si-P4VP substrate (silicon wafer grafted by P4VP) was obtained. Finally, P4VP brush of Si-P4VP substrate was modified by 1,3-propanesulfonate fully to obtain P4VP-psl brush (zwitterionic polypyridinium salt) and the functional Si-P4VP-psl substrate (silicon wafer grafted by zwitterionic polypyridinium salt based on polymer 4-vinyl pyridine) was obtained successfully. The antifouling property of the silicon wafer, the Si-P4VP substrate and the Si-P4VP-psl substrate was investigated by using bovine serum albumin, mononuclear macrophages (RAW 264.7) and Escherichia coli (E. coli) ATTC25922 as model bacterium. The results showed that compared with the blank sample-silicon wafer, the Si-P4VP-psl substrate had excellent anti-adhesion ability against bovine serum albumin, cells and bacterium, due to zwitterionic P4VP-psl brush (polymer 4-vinyl pyridine salt) having special functionality like antifouling ability on biomaterial field.
Groups of Pesticides in Registration Review
Review cases are in groups of related pesticides: organophosphates, N-methyl carbamates, pyrethroids pyrethrins and synergists, sulfonylureas, neonicotinoids, fumigants, triazines, imidazolinones, isothiazolinones, and pyridines.
Lu, Xinyu; Zhu, Weihong; Xie, Yongshu; Li, Xin; Gao, Yuan; Li, Fuyou; Tian, He
2010-07-26
Near-IR (NIR) emission can offer distinct advantages for both in vitro and in vivo biological applications. Two NIR fluorescent turn-on sensors N,N'-di-n-butyl-2-(N-{2-[bis(pyridin-2-ylmethyl)amino]ethyl})-6-(N-piperidinyl)naphthalene-1,4,5,8-tetracarboxylic acid bisimide and N,N'-di- n-butyl-2-[N,N,N'-tri(pyridin-2-ylmethyl)amino]ethyl-6-(N-piperidinyl)naphthalene-1,4,5,8-tetracarboxylic acid bisimide (PND and PNT) for Zn(2+) based on naphthalenediimide fluorophore are reported. Our strategy was to choose core-substituted naphthalenediimide (NDI) as a novel NIR fluorophore and N,N-di(pyridin-2-ylmethyl)ethane-1,2-diamine (DPEA) or N,N,N'-tri(pyridin-2-ylmethyl)ethane-1,2-diamine (TPEA) as the receptor, respectively, so as to improve the selectivity to Zn(2+). In the case of PND, the negligible shift in absorption and emission spectra is strongly suggestive that the secondary nitrogen atom (directly connected to the NDI moiety, N(1)) is little disturbed with Zn(2+). The fluorescence enhancement of PND with Zn(2+) titration is dominated with a typical photoinduced electron-transfer (PET) process. In contrast, the N(1) atom for PNT can participate in the coordination of Zn(2+) ion, diminishing the electron delocalization of the NDI moiety and resulting in intramolecular charge-transfer (ICT) disturbance. For PNT, the distinct blueshift in both absorbance and fluorescence is indicative of a combination of PET and ICT processes, which unexpectedly decreases the sensitivity to Zn(2+). Due to the differential binding mode caused by the ligand effect, PND shows excellent selectivity to Zn(2+) over other metal ions, with a larger fluorescent enhancement centered at 650 nm. Also both PND and PNT were successfully used to image intracellular Zn(2+) ions in the living KB cells.
NASA Astrophysics Data System (ADS)
Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng
2018-04-01
Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wen-Hua; Yan, Hao-Jie; Chen, Hui
Dipyridyl sulphide ligands 4-(pyridin-4-ylmethylthio)pyridine (abbreviated as L1) and 3-(pyridin-4-ylmethylthio)pyridine (abbreviated as L2) have been designed and used as μ-{sub N},{sub N}-bridging linkages to construct coordination polymers with free –S–CH{sub 2}– groups as secondary donor sites. By use solvent control method, coordination polymers ([Ag{sub 3}SO{sub 4}(L1){sub 3}](Cl)·4.5H{sub 2}O){sub ∞}(1), ([Ag{sub 2}SO{sub 4}(L1){sub 2}]·6H{sub 2}O·2CH{sub 3}OH){sub ∞}(2), ([Ag{sub 2}SO{sub 4}(L2){sub 2}]·H{sub 2}O){sub ∞}(3) and ([Ag{sub 4}(SO{sub 4}){sub 2}(L2){sub 4}]·5H{sub 2}O){sub ∞}(4) with different architectures were obtained. Complexes 1, 3 and 4 feature 1D channel with different sizes and structures. Complex 1 exhibits guest exchange by THF and 1,4-dioxane, and Hg{sup 2+} sorptionmore » ability from solution due to its relative larger channel and available bonding sites of –S– exposed to the channel region. All complexes have been characterized through single-crystal and powder X-ray diffraction (PXRD), FT-IR spectra, X-ray photoelectron spectroscopy (XPS), elemental and thermogravimetric analyses. The guest exchange and Hg{sup 2+} sorption were monitored and identified, and the structure-property relationship of coordination polymers 1–4 are discussed. - Graphical abstract: Coordination polymers of silver(I) sulfate with secondary donor sites are shown guest exchange property and Hg{sup 2+} absorb ability from solution. This work provides a new method to construct functional materials with potential application. - Highlights: • New example of constructing functional coordination polymer with secondary donor methylthio group. • Guest exchange and interesting Hg(II) absorb ability from solution are investigated. • New method to construct functional materials with potential application.« less
Harer, Sunil L; Bhatia, Manish S
2014-10-01
The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R' = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2(nd) position of imidazole.
Harer, Sunil L.; Bhatia, Manish S.
2014-01-01
Purpose: The imidazopyridine moiety is important pharmacophore that has proven to be useful for a number of biologically relevant targets, also reported to display antibacterial, antifungal, antiviral properties. Riboflavin biosynthesis involving catalytic step of Lumazine synthase is absent in animals and human, but present in microorganism, one of marked advantage of this study. Still, this path is not exploited as antiinfective target. Here, we proposed different interactions between [1H,3H] imidazo[4,5-b] pyridine test ligands and target protein Lumazine synthase (protein Data Bank 2C92), one-step synthesis of title compounds and further evaluation of them for in vitro antimicrobial activity. Materials and Methods: Active pocket of the target protein involved in the interaction with the test ligands molecules was found using Biopredicta tools in VLifeMDS 4.3 Suite. In-silico docking suggests H-bonding, hydrophobic interaction, charge interaction, aromatic interaction, and Vanderwaal forces responsible for stabilizing enzyme-inhibitor complex. Disc diffusion assay method was used for in vitro antimicrobial screening. Results and Discussion: Investigation of possible interaction between test ligands and target lumazine synthase of Mycobacterium tuberculosis suggested 1i and 2f as best fit candidates showing hydrogen bonding, hydrophobic, aromatic and Vanderwaal's forces. Among all derivatives 1g, 1j, 1k, 1l, 2a, 2c, 2d, 2e, 2h, and 2j exhibited potent activities against bacteria and fungi compared to the standard Ciprofloxacin and Fluconazole, respectively. The superiority of 1H imidazo [4,5-b] pyridine compounds having R’ = Cl >No2 > NH2 at the phenyl/aliphatic moiety resident on the imidazopyridine, whereas leading 3H imidazo[4,5-b] pyridine compounds containing R/Ar = Cl > No2 > NH2> OCH3 substituents on the 2nd position of imidazole. PMID:25400412
2013-01-01
Background α-Bromination of the side chain of aromatic ketones using NBS in the presence of p-toluenesulfonic acid (p-TsOH) in acetonitrile is very common. However, regioselective bromination of bis and tris(ω-bromoacetophenones) with NBS in the presence of p-TsOH in acetonitrile under microwave irradiation is quite novel. The bis- and tris(ω-bromoacetophenones) are used in synthesis of bis and tris(heterocycles). bis(heterocycles) have received a great deal of attention, because many biologically active natural and synthetic products have molecular symmetry. The use of the pressurized microwave irradiation is very advantageous to many syntheses and provide a large rate enhancement. Results Bis and tris(ω-bromoacetophenones) were obtained as single monobrominated derivatives in a shorter time than the conventional conditions. The results clearly demonstrate the better reactivity and selectivity of NBS/p-TsOH/CH3CN as a brominating mixture under microwave conditions. The reaction of bis and tris(ω-bromoacetophenone) with 2-aminopyridine and 2-aminopyrimidine proceeded smoothly in a mixture of anhydrous ethanol and DMF under reflux or using 300 W/105°C/ 20 min microwave irradiation conditions to afford the corresponding bis(imidazo[1,2-a]pyridine), bis(imidazo[1,2-a]pyrimidine) and tris(imidazo[1,2-a]pyridine) derivatives in moderate to excellent yields. The carbonyl analogue of the targeted bis(imidazopyridines) could be synthesized by the reaction of N,N-dimethyl-N'-(pyridin-2-yl)formimidamide with bis(ω-bromoacetophenone) in refluxing ethanol. The structures of the newly synthesized compounds were confirmed by their spectral data as well as their elemental analyses. Conclusion In conclusion, selective α-bromination of bis- and tris(acetophenones) has been accomplished efficiently utilizing NBS/p-TsOH/CH3CN under microwave irradiation. In addition, a facile synthesis of novel series of bis- and tris(imidazopyridine) and bis(imidazopyrimidine) derivatives. PMID:23782550
Song, Wenxuan; Shi, Lijiang; Gao, Lei; Hu, Peijun; Mu, Haichuan; Xia, Zhenyuan; Huang, Jinhai; Su, Jianhua
2018-02-14
The electron-accepting [1,2,4]triazolo[1,5-a]pyridine (TP) moiety was introduced to build bipolar host materials for the first time, and two host materials based on this TP acceptor and carbazole donor, namely, 9,9'-(2-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (o-CzTP) and 9,9'-(5-([1,2,4]triazolo[1,5-a]pyridin-2-yl)-1,3-phenylene)bis(9H-carbazole) (m-CzTP), were designed and synthesized. These two TP-based host materials possess a high triplet energy (>2.9 eV) and appropriate highest occupied molecular orbital/lowest unoccupied molecular orbital levels as well as the bipolar transporting feature, which permits their applicability as universal host materials in multicolor phosphorescent organic light-emitting devices (PhOLEDs). Blue, green, and red PhOLEDs based on o-CzTP and m-CzTP with the same device configuration all show high efficiencies and low efficiency roll-off. The devices hosted by o-CzTP exhibit maximum external quantum efficiencies (η ext ) of 27.1, 25.0, and 15.8% for blue, green, and red light emitting, respectively, which are comparable with the best electroluminescene performance reported for FIrpic-based blue, Ir(ppy) 3 -based green, and Ir(pq) 2 (acac)-based red PhOLEDs equipped with a single-component host. The white PhOLEDs based on the o-CzTP host and three lumophors containing red, green, and blue emitting layers were fabricated with the same device structure, which exhibit a maximum current efficiency and η c of 40.4 cd/A and 17.8%, respectively, with the color rendering index value of 75.
Atria, Ana María; Corsini, Gino; González, Lissette; Garland, Maria Teresa; Baggio, Ricardo
2009-07-01
(Mu-benzene-1,2,4,5-tetracarboxylato-kappa(2)O(1):O(4))bis[aquabis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)] methanol disolvate tetrahydrate, [Ni(2)(C(10)H(2)O(8))(C(5)H(14)N(2))(4)(H(2)O)(2)].2CH(4)O.4H(2)O, (I), is dinuclear, with elemental units built up around an inversion centre halving the benzene-1,2,4,5-tetracarboxylate (btc) anion, which bridges two symmetry-related Ni(II) cations. The octahedral Ni polyhedron is completed by two chelating 2,2-methylpropane-1,3-diamine (dmpda) groups and a terminal aqua ligand. Two methanol and four water solvent molecules are involved in a number of N-H...O and O-H...O hydrogen bonds which define a strongly bound two-dimensional supramolecular structure. The structure of catena-poly[[[bis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)O(5):N,O(2)-[(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)N,O(2):O(5)] octahydrate], {[Ni(2)(C(7)H(3)NO(4))(2)(C(5)H(14)N(2))(3)].8H(2)O}(n), (II), is polymeric, forming twisted chains around three independent Ni centres, two of which lie on inversion centres and the third in a general position. There are three chelating dmpda ligands (one disordered over two equally populated positions), which are each attached to a different cation, and two pyridine-2,5-dicarboxylate (pdc) anions, both chelating the Ni centre in general positions through an -O-C-C-N- loop, while acting as bridges to the remaining two centrosymmetric Ni atoms. There are, in addition, eight noncoordinated water molecules in the structure, some of which are disordered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ombaka, L.M.; Ndungu, P.G.; Department of Applied Chemistry, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 2028
Nitrogen-doped carbon nanotubes (N-CNTs) have been synthesized at 850 °C via a CVD deposition technique by use of three ferrocenyl derivative catalysts, i.e. para-CN, -CF{sub 3} and -Cl substituted-phenyl rings. The synthesized catalysts have been characterized by NMR, IR, HR-MS and XRD. The XRD analysis of the para-CF{sub 3} catalyst indicates that steric factors influence the X-ray structure of 1,1′-ferrocenylphenyldiacrylonitriles. Acetonitrile or pyridine was used as carbon and nitrogen sources to yield mixtures of N-CNTs and carbon spheres (CS). The N-CNTs obtained from the para-CF{sub 3} catalysts, in pyridine, have the highest nitrogen-doping level, show a helical morphology and aremore » less thermally stable compared with those synthesized by use of the para-CN and -Cl as catalyst. This suggests that fluorine heteroatoms enhance nitrogen-doping in N-CNTs and formation of helical-N-CNTs (H-N-CNTs). The para-CF{sub 3} and para-Cl catalysts in acetonitrile yielded iron-filled N-CNTs, indicating that halogens promote encapsulation of iron into the cavity of N-CNT. The use of acetonitrile, as carbon and nitrogen source, with the para-CN and -Cl as catalysts also yielded a mixture of N-CNTs and carbon nanofibres (CNFs), with less abundance of CNFs in the products obtained using para-Cl catalysts. However, para-CF{sub 3} catalyst in acetonitrile gave N-CNTs as the only shaped carbon nanomaterials. - Graphical abstract: Graphical abstract showing the synthesis of N-CNTs using halogenated-ferrocenyl derivatives as catalyst with pyridine or acetonitrile as nitrogen and carbon sources via the chemical vapour deposition technique. - Highlights: • N-CNTs were synthesized from halogenated ferrocenyl catalysts. • Halogenated catalysts promote nitrogen-doping and pyridinic nitrogen in N-CNTs. • Halogenated catalysts facilitate iron filling of N-CNTs.« less
Developing SABRE as an analytical tool in NMR
NASA Astrophysics Data System (ADS)
Lloyd, Lyrelle Stacey
Work presented in this thesis centres around the application of the new hyperpolarisation technique, SABRE, within nuclear magnetic resonance spectroscopy, focusing on optimisation of the technique to characterise small organic molecules. While pyridine was employed as a model substrate, studies on a range of molecules are investigated including substituted pyridines, quinolines, thiazoles and indoles are detailed. Initial investigations explored how the properties of the SABRE catalyst effect the extent of polarisation transfer exhibited. The most important of these properties proved to be the rate constants for loss of pyridine and hydrides as these define the contact time of pyridine with the parahydrogen derived hydride ligands in the metal template. The effect of changing the temperature, solvent or concentration of substrate or catalyst are rationalised. For instance, the catalyst ICy(a) exhibits relatively slow ligand exchange rates and increasing the temperature during hyperpolarisation increases the observed signal enhancements. These studies have revealed a second polarisation transfer template can be used with SABRE in which two substrate molecules are bound. This allows the possibility of investigation of larger substrates which might otherwise be too sterically encumbered to bind. Another significant advance relates to the first demonstration that SABRE can be used in conjunction with an automated system designed with Bruker allowing the acquisition of scan averaged, phase cycled and traditional 2D spectra. The system also allowed investigations into the effect of the polarisation transfer field and application of that knowledge to collect single-scan 13C data for characterisation. The successful acquisition of 1H NOESY, 1H-1H COSY, 1H-13C 2D and ultrafast 1H-1H COSY NMR sequences is detailed for a 10 mM concentration sample, with 1H data collected for a 1 mM sample. A range of studies which aim to demonstrate the applicability of SABRE to the characterisation of small molecules and pharmaceuticals have been conducted.
Special Polymer/Carbon Composite Films for Detecting SO2
NASA Technical Reports Server (NTRS)
Homer, Margie; Ryan, Margaret; Yen, Shiao-Pin; Kisor, Adam; Jewell, April; Shevade, Abhijit; Manatt, Kenneth; Taylor, Charles; Blanco, Mario; Goddard, William
2008-01-01
A family of polymer/carbon films has been developed for use as sensory films in electronic noses for detecting SO2 gas at concentrations as low as 1 part per million (ppm). Most previously reported SO2 sensors cannot detect SO2 at concentrations below tens of ppm; only a few can detect SO2 at 1 ppm. Most of the sensory materials used in those sensors (especially inorganic ones that include solid oxide electrolytes, metal oxides, and cadmium sulfide) must be used under relatively harsh conditions that include operation and regeneration at temperatures greater than 100 C. In contrast, the present films can be used to detect 1 ppm of SO2 at typical opening temperatures between 28 and 32 C and can be regenerated at temperatures between 36 and 40 C. The basic concept of making sensing films from polymer/carbon composites is not new. The novelty of the present family of polymer/carbon composites lies in formulating the polymer components of these composites specifically to optimize their properties for detecting SO2. First-principles quantum-mechanical calculations of the energies of binding of SO2 molecules to various polymer functionalities are used as a guide for selecting polymers and understanding the role of polymer functionalities in sensing. The polymer used in the polymer-carbon composite is a copolymer of styrene derivative units with vinyl pyridine or substituted vinyl pyridine derivative units. To make a substituted vinyl pyridine for use in synthesizing such a polymer, poly(2-vinyl pyridine) that has been dissolved in methanol is reacted with 3-chloropropylamine that has been dissolved in a solution of methanol. The methanol is then removed to obtain the copolymer. Later, the copolymer can be dissolved in an appropriate solvent with a suspension of carbon black to obtain a mixture that can be cast and then dried to obtain a sensory film.
Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei
2017-06-05
Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.
Lewis, Thomas A; Leach, Lynne; Morales, Sergio; Austin, Paula R; Hartwell, Hadley J; Kaplan, Benjamin; Forker, Cynthia; Meyer, Jean-Marie
2004-02-01
The bacterial metabolite and transition metal chelator pyridine-2,6-dithiocarboxylic acid (PDTC), promotes a novel and effective means of dechlorination of the toxic and carcinogenic pollutant, carbon tetrachloride. Pyridine-2,6-dithiocarboxylic acid has been presumed to act as a siderophore in the Pseudomonas strains known to produce it. To explore further the physiological function of PDTC production, we have examined its regulation, the phenotype of PDTC-negative (pdt) mutants, and envelope proteins associated with PDTC in P. putida strain DSM 3601. Aspects of the regulation of PDTC production and outer membrane protein composition were consistent with siderophore function. Pyridine-2,6-dithiocarboxylic acid production was coordinated with production of the well-characterized siderophore pyoverdine; exogenously added pyoverdine led to decreased PDTC production, and added PDTC led to decreased pyoverdine production. Positive regulation of a chromosomal pdtI-xylE transcriptional fusion, and of a 66 kDa outer membrane protein (IROMP), was seen in response to exogenous PDTC. Tests with transition metal chelators indicated that PDTC could provide a benefit under conditions of metal limitation; the loss of PDTC biosynthetic capacity caused by a pdtI transposon insertion resulted in increased sensitivity to 1,10-phenanthroline, a chelator that has high affinity for a range of divalent transition metals (e.g. Fe(2+), Cu(2+), Zn(2+)). Exogenously added PDTC could also suppress a phenotype of pyoverdine-negative (Pvd-) mutants, that of sensitivity to EDDHA, a chelator with higher affinity and specificity for Fe(3+). Measurement of 59Fe incorporation showed uptake from 59Fe:PDTC by DSM 3601 grown in low-iron medium, but not by cells grown in high iron medium, or by the pdtI mutant, which did not show expression of the 66 kDa envelope protein. These data verified a siderophore function for PDTC, and have implicated it in the uptake of transition metals in addition to iron.
DIFFERENTIAL THERMOMETRIC TITRATIONS AND THE DETERMINATION OF HEATS OF REACTION,
TITRATION , THERMISTORS), (*HEAT OF REACTION, TITRATION ), SILVER COMPOUNDS, NITRATES, AMMONIA, PYRIDINES, ETHYLENEDIAMINE, AMINES, ALCOHOLS, BUTANOLS, PROPANOLS, SODIUM COMPOUNDS, HYDROXIDES, TEST METHODS
NASA Astrophysics Data System (ADS)
Dou, Ming-Yu; Lu, Jing
2017-12-01
A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.
Identification of combustion intermediates in low-pressure premixed pyridine/oxygen/argon flames.
Tian, Zhenyu; Li, Yuyang; Zhang, Taichang; Zhu, Aiguo; Qi, Fei
2008-12-25
Combustion intermediates of two low-pressure premixed pyridine/oxygen flames with respective equivalence ratios of 0.56 (C/O/N = 1:4.83:0.20) and 2.10 (C/O/N = 1:1.29:0.20) have been identified with tunable synchrotron vacuum ultraviolet (VUV) photoionization and molecular-beam mass spectrometry techniques. About 80 intermediates in the rich flame and 60 intermediates in the lean flame, including nitrogenous, oxygenated, and hydrocarbon intermediates, have been identified by measurements of photoionization mass spectra and photoionization efficiency spectra. Some radicals and new nitrogenous intermediates are identified in the present work. The experimental results are useful for studying the conversion of volatile nitrogen compounds and understanding the formation mechanism of NO(x) in flames of nitrogenous fuels.
Hyperpolarized 15N-pyridine Derivatives as pH-Sensitive MRI Agents
Jiang, Weina; Lumata, Lloyd; Chen, Wei; Zhang, Shanrong; Kovacs, Zoltan; Sherry, A. Dean; Khemtong, Chalermchai
2015-01-01
Highly sensitive MR imaging agents that can accurately and rapidly monitor changes in pH would have diagnostic and prognostic value for many diseases. Here, we report an investigation of hyperpolarized 15N-pyridine derivatives as ultrasensitive pH-sensitive imaging probes. These molecules are easily polarized to high levels using standard dynamic nuclear polarization (DNP) techniques and their 15N chemical shifts were found to be highly sensitive to pH. These probes displayed sharp 15N resonances and large differences in chemical shifts (Δδ >90 ppm) between their free base and protonated forms. These favorable features make these agents highly suitable candidates for the detection of small changes in tissue pH near physiological values. PMID:25774436
Highly Reactive Scandium Phosphinoalkylidene Complex: C-H and H-H Bonds Activation.
Mao, Weiqing; Xiang, Li; Alvarez Lamsfus, Carlos; Maron, Laurent; Leng, Xuebing; Chen, Yaofeng
2017-01-25
The first scandium phosphinoalkylidene complex was synthesized and structurally characterized. The complex has the shortest Sc-C bond lengths reported to date (2.089(3) Å). DFT calculations reveal the presence of a three center π interaction in the complex. This scandium phosphinoalkylidene complex undergoes intermolecular C-H bond activation of pyridine, 4-dimethylamino pyridine and 1,3-dimethylpyrazole at room temperature. Furthermore, the complex rapidly activates H 2 under mild conditions. DFT calculations also demonstrate that the C-H activation of 1,3-dimethylpyrazole is selective for thermodynamic reasons and the relatively slow reaction is due to the need of fully breaking the chelating effect of the phosphino group to undergo the reaction whereas this is not the case for H 2 .
Müller, Thomas J J; Lessing, Timo; van Mark, Hauke
2018-05-04
Substituted 1H-1,2,3-triazol-4-yl-pyrrolo[2,3-b]pyridines are efficiently prepared by a one-pot coupling-cyclization-desilylation-CuAAC-sequence in the sense of a consecutive three-component fashion. The key feature of this novel de novo formation of azole and triazole anellation is the sequentially Pd/Cu-catalyzed process employing tri(iso-propyl)silylbutadiyne (TIPS-butadiyne) as a four-carbon building block. In addition, the sequence can be expanded in a four-component fashion also employing the in situ formation of the require azides. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nandi, Sandip; Sahana, Animesh; Sarkar, Bidisha; Mukhopadhyay, Subhra Kanti; Das, Debasis
2015-09-01
Pyridine based fluorescence probe, DFPPIC and its functionalized Merrifield polymer has been synthesized, characterized and used as an arsenate selective fluorescence sensor. Arsenate induced fluorescence enhancement is attributed to inter-molecular H-bonding assisted CHEF process. The detection limit for arsenate is 0.001 μM, much below the WHO recommended tolerance level in drinking water. DFPPIC can detect intracellular arsenate in drinking water of Purbasthali, West Bengal, India efficiently. Graphical Abstract DFPPIC and its Merrifield conjugate polymer are used for selective determination and removal of arsenate from real drinking water samples of Purbasthali, a highly arsenic contaminated region of West Bengal, India. DFPPIC is very promising to imaging arsenate in living cells.
4-(Dimethylamino)pyridinium trichlorido[4-(dimethylamino)pyridine-κN]cobaltate(II)
Guenifa, Fatiha; Hadjadj, Nasreddine; Zeghouan, Ouahida; Bendjeddou, Lamia; Merazig, Hocine
2013-01-01
In the anion of the title compound, (C7H11N2)[CoCl3(C7H10N2)], the CoII ion is coordinated by one N atom from a 4-(dimethylamino)pyridine (DMAP) ligand and three Cl atoms, forming a CoNCl3 polyhedron with a distorted tetrahedral geometry. In the crystal, cations and anions are linked via weak N—H⋯Cl and C—H⋯Cl hydrogen bonds. Double layers of complex anions stack along the b- axis direction, which alternate with double layers of 4-(dimethylamino)-pyridinium cations. PMID:24046560
Sakaida, Shun; Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2017-07-17
We report the fabrication and characterization of the first example of a tetracyanonickelate-based two-dimensional-layered metal-organic framework, {Fe(py) 2 Ni(CN) 4 } (py = pyridine), thin film. To fabricate a nanometer-sized thin film, we utilized the layer-by-layer method, whereby a substrate was alternately soaked in solutions of the structural components. Surface X-ray studies revealed that the fabricated film was crystalline with well-controlled growth directions both parallel and perpendicular to the substrate. In addition, lattice parameter analysis indicated that the crystal system is found to be close to higher symmetry by being downsized to a thin film.
Han, Mei; Li, Shan; Ai, Jing; Sheng, Rong; Hu, Yongzhou; Hu, Youhong; Geng, Meiyu
2016-12-01
A series of novel 4-chloro-benzamides derivatives containing substituted five-membered heteroaryl ring were designed, synthesized and evaluated as RET kinase inhibitors for cancer therapy. Most of compounds exhibited moderate to high potency in ELISA-based kinase assay. In particular, compound I-8 containing 1,2,4-oxadiazole strongly inhibited RET kinase activity both in molecular and cellular level. In turn, I-8 inhibited cell proliferation driven by RET wildtype and gatekeeper mutation. The results implied that 4-chloro-3-(5-(pyridin-3-yl)-1,2,4-oxadiazole-3-yl)benzamides are promising lead compounds as novel RET kinase inhibitor for further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Ma, Yuchi; Sun, Guangqiang; Chen, Danqi; Peng, Xia; Chen, Yue-Lei; Su, Yi; Ji, Yinchun; Liang, Jin; Wang, Xin; Chen, Lin; Ding, Jian; Xiong, Bing; Ai, Jing; Geng, Meiyu; Shen, Jingkang
2015-03-12
c-Met has emerged as an attractive target for targeted cancer therapy because of its abnormal activation in many cancer cells. To identify high potent and selective c-Met inhibitors, we started with profiling the potency and in vitro metabolic stability of a reported hit 7. By rational design, a novel sulfonylpyrazolo[4,3-b]pyridine 9 with improved DMPK properties was discovered. Further elaboration of π-π stacking interactions and solvent accessible polar moieties led to a series of highly potent and selective type I c-Met inhibitors. On the basis of in vitro and in vivo pharmacological and pharmacokinetics studies, compound 46 was selected as a preclinical candidate for further anticancer drug development.
Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).
Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio
2015-01-01
In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.
Contreras, Rubén H; dos Santos, Francisco P; Ducati, Lucas C; Tormena, Cláudio F
2010-12-01
Adequate analyses of canonical molecular orbitals (CMOs) can provide rather detailed information on the importance of different σ-Fermi contact (FC) coupling pathways (FC term transmitted through the σ-skeleton). Knowledge of the spatial distribution of CMOs is obtained by expanding them in terms of natural bond orbitals (NBOs). Their relative importance for transmitting the σ-FC contribution to a given spin-spin coupling constants (SSCCs) is estimated by resorting to the expression of the FC term given by the polarisation propagator formalism. In this way, it is possible to classify the effects affecting such couplings in two different ways: delocalisation interactions taking place in the neighbourhood of the coupling nuclei and 'round the ring' effects. The latter, associated with σ-ring currents, are observed to yield significant differences between the FC terms of (2)J(C2H3) and (2)J(C3H2) SSCCs which, consequently, are taken as probes to gauge the differences in σ-ring currents for the five-membered rings (furan, thiophene, selenophene and pyrrol) and also for the six-membered rings (benzene, pyridine, protonated pyridine and N-oxide pyridine) used in the present study. Copyright © 2010 John Wiley & Sons, Ltd.
Guest-Induced Two-Way Structural Transformation in a Layered Metal-Organic Framework Thin Film.
Haraguchi, Tomoyuki; Otsubo, Kazuya; Sakata, Osami; Fujiwara, Akihiko; Kitagawa, Hiroshi
2016-12-28
Fabrication of thin films made of metal-organic frameworks (MOFs) has been intensively pursued for practical applications that use the structural response of MOFs. However, to date, only physisorption-induced structural response has been studied in these films. Chemisorption can be expected to provide a remarkable structural response because of the formation of bonds between guest molecules and reactive metal sites in host MOFs. Here, we report that chemisorption-induced two-way structural transformation in a nanometer-sized MOF thin film. We prepared a two-dimensional layered-type MOF Fe[Pt(CN) 4 ] thin film using a step-by-step approach. Although the as-synthesized film showed poor crystallinity, the dehydrated form of this thin film had a highly oriented crystalline nature (Film-D) as confirmed by synchrotron X-ray diffraction (XRD). Surprisingly, under water and pyridine vapors, Film-D showed chemisorption-induced dynamic structural transformations to Fe(L) 2 [Pt(CN) 4 ] thin films [L = H 2 O (Film-H), pyridine (Film-P)], where water and pyridine coordinated to the open Fe 2+ site. Dynamic structural transformations were also confirmed by in situ XRD, sorption measurement, and infrared reflection absorption spectroscopy. This is the first report of chemisorption-induced dynamic structural response in a MOF thin film, and it provides useful insights, which would lead to future practical applications of MOFs utilizing chemisorption-induced structural responses.
Wang, Tao; Yin, Zhiwei; Zhang, Zhongxing; Bender, John A; Yang, Zhong; Johnson, Graham; Yang, Zheng; Zadjura, Lisa M; D'Arienzo, Celia J; DiGiugno Parker, Dawn; Gesenberg, Christophe; Yamanaka, Gregory A; Gong, Yi-Fei; Ho, Hsu-Tso; Fang, Hua; Zhou, Nannan; McAuliffe, Brian V; Eggers, Betsy J; Fan, Li; Nowicka-Sans, Beata; Dicker, Ira B; Gao, Qi; Colonno, Richard J; Lin, Pin-Fang; Meanwell, Nicholas A; Kadow, John F
2009-12-10
Azaindole derivatives derived from the screening lead 1-(4-benzoylpiperazin-1-yl)-2-(1H-indol-3-yl)ethane-1,2-dione (1) were prepared and characterized to assess their potential as inhibitors of HIV-1 attachment. Systematic replacement of each of the unfused carbon atoms in the phenyl ring of the indole moiety by a nitrogen atom provided four different azaindole derivatives that displayed a clear SAR for antiviral activity and all of which displayed marked improvements in pharmaceutical properties. Optimization of these azaindole leads resulted in the identification of two compounds that were advanced to clinical studies: (R)-1-(4-benzoyl-2-methylpiperazin-1-yl)-2-(4-methoxy-1H-pyrrolo[2,3-b]pyridin-3-yl)ethane-1,2-dione (BMS-377806, 3) and 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]pyridin-3-yl)ethane-1,2-dione (BMS-488043, 4). In a preliminary clinical study, 4 administered as monotherapy for 8 days, reduced viremia in HIV-1-infected subjects, providing proof of concept for this mechanistic class.
Elkamhawy, Ahmed; Park, Jung-Eun; Hassan, Ahmed H E; Pae, Ae Nim; Lee, Jiyoun; Park, Beoung-Geon; Roh, Eun Joo
2018-01-20
A series of 2-(3-arylureido)pyridines and 2-(3-benzylureido)pyridines were synthesized and evaluated as potential modulators for amyloid beta (Aβ)-induced mitochondrial dysfunction in Alzheimer's disease (AD). The blocking activities of forty one small molecules against Aβ-induced mitochondrial permeability transition pore (mPTP) opening were evaluated by JC-1 assay which measures the change of mitochondrial membrane potential (ΔΨm). The inhibitory activity of twenty five compounds against Aβ-induced mPTP opening was superior to that of the standard cyclosporin A (CsA). Six hit compounds have been identified as likely safe in regards to mitochondrial and cellular safety and subjected to assessment for their protective effect against Aβ-induced deterioration of ATP production and cytotoxicity. Among them, compound 7fb has been identified as a lead compound protecting neuronal cells against 67% of neurocytotoxicity and 43% of suppression of mitochondrial ATP production induced by 5 μM concentrations of Aβ. Using CDocker algorithm, a molecular docking model presented a plausible binding mode for these compounds with cyclophilin D (CypD) receptor as a major component of mPTP. Hence, this report presents compound 7fb as a new nonpeptidyl mPTP blocker which would be promising for further development of Alzheimer's disease (AD) therapeutics. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
2014-01-01
We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)]n (L = Br–, CH3CN, pyridine, PMe3, SCN–, CO, BH4–; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)]n with labile ligands (L = Br–, CH3CN, BH4–) and NH spacers are efficient catalysts for the hydrogenation of both ketones and aldehydes to alcohols under mild conditions, while those containing inert ligands (L = pyridine, PMe3, SCN–, CO) are catalytically inactive. Interestingly, complex [Fe(PNPMe-iPr)(H)(CO)(Br)], featuring NMe spacers, is an efficient catalyst for the chemoselective hydrogenation of aldehydes. The first type of complexes involves deprotonation of the PNP ligand as well as heterolytic dihydrogen cleavage via metal-alkoxide cooperation, but no reversible aromatization/deprotonation of the PNP ligand. In the case of the N-methylated complex the mechanism remains unclear, but obviously does not allow bifunctional activation of dihydrogen. The experimental results complemented by DFT calculations strongly support an insertion of the C=O bond of the carbonyl compound into the Fe–H bond. PMID:27642211
2012-01-01
Optimization of the imidazo[4,5-b]pyridine-based series of Aurora kinase inhibitors led to the identification of 6-chloro-7-(4-(4-chlorobenzyl)piperazin-1-yl)-2-(1,3-dimethyl-1H-pyrazol-4-yl)-3H-imidazo[4,5-b]pyridine (27e), a potent inhibitor of Aurora kinases (Aurora-A Kd = 7.5 nM, Aurora-B Kd = 48 nM), FLT3 kinase (Kd = 6.2 nM), and FLT3 mutants including FLT3-ITD (Kd = 38 nM) and FLT3(D835Y) (Kd = 14 nM). FLT3-ITD causes constitutive FLT3 kinase activation and is detected in 20–35% of adults and 15% of children with acute myeloid leukemia (AML), conferring a poor prognosis in both age groups. In an in vivo setting, 27e strongly inhibited the growth of a FLT3-ITD-positive AML human tumor xenograft (MV4–11) following oral administration, with in vivo biomarker modulation and plasma free drug exposures consistent with dual FLT3 and Aurora kinase inhibition. Compound 27e, an orally bioavailable dual FLT3 and Aurora kinase inhibitor, was selected as a preclinical development candidate for the treatment of human malignancies, in particular AML, in adults and children. PMID:23043539
Facchetti, Antonio; Beverina, Luca; van der Boom, Milko E; Dutta, Pulak; Evmenenko, Guennadi; Shukla, Atindra D; Stern, Charlotte E; Pagani, Giorgio A; Marks, Tobin J
2006-02-15
The new dibranched, heterocyclic "push-pull" chromophores bis{1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (1), 1-(pyrid-4-yl)-2-(N-methyl-5-formylpyrrol-2-yl)ethylene (2), {1-(N-methylpyridinium-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}{(1-(pyridin-4-yl)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane (3), N-methyl-2-[1-(N-methylpyrid-4-yl)ethen-2-yl]-5-[pyrid-4-yl]ethen-2-yl]pyrrole iodide (4), bis{1-(N-methyl-4-pyridinio)-2-[2-(N-methylpyrrol-5-yl)]ethane}methane iodide (5), and N-methyl-2,5-[1-(N-methylpyrid-4-yl)ethen-2-yl]pyrrole iodide (6) have been synthesized and characterized. The neutral (1 and 2) and monomethyl salts (3 and 4) undergo chemisorptive reaction with iodobenzyl-functionalized surfaces to afford chromophore monolayers SA-1/SA-2 and SA-3/SA-4, respectively. Molecular structures and other physicochemical properties have been defined by (1)H NMR, optical spectroscopy, and XRD. Thin-film characterization by a variety of techniques (optical spectroscopy, specular X-ray reflectivity, atomic force microscopy, X-ray photoelectron spectroscopy, and angle-dependent polarized second harmonic generation) underscore the importance of the chromophore molecular architecture as well as film growth method on film microstructure and optical/electrooptic response.
Kolomiĭtsev, A K; Chaikovskiĭ, Iu B; Tereshchenko, T L
1981-08-01
According to the method of neural elements impregnation in the authors' modification, the object is fixed for 6-12 h in Lillie fluid cooled to 4 degrees C. Then the object is kept under tap water for 2-6 h. Frozen sections are prepared and kept in pure pyridine for 1-6 h. When the sections are embedded into paraffin or celloidin, they are put into alcohol solutions gradually decreasing their concentration until water is reached, then put into pyridine. In order to remove cellulose, the celloidin sections are treated in 3 portions of pyridine (in the 1st and 2nd-for 10 min, and in the 3d-for 6 h). Then they are washed under tap water for 2-4 h and in distilled water for 30-40 min. Further treatment is performed according to the methods by Bielschowsky - Gros, Kampos or Rasskazova. Excess silver is removed by treating the sections in 2% ammonium persulfate under the microscope control (the process is stopped by putting the sections into 7% sodium hyposulfate for 10 min). Then the sections are treated in 0.1% aurum chloride, in 5% hyposulfite to reveale the tissue background [corrected] and by means of routine histological techniques either after Brashet, Hale, PAS-positive reaction or other methods applied after fixation in Lillie fluid.
Jochim, Aleksej; Jess, Inke; Näther, Christian
2018-03-01
The crystal structure of the title salt, (C 6 H 8 NO) 8 [Fe(NCS) 4 (C 6 H 7 NO) 2 ][Fe(NCS) 5 (C 6 H 7 NO)] 2 [Fe(NCS) 6 ], comprises three negatively charged octa-hedral Fe III complexes with different coordination environments in which the Fe III atoms are coordinated by a different number of thio-cyanate anions and 4-meth-oxy-pyridine ligands. Charge balance is achieved by 4-meth-oxy-pyridinium cations. The asymmetric unit consists of three Fe III cations, one of which is located on a centre of inversion, one on a twofold rotation axis and one in a general position, and ten thio-cyanate anions, two 4-meth-oxy-pyridine ligands and 4-meth-oxy-pyridinium cations (one of which is disordered over two sets of sites). Beside to Coulombic inter-actions between organic cations and the ferrate(III) anions, weak N-H⋯S hydrogen-bonding inter-actions involving the pyridinium N-H groups of the cations and the thio-cyanate S atoms of the complex anions are mainly responsible for the cohesion of the crystal structure.
Konopski, Leszek; Kiełczewska, Anna
2012-01-01
2-Trichloromethylbenzimidazole (TCMB) was used as a chromogenic reagent in organic or inorganic analysis, mainly in thin-layer chromatography (TLC). In reactions of TCMB with some heteroaromatic nitrogen containing compounds, such as azines, azoles and benzazoles, a formation of high colored products occurred. For azines, the chromogenic reaction was highly regioselective, since the both adjacent α-positions versus the nitrogen atom(s) must not be substituted. A TLC method of detection was developed. Thirty azines, azoles, and benzazoles were detected at the detection limit 10 ng to 1 μg. This method was also applied for detection of heteroaromatic pesticides, and the attempts to construct active and passive dosimeters for nicotine were made. In a prechromatographic reaction of aromatic o-diamines with methyl trichloroacetimidate, TCMB or its derivatives were formed in situ. Followed by TLC and visualization in pyridine vapors, this procedure was applied for detection of o-phenylenediamine derivatives. The reaction product of TCMB and pyridine (LI Complex) was identified and fully characterized. Two different reaction mechanisms: with electron deficient basic heteroaromatic compounds, like pyridine, and with more acidic compounds, for example, pyrrole, were discussed. In aqueous solutions, the LI Complex may be also used as a new indicator for complexometric, adsorption and acid-base titration of inorganic compounds. PMID:22567563
NASA Astrophysics Data System (ADS)
Conradie, J.; Conradie, M. M.; Tawfiq, K. M.; Al-Jeboori, M. J.; Coles, S. J.; Wilson, C.; Potgieter, J. H.
2018-06-01
The syntheses, characterizations and structures of three novel dichloro(bis{2-[1-(4-methoxyphenyl)-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II), [M(L)2Cl2], complexes (metal = Mn, Co and Ni) are presented. In the solid state the molecules are arranged in infinite hydrogen-bonded 3D supramolecular structures, further stabilized by weak intermolecular π…π interactions. The DFT results for all the different spin states and isomers of dichloro(bis{2-[1-phenyl-1H-1,2,3-triazol-4-yl-κN3]pyridine-κN})metal(II) complexes, [M(L1)2Cl2], support experimental measurements, namely that (i) d5 [Mn(L1)2Cl2] is high spin with S = 5/2; (ii) d7 [Co(L1)2Cl2] has a spin state of S = 3/2, (iii) d8 [Ni(L1)2Cl2] has a spin state of S = 1; and (iv) for all [M(L1)2Cl2] and [M(L)2Cl2] complexes, with M = Mn, Co and Ni, the cis-cis-trans and the trans-trans-trans isomers, with the pyridyl groups trans to each other, have the lowest energy.
NASA Astrophysics Data System (ADS)
Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin
2017-01-01
A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.
Guan, Jingang; Puskar, Ljiljana; Esplugas, Ricardo O; Cox, Hazel; Stace, Anthony J
2007-08-14
Experiments have been undertaken to record photofragmentation spectra from a series of [Ag(L)N]2+ complexes in the gas phase. Spectra have been obtained for silver(II) complexed with the ligands (L): acetone, 2-pentanone, methyl-vinyl ketone, pyridine, and 4-methyl pyridine (4-picoline) with N in the range of 4-7. A second series of experiments using 1,1,1,3-fluoroacetone, acetonitrile, and CO2 as ligands failed to show any evidence of photofragmentation. Interpretation of the experimental data has come from time-dependent density functional theory (TDDFT), which very successfully accounts for trends in the spectra in terms of subtle differences in the properties of the ligands. Taking a sample of three ligands, acetone, pyridine, and acetonitrile, the calculations show all the spectral transitions to involve ligand-to-metal charge transfer, and that wavelength differences (or lack of spectra) arise from small changes in the energies of the molecular orbitals concerned. The calculations account for an absence in the spectra of any effects due to Jahn-Teller distortion, and they also reveal structural differences between complexes where the coordinating atom is either oxygen or nitrogen that have implications for the stability of silver(II) compounds. Where possible, comparisons have also been made with the physical properties of condensed phase silver(II) complexes.
NASA Astrophysics Data System (ADS)
Armstrong, Craig G.; Toghill, Kathryn E.
2017-05-01
A single species redox flow battery employing a new class of cobalt(II) complexes with 'tunable' tridentate azole-pyridine type ligands is reported. Four structures were synthesised and their electrochemical, physical and battery characteristics were investigated as a function of successive substitution of the ligand terminal pyridyl donors. The Co(II/I) and Co(III/II) couples are stable and quasi-reversible on gold and glassy carbon electrodes, however redox potentials are tunable allowing the cobalt potential difference to be preferentially increased from 1.07 to 1.91 V via pyridine substitution with weaker σ-donating/π-accepting 3,5-dimethylpyrazole groups. The charge-discharge properties of the system were evaluated using an H-type glass cell and graphite rod electrodes. The complexes delivered high Coulombic efficiencies of 89.7-99.8% and very good voltaic efficiencies of 70.3-81.0%. Consequently, energy efficiencies are high at 63.1-80.8%, marking an improvement on other similar non-aqueous systems. Modification of the ligands also improved solubility from 0.18 M to 0.50 M via pyridyl substitution with 3,5-dimethylpyrazole, though the low solubility of the complexes limits the overall energy capacity to between 2.58 and 12.80 W h L-1. Preliminary flow cell studies in a prototype flow cell are also demonstrated.
Structure and vibrational spectra of pyridine betaine hydrochloride
NASA Astrophysics Data System (ADS)
Szafran, Mirosław; Koput, Jacek; Baran, Jan; Głowiak, Tadeusz
1997-12-01
The crystal structure of pyridine betaine hydrochloride (PBET·HCl) was determined by X-ray diffraction to be monoclinic, space group {P2 1}/{c} with a = 8.533(2) Å, b = 9.548(2) Å, c = 10.781(2) Å, β = 107.228(3)° and Z = 4. Betaine is protonated and the carboxyl group forms a hydrogen bond with the chloride ion: O·Cl - distance is 2.928(3) Å. The interaction of pyridine betaine (PBET) with HCl was examined by ab initio self-consistent field (SCF), second-order Møller-Plesset (MP2) and density functional theory (DFT) methods using the 6-31G(d,p) basis set. Two minima are located in the potential surface at the SCF level (PBETH +·Cl - and PBET·HCl, with the latter being 1.2 kcal mol -1 lower in energy) and only one minimum (PBET·HCl) at the MP2 and DFT levels. The molecular parameters of PBETH +·Cl -, computed by the SCF method, reproduce the corresponding experimental data. The computed vibrational frequencies of PBETH +·Cl - resemble correctly the experimental vibrational spectrum in the solid state. The root-mean-square (r.m.s.) deviations between the experimental and calculated SCF frequencies are 65 cm -1 for all bands and 15 cm -1 without the νClH band. All measured IR bands were interpreted in terms of the calculated vibrational models.
NASA Astrophysics Data System (ADS)
Menezes, Anthoni Praveen; Jayarama, A.; Ng, Seik Weng
2015-05-01
An efficient nonlinear optical material 2E-3-(4-bromophenyl)-1-(pyridin-3-yl) prop-2-en-1-one (BPP) was synthesized and single crystals were grown using slow evaporation solution growth technique at room temperature. Grown crystal had prismatic morphology and its structure was confirmed by various spectroscopic studies, elemental analysis, and single crystal X-ray diffraction (XRD) technique. The single crystal XRD of the crystal showed that BPP crystallizes in monoclinic system with noncentrosymmetric space group P21 and the cell parameters are a = 5.6428(7) Å, b = 3.8637(6) Å, c = 26.411(2) Å, β = 97.568(11) deg and v = 575.82(12) Å3. The UV-Visible spectrum reveals that the crystal is optically transparent and has high optical energy band gap of 3.1 eV. The powder second harmonic generation efficiency (SHG) of BPP is 6.8 times that of KDP. From thermal analysis it is found that the crystal melts at 139 °C and decomposes at 264 °C. High optical transparency down to blue region, higher powder SHG efficiency and better thermal stability than that of urea makes this chalcone derivative a promising candidate for SHG applications. Furthermore, effect of molecular planarity on SHG efficiency and role of pyridine ring adjacent to carbonyl group in forming noncentrosymmetric crystal systems of chalcone family is also discussed.
NASA Astrophysics Data System (ADS)
Ahn, Seoung Hyun; Choi, Sang-Il; Jung, Maeng Joon; Nayab, Saira; Lee, Hyosun
2016-06-01
The reaction of [CoCl2·6H2O] with N‧-substituted N,N-di(2-picolyl)amine ligands such as 1-cyclohexyl-N,N-bis(pyridin-2-ylmethyl)methanamine (LA), 2-methoxy-N,N-bis(pyridin-2-ylmethyl)ethan-1-amine (LB), and 3-methoxy-N,N-bis(pyridin-2-ylmethyl)propan-1-amine (LC), yielded [LnCoCl2] (Ln = LA, LB and LC), respectively. The Co(II) centre in [LnCoCl2] (Ln = LA, and LC) adopted distorted bipyramidal geometries through coordination of nitrogen atoms of di(2-picolyl)amine moiety to the Co(II) centre along with two chloro ligands. The 6-coordinated [LBCoCl2] showed a distorted octahedral geometry, achieved through coordination of the two pyridyl units, two chloro units, and bidentate coordination of nitrogen and oxygen in the N‧-methoxyethylamine to the Co(II) centre. [LCCoCl2] (6.70 × 104 gPMMA/molCo h) exhibited higher catalytic activity for the polymerisation of methyl methacrylate (MMA) in the presence of modified methylaluminoxane (MMAO) compared to rest of Co(II) complexes. The catalytic activity was considered as a function of steric properties of ligand architecture and increased steric bulk around the metal centre resulted in the decrease catalytic activity. All Co(II) initiators yielded syndiotactic poly(methylmethacrylate) (PMMA).
Geiger, Robert A; Chattopadhyay, Swarup; Day, Victor W; Jackson, Timothy A
2011-02-28
Peroxomanganese(iii) adducts have been postulated as important intermediates in manganese-containing enzymes and small molecule oxidation catalysts. Synthetic peroxomanganese(iii) complexes are known to be nucleophilic and facilitate aldehyde deformylation, offering a convenient way to compare relative reactivities of complexes supported by different ligands. In this work, tetradentate dipyridyldiazacycloalkane ligands with systematically perturbed steric and electronic properties were used to generate a series of manganese(ii) and peroxomanganese(iii) complexes. X-Ray crystal structures of five manganese(ii) complexes all show the ligands bound to give trans complexes. Treatment of these Mn(II) precursors with H(2)O(2) and Et(3)N in MeCN at -40 °C results in the formation of peroxomanganese(iii) complexes that differ only in the identity of the pyridine ring substituent and/or the number of carbons in the diazacycloalkane backbone. To determine the effects of small ligand perturbations on the reactivity of the peroxo group, the more thermally stable peroxomanganese(iii) complexes were reacted with cyclohexanecarboxaldehyde. For these complexes, the rate of deformylation does not correlate with the expected nucleophilicity of the peroxomanganese(iii) unit, as the inclusion of methyl substituents on the pyridines affords slower deformylation rates. It is proposed that adding methyl-substituents to the pyridines, or increasing the number of carbons on the diazacycloalkane, sterically hinders nucleophilic attack of the peroxo ligand on the carbonyl carbon of the aldehyde.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Casimiro-Garcia, Agustin; Filzen, Gary F.; Flynn, Declan
2013-03-07
Mining of an in-house collection of angiotensin II type 1 receptor antagonists to identify compounds with activity at the peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) revealed a new series of imidazo[4,5-b]pyridines 2 possessing activity at these two receptors. Early availability of the crystal structure of the lead compound 2a bound to the ligand binding domain of human PPAR{gamma} confirmed the mode of interaction of this scaffold to the nuclear receptor and assisted in the optimization of PPAR{gamma} activity. Among the new compounds, (S)-3-(5-(2-(1H-tetrazol-5-yl)phenyl)-2,3-dihydro-1H-inden-1-yl)-2-ethyl-5-isobutyl-7-methyl-3H-imidazo[4,5-b]pyridine (2l) was identified as a potent angiotensin II type I receptor blocker (IC{sub 50} = 1.6 nM) with partialmore » PPAR{gamma} agonism (EC{sub 50} = 212 nM, 31% max) and oral bioavailability in rat. The dual pharmacology of 2l was demonstrated in animal models of hypertension (SHR) and insulin resistance (ZDF rat). In the SHR, 2l was highly efficacious in lowering blood pressure, while robust lowering of glucose and triglycerides was observed in the male ZDF rat.« less
Theppawong, Atiruj; Van de Walle, Tim; Grootaert, Charlotte; Bultinck, Margot; Desmet, Tom; Van Camp, John; D'hooghe, Matthias
2018-05-01
Curcumin, a natural compound extracted from the rhizomes of Curcuma longa , displays pronounced anticancer properties but lacks good bioavailability and stability. In a previous study, we initiated structure modification of the curcumin scaffold by imination of the labile β-diketone moiety to produce novel β-enaminone derivatives. These compounds showed promising properties for elaborate follow-up studies. In this work, we focused on another class of nitrogen-containing curcuminoids with a similar objective: to address the bioavailability and stability issues and to improve the biological activity of curcumin. This paper thus reports on the synthesis of new pyridine-, indole-, and pyrrole-based curcumin analogues (aza-aromatic curcuminoids) and discusses their water solubility, antioxidant activity, and antiproliferative properties. In addition, multivariate statistics, including hierarchical clustering analysis and principal component analysis, were performed on a broad set of nitrogen-containing curcuminoids. Compared to their respective mother structures, that is, curcumin and bisdemethoxycurcumin, all compounds, and especially the pyridin-3-yl β-enaminone analogues, showed better water solubility profiles. Interestingly, the pyridine-, indole-, and pyrrole-based curcumin derivatives demonstrated improved biological effects in terms of mitochondrial activity impairment and protein content, in addition to comparable or decreased antioxidant properties. Overall, the biologically active N -alkyl β-enaminone aza-aromatic curcuminoids were shown to offer a desirable balance between good solubility and significant bioactivity.
Weckbecker, Andrea; Hummel, Werner
2004-11-01
Recombinant pyridine nucleotide transhydrogenase (PNT) from Escherichia coli has been used to regenerate NAD+ and NADPH. The pnta and pntb genes encoding for the alpha- and beta-subunits were cloned and co-expressed with NADP+-dependent alcohol dehydrogenase (ADH) from Lactobacillus kefir and NAD+-dependent formate dehydrogenase (FDH) from Candida boidinii. Using this whole-cell biocatalyst, efficient conversion of prochiral ketones to chiral alcohols was achieved: 66% acetophenone was reduced to (R)-phenylethanol over 12 h, whereas only 19% (R)-phenylethanol was formed under the same conditions with cells containing ADH and FDH genes but without PNT genes. Cells that were permeabilized with toluene showed ketone reduction only if both cofactors were present.
Modeling Aromatic Liquids: Toluene, Phenol, and Pyridine.
Baker, Christopher M; Grant, Guy H
2007-03-01
Aromatic groups are now acknowledged to play an important role in many systems of interest. However, existing molecular mechanics methods provide a poor representation of these groups. In a previous paper, we have shown that the molecular mechanics treatment of benzene can be improved by the incorporation of an explicit representation of the aromatic π electrons. Here, we develop this concept further, developing charge-separation models for toluene, phenol, and pyridine. Monte Carlo simulations are used to parametrize the models, via the reproduction of experimental thermodynamic data, and our models are shown to outperform an existing atom-centered model. The models are then used to make predictions about the structures of the liquids at the molecular level and are tested further through their application to the modeling of gas-phase dimers and cation-π interactions.
Thach, Oscar; Mielczarek, Marcin; Ma, Cong; Kutty, Samuel K; Yang, Xiao; Black, David StC; Griffith, Renate; Lewis, Peter J; Kumar, Naresh
2016-03-15
The search for small molecules capable of inhibiting transcription initiation in bacteria has resulted in the synthesis of N,N'-disubstituted hydrazines and imine-carbohydrazides comprised of indole, pyridine, pyrrole, furan and thiophene using the respective trichloroacetyl derivatives, carbohydrazides and aldehydes. Replacement of the indole moiety by smaller heterocycles linked by CONHNC linkers afforded a broad variety of compounds efficiently targeting the RNA polymerase-σ(70)/σ(A) interaction as determined by ELISA and exhibiting increased inhibition of the growth of Escherichia coli compared to Bacillus subtilis in culture. The structural features of the synthesized transcription initiation inhibitors needed for antibacterial activity were identified employing molecular modelling and structure-activity relationship (SAR) studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Kim, Okseon; Jeong, Yujeong; Lee, Hyunseung; Hong, Sun-Sun; Hong, Sungwoo
2011-04-14
Phosphatidylinositol 3-kinase α (PI3Kα) is an important regulator of intracellular signaling pathways, controlling remarkably diverse arrays of physiological processes. Because the PI3K pathway is frequently up-regulated in human cancers, the inhibition of PI3Kα can be a promising approach to cancer therapy. In this study, we have designed and synthesized a new series of imidazo[1,2-a]pyridine derivatives as PI3Kα inhibitors through the fragment-growing strategy. By varying groups at the 3- and 6-positions of imidazo[1,2-a]pyridines, we studied the structure-activity relationships (SAR) profiles and identified a series of potent PI3Kα inhibitors. Representative derivatives showed good activity in cellular proliferation and apoptosis assays. Moreover, these inhibitors exhibited noteworthy antiangiogenic activity.
A supramolecular miktoarm star polymer based on porphyrin metal complexation in water.
Hou, Zhanyao; Dehaen, Wim; Lyskawa, Joël; Woisel, Patrice; Hoogenboom, Richard
2017-07-25
A novel supramolecular miktoarm star polymer was successfully constructed in water from a pyridine end-decorated polymer (Py-PmDEGA) and a metalloporphyrin based star polymer (ZnTPP-(PEG) 4 ) via metal-ligand coordination. The Py-PmDEGA moiety was prepared via a combination of reversible addition-fragmentation chain transfer polymerization (RAFT) and subsequent aminolysis and Michael addition reactions to introduce the pyridine end-group. The ZnTPP(PEG) 4 star-polymer was synthesized by the reaction between tetrakis(p-hydroxyphenyl)porphyrin and toluenesulfonyl-PEG, followed by insertion of a zinc ion into the porphyrin core. The formation of a well-defined supramolecular AB 4 -type miktoarm star polymer was unambiguously demonstrated via UV-Vis spectroscopic titration, isothermal titration calorimetry (ITC) and diffusion ordered NMR spectroscopy (DOSY).
A theoretical study on 3-(4-methoxyphenyl)-1-(pyridin-2-Yl) prop-2-en-1-one
DOE Office of Scientific and Technical Information (OSTI.GOV)
Öner, Nazmiye, E-mail: fizikcinaz@gmail.com; Tamer, Ömer, E-mail: omertamer@sakarya.edu.tr; Avci, Davut, E-mail: davcir@sakarya.edu.tr
This study reports the geometric parameters, vibration frequencies, {sup 13}C and {sup 1}H NMR chemical shifts of 3-(4-Methoxyphenyl)-1-(pyridin-2-yl) prop-2-en-1-one (MPP) molecule calculated by B3LYP level of density functional theory (DFT) with 6-311++G(d,p) basis set. {sup 13}C and {sup 1}H NMR chemical shifts were calculated within GIAO approach which is one of the most common approaches. Additionally, 3D molecular surfaces such as molecular electrostatic potential (MEP) and electrostatic potential (ESP), were simulated by the same level. As a result, obtained theoretical results were found to be consistent with experimental ones. All of calculations were carried out Gaussian 09 package program.
Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit
2014-03-01
A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.
Distinct sesquiterpene pyridine alkaloids from in Salvadoran and Peruvian Celastraceae species.
Callies, Oliver; Núñez, Marvin J; Perestelo, Nayra R; Reyes, Carolina P; Torres-Romero, David; Jiménez, Ignacio A; Bazzocchi, Isabel L
2017-10-01
As part of a bioprospecting program aimed at the discovery of undescribed natural products from Salvadoran and Peruvian flora, the phytochemical investigations of four Celastraceae species, Celastrus vulcanicola, Maytenus segoviarum, Maytenus jeslkii, and Maytenus cuzcoina, were performed. The current study reports the isolation and structural characterization of five previously undescribed macrolide sesquiterpene pyridine alkaloids, named vulcanicoline-A, cuzcoinine, vulcanicoline-B, jelskiine, and vulcanicoline-C, along with sixteen known alkaloids. The structures of the alkaloids were established by spectrometric and extensive 1D and 2D NMR spectroscopic analysis, including COSY, HSQC, HMBC, and ROESY experiments. The absolute configurations of alkaloids were proposed based on optical rotation sign, and biogenetic considerations. This study represents the first phytochemical analysis of Maytenus segoviarum. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sladowska, Helena; Sabiniarz, Aleksandra; Szkatuła, Dominika; Filipek, Barbara; Sapa, Jacek
2006-01-01
Synthesis of N-substituted derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (17-26) is described. The chlorides, containing OH group, used in the above synthesis can exist in two isomeric forms: chain (12, 14-16) and cyclic (12a, 14a-16a). All final imides studied exhibited analgesic activity in the "writhing syndrome" test which was superior than that of acetylsalicylic acid. In the "hot plate" test only two compounds (19, 20) were active as antinociceptive agents. Furthermore, all compounds tested significantly suppressed the spontaneous locomotor activity of mice.
The photochemical alkylation and reduction of heteroarenes.
McCallum, T; Pitre, S P; Morin, M; Scaiano, J C; Barriault, L
2017-11-01
The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported.