Synthesis and characterization of new polyamides derived from alanine and valine derivatives
2012-01-01
Background Many efforts have been recently devoted to design, investigate and synthesize biocompatible, biodegradable polymers for applications in medicine for either the fabrication of biodegradable devices or as drug delivery systems. Many of them consist of condensation of polymers having incorporated peptide linkages susceptible to enzymatic cleavage. Polyamides (PAs) containing α-amino acid residues such as L-leucine, L-alanine and L-phenylalanine have been reported as biodegradable materials. Furthermore, polyamides (PAs) derived from C10 and C14 dicarboxylic acids and amide-diamines derived from 1,6-hexanediamine or 1,12-dodecanediamine and L-phenylalanine, L-valyl-L-phenylalanine or L-phenylalanyl-L-valine residues have been reported as biocompatible polymers. We have previously described the synthesis and thermal properties of a new type of polyamides-containing amino acids based on eight new symmetric meta-oriented protected diamines derived from coupling of amino acids namely; Fomc-glycine, Fmoc-alanine, Fomc-valine and Fomc-leucine with m-phenylene diamine or 2,6-diaminopyridine. Results revealed that incorporation of pyridine onto the polymeric backbone of all series decreases the thermal stability. Here we describe another family of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of the polymers. Results We report here the preparation of a new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid linked to benzidine and 4,4′-oxydianiline to study the effect of the dicarboxylic acid as well as the amino acids on the nature and thermal stability of polymers. The thermal properties of the polymers were evaluated by different techniques. Results revealed that structure-thermal property correlation based on changing the dicarboxylic acid monomer or the diamine monomer demonstrated an interesting connection between a single change (changing the dicarboxylic acids in each series while the diamine is fixed) and thermal properties. The newly prepared polymers may possess biodegradability and thus may find some applications as novel biomaterials. Conclusions The thermal properties of the new type of polyamides based on benzene dicarboxylic acid, pyridine dicarboxylic acid, and α-amino acid (alanine and valine) linked to benzidine and 4,4′-oxydianiline were evaluated by thermal gravimetric (TG), differential thermal gravimetric (DTG) and differential thermal analysis (DTA) techniques. Results revealed that the structure-thermal property correlation based on changing the dicarboxylic acid monomer or the diamine monomer demonstrated an interesting connection between a single change (changing the dicarboxylic acids in each series while the diamine is fixed) and thermal properties. In addition, pyridine-containing polymers exhibited semicrystalline characteristic with melting temperature, Tm. where none of the valine-containing polymers showed a melting and crystallization peak indicating that the polymers were amorphous. This is expected since L-valine side chain can inhibit close packing and eliminate crystallization. The newly prepared polymers may possess biodegradability and thus may find some applications as novel biomaterials. PMID:23122321
Gotoh, Kazuma; Ishida, Hiroyuki
2017-07-01
The crystal structures of two hydrogen-bonded compounds, namely 4-meth-oxy-benzoic acid-1,3-bis-(pyridin-4-yl)propane (2/1), C 13 H 14.59 N 2 ·C 8 H 7.67 O 3 ·C 8 H 7.74 O 3 , (I), and biphenyl-4,4'-di-carb-oxy-lic acid-4-meth-oxy-pyridine (1/2), C 14 H 9.43 O 4 ·C 6 H 7.32 NO·C 6 H 7.25 NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-meth-oxy-benzoic acid mol-ecules and one 1,3-bis-(pyridin-4-yl)propane mol-ecule. The asymmetric unit of (II) comprises one biphenyl-4,4'-di-carb-oxy-lic acid mol-ecule and two independent 4-meth-oxy-pyridine mol-ecules. In each crystal, the acid and base mol-ecules are linked by short O-H⋯N/N-H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C-H⋯π, π-π and C-H⋯O inter-actions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π-π and C-H⋯O inter-actions.
NASA Astrophysics Data System (ADS)
Ghasemi, Khaled; Rezvani, Ali Reza; Shokrollahi, Ardeshir; Zarghampour, Fereshteh; Moghimi, Abolghasem; García-Granda, Santiago; Mendoza-Meroño, Rafael
2015-06-01
Reaction between 2,2‧-dipyridylamine (DPA) and 2,6-pyridine dicarboxylic acid (dipicolinic acid, dipicH2), in water results in the formation of a proton transfer or charge transfer (CT) complex, (DPAH)+(dipicH)-·H2O, 1. The characterization was performed using 1H NMR and FTIR spectroscopy, elemental analysis and X-ray crystallography. The crystal system is triclinic with space group P1. The structural investigations exhibit that the hydrogen bonds and π-π stacking interactions stabilize the crystal structure of proton transfer complex. The protonation constants of 2,6-pyridine dicarboxylic acid, 2,2‧-dipyridylamine and the equilibrium constants for dipic-DPA (1:1) proton transfer system were calculated by potentiometric pH titration method using Hyperquad2008 program. The stoichiometries of the proton transfer species in solution was in agreement with the solid state result.
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.
2014-01-01
The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We lso report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.
NASA Technical Reports Server (NTRS)
Smith, Karen E.; Callahan, Michael P.; Gerakines, Perry A.; Dworkin, Jason P.; House, Christopher H.
2014-01-01
The distribution and abundances of pyridine carboxylic acids (including nicotinic acid) in eight CM2 carbonaceous chondrites (ALH 85013, DOM 03183, DOM 08003, EET 96016, LAP 02333, LAP 02336, LEW 85311, and WIS 91600) were investigated by liquid chromatography coupled to UV detection and high resolution Orbitrap mass spectrometry. We find that pyridine monocarboxylic acids are prevalent in CM2-type chondrites and their abundance negatively correlates with the degree of pre-terrestrial aqueous alteration that the meteorite parent body experienced. We also report the first detection of pyridine dicarboxylic acids in carbonaceous chondrites. Additionally, we carried out laboratory studies of proton-irradiated pyridine in carbon dioxide-rich ices (a 1:1 mixture) to serve as a model of the interstellar ice chemistry that may have led to the synthesis of pyridine carboxylic acids. Analysis of the irradiated ice residue shows that a comparable suite of pyridine mono- and dicarboxylic acids was produced, although aqueous alteration may still play a role in the synthesis (and ultimate yield) of these compounds in carbonaceous meteorites. Nicotinic acid is a precursor to nicotinamide adenine dinucleotide, a likely ancient molecule used in cellular metabolism in all of life, and its common occurrence in CM2 chondrites may indicate that meteorites may have been a source of molecules for the emergence of more complex coenzymes on the early Earth.
NASA Astrophysics Data System (ADS)
Büyükkıdan, Nurgün; Yenikaya, Cengiz; İlkimen, Halil; Karahan, Ceyda; Darcan, Cihan; Korkmaz, Tülin; Süzen, Yasemin
2015-12-01
The new water-soluble and air stable compounds (H2ppz)[Co(dipic)2]·6H2O (1), (H2ppz)[Ni(dipic)2]·6H2O (2) and (H2ppz)[Zn(dipic)2]·6H2O (3) were prepared by the reaction of corresponding metal(II) acetates and a proton transfer salt, (H2ppz) (Hdipic)2, (4) of pyridine-2,6-dicarboxylic acid (H2dipic) and 2-(piperazin-1-yl)ethanol (ppz). The compounds 1-3 were characterized by elemental, IR, UV-vis. thermal analyses, magnetic measurement and single crystal X-ray diffraction studies. The molecular structures of the title compounds consist of one 1-(2-hydroxyethyl)piperazine-1,4-diium (H2ppz+2) cation, one bis(pyridine-2,6-dicarboxylate)metal(II) [M(dipic)2]2- anion, and six uncoordinated water molecules. In compounds 1-3 the metal ions coordinate to two oxygen and one nitrogen atoms of two pyridine-2,6-dicarboxylate molecules forming an octahedral environment. Antimicrobial activities against Gram (-) wild type (Escherichia coli and Pseudomonas aeruginosa), Gram (+) wild type (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus and Bacillus subtilis) and clinical isolate (Morganella morganii, Proteus vulgaris and Enterobacter aeruginosa) were also studied. The results were reported, discussed and compared with the corresponding starting materials ((H2ppz) (Hdipic)2 (4), H2dipic and ppz). MIC (Minimal Inhibition Concentration) values of the newly synthesized compounds were determined as 4000 μg/ml (except B. subtilis and clinical isolate E. aeruginosa, >4000 μg/ml).
NASA Astrophysics Data System (ADS)
Gould, Jamie A.; Athwal, Harprit Singh; Blake, Alexander J.; Lewis, William; Hubberstey, Peter; Champness, Neil R.; Schröder, Martin
2017-01-01
A family of Cu(II)-based metal-organic frameworks (MOFs) has been synthesized using three pyridyl-isophthalate ligands, H2L1 (4'-(pyridin-4-yl)biphenyl-3,5-dicarboxylic acid), H2L2 (4''-(pyridin-4-yl)-1,1':4',1''-terphenyl-3,5-dicarboxylic acid) and H2L3 (5-[4-(pyridin-4-yl)naphthalen-1-yl]benzene-1,3-dicarboxylic acid). Although in each case the pyridyl-isophthalate ligands adopt the same pseudo-octahedral [Cu2(O2CR)4N2] paddlewheel coordination modes, the resulting frameworks are structurally diverse, particularly in the case of the complex of Cu(II) with H2L3, which leads to three distinct supramolecular isomers, each derived from Kagomé and square nets. In contrast to [Cu(L2)] and the isomers of [Cu(L3)], [Cu(L1)] exhibits permanent porosity. Thus, the gas adsorption properties of [Cu(L1)] were investigated with N2, CO2 and H2, and the material exhibits an isosteric heat of adsorption competitive with leading MOF sorbents for CO2. [Cu(L1)] displays high H2 adsorption, with the density in the pores approaching that of liquid H2. This article is part of the themed issue 'Coordination polymers and metal-organic frameworks: materials by design'.
On the formation of niacin (vitamin B3) and pyridine carboxylic acids in interstellar model ices
NASA Astrophysics Data System (ADS)
McMurtry, Brandon M.; Turner, Andrew M.; Saito, Sean E. J.; Kaiser, Ralf I.
2016-06-01
The formation of pyridine carboxylic acids in interstellar ice grains was simulated by electron exposures of binary pyridine (C5H5N)-carbon dioxide (CO2) ice mixtures at 10 K under contamination-free ultrahigh vacuum conditions. Chemical processing of the pristine ice and subsequent warm-up phase was monitored on line and in situ via Fourier transform infrared spectroscopy to probe for the formation of new radiation induced species. In the infrared spectra of the irradiated ice, bands assigned to nicotinic acid (niacin; vitamin B3; m-C5H4NCOOH) along with 2,3-, 2,5-, 3,4-, and 3,5-pyridine dicarboxylic acid (C5H3N(COOH)2) were unambiguously identified along with the hydroxycarbonyl (HOCO) radical. Our study suggests that the reactive pathway responsible for pyridine carboxylic acids formation involves a HOCO intermediate, which forms through the reaction of suprathermal hydrogen ejected from pyridine with carbon dioxide. The newly formed pyridinyl radical may then undergo radical-radical recombination with a hydroxycarbonyl radical to form a pyridine carboxylic acid.
NASA Astrophysics Data System (ADS)
Soleimannejad, Janet; Nazarnia, Esfandiar
2016-07-01
A new Ga(III) supramolecular compound (4,4‧-bipyH2)[Ga(hpydc)2]2·7H2O (2) (where H2hpydc = 4-hydroxy-pyridine-2,6-dicarboxylic acid and 4,4‧-bipy = 4,4‧-bipyridine) was synthesized using the proton transfer reaction. Compound 2 was structurally characterized using single crystal X-ray diffraction, and it was shown that its asymmetric unit consists of two independent anionic Ga(III) complexes, one fully protonated 4,4‧-bipyridine and seven uncoordinated water molecules. In order to understand the effect of pyridine OH substituent on supramolecular interactions and crystal packing, compound 2 was compared with (bipyH2)[Ga(pydc)2]·(H2pydc)·4H2O (1) (where H2pydc = pyridine-2,6-dicarboxylic acid), that does not have an OH group on the pyridine ligand. The Density Functional Theory (DFT) and Natural Bond Orbital (NBO) calculations and also Atoms in Molecules (AIM) analysis were used to analyze the non-covalent interactions in both complexes. The calculation of non-covalent interactions' energy provides a useful means to investigate their effects in the crystal packing.
NASA Astrophysics Data System (ADS)
Dou, Ming-Yu; Lu, Jing
2017-12-01
A novel coordination polymer containing hetero-metal ions, [NiNa2(PDC)2(μ-H2O)(H2O)2] n , where PDC is 2,3-pyridine dicarboxylate ion, has been synthesized. In the structure, the PDC ligand chelates and bridges two Ni(II) and two Na(I) centers. Two kinds of metal centers are connected by μ4-PDC and μ2-H2O to form 2D coordination layers. Hydrogen bonds between coordination water molecules and carboxylate oxygen atoms further link these 2D coordination layers to form 3D supramolecular network.
Azab, Hassan A; Duerkop, Axel; Anwar, Z M; Hussein, Belal H M; Rizk, Moustafa A; Amin, Tarek
2013-01-08
Luminescence quenching of a novel long lived Eu(III)-pyridine-2,6-dicarboxylic acid probe of 1:2 stoichiometric ratio has been studied in 0.10 volume fraction ethanol-water mixture at pH 7.5 (HEPES buffer) in the presence of the organophosphorus pesticides chlorfenvinphos (P1), malathion (P2), azinphos (P3), and paraxon ethyl (P4). The luminescence intensity of Eu(III)-(PDCA)(2) probe decreases as the concentration of the pesticide increases. It was observed that the quenching due to P3 and P4 proceeds via both diffusional and static quenching processes. Direct methods for the determination of the pesticides under investigation have been developed using the luminescence quenching of Eu(III)-pyridine-2,6-dicarboxylic acid probe in solution. The linear range for determination of the selected pesticides is 1.0-35.0 μM. The detection limits were 0.24-0.55 μM for P3, P4, and P1 and 2.5 μM for P2, respectively. The binding constants (K), and thermodynamic parameters of the OPs with Eu(III)-(PDCA)(2) were evaluated. Positive and negative values of entropy (ΔS) and enthalpy (ΔH) changes for Eu(III)-(PDCA)(2)-P1 ternary complex were calculated. As the waters in this study do not contain the above mentioned OPs over the limit detectable by the method, a recovery study was carried out after the addition of the adequate amounts of the organophosphorus pesticides under investigation. Copyright © 2012 Elsevier B.V. All rights reserved.
Thermokinetic profile of NDM-1 and its inhibition by small carboxylic acids
Wang, Qian; He, Yuan; Lu, Rui; Wang, Wen-Ming; Yang, Ke-Wu; Fan, Hai Ming; Jin, Yi; Blackburn, G. Michael
2018-01-01
The New Delhi metallo-β-lactamase (NDM-1) is an important clinical target for antimicrobial research, but there are insufficient clinically useful inhibitors and the details of NDM-1 enzyme catalysis remain unclear. The aim of this work is to provide a thermodynamic profile of NDM-1 catalysed hydrolysis of β-lactams using an isothermal titration calorimetry (ITC) approach and to apply this new method to the identification of new low-molecular-weight dicarboxylic acid inhibitors. The results reveal that hydrolysis of penicillin G and imipenem by NDM-1 share the same thermodynamic features with a significant intrinsic enthalpy change and the release of one proton into solution, while NDM-1 hydrolysis of cefazolin exhibits a different mechanism with a smaller enthalpy change and the release of two protons. The inhibitory constants of four carboxylic acids are found to be in the micromolar range. The compounds pyridine-2,6-dicarboxylic acid and thiazolidine-2,4-dicarboxylic acid show the best inhibitory potency and are confirmed to inhibit NDM-1 using a clinical strain of Escherichia coli. The pyridine compound is further shown to restore the susceptibility of this E. coli strain to imipenem, at an inhibitor concentration of 400 μM, while the thiazoline compound also shows a synergistic effect with imipenem. These results provide valuable information to enrich current understanding on the catalytic mechanism of NDM-1 and to aid the future optimisation of β-lactamase inhibitors based on these scaffolds to tackle the problem of antibiotic resistance. PMID:29507059
NASA Astrophysics Data System (ADS)
Shaikh, Ruqaya; Memon, Najma; Solangi, Amber R.; Shaikh, Huma I.; Agheem, Muhammad Hassan; Ali, Syed Abid; Shah, Muhammad Raza; Kandhro, Aftab
2017-02-01
Selectivity of gold nanoparticles (AuNPs) depends upon surface functionality; small changes in structure or concentration bring significant changes in the behavior of AuNPs. In this study, citrate-capped AuNPs were functionalized with ortho-dicarboxylate substituted pyridine (2,3-PDCA) and detailed studies on experimental conditions were carried out to check the stability of AuNPs and response for Cr3 +. Stability of PDCA-AuNPs was found sensitive to the pH, ionic strength of buffer and its type. Capping behavior of PDCA on C-AuNPs was examined by FTIR spectroscopy. Surface morphology and size of synthesized AuNPs were confirmed by AFM, XRD, and DLS techniques where particles were found 11 nm in size, monodisperse and spherical in shape. Interaction of stabilized AuNPs was tested with various metal ions; where Cr3 + induced the changes in localized surface plasmon band (LSPR) of PDCA-AuNPs which leads to a color change from wine red to violet blue. The phenomenon is explained as cooperative effect of citrate and pyridine nitrogen on surface of AuNPs in contrary to meta-dicarboxylate substituted pyridine derivatives. Further, under optimized and controlled conditions Cr3 + shows linear response with decrease in absorbance at LSPR intensity of AuNPs (518 nm). Moreover, to demonstrate the applicability of method, Cr3 + was determined in the presence of Cr (VI) which shows 96% recovery.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni
2014-07-01
To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less
Tris(5,6-dimethyl-1H-benzimidazole-κN(3))(pyridine-2,6-dicarboxyl-ato-κ(3)O(2),N,O(6))nickel(II).
Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan
2012-06-01
The title mononuclear complex, [Ni(C(7)H(3)NO(4))(C(9)H(10)N(2))(3)], shows a central Ni(II) atom which is coordinated by two carboxyl-ate O atoms and the N atom from a pyridine-2,6-dicarboxyl-ate ligand and by three N atoms from different 5,6-dimethyl-1H--benzimidazole ligands in a distorted octa-hedral geometry. The crystal structure shows intermolecular N-H⋯O hydrogen bonds.
NASA Astrophysics Data System (ADS)
Wang, Xinlong; Qin, Chao; Wang, Enbo; Hu, Changwen; Xu, Lin
2004-07-01
A novel metal-organic coordination polymer, [Zn(PDB)(H 2O) 2] 4 n (H 2PDB=pyridine-2,5-dicarboxylic acid), has been hydrothermally synthesized and characterized by elemental analysis, IR, TG and single crystal X-ray diffraction. Colorless crystals crystallized in the triclinic system, space group P-1, a=7.0562(14) Å, b=7.38526(15) Å, c=18.4611(4) Å, α=90.01(3)°, β=96.98(3)°, γ=115.67(3)°, V=859.1(3) Å 3, Z=1 and R=0.0334. The structure of the compound exhibits a novel three-dimensional supramolecular network, mainly based on multipoint hydrogen bonds originated from within and outside of a large 24-membered ring. Interestingly, the three-dimensional network consists of one-dimensional parallelogrammic channels in which coordinated water molecules point into the channel wall.
Molecular and isotopic analyses of Tagish Lake alkyl dicarboxylic acids
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra; Huang, Yongsong
2002-05-01
The Tagish Lake meteorite soluble organic suite has a general composition that differs from those of both CI- and CM chondrites. These differences suggest that distinct processes may have been involved in the formation of different groups of organics in meteorites. Tagish Lake alkyl dicarboxylic acids have a varied, abundant distribution and are, with carboxylated pyridines, the only compounds to have an occurrence comparable to that of the Murchison meteorite. This study has undertaken their molecular and isotopic characterization, with the aim to understand their origin and to gain insights into the evolutionary history of the meteorite parent body. Tagish Lake alkyl dicarboxylic acids are present as a homologous series of saturated and unsaturated species with three through ten-carbon atom chain length. Linear saturated acids are predominant and show decreasing amounts with increasing chain length. A total of forty-four of these compounds were detected with the most abundant, succinic acid, present at ~40 nmoles/g. met. Overall the molecular distribution of Tagish Lake dicarboxylic acids shows a remarkable compound to compound correspondence with those observed in the Murchison and Murray meteorites. In both Tagish Lake and Murchison, the imides of the more abundant dicarboxylic acids were also observed. The hydrogen and carbon isotopic compositions of individual Tagish Lake dicarboxylic acids were determined and compared to those of the corresponding acids in the Murchison meteorite. All delta D and delta 13C values for Tagish Lake acids are positive and show a substantial isotopic enrichment. Delta D values vary from, approximately, + 1120 deg for succinic acid to + 1530 deg for methyl glutaric acid. Delta 13C values ranged from + 12.6 deg for methyl glutaric acid to + 22.9 deg for glutaric acid, with adipic acid having a significantly lower value (+ 5.5 deg). Murchison dicarboxylic acid showed similar isotopic values: their delta 13C values were generally higher by an average 17% and delta D values were lower for succinic and glutaric acids, possibly due to contamination. The molecular and isotopic data collected for these compounds restrict their possible origin to processes, either interstellar or of very cold nebular regions, that produced significant isotopic enrichments. Saturated or partially unsaturated nitriles and dinitriles appear to be good precursor candidates as their hydrolysis, upon water exposure, would produce dicarboxylic acids and other carboxylated species found in Tagish Lake. This evolutionary course could possibly include pre-accretionary processes.
NASA Astrophysics Data System (ADS)
Faghihi, Khalil; Samiei, Mojtaba; Hajibeygi, Mohsen
2012-06-01
Two new samples of reinforce polyamidemontmorillonite nanocomposites were synthesized by a convenient solution intercalation technique. Polyamide (PA) 3 as a source of polymer matrix was synthesized by the direct polycondensation reaction of pyrazine 2,3-dicarboxylic acid 1 with 4,4'-diamino diphenyl ether 2 in the presence of triphenyl phosphite (TPP), CaCl2, pyridine and N-methyl-2-pyrrolidone (NMP). The resulting nanocomposite films were characterized by Fourier transform infrared spectra (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). The results showed that organo-modified clay was dispersed homogeneously in PA matrix. TGA indicated an enhancement of thermal stability of new nanocomposites compared with the pure polymer.
Byrne, Cillian; Houlihan, Kate M; Devi, Prarthana; Jensen, Paul; Rutledge, Peter J
2014-12-12
Nitrile hydratase (NHase, EC 4.2.1.84) is a metalloenzyme which catalyses the conversion of nitriles to amides. The high efficiency and broad substrate range of NHase have led to the successful application of this enzyme as a biocatalyst in the industrial syntheses of acrylamide and nicotinamide and in the bioremediation of nitrile waste. Crystal structures of both cobalt(III)- and iron(III)-dependent NHases reveal an unusual metal binding motif made up from six sequential amino acids and comprising two amide nitrogens from the peptide backbone and three cysteine-derived sulfur ligands, each at a different oxidation state (thiolate, sulfenate and sulfinate). Based on the active site geometry revealed by these crystal structures, we have designed a series of small-molecule ligands which integrate essential features of the NHase metal binding motif into a readily accessible peptide environment. We report the synthesis of ligands based on a pyridine-2,6-dicarboxylic acid scaffold and L-cysteine, L-S-methylcysteine, L-methionine or L-penicillamine. These ligands have been combined with cobalt(III) and iron(III) and tested as catalysts for biomimetic nitrile hydration. The highest levels of activity are observed with the L-penicillamine ligand which, in combination with cobalt(III), converts acetonitrile to acetamide at 1.25 turnovers and benzonitrile to benzamide at 1.20 turnovers.
The Organic Content of the Tagish Lake Meteorite
NASA Technical Reports Server (NTRS)
Pizzarello, Sandra; Huang, Yongsong; Becker, Luann; Poreda, Robert J.; Nieman, Ronald A.; Cooper, George; Williams, Michael
2001-01-01
The Tagish Lake meteorite felt last year on a frozen take in Canada and may provide the most pristine material of its kind. Analyses have now shown this carbonaceous chondrite to contain a suite of soluble organic compounds (approximately 100 parts per million) that includes mono- and dicarboxylic acids, dicarboximides, pyridine carboxylic acids, a sulfonic acid, and both aliphatic and aromatic hydrocarbons. The insoluble carbon exhibits exclusive aromatic character, deuterium enrichment, and fullerenes containing 'planetary' helium and argon. The findings provide insight into an outcome of early solar chemical evolution that differs from any seen so far in meteorites.
Zhou, Li-Juan; Han, Chang-Bao; Wang, Yu-Ling
2016-02-01
Coordination polymers constructed from metal ions and organic ligands have attracted considerable attention owing to their diverse structural topologies and potential applications. Ligands containing carboxylate groups are among the most extensively studied because of their versatile coordination modes. Reactions of benzene-1,4-dicarboxylic acid (H2BDC) and pyridine (py) with Zn(II) or Co(II) yielded two new coordination polymers, namely, poly[(μ4-benzene-1,4-dicarboxylato-κ(4)O:O':O'':O''')(pyridine-κN)zinc(II)], [Zn(C8H4O2)(C5H5N)]n, (I), and catena-poly[aqua(μ3-benzene-1,4-dicarboxylato-κ(3)O:O':O'')bis(pyridine-κN)cobalt(II)], [Co(C8H4O2)(C5H5N)2(H2O)]n, (II). In compound (I), the Zn(II) cation is five-coordinated by four carboxylate O atoms from four BDC(2-) ligands and one pyridine N atom in a distorted square-pyramidal coordination geometry. Four carboxylate groups bridge two Zn(II) ions to form centrosymmetric paddle-wheel-like Zn2(μ2-COO)4 units, which are linked by the benzene rings of the BDC(2-) ligands to generate a two-dimensional layered structure. The two-dimensional layer is extended into a three-dimensional supramolecular structure with the help of π-π stacking interactions between the aromatic rings. Compound (II) has a one-dimensional double-chain structure based on Co2(μ2-COO)2 units. The Co(II) cations are bridged by BDC(2-) ligands and are octahedrally coordinated by three carboxylate O atoms from three BDC(2-) ligands, one water O atom and two pyridine N atoms. Interchain O-H...O hydrogen-bonding interactions link these chains to form a three-dimensional supramolecular architecture.
Tris(5,6-dimethyl-1H-benzimidazole-κN 3)(pyridine-2,6-dicarboxylato-κ3 O 2,N,O 6)nickel(II)
Li, Yue-Hua; Li, Feng-Feng; Liu, Xin-Hua; Zhao, Ling-Yan
2012-01-01
The title mononuclear complex, [Ni(C7H3NO4)(C9H10N2)3], shows a central NiII atom which is coordinated by two carboxylate O atoms and the N atom from a pyridine-2,6-dicarboxylate ligand and by three N atoms from different 5,6-dimethyl-1H-benzimidazole ligands in a distorted octahedral geometry. The crystal structure shows intermolecular N—H⋯O hydrogen bonds. PMID:22719301
Competitive Inhibitors of the CphA Metallo-β-Lactamase from Aeromonas hydrophila▿
Horsfall, L. E.; Garau, G.; Liénard, B. M. R.; Dideberg, O.; Schofield, C. J.; Frère, J. M.; Galleni, M.
2007-01-01
Various inhibitors of metallo-β-lactamases have been reported; however, none are effective for all subgroups. Those that have been found to inhibit the enzymes of subclass B2 (catalytically active with one zinc) either contain a thiol (and show less inhibition towards this subgroup than towards the dizinc members of B1 and B3) or are inactivators behaving as substrates for the dizinc family members. The present work reveals that certain pyridine carboxylates are competitive inhibitors of CphA, a subclass B2 enzyme. X-ray crystallographic analyses demonstrate that pyridine-2,4-dicarboxylic acid chelates the zinc ion in a bidentate manner within the active site. Salts of these compounds are already available and undergoing biomedical testing for various nonrelated purposes. Pyridine carboxylates appear to be useful templates for the development of more-complex, selective, nontoxic inhibitors of subclass B2 metallo-β-lactamases. PMID:17307979
NASA Technical Reports Server (NTRS)
Oskaja, V.; Rotberg, J.
1985-01-01
By 4-nitrophthalic anhydride condensation with acetoacetate in acetic anhydride and triethylamine solution with subsequent breakdown of the intermediate condensation product, 5-nitroindanedione-1,3 was obtained. A 4-nitrophthalic anhydride with acetic anhydride, according to reaction conditions, may yield two products: in the presence of potassium acetate and at high temperatures 4-(or 5-)-nitro-2-acetylbenzoic acid is formed: in the presence of triethylamine and at room temperature 5-( or 6-)-nitrophthalic acetic acid is isolated. A 4-nitrophthalic anhydride and malonic acid in pyridine solution according to temperature yield either 5-( or 6-)-nitrophthalic acetic acid or 4-(or 5-)-nitro-2-acetylbenzoic acid.
NASA Astrophysics Data System (ADS)
Xia, Liang; Dong, Wen-Wen; Ye, Xiao; Zhao, Jun; Li, Dong-Sheng
2016-10-01
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d10 coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt)2]n (1), [Cd3(4-pzpt)2(suc)2]n (2), [Cd2(4-Hpzpt)(nbc)2(H2O)]n (3) and {[Cd2(4-pzpt)2(tfbdc)(H2O)4]·H2O}n (4) (H2suc=1,2-ethanedicarboxylic acid, H2nbc=hthalene-1,4-dicarboxylic acid, H2tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 44-sql layer, which is extended to a 3D network via nonclassical C-H…N hydrogen bonds. Compound 2 possesses a 6-connected pcu-4120.63 net composed of trinuclear CdII-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·53·72)(53·6·7·9)(42·55·6·72). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 63-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O-H…N and O-H…O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated.
Ferrihydrite dissolution by pyridine-2,6-bis(monothiocarboxylic acid) and hydrolysis products
NASA Astrophysics Data System (ADS)
Dhungana, Suraj; Anthony, Charles R.; Hersman, Larry E.
2007-12-01
Pyridine-2,6-bis(monothiocarboxylate) (pdtc), a metabolic product of microorganisms, including Pseudomonas putida and Pseudomonas stutzeri was investigated for its ability of dissolve Fe(III)(hydr)oxides at pH 7.5. Concentration dependent dissolution of ferrihydrite under anaerobic environment showed saturation of the dissolution rate at the higher concentration of pdtc. The surface controlled ferrihydrite dissolution rate was determined to be 1.2 × 10 -6 mol m -2 h -1. Anaerobic dissolution of ferrihydrite by pyridine-2,6-dicarboxylic acid or dipicolinic acid (dpa), a hydrolysis product of pdtc, was investigated to study the mechanism(s) involved in the pdtc facilitated ferrihydrite dissolution. These studies suggest that pdtc dissolved ferrihydrite using a reduction step, where dpa chelates the Fe reduced by a second hydrolysis product, H 2S. Dpa facilitated dissolution of ferrihydrite showed very small increase in the Fe dissolution when the concentration of external reductant, ascorbate, was doubled, suggesting the surface dynamics being dominated by the interactions between dpa and ferrihydrite. Greater than stoichiometric amounts of Fe were mobilized during dpa dissolution of ferrihydrite assisted by ascorbate and cysteine. This is attributed to the catalytic dissolution of Fe(III)(hydr)oxides by the in situ generated Fe(II) in the presence of a complex former, dpa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, Liang; Dong, Wen-Wen, E-mail: dongww1@126.com; Ye, Xiao
To systematically investigate the influence of the flexible or rigid auxiliary ligands on the structures and properties of transition metal compounds, we synthesized four new d{sup 10} coordination polymers (CPs) from 3-(pyridin-4-yl)-5-(pyrazin-2-yl)-1H-1,2,4-triazole (4-Hpzpt) and flexible/rigid dicarboxylate ligands, [Cd(4-pzpt){sub 2}]{sub n} (1), [Cd{sub 3}(4-pzpt){sub 2}(suc){sub 2}]{sub n} (2), [Cd{sub 2}(4-Hpzpt)(nbc){sub 2}(H{sub 2}O)]{sub n} (3) and ([Cd{sub 2}(4-pzpt){sub 2}(tfbdc)(H{sub 2}O){sub 4}]·H{sub 2}O){sub n} (4) (H{sub 2}suc=1,2-ethanedicarboxylic acid, H{sub 2}nbc=hthalene-1,4-dicarboxylic acid, H{sub 2}tfbdc =2,3,5,6-tetrafluoroterephthalic acid). Single crystal X-ray analysis indicates that compound 1 shows a 4{sup 4}-sql layer, which is extended to a 3D network via nonclassical C–H{sup …}N hydrogen bonds. Compound 2more » possesses a 6-connected pcu-4{sup 12}0.6{sup 3} net composed of trinuclear Cd{sup II}-clusters. Compound 3 represents a rare 3D (3,4,4,5)-connected topology with a Schläfli symbol of (4·6·7)(4·5{sup 3}·7{sup 2})(5{sup 3}·6·7·9)(4{sup 2}·5{sup 5}·6·7{sup 2}). Compound 4 exhibits a 2D+2D→2D parallel interpenetrated 6{sup 3}-hcb network. The adjacent 2D networks are interdigitated with each other to form the resulting 3D supramolecular architecture through classical O–H{sup …}N and O–H{sup …}O hydrogen bonds. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. Moreover, the luminescent properties of them have been briefly investigated. - Graphical abstract: Four new Cd{sup II} coordination architectures constructed from the primary ligand 4-Hpzpt and flexible/rigid dicarboxylate coligands. Structural diversities indicate that the nature of flexible/rigid-dicarboxlates plays crucial roles in modulating structures of these compounds. And more, the thermal stability and luminescence are discussed. - Highlights: • Four new Cd{sup II} compounds with 4-Hpzpt and flexible/rigid dicarboxylate coligands. • Structural analysis of all compounds. • luminescent property of all compounds.« less
Wen, Li-Li; Dang, Dong-Bin; Duan, Chun-Ying; Li, Yi-Zhi; Tian, Zheng-Fang; Meng, Qing-Jin
2005-10-03
Five novel interesting d(10) metal coordination polymers, [Zn(PDCO)(H2O)2]n (PDCO = pyridine-2,6-dicarboxylic acid N-oxide) (1), [Zn2(PDCO)2(4,4'-bpy)2(H2O)2.3H2O]n (bpy = bipyridine) (2), [Zn(PDCO)(bix)]n (bix = 1,4-bis(imidazol-1-ylmethyl)benzene) (3), [Zn(PDCO)(bbi).0.5H2O]n (bbi = 1,1'-(1,4-butanediyl)bis(imidazole)) (4), and [Cd(PDCO)(bix)(1.5).1.5H2O]n (5), have been synthesized under hydrothermal conditions and structurally characterized. Polymer 1 possesses a one-dimensional (1D) helical chainlike structure with 4(1) helices running along the c-axis with a pitch of 10.090 Angstroms. Polymer 2 has an infinite chiral two-dimensional (2D) brick-wall-like layer structure in the ac plane built from achiral components, while both 3 and 4 exhibit an infinite 2D herringbone architecture, respectively extended in the ac and ab plane. Polymer 5 features a most remarkable and unique three-dimensional (3D) porous framework with 2-fold interpenetration related by symmetry, which contains channels in the b and c directions, both distributed in a rectangular grid fashion. Compounds 1-5, with systematic variation in dimensionality from 1D to 2D to 3D, are the first examples of d(10) metal coordination polymers into which pyridinedicarboxylic acid N-oxide has been introduced. In addition, polymers 1, 4, and 5 display strong blue fluorescent emissions in the solid state. Polymer 3 exhibits a strong SHG response, estimated to be approximately 0.9 times that of urea.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xin, Ling-Yun; Liu, Guang-Zhen, E-mail: gzliuly@126.com; Ma, Lu-Fang
A non-coplanar dicarboxylate ndca (H{sub 2}ndca=5-norbornene-2,3-dicarboxylic acid), combining with various dipyridyl-typed tectons, constructs six Cd(II)/Co(II) coordination polymers under hydrothermal conditions, namely [Co(ndca)(H{sub 2}O)]{sub n} (1), ([Co(ndca)(bpe)(H{sub 2}O)]·H{sub 2}O){sub n} (2), [Co(ndca)(bpa){sub 0.5}(H{sub 2}O)]{sub n} (3), [Cd(ndca)(bpe)(H{sub 2}O)]{sub n} (4), ([Cd(ndca)(bpa)(H{sub 2}O)]·0.5H{sub 2}O){sub n} (5), and ([Cd(ndca)(bpp) (H{sub 2}O)]·H{sub 2}O){sub n} (6) (bpe=1,2-di(4-pyridyl)ethylene, bpa=1,2-bi(4-pyridyl)ethane, and bpp=1,3-bis(4-pyridyl)propane). All these compounds contain various metal(II)–carboxylate motifs, including carboxylate binuclear (2, 4, 5), carboxylate chain (1, 6) and carboxylate layer (3), which are further extended by dipyridyl-typed coligands to afford a vast diversity of the structures with 2D pyknotic layers (1, 6), 2D open layermore » (5), 2D→3D interpenetrated networks (2,4), and 3D pillared-layer framework (3), respectively. In addition, fluorescent spectra of Cd(II) complexes and magnetic properties of Co(II) complexes are also given. - Graphical abstract: Six various cadmium(II)/cobalt(II)–organic frameworks were constructed by 5-norbornene-2,3-dicarboxylic acid and different bis(pyridine) rod-like tectons, and Cd (II) complexes exhibit blue–violet emissions, whereas Co (II) complexes show antiferromagnetic behaviours. Display Omitted.« less
Farzanfar, Javad; Ghasemi, Khaled; Rezvani, Ali Reza; Delarami, Hojat Samareh; Ebrahimi, Ali; Hosseinpoor, Hona; Eskandari, Amir; Rudbari, Hadi Amiri; Bruno, Giuseppe
2015-06-01
Three new thiourea ligands derived from the condensation of aroyl- and aryl-isothiocyanate derivatives with 2,6-diaminopyridine, named 1,1'-(pyridine-2,6-diyl)bis(3-(benzoyl)thiourea) (L1), 1,1'-(pyridine-2,6-diyl)bis(3-(2-chlorobenzoyl)thiourea) (L2) and 1,1'-(pyridine-2,6-diyl)bis(3-(4-chlorophenyl)thiourea) (L3), their oxido-vanadium(IV) complexes, namely [VO(L1('))(H2O)] (C1), [VO(L2('))(H2O)] (C2) and [VO(L3('))(H2O)] (C3), and also, dioxo-vanadium(V) complex containing 4-hydroxy-2,6-pyridine dicarboxylic acid (chelidamic acid, H2dipic-OH) and metformin (N,N-dimethylbiguanide, Met), named [H2Met][VO2(dipic-OH)]2·H2O (C4), were synthesized and characterized by elemental analysis, FTIR and (1)H NMR and UV-visible spectroscopies. Proposed structures for free thiourea ligands and their vanadium complexes were corroborated by applying geometry optimization and conformational analysis. Solid state structure of complex [H2Met][VO2(dipic-OH)]2·H2O (triclinic, Pī) was fully determined by single crystal X-ray diffraction analysis. In this complex, metformin is double protonated and acted as counter ion. The antibacterial properties of these compounds were investigated in vitro against standard Gram-positive and Gram-negative bacterial strains. The experiments showed that vanadium(IV) complexes had the superior antibacterial activities than novel thiourea derivatives and vanadium(V) complex against all Gram-positive and Gram-negative bacterial strains. Copyright © 2015 Elsevier Inc. All rights reserved.
Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.
Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman
2013-07-14
A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.
Pyridine 2,4-dicarboxylic acid suppresses tomato seedling growth
NASA Astrophysics Data System (ADS)
Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis
2018-01-01
Pyridine 2,4-dicarboxylic acid is a structural analogue of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μΜ of PDCA decreased hydroxyproline content in roots while only the 250 μΜ treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μΜ PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μΜ which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analogue. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.
Zhang, Ji-Wen; Li, Sheng-Kun; Wu, Wen-Jun
2009-01-08
The essential oils of the aerial parts of Ocimum basilicum Linn.var. pilosum (Willd.) Benth., an endemic medicinal plant growing in China, was obtained by hydrodistillation and analysed by GC-MS. Fifteen compounds, representing 74.19% of the total oil were identified. The main components were as follows: linalool (29.68%), (Z)-cinnamic acid methyl ester (21.49%), cyclohexene (4.41%), alpha- cadinol (3.99%), 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane (2.27%), 3,5-pyridine-dicarboxylic acid, 2,6-dimethyl-diethyl ester (2.01%), beta-cubebene (1.97%), guaia-1(10),11-diene (1.58%), cadinene (1.41%) (E)-cinnamic acid methyl ester (1.36%) and beta-guaiene (1.30%). The essential oils showed significant antifungal activity against some plant pathogenic fungi.
40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic dicarboxylic acid salt. 721... Substances § 721.2270 Aliphatic dicarboxylic acid salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as aliphatic dicarboxylic acid...
Yang, Lei; Christakou, Eleni; Vang, Jesper; Lübeck, Mette; Lübeck, Peter Stephensen
2017-03-14
C 4 -dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C 4 -dicarboxylic acids have been with limited success. In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C 4 -dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C 4 -dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C 4 -dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. This study demonstrates that the key to change the citric acid production into production of C 4 -dicarboxylic acids in A. carbonarius is the C 4 -dicarboxylate transporter. Furthermore it shows that the C 4 -dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C 4 -dicarboxylic acid production.
Andreiadis, Eugen S; Imbert, Daniel; Pécaut, Jacques; Calborean, Adrian; Ciofini, Ilaria; Adamo, Carlo; Demadrille, Renaud; Mazzanti, Marinella
2011-09-05
The phosphorescent binuclear iridium(III) complexes tetrakis(2-phenylpyridine)μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir1) and tetrakis(2-(2,4-difluorophenyl) pyridine))μ-(2,2':6',2''-terpyridine-6,6''-dicarboxylic acid)diiridium (Ir2) were synthesized in a straightforward manner and characterized using X-ray diffraction, NMR, UV-vis absorption, and emission spectroscopy. The complexes have similar solution structures in which the two iridium centers are equivalent. This is further confirmed by the solid state structure of Ir2. The newly reported complexes display intense luminescence in dichloromethane solutions with maxima at 538 (Ir1) and 477 nm (Ir2) at 298 K (496 and 468 nm at 77 K, respectively) and emission quantum yields reaching ~18% for Ir1. The emission quantum yield for Ir1 is among the highest values reported for dinuclear iridium complexes. It shows only a 11% decrease with respect to the emission quantum yield reported for its mononuclear analogue, while the molar extinction coefficient is roughly doubled. This suggests that such architectures are of potential interest for the development of polymetallic assemblies showing improved optical properties. DFT and time-dependent-DFT calculations were performed on the ground and excited states of the complexes to provide insights into their structural, electronic, and photophysical properties.
Identification of dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in Nanjing, China
NASA Astrophysics Data System (ADS)
Wang, Gehui; Niu, Sulian; Liu, Caie; Wang, Liansheng
In this study aerosol samples of PM10 and PM2.5 collected from 18 February 2001 to 1 May 2001 in Nanjing, China were analyzed for their water-soluble organic compounds. A series of homologous dicarboxylic acids (C 2-10) and two kinds of aldehydes (methylglyoxal and 2-oxo-malonaldehyde) were detected by GC and GC/MS. Among the identified compounds, the concentration of oxalic acid was the highest at all the five sites, which ranged from 178 to 1423 ng/m 3. The second highest concentration of dicarboxylic acids were malonic and succinic acids, which ranged from 26.9 to 243 ng/m 3. Higher level of azelaic acid was also observed, of which the maximum was 301 ng/m 3. As the highest fraction of dicarboxylic acids, oxalic acid comprised from 28% to 86% of total dicarboxylic acids in PM10 and from 41% to 65% of total dicarboxylic acids in PM2.5. The dicarboxylic acids (C 2, C 3, C 4) together accounted for 38-95% of total dicarboxylic acids in PM10 and 59-87% of dicarboxylic acids in PM2.5. In this study, the total dicarboxylic acids accounted for 2.8-7.9% of total organic carbon (TOC) of water-soluble matters for PM10 and 3.4-11.8% of TOC for PM2.5. All dicarboxylic acids detected in this study together accounted for about 1% of particle mass. The concentration of azelaic acid was higher at one site than others, which may be resulted from higher level of volatile fat used for cooking. The amounts of dicarboxyic acids (C 2,3,4,9) and 2-oxo-malonaldehyde of PM2.5 were higher in winter and lower in spring. Compared with other major metropolitans in the world, the level of oxalic acid concentration of Nanjing is much higher, which may be contributed to higher level of particle loadings, especially for fine particles.
Ethyl methyl 1,4-dihydro-4-(3-nitrophenyl)-2, 6-bis(1-piperidylmethyl)pyridine-3,5-dicarboxylate.
Duque, J; Novoa De Armas, H; Pomés Hernández, R; Suárez Navarro, M; Ochoa Rodríguez, E; Salfrán, E; Verdecia Reyes, Y; Blaton, N M; Peeters, O M; De Ranter, C J
2000-11-01
In the title compound, C(28)H(38)N(4)O(6), the 4-aryl substituent occupies a pseudo-axial position approximately orthogonal to the plane of the dihydropyridine ring [88.1 (3) degrees ]. The dihydropyridine ring adopts a flattened boat conformation. The H atom on the pyridine N atom is involved in a bifurcated intramolecular hydrogen bond, the acceptors being the N atoms of the two piperidylmethyl groups [N.N 2.629 (4) and 2.695 (4) A].
Glutamate metabotropic receptors as targets for drug therapy in epilepsy.
Moldrich, Randal X; Chapman, Astrid G; De Sarro, Giovambattista; Meldrum, Brian S
2003-08-22
Metabotropic glutamate (mGlu) receptors have multiple actions on neuronal excitability through G-protein-linked modifications of enzymes and ion channels. They act presynaptically to modify glutamatergic and gamma-aminobutyric acid (GABA)-ergic transmission and can contribute to long-term changes in synaptic function. The recent identification of subtype-selective agonists and antagonists has permitted evaluation of mGlu receptors as potential targets in the treatment of epilepsy. Agonists acting on group I mGlu receptors (mGlu1 and mGlu5) are convulsant. Antagonists acting on mGlu1 or mGlu5 receptors are anticonvulsant against 3,5-dihydroxyphenylglycine (DHPG)-induced seizures and in mouse models of generalized motor seizures and absence seizures. The competitive, phenylglycine mGlu1/5 receptor antagonists generally require intracerebroventricular administration for potent anticonvulsant efficacy but noncompetitive antagonists, e.g., (3aS,6aS)-6a-naphthalen-2-ylmethyl-5-methyliden-hexahydrocyclopenta[c]furan-1-on (BAY36-7620), 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP), and 2-methyl-6-(2-phenylethenyl)pyridine (SIB-1893) block generalized seizures with systemic administration. Agonists acting on group II mGlu receptors (mGlu2, mGlu3) to reduce glutamate release are anticonvulsant, e.g., 2R,4R-aminopyrrolidine-2,4-dicarboxylate [(2R,4R)-APDC], (+)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (LY354740), and (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylate (LY379268). The classical agonists acting on group III mGlu receptors such as L-(+)-2-amino-4-phosphonobutyric acid, and L-serine-O-phosphate are acutely proconvulsant with some anticonvulsant activity. The more recently identified agonists (R,S)-4-phosphonophenylglycine [(R,S)-PPG] and (S)-3,4-dicarboxyphenylglycine [(S)-3,4-DCPG] and (1S,3R,4S)-1-aminocyclopentane-1,2,4-tricarboxylic acid [ACPT-1] are all anticonvulsant without proconvulsant effects. Studies in animal models of kindling reveal some efficacy of mGlu receptor ligands against fully kindled limbic seizures. In genetic mouse models, mGlu1/5 antagonists and mGlu2/3 agonists are effective against absence seizures. Thus, antagonists at group I mGlu receptors and agonists at groups II and III mGlu receptors are potential antiepileptic agents, but their clinical usefulness will depend on their acute and chronic side effects. Potential also exists for combining mGlu receptor ligands with other glutamatergic and non-glutamatergic agents to produce an enhanced anticonvulsant effect. This review also discusses what is known about mGlu receptor expression and function in rodent epilepsy models and human epileptic conditions.
Optimization of esterification of dicarboxylic acids and 2-ethyl-1-hexanol
NASA Astrophysics Data System (ADS)
Jafri, Nur Hafifah Nahdirah; Othman, Nor Hamidah Abu; Salimon, Jumat
2018-04-01
Dicarboxylate ester has the potential alternative as plasticizer which environmentally friendly in polymeric formulation especially for poly (vinyl chloride) (PVC). Dicarboxylate ester compounds were synthesized via esterification between dicarboxylic acid and 2-ethyl-1-hexanol by using sulfuric acid as catalyst. The effects of reaction parameters were studied by optimizing temperature, mole ratio of reactants, amount of catalyst and reaction to obtain highest ester conversion. The optimum results showed dicarboxylic acid successfully converted to the dicarboxylate ester at parameters; 4 hours; 120 °C; catalyst amount: 2% w/w of diacid; and mole ratio: 1:2.5. Functional group analysis was conducted by using ATR-FTIR spectroscopy.
NASA Astrophysics Data System (ADS)
Pathak, Sudipta; Chakraborty, Koushik; Ghosh, Surajit; Roy, Kunal; Jana, Barnali; Konar, Saugata
2018-01-01
[Cu(pydc)(apyz)(H2O)2] (1) (where pydcH2 = pyridine-2,6-dicarboxylic acid; apyz = 2- aminopyrazine) has been synthesized and characterized by elemental analysis, IR spectroscopy and single crystal X-ray diffraction techniques. Crystallographic analysis revealed that complex 1 has distorted octahedral geometry with pydcH2 coordinated as tridentate ligands to metal ion through two oxygen atoms of each carboxylate group, nitrogen atom of the pyridine ring and the auxiliary ligand pyrazine nitrogen atom form basal plane and apical positions are occupied by two oxygen atoms of water molecules. In addition, the coordination compounds are connected by a variety of non covalent interactions like OH … π, lone pair … π, π … π and hydrogen bonds. The evaluation of these noncovalent interactions is useful for rationalizing their influence in the crystal packing. In addition, electrical current measured at room temperature on thin film before and after annealed is in the order of 229 μA and 246 μA respectively with bias voltage 1 V.
NASA Astrophysics Data System (ADS)
Çolak, Alper Tolga; Çolak, Ferdağ; Yeşilel, Okan Zafer; Büyükgüngör, Orhan
2009-11-01
Two new compounds (8-H 2Q) 2[M(dipic) 2]·6H 2O (M = Co ( 1) and Ni ( 2), 8-HQ = 8-hydroxyquinoline, dipic = dipicolinate) have been prepared and characterized by elemental analysis, spectral (IR and UV-vis), thermal analyses, magnetic measurements and single-crystal X-ray diffraction techniques. Both 1 and 2 consist two 8-hydroxyquinolinium cations, one bis(dipicolinate)M(II) anion [M = Co(II), Ni(II)] and six uncoordinated water molecules. Both 1 and 2 crystallize in the monoclinic space group C2/c. In the compounds anion, each dipic ligand simultaneously exhibits tridentate coordination modes through N atom of pyridine ring and oxygen atoms of the carboxylate groups. The crystal packing of 1 and 2 is a composite of intermolecular hydrogen bonding and C-O⋯π interactions. The in vitro antibacterial and antifungal activities of 1 and 2 were evaluated by the agar well diffusion method by MIC tests. Both new compounds showed the same antimicrobial activity against Gram-positive bacteria and yeast and fungi expect Gram-negative bacteria.
Portable, lightweight, low power, ion chromatographic system with open tubular capillary columns.
Kiplagat, Isaac K; Kubán, Petr; Pelcová, Pavlína; Kubán, Vlastimil
2010-07-30
Basic operation principles of a lightweight, low power, low cost, portable ion chromatograph utilizing open tubular ion chromatography in capillary columns coated with multi-layer polymeric stationary phases are demonstrated. A minimalistic configuration of a portable IC instrument was developed that does not require any chromatographic eluent delivery system, nor sample injection device as it uses gravity-based eluent flow and hydrodynamic sample injection adopted from capillary electrophoresis. As a detection device, an inexpensive commercially available capacitance sensor is used that has been shown to be a suitable substitute for contactless conductivity detection in capillary separation systems. The built-in temperature sensor allows for baseline drift correction typically encountered in conductivity/capacitance measurements without thermostating device. The whole instrument does not require any power supply for its operation, except the detection and data acquisition part that is provided by a USB port of a Netbook computer. It is extremely lightweight, its total weight including the Netbook computer is less than 2.5kg and it can be continuously operated for more than 8h. Several parameters of the instrument, such as detection cell design, eluent delivery systems and data treatment were optimized as well as the composition of eluent for non-suppressed ion chromatographic analysis of common inorganic cations (Na(+), NH(4)(+), K(+), Cs(+), Ca(2+), Mg(2+), transition metals). Low conductivity eluents based on weakly complexing organic acids such as tartaric, oxalic or pyridine-2,6-dicarboxylic acids were used with contactless capacitance detection for simultaneous separation of mono- and divalent cations. Separation of Na(+) and NH(4)(+) cations was optimized by addition of 18-crown-6 to the eluent. The best separation of 6 metal cations commonly present in various environmental samples was accomplished in less than 30min using a 1.75mM pyridine-2,6-dicarboxylic acid and 3mM 18-crown-6 eluent with excellent repeatability (below 2%) and detection limits in the low micromolar range. The analysis of field samples is demonstrated; the concentrations of common inorganic cations in river water, mineral water and snow samples were determined.
NASA Astrophysics Data System (ADS)
Wang, DaPeng; Zhang, DaQuan; Lee, KangYong; Gao, LiXin
2015-11-01
Dicarboxylic acid compounds, i.e. succinic acid (SUA), adipic acid (ADA) and sebacic acid (SEA), are used as electrolyte additives in the alkaline ethylene glycol solution for AA5052 aluminium-air batteries. It shows that the addition of dicarboxylic acids lowers the hydrogen gas evolution rate of commercial AA5052 aluminium alloy anode. AA5052 aluminium alloy has wide potential window for electrochemical activity and better discharge performance in alkaline ethylene glycol solution containing dicarboxylic acid additives. ADA has the best inhibition effect for the self-corrosion of AA5052 anode among the three dicarboxylic acid additives. Fourier transform infrared spectroscopy (FT-IR) reveals that dicarboxylic acids and aluminium ions can form coordination complexes. Quantum chemical calculations shows that ADA has a smaller energy gap (ΔE, the energy difference between the lowest unoccupied orbital and the highest occupied orbital), indicating that ADA has the strongest interaction with aluminium ions.
Birkenhead, K; Manian, S S; O'Gara, F
1988-01-01
A recombinant plasmid encoding Rhizobium meliloti sequences involved in dicarboxylic acid transport (plasmid pRK290:4:46) (E. Bolton, B. Higgisson, A. Harrington, and F. O'Gara, Arch. Microbiol. 144:142-146, 1986) was used to study the relationship between dicarboxylic acid transport and nitrogen fixation in Bradyrhizobium japonicum. The expression of the dct sequences on plasmid pRK290:4:46 in B. japonicum CJ1 resulted in increased growth rates in media containing dicarboxylic acids as the sole source of carbon. In addition, strain CJ1(pRK290:4:46) exhibited enhanced succinate uptake activity when grown on dicarboxylic acids under aerobic conditions. Under free-living nitrogen-fixing conditions, strain CJ1(pRK290:4:46) exhibited higher nitrogenase (acetylene reduction) activity compared with that of the wild-type strain. This increase in nitrogenase activity also correlated with an enhanced dicarboxylic acid uptake rate under these microaerobic conditions. The regulation of dicarboxylic acid transport by factors such as metabolic inhibitors and the presence of additional carbon sources was similar in both the wild-type and the engineered strains. The implications of increasing nitrogenase activity through alterations in the dicarboxylic acid transport system are discussed. PMID:3422072
Prasanthi, G; Prasad, K V S R G; Bharathi, K
2013-08-01
The present study is on the development of dialkyl 4-(benzo[d][1,3]dioxol-6-yl)-1,4-dihydro-2,6-dimethyl-1-substituted pyridine-3,5-dicarboxylate derivatives as isosteric analogues of isradipine and nifedipine, by the replacement of benzofurazanyl and 2-nitrophenyl groups respectively with benzo[d][1,3]dioxo-6-yl group, as potential anticonvulsants. Fivfteen new derivatives (8a-8o) were synthesized and tested for anticonvulsant activity using maximal electroshock and subcutaneous pentylenetetrazole induced seizure methods. Compound 8f possessing free NH group in 1,4-dihydropyridine ring, diethyl ester functionality at the positions 3 and 5 showed significant anticonvulsant and antioxidant activities. This was also supported by molecular properties prediction data. Selected compounds were evaluated for antinociceptive activity in capsaicin induced nociception assay at 10 mg/kg body weight, but displayed no significant activity at the tested dose. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan
2015-03-01
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H3ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H2O)] (1), [M(H2ImDC)2(H2O)2]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn3(ImDC)2(bpe)(H2O)]·3H2O (5) and [Cd(H2ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O-H•••O and O-H•••N). Complexes 2-4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O-H•••O and O-H•••N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (103) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1-7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K.
Haushalter, Robert W; Phelan, Ryan M; Hoh, Kristina M; Su, Cindy; Wang, George; Baidoo, Edward E K; Keasling, Jay D
2017-04-05
Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotin and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.
NASA Astrophysics Data System (ADS)
Nakaema, F.; Handa, D.; Tanahara, A.; Arakaki, T.
2009-04-01
Low molecular weight dicarboxylic acids are major fraction of water soluble organic compounds in the atmospheric aerosols. Recently, economy of East Asia grows up remarkably, and atmospheric aerosols discharged from this area have been transported to Japan. In this study, we collected aerosol at Cape Hedo (CH) and University of the Ryukyus(UR), and studied the distribution and origin of low molecule dicarboxylic acid. Aerosols were collected on a quartz filter with a high volume air sampler. Low molecular weight dicarboxylic acids extracted by pure water were derivatized to dibutyl esters by reactions with BF3/butanol and were measured by GC-FID. In many samples, oxalic acid showed the highest concentration. Concentration of oxalic acid, malonic acid, succinic acid and malic acid were strongly correlated between the two sampling sites. Oxalic acid occupied on the average 83% and 76% of all the dicarboxylic acid measured for CH samples and UR samples. It is suggested that the aerosols in Okinawa were affected by secondary photochemical reactions, not by the primary emissions from local sources. The seasonal variation of the dicarboxylic acids concentrations in CH and UR showed higher in spring and fall, and a lower in summer. From the back trajectory analysis, dicarboxylic acids concentrations showed higher when an air mass came from East Asia area, and showed lower when it came from Pacific Ocean.
NASA Technical Reports Server (NTRS)
Hayatsu, R.; Matsuoka, S.; Anders, E.; Scott, R. G.; Studier, M. H.
1977-01-01
Degradation techniques, including pyrolysis, depolymerization, and oxidation, were used to study the insoluble polymer from the Murchison C2 chondrite. Oxidation with Cr2O7(2-) or O2/UV led to the identification of 15 aromatic ring systems. Of 11 aliphatic acids identified, three dicarboxylic acids presumably came from hydroaromatic portions of the polymer, whereas eight monocarboxylic acids probably derive from bridging groups or ring substituents. Depolymerization with CF3COO4 yielded some of the same ring systems, as well as alkanes (C1 through C8) and alkenes (C2 through C8), alkyl (C1 through C5) benzenes and naphthalenes, and methyl- or dimethyl -indene, -indane, -phenol, -pyrrole, and -pyridine. All these compounds were detected below 200 C, and are therefore probably indigenous constituents. The properties of the meteoritic polymer were compared with the properties of a synthetic polymer produced by the Fischer-Tropsch reaction. It is suggested that the meteoritic polymer was also produced by surface catalysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haushalter, Robert W.; Phelan, Ryan M.; Hoh, Kristina M.
Dicarboxylic acids are commodity chemicals used in the production of plastics, polyesters, nylons, fragrances, and medications. Bio-based routes to dicarboxylic acids are gaining attention due to environmental concerns about petroleum-based production of these compounds. Some industrial applications require dicarboxylic acids with specific carbon chain lengths, including odd-carbon species. Biosynthetic pathways involving cytochrome P450-catalyzed oxidation of fatty acids in yeast and bacteria have been reported, but these systems produce almost exclusively even-carbon species. Here in this paper we report a novel pathway to odd-carbon dicarboxylic acids directly from glucose in Escherichia coli by employing an engineered pathway combining enzymes from biotinmore » and fatty acid synthesis. Optimization of the pathway will lead to industrial strains for the production of valuable odd-carbon diacids.« less
Johnson, Atim; Mbonu, Justina; Hussain, Zahid; Loh, Wan-Sin; Fun, Hoong-Kun
2015-06-01
The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 Co(II) ions (one anionic complex and one half cationic complex) and one water mol-ecule. In the cationic complex, the Co(II) atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol-ecules, adopting an octa-hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol-ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the Co(II) ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di-carboxyl-ate anions, exhibiting a slightly distorted octa-hedral coordination geometry in which the mean plane of the two pyridine-2,6-di-carboxyl-ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol-ecules are linked into a three-dimensional network via C-H⋯O, C-H⋯N, O-H⋯O and N-H⋯O hydrogen bonds.
Green, Laura S.; Li, Youzhong; Emerich, David W.; Bergersen, Fraser J.; Day, David A.
2000-01-01
A complete tricarboxylic acid (TCA) cycle is generally considered necessary for energy production from the dicarboxylic acid substrates malate, succinate, and fumarate. However, a Bradyrhizobium japonicum sucA mutant that is missing α-ketoglutarate dehydrogenase is able to grow on malate as its sole source of carbon. This mutant also fixes nitrogen in symbiosis with soybean, where dicarboxylic acids are its principal carbon substrate. Using a flow chamber system to make direct measurements of oxygen consumption and ammonium excretion, we confirmed that bacteroids formed by the sucA mutant displayed wild-type rates of respiration and nitrogen fixation. Despite the absence of α-ketoglutarate dehydrogenase activity, whole cells of the mutant were able to decarboxylate α-[U-14C]ketoglutarate and [U-14C]glutamate at rates similar to those of wild-type B. japonicum, indicating that there was an alternative route for α-ketoglutarate catabolism. Because cell extracts from B. japonicum decarboxylated [U-14C]glutamate very slowly, the γ-aminobutyrate shunt is unlikely to be the pathway responsible for α-ketoglutarate catabolism in the mutant. In contrast, cell extracts from both the wild type and mutant showed a coenzyme A (CoA)-independent α-ketoglutarate decarboxylation activity. This activity was independent of pyridine nucleotides and was stimulated by thiamine PPi. Thin-layer chromatography showed that the product of α-ketoglutarate decarboxylation was succinic semialdehyde. The CoA-independent α-ketoglutarate decarboxylase, along with succinate semialdehyde dehydrogenase, may form an alternative pathway for α-ketoglutarate catabolism, and this pathway may enhance TCA cycle function during symbiotic nitrogen fixation. PMID:10781553
Armaly, Ahlam M; Bar, Sukanta; Schindler, Corinna S
2017-08-04
The development of acid chlorides as formal dianion linchpin reagents that enable access to cyclic 2-alkyl- and 2-acyl-1,3-alkanediones from dicarboxylic acids is described herein. Mechanistic experiments relying on 13 C-labeling studies confirm the role of acid chlorides as carbon dianion linchpin reagents and have led to a revised reaction mechanism for the aluminum(III)-mediated Dieckmann cyclization of dicarboxylic acids with acid chlorides.
Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions
NASA Astrophysics Data System (ADS)
Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome
1986-08-01
It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.
Host cells and methods for producing diacid compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steen, Eric J.; Fortman, Jeffrey L.; Dietrich, Jeffrey A.
The present invention provides for a method of producing one or more fatty acid derived dicarboxylic acids in a genetically modified host cell which does not naturally produce the one or more derived fatty acid derived dicarboxylic acids. The invention provides for the biosynthesis of dicarboxylic acid ranging in length from C3 to C26. The host cell can be further modified to increase fatty acid production or export of the desired fatty acid derived compound, and/or decrease fatty acid storage or metabolism.
Bhowal, Soumya; Ghosh, Arijit; Chowdhuri, Srijita Paul; Mondal, Raju; Das, Benu Brata
2018-05-08
The present study aims to formulate a common synthetic strategy for preparing quantum dots (QDs) in a greener way by using combination of popular methods, viz. a colloidal method with suitable capping agent and low molecular weight gel based synthesis. Pyridine dicarboxylic acid (PDC) in presence of AlCl3 forms a stable metallogel, which serves as an excellent medium for selective ZnS QD synthesis. The aromatic pyridine moiety, well known for being a capping agent, indeed plays its part in the run up to QD synthesis. To the best of our knowledge, this is the first example of a metallogel based doped ZnS QD synthesis. Altering the doping material and its composition changes the properties of the QDs, but herein we also tried to establish how these changes affect the gel morphology and stability of both gel and QDs. We further demonstrate, by using live cell confocal microscopy, the delivery of QDs Cu ZnS and MnZnS nanomaterials in the nucleus and the cytoplasm of human breast cancer cells (MCF7), implicating the use of metallogel based QDs for bio-imaging and bio-labeling.
NASA Astrophysics Data System (ADS)
Kathalikkattil, Amal Cherian; Damodaran, Subin; Bisht, Kamal Kumar; Suresh, Eringathodi
2011-01-01
Four new binary molecular compounds between a flexible exobidentate N-heterocycle and a series of dicarboxylic acids have been synthesized. The N-donor 1,4-bis(imidazol-1-ylmethyl)benzene (bix) was reacted with flexible and rigid dicarboxylic acids viz., cyclohexane-1,4-dicarboxylic acid (H 2chdc), naphthalene-1,4-dicarboxylic acid (H 2npdc) and 1H-pyrazole-3,5-dicarboxylic acid (H 2pzdc), generating four binary molecular complexes. X-ray crystallographic investigation of the molecular adducts revealed the primary intermolecular interactions carboxylic acid⋯amine (via O-H⋯N) as well as carboxylate⋯protonated amine (via N-H +⋯O -) within the binary compounds, generating layered and two-dimensional sheet type H-bonded networks involving secondary weak interactions (C-H⋯O) including the solvent of crystallization. Depending on the differences in p Ka values of the selected base/acid (Δp Ka), diverse H-bonded supramolecular assemblies could be premeditated. This study demonstrates the H-bonding interactions between imidazole/imidazolium cation and carboxylic acid/carboxylate anion in providing sufficient driving force for the directed assembly of binary molecular complexes. In the two-component solid form of hetero synthons involving bix and dicarboxylic acid, only H 2chdc exist as cocrystal with bix, while all the other three compounds crystallized exclusively as salt, in agreement with the Δp Ka values predicted for the formation of salts/cocrystals from the base and acid used in the synthesis of supramolecular solids.
Yearly trend of dicarboxylic acids in organic aerosols from south of Sweden and source attribution
NASA Astrophysics Data System (ADS)
Hyder, Murtaza; Genberg, Johan; Sandahl, Margareta; Swietlicki, Erik; Jönsson, Jan Åke
2012-09-01
Seven aliphatic dicarboxylic acids (C3-C9) along with phthalic acid, pinic acid and pinonic acid were determined in 35 aerosol (PM10) samples collected over the year at Vavihill sampling station in south of Sweden. Mixture of dichloromethane and methanol (ratio 1:3) was preferred over water for extraction of samples and extraction was assisted by ultrasonic agitation. Analytes were derivatized using N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) containing 1% trimethylsilyl chloride and analyzed using gas chromatography/mass spectrometry. Among studied analytes, azelaic acid was found maximum with an average concentration of 6.0 ± 3.6 ng m-3 and minimum concentration was found for pimelic acid (1.06 ± 0.63 ng m-3). A correlation coefficients analysis was used for defining the possible sources of analytes. Higher dicarboxylic acids (C7-C9) showed a strong correlation with each other (correlation coefficients (r) range, 0.96-0.97). Pinic and pinonic acids showed an increase in concentration during summer. Lower carbon number dicarboxylic acids (C3-C6) and phthalic acid were found strongly correlated, but showed a poor correlation with higher carbon number dicarboxylic acids (C7-C9), suggesting a different source for them. Biomass burning, vehicle exhaust, photo-oxidation of volatile organic compounds (natural and anthropogenic emissions) were possible sources for dicarboxylic acids.
NASA Astrophysics Data System (ADS)
Han, Y.; Gong, Z.; Liu, P.; de Sá, S. S.; McKinney, K. A.; Martin, S. T.
2017-12-01
Atmospheric secondary organic material (SOM) from oxidation of volatile organic compounds can exist in amorphous solid, semisolid, and liquid states depending on a range of factors such as relative humidity (RH), temperature, and reaction history. The phase state of SOM affects the dynamic exchange and reactivity between particles and gas-phase molecules. Dicarboxylic acids are ubiquitous in ambient atmosphere and the uptake of which may lead to substantial changes in hygroscopicity, absorption property, and light scattering of aerosol particles. This study investigates the diffusivity of dicarboxylic acids to the matrix of SOM particles. SOM was generated from dark ozonolysis of a-pinene in Harvard Environmental Chamber. The produced SOM particles were passed through an ozone scrubber to remove gas-phase chemistry before being led into a flask reactor, where gas-phase dicarboxylic acid was injected continuously and RH was varied from 5% to 85%. The probe dicarboxylic acids molecules including malonic acid and a-ketoglutaric acid have been investigated for the uptake to SOM particles. Organic composition in the outflow of the flask was measured with a high-resolution time-of-flight aerosol mass spectrometer. The mass fractions of tracer ions in total organic mass for both malonic acid and a-ketoglutaric acid increased substantially with the increase of RH values. The tracer ions of malonic acid were also more abundant in a-pinene SOM particles with increased gas-phase concentrations. These results suggest that the diffusion of the studied dicarboxylic acids molecules to a-pinene SOM particles was enhanced at increased RH values, which is possibly due to the phase transition of a-pinene SOM particles from non-liquid to liquid states. Therefore, particle phase state may be an important factor governing the diffusivity of dicarboxylic acids molecules to a-pinene SOM. Further dicarboxylic acids with various functional groups will be investigated to understand the effects of volatility and structure on their diffusivity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Bao; Li, Qian; Lv, Lei
2015-03-15
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, andmore » they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated.« less
Dicarboxylic acids from electric discharge
NASA Technical Reports Server (NTRS)
Zeitman, B.; Chang, S.; Lawless, J. G.
1974-01-01
An investigation was conducted concerning the possible synthesis of a suite of dicarboxylic acids similar to that found in the Murchison meteorite. The investigation included the conduction of a chemical evolution experiment which simulated electric discharge through the primitive atmosphere of the earth. The suite of dicarboxylic acids obtained in the electric discharge experiment is similar to that of the Murchison meteorite, except for the fact that 2-chlorosuccinic acid is present in the spark discharge.
Atria, Ana María; Corsini, Gino; González, Lissette; Garland, Maria Teresa; Baggio, Ricardo
2009-07-01
(Mu-benzene-1,2,4,5-tetracarboxylato-kappa(2)O(1):O(4))bis[aquabis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)] methanol disolvate tetrahydrate, [Ni(2)(C(10)H(2)O(8))(C(5)H(14)N(2))(4)(H(2)O)(2)].2CH(4)O.4H(2)O, (I), is dinuclear, with elemental units built up around an inversion centre halving the benzene-1,2,4,5-tetracarboxylate (btc) anion, which bridges two symmetry-related Ni(II) cations. The octahedral Ni polyhedron is completed by two chelating 2,2-methylpropane-1,3-diamine (dmpda) groups and a terminal aqua ligand. Two methanol and four water solvent molecules are involved in a number of N-H...O and O-H...O hydrogen bonds which define a strongly bound two-dimensional supramolecular structure. The structure of catena-poly[[[bis(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)O(5):N,O(2)-[(2,2-methylpropane-1,3-diamine-kappa(2)N,N')nickel(II)]-mu-pyridine-2,5-dicarboxylato-kappa(3)N,O(2):O(5)] octahydrate], {[Ni(2)(C(7)H(3)NO(4))(2)(C(5)H(14)N(2))(3)].8H(2)O}(n), (II), is polymeric, forming twisted chains around three independent Ni centres, two of which lie on inversion centres and the third in a general position. There are three chelating dmpda ligands (one disordered over two equally populated positions), which are each attached to a different cation, and two pyridine-2,5-dicarboxylate (pdc) anions, both chelating the Ni centre in general positions through an -O-C-C-N- loop, while acting as bridges to the remaining two centrosymmetric Ni atoms. There are, in addition, eight noncoordinated water molecules in the structure, some of which are disordered.
High temperature dissolution of oxides in complexing media
NASA Astrophysics Data System (ADS)
Sathyaseelan, Valil S.; Rufus, Appadurai L.; Subramanian, Hariharan; Bhaskarapillai, Anupkumar; Wilson, Shiny; Narasimhan, Sevilimedu V.; Velmurugan, Sankaralingam
2011-12-01
Dissolution of transition metal oxides such as magnetite (Fe 3O 4), mixed ferrites (NiFe 2O 4, ZnFe 2O 4, MgFe 2O 4), bonaccordite (Ni 2FeBO 5) and chromium oxide (Cr 2O 3) in organic complexing media was attempted at higher temperatures (80-180 °C). On increasing the temperature from 80 to 180 °C, the dissolution rate of magnetite in nitrilo triacetic acid (NTA) medium increased six folds. The trend obtained for the dissolution of other oxides was ZnFe 2O 4 > NiFe 2O 4 > MgFe 2O 4 > Cr 2O 3, which followed the same trend as the lability of their metal-oxo bonds. Other complexing agents such as ethylene diamine tetra acetic acid (EDTA), pyridine dicarboxylic acid (PDCA), citric acid and reducing agents viz., oxalic acid and ascorbic acid were also evaluated for their oxide dissolution efficiency at 160 °C. EDTA showed maximum dissolution rate of 21.4 μm/h for magnetite. Addition of oxalic acid/ascorbic acid to complexing media (NTA/EDTA) showed identical effect on the dissolution of magnetite. Addition of hydrazine, another reducing agent, to NTA decreased the rate of dissolution of magnetite by 50%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Gilkey, Matthew J.; Balakumar, Rachana; Vlachos, Dionisios G.; ...
2018-01-01
We recently reported biomass-derived tetrahydrofuran-2,5-dicarboxylic acid (THFDCA) as a potential renewable feedstock for adipic acid (AA) production by combining HI and molecular H 2 in organic acid solvents.
Leighton, F; Bergseth, S; Rørtveit, T; Christiansen, E N; Bremer, J
1989-06-25
The fate of the acetyl-CoA units released during peroxisomal fatty acid oxidation was studied in isolated hepatocytes from normal and peroxisome-proliferated rats. Ketogenesis and hydrogen peroxide generation were employed as indicators of mitochondrial and peroxisomal fatty acid oxidation, respectively. Butyric and hexanoic acids were employed as mitochondrial substrates, 1, omega-dicarboxylic acids as predominantly peroxisomal substrates, and lauric acid as a substrate for both mitochondria and peroxisomes. Ketogenesis from dicarboxylic acids was either absent or very low in normal and peroxisome-proliferated hepatocytes, but free acetate release was detected at rates that could account for all the acetyl-CoA produced in peroxisomes by dicarboxylic and also by monocarboxylic acids. Mitochondrial fatty acid oxidation also led to free acetate generation but at low rates relative to ketogenesis. The origin of the acetate released was confirmed employing [1-14C]dodecanedioic acid. Thus, the activity of peroxisomes might contribute significantly to the free acetate generation known to occur during fatty acid oxidation in rats and possibly also in humans.
Frances, S P; Khlaimanee, N
1996-03-01
Laboratory tests were conducted to compare the response of noninfected Leptotrombidium deliense Sambon and Leptotrombidium fletcheri (Womersley & Heaslip) and L. deliense naturally infected with Rickettsia tsutsugamushi, the etiologic agent of scrub typhus, to 8 chemical repellents and toxicants. Low concentrations of permethrin, dimethylphthalate, diethyl methylbenzamide, benzyl benzoate, di-n-propyl 2,5-pyridine-dicarboxylate, 1-(3-Cyclohexen-1-yl-carbonyl)-2-methylpiperidine (AI3-37220), 2-hydroxymethyl-cyclohexyl acetic acid lactone, and a high concentration of dibutylphthalate (DBP) were toxic for noninfected larvae of both species tested. The median effective knockdown time for all chemicals, except 1% AI3-37220 and 5% permethrin, were longer against infected L. deliense than uninfected larvae of the same species. However, the results indicate that low concentrations of all chemicals, except DBP, should be effective against 2 important vectors of scrub typhus.
Deprotonated Dicarboxylic Acid Homodimers: Hydrogen Bonds and Atmospheric Implications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Valiev, Marat; Wang, Xue-Bin
Dicarboxylic acids represent an important class of water-soluble organic compounds found in the atmosphere. In this work we are studying properties of dicarboxylic acid homodimer complexes (HO 2(CH 2) nCO 2 -[HO 2(CH 2) nCO 2H], n = 0-12), as potentially important intermediates in aerosol formation processes. Our approach is based on experimental data from negative ion photoelectron spectra of the dimer complexes combined with updated measurements of the corresponding monomer species. These results are analyzed with quantum-mechanical calculations, which provide further information about equilibrium structures, thermochemical parameters associated with the complex formation, and evaporation rates. We find that uponmore » formation of the dimer complexes the electron binding energies increase by 1.3–1.7 eV (30.0–39.2 kcal/mol), indicating increased stability of the dimerized complexes. Calculations indicate that these dimer complexes are characterized by the presence of strong intermolecular hydrogen bonds with high binding energies and are thermodynamically favorable to form with low evaporation rates. Comparison with previously studied HSO 4 -[HO 2(CH 2) 2CO 2H] complex (J. Phys. Chem. Lett. 2013, 4, 779-785) shows that HO 2(CH 2) 2CO 2 -[HO 2(CH 2) 2CO 2H] has very similar thermochemical properties. These results imply that dicarboxylic acids not only can contribute to the heterogeneous complexes formation involving sulfuric acid and dicarboxylic acids, but also can promote the formation of homogenous complexes by involving dicarboxylic acids themselves.« less
Cao, Fang; Zhang, Shi-Chun; Kawamura, Kimitaka; Liu, Xiaoyan; Yang, Chi; Xu, Zufei; Fan, Meiyi; Zhang, Wenqi; Bao, Mengying; Chang, Yunhua; Song, Wenhuai; Liu, Shoudong; Lee, Xuhui; Li, Jun; Zhang, Gan; Zhang, Yan-Lin
2017-12-01
Fine particulate matter (PM2.5) samples were collected using a high-volume air sampler and pre-combusted quartz filters during May 2013 to January 2014 at a background rural site (47 ∘ 35 N, 133 ∘ 31 E) in Sanjiang Plain, Northeast China. A homologous series of dicarboxylic acids (C 2 -C 11 ) and related compounds (oxoacids, α-dicarbonyls and fatty acids) were analyzed by using a gas chromatography (GC) and GC-MS method employing a dibutyl ester derivatization technique. Intensively open biomass-burning (BB) episodes during the harvest season in fall were characterized by high mass concentrations of PM2.5, dicarboxylic acids and levoglucosan. During the BB period, mass concentrations of dicarboxylic acids and related compounds were increased by up to >20 times with different factors for different organic compounds (i.e., succinic (C 4 ) acid > oxalic (C 2 ) acid > malonic (C 3 ) acid). High concentrations were also found for their possible precursors such as glyoxylic acid (ωC 2 ), 4-oxobutanoic acid, pyruvic acid, glyoxal, and methylglyoxal as well as fatty acids. Levoglucosan showed strong correlations with carbonaceous aerosols (OC, EC, WSOC) and dicarboxylic acids although such good correlations were not observed during non-biomass-burning seasons. Our results clearly demonstrate biomass burning emissions are very important contributors to dicarboxylic acids and related compounds. The selected ratios (e.g., C 3 /C 4 , maleic acid/fumaric acid, C 2 /ωC 2 , and C 2 /levoglucosan) were used as tracers for secondary formation of organic aerosols and their aging process. Our results indicate that organic aerosols from biomass burning in this study are fresh without substantial aging or secondary production. The present chemical characteristics of organic compounds in biomass-burning emissions are very important for better understanding the impacts of biomass burning on the atmosphere aerosols. Copyright © 2017 Elsevier Ltd. All rights reserved.
Selective Conversion of Biorefinery Lignin into Dicarboxylic Acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Ruoshui; Guo, Mond; Zhang, Xiao
The emerging biomass-to-biofuel conversion industry has created an urgent need for identifying new applications for biorefinery lignin. This paper demonstrates a new route to producing dicarboxylic acids from biorefinery lignin through chalcopyrite-catalyzed oxidation in a highly selective process. Up to 95 % selectivity towards stable dicarboxylic acids was obtained for several types of biorefinery lignin and model compounds under mild, environmentally friendly reaction conditions. The findings from this study paved a new avenue to biorefinery lignin conversions and applications.
Díaz, Angélica; Katsarava, Ramaz; Puiggalí, Jordi
2014-01-01
Poly(alkylene dicarboxylate)s constitute a family of biodegradable polymers with increasing interest for both commodity and speciality applications. Most of these polymers can be prepared from biobased diols and dicarboxylic acids such as 1,4-butanediol, succinic acid and carbohydrates. This review provides a current status report concerning synthesis, biodegradation and applications of a series of polymers that cover a wide range of properties, namely, materials from elastomeric to rigid characteristics that are suitable for applications such as hydrogels, soft tissue engineering, drug delivery systems and liquid crystals. Finally, the incorporation of aromatic units and α-amino acids is considered since stiffness of molecular chains and intermolecular interactions can be drastically changed. In fact, poly(ester amide)s derived from naturally occurring amino acids offer great possibilities as biodegradable materials for biomedical applications which are also extensively discussed. PMID:24776758
Fun, Hoong-Kun; Ooi, Chin Wei; Garudachari, B.; Shivananda, Kammasandra Nanjunda; Isloor, Arun M.
2012-01-01
In the title compound, C27H27N3O5·2H2O, the dihydropyridine ring adopts a flattened boat conformation. The central pyrazole ring is essentially planar [maximum deviation of 0.003 (1) Å] and makes dihedral angles of 50.42 (6) and 26.44 (6)° with the benzene rings. In the crystal, molecules are linked via N—H⋯O, O—H⋯O, O—H⋯N and C—H⋯O hydrogen bonds into two-dimensional networks parallel to the bc plane. The crystal structure is further consolidated by weak C—H⋯π interactions. PMID:22798871
Producing dicarboxylic acids using polyketide synthases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Leonard; Fortman, Jeffrey L.; Keasling, Jay D.
The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.
Polyestercarbonates which exhibit improved processibility
Krabbenhoft, Herman Otto
1999-01-01
The invention relates to a polyestercarbonate polymer which comprises repeating units of a mono-unsaturated aliphatic dicarboxylic acid having about 12 to about 20 carbon atoms. Preferred dicarboxylic acids for incorporation into the polymer are cis-octadec-9-enedioic acid or trans-octadec-9-enedioic acid. The use of these mono-unsaturated acids results in polymers with lower glass transition temperatures, and enhances processibility.
NASA Astrophysics Data System (ADS)
Yang, Liming; Ray, Madhumita B.; Yu, Liya E.
In this paper, the first of a two-part series, effects of chloride, sulfate, and nitrate ions and pH on photooxidation of azelaic acid were investigated in an aqueous system. Nitrate ions play the major role in accelerating photooxidation of azelaic acid by increasing rad OH concentration, while chloride ions consume rad OH concentration and retard photooxidation rates. In inorganic mixtures, a nitrate-to-chloride molar ratio of >1.5 accelerated photooxidation of azelaic acid indicating the dominant role of nitrate. Substantial inhibition effects of chloride on photooxidation of azelaic acid were demonstrated at a nitrate-to-chloride molar ratio <0.3. Nitrate and chloride are interrelated in affecting photooxidation of azelaic acid as photolysis of nitrate would significantly consume H +, retarding reaction of HOCl - with H +, and consequently decreasing rad OH-chloride reaction. pH affects photooxidation of C 2-C 9 dicarboxylic acids (DCAs) in two ways: C 2-C 4 dicarboxylates exhibit substantially higher degradation rates than their parent DCAs, while C 5-C 9 dicarboxylates demonstrate degradation rates similar to their parent DCAs.
Carrigan, Christina N.; Patel, Sarjubhai A.; Cox, Holly D.; Bolstad, Erin S.; Gerdes, John M.; Smith, Wesley E.; Bridges, Richard J.
2014-01-01
Substituted quinoline-2,4-dicarboxylates (QDCs) are conformationally-restricted mimics of glutamate that were previously reported to selectively block the glutamate vesicular transporters (VGLUTs). We find that expanding the QDC scaffold to benzoquinoline dicarboxylic acids (BQDC) and naphthoquinoline dicarboxylic acids (NQDCs) improves inhibitory activity with the NQDCs showing IC50 ~ 70 µM. Modeling overlay studies showed that the polycyclic QDCs resembled steroid structures and led to the identification and testing of estrone sulfate, pregnenolone sulfate and pregnanolone sulfate that blocked the uptake of l-Glu by 50%, 70% and 85% of control, respectively. Pregnanolone sulfate was further characterized by kinetic pharmacological determinations that demonstrated competitive inhibition and a Ki of ≈ 20 µM. PMID:24424130
Nonaqueous electrocatalytic water oxidation by a surface-bound Ru(bda)(L)₂ complex.
Sheridan, Matthew V; Sherman, Benjamin D; Wee, Kyung-Ryang; Marquard, Seth L; Gold, Alexander S; Meyer, Thomas J
2016-04-21
The rate of electrocatalytic water oxidation by the heterogeneous water oxidation catalyst [Ru(bda)(4-O(CH2)3P(O3H2)2-pyr)2], , (pyr = pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate) on metal oxide surfaces is greatly enhanced relative to water as the solvent. In these experiments with propylene carbonate (PC) as the nonaqueous solvent, water is the limiting reagent. Mechanistic studies point to atom proton transfer (APT) as the rate limiting step in water oxidation catalysis.
Zhao, Li; Dong, You-Ren; Xie, Hong-Zhen
2009-01-01
In the title salt, (C10H9N2)2[Fe(C8H2NO6)(C8H3NO6)]·3H2O, the FeIII atom is O,N,O′-chelated by dianionic and trianionic ligands in a slightly distorted octahedral coordination geometry. The cations and ferrate anions are linked into a layered structure; the layers are connected through the uncoordinated water molecules into a hydrogen-bonded three-dimensional supramolecular structure. One of the uncoordinated water molecules is disordered around an inversion centre and was refined with half-occupancy for each position. PMID:21582387
75 FR 37795 - Certain New Chemicals; Receipt and Status Information
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-30
...-methyl-, polymer with alkyl 2- propenoates, ethenyl acetate and methyl-2- methyl-2-propenoate P-10-0389...), polymers with cycloaliphatic diamine, alkyldiisocyanate, alpha-hydro-omega- hydroxy(alkyldiyl) and... dicarboxylic acid, polymer with cycloaliphatic diamine, aliphatic diisocyanate, aliphatic dicarboxylic acid...
DICARBOXYLIC ACID CONCENTRATION TRENDS AND SAMPLING ARTIFACTS
Dicarboxylic acids associated with airborne particulate matter were measured during a summer period in Philadelphia that included multiple air pollution episodes. Samples were collected for two ten hour periods each day using a high volume sampler with two quartz fiber filters in...
Study on Dicarboxylic Acids in Aerosol Samples with Capillary Electrophoresis
Adler, Heidi; Sirén, Heli
2014-01-01
The research was performed to study the simultaneous detection of a homologous series of α, ω-dicarboxylic acids (C2–C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50 μL. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2–C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m3. PMID:24729915
NASA Astrophysics Data System (ADS)
Tran, Ngoc K.; Steinberg, Spencer M.; Johnson, Brian J.
Concentrations of benzene, toluene, ethylbenzene, o-xylene, and m- and p-xylene were measured at an urban sampling site in Las Vegas, NV by sorbent sampling followed by thermal desorption and determination by GC-PID. Simultaneously, measurements of oxalic, malonic, succinic, and adipic acids were made at the same site by collection on quartz filters, extraction, esterification, and determination by GC-FID. For the period from April 7, 1997 to June 11, 1997, 201 sets of hydrocarbon measurements and 99 sets of acid measurements were made. Additional measurements of dicarboxylic acids were made on samples that represented potential direct sources, e.g. green plants and road dust. Correlations between the hydrocarbon and CO concentrations (measured by the Clark County Health District at a nearby site) were highly significant and a strong negative correlation of hydrocarbon concentration with ozone concentration (also from the county site) was observed under quiescent atmospheric conditions. In general, dicarboxylic acid concentrations were well correlated with one another (with the exception of adipic acid) but not well correlated with hydrocarbon, CO, and ozone concentrations. Multiple sources and complex formation processes are indicated for the dicarboxylic acids.
NASA Astrophysics Data System (ADS)
Prapaipong, Panjai; Shock, Everett L.; Koretsky, Carla M.
1999-10-01
By combining results from regression and correlation methods, standard state thermodynamic properties for aqueous complexes between metal cations and divalent organic acid ligands (oxalate, malonate, succinate, glutarate, and adipate) are evaluated and applied to geochemical processes. Regression of experimental standard-state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state yields standard partial molal entropies (S¯°) of aqueous metal-organic complexes, which allow determination of thermodynamic properties of the complexes at elevated temperatures. In cases where S¯° is not available from either regression or calorimetric measurement, the values of S¯° can be estimated from a linear correlation between standard partial molal entropies of association (ΔS¯°r) and standard partial molal entropies of aqueous cations (S¯°M). The correlation is independent of cation charge, which makes it possible to predict S¯° for complexes between divalent organic acids and numerous metal cations. Similarly, correlations between standard Gibbs free energies of association of metal-organic complexes (ΔḠ°r) and Gibbs free energies of formation (ΔḠ°f) for divalent metal cations allow estimates of standard-state equilibrium constants where experimental data are not available. These correlations are found to be a function of ligand structure and cation charge. Predicted equilibrium constants for dicarboxylate complexes of numerous cations were included with those for inorganic and other organic complexes to study the effects of dicarboxylate complexes on the speciation of metals and organic acids in oil-field brines. Relatively low concentrations of oxalic and malonic acids affect the speciation of cations more than similar concentrations of succinic, glutaric, and adipic acids. However, the extent to which metal-dicarboxylate complexes contribute to the speciation of dissolved metals depends on the type of dicarboxylic acid ligand; relative concentration of inorganic, mono-, and dicarboxylate ligands; and the type of metal cation. As an example, in the same solution, dicarboxylic acids have a greater influence on the speciation of Fe+2 and Mg+2 than on the speciation of Zn+2 and Mn+2.
Kovalchik, Kevin A; MacLennan, Matthew S; Peru, Kerry M; Ajaero, Chukwuemeka; McMartin, Dena W; Headley, John V; Chen, David D Y
2017-12-30
The characterization of naphthenic acid fraction compounds (NAFCs) in oil sands process affected water (OSPW) is of interest for both toxicology studies and regulatory reasons. Previous studies utilizing authentic standards have identified dicarboxylic naphthenic acids using two-dimensional gas chromatography hyphenated to time-of-flight mass spectrometry (GC × GC/TOFMS). The selective derivatization of hydroxyl groups has also recently aided in the characterization of oxy-NAFCs, and indirectly the characterization of dicarboxylic NAFCs. However, there has been no previous report of derivatization being used to directly aid in the standard-free characterization of NAFCs with multiple carboxylic acid functional groups. Herein we present proof-of-concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization. Carboxylic acid groups in OSPW extract and in a dicarboxylic acidstandard were derivatized to amides using a previously described method. The derivatized extract and derivatized standard were analyzed by direct-injection positive-mode electrospray ionization ((+)ESI) high-resolution mass spectrometry (HRMS), and the underivatized extract was analyzed by (-)ESI MS. Tandem mass spectrometry (MS/MS) was carried out on selected ions of the derivatized standard and derivatized OSPW. Data analysis was carried out using the Python programming language. The distribution of monocarboxylic NAFCs observed in the amide-derivatized OSPW sample by (+)ESI-MS was generally similar to that seen in underivatized OSPW by (-)ESI-MS. The dicarboxylic acid standard shows evidence of being doubly derivatized, although the second derivatization appears to be inefficient. Furthermore, a spectrum of potential diacid NAFCs is presented, identified by both charge state and derivatization mass. Interference due to the presence of multiple derivatization products is noted, but can be eliminated using on-line separation or an isotopically labelled derivatization reagent. Proof of concept for the characterization of dicarboxylic NAFCs utilizing amide derivatization is demonstrated. Furthermore, (+)ESI-HRMS of the derivatized monocarboxylic NAFCS yields similar information to (-)ESI-MS analysis of underivatized NAFCs, with the benefit of added selectivity for carboxylic acid species and the characterization of diacids. Copyright © 2017 John Wiley & Sons, Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu Guocheng; Chen Yongqiang; Wang Xiuli
Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compoundmore » 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.« less
The first 3-D LaIII-SrII heterometallic complex: Synthesis, structure and luminescent properties
NASA Astrophysics Data System (ADS)
Hong, Zhiwei; Ran, Jingwen; Li, Tao; Chen, Yanmei
2016-10-01
The first 3-D LaIII-SrII heterometallic complex, namely [La2Sr(pda)4(H2O)4]n·6nH2O (1, H2pda = pyridine-2,6-dicarboxylic acid), has been successfully synthesized under solvothermal conditions. Single crystal X-ray diffraction analysis reveals that complex 1 features a 3-D porous framework and displays a new topology. The crystal structure can be simplified to a 4,6-connected 3-D network with Schläfli symbol of {34·42·88·9}2{34·42}. The crystals also have been characterized by X-ray powder diffraction, elemental analysis, thermal analysis, and IR spectroscopy. The infrared spectral analysis indicates that complex 1 is a carboxylate coordinated compound, several water molecules exist in the compound. The thermal study shows that there are ten water molecules in the crystal structure. The luminescent property has also been investigated. It shows a blue-purple fluorescence emission.
Huiyang Bian; Liheng Chen; Hongqi Dai; J.Y. Zhu
2017-01-01
Here we demonstrate di-carboxylic acid hydrolysis for the integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using two unbleached hardwood chemical pulps of lignin contents of 3.9 and 17.2%. Acid hydrolysis experiments used maleic acid solution of 60 wt% concentration at 120°C for 120 min under ambient pressure. Yields of...
Huiyang Bian; Liheng Chen; Ruibin Wang; Junyong Zhu
2016-01-01
Here we demonstrate potentially low cost and green productions of high thermally stable and carboxylated cellulose nanocrystals (CNCs) and nanofibrils (CNF) from bleached eucalyptus pulp (BEP) and unbleached mixed hardwood kraft pulp (UMHP) fibers using highly recyclable dicarboxylic solid acids. Typical operating conditions were acid concentrations of 50 - 70 wt% at...
The microsomal dicarboxylyl-CoA synthetase.
Vamecq, J; de Hoffmann, E; Van Hoof, F
1985-01-01
Dicarboxylic acids are products of the omega-oxidation of monocarboxylic acids. We demonstrate that in rat liver dicarboxylic acids (C5-C16) can be converted into their CoA esters by a dicarboxylyl-CoA synthetase. During this activation ATP, which cannot be replaced by GTP, is converted into AMP and PPi, both acting as feedback inhibitors of the reaction. Thermolabile at 37 degrees C, and optimally active at pH 6.5, dicarboxylyl-CoA synthetase displays the highest activity on dodecanedioic acid (2 micromol/min per g of liver). Cell-fractionation studies indicate that this enzyme belongs to the hepatic microsomal fraction. Investigations about the fate of dicarboxylyl-CoA esters disclosed the existence of an oxidase, which could be measured by monitoring the production of H2O2. In our assay conditions this H2O2 production is dependent on and closely follows the CoA consumption. It appears that the chain-length specificity of the handling of dicarboxylic acids by this catabolic pathway (activation to acyl-CoA and oxidation with H2O2 production) parallels the pattern of the degradation of exogenous dicarboxylic acids in vivo. PMID:4062873
NASA Technical Reports Server (NTRS)
Haug, P.; Schnoes, H. K.; Burlingame, A. L.
1971-01-01
Study of solvent extractable acidic constituents of oil shale from the Colorado Green River Formation. Identification of individual components is based on gas chromatographic and mass spectrometric data obtained for their respective methyl esters. Normal acids, isoprenoidal acids, alpha, omega-dicarboxylic acids, mono-alpha-methyl dicarboxylic acids and methyl ketoacids were identified. In addition, the presence of monocyclic, benzoic, phenylalkanoic and naphthyl-carboxylic acids, as well as cycloaromatic acids, is demonstrated by partial identification.
40 CFR 721.2270 - Aliphatic dicarboxylic acid salt.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic dicarboxylic acid salt. 721.2270 Section 721.2270 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2270 Aliphatic...
NASA Astrophysics Data System (ADS)
Topcu, Cihan; Caglar, Sema; Caglar, Bulent; Coldur, Fatih; Cubuk, Osman; Sarp, Gokhan; Gedik, Kubra; Bozkurt Cirak, Burcu; Tabak, Ahmet
2016-09-01
A novel N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite nanomaterial was synthesized by immobilizing of N-pyridin-2-ylmethylsuccinamic acid through chemical bonding onto (3-aminopropyl)triethoxysilane modified smectite. The structural, thermal, morphological and surface properties of raw, silane-grafted and the N-pyridin-2-ylmethylsuccinamic acid-functionalized smectites were investigated by various characterization techniques. The thermal analysis data showed the presence of peaks in the temperature range from 200 °C to 600 °C due to the presence of physically adsorbed silanes, intercalated silanes, surface grafted silanes and chemically grafted silane molecules between the smectite layers. The powder x-ray diffraction patterns clearly indicated that the aminopropyl molecules also intercalated into the smectite interlayers as bilayer arrangement whereas N-pyridin-2-ylmethylsuccinamic acid molecules were only attached to 3-aminopropyltriethoxysilane molecules on the external surface and edges of clay and they did not intercalate. Fourier transform infrared spectroscopy confirms N-pyridin-2-ylmethylsuccinamic acid molecules bonding through the amide bond between the amine group of aminopropyltriethoxysilane molecules and a carboxylic acid functional group of N-pyridin-2-ylmethylsuccinamic acid molecules. The guest molecules functionalized onto the smectite caused significant alterations in the textural and morphological parameters of the raw smectite. The anchoring of N-pyridin-2-ylmethylsuccinamic acid molecules led to positive electrophoretic mobility values when compared to starting materials. N-pyridin-2-ylmethylsuccinamic acid-functionalized smectite was employed as an electroactive ingredient in the structure of potentiometric PVC-membrane sensor. The sensor exhibited more selective potentiometric response towards chlorate ions compared to the other common anionic species.
NASA Astrophysics Data System (ADS)
Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan
2009-03-01
Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.
Surface tensions of solutions containing dicarboxylic acid mixtures
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Hildemann, Lynn M.
2014-06-01
Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.
NASA Astrophysics Data System (ADS)
Uçar, İbrahim; Bulut, Ahmet; Karadağ, Ahmet; Kazak, Canan
2007-06-01
Two new dipicolinate complexes of cobalt, [Co(dpc)(na)(H 2O) 2]·H 2O ( 1) and [Co(dpc)(ina)(H 2O) 2] ( 2) [dpc is dipicolinate or pyridine-2,6-dicarboxylate, na is nicotinamide and ina is isonicotinamide], have been prepared and characterized by thermal analysis, IR spectroscopy and X-ray diffraction techniques. The complex ( 1) crystallizes in triclinic system, whereas the complex ( 2) crystallizes in monoclinic system. The Co(II) ion in both complexes is bonded to dpc ligand through pyridine N atom together with one O atom of each carboxylate group, two aqua ligands and N pyridine atom of na ( 1) or ina ( 2), forming the distorted octahedral geometry. The complex molecules ( 1) and ( 2) are connected via N sbnd H⋯O and O sbnd H⋯O hydrogen bonds. The voltammetric behaviour of complexes ( 1) and ( 2) was also investigated in DMSO (dimethylsulfoxide) solution by cyclic voltammetry using n-Bu 4NClO 4 supporting electrolyte. The complexes exhibit only metal centered electroactivity in the potential ±1.25 V versus Ag/AgCl reference electrode.
Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu
2016-05-17
The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sonntag, Frank; Buchhaupt, Markus; Schrader, Jens
2014-05-01
The ethylmalonyl-coenzyme A pathway (EMCP) is a recently discovered pathway present in diverse α-proteobacteria such as the well studied methylotroph Methylobacterium extorquens AM1. Its glyoxylate regeneration function is obligatory during growth on C1 carbon sources like methanol. The EMCP contains special CoA esters, of which dicarboxylic acid derivatives are of high interest as building blocks for chemical industry. The possible production of dicarboxylic acids out of the alternative, non-food competing C-source methanol could lead to sustainable and economic processes. In this work we present a testing of functional thioesterases being active towards the EMCP CoA esters including in vitro enzymatic assays and in vivo acid production. Five thioesterases including TesB from Escherichia coli and M. extorquens, YciA from E. coli, Bch from Bacillus subtilis and Acot4 from Mus musculus showed activity towards EMCP CoA esters in vitro at which YciA was most active. Expressing yciA in M. extorquens AM1 led to release of 70 mg/l mesaconic and 60 mg/l methylsuccinic acid into culture supernatant during exponential growth phase. Our data demonstrates the biotechnological applicability of the thioesterase YciA and the possibility of EMCP dicarboxylic acid production from methanol using M. extorquens AM1.
Hsu, Ching-Lin; Ding, Wang-Hsien
2009-12-15
A rapid and environmental-friendly injection-port derivatization with gas chromatography-mass spectrometry (GC-MS) method was developed to determine selected low-molecular weight (LMW) dicarboxylic acids (from C2 to C10) in atmospheric aerosol samples. The parameters related to the derivatization process (i.e., type of ion-pair reagent, injection-port temperature and concentration of ion-pair reagent) were optimized. Tetrabutylammonium hydroxide (TBA-OH) 20 mM in methanol gave excellent yield for di-butyl ester dicarboxylate derivatives at injection-port temperature at 300 degrees C. Solid-phase extraction (SPE) method instead of rotary evaporation was used to concentrate analytes from filter extracts. The recovery from filter extracts ranged from 78 to 95% with relative standard deviation (RSD) less than 12%. Limits of quantitation (LOQs) ranged from 25 to 250 pg/m(3). The concentrations of di-carboxylated C2-C5 and total C6-C10 in particles of atmospheric aerosols ranged from 91.9 to 240, 11.3 to 56.7, 9.2 to 49.2, 8.7 to 35.3 and n.d. to 37.8 ng/m(3), respectively. Oxalic acid (C2) was the dominant LMW-dicarboxylic acids detected in aerosol samples. The quantitative results were comparable to the results obtained by the off-line derivatization.
NASA Astrophysics Data System (ADS)
Mochizuki, Tomoki; Kawamura, Kimitaka; Miyazaki, Yuzo; Wada, Ryuichi; Takahashi, Yoshiyuki; Saigusa, Nobuko; Tani, Akira
2017-10-01
To better understand the formation of water-soluble organic aerosols in the forest atmosphere, we measured low molecular weight (LMW) dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, unsaturated fatty acids (UFAs), and water-soluble organic carbon (WSOC) in aerosols from a Larix kaempferi forest located at the northern slope of Mt. Fuji, Japan, in summer 2012. Concentrations of dicarboxylic acids, oxocarboxylic acids, α-dicarbonyls, and WSOC showed maxima in daytime. Relative abundance of oxalic acid in LMW dicarboxylic acids was on average 52% and its average concentration was 214 ng m-3. We found that diurnal and temporal variations of oxalic acid are different from those of isoprene and α-pinene, whereas biogenic secondary organic aerosols (BSOAs) derived from isoprene and α-pinene showed similar variations with oxalic acid. The mass concentration ratios of oxalic acid/BSOAs were relatively constant, although a large variation in the concentrations of toluene that is an anthropogenic volatile organic compound was observed. These results suggest that formation of oxalic acid is associated with the oxidation of isoprene and α-pinene with O3 and other oxidants in the forest atmosphere. In addition, concentrations of UFAs were observed, for the first time, to decrease dramatically during daytime in the forest. Mass concentration ratios of azelaic acid to UFAs showed a positive correlation with O3, suggesting that UFAs are oxidized to yield azelaic acid, which may be further decomposed to oxalic acid in the forest atmosphere. We found that contributions of oxalic acid to WSOC are significantly high ranging from 3.7 to 9.7% (average 6.0%). This study demonstrates that forest ecosystem is an important source of oxalic acid and other dicarboxylic acids in the atmosphere.
Dicarboxylic acids generated by thermal alteration of kerogen and humic acids
NASA Technical Reports Server (NTRS)
Kawamura, Kimitaka; Kaplan, I. R.
1987-01-01
Significant amounts (up to 2 percent of organic geopolymers) of low-molecular-weight (LMW) dicarboxylic acids (C2-C10) have been detected during thermal alteration (270 C, 2 h) of kerogens and humic acids isolated from young or ancient lithified sediments. Their distribution is characterized by the predominance of oxalic acid followed by succinic, fumaric, and methylsuccinic acids. These acids are probably released by the breakdown of macromolecular structures, which have incorporated biogenic organic compounds, including diacids, during early digenesis in sediments. Because of their reactivity, LMW diacids may play geochemically important roles under natural conditions.
Katahira, Riko; Ashihara, Hiroshi
2009-12-01
As part of a research program on nucleotide metabolism in potato tubers (Solanum tuberosum L.), profiles of pyridine (nicotinamide) metabolism were examined based on the in situ metabolic fate of radio-labelled precursors and the in vitro activities of enzymes. In potato tubers, [(3)H]quinolinic acid, which is an intermediate of de novo pyridine nucleotide synthesis, and [(14)C]nicotinamide, a catabolite of NAD, were utilised for pyridine nucleotide synthesis. The in situ tracer experiments and in vitro enzyme assays suggest the operation of multiple pyridine nucleotide cycles. In addition to the previously proposed cycle consisting of seven metabolites, we found a new cycle that includes newly discovered nicotinamide riboside deaminase which is also functional in potato tubers. This cycle bypasses nicotinamide and nicotinic acid; it is NAD --> nicotinamide mononucleotide --> nicotinamide riboside --> nicotinic acid riboside --> nicotinic acid mononucleotide --> nicotinic acid adenine dinucleotide --> NAD. Degradation of the pyridine ring was extremely low in potato tubers. Nicotinic acid glucoside is formed from nicotinic acid in potato tubers. Comparative studies of [carboxyl-(14)C]nicotinic acid metabolism indicate that nicotinic acid is converted to nicotinic acid glucoside in all organs of potato plants. Trigonelline synthesis from [carboxyl-(14)C]nicotinic acid was also found. Conversion was greater in green parts of plants, such as leaves and stem, than in underground parts of potato plants. Nicotinic acid utilised for the biosynthesis of these conjugates seems to be derived not only from the pyridine nucleotide cycle, but also from the de novo synthesis of nicotinic acid mononucleotide.
NASA Astrophysics Data System (ADS)
Zhao, W.; Kawamura, K.; Fu, P.
2016-12-01
Low molecular weight (LMW) dicarboxylic acids and related polar compounds comprise a significant fraction of atmospheric aerosols. Seasonal variations, molecular distributions, and stable carbon isotopic compositions of dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls, as well as organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC) and inorganic ionic species, were determined to better understand the sources and photochemical aging processes of carbonaceous aerosols in urban Beijing from Sept. 2013 to Jul. 2014 (n=65). Concentrations of total diacids ranged from 110-2580 ng m-3, while ketoacids (9.5-353 ng m-3) and dicarbonyls (1.5-85.9 ng m-3) were less abundant. Higher ambient concentrations of phthalic (Ph) (37.9±27.3 ng m-3), terephthalic (tPh) (48.7±51.1 ng m-3), and glyoxylic (ωC2) (44.3±69 ng m-3) acids were found in winter than other seasons. The temporal variations of malonic acid to succinic acid (C3/C4) ratios were relatively low throughout the whole year, most of which were less than or equal to unity, even in summer, implying more contributions of dicarboxylic acids from primary emissions, rather than aging processes during long-range atmospheric transport. The δ13C mean values of malonic acid (-18.7% to -17.3%) and succinic acid (-28.6% to -17.1%) were larger than those of oxalic acid (-22.9% to -20.1%) in both seasons, except for δ13C of succinic acid in summer. Lower δ13C values of these compounds in Beijing than those in marine areas may be mainly associated with primary emissions, such as biomass burning, vehicular exhaust, incomplete fossil fuel combustion and plastic wastes.
O-O Radical Coupling: From Detailed Mechanistic Understanding to Enhanced Water Oxidation Catalysis.
Xie, Yan; Shaffer, David W; Concepcion, Javier J
2018-04-30
A deeper mechanistic understanding of the key O-O bond formation step of water oxidation by the [Ru(bda)(L) 2 ] (bdaH 2 = 2,2'-bipyridine-6,6'-dicarboxylic acid; L is a pyridine or isoquinoline derivative) family of catalysts is reached through harmonious experimental and computational studies of two series of modified catalysts with systematic variations in the axial ligands. The introduction of halogen and electron-donating substituents in [Ru(bda)(4-X-py) 2 ] and [Ru(bda)(6-X-isq) 2 ] (X is H, Cl, Br, and I for the pyridine series and H, F, Cl, Br, and OMe for the isoquinoline series) enhances the noncovalent interactions between the axial ligands in the transition state for the bimolecular O-O coupling, resulting in a lower activation barrier and faster catalysis. From detailed transition state calculations in combination with experimental kinetic studies, we find that the main contributor to the free energy of activation is entropy due to the highly organized transition states, which is contrary to other reports. Previous work has considered only the electronic influence of the substituents, suggesting electron-withdrawing groups accelerate catalysis, but we show that a balance between polarizability and favorable π-π interactions is the key, leading to rationally devised improvements. Our calculations predict the catalysts with the lowest Δ G ⧧ for the O-O coupling step to be [Ru(bda)(4-I-py) 2 ] and [Ru(bda)(6,7-(OMe) 2 -isq) 2 ] for the pyridine and isoquinoline families, respectively. Our experimental results corroborate these predictions: the turnover frequency for [Ru(bda)(4-I-py) 2 ] (330 s -1 ) is a 10-fold enhancement with respect to that of [Ru(bda)(py) 2 ], and the turnover frequency for [Ru(bda)(6-OMe-isq) 2 ] reaches 1270 s -1 , two times faster than [Ru(bda)(isq) 2 ].
NASA Astrophysics Data System (ADS)
Bikkina, Srinivas; Kawamura, Kimitaka; Imanishi, Katsuya; Boreddy, S. K. R.; Nojiri, Yukihiro
2015-05-01
In order to assess the seasonal variability of atmospheric abundances of dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls over the North Pacific and Sea of Japan, aerosol samples were collected along the longitudinal transacts during six cruises between Canada and Japan. The back trajectory analyses indicate that aerosol samples collected in winter and spring are influenced by the East Asian outflow, whereas summer and fall samples are associated with the pristine maritime air masses. Molecular distributions of water-soluble organics in winter and spring samples show the predominance of oxalic acid (C2) followed by succinic (C4) and malonic acids (C3). In contrast, summer and fall marine aerosols are characterized by the predominance of C3 over C4. Concentrations of dicarboxylic acids were higher over the Sea of Japan than the North Pacific. With a lack of continental outflow, higher concentrations during early summer are ascribed to atmospheric oxidation of organic precursors associated with high biological activity in the North Pacific. This interpretation is further supported by the high abundances of azelaic acid, which is a photochemical oxidation product of biogenic unsaturated fatty acids, over the Bering Sea in early summer when surface waters are characterized by high biological productivity. We found higher ratios of oxalic acid to pyruvic and glyoxylic acids (C2/Pyr and C2/ωC2) and glyoxal and methylglyoxal (C2/Gly and C2/MeGly) in summer and fall than in winter and spring, suggesting a production of C2 from the aqueous-phase oxidation of oceanic isoprene. In this study, dicarboxylic acids account for 0.7-38% of water-soluble organic carbon.
NASA Astrophysics Data System (ADS)
Pearson, M. J.; Hendry, J. P.; Taylor, C. W.; Russell, M. A.
2005-04-01
Sparry calcite fracture fills and concretion body cements in concretions from the Flodigarry Shale Member of the Staffin Shale Formation, Isle of Skye, Scotland, entrap and preserve mineral and organic materials of sedimentary and diagenetic origin. Fatty acids are a major component of the lipids recovered by decarbonation and comprise mainly n-alkanoic and α-ω dicarboxylic acids. Two generations of fracture-fill calcite (early brown and later yellow) and the concretion body microspar yield significantly different fatty acid profiles. Early brown calcites yield mainly medium-chain n-alkanoic acids with strong even predominance; later yellow calcites are dominated by α-ω dicarboxylic acids with no even predominance. Both fracture fills lack the long-chain n-alkanoic and α-ω dicarboxylic acids additionally recovered from the concretion bodies. The absence of longer chain acids in the calcite spar fracture fills is inferred to result from the transport of fatty acids by septarian mineralising fluids whereby low-aqueous solubility of longer chain acids or their salts accounts for their relative immobility. Comparative experiments have been carried out using conventional solvent extraction on the concretion body and associated shales, both decarbonated and untreated. Extracted lipid yields are higher, but the fatty acids probably derive from mixed locations in the rock including both kerogen- and carbonate-associated lipid pools. Only experiments involving decarbonation yielded α-ω dicarboxylic acids in molecular distributions probably controlled mainly by fluid transport. Alkane biomarker ratios indicate very low thermal maturity has been experienced by the concretions and their host sediments. Septarian cracks lined by brown calcite formed during early burial. Microbial CO 2 from sulphate-reducing bacteria was probably the main source of mineralising carbonate. Emplacement of the later septarian fills probably involved at least one episode of fluid invasion.
Quantifying hydrogen-deuterium exchange of meteoritic dicarboxylic acids during aqueous extraction
NASA Astrophysics Data System (ADS)
Fuller, M.; Huang, Y.
2003-03-01
Hydrogen isotope ratios of organic compounds in carbonaceous chondrites provide critical information about their origins and evolutionary history. However, because many of these compounds are obtained by aqueous extraction, the degree of hydrogen-deuterium (H/D) exchange that occurs during the process needs to be quantitatively evaluated. This study uses compound- specific hydrogen isotopic analysis to quantify the H/D exchange during aqueous extraction. Three common meteoritic dicarboxylic acids (succinic, glutaric, and 2-methyl glutaric acids) were refluxed under conditions simulating the extraction process. Changes in D values of the dicarboxylic acids were measured following the reflux experiments. A pseudo-first order rate law was used to model the H/D exchange rates which were then used to calculate the isotope exchange resulting from aqueous extraction. The degree of H/D exchange varies as a result of differences in molecular structure, the alkalinity of the extraction solution and presence/absence of meteorite powder. However, our model indicates that succinic, glutaric, and 2-methyl glutaric acids with a D of 1800 would experience isotope changes of 38, 10, and 6, respectively during the extraction process. Therefore, the overall change in D values of the dicarboxylic acids during the aqueous extraction process is negligible. We also demonstrate that H/D exchange occurs on the chiral -carbon in 2-methyl glutaric acid. The results suggest that the racemic mixture of 2-methyl glutaric acid in the Tagish Lake meteorite could result from post-synthesis aqueous alteration. The approach employed in this study can also be used to quantify H/D exchange for other important meteoritic compounds such as amino acids.
Qin, Chao; Wang, Xin-Long; Wang, En-Bo; Su, Zhong-Min
2005-10-03
The complexes of formulas Ln(pydc)(Hpydc) (Ln = Sm (1), Eu (2), Gd (3); H2pydc = pyridine-2,5-dicarboxylic acid) and Ln(pydc)(bc)(H2O) (Ln = Sm (4), Gd (5); Hbc = benzenecarboxylic acid) have been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, TG analysis, and single-crystal X-ray diffraction. Compounds 1-3 are isomorphous and crystallize in the orthorhombic system, space group Pbcn. Their final three-dimensional racemic frameworks can be considered as being constructed by helix-linked scalelike sheets. Compounds 4 and 5 are isostructural and crystallize in the monoclinic system, space group P2(1)/c. pydc ligands bridge dinuclear lanthanide centers to form the three-dimensional frameworks featuring hexagonal channels along the a-axis that are occupied by one-end-coordinated bc ligands. From the topological point of view, the five three-dimensional nets are binodal with six- and three-connected nodes, the former of which exhibit a rutile-related (4.6(2))(2)(4(2).6(9).8(4)) topology that is unprecedented within coordination frames, and the latter two species display a distorted rutile (4.6(2))(2)(4(2).6(10).8(3)) topology. Furthermore, the luminescent properties of 2 were studied.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.
2012-12-01
Dicarboxylic acids such as oxalic, malonic and succinic acids are the most abundant water-soluble organic compound class in aerosols. To better understand the source and photochemical processes of water-soluble organic aerosols in the remote marine aerosols, we measured stable carbon isotopic composition (δ13C) of dicarboxylic acids and related compounds using a GC/IR/MS technique. The aerosol samples were collected in 2001-2011 at a remote island, Chichijima (27°04'E; 142°13'N) in the western North Pacific. Here we present decadal variations of the isotopic composition of dicarboxylic acids (C2-C9), ketoacids (C2-C8) and glyoxal in summertime aerosols (June, July and August). The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid showed higher δ13C values than other species ranging from -18‰ to -2‰ with no clear decadal trend. In contrast, C3 and C4 diacids showed δ13C values of -24 to -5‰ and -40 to -12‰ with a decadal decline. Glyoxal (-60 to -10‰) and ωC7 acid (-34 to -12‰) also showed lower values toward 2011. However, azelaic acid (C9) (-32 to -24‰) stayed relatively constant throughout the observation period. We will discuss the detailed isotopic compositions of these organic species in terms of the photochemical aging and processing in the western North Pacific and the changes in the sources and source regions.
Tabuchi, Yohei; Gotoh, Kazuma; Ishida, Hiroyuki
2015-11-01
The crystal structures of three hydrogen-bonded co-crystals of 4-alk-oxy-benzoic acid-1,2-bis-(pyridin-4-yl)ethane (2/1), namely, 2C9H10O3·C12H12N2, (I), 2C10H12O3·C12H12N2, (II), and 2C11H14O3·C12H12N2, (III), have been determined at 93, 290 and 93 K, respectively. In (I), the asymmetric unit consists of one 4-eth-oxy-benzoic acid mol-ecule and one half-mol-ecule of 1,2-bis-(pyridin-4-yl)ethane, which lies on an inversion centre. In (II) and (III), the asymmetric units each comprise two crystallographically independent 4-alk-oxy-benzoic acid mol-ecules and one 1,2-bis-(pyridin-4-yl)ethane mol-ecule. In each crystal, the two components are linked by O-H⋯N hydrogen bonds, forming a linear hydrogen-bonded 2:1unit of the acid and the base. Similar to the structure of 2:1 unit of (I), the units of (II) and (III) adopt nearly pseudo-inversion symmetry. The 2:1 units of (I), (II) and (III) are linked via C-H⋯O hydrogen bonds, forming tape structures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
NASA Astrophysics Data System (ADS)
McAlister, Jason A.; Kettler, Richard M.
2008-01-01
Linear saturated dicarboxylic acids are present in carbonaceous chondrite samples at concentrations that suggest aqueous alteration under conditions of metastable equilibrium. In this study, previously published values of dicarboxylic acid concentrations measured in Murchison, Yamato-791198, and Tagish Lake carbonaceous chondrites are converted to aqueous activities during aqueous alteration assuming water:rock ratios that range from 1:10 to 10:1. Logarithmic plots of the aqueous activities of any two dicarboxylic acids are proximal to lines whose slope is fixed by the stoichiometry of reactions describing the oxidation-reduction equilibrium between the two species. The precise position of any line is controlled by the equilibrium constant of the reaction relating the species and the hydrogen fugacity for the reaction of interest. Reactions among succinic (C4), glutaric (C5), and adipic (C6) acids obtained from CM2 chondrites show evidence of metastable equilibrium and yield logf values that agree to within 0.3 log units at 298.15 K and 0.6 log units at 473.15 K. At a water:rock ratio of 1:1, metastable equilibrium among succinic, glutaric, and adipic acids results in calculated logf values during aqueous alteration that range from -6.2 at 298.15 K to -3.3 at 373.15 K. These values are consistent with those obtained in previous work on carbonaceous chondrites and with metastable equilibrium at temperatures ranging from 300 to 355 K in contact with cronstedtite + magnetite.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thangavelu, Sonia G.; Cahill, Christopher L.
2016-01-06
Four uranyl coordination polymers [UO2(C6H8O4)(H2O)2](C18H12N6)2 (1), [UO2(C8H4O4)(H2O)2](C18H12N6)2 (2), Na[(UO2)(C12H6O4)2](C18H13N6)·H2O (3), and Na[(UO2)(C16H8O4)(C6H3NO2)](C18H12N6)·H2O (4) containing aliphatic (adipic acid) or aromatic linkers (1,4-benzene dicarboxylic acid (BDC), 1,4-napthalene dicarboxylic acid (NDC), anthracene 9,10-dicarboxylic acid (ADC)) were synthesized and characterized using single crystal X-ray diffraction, powder X-ray diffraction, and luminescence spectroscopy. The π-stacking distances or the number of π–π interactions present between trispyridyltriazine (TPTZ) guests or the host framework in 1–4 may be affected by the size of the O-donor linker (adipic acid < BDC < NDC < ADC). Luminescence studies show that substitution between adipic acid and BDC influences the emission of 1more » and 2, in which the emission of 1 shows a red shift relative to that of 2. Uranyl emission was not observed in 3 and 4, and may be attributed to the position of the NDC and ADC triplet state relative to the emissive uranyl species.« less
NASA Astrophysics Data System (ADS)
Ho, K. F.; Lee, S. C.; Ho, Steven Sai Hang; Kawamura, Kimitaka; Tachibana, Eri; Cheng, Y.; Zhu, Tong
2010-10-01
Ground-based studies of PM2.5 were conducted for determination of 30 water-soluble organic species, including dicarboxylic acids, ketocarboxylic acids and dicarbonyls, nine fatty acids, and benzoic acid, during the Campaign of Air Quality Research in Beijing 2006 (CAREBeijing-2006; 21 August to 4 September 2006) at urban (Peking University, PKU) and suburban (Yufa) sites of Beijing. Molecular distributions of dicarboxylic acids demonstrated that oxalic acid (C2) was the most abundant species, followed by phthalic acid (Ph) and succinic acid (C4) at both sites. The sum of three dicarboxylic acids accounted for 71% and 74% of total quantified water-soluble organics (327-1552 and 329-1124 ng m-3) in PKU and Yufa, respectively. Positive correlation was found between total quantified water-soluble species and water-soluble organic compounds (WSOC). On a carbon basis, total quantified dicarboxylic acids and ketocarboxylic acids and dicarbonyls account for up to 14.2% and 30.4% of the WSOC in PKU and Yufa, respectively, suggesting that they are the major WSOC fractions in Beijing. The distributions of fatty acids are characterized by a strong even carbon number predominance with maximum at hexadecanoic acid (C16:0). The ratio of octadecanoic acid (C18:0) to hexadecanoic acid (C16:0) (0.39-0.85, with an average of 0.36) suggests that in addition to vehicular emissions, an input from cooking emissions is important, as is biogenic emission. Benzoic acid that has been proposed as a primary pollutant from vehicular exhaust and a secondary product from photochemical reactions was found to be abundant: 72.2 ± 58.1 ng m-3 in PKU and 78.0 ± 47.3 ng m-3 in Yufa. According to the 72 hour back trajectory analysis, when the air mass passed over the southern or southeastern part of Beijing (24-25 August and 1-2 September), the highest concentrations of organic compounds were observed. On the contrary, when the clean air masses came straight from the north during 3-4 September, the lowest levels of organic compounds were recorded. This study demonstrates that pollution episodes in Beijing were strongly controlled by wind direction; that is, air quality in Beijing is good when air masses originate from the north and northwest, whereas it deteriorates when the air mass originates from the south and southeast.
NASA Astrophysics Data System (ADS)
Narukawa, M.; Kawamura, K.; Anlauf, K. G.; Barrie, L. A.
2003-09-01
Fine (<1 μm) and coarse (>1 μm) aerosol particles were collected at Alert, Canada (82°27'N, 62°30'W), during the Arctic spring as part of the Polar Sunrise Experiment 1997 and were analyzed for low molecular weight dicarboxylic acids (C2-C11) using gas chromatography with flame ionization detector (GC-FID) and GC/mass spectrometry (GC/MS). More than 80% of total diacids were detected in the fine fraction, suggesting the production by gas-to-particle conversion in the Arctic. In both fractions, oxalic acid was the dominant diacid species followed by succinic and malonic acids. Shorter chain diacids (C2-C5) showed the concentration maximum on 5-7 April; however, longer chain diacids (
Shaffer, David W.; Xie, Yan; Szalda, David J.; ...
2016-11-01
In order to gain a deeper mechanistic understanding of water oxidation by [(bda)Ru(L) 2] catalysts (bdaH 2 = [2,2'-bipyridine]-6,6'-dicarboxylic acid; L = pyridine-type ligand), a series of modified catalysts with one and two trifluoromethyl groups in the 4 position of the bda 2– ligand was synthesized and studied using stopped-flow kinetics. The additional $-$CF 3 groups increased the oxidation potentials for the catalysts and enhanced the rate of electrocatalytic water oxidation at low pH. Stopped-flow measurements of cerium(IV)-driven water oxidation at pH 1 revealed two distinct kinetic regimes depending on catalyst concentration. At relatively high catalyst concentration (ca. ≥10 –4more » M), the rate-determining step (RDS) was a proton-coupled oxidation of the catalyst by cerium(IV) with direct kinetic isotope effects (KIE > 1). At low catalyst concentration (ca. ≤10 –6 M), the RDS was a bimolecular step with k H/k D ≈ 0.8. The results support a catalytic mechanism involving coupling of two catalyst molecules. The rate constants for both RDSs were determined for all six catalysts studied. The presence of $-$CF 3 groups had inverse effects on the two steps, with the oxidation step being fastest for the unsubstituted complexes and the bimolecular step being faster for the most electron-deficient complexes. Finally, though the axial ligands studied here did not significantly affect the oxidation potentials of the catalysts, the nature of the ligand was found to be important not only in the bimolecular step but also in facilitating electron transfer from the metal center to the sacrificial oxidant.« less
Anthracycline antibiotics derivate mitoxantrone-Destructive sorption and photocatalytic degradation.
Štenglová-Netíková, Irena R; Petruželka, Luboš; Šťastný, Martin; Štengl, Václav
2018-01-01
Nanostructured titanium(IV) oxide was used for the destructive adsorption and photocatalytic degradation of mitoxantrone (MTX), a cytostatic drug from the group of anthracycline antibiotics. During adsorption on a titania dioxide surface, four degradation products of MTX, mitoxantrone dicarboxylic acid, 1,4-dihydroxy-5-((2-((2-hydroxyethyl)amino)ethyl)amino)-8-((2-(methylamino)ethyl)amino)anthracene-9,10-dione, 1,4-dihydroxy-5,8-diiminoanthracene-9,10(5H,8H)-dione and 1,4-dihydroxy-5-imino-8-(methyleneamino)anthracene-9,10(5H,8H)-dione, were identified. In the case of photocatalytic degradation, only one degradation product after 15 min at m/z 472 was identified. This degradation product corresponded to mitoxantrone dicarboxylic acid, and complete mineralization was attained in one hour. Destructive adsorbent manganese(IV) oxide, MnO2, was used only for the destructive adsorption of MTX. Destructive adsorption occurred only for one degradation product, mitoxantrone dicarboxylic acid, against anatase TiO2.
Degradation of malathion by salt-marsh microorganisms.
Bourquin, A W
1977-01-01
Numerous bacteria from a salt-marsh environment are capable of degrading malathion, an organophosphate insecticide, when supplied with additional nutrients as energy and carbon sources. Seven isolates exhibited ability (48 to 90%) to degrade malathion as a sole carbon source. Gas and thin-layer chromatography and infrared spectroscopy confirmed malathion to be degraded via malathion-monocarboxylic acid to the dicarboxylic acid and then to various phosphothionates. These techniques also identified desmethyl-malathion, phosphorthionates, and four-carbon dicarboxylic acids as degradation products formed as a result of phosphatase activity. PMID:192147
Degradation of pyridine and quinoline in aqueous solution by gamma radiation
NASA Astrophysics Data System (ADS)
Chu, Libing; Yu, Shaoqing; Wang, Jianlong
2018-03-01
In present work, the degradation of two N-heteroaromatic pollutants, i.e., pyridine and quinoline was investigated by gamma irradiation in the presence of TiO2 nanoparticle. The experimental results showed that quinoline has a higher degradation rate than pyridine. The removal efficiency of the pollutants, TOC and TN reached 93.0%, 11.9% and 12.0% for quinoline, 71.0%, 10.6% and 4.4% for pyridine, respectively at 7.0 kGy and initial concentration of 50 mg/L. Ammonium was detected for both pyridine and quinoline within the absorbed doses, suggesting that the organic nitrogen was transformed into ammonium. The degradation rate constant of pyridine and quinoline was increased by 1.1-1.5 times with addition of TiO2. TiO2 nanoparticles were especially effective to enhance the mineralization. The removal efficiency of TOC and TN was increased by 15-12% for pyridine and 23-25% for quinoline, respectively in the presence of 2.0 g/L TiO2. Following gamma irradiation, 2-hydroxypyridine, 3-hydroxypyridine, oxalic acid and formic acid were identified for pyridine and the hydroxyl quinoline and formic acid were detected for quinoline. Accordingly, the degradation mechanism of pyridine and quinoline by gamma irradiation was tentatively proposed.
NASA Astrophysics Data System (ADS)
Bi, Qi-rui; Hou, Jin-jun; Yang, Min; Shen, Yao; Qi, Peng; Feng, Rui-hong; Dai, Zhuo; Yan, Bing-peng; Wang, Jian-wei; Shi, Xiao-jian; Wu, Wan-ying; Guo, De-an
2017-03-01
Fatty acids conjugates (FACs) are ubiquitous but found in trace amounts in the natural world. They are composed of multiple unknown substructures and side chains. Thus, FACs are difficult to be analyzed by traditional mass spectrometric methods. In this study, an integrated strategy was developed to global profiling and targeted structure annotation of FACs in complex matrix by LTQ Orbitrap. Dicarboxylic acid conjugated bufotoxins (DACBs) in Venenum bufonis (VB) were used as model compounds. The new strategy (abbreviated as HPNA) combined higher-energy C-trap dissociation (HCD) with product ion- (PI), neutral loss- (NL) based MSn (n ≥ 3) acquisition in both positive-ion mode and negative-ion mode. Several advantages are presented. First, various side chains were found under HCD in negative-ion mode, which included both known and unknown side chains. Second, DACBs with multiple side chains were simultaneously detected in one run. Compared with traditional quadrupole-based mass method, it greatly increased analysis throughput. Third, the fragment ions of side chain and steroids substructure could be obtained by PI- and NL-based MSn acquisition, respectively, which greatly increased the accuracy of the structure annotation of DACBs. In all, 78 DACBs have been discovered, of which 68 were new compounds; 25 types of substructure formulas and seven dicarboxylic acid side chains were found, especially five new side chains, including two saturated dicarboxylic acids [(azelaic acid (C9) and sebacic acid (C10)] and three unsaturated dicarboxylic acids (u-C8, u-C9, and u-C10). All these results greatly enriched the structures of DACBs in VB.
Dicarboxylic esters: Useful tools for the biocatalyzed synthesis of hybrid compounds and polymers
Bassanini, Ivan; Hult, Karl
2015-01-01
Summary Dicarboxylic acids and their derivatives (esters and anhydrides) have been used as acylating agents in lipase-catalyzed reactions in organic solvents. The synthetic outcomes have been dimeric or hybrid derivatives of bioactive natural compounds as well as functionalized polyesters. PMID:26664578
Agrawal, Vishwanath P.; Kolattukudy, P. E.
1977-01-01
A cell-free extract obtained from suberizing potato (Solanum tuberosum L.) tuber disks catalyzed the conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with NADP or NAD as the cofactor, with a slight preference for the former. This ω-hydroxyacid dehydrogenase activity, located largely in the 100,000g supernatant fraction, has a pH optimum of 9.5. It showed an apparent Km of 50 μM for 16-hydroxyhexadecanoic acid. The dehydrogenase activity was inhibited by thiol reagents, such as p-chloromercuribenzoate, N-ethylmaleimide, and iodoacetamide, and this dehydrogenase is shown to be different from alcohol dehydrogenase. That 16-oxohexadecanoic acid was an intermediate in the conversion of 16-hydroxyhexadecanoic acid to the corresponding dicarboxylic acid was suggested by the observation that the cell-free extract also catalyzed the conversion of 16-oxohexadecanoic acid to the dicarboxylic acid, with NADP as the preferred cofactor. The time course of development of the ω-hydroxyacid dehydrogenase activity in the suberizing potato disks correlated with the rate of deposition of suberin. Experiments with actinomycin D and cycloheximide suggested that the transcriptional processes, which are directly related to suberin biosynthesis and ω-hydroxyacid dehydrogenase biosynthesis, occurred between 72 and 96 hours after wounding. These results strongly suggest that a wound-induced ω-hydroxyacid dehydrogenase is involved in suberin biosynthesis in potato disks. PMID:16659915
NASA Astrophysics Data System (ADS)
Antonijević-Nikolić, Mirjana; Antić-Stanković, Jelena; Tanasković, Sladjana B.; Korabik, Maria J.; Gojgić-Cvijović, Gordana; Vučković, Gordana
2013-12-01
New cationic Cu(II) complexes with N, N‧, N″, N″‧-tetrakis(2-pyridylmethyl)-1,4,8,11-tetraazacyclotetradecane (tpmc) and aliphatic dicarboxylic acids: pentanedioic (glutaric acid = glutH2), hexanedioic acid (adipic acid = adipH2) and decanedioic acid (sebacic acid = sebH2) of general formula [Cu4(L)(tpmc)2](ClO4)6·xH2O, L = glut, x = 2; L = adip, x = 7; L = seb, x = 6 were isolated. Their composition and charges are proposed based on elemental analyses and molar conductivity measurements. By the comparison of their UV-Vis, reflectance, FTIR and EPR spectral data, CV and SQUID magnetic measurements, with those for the complex with butanedioic acid (succinic acid = succH2) of known molecular structure and analysis of LC/MS spectra, geometry with two [Cu2tpmc]4+ units bridged by dicarboxylate dianion engaging all oxygens is proposed. Within units, Cu(II) ions are also bridged with N portion of cyclam ring. All four complexes were screened to in vitro antimicrobial and cytotoxic activity along with free primary and secondary ligands, Cu(II) salt and solvent controls. Detected antibacterial and cytotoxic activity for the complexes was enhanced in most cases than the corresponding controls.
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; Kasukabe, Hideki; Barrie, Leonard A.
Normal saturated (C 2C 11) and unsaturated (C 4C 5, C 8) dicarboxylic acids were measured in arctic aerosol samples collected weekly at Alert, Canada in 1987-1988. In all seasons, oxalic (C 2) acid was usually the dominant diacid species (1.8-70 ng m -3, av. 14 ± 12 ng m -3) followed by malonic (C 3; 0.05-19 ng m -3, av. 2.5 ± 3.3 ng m -3) and succinic (C 4; 0.51-18 ng m -3, av. 3.8 ± 3.5 ng m -3) acids. The total concentrations of dicarboxylic acids showed a seasonal variation (4.3-97 ng m -3, av. 25 ± 20 ng m -3),with two maxima in September to October and in March to April. The autumn peak is characterized by high concentrations of oxalic acid and azelaic (C 9) acids, which were probably caused by enhanced contributions from anthropogenic and biogenic sources, respectively, followed by photochemical reactions. This is consistent with higher concentrations of n-alkanes from terrestrial plant waxes and of soil-derived aluminum in the autumn aerosol samples. On the other hand, during "Arctic Sunrise" in March to April, oxalic, malonic and succinic acids as well as some other (C 5C 6) diacids were 5 to 20 times more abundant than in the preceding dark winter months, suggesting that diacids are produced in situ by secondary photochemical oxidation of organic pollutants carried to the Arctic. ω-Oxocarboxylic acids (C 2C 5, C 9), pyruvic acid and α-dicarbonyls (methylglyoxal and glyoxal) were also detected in the arctic aerosols. Their concentration also showed spring maxima; however, they were observed a few weeks earlier than the spring peak of diacids. The ω-oxoacids are likely intermediates to the production of α,ω-dicarboxylic acids at the polar sunrise.
NASA Astrophysics Data System (ADS)
Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun; Su, Zhao; Gao, En-Qing
2013-10-01
From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H2CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn5(μ3-OH)2(2,7-CDC)4(DEF)2] (1) (DEF=N,N-diethylformamide), [Zn2(2,7-CDC)2(DABCO)(H2O)]·5DMF·H2O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn2(2,7-CDC)2(bpea)]·3DMA·2 H2O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn5(μ3-OH)2(COO)8] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle-wheel [Zn2(COO)4] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2 shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle-wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied.
Metal cleaners contain organic compounds called hydrocarbons, including: 1,2-butylene oxide Boric acid Cocoyl sarcosine Dicarboxylic fatty acid Dimethoxymethane Dodecanedioic acid N-propyl bromide Sodium hydroxide T-butanol
DOE Office of Scientific and Technical Information (OSTI.GOV)
Best M.; Fowler J.; Best, M.
2011-11-25
A recent report that the aliphatic dicarboxylic acid, azelaic acid (1,9-nonanedioic acid) but not related acids, suberic acid (1,8-octanedioic acid) or sebacic (1,10-decanedioic acid) acid induces systemic acquired resistance to invading pathogens in plants stimulated the development of a rapid method for labeling these dicarboxylic acids with {sup 11}C and {sup 14}C for in vivo mechanistic studies in whole plants. {sup 11}C-labeling was performed by reaction of ammonium [{sup 11}C]cyanide with the corresponding bromonitrile precursor followed by hydrolysis with aqueous sodium hydroxide solution. Total synthesis time was 60 min. Median decay-corrected radiochemical yield for [{sup 11}C]azelaic acid was 40% relativemore » to trapped [{sup 11}C]cyanide, and specific activity was 15 GBq/{micro}mol. Yields for [{sup 11}C]suberic and sebacic acids were similar. The {sup 14}C-labeled version of azelaic acid was prepared from potassium [{sup 14}C]cyanide in 45% overall radiochemical yield. Radiolabeling procedures were verified using {sup 13}C-labeling coupled with {sup 13}C-NMR and liquid chromatography-mass spectrometry analysis. The {sup 11}C and {sup 14}C-labeled azelaic acid and related dicarboxylic acids are expected to be of value in understanding the mode-of-action, transport, and fate of this putative signaling molecule in plants.« less
NASA Astrophysics Data System (ADS)
Somphon, Weenawan; Haller, Kenneth J.
2013-01-01
Pharmaceutical cocrystals are multicomponent materials containing an active pharmaceutical ingredient with another component in well-defined stoichiometry within the same unit cell. Such cocrystals are important in drug design, particularly for improving physicochemical properties such as solubility, bioavailability, or chemical stability. Picolinic acid is an endogenous metabolite of tryptophan and is widely used for neuroprotective, immunological, and anti-proliferative effects within the body. In this paper we present cocrystallization experiments of a series of dicarboxylic acids, oxalic acid, succinic acid, DL-tartaric acid, pimelic acid, and phthalic acid, with picolinic acid. Characterization by FT-IR and Raman spectroscopy, DSC and TG/DTG analysis, and X-ray powder diffraction show that new compounds are formed, including a 1:1 picolinium tartrate monohydrate, a 2:1 monohydrate adduct of picolinic acid and oxalic acid, and a 2:1 picolinic acid-succinic acid monohydrate cocrystal.
NASA Astrophysics Data System (ADS)
Cronin, J. R.; Pizzarello, S.; Epstein, S.; Krishnamurthy, R. V.
1993-10-01
The hydroxymonocarboxylic acids, dicarboxylic acids, and hydroxydicarboxylic acids of the Murchison meteorite were analyzed as their tert-butyldimethylsilyl derivatives using combined gas chromatography-mass spectrometry. The hydroxydicarboxylic acids have not been found previously in meteorites. Each class of compounds is numerous with carbon chains up to C8 or C9 and many, if not all, chain and substitution position isomers represented at each carbon number. The alpha-hydroxycarboxylic acids and alpha-hydroxydicarboxylic acids correspond structurally to many of the known meteoritic alpha-aminocarboxylic acids and alpha-aminodicarboxylic acids, a fact that supports the proposal that a Strecker synthesis was involved in the formation of both classes of compounds. Isotopic analyses show these acids to be D-rich relative to terrestrial organic compounds, as expected; however, the hydroxy acids appear to be isotopically lighter than the amino acids with respect to both carbon and hydrogen.
SUPERCRITICAL WATER OXIDATION MODEL DEVELOPMENT FOR SELECTED EPA PRIORITY POLLUTANTS
Supercritical Water Oxidation (SCWO) evaluated for five compounds: acetic acid, 2,4-dichlorophenol, pentachlorophenol, pyridine, 2,4-dichlorophenoxyacetic acid (methyl ester). inetic models were developed for acetic acid, 2,4-dichlorophenol, and pyridine. he test compounds were e...
NASA Astrophysics Data System (ADS)
Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun
2013-09-01
Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
Thermometric titration of acids in pyridine.
Vidal, R; Mukherjee, L M
1974-04-01
Thermometric titration of HClO(4), HI, HNO(3), HBr, picric acid o-nitrobenzoic acid, 2,4- and 2,5-dinitrophenol, acetic acid and benzoic acid have been attempted in pyridine as solvent, using 1,3-diphenylguanidine as the base. Except in the case of 2,5-dinitrophenol, acetic acid and benzoic acid, the results are, in general, reasonably satisfactory. The approximate molar heats of neutralization have been calculated.
NASA Astrophysics Data System (ADS)
Kubátová, Alena; Vermeylen, Reinhilde; Claeys, Magda; Cafmeyer, Jan; Maenhaut, Willy; Roberts, Greg; Artaxo, Paulo
High-resolution capillary gas chromatography (GC) and GC/mass spectrometry (MS) were employed for the quantitative determination of dichloromethane-extractable organic compounds in total and size-fractionated aerosol samples which were collected in the Amazon basin, Brazil, during the wet season, as part of the LBA-CLAIRE-98 experiment. Special emphasis was placed on the characterization and identification of several novel unknown dicarboxylic acids and related oxidative degradation products. This class of acidic products was enriched in the fine size fraction, suggesting that they were secondary organic aerosol products formed by gas-to-particle conversion. Some of the unknowns contributed more to the class of dicarboxylic acids than the major known compound, nonadioic acid (azelaic acid). The same unknowns were also observed in urban aerosol samples collected on hot summer days in Gent, Belgium. For the characterization and structure elucidation of the unknowns, various types of derivatizations and fractionation by solid-phase extraction were employed in combination with GC/MS. Four unknowns were identified. The most abundant were two derivatives of glutaric acid, 3-isopropyl pentanedioic acid and 3-acetyl pentanedioic acid. The other two identified unknowns were another oxo homologue, 3-acetyl hexanedioic acid, and, interestingly, 3-carboxy heptanedioic acid. To our knowledge, the occurrence of these four compounds in atmospheric aerosols has not yet been reported. The biogenic precursors of the novel identified compounds could not be pinpointed, but most likely include monoterpenes and fatty acids.
Pyridine metabolism in tea plants: salvage, conjugate formation and catabolism.
Ashihara, Hiroshi; Deng, Wei-Wei
2012-11-01
Pyridine compounds, including nicotinic acid and nicotinamide, are key metabolites of both the salvage pathway for NAD and the biosynthesis of related secondary compounds. We examined the in situ metabolic fate of [carbonyl-(14)C]nicotinamide, [2-(14)C]nicotinic acid and [carboxyl-(14)C]nicotinic acid riboside in tissue segments of tea (Camellia sinensis) plants, and determined the activity of enzymes involved in pyridine metabolism in protein extracts from young tea leaves. Exogenously supplied (14)C-labelled nicotinamide was readily converted to nicotinic acid, and some nicotinic acid was salvaged to nicotinic acid mononucleotide and then utilized for the synthesis of NAD and NADP. The nicotinic acid riboside salvage pathway discovered recently in mungbean cotyledons is also operative in tea leaves. Nicotinic acid was converted to nicotinic acid N-glucoside, but not to trigonelline (N-methylnicotinic acid), in any part of tea seedlings. Active catabolism of nicotinic acid was observed in tea leaves. The fate of [2-(14)C]nicotinic acid indicates that glutaric acid is a major catabolite of nicotinic acid; it was further metabolised, and carbon atoms were finally released as CO(2). The catabolic pathway observed in tea leaves appears to start with the nicotinic acid N-glucoside formation; this pathway differs from catabolic pathways observed in microorganisms. Profiles of pyridine metabolism in tea plants are discussed.
Kolattukudy, P.E.; Croteau, Rodney; Walton, T.J.
1975-01-01
Long chain dicarboxylic acids are constituents of the protective biopolymers cutin and suberin of plants. Cell-free extracts from the excised epidermis of Vicia faba leaves catalyzed conversion of 16-hydroxy[G-3H]hexadecanoic acid to the corresponding dicarboxylic acid with nicotinamide-adenine dinucleotide phosphate as the preferred cofactor. This enzymatic activity, located largely in the 100,000g supernatant fraction, had a pH optimum near 8. This dehydrogenase showed an apparent Km of 1.25 × 10−5m and 3.6 × 10−4m for 16-hydroxyhexadecanoic acid and NADP, respectively. Modification of the substrate, either by esterification of the carboxyl group or by introduction of another hydroxyl group at C-10, resulted in a substantial (two-thirds) decrease in the rate of reaction, and hexadecanol was not a good substrate. The enzyme was inhibited by thiol reagents such as N-ethylmaleimide and p-chloromercuribenzoate. The aldehyde intermediate was trapped by the inclusion of dinitrophenyl hydrazine in the reaction mixture, and the 16-oxo compound was regenerated and identified. Furthermore, synthetic 16-oxo-[G-3H] hexadecanoic acid was readily converted to the dicarboxylic acid by the cell-free preparation. These results demonstrate that epidermis of Vicia faba contains an ω-hydroxyacid dehydrogenase and an ω-oxoacid dehydrogenase. PMID:16659184
NASA Astrophysics Data System (ADS)
Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; zur Loye, Hans-Conrad
2012-11-01
Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi2O2(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P21 (a=9.6479(9) Å, b=4.2349(4) Å, c=11.9615(11) Å, β=109.587(1)°), which contains Bi2O2 chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi4Na4(1R3S-cam)8(EtOH)3.1(H2O)3.4 (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P21 (a=19.0855(7) Å, b=13.7706(5) Å, c=19.2429(7) Å, β=90.701(1)°) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi3+, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer.
Kalra, Arjun; Lubach, Joseph W; Munson, Eric J; Li, Tonglei
2018-02-07
Molecular understanding of phase stability and transition of the amorphous state helps in formulation and manufacturing of poorly-soluble drugs. Crystallization of a model compound, 2-phenylamino nicotinic acid (2PNA), from the amorphous state was studied using solid-state analytical methods. Our previous report suggests that 2PNA molecules mainly develop intermolecular -COOH∙∙∙pyridine N (acid-pyridine) interactions in the amorphous state. In the current study, the molecular speciation is explored with regard to the phase transition from the amorphous to the crystalline state. Using spectroscopic techniques, the molecular interactions and structural evolvement during the recrystallization from the glassy state were investigated. The results unveiled that the structurally heterogeneous amorphous state contains acid-pyridine aggregates - either as hydrogen-bonded neutral molecules or as zwitterions - as well as a population of carboxylic acid dimers. Phase transition from the amorphous state results in crystal structures composed of carboxylic acid dimer (acid-acid) synthon or acid-pyridine chains depending on the crystallization conditions employed. The study underlines the structural evolvement, as well as its impact on the metastability, of amorphous samples from local, supramolecular assemblies to long-range intermolecular ordering through crystallization.
NASA Astrophysics Data System (ADS)
Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Cao, Junji
2013-11-01
Summertime PM2.5 aerosols collected from Qinghai Lake (3200 m a.s.l.), a remote continental site in the northeastern part of Tibetan Plateau, were analyzed for dicarboxylic acids (C2-C11), ketocarboxylic acids and α-dicarbonyals. Oxalic acid (C2) is the dominant dicarboxylic acid in the samples, followed by malonic, succinic and azelaic acids. Total dicarboxylic acids (231 ± 119 ng m-3), ketocarboxylic acids (8.4 ± 4.3 ng m-3), and α-dicarbonyls (2.7 ± 2.1 ng m-3) at the Tibetan background site are 2-5 times less than those detected in lowland areas such as 14 Chinese megacities. Compared to those in other urban and marine areas enhancements in relative abundances of C2/total diacids and diacids-C/WSOC of the PM2.5 samples suggest that organic aerosols in the region are more oxidized due to strong solar radiation. Molecular compositions and air mass trajectories demonstrate that the above secondary organic aerosols in the Qinghai Lake atmosphere are largely derived from long-range transport. Ratios of oxalic acid, glyoxal and methylglyoxal to levoglucosan in PM2.5 aerosols emitted from household burning of yak dung, a major energy source for Tibetan in the region, are 30-400 times lower than those in the ambient air, which further indicates that primary emission from biomass burning is a negligible source of atmospheric oxalic acid and α-dicarbonyls at this background site.
NASA Astrophysics Data System (ADS)
Müller-Tautges, C.; Eichler, A.; Schwikowski, M.; Pezzatti, G. B.; Conedera, M.; Hoffmann, T.
2016-01-01
Historic records of α-dicarbonyls (glyoxal, methylglyoxal), carboxylic acids (C6-C12 dicarboxylic acids, pinic acid, p-hydroxybenzoic acid, phthalic acid, 4-methylphthalic acid), and ions (oxalate, formate, calcium) were determined with annual resolution in an ice core from Grenzgletscher in the southern Swiss Alps, covering the time period from 1942 to 1993. Chemical analysis of the organic compounds was conducted using ultra-high-performance liquid chromatography (UHPLC) coupled to electrospray ionization high-resolution mass spectrometry (ESI-HRMS) for dicarbonyls and long-chain carboxylic acids and ion chromatography for short-chain carboxylates. Long-term records of the carboxylic acids and dicarbonyls, as well as their source apportionment, are reported for western Europe. This is the first study comprising long-term trends of dicarbonyls and long-chain dicarboxylic acids (C6-C12) in Alpine precipitation. Source assignment of the organic species present in the ice core was performed using principal component analysis. Our results suggest biomass burning, anthropogenic emissions, and transport of mineral dust to be the main parameters influencing the concentration of organic compounds. Ice core records of several highly correlated compounds (e.g., p-hydroxybenzoic acid, pinic acid, pimelic, and suberic acids) can be related to the forest fire history in southern Switzerland. P-hydroxybenzoic acid was found to be the best organic fire tracer in the study area, revealing the highest correlation with the burned area from fires. Historical records of methylglyoxal, phthalic acid, and dicarboxylic acids adipic acid, sebacic acid, and dodecanedioic acid are comparable with that of anthropogenic emissions of volatile organic compounds (VOCs). The small organic acids, oxalic acid and formic acid, are both highly correlated with calcium, suggesting their records to be affected by changing mineral dust transport to the drilling site.
NASA Astrophysics Data System (ADS)
Portnova, S. V.; Krasnykh, E. L.; Levanova, S. V.
2016-05-01
The saturated vapor pressures and enthalpies of vaporization of n-pentyl esters of linear C2-C6 dicarboxylic acids are determined by the transpiration method in the temperature range of 309.2-361.2 K. The dependences of enthalpies of vaporization on the number of carbon atoms in the molecule and on the retention indices have been determined. The predictive capabilities of the existing calculation schemes for estimation of enthalpy of vaporization of the studied compounds have been analyzed.
Two novel dicarboxylic Acid derivatives and a new dimeric hydrolyzable tannin from walnuts.
Ito, Hideyuki; Okuda, Takahiro; Fukuda, Toshiyuki; Hatano, Tsutomu; Yoshida, Takashi
2007-02-07
In addition to the 16 previously reported polyphenols including 3 new ellagitannins, 2 novel dicarboxylic acid derivatives, glansreginins A (1) and B (2), and a new dimeric hydrolyzable tannin, glansrin D (3), were isolated, together with 15 known compounds from walnuts, the seeds of Juglans regia. The structures of the new compounds were elucidated on the basis of 1D- and 2D-NMR analyses and chemical data. The antioxidant effect of these isolates was also evaluated by SOD-like and DPPH radical scavenging activities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Jing, E-mail: jinjing_crystal@126.com; Chen, Chong; Gao, Yan
Six Ln–Ag coordination polymers {[LnAg_2(IN)_4(H_2O)_5]·NO_3·2H_2O}{sub n} (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg_2(IN)_4(H_2O)_2]·NO_3·H_2O}{sub n} (3), [LnAg(pdc){sub 2}]{sub n} (Ln=Eu(4) and Pr (5), H{sub 2}pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc){sub 2}(H{sub 2}O){sub 4}]{sub n} (6) (H{sub 2}bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV–vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)–(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or inmore » the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln–Ag coordination polymers. This can be attributed to the tune of inner levels in Ln–Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV–vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework. - Graphical abstract: Six Ag–Ln coordination polymers have been hydrothermally synthesized and characterized. The photoluminescence properties were studied. The distortion of coordination geometry of Ag(I) ion affect structure framework. Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions. - Highlights: • Six Ln–Ag polymers have been synthesized and characterized. • The distortion of coordination geometry of Ag(I) ion affect structure framework. • Introduction of Ag(I) cause wonderful changes to the NIR emission of Ln(III) ions.« less
Yu, Xianglin; Wan, Jiaqi; Chen, Shao; Li, Miao; Gao, Junkuo; Yang, Li; Wang, Huisheng; Chen, Dugang; Pan, Zhiquan; Li, Junbo
2017-11-01
Novel pyridine-ring containing twisttetraazaacene 9,14-diphenylpyreno[4,5-g]isoquinoline (1) and its full-carbon derivative 9,14-diphenyldibenzo[de,qr]tetracene (2) have been synthesized and fully characterized. Studies showed that compound 1 could identify picric acid (PA) over other common nitro compounds with high selectivity and sensitivity. Upon the addition of PA, the emission peak of compound 1 in CH 3 CN was red shifted from 447 to 555nm with a fluorescence quenching efficiency as high as 95%, the detection limit was calculated to be 2.42μM, while its full-carbon derivative (2) could not exhibit this kind of performance. The possible mechanism with the enhanced PA detection efficiency in pyridine-ring containing twisttetraazaacene (1) than its full-carbon derivative (2) was also investigated. Copyright © 2017 Elsevier B.V. All rights reserved.
Regioselectivity of pyridine deprotonation in the gas phase.
Schafman, Bonnie S; Wenthold, Paul G
2007-03-02
The regioselective deprotonation of pyridine in the gas phase has been investigated by using chemical reactivity studies. The mixture of regioisomers, trapped as carboxylates, formed in an equilibrium mixture is determined to result from 70-80% deprotonation in the 4-position, and 20-30% deprotonation at the 3-position. The ion formed by deprotonation in the 2-position is not measurably deprotonated at equilibrium because the ion is destabilized by lone-pair repulsion. From the composition of the mixture, the gas-phase acidities (DeltaH degrees acid) at the 4-, 3-, and 2-positions are determined to be 389.9 +/- 2.0, 391.2-391.5, and >391.5 kcal/mol, respectively. The relative acidities of the 4- and 3-positions are explained by using Hammett-Taft parameters, derived by using the measured gas-phase acidities of pyridine carboxylic acids. The values of sigmaF and sigmaR are -0.18 and 0.74, respectively, showing the infused nitrogen in pyridine to have a strong pi electron-withdrawing effect, but with little sigma-inductive effect.
Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.
Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C
2014-08-01
A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yi, Xiu-Chun; Xi, Fu-Gui; Wang, Kun
From a new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid (2,7-H{sub 2}CDC), three Zn(II) metal-organic frameworks were synthesized in the absence or presence of ditopic N-donor ligands. They are formulated as [Zn{sub 5}(μ{sub 3}-OH){sub 2}(2,7-CDC){sub 4}(DEF){sub 2}] (1) (DEF=N,N-diethylformamide), [Zn{sub 2}(2,7-CDC){sub 2}(DABCO)(H{sub 2}O)]·5DMF·H{sub 2}O (2) (DABCO=1-diaza-bicyclo[2.2.2]octane, DMF=N,N-dimethylformamide), and [Zn{sub 2}(2,7-CDC){sub 2}(bpea)]·3DMA·2 H{sub 2}O (3) (bpea=1,2-bis(4-pyridyl)ethylane, DMA=N,N-dimethylacetamide). Compounds 1 and 3 display the 3D pcu frameworks. In 1 the unusual pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building units (SBUs) are linked by dicarboxylate ligands. Differently, in 3 the well-known paddle–wheel [Zn{sub 2}(COO){sub 4}] SBUs are linked by dicarboxylate and dipyridyl ligands. Compound 2more » shows the rare self-catenated 3D alb-3,6-C2/c net topology based on the dinuclear paddle–wheel SBU and a mononuclear unit. The stability and fluorescent properties of the compounds have been studied. - Graphical abstract: A new dicarboxylate ligand, 9H-carbazole-2,7-dicarboxylic acid, was used to construct Zn(II) metal-organic frameworks, including a novel self-catenated network with the rare 3D alb-3,6-C2/c net and two pcu-type networks based on an unprecedented pentanuclear clusters and the common paddle–wheel units. The compounds show blue fluorescent properties. Display Omitted - Highlights: • MOFs with a new carbazole-based dicarboxylate ligand. • New pentanuclear [Zn{sub 5}(μ{sub 3}-OH){sub 2}(COO){sub 8}] secondary building unit. • The rare self-catenated 3D alb-3,6-C2/c net.« less
NASA Astrophysics Data System (ADS)
Zima, Tatyana.; Bataev, Ivan
2016-11-01
A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO2 powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO2-SnO2/Sn3O4-Sn3O4-SnO phase transformations. A single-phase Sn3O4 in the form of the well-separated hexagonal nanoplates and mixed SnO2/Sn3O4 phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed.
NASA Astrophysics Data System (ADS)
Diniz, Luan F.; Souza, Matheus S.; Carvalho, Paulo S.; da Silva, Cecilia C. P.; D'Vries, Richard F.; Ellena, Javier
2018-02-01
Four novel cocrystals of the anti-tuberculosis drug Isoniazid (INH), including two polymorphs, with the aromatic carboxylic acids p-nitrobenzoic (PNBA), p-cyanobenzoic (PCNBA) and p-aminobenzoic (PABA) were rationally designed and synthesized by solvent evaporation. Aiming to explore the possible supramolecular synthons of this API, these cocrystals were fully characterized by X-ray diffraction (SCXRD, PXRD), spectroscopic (FT-IR) and thermal (TGA, DSC, HSM) techniques. The cocrystal formation was found to be mainly driven by the synthons formed by the pyridine and hydrazide moieties. In both INH-PABA polymorphs, the COOH acid groups are H-bonded to pyridine and hydrazide groups giving rise to the acid⋯pyridine and acid⋯hydrazide heterosynthons. In INH-PNBA and INH-PCNBA cocrystals these acid groups are only related to the pyridine moiety. In addition to the structural study, supramolecular and Hirshfeld surface analysis were also performed based on the structural data. The cocrystals were identified from the FT-IR spectra and their thermal behaviors were studied by a combination of DSC, TGA and HSM techniques.
An enhanced procedure for measuring organic acids and methyl esters in PM2.5
NASA Astrophysics Data System (ADS)
Liu, F.; Duan, F. K.; He, K. B.; Ma, Y. L.; Rahn, K. A.; Zhang, Q.
2015-11-01
A solid-phase extraction (SPE) pretreatment procedure allowing organic acids to be separated from methyl esters in fine aerosol has been developed. The procedure first separates the organic acids from fatty acid methyl esters (FAMEs) and other nonacid organic compounds by aminopropyl-based SPE cartridge and then quantifies them by gas chromatography/mass spectrometry. The procedure prevents the fatty acids and dimethyl phthalate from being overestimated, and so allows us to accurately quantify the C4-C11 dicarboxylic acids (DCAs) and the C8-C30 monocarboxylic acids (MCAs). Results for the extraction of DCAs, MCAs, and AMAs in eluate and FAMEs in effluate by SAX and NH2 SPE cartridges exhibited that the NH2 SPE cartridge gave higher extraction efficiency than the SAX cartridge. The recoveries of analytes ranged from 67.5 to 111.3 %, and the RSD ranged from 0.7 to 10.9 %. The resulting correlations between the aliphatic acids and FAMEs suggest that the FAMEs had sources similar to those of the carboxylic acids, or were formed by esterifying carboxylic acids, or that aliphatic acids were formed by hydrolyzing FAMEs. Through extraction and cleanup using this procedure, 17 aromatic acids in eluate were identified and quantified by gas chromatography/tandem mass spectrometry, including five polycyclic aromatic hydrocarbon (PAH): acids 2-naphthoic, biphenyl-4-carboxylic, 9-oxo-9H-fluorene-1-carboxylic, biphenyl-4,4´-dicarboxylic, and phenanthrene-1-carboxylic acid, plus 1,8-naphthalic anhydride. Correlations between the PAH acids and the dicarboxylic and aromatic acids suggested that the first three acids and 1,8-naphthalic anhydride were secondary atmospheric photochemistry products and the last two mainly primary.
Del Pilar Brandi-Blanco, María; Choquesillo-Lazarte, Duane; Domínguez-Martín, Alicia; Matilla-Hernández, Antonio; González-Pérez, Josefa María; Castiñeiras, Alfonso; Niclós-Gutiérrez, Juan
2013-10-01
Mixed ligand M(II)-complexes (MCoZn) with pyridine-2,6-dicarboxylate(2-) chelator (pdc) and adenine (Hade) have been synthesized and studied by X-ray diffraction and other spectral and thermal methods: [Cu(pdc)(H(N9)ade)(H2O)] (1), [Cu2(pdc)2(H2O)2(μ2-N3,N7-H(N9)ade)]·3H2O (2), trans-[M(pdc)(H(N9)ade)(H2O)2]·nH2O for MCo (3-L, 3-M, 3-H) or Zn (4-L, 4-H), where n is 0, 1 or 3 for the 'lowest' (L), 'medium' (M) and 'highest' (H) hydrated forms, and the salt trans-[Ni(pdc)(H2(N1,N9)ade)(H2O)2]Cl·2H2O (5). In all the nine compounds, both neutral and cationic adenine exist as their most stable tautomer and the molecular recognition pattern between the metal-pdc chelates and the adenine or adeninium(1+) ligands involves the MN7 bond in cooperation with an intra-molecular N6H⋯O(coordinated carboxylate) interligand interaction. In addition the dinuclear copper(II) compound (2) has the CuN3 bond and the N9H⋯O(coord. carboxylate) interaction. The structures of mononuclear ternary complexes proved that the molecular recognition pattern is the same irrespective of (a) the coordination geometry of the complex molecule, (b) the different hydrated forms of crystals with Co or Zn, and (c) the neutral of cationic form of the adenine ligand. These features are related to the mer-NO2 chelating ligand conformation (imposed by the planar rigidity of pdc) as a driving force for the observed metal binding mode. Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Xun; Liu, Lang; College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022
2013-10-15
A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this casemore » results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.« less
ω-Oxidation of α-Chlorinated Fatty Acids
Brahmbhatt, Viral V.; Albert, Carolyn J.; Anbukumar, Dhanalakshmi S.; Cunningham, Bryce A.; Neumann, William L.; Ford, David A.
2010-01-01
Myeloperoxidase-derived HOCl targets tissue- and lipoprotein-associated plasmalogens to generate α-chlorinated fatty aldehydes, including 2-chlorohexadecanal. Under physiological conditions, 2-chlorohexadecanal is oxidized to 2-chlorohexadecanoic acid (2-ClHA). This study demonstrates the catabolism of 2-ClHA by ω-oxidation and subsequent β-oxidation from the ω-end. Mass spectrometric analyses revealed that 2-ClHA is ω-oxidized in the presence of liver microsomes with initial ω-hydroxylation of 2-ClHA. Subsequent oxidation steps were examined in a human hepatocellular cell line (HepG2). Three different α-chlorinated dicarboxylic acids, 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-chloroadipic acid (2-ClAdA), were identified. Levels of 2-chlorohexadecane-(1,16)-dioic acid, 2-chlorotetradecane-(1,14)-dioic acid, and 2-ClAdA produced by HepG2 cells were dependent on the concentration of 2-ClHA and the incubation time. Synthetic stable isotope-labeled 2-ClHA was used to demonstrate a precursor-product relationship between 2-ClHA and the α-chlorinated dicarboxylic acids. We also report the identification of endogenous 2-ClAdA in human and rat urine and elevations in stable isotope-labeled urinary 2-ClAdA in rats subjected to intraperitoneal administration of stable isotope-labeled 2-ClHA. Furthermore, urinary 2-ClAdA and plasma 2-ClHA levels are increased in LPS-treated rats. Taken together, these data show that 2-ClHA is ω-oxidized to generate α-chlorinated dicarboxylic acids, which include α-chloroadipic acid that is excreted in the urine. PMID:20956542
Ab initio Hartree-Fock investigation of 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid
NASA Astrophysics Data System (ADS)
Ramek, Michael; Tomić, Sanja
2001-09-01
The potential energy surface of 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid has been investigated via RIIF/6-31G* calculations. The stationary points and reaction paths for syn orientation of the COOH group were determined and are compared with those of the derivatives of 3-indole acetic acid, which act as plant growth hormones. 1- H-pyrrolo[3,2- b]pyridine-3-yl acetic acid forms a kinetically stable conformer with a strong intramolecular hydrogen bond, in which the COOH group is in anti orientation. The influence of this hydrogen bond on bond lengths and vibration frequencies is described.
Pratik, Saied Md; Datta, Ayan
2016-08-04
Formation of salt and/or cocrystal from organic acid-base mixtures has significant consequences in the pharmaceutical industry and its related intellectual property rights (IPR). On the basis of calculations using periodic dispersion corrected DFT (DFT-D2) on formic acid-pyridine adduct, we have demonstrated that an equimolar stoichiometric ratio (1:1) exists as a neutral cocrystal. On the other hand, the nonequimolar stoichiometry (4:1) readily forms an ionic salt. While the former result is in agreement with the ΔpKa rule between the base and the acid, the latter is not. Calculations reveal that, within the equimolar manifold (n:n; n = 1-4), the mixture exists as a hydrogen bonded complex in a cocrystal-like environment. However, the nonequimolar mixture in a ratio of 5:1 and above readily forms salt-like structures. Because of the cooperative nature of hydrogen bonding, the strength of the O-H···N hydrogen bond increases and eventually transforms into O(-)···H-N(+) (complete proton transfer) as the ratio of formic acid increases and forms salt as experimentally observed. Clearly, an enhanced polarization of formic acid on aggregation increases its acidity and, hence, facilitates its transfer to pyridine. Motion of the proton from formic acid to pyridine is shown to follow a relay mechanism wherein the proton that is far away from pyridine is ionized and is subsequently transferred to pyridine via hopping across the neutral formic acid molecules (Grotthuss type pathway). The dynamic nature of protons in the condensed phase is also evident for cocrystals as the barrier of intramolecular proton migration in formic acid (leading to tautomerism), ΔH(⧧)tautomer = 17.1 kcal/mol in the presence of pyridine is half of that in free formic acid (cf. ΔH(⧧)tautomer = 34.2 kcal/mol). We show that an acid-base reaction can be altered in the solid state to selectively form a cocrystal or salt depending on the strength and nature of aggregation.
Production of Plant Phthalate and its Hydrogenated Derivative from Bio-Based Platform Chemicals.
Lu, Rui; Lu, Fang; Si, Xiaoqin; Jiang, Huifang; Huang, Qianqian; Yu, Weiqiang; Kong, Xiangtao; Xu, Jie
2018-04-06
Direct transformation of bio-based platform chemicals into aromatic dicarboxylic acids and their derivatives, which are widely used for the manufacture of polymers, is of significant importance for the sustainable development of the plastics industry. However, limited successful chemical processes have been reported. This study concerns a sustainable route for the production of phthalate and its hydrogenated derivative from bio-based malic acid and erythritol. The key Diels-Alder reaction is applied to build a substituted cyclohexene structure. The dehydration reaction of malic acid affords fumaric acid with 96.6 % yield, which could be used as the dienophile, and 1,3-butadiene generated in situ through erythritol deoxydehydration serves as the diene. Starting from erythritol and dibutyl fumarate, a 74.3 % yield of dibutyl trans-4-cyclohexene-1,2-dicarboxylate is obtained. The palladium-catalyzed dehydrogenation of the cycloadduct gives a 77.8 % yield of dibutyl phthalate. Dibutyl trans-cyclohexane-1,2-dicarboxylate could be formed in nearly 100 % yield under mild conditions by hydrogenation of the cycloadduct. Furthermore, fumaric acid and fumarate, with trans configurations, were found to be better dienophiles for this Diels-Alder reaction than maleic acid and maleate, with cis configuration, based on the experimental and computational results. This new route will pave the way for the production of environmental friendly plastic materials from plants. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Suitability of hardwood treated with phenoxy and pyridine herbicides for firewood use
P.B. Bush; D.G. Neary; Charles K. McMahon; J.W. Taylor
1987-01-01
Abstract. Potential exposure to pesticide residues resulting from burning wood treated with phenoxyand pyridine herbicides was assessed. Wood samples from trees treated with 2,4-D [2,4-dichlo-rophenoxy acetic acid], dicamba [3,6-dichloro-o-anisic acid], dichlorprop [2-(2,4-dichlorphenoxy) propionic acid], picloram [4-amino-3,5,dtrichloropico-linic...
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Tsatsral, Batmunkh; Kim, Young J.; Kawamura, Kimitaka
2010-11-01
To investigate the distributions and sources of water-soluble organic acids in the Mongolian atmosphere, aerosol samples (PM2.5, n = 34) were collected at an urban site (47.92°N, 106.90°E, ˜1300 m above sea level) in Ulaanbaatar, the capital of Mongolia, during the cold winter. The samples were analyzed for water-soluble dicarboxylic acids (C2-C12) and related compounds (ketocarboxylic acids and α-dicarbonyls), as well as organic carbon (OC), elemental carbon, water-soluble OC, and inorganic ions. Distributions of dicarboxylic acids and related compounds were characterized by a predominance of terephthalic acid (tPh; 130 ± 51 ng m-3, 19% of total detected organic acids) followed by oxalic (107 ± 28 ng m-3, 15%), succinic (63 ± 20 ng m-3, 9%), glyoxylic (55 ± 18 ng m-3, 8%), and phthalic (54 ± 27 ng m-3, 8%) acids. Predominance of terephthalic acid, which has not been reported previously in atmospheric aerosols, was mainly due to uncontrolled burning of plastic bottles and bags in home stoves for heating and waste incineration during the cold winter. This study demonstrated that most of the air pollutants were directly emitted from local sources such as heat and power plants, home stoves, and automobiles. Development of an inversion layer (<700 m above ground level) over the basin of Ulaanbaatar accelerated the accumulation of pollutants, causing severe haze episodes during the winter season.
NASA Astrophysics Data System (ADS)
Deshmukh, Dhananjay K.; Kawamura, Kimitaka; Deb, Manas K.; Boreddy, Suresh K. R.
2017-03-01
The sources and formation processes of dicarboxylic acids are still under investigation. Size-segregated aerosol (nine-size) samples collected in the urban site (Raipur: 21.2°N and 82.3°E) in eastern central India during summer of 2013 were measured for water-soluble diacids (C2-C12), ω-oxoacids (ωC2-ωC9), α-dicarbonyls (C2-C3), and inorganic ions to better understand their sources and formation processes. Diacids showed the predominance of oxalic acid (C2), whereas ω-oxoacids showed the predominance of glyoxylic acid (ωC2), and glyoxal (Gly) was a major α-dicarbonyl in all the sizes. Diacids, ω-oxoacids, and α-dicarbonyls as well as SO42
Oxidative degradation of organic acids conjugated with sulfite oxidation in flue gas desulfurization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Y.I.
Organic acid degradation conjugated with sulfite oxidation has been studied under flue gas desulfurization (EGD) conditions. The oxidative degradation constant, k/sub 12/, is defined as the ratio of organic acid degradation rate and sulfite oxidation rate after being normalized by the concentrations of organic acid and dissolved S(IV). K/sub 12/, not significantly affected by pH or dissolved oxygen, is around 10/sup -3/ in the absence of manganese or iron. However, k/sub 12/ is increased by certain transition metals such as Co, Ni, and Fe and is decreased by Mn and halides. Lower dissolved S(IV) magnified these effects. No k/sub 12/more » greater than 4 x 10/sup -3/ or smaller than 0.1 x 10/sup -3/ has been observed. A free radical mechanism was proposed to describe the kinetics: (1) sulfate free radical is the major radical responsible to the degradation of organic acid; (2) ferrous generates sulfate radical by reacting with monoxypersulfate to enhance k/sub 12/; (3) manganous consumes sulfate radical to decrease k/sub 12/; (4) dissolved S(IV) competes with ferrous for monoxypersulfate and with manganous for sulfate radical to demonstrate the effects of dissolved S(IV) on k/sub 12/. Hydroxy and sulfonated carboxylic acids degrade approximately three times slower than saturated dicarboxylic acids; while maleic acid, an unsaturated dicarboxylic acid, degraded an order of magnitude faster. A wide spectrum of degradation products of adipic acid were found, including carbon dioxide - the major product, glutaric semialdehyde - the major retained product with low manganese, glutaric acid and valeric acids - the major retained product with high manganese, lower molecular weight mono- and dicarboxylic acids, other carbonyl compounds, and hydrocarbons.« less
Hygroscopic Behavior of Multicomponent Aerosols Involving NaCl and Dicarboxylic Acids.
Peng, Chao; Jing, Bo; Guo, Yu-Cong; Zhang, Yun-Hong; Ge, Mao-Fa
2016-02-25
Atmospheric aerosols are usually complex mixtures of inorganic and organic compounds. The hygroscopicity of mixed particles is closely related to their chemical composition and interactions between components, which is still poorly understood. In this study, the hygroscopic properties of submicron particles composed of NaCl and dicarboxylic acids including oxalic acid (OA), malonic acid (MA), and succinic acid (SA) with various mass ratios are investigated with a hygroscopicity tandem differential mobility analyzer (HTDMA) system. Both the Zdanovskii-Stokes-Robinson (ZSR) method and extended aerosol inorganics model (E-AIM) are applied to predict the water uptake behaviors of sodium chloride/dicarboxylic acid mixtures. For NaCl/OA mixed particles, the measured growth factors were significantly lower than predictions from the model methods, indicating a change in particle composition caused by chloride depletion. The hygroscopic growth of NaCl/MA particles was well described by E-AIM, and that of NaCl/SA particles was dependent upon mixing ratio. Compared with model predictions, it was determined that water uptake of the NaCl/OA mixture could be enhanced and could be closer to the predictions by addition of levoglucosan or malonic acid, which retained water even at low relative humidity (RH), leading to inhibition of HCl evaporation during dehydration. These results demonstrate that the coexisting hygroscopic species have a strong influence on the phase state of particles, thus affecting chemical interactions between inorganic and organic compounds as well as the overall hygroscopicity of mixed particles.
Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
Lu, Qian-Qian; Yu, Hai-Zhu; Fu, Yao
2016-03-18
The mechanism of formic acid dehydrogenation catalyzed by the bis(imino)pyridine-ligated aluminum hydride complex (PDI(2-))Al(THF)H (PDI=bis(imino)pyridine) was studied by density functional theory calculations. The overall transformation is composed of two stages: catalyst activation and the catalytic cycle. The catalyst activation begins with O-H bond cleavage of HCOOH promoted by aluminum-ligand cooperation, followed by HCOOH-assisted Al-H bond cleavage, and protonation of the imine carbon atom of the bis(imino)pyridine ligand. The resultant doubly protonated complex ((H,H) PDI)Al(OOCH)3 is the active catalyst for formic acid dehydrogenation. Given this, the catalytic cycle includes β-hydride elimination of ((H,H) PDI)Al(OOCH)3 to produce CO2, and the formed ((H,H) PDI)Al(OOCH)2 H mediates HCOOH to release H2. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Research on the degradation mechanism of pyridine in drinking water by dielectric barrier discharge.
Li, Yang; Yi, Rongjie; Yi, Chengwu; Zhou, Biyun; Wang, Huijuan
2017-03-01
Pyridine, an important chemical raw material, is widely used in industry, for example in textiles, leather, printing, dyeing, etc. In this research, a dielectric barrier discharge (DBD) system was developed to remove pyridine, as a representative type of nitrogen heterocyclic compound in drinking water. First, the influence of the active species inhibitors tertiary butanol alcohol (TBA), HCO 3 - , and CO 3 2- on the degradation rate of pyridine was investigated to verify the existence of active species produced by the strong ionization discharge in the system. The intermediate and final products generated in the degradation process of pyridine were confirmed and analyzed through a series of analytical techniques, including liquid chromatography-mass spectrometry (LC-MS), high performance liquid chromatography (HPLC), ion chromatography (IC), total organic carbon (TOC) analysis, ultraviolet (UV) spectroscopy, etc. The results showed that the degradation of pyridine was mainly due to the strong oxidizing power of ozone and hydroxyl radical produced by the DBD system. Several intermediate products including 3-hydroxyl pyridine, fumaric acid, 2, 3-dihydroxypyridine, and oxalic acid were detected. Nitrogen was removed from the pyridine molecule to form nitrate. Through analysis of the degradation mechanism of pyridine, the oxidation pathway was deduced. The study provided a theoretical and experimental basis for the application of DBD strong ionization discharge in treatment of nitrogen heterocyclic compounds in drinking water. Copyright © 2016. Published by Elsevier B.V.
Coverage-Dependent Anchoring of 4,4'-Biphenyl Dicarboxylic Acid to CoO(111) Thin Films.
Mohr, Susanne; Schmitt, Tobias; Döpper, Tibor; Xiang, Feifei; Schwarz, Matthias; Görling, Andreas; Schneider, M Alexander; Libuda, Jörg
2017-05-02
We investigated the adsorption behavior of 4,4'-biphenhyl dicarboxylic acid (BDA) on well-ordered CoO(111) films grown on Ir(100) as a function of coverage and temperature using time-resolved and temperature-programmed infrared reflection absorption spectroscopy (TR-IRAS, TP-IRAS) in combination with density functional theory (DFT) and scanning tunneling microscopy (STM) under ultrahigh vacuum (UHV) conditions. To compare the binding behavior of BDA as a function of the oxide film thickness, three different CoO(111) film thicknesses were explored: films of about 20 bilayers (BLs) (approximately 5 nm), 2 BLs, and 1 BL. The two carboxylic acid groups of BDA offer two potential anchoring points to the oxide surface. At 150 K, intact BDA adsorbs on 20 BL thick oxide films in planar geometry with the phenyl rings aligned parallel to the surface. With decreasing oxide film thickness, we observe an increasing tendency for deprotonation and the formation of flat-lying BDA molecules anchored as dicarboxylates. After saturation of the first monolayer, intact BDA multilayers grow with molecules aligned parallel to the surface. The BDA multilayer desorbs at around 360 K. Completely different growth behavior is observed if BDA is deposited above the multilayer desorption temperature. Initially, doubly deprotonated dicarboxylates are formed by adopting a flat-lying orientation. With increasing exposure, however, the adsorbate layer transforms into upright standing monocarboxylates. A sharp OH stretching band (3584 cm -1 ) and a blue-shifted CO stretching band (1759 cm -1 ) indicate weakly interacting apical carboxylic acid groups at the vacuum interface. The anchored monocarboxylate phase slowly desorbs in a temperature range of up to 470 K. At higher temperature, a flat-lying doubly deprotonated BDA is formed, which desorbs and decomposes in a temperature range of up to 600 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zima, Tatyana, E-mail: zima@solid.nsc.ru; Novosibirsk State Technical University, 20 K. Marx Prospect, Novosibirsk 630092; Bataev, Ivan
A new approach to the synthesis of non-stoichiometric tin oxide structures with different morphologies and the phase compositions has been evaluated. The nanostructures were synthesized by hydrothermal treatment of the mixtures of dicarboxylic acids ― aminoterephthalic or oxalic ― with nanocrystalline SnO{sub 2} powder, which was obtained via the sol-gel technology. The products were characterized by Raman and IR spectroscopy, SEM, HRTEM, and XRD analysis. It was shown that the controlled addition of a dicarboxylic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations.more » A single-phase Sn{sub 3}O{sub 4} in the form of the well-separated hexagonal nanoplates and mixed SnO{sub 2}/Sn{sub 3}O{sub 4} phases in the form of hierarchical flower-like structures were obtained in the presence of organic additives. The effects of concentration, redox activity of the acids and heat treatment on the basic characteristics of the synthesized tin oxide nanostructures and phase transformations in the synthesized materials are discussed. - Graphical abstract: The controlled addition of aminoterephthalic or oxalic acid leads not only to a change in the morphology of the nanostructures, but also to SnO{sub 2}–SnO{sub 2}/Sn{sub 3}O{sub 4}–Sn{sub 3}O{sub 4}–SnO phase transformations. - Highlights: • A new approach to the synthesis of non-stoichiometric tin oxide structures is studied. • Tin oxide structures are synthesized via hydrothermal method with dicarboxylic acids. • Morphology and phase composition are changed with redox activity and dosage of acid. • The redox activity of acid has an effect on ratio of SnO and SnO{sub 2} in crystal structure. • A pure phase Sn{sub 3}O{sub 4} nanoplates and SnO{sub 2}/Sn{sub 3}O{sub 4} hierarchical structures are formed.« less
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; Sakaguchi, Futoshi
1999-02-01
Remote marine aerosols collected over the western North to equatorial Pacific (34°N-14°S, 140°E-150°W) were studied for low molecular weight dicarboxylic acids using a capillary gas chromatography (GC) and GC/mass spectrometer, and for total carbon and nitrogen contents. Homologous series of dicarboxylic acids (C2-C10) including keto- and hydroxy-dicarboxylic acids were detected in the samples with a concentration range of 10-250 ng m-3 (average 63 ng m-3 and median 44 ng m-3). Their molecular distributions showed a predominance of oxalic acid (C2), followed by malonic acid (C3). The smallest diacid (C2, 6.5-161 ng m-3 with average 40 ng m-3 and median 17 ng m-3) composed 45-75% (average 65%) of the total diacids. The diacids showed higher concentrations in the western Pacific rim near Japanese islands and showed lower concentrations in the central and tropical Pacific. However, relative abundances of the diacid-carbon in the total aerosol carbon (1.1-15.8%) were found to be higher in the equatorial central Pacific. These diacids are probably in situ produced in the Pacific atmosphere by photochemical oxidation of gaseous and particulate precursors. Results of principal component analysis of individual diacid, coupled with an information on photochemical reactions, further support that C2 and C3 diacids are likely produced by the oxidation of C4 and longer-chain diacids, whereas longer-chain (C5-C10) diacids are produced through the oxidation of semivolatile fatty acids which are also oxidation products of unsaturated fatty acids. Concentrations of total C (0.069-5.27 μg m-3 with average 0.39 μg m-3 and median 0.15 μg m-3) and total N (0.026-1.44 μg m-3 with average 0.12 μg m-3 and median 0.077 μg m-3) were generally higher over the western Pacific.
Basicity of pyridine and some substituted pyridines in ionic liquids.
Angelini, Guido; De Maria, Paolo; Chiappe, Cinzia; Fontana, Antonella; Pierini, Marco; Siani, Gabriella
2010-06-04
The equilibrium constants for ion pair formation of some pyridines have been evaluated by spectrophotometric titration with trifluoroacetic acid in different ionic liquids. The basicity order is the same in ionic liquids and in water. The substituent effect on the equilibrium constant has been discussed in terms of the Hammett equation. Pyridine basicity appears to be less sensitive to the substituent effect in ionic liquids than in water.
Ozonization of polyfunctional and humic acids of sapropelites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verkhodanova, N.N.; Myakina, I.A.; Egor'kov, A.N.
Data are presented which show that in the ozonization of polyfunctional acids (PFAs) and humic acids (HAs) in glacial acetic acid, all the organic carbon can be converted into the soluble form. Mono- and dicarboxylic acids of normal structure have been detected in the ozonization products. 5 refs.
Han, Li; Peng, Yanfeng; Zhang, Yuangyuan; Chen, Wujiu; Lin, Yuping; Wang, Qinhong
2017-01-01
Medium-chain (C8–C14) α, ω-dicarboxylic acids (α, ω-DCAs), which have numerous applications as raw materials for producing various commodities and polymers in chemical industry, are mainly produced from chemical or microbial conversion of petroleum-derived alkanes or plant-derived fatty acids at present. Recently, significant attention has been gained to microbial production of medium-chain α, ω-DCAs from simple renewable sugars. Here, we designed and created a synthetic omega oxidation pathway in Saccharomyces cerevisiae to produce C10 and C12 α, ω-DCAs from renewable sugars and fatty acids by introducing a heterogeneous cytochrome P450 CYP94C1 and cytochrome reductase ATR1. Furthermore, the deletion of fatty acyl-CoA synthetase genes FAA1 and FAA4 increased the production of medium-chain α, ω-DCAs from 4.690 ± 0.088 mg/L to 12.177 ± 0.420 mg/L and enabled the production of C14 and C16 α, ω-DCAs at low percentage. But blocking β-oxidation pathway by deleting fatty-acyl coenzyme A oxidase gene POX1 and overexpressing different thioesterase genes had no significant impact on the production and the composition of α, ω-dicarboxylic acids. Overall, our study indicated the potential of microbial production of medium-chain α, ω-DCAs from renewable feedstocks using engineered yeast. PMID:29163455
Zheoat, Ahmed M; Gray, Alexander I; Igoli, John O; Kennedy, Alan R; Ferro, Valerie A
2017-09-01
The biologically active title compounds have been isolated from Hibiscus sabdariffa plants, hibiscus acid as a dimethyl sulfoxide monosolvate [systematic name: (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carb-oxy-lic acid dimethyl sulfoxide monosolvate], C 6 H 6 O 7 ·C 2 H 6 OS, (I), and hibiscus acid dimethyl ester [systematic name: dimethyl (2 S ,3 R )-3-hy-droxy-5-oxo-2,3,4,5-tetra-hydro-furan-2,3-di-carboxyl-ate], C 8 H 10 O 7 , (II). Compound (I) forms a layered structure with alternating layers of lactone and solvent mol-ecules, that include a two-dimensional hydrogen-bonding construct. Compound (II) has two crystallographically independent and conformationally similar mol-ecules per asymmetric unit and forms a one-dimensional hydrogen-bonding construct. The known absolute configuration for both compounds has been confirmed.
Aerosol volatility and enthalpy of sublimation of carboxylic acids.
Salo, Kent; Jonsson, Asa M; Andersson, Patrik U; Hallquist, Mattias
2010-04-08
The enthalpy of sublimation has been determined for nine carboxylic acids, two cyclic (pinonic and pinic acid) and seven straight-chain dicarboxylic acids (C(4) to C(10)). The enthalpy of sublimation was determined from volatility measurements of nano aerosol particles using a volatility tandem differential mobility analyzer (VTDMA) set-up. Compared to the previous use of a VTDMA, this novel method gives enthalpy of sublimation determined over an extended temperature range (DeltaT approximately 40 K). The determined enthalpy of sublimation for the straight-chain dicarboxylic acids ranged from 96 to 161 kJ mol(-1), and the calculated vapor pressures at 298 K are in the range of 10(-6)-10(-3) Pa. These values indicate that dicarboxylic acids can take part in gas-to-particle partitioning at ambient conditions and may contribute to atmospheric nucleation, even though homogeneous nucleation is unlikely. To obtain consistent results, some experimental complications in producing nanosized crystalline aerosol particles were addressed. It was demonstrated that pinonic acid "used as received" needed a further purification step before being suspended as a nanoparticle aerosol. Furthermore, it was noted from distinct differences in thermal properties that aerosols generated from pimelic acid solutions gave two types of particles. These two types were attributed to crystalline and amorphous configurations, and based on measured thermal properties, the enthalpy of vaporization was 127 kJ mol(-1) and that of sublimation was 161 kJ mol(-1). This paper describes a new method that is complementary to other similar methods and provides an extension of existing experimental data on physical properties of atmospherically relevant compounds.
2015-01-01
α,β-Unsaturated carboxylic acids undergo Rh(III)-catalyzed decarboxylative coupling with α,β-unsaturated O-pivaloyl oximes to provide substituted pyridines in good yield. The carboxylic acid, which is removed by decarboxylation, serves as a traceless activating group, giving 5-substituted pyridines with very high levels of regioselectivity. Mechanistic studies rule out a picolinic acid intermediate, and an isolable rhodium complex sheds further light on the reaction mechanism. PMID:24512241
Synthesis of pyridine-fused perylene imides with an amidine moiety for hydrogen bonding.
Ito, Satoru; Hiroto, Satoru; Shinokubo, Hiroshi
2013-06-21
Pyridine-fused perylene tetracarboxylic acid bisimides (PBIs) were synthesized via Suzuki-Miyaura coupling and acid condensation. The fused PBIs with electron-donating substituents exhibited an intramolecular charge transfer interaction. One of the N-alkyl substituents was selectively removed with BBr3 to create an amidine guest binding site. A hydrogen bonding interaction with pentafluorobenzoic acid changed the absorption spectra and enhanced fluorescence.
Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H Ekkehard
2005-03-01
Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH(-) to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis.
Hurth, Marco Alois; Suh, Su Jeoung; Kretzschmar, Tobias; Geis, Tina; Bregante, Monica; Gambale, Franco; Martinoia, Enrico; Neuhaus, H. Ekkehard
2005-01-01
Arabidopsis (Arabidopsis thaliana) mutants lacking the tonoplastic malate transporter AttDT (A. thaliana tonoplast dicarboxylate transporter) and wild-type plants showed no phenotypic differences when grown under standard conditions. To identify putative metabolic changes in AttDT knock-out plants, we provoked a metabolic scenario connected to an increased consumption of dicarboxylates. Acidification of leaf discs stimulated dicarboxylate consumption and led to extremely low levels of dicarboxylates in mutants. To investigate whether reduced dicarboxylate concentrations in mutant leaf cells and, hence, reduced capacity to produce OH− to overcome acidification might affect metabolism, we measured photosynthetic oxygen evolution under conditions where the cytosol is acidified. AttDT::tDNA protoplasts showed a much stronger inhibition of oxygen evolution at low pH values when compared to wild-type protoplasts. Apparently citrate, which is present in higher amounts in knock-out plants, is not able to replace dicarboxylates to overcome acidification. To raise more information on the cellular level, we performed localization studies of carboxylates. Although the total pool of carboxylates in mutant vacuoles was nearly unaltered, these organelles contained a lower proportion of malate and fumarate and a higher proportion of citrate when compared to wild-type vacuoles. These alterations concur with the observation that radioactively labeled malate and citrate are transported into Arabidopsis vacuoles by different carriers. In addition, wild-type vacuoles and corresponding organelles from AttDT::tDNA mutants exhibited similar malate channel activities. In conclusion, these results show that Arabidopsis vacuoles contain at least two transporters and a channel for dicarboxylates and citrate and that the activity of AttDT is critical for regulation of pH homeostasis. PMID:15728336
Sham, Adeline; Martinez, Eliana C; Beyer, Sebastian; Trau, Dieter W; Raghunath, Michael
2015-03-01
Clinical applications of tissue engineering are constrained by the ability of the implanted construct to invoke vascularization in adequate extent and velocity. To overcome the current limitations presented by local delivery of single angiogenic factors, we explored the incorporation of prolyl hydroxylase inhibitors (PHIs) into scaffolds as an alternative vascularization strategy. PHIs are small molecule drugs that can stabilize the alpha subunit of hypoxia-inducible factor-1 (HIF-1), a key transcription factor that regulates a variety of angiogenic mechanisms. In this study, we conjugated the PHI pyridine-2,4-dicarboxylic acid (PDCA) through amide bonds to a gelatin sponge (Gelfoam(®)). Fibroblasts cultured on PDCA-Gelfoam were able to infiltrate and proliferate in these scaffolds while secreting significantly more vascular endothelial growth factor than cells grown on Gelfoam without PDCA. Reporter cells expressing green fluorescent protein-tagged HIF-1α exhibited dose-dependent stabilization of this angiogenic transcription factor when growing within PDCA-Gelfoam constructs. Subsequently, we implanted PDCA-Gelfoam scaffolds into the perirenal fat tissue of Sprague Dawley rats for 8 days. Immunostaining of explants revealed that the PDCA-Gelfoam scaffolds were amply infiltrated by cells and promoted vascular ingrowth in a dose-dependent manner. Thus, the incorporation of PHIs into scaffolds appears to be a feasible strategy for improving vascularization in regenerative medicine applications.
Pre-treatment of pyridine wastewater by new cathodic-anodic-electrolysis packing.
Jin, Yang; Yue, Qinyan; Yang, Kunlun; Wu, Suqing; Li, Shengjie; Gao, Baoyu; Gao, Yuan
2018-01-01
A novel cathodic-anodic-electrolysis packing (CAEP) used in the treatment of pyridine wastewater was researched, which mainly consisted of 4,4'-diamino-2,2'-disulfonic acid (DSD acid) industrial iron sludge. The physical properties and morphology of the packing were studied. The CAEP was used in a column reactor during the pretreatment of pyridine wastewater. The influence of pH, hydraulic retention time (HRT), the air-liquid ratio (A/L) and the initial concentration of pyridine were investigated by measuring the removal of total organic carbon (TOC) and pyridine. The characterization results showed that the bulk density, grain density, water absorption percentage and specific surface area were 921kg/m 3 , 1086kg/m 3 , 25% and 29.89m 2 /g, respectively; the removal of TOC and pyridine could reach 50% and 58% at the optimal experimental conditions (pH=3, HRT=8hr, A/L=2). Notably, the surface of the packing was renewed constantly during the running of the filter, and the handling capacity was stable after running for three months. Copyright © 2017. Published by Elsevier B.V.
2-Aminobenzoic acid–4-(pyridin-4-yldisulfanyl)pyridine (1/1)
Arman, Hadi D.; Kaulgud, Trupta; Tiekink, Edward R. T.
2011-01-01
The title 1:1 co-crystal, C7H7NO2·C10H8N2S2, features a highly twisted 4-(pyridin-4-yldisulfanyl)pyridine molecule [dihedral angle between the pyridine rings = 89.06 (10)°]. A small twist is evident in the 2-aminobenzoic acid molecule, with the C—C—C—O torsion angle being −7.7 (3)°. An N—H⋯O hydrogen bond occurs in the 2-aminobenzoic acid molecule. In the crystal, molecules are linked by O—H⋯N and N—H⋯N hydrogen bonds into a supramolecular chain along the b axis. These are connected into layers by π–π interactions occurring between pyridine rings [centroid–centroid distance = 3.8489 (15) Å]. The layers are connected along the a axis by C—H⋯O contacts. The crystal studied was a racemic twin. PMID:22199855
Jennifer, Samson Jegan; Muthiah, Packianathan Thomas
2014-01-01
The utility of N-heterocyclic bases to obtain molecular complexes with carboxylic acids is well studied. Depending on the solid state interaction between the N-heterocyclic base and a carboxylic acid a variety of neutral or ionic synthons are observed. Meanwhile, pyridines and pyrimidines have been frequently chosen in the area of crystal engineering for their multipurpose functionality. HT (hetero trimers) and LHT (linear heterotetramers) are the well known synthons that are formed in the presence of pyrimidines and carboxylic acids. Fourteen crystals involving various substituted thiophene carboxylic acid derivatives and nitrogenous bases were prepared and characterized by using single crystal X-ray diffraction. The 14 crystals can further be divided into two groups [1a-7a], [8b-14b] based on the nature of the nitrogenous base. Carboxylic acid to pyridine proton transfer has occurred in 3 compounds of each group. In addition to the commonly occurring hydrogen bond based pyridine/carboxylic acid and pyrimidine/carboxylic acid synthons which is the reason for assembly of primary motifs, various other interactions like Cl…Cl, Cl…O, C-H…Cl, C-H…S add additional support in organizing these supermolecules into extended architectures. It is also interesting to note that in all the compounds π-π stacking occurs between the pyrimidine-pyrimidine or pyridine-pyridine or acid-acid moieties rather than acid-pyrimidine/pyridine. In all the compounds (1a-14b) either neutral O-H…Npyridyl/pyrimidine or charge-assisted Npyridinium-H…Ocarboxylate hydrogen bonds are present. The HT (hetero trimers) and LHT (linear heterotetramers) are dominant in the crystal structures of the adducts containing N-heterocyclic bases with two proton acceptors (1a-7a). Similar type supramolecular ladders are observed in 5TPC44BIPY (8b), TPC44BIPY (9b), TPC44TMBP (11b). Among the seven compounds [8b-14b] the extended ligands are linear in all except for the TMBP (10b, 11b, 12b). The structure of each compound depends on the dihedral angle between the carboxyl group and the nitrogenous base. All these compounds indicate three main synthons that regularly occur, namely linear heterodimer (HD), heterotrimer (HT) and heterotetramer (LHT).
NASA Astrophysics Data System (ADS)
Kawamura, K.; Ono, K.; Tachibana, E.; Quinn, P.; Bates, T. S.
2013-12-01
Marine aerosols were collected over the western North Atlantic from off the coast of Boston to Bermuda during the WACS (Western Atlantic Climate Study) cruise of R/V Ronald H. Brown in August 2012 using a high volume air sampler and pre-combusted quartz fiber filters. Aerosol filter samples (n=5) were analyzed for OC/EC, major inorganic ions, low molecular weight dicarboxylic acids and various secondary organic aerosol (SOA) tracers using carbon analyzer, ion chromatograph, GC/FID and GC/MS, respectively. Homologous series (C2-C12) of dicarboxylic acids (31-335 ng m-3) were detected with a predominance of oxalic acid. Total carbon and nitrogen and their stable isotope ratios were determined as well as stable carbon isotopic compositions of individual diacids using IRMS. Diacids were found to be the most abundant compound class followed by monoterpene-SOA tracers > isoprene-SOA tracers > sugar compounds > ketoacids > fatty alcohols > fatty acids > α-dicarbonyls > aromatic acids > n-alkanes. The concentrations of these compounds were higher in the coastal site and decreased in the open ocean. However, diacids stayed relatively high even in the remote ocean. Interestingly, contributions of oxalic acid to total aerosol carbon increased from the coast (2.3%) to the remote ocean (5.6%) during long-range atmospheric transport. Stable carbon isotopic composition of oxalic acid increased from the coast (-17.5‰) to open ocean (-12.4‰), suggesting that photochemical aging of organic aerosols occurred during the atmospheric transport over the ocean. Stable carbon isotope ratios of bulk aerosol carbon also increased from the coast near Boston to the open ocean near Bermuda.
NASA Astrophysics Data System (ADS)
Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.
2015-07-01
We present here a novel experimental setup able to measure the enthalpy of sublimation of a given compound by means of Piezoelectric Crystal Microbalances (PCM). This experiment was performed in the TG-Lab facility in IAPS-INAF, dedicated to the development of TGA sensors for space measurements, such as detection of organic and non-organic volatile species and refractory materials in planetary environments. In order to study physical-chemical processes concerning the Volatile Organic Compounds (VOC) present in atmospheric environments, the setup has been tested on Dicarboxylic acids. Acids with low molecular weight are among the components of organic fraction of particulate matter in the atmosphere, coming from different sources (biogenic and anthropogenic). Considering their relative abundance, it is useful to consider Dicarboxylic acid as "markers" to define the biogenic or anthropogenic origin of the aerosol, thus obtaining some information of the emission sources. In this work, a temperature controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC re-condensed onto the PCM quartz crystal allowing the determination of the deposition rate. From the measurements of deposition rates, it was possible to infer the enthalpy of sublimation of Adipic acid, i.e. Δ Hsub: 141.6 ± 0.8 kJ mol-1, Succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, Oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1 and Azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1 (weight average values). The results obtained are in very good agreement with literature within 10 % for the Adipic, Succinic and Oxalic acid.
Sanphui, Palash; Tothadi, Srinu; Ganguly, Somnath; Desiraju, Gautam R
2013-12-02
Sildenafil is a drug used to treat erectile dysfunction and pulmonary arterial hypertension. Because of poor aqueous solubility of the drug, the citrate salt, with improved solubility and pharmacokinetics, has been marketed. However, the citrate salt requires an hour to reach its peak plasma concentration. Thus, to improve solubility and bioavailability characteristics, cocrystals and salts of the drug have been prepared by treating aliphatic dicarboxylic acids with sildenafil; the N-methylated piperazine of the drug molecule interacts with the carboxyl group of the acid to form a heterosynthon. Salts are formed with oxalic and fumaric acid; salt monoanions are formed with succinic and glutaric acid. Sildenafil forms cocrystals with longer chain dicarboxylic acids such as adipic, pimelic, suberic, and sebacic acids. Auxiliary stabilization via C-H···O interactions is also present in these cocrystals and salts. Solubility experiments of sildenafil cocrystal/salts were carried out in 0.1N HCl aqueous medium and compared with the solubility of the citrate salt. The glutarate salt and pimelic acid cocrystal dissolve faster than the citrate salt in a two hour dissolution experiment. The glutarate salt exhibits improved solubility (3.2-fold) compared to the citrate salt in water. Solubilities of the binary salts follow an inverse correlation with their melting points, while the solubilities of the cocrystals follow solubilities of the coformer. Pharmacokinetic studies on rats showed that the glutarate salt exhibits doubled plasma AUC values in a single dose within an hour compared to the citrate salt. The high solubility of glutaric acid, in part originating from the strained conformation of the molecule and its high permeability, may be the reason for higher plasma levels of the drug.
NASA Astrophysics Data System (ADS)
Jung, Jinsang; Kawamura, Kimitaka
2011-09-01
In order to investigate water-soluble dicarboxylic acids and related compounds in the aerosol samples under the Asian continent outflow, total suspended particle (TSP) samples ( n = 32) were collected at the Gosan site in Jeju Island over 2-5 days integration during 23 March-1 June 2007 and 16-24 April 2008. The samples were analyzed for water-soluble dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls using a capillary gas chromatography technique. We found elevated concentrations of atmospheric citric acid (range: 20-320 ng m -3) in the TSP samples during mid- to late April of 2007 and 2008. To specify the sources of citric acid, dicarboxylic acids and related compounds were measured in the pollen sample collected at the Gosan site (Pollen_Gosan), authentic pollen samples from Japanese cedar ( Cryptomeria) (Pollen_cedar) and Japanese cypress ( Chamaecyparis obtusa) (Pollen_cypress), and tangerine fruit produced from Jeju Island. Citric acid (2790 ng in unit mg of pollen mass) was found as most abundant species in the Pollen_Gosan, followed by oxalic acid (2390 ng mg -1). Although citric acid was not detected in the Pollen_cedar and Pollen_cypress as major species, it was found as a dominant species in the tangerine juice while malic acid was detected as major species in the tangerine peel, followed by oxalic and citric acids. Since Japanese cedar trees are planted around tangerine farms to prevent strong winds from the Pacific Ocean, citric acid that may be directly emitted from tangerine is likely adsorbed on pollens emitted from Japanese cedar and then transported to the Gosan site. Much lower malic/citric acid ratios obtained under cloudy condition than clear condition suggest that malic acid may rapidly decompose to lower molecular weight compounds such as oxalic and malonic acids (
Production of platform chemical itaconic acid from pentose sugars
USDA-ARS?s Scientific Manuscript database
In recent years, itaconic acid (IA), an unsaturated five carbon dicarboxylic acid, has gained importance as a fully sustainable building block chemical (platform chemical) for a wide range of applications in the manufacturing of various synthetic resins, coatings, and polymers. It is currently produ...
Products of Dark CO2 Fixation in Pea Root Nodules Support Bacteroid Metabolism 1
Rosendahl, Lis; Vance, Carroll P.; Pedersen, Walther B.
1990-01-01
Products of the nodule cytosol in vivo dark [14C]CO2 fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv “Bodil”) nodules. The distribution of the metabolites of the dark CO2 fixation products was compared in effective (fix+) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix−) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The 14C incorporation from [14C]CO2 was about threefold greater in the wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the 14C label in the cytosol was found in organic acids in both symbioses. Malate comprised about half of the total cytosol organic acid content on a molar basis, and more than 70% of the cytosol radioactivity in the organic acid fraction was detected in malate in both symbioses. Most of the remaining 14C was contained in the amino acid fraction of the cytosol in both symbioses. More than 70% of the 14C label found in the amino acids of the cytosol was incorporated in aspartate, which on a molar basis comprised only about 1% of the total amino acid pool in the cytosol. The extensive 14C labeling of malate and aspartate from nodule dark [14C]CO2 fixation is consistent with the role of phosphoenolpyruvate carboxlase in nodule dark CO2 fixation. Bacteroids from the effective wild-type symbiosis accumulated sevenfold more 14C than did the dicarboxylic acid transport defective bacteroids. The bacteroids of the effective MNF 300 symbiosis contained the largest proportion of the incorporated 14C in the organic acids, whereas ineffective MNF 3080 bacteroids mainly contained 14C in the amino acid fraction. In both symbioses a larger proportion of the bacteroid 14C label was detected in malate and aspartate than their corresponding proportions of the organic acids and amino acids on a molar basis. The proportion of 14C label in succinate, 2-oxogultarate, citrate, and fumarate in the bacteroids of the wild type greatly exceeded that of the dicarboxylate uptake mutant. The results indicate a central role for nodule cytosol dark CO2 fixation in the supply of the bacteroids with dicarboxylic acids. PMID:16667422
NASA Astrophysics Data System (ADS)
Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.
2008-11-01
Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.
Method of increasing conversion of a fatty acid to its corresponding dicarboxylic acid
Craft, David L.; Wilson, C. Ron; Eirich, Dudley; Zhang, Yeyan
2004-09-14
A nucleic acid sequence including a CYP promoter operably linked to nucleic acid encoding a heterologous protein is provided to increase transcription of the nucleic acid. Expression vectors and host cells containing the nucleic acid sequence are also provided. The methods and compositions described herein are especially useful in the production of polycarboxylic acids by yeast cells.
Synthesis and anticandidal activity of some imidazopyridine derivatives.
Kaplancikli, Zafer Asim; Turan-Zitouni, Gülhan; Ozdemir, Ahmet; Revial, Gilbert
2008-12-01
New hydrazide derivatives of imidazo[1,2-a]pyridine have been synthesized and evaluated for anticandidal activity. The reaction of imidazo[1,2-a]pyridine-2-carboxylic acid hydrazides with various benzaldehydes gave N-(benzylidene)imidazo[ 1,2-a]pyridine-2-carboxylic acid hydrazide derivatives. Their anticandidal activities against Candida albicans and Candida glabrata (isolates obtained from Osmangazi University, Faculty of Medicine, Eskisehir, Turkey), Candida albicans (ATCC 90028), Candida utilis (NRLL Y-900), Candida tropicalis (NRLL Y-12968), Candida krusei (NRLL Y-7179), Candida zeylanoides (NRLL Y-1774), and Candida parapsilosis (NRLL Y-12696) were investigated.
NMR analysis and tacticity determination of poly(lactic acid) in C5D5N
USDA-ARS?s Scientific Manuscript database
In this work tacticity assignments of poly(lactic acid), (PLA), are reported for the NMR peaks from CH carbon and CH3 proton at the tetrad level in deuterated pyridine. The methyl protons are better resolved in pyridine due to solvent effects such as ring current shielding of the aromatic ring and ...
Cetyltrimethyl Ammonium Bromide as Corrosion Inhibitor for Zinc Used in Hydrochloric Acid
NASA Astrophysics Data System (ADS)
Sun, C. X.; Du, J. J.; Ma, Z. W.; Huang, C. S.; Wu, J. Y.
2018-05-01
A compound inhibitor composed of cetyltrimethyl ammonium bromide (CTAB) and bromohexadecyl pyridine was tested as corrosion inhibitor for zinc in hydrochloric acid. The results of static coupon test show that the compound inhibitor can effectively protect zinc from corrosion and the best concentration ratio is CTAB 50 mg/L and bromohexadecyl pyridine 200 mg/L. The polarization results show that the compound inhibitor will cause a negative shift of E0 of zinc in hydrochloric acid. The EIS (electrchemical impedance spectra) results show that the inhibitor leads to a bigger radius and has one time constant. SEM results show that the CTAB and bromohexadecyl pyridine form a uniform and compact membrane on the surface of zinc that can protect zinc from corroding effectively.
Ribel-Madsen, Amalie; Ribel-Madsen, Rasmus; Brøns, Charlotte; Newgard, Christopher B; Vaag, Allan A; Hellgren, Lars I
2016-10-01
We hypothesized that an increased, incomplete fatty acid beta-oxidation in mitochondria could be part of the metabolic events leading to insulin resistance and thereby an increased type 2 diabetes risk in low birth weight (LBW) compared with normal birth weight (NBW) individuals. Therefore, we measured fasting plasma levels of 45 acylcarnitine species in 18 LBW and 25 NBW men after an isocaloric control diet and a 5-day high-fat, high-calorie diet. We demonstrated that LBW men had higher C2 and C4-OH levels after the control diet compared with NBW men, indicating an increased fatty acid beta-oxidation relative to the tricarboxylic acid cycle flux. Also, they had higher C6-DC, C10-OH/C8-DC, and total hydroxyl-/dicarboxyl-acylcarnitine levels, which may suggest an increased fatty acid omega-oxidation in the liver. Furthermore, LBW and NBW men decreased several acylcarnitine levels in response to overfeeding, which is likely a result of an upregulation of fatty acid oxidation due to the dietary challenge. Moreover, C10-OH/C8-DC and total hydroxyl-/dicarboxyl-acylcarnitine levels tended to be negatively associated with the serum insulin level, and the total hydroxyl-/dicarboxyl-acylcarnitine level additionally tended to be negatively associated with the hepatic insulin resistance index. This indicates that an increased fatty acid omega-oxidation could be a compensatory mechanism to prevent an accumulation of lipid species that impair insulin signaling. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
pH-independent immediate release polymethacrylate formulations--an observational study.
Claeys, Bart; Vandeputte, Reinout; De Geest, Bruno G; Remon, Jean Paul; Vervaet, Chris
2016-01-01
Using Eudragit® E PO (EudrE) as a polymethacrylate carrier, the aim of the study was to develop a pH-independent dosage form containing ibuprofen (IBP) as an active compound via chemical modification of the polymer (i.e. quaternization of amine function) or via the addition of dicarboxylic acids (succinic, glutaric and adipic acid) to create a pH micro-environment during dissolution. Biconvex tablets (diameter: 10 mm; height: 5 mm) were produced via hot melt extrusion and injection molding. In vitro dissolution experiments revealed that a minimum of 25% of quaternization was sufficient to partially (up to pH 5) eliminate the pH-dependent effect of the EudrE/IBP formulation. The addition of dicarboxylic acids did not alter IBP release in a pH 1 and 3 medium as the dimethyl amino groups of EudrE are already fully protonated, while in a pH 5 solvent IBP release was significantly improved (cf. from 0% to 92% release after 1 h dissolution experiments upon the addition of 20 wt.% succinic acid). Hence, both approaches resulted in a pH-independent (up to pH 5) immediate release formulation. However, the presence of a positively charged polymer induced stability issues (recrystallization of API) and the formulations containing dicarboxylic acids were classified as mechanically unstable. Hence, further research is needed to obtain a pH-independent immediate release formulation while using EudrE as a polmethacrylate carrier.
Production of itaconic acid from pentose sugars by Aspergillus terreus
USDA-ARS?s Scientific Manuscript database
Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially with glucose by fermentation with Aspergillus terreus (A. terreus). However, lignocellulosic biomass has the potential to serve as a low cost source of sugars ...
NASA Astrophysics Data System (ADS)
Fang, J.
2015-12-01
Marine sediments cover more than two-thirds of the Earth's surface and represent a major part of the deep biosphere. Microbial cells and microbial activity appear to be widespread in these sediments. Recently, we reported the isolation of gram-positive anaerobic spore-forming piezophilic bacteria and detection of bacterial endospores in marine subsurface sediment from the Shimokita coalbed, Japan. However, the modern molecular microbiological methods (e.g., DNA-based microbial detection techniques) cannot detect bacterial endospore, because endospores are impermeable and are not stained by fluorescence DNA dyes or by ribosomal RNA staining techniques such as catalysed reporter deposition fluorescence in situ hybridization. Thus, the total microbial cell abundance in the deep biosphere may has been globally underestimated. This emphasizes the need for a new cultivation independent approach for the quantification of bacterial endospores in the deep subsurface. Dipicolinic acid (DPA, pyridine-2,6-dicarboxylic acid) is a universal and specific component of bacterial endospores, representing 5-15wt% of the dry spore, and therefore is a useful indicator and quantifier of bacterial endospores and permits to estimate total spore numbers in the subsurface biosphere. We developed a sensitive analytical method to quantify DPA content in environmental samples using gas chromatography-mass spectrometry. The method is sensitive and more convenient in use than other traditional methods. We applied this method to analyzing sediment samples from the South China Sea (obtained from IODP Exp. 349) to determine the abundance of spore-forming bacteria in the deep marine subsurface sediment. Our results suggest that gram-positive, endospore-forming bacteria may be the "unseen majority" in the deep biosphere.
Emerging biotechnologies for production of itaconic acid and its applications as a platform chemical
USDA-ARS?s Scientific Manuscript database
Recently, itaconic acid (IA), an unsaturated C5-dicarboxylic acid, has attracted much attention as a biobased building block chemical. It is produced industrially (> 80 g L**-1) from glucose by fermentation with Aspergillus terreus. The titer is low compared with citric acid production (> 200 g L**-...
The Behavior of the Ru-bda Water Oxidation Catalysts at Low Oxidation States.
Matheu, Roc; Ghaderian, Abolfazl; Francas, Laia; Chernev, Petko; Ertem, Mehmed; Benet-Buchholz, Jordi; Batista, Victor; Haumann, Michael; Gimbert-Suriñach, Carolina; Sala, Xavier; Llobet, Antoni
2018-06-13
The Ru complex [RuII(bda-κ-N2O2)(N-NH2)2], 1, (bda2- = (2,2'-bipyridine)-6,6'-dicarboxylate; N-NH2 = 4-(pyridin-4-yl)aniline) is used as a synthetic intermediate to prepare Ru-bda complexes that contain the NO+, acetonitrile (MeCN) or H2O ligands at oxidation states II and III. Complex 1 reacts with excess NO+ to form a Ru complex where the aryl amine ligands N-NH2 in 1 are transformed into diazonium salts (N-N2+ = 4-(pyridin-4-yl)benzenediazonium)) together with the formation of a new Ru-NO group at the equatorial zone, to generate [RuII(bda-κ-N2O)(NO)(N-N2)2]3+, 23+. Similarly, complex 1 can also react with a coordinating solvent, such as MeCN, at room temperature leading to complex [RuII(bda-κ-N2O)(MeCN)(N-NH2)2], 3. Finally in acidic aqueous solutions solvent water coordinates the Ru center forming {[RuII(bda-κ-(NO)3)(H2O)(N-NH3)2](H2O)n}2+, 42+, that is strongly hydrogen bonded with additional water molecules at the second coordination sphere. We have additionally characterized the one electron oxidized complex {[RuIII(bda-κ-(NO)3.5)(H2O)(N-NH3)2](H2O)n}3+, 53+. The coordination mode of the complexes has been studied both in the solid state and in solution through single-crystal XRD, X-ray absorption spectroscopy, variable-temperature NMR and DFT calculations. While the κ-N2O is the main coordination mode for 23+ and 3, an equilibrium that involves isomers with κ-N2O and κ-NO2 coordination modes and neighboring hydrogen bonded water molecules is observed for 42+ and 53+. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mannose and galactose as substrates for production of itaconic acid by Aspergillus terreus
USDA-ARS?s Scientific Manuscript database
Itaconic acid (IA), an unsaturated 5-carbon dicarboxylic acid, is a building block platform chemical that is currently produced industrially from glucose by fermentation with Aspergillus terreus. Softwood has the potential to serve as low cost source of sugars for its production. Effective utilizati...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bera, Asim K.; Atanasova, Vesna; Gamage, Swarna
2010-06-01
The structure of EhpF from P. agglomerans has been solved alone and in complex with phenazine-1,6-dicarboxylate. Apo EhpF was solved and refined in two different space groups at 1.95 and 2.3 Å resolution and the EhpF–phenazine-1,6-dicarboxylate complex structure was determined at 2.8 Å resolution. The structure of EhpF, a 41 kDa protein that functions in the biosynthetic pathway leading to the broad-spectrum antimicrobial compound d-alanylgriseoluteic acid (AGA), is reported. A cluster of approximately 16 genes, including ehpF, located on a 200 kbp plasmid native to certain strains of Pantoea agglomerans encodes the proteins that are required for the conversion ofmore » chorismic acid to AGA. Phenazine-1,6-dicarboxylate has been identified as an intermediate in AGA biosynthesis and deletion of ehpF results in accumulation of this compound in vivo. The crystallographic data presented here reveal that EhpF is an atypical member of the acyl-CoA synthase or ANL superfamily of adenylating enzymes. These enzymes typically catalyze two-step reactions involving adenylation of a carboxylate substrate followed by transfer of the substrate from AMP to coenzyme A or another phosphopantetheine. EhpF is distinguished by the absence of the C-terminal domain that is characteristic of enzymes from this family and is involved in phosphopantetheine binding and in the second half of the canonical two-step reaction that is typically observed. Based on the structure of EhpF and a bioinformatic analysis, it is proposed that EhpF and EhpG convert phenazine-1,6-dicarboxylate to 6-formylphenazine-1-carboxylate via an adenylyl intermediate.« less
Scherrer, Dominik; Schilling, Mauro; Luber, Sandra; Fox, Thomas; Spingler, Bernhard; Alberto, Roger; Richmond, Craig J
2016-12-06
Two ruthenium complexes containing the tetradentate ligand [1,1'-biisoquinoline]-3,3'-dicarboxylic acid, and 4-picoline or 6-bromoisoquinoline as axial ligands have been prepared. The complexes have been fully characterised and initial studies on their potential to function as molecular water oxidation catalysts have been performed. Both complexes catalyse the oxidation of water in acidic media with Ce IV as a stoichiometric chemical oxidant, although turnover numbers and turnover frequencies are modest when compared with the closely related Ru-bda and Ru-pda analogues. Barriers for the water nucleophilic attack and intermolecular coupling pathways were obtained from density functional theory calculations and the crucial influence of the ligand framework in determining the most favourable reaction pathway was elucidated from a combined analysis of the theoretical and experimental results.
Gotoh, Kazuma; Ishida, Hiroyuki
2017-01-01
The crystal structures of two hydrogen-bonded compounds, namely 4-methoxybenzoic acid–1,3-bis(pyridin-4-yl)propane (2/1), C13H14.59N2·C8H7.67O3·C8H7.74O3, (I), and biphenyl-4,4′-dicarboxylic acid–4-methoxypyridine (1/2), C14H9.43O4·C6H7.32NO·C6H7.25NO, (II), have been determined at 93 K. In (I), the asymmetric unit consists of two crystallographically independent 4-methoxybenzoic acid molecules and one 1,3-bis(pyridin-4-yl)propane molecule. The asymmetric unit of (II) comprises one biphenyl-4,4′-dicarboxylic acid molecule and two independent 4-methoxypyridine molecules. In each crystal, the acid and base molecules are linked by short O—H⋯N/N—H⋯O hydrogen bonds, in which H atoms are disordered over the acid O-atom and base N-atom sites, forming a linear hydrogen-bonded 2:1 or 1:2 unit of the acid and the base. The 2:1 units of (I) are linked via C—H⋯π, π–π and C—H⋯O interactions into a tape structure along [101], while the 1:2 units of (II) form a double-chain structure along [-101] through π–π and C—H⋯O interactions. PMID:28932435
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campioli, Enrico; Department of Medicine, McGill University, Montréal, Québec; Duong, Tam B.
Plastics are generally mixed with additives like plasticizers to enhance their flexibility, pliability, and elasticity proprieties. Plasticizers are easily released into the environment and are absorbed mainly through ingestion, dermal contact, and inhalation. One of the main classes of plasticizers, phthalates, has been associated with endocrine and reproductive diseases. In 2002, 1,2-cyclohexane dicarboxylic acid diisononyl ester (DINCH) was introduced in the market for use in plastic materials and articles intended to come into contact with food, and it received final approval from the European Food Safety Authority in 2006. At present, there is limited knowledge about the safety and potentialmore » metabolic and endocrine-disrupting properties of DINCH and its metabolites. The purpose of this study was to evaluate the biological effects of DINCH and its active metabolites, cyclohexane-1,2-dicarboxylic acid (CHDA) and cyclohexane-1,2-dicarboxylic acid mono isononyl ester (MINCH), on rat primary stromal vascular fraction (SVF) of adipose tissue. DINCH and its metabolite, CHDA, were not able to directly affect SVF differentiation. However, exposure of SVF to 50 μM and 100 μM concentrations of MINCH affected the expression of Cebpa and Fabp4, thus inducing SVF preadipocytes to accumulate lipids and fully differentiate into mature adipocytes. The effect of MINCH was blocked by the specific peroxisome proliferator-activated receptor (PPAR)-α antagonist, GW6471. Taken together, these results suggest that MINCH is a potent PPAR-α agonist and a metabolic disruptor, capable of inducing SVF preadipocyte differentiation, that may interfere with the endocrine system in mammals. - Highlights: • DINCH and CHDA did not affect the adipogenesis of the SVF. • MINCH affected the adipogenesis of the SVF. • MINCH effect was blocked by the specific PPAR-α antagonist GW6471. • MINCH exerted a similar effect as MEHP on SVF adipogenesis. • DINCH/MINCH are potential metabolic disruptors.« less
Jae-Won Lee; Thomas W. Jeffries
2011-01-01
Dicarboxylic organic acids have properties that differ from those of sulfuric acid during hydrolysis of lignocellulose. To investigate the effects of different acid catalysts on the hydrolysis and degradation of biomass compounds over a range of thermochemical pretreatments, maleic, oxalic and sulfuric acids were each used at the same combined severity factor (CSF)...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mínguez-Alarcón, Lidia, E-mail: lminguez@hsph.harv
Di(isononyl)cyclohexane-1,2-dicarboxylate (DINCH), a non-phthalate plasticizer, was introduced commercially in 2002 as an alternative to ortho-phthalate esters because of its favorable toxicological profile. However, the potential health effects from DINCH exposure remain largely unknown. We explored the associations between urinary concentrations of metabolites of DINCH on markers of ovarian response among women undergoing in vitro fertilization (IVF) treatments. Between 2011 and 2015, 113 women enrolled a prospective cohort study at the Massachusetts General Hospital Fertility Center and provided up to two urine samples prior to oocyte retrieval. The urinary concentrations of two DINCH metabolites, cyclohexane-1,2-dicarboxylic acid monohydroxy isononyl ester (MHiNCH) andmore » cyclohexane-1,2-dicarboxylic acid monocarboxyisooctyl ester (MCOCH), were quantified by isotope dilution tandem mass spectrometry. We used generalized linear mixed models to evaluate the association between urinary metabolite concentrations and markers of ovarian response, accounting for multiple IVF cycles per woman via random intercepts. On average, women with detectable urinary MHiNCH concentrations, as compared to those below LOD, had a lower estradiol levels (−325 pmol/l, p=0.09) and number of retrieved oocytes (−1.8, p=0.08), with a stronger association among older women. However, urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness. In conclusion, we found suggestive negative associations between urinary MHiNCH concentrations and peak estradiol levels and number of total oocyte yields. This is the first study evaluating the effect of DINCH exposure on human reproductive health and raises the need for further experimental and epidemiological studies to better understand the potential effects of this chemical on health. - Highlights: • Women with detectable urinary MHiNCH concentrations had a lower estradiol levels and number of retrieved oocytes. • The negative association between urinary MHiNCH concentrations and total oocyte yield was stronger in older women. • Urinary MHiNCH concentrations were unrelated to mature oocyte yield and endometrial wall thickness.« less
Prabhu, Subbaiah Muthu; Meenakshi, Sankaran
2015-04-20
The present investigation explains the fluoride removal from aqueous solution using alginate-zirconium complex prepared with respective dicarboxylic acids like oxalic acid (Ox), malonic acid (MA) and succinic acid (SA) as a medium. The complexes viz., alginate-oxalic acid-zirconium (Alg-Ox-Zr), alginate-malonic acid-zirconium (Alg-MA-Zr) and alginate-succinic acid-zirconium (Alg-SA-Zr) were synthesized and studied for fluoride removal. The synthesized complexes were characterized by FTIR, XRD, SEM with EDAX and mapping images. The effects of various operating parameters were optimized. The result showed that the maximum removal of fluoride 9653mgF(-)/kg was achieved by Alg-Ox-Zr complex at acidic pH in an ambient atmospheric condition. Equilibrium data of Alg-Ox-Zr complex was fitted well with Freundlich isotherm. The calculated values of thermodynamic parameters indicated that the fluoride adsorption is spontaneous and endothermic in nature. The mechanism of fluoride removal behind Alg-Ox-Zr complex has been proposed in detail. The suitability of the Alg-Ox-Zr complex has been tested with the field sample collected in a nearby fluoride endemic area. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sutter's Mill dicarboxylic acids as possible tracers of parent-body alteration processes
NASA Astrophysics Data System (ADS)
Pizzarello, Sandra; Garvie, Laurence A. J.
2014-11-01
Dicarboxylic acids were searched for in three Sutter's Mill (SM) fragments (SM2 collected prerain, SM12, and SM41) and found to occur almost exclusively as linear species of 3- to 14-carbon long. Between these, concentrations were low, with measured quantities typically less than 10 nmole g-1 of meteorite and a maximum of 6.8 nmole g-1 of meteorite for suberic acid in SM12. The SM acids' molecular distribution is consistent with a nonbiological origin and differs from those of CMs, such as Murchison or Murray, and of some stones of the C2-ungrouped Tagish Lake meteorite, where they are abundant and varied. Powder X-ray diffraction of SM12 and SM41 show them to be dominated by clays/amorphous material, with lesser amounts of Fe-sulfides, magnetite, and calcite. Thermal gravimetric (TG) analysis shows mass losses up to 1000 °C of 11.4% (SM12) and 9.4% (SM41). These losses are low compared with other clay-rich carbonaceous chondrites, such as Murchison (14.5%) and Orgueil (21.1%). The TG data are indicative of partially dehydrated clays, in accordance with published work on SM2, for which mineralogical studies suggest asteroidal heating to around 500 °C. In view of these compositional traits and mineralogical features, it is suggested that the dicarboxylic acids observed in the SM fragments we analyzed likely represent a combination of molecular species original to the meteorite as well as secondary products formed during parent-body alteration processes, such as asteroidal heating.
USDA-ARS?s Scientific Manuscript database
One of the main components in starch, amylose is an essentially linear polymer composed of glucose connected through alpha-1,4-bonds. Amylose is well known to form helical inclusion complexes with various types of ligands such as iodine, medium and long chain fatty acids, alcohols, lactones, and fl...
Preferential deprotonation and conformational stability of dicarboxylic acids: A packing effect
NASA Astrophysics Data System (ADS)
Barooah, Nilotpal; Singh, W. Marjit; Baruah, Jubaraj B.
2008-03-01
Crystal structures of a series of salts of (6-carboxymethyl-1,3,5,7-tetraoxo-3,5,6,7-tetrahydro-1 H-pyrrolo[3,4- f]isoindol-2-yl)-acetic acid ( 1) and 2-carboxymethyl-1,3-dioxo-2,3-dihydro-1 H-isoinodole-5-carboxylic acid ( 2) with different polynuclear nitrogen containing heterocyclic compounds, namely, quinoline, 1,10-phenanthroline and 8-hydroxyquinoline are determined. In the case of salt of 1 with quinolinium and 1,10-phenanthrolinium cations syn disposition between the carboxylate anion and carboxylic acid groups is observed; whereas in the case of the 8-hydroxyquinolinium salt of 1, it is the anti disposition. It is also found that the solid state structure of 1,10-phenanthrolinium salt of 2 has deprotonation at the aromatic end, whereas in 8-hydroxy-quinolinium salt of 2 is formed by deprotonation of carboxylic acid group on the aliphatic side. The dicarboxylic acid 2 forms 1:2 co-crystals with quinoline. From crystallographic study it is shown that the weak interactions become prominent in stabilising the observed conformers and also in stabilising specific deprotonated species.
Gill, Iqbal; Patel, Ramesh
2006-02-01
An efficient biocatalytic method has been developed for the conversion of (5S)-4,5-dihydro-1H-pyrrole-1,5-dicarboxylic acid, 1-(1,1-dimethylethyl)-5-ethyl ester (1) into the corresponding amide (5S)-5-aminocarbonyl-4,5-dihydro-1H-pyrrole-1-carboxylic acid, 1-(1,1-dimethylethyl)ester (2), which is a critical intermediate in the synthesis of the dipeptidyl peptidase IV (DPP4) inhibitor Saxagliptin (3). Candida antartica lipase B mediates ammonolysis of the ester with ammonium carbamate as ammonia donor to yield up to 71% of the amide. The inclusion of Ascarite and calcium chloride as adsorbents for carbon dioxide and ethanol byproducts, respectively, increases the yield to 98%, thereby offering an efficient and practical alternative to chemical routes which yield 57-64%.
Bohlmann-Rahtz cyclodehydration of aminodienones to pyridines using N-iodosuccinimide.
Bagley, Mark C; Glover, Christian
2010-04-30
Cyclodehydration of Bohlmann-Rahtz aminodienone intermediates using N-iodosuccinimide as a Lewis acid proceeds at low temperature under very mild conditions to give the corresponding 2,3,6-trisubstituted pyridines in high yield and with total regiocontrol.
Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids.
Remenar, Julius F; Morissette, Sherry L; Peterson, Matthew L; Moulton, Brian; MacPhee, J Michael; Guzmán, Héctor R; Almarsson, Orn
2003-07-16
Cocrystals of the poorly soluble antifungal drug cis-itraconazole (1) with 1,4-dicarboxylic acids have been prepared. The crystal structure of the succinic acid cocrystal with 1 was determined to be a trimer by single-crystal X-ray. The trimer is comprised of two molecules of 1 oriented in antiparallel fashion to form a pocket with a triazole at either end. The extended succinic acid molecule fills the pocket, bridging the triazole groups through hydrogen-bonding interactions rather than interacting with the more basic piperazine nitrogens. The solubility and dissolution rate of some of the cocrystals are approximately the same as those of the amorphous drug in the commercial formulation and are much higher than those for the crystalline free base. The results suggest that cocrystals of drug molecules have the possibility of achieving the higher oral bioavailability common for amorphous forms of water-insoluble drugs while maintaining the long-term chemical and physical stability that crystal forms provide.
Fishman, William H.; Ghosh, Nimai K.
1967-01-01
1. Studies on the inactivation of rat intestinal alkaline phosphatase by several metal-binding agents, namely EDTA, 8-hydroxyquinoline, pyridine-2,6-dicarboxylic acid, αα′-bipyridyl, o-phenanthroline and sodium cyanide, indicated the functional role of a metal, probably zinc, in the catalysis. The metal ligands lowered stereospecific uncompetitive inhibition of the enzyme by l-phenylalanine by an extent that paralleled the decline in enzyme activity. 2. The thiol reagents p-hydroxymercuribenzoate, iodoacetamide and iodine inactivated rat intestinal phosphatase. The enzyme could be protected from inactivation by either cysteine or substrate. The l-phenylalanine inhibition remained unchanged only in the presence of moderately inactivating concentrations of the thiol reagents. 3. Inactivation of the enzyme by the amino-group-blocking reagent, O-methylisourea, provided ample evidence for the participation in the catalysis of the ∈-amino group of lysine. At the same time, l-phenylalanine inhibition remained unaltered even when the enzyme was strongly inactivated. This ∈-amino-group-blocked enzyme exhibited no change in migration in starch gel, in contrast with enzyme treated with acetic anhydride, formaldehyde or succinic anhydride. The Michaelis constant of the enzyme was enhanced by such modifications, but the optimum pH remained the same. 4. d-Phenylalanine acted as a competitive or `co-operative' activator for intestinal alkaline phosphatase after it had been modified by acetylation. PMID:16742542
NASA Astrophysics Data System (ADS)
Liu, Lian-Dong; Liu, Shu-Lian; Liu, Zhi-Xian; Hou, Gui-Ge
2016-05-01
Three novel pharmaceutical co-crystals, (A)·(gallic acid) (1), (B)·(gallic acid) (2), and (C)·(gallic acid) (3) were generated based on 2,6-bis((pyridin-4-yl)methylene)cyclohexanone (A), N-methyl-3,5-bis((pyridin-3-yl)methylene)-4-piperidone (B), N-methyl-3,5-bis((pyridin-4-yl)methylene)-4-piperidone (C) with gallic acid, respectively. They are characterized by elemental analysis, FTIR spectroscopy, 1H NMR and single-crystal X-ray diffraction. Structural analysis reveals that two pharmaceutical ingredients link each other into H-bonding-driven 3D network in 1, 2, or 2D plane in 3. In addition, their antitumor activities against human neoplastic cell lines A549, SGC-7901, MCF-7, OVCA-433, HePG2 and cytotoxicity for HUVEC cell lines by CCK-8 method were evaluated primarily. Compared with gallic acid and free A, B and C, their antitumor activities have improved distinctly, while cytotoxicities have reduced markedly, especially for co-crystal 1. This is mainly because of the synergistic effect between pharmaceutical ingredients A, B, and C and gallic acid.
Fluoranthene metabolism and associated proteins in Mycobacterium sp. JS14.
Lee, Sung-Eun; Seo, Jong-Su; Keum, Young-Soo; Lee, Kwang-Jun; Li, Qing X
2007-06-01
Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) commonly present in PAH-contaminated soils. We studied fluoranthene catabolism and associated proteins in Mycobacterium sp. JS14, a bacterium isolated from a PAH-contaminated soil in Hilo (HI, USA). Fluoranthene degrades in at least three separated pathways via 1-indanone, 2',3'-dihydroxybiphenyl-2,3,-dicarboxylic acid, and naphthalene-1,8-dicarboxylic acid. Part of the diverse catabolism is converged into phthalate catabolism. An increased expression of 25 proteins related to fluoranthene catabolism is found with 1-D PAGE or 2-DE and nano-LC-MS/MS. Detection of fluoranthene catabolism associated proteins coincides well with its multiple degradation pathways that are mapped via metabolites identified. Among the up-regulated proteins, PAH ring-hydroxylating dioxygenase alpha-subunit and beta-subunit and 2,3-dihydroxybiphenyl 1,2-dioxygenase are notably induced. The up-regulation of trans-2-carboxybenzalpyruvate hydratase suggests that some of fluoranthene metabolites may be further degraded through aromatic dicarboxylic acid pathways. Catalase and superoxide dismutase were up-regulated to control unexpected oxidative stress during the fluoranthene catabolism. The up-regulation of chorismate synthase and nicotine-nucleotide phosphorylase may be necessary for sustaining shikimate pathway and pyrimidine biosynthesis, respectively. A fluoranthene degradation pathway for Mycobacterium sp. JS14 was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of fluoranthene degradation.
NASA Astrophysics Data System (ADS)
Nural, Yahya; Gemili, Muge; Seferoglu, Nurgul; Sahin, Ertan; Ulger, Mahmut; Sari, Hayati
2018-05-01
A novel bicyclic thiohydantoin fused to pyrrolidine compound, methyl 2-(4-chlorophenyl)-7a-((4-chlorophenyl)carbamothioyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate, was synthesized by the cyclization reaction of dimethyl 5,5-diphenylpyrrolidine-2,4-dicarboxylate and 4-chlorophenyl isothiocyanate in the presence of 4-(dimethylamino)pyridine to form methyl 2-(4-chlorophenyl)-1-oxo-5,5-diphenyl-3-thioxo-hexahydro-1H-pyrrolo[1,2-e]imidazole-6-carboxylate with concomitant addition reaction of the 4-chlorophenyl isothiocyanate in 79% yield. The structural characterization was performed by NMR, FT-IR, MS and HRMS techniques, and the stereochemistry of the compound was determined by single crystal X-ray diffraction study. In addition, the molecular structure and 1H and 13C NMR chemical shifts of the compound were obtained with the density functional theory and Hartree-Fock calculations. Acid dissociation constants of the compound were determined using potentiometric titration method in 25% (v/v) dimethyl sulfoxide-water hydroorganic solvent at 25 ± 0.1 °C, at an ionic background of 0.1 mol/L of NaCl using the HYPERQUAD computer program. Four acid dissociation constants were obtained for the compound, and we suggest that these acid dissociation constants are related to the NH, for two groups of enthiols and enol groups. Antimicrobial activity study was performed against S. aureus, B. subtilis, A. hydrophila, E. coli and A. baumannii as bacterial standard strains, and against M. tuberculosis H37Rv as mycobacterial strain. The compound exhibited antibacterial activity in the range of 31.25-62.5 μg/mL, and antimycobacterial activity with a MIC value of 40 μg/mL against the indicated strains.
Palmer-Brown, William; Dunne, Brian; Ortin, Yannick; Fox, Mark A; Sandford, Graham; Murphy, Cormac D
2017-09-01
1. Fluorine plays a key role in the design of new drugs and recent FDA approvals included two fluorinated drugs, tedizolid phosphate and vorapaxar, both of which contain the fluorophenyl pyridyl moiety. 2. To investigate the likely phase-I (oxidative) metabolic fate of this group, various fluorinated phenyl pyridine carboxylic acids were incubated with the fungus Cunninghamella elegans, which is an established model of mammalian drug metabolism. 3. 19 F NMR spectroscopy established the degree of biotransformation, which varied depending on the position of fluorine substitution, and gas chromatography-mass spectrometry (GC-MS) identified alcohols and hydroxylated carboxylic acids as metabolites. The hydroxylated metabolites were further structurally characterised by nuclear magnetic resonance spectroscopy (NMR), which demonstrated that hydroxylation occurred on the 4' position; fluorine in that position blocked the hydroxylation. 4. The fluorophenyl pyridine carboxylic acids were not biotransformed by rat liver microsomes and this was a consequence of inhibitory action, and thus, the fungal model was crucial in obtaining metabolites to establish the mechanism of catabolism.
Examining Model Atmospheric Particles Inside and Out
NASA Astrophysics Data System (ADS)
Wingen, L. M.; Zhao, Y.; Fairhurst, M. C.; Perraud, V. M.; Ezell, M. J.; Finlayson-Pitts, B. J.
2017-12-01
Atmospheric particles scatter incoming solar radiation and act as cloud condensation nuclei (CCN), thereby directly and indirectly affecting the earth's radiative balance and reducing visibility. These atmospheric particles may not be uniform in composition. Differences in the composition of a particle's outer surface from its core can arise during particle growth, (photo)chemical aging, and exchange of species with the gas phase. The nature of the surface on a molecular level is expected to impact growth mechanisms as well as their ability to act as CCN. Model laboratory particle systems are explored using direct analysis in real time-mass spectrometry (DART-MS), which is sensitive to surface composition, and contrasted with average composition measurements using high resolution, time-of-flight aerosol mass spectrometry (HR-ToF-AMS). Results include studies of the heterogeneous reactions of amines with solid dicarboxylic acid particles, which are shown to generate aminium dicarboxylate salts at the particle surface, leaving an unreacted core. Combination of both mass spectrometric techniques reveals a trend in reactivity of C3-C7 dicarboxylic acids with amines and allows calculation of the DART probe depth into the particles. The results of studies on additional model systems that are currently being explored will also be reported.
Chao Jia; Liheng Chen; Ziqiang Shao; Umesh P. Agarwal; Liangbing Hu; J. Y. Zhu
2017-01-01
We fabricated cellulose nanocrystals (CNCs) and cellulose nanofibrils (CNFs) from different cellulose materials (bleached eucalyptus pulp (BEP), spruce dissolving pulp (SDP) and cotton based qualitative filter paper (QFP) using concentrated oxalic acid hydrolysis and subsequent mechanical fibrillation (for CNFs). The process was green as acid can easily be recovered,...
Wormlike micelle formation by acylglutamic acid with alkylamines.
Sakai, Kenichi; Nomura, Kazuyuki; Shrestha, Rekha Goswami; Endo, Takeshi; Sakamoto, Kazutami; Sakai, Hideki; Abe, Masahiko
2012-12-21
Rheological properties of alkyl dicarboxylic acid-alkylamine complex systems have been characterized. The complex materials employed in this study consist of an amino acid-based surfactant (dodecanoylglutamic acid, C12Glu) and a tertiary alkylamine (dodecyldimethylamine, C12DMA) or a secondary alkylamine (dodecylmethylamine, C12MA). (1)H NMR and mass spectroscopic data have suggested that C12Glu forms a stoichiometric 1:1 complex with C12DMA and C12MA. Rheological measurements have suggested that the complex systems yield viscoelastic wormlike micellar solutions and the rheological behavior is strongly dependent on the aqueous solution pH. This pH-dependent behavior results from the structural transformation of the wormlike micelles to occur in the narrow pH range 5.5-6.2 (in the case of C12Glu-C12DMA system); i.e., positive curved aggregates such as spherical or rodlike micelles tend to be formed at high pH values. Our current study offers a unique way to obtain viscoelastic wormlike micellar solutions by means of alkyl dicarboxylic acid-alkylamine complex as gemini-like amphiphiles.
NASA Astrophysics Data System (ADS)
Al-Terkawi, Abdal-Azim; Scholz, Gudrun; Emmerling, Franziska; Kemnitz, Erhard
2018-05-01
A series of new Ba-based coordination polymers (CPs) were mechanochemically synthesized by milling Ba-hydroxide samples with perfluorinated and fluorine-free benzene-dicarboxylic acids, including tetrafluoroisophthalic acid (H2mBDC-F4), tetrafluorophthalic acid (H2oBDC-F4), isophthalic acid (H2mBDC) and phthalic acid (H2oBDC). The new fluorinated CPs: [Ba(mBDC-F4)·0.5H2O] (1) and [Ba(oBDC-F4)·1.5H2O] (2) are compared to their nonfluorinated counterparts: [Ba(mBDC)·2.5H2O] (3), and [Ba(oBDC)·1H2O] (4). These materials are thoroughly characterized using powder X-ray diffraction. The products obtained by milling are all hydrated but vary in their water contents. Compositions and local structures are investigated by elemental analysis, thermal analysis, MAS NMR and attenuated total reflection-infrared spectroscopy. These materials exhibit high thermal stabilities but small surface areas that remain unchanged even after thermal treatments.
Costigan, M G; Gilchrist, T L; Lindup, W E
1996-06-01
The furan dicarboxylic acid, 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (5-propyl FPA) accumulates in the plasma of patients with chronic renal failure and is a major contributor to the drug binding defect of uraemic plasma. This acid has also been implicated in several other aspects of the uraemic syndrome: anaemia, irregularities of thyroid function, neurological symptoms and inhibition of active tubular secretion. The acid is not commercially available and its synthesis, starting with Meldrum's acid and methyl succinyl chloride, is described. The pKa values were measured by titration and values of 3.2 and 3.6 respectively were assigned to the carboxylic acid groups attached directly to the ring at position 3 and at position 2 (on the side-chain). The partition coefficient (log P) between hydrochloric acid and octanol was 1.2 and the distribution coefficient (log D; octanol-phosphate buffer pH 7.4) was -0.59. The pKa values and the degree of hydrophobic character of 5-propyl FPA are consistent with those of other protein-bound acids which undergo active tubular secretion by the kidney and this substance may serve as an endogenous marker for the effects of drugs and disease on this process.
Liheng Chen; Junyong Zhu; Carlos Baez; Peter Kitin; Thomas Elder
2016-01-01
Here we report the production of highly thermal stable and functional cellulose nanocrystals (CNC) and nanofibrils (CNF) by hydrolysis using concentrated organic acids. Due to their low water solubility, these solid organic acids can be easily recovered after hydrolysis reactions through crystallization at a lower or ambient temperature. When dicarboxylic acids were...
NASA Astrophysics Data System (ADS)
Meskers, Stefan C. J.; Dekkers, Harry P. J. M.
1999-08-01
Enantioselectivity in the dynamic quenching of the luminescence of the Δ and Λ enantiomers of racemic Tb(III)(pyridine-2,6-dicarboxylate=DPA) 33- and Eu(DPA) 33- by a series of corrinoids is demonstrated by time resolved luminescence and circular-polarization-of-luminescence (CPL) spectroscopy. Studied are cyanocobalamin (vitamin B 12), aquacobalamin (B 12a) and its conjugated base hydroxocobalamin (HOCbl), dicyanocobinamide ((CN) 2Cbi) and the heptamethyl ester of dicyanocobyrinic acid ((CN) 2Cby(OMe) 7). For this set of quenchers (Q), the diastereomeric quenching rate constants ( kqΔ and kqΛ) are reported together with the degree of enantioselectivity Eq=( kqΔ- kqΛ)/( kqΔ+ kqΛ). In the systems with Tb, values of the average rate constant kqavg(=( kqΔ+ kqΛ)/2) are 1.0, 2.9 and 0.53 10 8 M -1 s -1 for CNCbl, (CN) 2Cbi, (CN) 2Cby(OMe) 7 with Eq=-0.24, -0.20, +0.01 (standard error of Eq is 0.01). The quenching by B 12a is strongly dependent on pH and ionic strength ( I); when I=12 mM we find kqavg=5.3, Eq=-0.23 at pH 6.7 and kqavg=1.3, Eq=-0.27 at pH 8.9. Corresponding rates for Eu are 0.41, 27, 3.4 10 7 M -1 s -1 and for B 12a, 7.3 and 1.2 10 7 M -1 s -1, corresponding values for Eq -0.27, -0.29, +0.02, -0.21 and -0.29. The quenching reaction is modeled as a pre-equilibrium involving the formation of an encounter complex (association constant K) followed by the actual electronic energy transfer step (rate ket). By relating the quenching data with molecular structure it is argued that the binding in the encounter complex involves two hydrogen bonds between the uncoordinated carboxylate oxygen atom of two DPA ligands of Ln(DPA) 33- and two amide groups of the corrinoid, presumably involving the a and g, the a and b, or the b and g side chains. For some corrinoid/Ln(DPA) 33- complexes the association constants and enantioselectivities in the ground state are known (Spectrochimica Acta 55A (1999) 1837-1855), which allows for an estimate of the average rate of energy transfer, ketavg (i.e. ( ketΔ+ ketΛ)/2). The enantioselectivity in the quenching reaction is lower than in the ground state association which is interpreted in terms of different values of ket in the two diastereomeric Ln-corrinoid complexes; for both Tb and Eu we find ketΔ/ ketΛ˜0.3 with CNCbl, B 12a at pH 6.7 and (CN) 2Cbi. These data imply that the chiral discrimination in the energy transfer is considerable and counteracts that in the binding but does not dominate it.
Characterization of oryza sativa acyl activating enzyme3 (OsAAE3)
USDA-ARS?s Scientific Manuscript database
Oxalate, the smallest of the dicarboxylic acids, is produced in many plants. This acid has been shown to play an important role in both plant physiology and defense, specifically in regards to metal detoxification, calcium regulation, sucking and chewing insect deterrence, and the production of calc...
NASA Astrophysics Data System (ADS)
Tamer, Ömer; Tamer, Sevil Arabacı; İdil, Önder; Avcı, Davut; Vural, Hatice; Atalay, Yusuf
2018-01-01
In this paper, pyridine- 2- carboxylic acid, also known as picolinic acid (pic), and its two derivate, 4- methoxy-pyridine- 2- carboxylic acid (4-Mpic) and 4- chloro-pyridine- 2- carboxylic acid (4-Clpic) have been characterized by FT-IR and UV-Vis spectroscopy techniques as well as DFT calculations. B3LYP level of Density Functional Theory (DFT) method was used to obtain ground state geometries, vibration wavenumbers, first order hyperpolarizabilities and molecular electrostatic potential (MEP) surfaces for pic, 4Clpic and 4Mpic. The electronic absorption wavelengths and HOMO-LUMO energies were investigated by time dependent B3LYP (TD-B3LYP) level with the conductor-like polarizable continuum model (CPCM). The effects of Cl atom and OCH3 group on HOMO-LUMO energy gaps and first order hyperpolarizability parameters of pic, 4Clpic and 4Mpic molecules were examined. All molecules were screened for their antibacterial activities against Gram-positive and Gram-negative bacteria and for their antifungal activities against yeast strains by using minimal inhibitory concentration method (MIC). All compounds (pic, 4Mpic and 4Clpic) have been found to be very active against to the Gram (+) and Gram (-) bacteria. The DNA interactions of pic, 4Clpic and 4Mpic were analyzed by molecular docking simulations, and the interaction of the 4Mpic molecule with DNA is found to be higher than 4Clpic and pic.
El Ashry, El Sayed H; El Nemr, Ahmed; Ragab, Safaa
2012-03-01
Quantum chemical calculations using the density functional theory (B3LYP/6-31G DFT) and semi-empirical AM1 methods were performed on ten pyridine derivatives used as corrosion inhibitors for mild steel in acidic medium to determine the relationship between molecular structure and their inhibition efficiencies. Quantum chemical parameters such as total negative charge (TNC) on the molecule, energy of highest occupied molecular orbital (E (HOMO)), energy of lowest unoccupied molecular orbital (E (LUMO)) and dipole moment (μ) as well as linear solvation energy terms, molecular volume (Vi) and dipolar-polarization (π) were correlated to corrosion inhibition efficiency of ten pyridine derivatives. A possible correlation between corrosion inhibition efficiencies and structural properties was searched to reduce the number of compounds to be selected for testing from a library of compounds. It was found that theoretical data support the experimental results. The results were used to predict the corrosion inhibition of 24 related pyridine derivatives.
The origin of free brain malonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riley, K.M.; Dickson, A.C.; Koeppen, A.H.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. (2-14C)pyruvate or (1,5-14C)citrate produced radioactive glutamate but failed to label malonate. In contrast, (1-14C)acetate, (2-14C)acetate, and (1-14C)butyrate were converted to labeled glutamate and malonate after the same route of administration. The intracerebral injectionmore » of (1-14C)-beta-alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoA----malonyl-CoA----malonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.« less
NASA Astrophysics Data System (ADS)
Wang, G.; Wang, J.; Ren, Y.; Li, J.
2015-12-01
To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids (C2-C11), keto-carboxylic acids (C3-C7), α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, China during the nondust storm and dust storm periods of 2009 and 2011. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1μm), and oxalic acid well correlated with NO3- (R2=0.72, p<0.001) rather than SO42-.This phenomenon differs greatly from the SOA in any other nondust period that is characterized by an enrichment of oxalic acid in fine particles and a strong correlation of oxalic acid with SO42-. Our results further demonstrate that NO3- in the dust periods in Xi'an was mostly derived from secondary oxidation, whereas SO42- during the events was largely derived from surface soil of Gobi deserts. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of Asian dust.
Spin frustration in a family of pillared kagomé layers of high-spin cobalt(II) ions.
Wang, Long-Fei; Li, Cui-Jin; Chen, Yan-Cong; Zhang, Ze-Min; Liu, Jiang; Lin, Wei-Quan; Meng, Yan; Li, Quan-Wen; Tong, Ming-Liang
2015-02-02
Based on the analogous kagomé [Co3 (imda)2 ] layers (imda=imidazole-4,5-dicarboxylate), a family of pillar-layered frameworks with the formula of [Co3 (imda)2 (L)3 ]⋅(L)n ⋅xH2 O (1: L=pyrazine, n=0, x=8; 2: L=4,4'-bipyridine, n=1, x=8; 3: L=1,4-di(pyridin-4-yl)benzene, n=1, x=13; 4: L=4,4'-di(pyridin-4-yl)-1,1'-biphenyl, n=1, x=14) have been successfully synthesized by a hydrothermal/solvothermal method. Single-crystal structural analysis shows a significant increase in the interlayer distances synchronized with the extension of the pillar ligands, namely, 7.092(3) (1), 10.921(6) (2), 14.780(5) (3), and 19.165(4) Å (4). Despite the wrinkled kagomé layers in complexes 2-4, comprehensive magnetic characterizations revealed weakening of interlayer magnetic interactions and an increase in the degree of frustration as the pillar ligand becomes longer from 1 to 4; this leads to characteristic magnetic ground states. For compound 4, which has the longest interlayer distance, the interlayer interaction is so weak that the magnetic properties observed within the range of temperature measured would correspond to the frustrated layer. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Chu-Fang; Huang, Ci-Ruei
2016-08-01
Thermal acid hydrolysis is often used to deal with lignocellulosic biomasses, but 5-hydroxy-methylfurfural (5-HMF) formed during hydrolysis deeply influences downstream fermentation. 2,5-Furan-dicarboxylic acid (FDCA), which is in the list of future important biomass platform molecules can be obtained using 5-HMF biotransformation. Based on the connection between 5-HMF removal in acid hydrolysate and FDCA production, the optimum thermal acid hydrolysis condition for macroalgae Chaetomorpha linum was established. Potential microbes capable of transforming 5-HMF into FDCA were isolated and characterized under various parameters and inoculated into algal hydrolysate to perform 5-HMF biotransformation. The optimum hydrolysis condition was to apply 0.5M HCl to treat 3% algal biomass under 121°C for 15min. Isolated Burkholderia cepacia H-2 could transform 2000mg/L 5-HMF at the initial pH of 7 at 28°C and 1276mg/L FDCA was received. Strain B. cepacia H-2 was suitable for treating the algal hydrolysate without dilution, receiving 989.5mg/L FDCA. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chemical evolution of multicomponent aerosol particles during evaporation
NASA Astrophysics Data System (ADS)
Zardini, Alessandro; Riipinen, Ilona; Pagels, Joakim; Eriksson, Axel; Worsnop, Douglas; Switieckli, Erik; Kulmala, Markku; Bilde, Merete
2010-05-01
Atmospheric aerosol particles have an important but not well quantified effect on climate and human health. Despite the efforts made in the last decades, the formation and evolution of aerosol particles in the atmosphere is still not fully understood. The uncertainty is partly due to the complex chemical composition of the particles which comprise inorganic and organic compounds. Many organics (like dicarboxylic acids) can be present both in the gas and in the condensed phase due to their low vapor pressure. Clearly, an understanding of this partition is crucial to address any other issue in atmospheric physics and chemistry. Moreover, many organics are water soluble, and their influence on the properties of aqueous solution droplets is still poorly characterized. The solid and sub-cooled liquid state vapor pressures of some organic compounds have been previously determined by measuring the evaporation rate of single-compound crystals [1-3] or binary aqueous droplets [4-6]. In this work, we deploy the HTDMA technique (Hygroscopicity Tandem Differential Mobility Analyzer) coupled with a 3.5m laminar flow-tube and an Aerosol Mass Spectrometer (AMS) for determining the chemical evolution during evaporation of ternary droplets made of one dicarboxylic acid (succinic acid, commonly found in atmospheric samples) and one inorganic compound (sodium chloride or ammonium sulfate) in different mixing ratios, in equilibrium with water vapor at a fixed relative humidity. In addition, we investigate the evaporation of multicomponent droplets and crystals made of three organic species (dicarboxylic acids and sugars), of which one or two are semi-volatile. 1. Bilde M. and Pandis, S.N.: Evaporation Rates and Vapor Pressures of Individual Aerosol Species Formed in the Atmospheric Oxidation of alpha- and beta-Pinene. Environmental Science and Technology, 35, 2001. 2. Bilde M., et al.: Even-Odd Alternation of Evaporation Rates and Vapor Pressures of C3-C9 Dicarboxylic Acid Aerosols, Environmental. Science and Technology, 37, 2003. 5. Koponen I.K., et al.: Thermodynamic properties of malonic, succinic, and glutaric acids: Evaporation rates and saturation vapor pressures. Environmental Science and Technology, 41, 2007. 4. Zardini A.A., et al.: White light Mie resonance spectroscopy used to measure very low vapor pressures of substances in aqueous solution aerosol particles. Optics Express, 14, 2006. 3. Zardini A.A. and Krieger, U.K.: Evaporation kinetics of a non-spherical, levitated aerosol particle using optical resonance spectroscopy for precision sizing. Optics Express, 17, 2009. 6. Riipinen, I., et al.: Adipic and Malonic Acid Aqueous Solutions: Surface Tensions and Saturation Vapor Pressures, J. Phys. Chem., 111, 2007.
Liu, Lei-Lei; Yu, Cai-Xia; Ma, Feng-Ji; Li, Ya-Ru; Han, Jing-Jing; Lin, Lu; Ma, Lu-Fang
2015-01-28
Hydrothermal reactions of Cd(OAc)2·2H2O with a flexible V-shaped bipyridyl benzene ligand and five benzenedicarboxylic acid derivatives gave rise to five new coordination polymers i.e., [Cd(1,4-BDC)(bpmb)(H2O)]n (1), {[Cd(1,3-BDC)(bpmb)]·0.125H2O}n (2), [Cd2(5-Me-1,3-BDC)2(bpmb)2]n (3), [Cd(5-NO2-1,3-BDC)(bpmb)(H2O)]n (4) and [Cd(5-OH-1,3-BDC)(bpmb)(H2O)]n (5) (bpmb = 1,3-bis(pyridine-3-ylmethoxy)benzene, 1,4-H2BDC = 1,4-benzenedicarboxylic acid, 1,3-H2BDC = 1,3-benzenedicarboxylic acid, 5-Me-1,3-H2BDC = 5-methyl-1,3-benzenedicarboxylic acid, 5-NO2-1,3-H2BDC = 5-nitro-1,3-benzenedicarboxylic acid, 5-OH-1,3-H2BDC = 5-hydroxy-1,3-benzenedicarboxylic acid). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Compound 1 is a two-fold interpenetrating network showing the coexistence of polyrotaxane and polycatenane characters. Compounds 2 and 3 exhibit similar 2D (3,5)-connected (4(2)·6(7)·8)(4(2)·6) nets in which the bpmb ligands work as lockers in interlocking 1D [Cd(1,3-BDC/5-Me-1,3-BDC)]n chains. Compound 4 shows a 2D 4-connected (6(6)) sandwich-like structure with differently oriented [Cd(5-NO2-1,3-BDC)]n chains. Compound 5 is a 3D supramolecular pcu net based on a 1D ladder-shaped chain. These results suggest that the substituted positions of carboxylate groups and changes in substituted R groups in the 5-position of BDC ligands have significant effect on the final structures. These compounds exhibited relatively good photocatalytic activity towards the degradation of methylene blue (MB) in aqueous solution under UV irradiation. Moreover, solid-state photoluminescence properties of 1-5 were also investigated.
Gao, En-Jun; Wang, Ke-Hua; Zhu, Ming-Chang; Liu, Lei
2010-07-01
A novel tetranuclear palladium(II) complex [Pd(4)(phen)(4) (micro-pydc)(4)].10H(2)O (phen = 1,10-phenanthroline, pydc = pyridine-3,4-dicarboxylate) has been synthesized and characterized. In the tetranuclear complex, two pairs of dipalladated [Pd(phen)] moieties are bridged together by four pydc, presenting a hairpin molecular shape. The binding of the title complex with fish sperm DNA (FS-DNA) has been investigated by UV spectrum and fluorescence spectrum. All the results indicate that the complex bind to DNA in an intercalative mode and considerating the molecular shape and size, the dipalladated phenanthroline moieties bisintercalate to the base pairs of DNA. Agarose gel electrophoresis assay demonstrates the ability of the complex to cleave the pBR322 plasmid DNA. Cytotoxic activity studies show the complex exhibited good cytotoxic activity against four different cancer cell lines. Crown Copyright (c) 2010. Published by Elsevier Masson SAS. All rights reserved.
Ng, Seik Weng
2011-01-01
The SnIV atom in the centrosymmetric dinuclear title compound, [Sn2(C4H9)4(C7H3NO4)2(H2O)2], exists in a trans-C2SnNO4 pentagonal–bipyramidal geometry. There are two half-molecules in the asymmetric unit that are completed by inversion symmetry. The crystal studied was a non-merohedral twin with a ratio of 47.3 (1)% for the minor twin component. Bond dimensions are similar to those found in the tetragonal polymorph [Huber et al. (1989 ▶). Acta Cryst. C45, 51–54]. O—H⋯O hydrogen-bonding interactions stabilize the crystal packing. PMID:21522924
Carbon Nanotube Spaceframes for Low-Density Aerospace Materials
2012-01-26
different types of oxidative etching chemistries have been reported in the literature, with acidic conditions such as nitric acid etching and piranha...and reduce the production of adhered fulvic acid species.1 A range of RCA type different etching conditions were investigated involving different...carboxylic and hydroxyl type sites together by first using a dicarboxylic acid (preferably in a highly reactive form such as oxalic chloride or succinic
Carboxylic acid accelerated formation of diesters
Tustin, Gerald Charles; Dickson, Todd Jay
1998-01-01
This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.
Carboxylic acid accelerated formation of diesters
Tustin, G.C.; Dickson, T.J.
1998-04-28
This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.
Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams.
Bolla, Geetha; Nangia, Ashwini
2015-11-04
SMBA was selected as a bifunctional sulfa drug to design ternary cocrystals with pyridine amides and lactam coformers. Supramolecular assembly of five ternary cocrystals of p-sulfonamide benzoic acid with nicotinamide and 2-pyridone is demonstrated and reproducible heterosynthons are identified for crystal engineering.
Kalra, Arjun; Tishmack, Patrick; Lubach, Joseph W; Munson, Eric J; Taylor, Lynne S; Byrn, Stephen R; Li, Tonglei
2017-06-05
Despite numerous challenges in their theoretical description and practical implementation, amorphous drugs are of growing importance to the pharmaceutical industry. One such challenge is to gain molecular level understanding of the propensity of a molecule to form and remain as a glassy solid. In this study, a series of structurally similar diarylamine compounds was examined to elucidate the role of supramolecular aggregation on crystallization kinetics from supercooled liquid state. The structural similarity of the compounds makes it easier to isolate the molecular features that affect crystallization kinetics and glass forming ability of these compounds. To examine the role of hydrogen-bonded aggregation and motifs on crystallization kinetics, a combination of thermal and spectroscopic techniques was employed. Using variable temperature FTIR, Raman, and solid-state NMR spectroscopies, the presence of hydrogen bonding in the melt and glassy state was examined and correlated with observed phase transition behaviors. Spectroscopic results revealed that the formation of hydrogen-bonded aggregates involving carboxylic acid and pyridine nitrogen (acid-pyridine aggregates) between neighboring molecules in the melt state impedes crystallization, while the presence of carboxylic acid dimers (acid-acid dimers) in the melt favors crystallization. This study suggests that glass formation of small molecules is influenced by the type of intermolecular interactions present in the melt state and the kinetics associated with the molecules to assemble into a crystalline lattice. For the compounds that form acid-pyridine aggregates, the formation of energy degenerate chains, produced due to conformational flexibility of the molecules, presents a kinetic barrier to crystallization. The poor crystallization tendency of these aggregates stems from the highly directional hydrogen-bonding interactions needed to form the acid-pyridine chains. Conversely, for the compounds that form acid-acid dimers, the nondirectional van der Waals forces needed to construct a nucleus promote rapid assembly and crystallization.
Mihajlović, Lj V; Mihajlović, R P; Antonijević, M M; Vukanović, B V
2004-11-15
The possibility of applying natural monocrystaline pyrite as a sensor for the potentiometric titration of weak acids in N,N-dimethylformamide, methylpyrrolidone and pyridine was investigated. The potential of this electrode in N,N-dimethylformamide, methylpyrrolidone and pyridine exhibits a sub-Nernst dependence. In N,N-dimethylformamide the slope (mV/pH) is 39.0 and in methylpyrrolidone it is 45.0. The potential jumps at the titration end-point obtained in the titration of weak acids are higher than those obtained by the application of a glass electrode as the indicator electrode The potential in the course of the titration and at the titration end-point (TEP) are rapidly established. Sodium methylate, potassium hydroxide and tetrabutylammonium hydroxide (TBAH) proved to be very suitable titrating agents for these titrations. The results obtained in the determination of the investigated weak acids deviate by 0.1-0.35% with respect to those obtained by using a glass electrode as the indicator electrode.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Horstman, Elizabeth M.; Bertke, Jeffery A.; Woods, Toby J.
2016-11-04
A new 2:1 co-crystal of piroxicam and gentisic acid [systematic name: 4-hydroxy-1,1-dioxo-N-(pyridin-2-yl)-2H-1λ 6,2-benzothiazine-3-carboxamide–2-(4-oxido-1,1-dioxo-2H-1λ 6,2-benzothiazine-3-amido)pyridin-1-ium–2,5-dihydroxybenzoic acid, 2C 15H 13N 3O 4S·C 7H 6O 4] has been synthesized using a microfluidic platform and initially identified using Raman spectroscopy. In the co-crystal, one piroxicam molecule is in its neutral form and an intramolecular O—H...O hydrogen bond is observed. The other piroxicam molecule is zwitterionic (proton transfer from the OH group to the pyridine N atom) and two intramolecular N—H...O hydrogen bonds occur. The gentisic acid molecule shows whole-molecule disorder over two sets of sites in a 0.809(2):0.191(2) ratio. In the crystal, extensive hydrogenmore » bonding between the components forms layers propagating in theabplane.« less
Pizzi, M; Fallacara, C; Arrighi, V; Memo, M; Spano, P F
1993-08-01
Activation of glutamate ionotropic receptors represents the primary event in the neurotoxicity process triggered by excitatory amino acids. We demonstrate here that the concentration-dependent stimulation of metabotropic glutamate receptor (mGluR) by the selective agonist trans-1-aminocyclopentane-1,3-dicarboxylate or by quisqualate counteracts both glutamate- and kainate-induced neurotoxicity in primary cultures of rat cerebellar granule cells. The mGluR-evoked responses are potentiated by aniracetam, which per se also elicits neuroprotection. Aniracetam concentration-dependently counteracted glutamate-, kainate-, or alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced cell death and greatly facilitated neuroprotective response achieved by different concentrations of both quisqualate and trans-1-aminocyclopentane-1,3-dicarboxylate. In addition, aniracetam potentiated the mGluR-coupled stimulation of phospholipase C, as revealed by the measurement of 3H-inositol phosphate formation. Thus, mGluRs could be a suitable target for novel pharmacological strategies pointing to the treatment of neurodegenerative diseases.
Process for etching mixed metal oxides
Ashby, Carol I. H.; Ginley, David S.
1994-01-01
An etching process using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstom range may be achieved by this method.
Monn, James A; Prieto, Lourdes; Taboada, Lorena; Hao, Junliang; Reinhard, Matthew R; Henry, Steven S; Beadle, Christopher D; Walton, Lesley; Man, Teresa; Rudyk, Helene; Clark, Barry; Tupper, David; Baker, S Richard; Lamas, Carlos; Montero, Carlos; Marcos, Alicia; Blanco, Jaime; Bures, Mark; Clawson, David K; Atwell, Shane; Lu, Frances; Wang, Jing; Russell, Marijane; Heinz, Beverly A; Wang, Xushan; Carter, Joan H; Getman, Brian G; Catlow, John T; Swanson, Steven; Johnson, Bryan G; Shaw, David B; McKinzie, David L
2015-09-24
Identification of orthosteric mGlu(2/3) receptor agonists capable of discriminating between individual mGlu2 and mGlu3 subtypes has been highly challenging owing to the glutamate-site sequence homology between these proteins. Herein we detail the preparation and characterization of a series of molecules related to (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylate 1 (LY354740) bearing C4-thiotriazole substituents. On the basis of second messenger responses in cells expressing other recombinant human mGlu2/3 subtypes, a number of high potency and efficacy mGlu2 receptor agonists exhibiting low potency mGlu3 partial agonist/antagonist activity were identified. From this, (1R,2S,4R,5R,6R)-2-amino-4-(1H-1,2,4-triazol-3-ylsulfanyl)bicyclo[3.1.0]hexane-2,6-dicarboxylic acid 14a (LY2812223) was further characterized. Cocrystallization of 14a with the amino terminal domains of hmGlu2 and hmGlu3 combined with site-directed mutation studies has clarified the underlying molecular basis of this unique pharmacology. Evaluation of 14a in a rat model responsive to mGlu2 receptor activation coupled with a measure of central drug disposition provides evidence that this molecule engages and activates central mGlu2 receptors in vivo.
Bowen, Christopher H; Bonin, Jeff; Kogler, Anna; Barba-Ostria, Carlos; Zhang, Fuzhong
2016-03-18
In search of sustainable approaches to plastics production, many efforts have been made to engineer microbial conversions of renewable feedstock to short-chain (C2-C8) bifunctional polymer precursors (e.g., succinic acid, cadaverine, 1,4-butanediol). Less attention has been given to medium-chain (C12-C14) monomers such as ω-hydroxy fatty acids (ω-OHFAs) and α,ω-dicarboxylic acids (α,ω-DCAs), which are precursors to high performance polyesters and polyamides. Here we engineer a complete microbial conversion of glucose to C12 and C14 ω-OHFAs and α,ω-DCAs, with precise control of product chain length. Using an expanded bioinformatics approach, we screen a wide range of enzymes across phyla to identify combinations that yield complete conversion of intermediates to product α,ω-DCAs. Finally, through optimization of culture conditions, we enhance production titer of C12 α,ω-DCA to nearly 600 mg/L. Our results indicate potential for this microbial factory to enable commercially relevant, renewable production of C12 α,ω-DCA-a valuable precursor to the high-performance plastic, nylon-6,12.
NASA Astrophysics Data System (ADS)
Cheng, Yue; Yang, Meng-Lin; Hu, Huai-Ming; Xu, Bing; Wang, Xiaofang; Xue, Ganglin
2016-07-01
Six new coordination polymers, [ZnLCl]n(1), [ZnL2]n·2nH2O (2), [Zn2L(o-bdc)(OH)]n·0.5nH2O (3), [Zn2L(m-bdc)(OH)]n·nH2O (4), [Zn2L2(p-bdc) (H2O)2]n·nH2O (5), [Zn2L(1,2,4-btc)(H2O)]n(6), (HL=4‧-(3-carboxyphenyl)- 3,2‧:6‧,3″-terpyridine, H2(o-bdc)= benzene-1,2-dicarboxylic acid, H2(m-bdc)= benzene-1,3-dicarboxylic acid, H2(p-bdc)= benzene-1,4-dicarboxylic acid, H3(1,2,4-btc)= benzene-1,2,4-tricarboxylic acid) have been synthesized under the hydrothermal conditions. Compound 1 displays a 3-connected 2D network structure with point symbol of {82.10}. Compound 2 exhibits 1D infinite loop chain structure. Compound 3 possesses a (3,8)-connected 3D framework composed of tetranuclear units with point symbol of {43}2{46.618.84}. Compound 4 features a typical 2D hcb network based on tetranuclear zinc(II) units with point symbol of {44.62}. Compound 5 presents a classical two-fold penetration sql network with point symbol of {63}. Compound 6 can be seen as a (3,3,6)-connected 3D net with point symbol of {42.64.89}{42.6}{63}. The thermal stability and luminescent properties of compounds 1-6 in the solid state are discussed in detail.
Lavreysen, Hilde; Langlois, Xavier; Donck, Luc Ver; Nuñez, José María Cid; Pype, Stefan; Lütjens, Robert; Megens, Anton
2015-01-01
JNJ-40411813/ADX71149 (1-butyl-3-chloro-4-(4-phenylpiperidin-1-yl) pyridin-2(1H)-one) is a positive allosteric modulator (PAM) of the mGlu2 receptor, which also displays 5-Hydroxytryptamine (5HT2A) antagonism after administration in rodents due to a rodent-specific metabolite. JNJ-40411813 was compared with the orthosteric mGlu2/3 agonist LY404039 (4-amino-2-thiabicyclo [3.1.0] hexane-4,6-dicarboxylic acid 2,2-dioxide), the selective mGlu2 PAM JNJ-42153605 (3-(cyclopropylmethyl)-7-(4-phenylpiperidin-1-yl)-8-(trifluoromethyl)[1,2,4]triazolo[4,3-a]pyridine) and the 5HT2A antagonist ritanserin in rodent models for antipsychotic activity and potential side effects, attempting to differentiate between the various compounds and mechanisms of action. In mice, JNJ-40411813, JNJ-42153605, and LY404039 inhibited spontaneous locomotion and phencyclidine- and scopolamine-induced but not d-amphetamine-induced hyperlocomotion; the 5HT2A antagonist ritanserin inhibited only spontaneous locomotion and phencyclidine-induced hyperlocomotion. As measured by 2-deoxyglucose uptake, all compounds reversed memantine-induced brain activation in mice. The two mGlu2 PAMs and LY404039, but not ritanserin, inhibited conditioned avoidance behavior in rats. Like ritanserin, the mGlu2 ligands antagonized 2,5-dimethoxy-4-methylamphetamine-induced head twitches in rats. LY404039 but not the mGlu2 PAMs impaired rotarod performance in rats and increased the acoustic startle response in mice. Our results show that although 5HT2A antagonism has effect in some models, mGlu2 receptor activation is sufficient for activity in several animal models of antipsychotic activity. The mGlu2 PAMs mimicked the in vivo pharmacodynamic effects observed with LY404039 except for effects on the rotarod and acoustic startle, suggesting that they produce a primary activity profile similar to that of the mGlu2/3 receptor agonist while they can be differentiated based on their secondary activity profile. The results are discussed in light of clinical data available for some of these molecules, in particular JNJ-40411813. PMID:25692027
NASA Astrophysics Data System (ADS)
Świderski, G.; Wojtulewski, S.; Kalinowska, M.; Świsłocka, R.; Lewandowski, W.
2011-05-01
The FT-IR, FT-Raman and 1H and 13C NMR spectra of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium, rubidium and caesium pyrrole-2-carboxylates were recorded, assigned and compared in the Li → Na → K → Rb → Cs salt series. The effect of alkali metal ions on the electronic system of ligands was discussed. The obtained results were compared with previously reported ones for pyridine-2-carboxylic acid and alkali metal pyridine-2-carboxylates. Calculations for pyrrole-2-carboxylic acid and Li, Na, K pyrrole-2-carboxylates in B3LYP/6-311++G ** level and Møller-Plesset method in MP2/6-311++G ** level were made. Bond lengths, angles and dipole moments as well as aromaticity indices (HOMA, EN, GEO, I 6) for the optimized structures of pyrrole-2-carboxylic acid (PCA) and lithium, sodium, potassium pyrrole-2-carboxylates were also calculated. The degree of perturbation of the aromatic system of ligand under the influence of metals in the Li → Cs series was investigated with the use of statistical methods (linear correlation), calculated aromaticity indices and Mulliken, NBO and ChelpG population analysis method. Additionally, the Bader theory (AIM) was applied to setting the characteristic of the bond critical points what confirmed the influence of alkali metals on the pyrrole ring.
Dexpanthenol enemas in ulcerative colitis: a pilot study.
Loftus, E V; Tremaine, W J; Nelson, R A; Shoemaker, J D; Sandborn, W J; Phillips, S F; Hasan, Y
1997-07-01
To test the hypothesis that topical administration of pantothenic acid, a precursor of coenzyme A, might result in increased tissue levels of coenzyme A, improvement of fatty acid oxidation, and amelioration of ulcerative colitis. In an open-label pilot study, three patients with active left-sided ulcerative colitis received nightly enemas that contained 1,000 mg of dexpanthenol for 4 weeks. Before and after the study, patients submitted stool specimens for short-chain fatty acid analysis and urine collections for measurement of pantothenic acid and dicarboxylic acids; they also underwent flexible sigmoidoscopy for procurement of biopsy specimens for histologic examination and measurement of colonic coenzyme A activity. A clinical disease activity index and histologic disease activity index were used to assess response. Despite increases in urinary pantothenic acid, no significant changes were found in colonic tissue coenzyme A concentrations, fecal short-chain fatty acid concentrations, or urinary dicarboxylic acid concentrations. Moreover, no significant changes in clinical or histologic disease activity were noted. Although stool frequency and rectal bleeding remained unchanged, all patients noted increased abdominal cramping, and one patient had an increased extent of disease. Topically administered dexpanthenol seems to be absorbed, but at the dose used in this study, it did not influence concentrations of colonic coenzyme A activity, fecal short-chain fatty acids, or clinical response in patients with active left-sided ulcerative colitis.
Ikeuchi, Takuro; Agrawal, Saurabh; Ezoe, Masayuki; Mori, Shogo; Kimura, Mutsumi
2015-11-01
A series of zinc phthalocyanine sensitizers (PcS22-24) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye-sensitized solar cells. The pyridine-anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident-photon to current-conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited-state molecular orbital of the sensitizer and the orbitals of TiO2 . Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker-length dependence of the IPCE. The red-absorbing PcS23 is applied for co-sensitization with a carboxyl-anchor organic dye D131 that has a complementary spectral response. The site-selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible-light region of sun light. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Physical Properties of Pyridinium Fluorohydrogenate, [pyridine · H+][H2F3]-
NASA Astrophysics Data System (ADS)
Hulse, Ryan; Singh, Rajiv
2008-12-01
Ionic liquids (ILs), also referred to as molten salts, have found application as electrolytes for batteries and super-capacitors, in electroplating baths, as designer solvents, and as reaction media. A few of the desired properties of a super-capacitor electrolyte are nonflammability, thermal stability, and electrochemical stability. ILs containing aromatic cations have been shown to have low viscosity which results in a high electrochemical conductivity. There is a delicate balance between increasing the thermal stability, or decreasing the melting point, and increasing the electrochemical conductivity of the IL. This study focuses on pyridinium fluorohydrogenate, [pyridine · H+][H2F3]-. Pyridinium fluorohydrogenate has been synthesized by the reaction of pyridine and anhydrous hydrofluoric acid. This IL has a relatively high electrical conductivity (~98 mS · cm-1 at 23 °C), a wide electrochemical window, and a boiling point of 186 °C. A stable gel can also be formed by combining [pyridine · H+][H2F3]- and a super absorbent polymer such as polyacrylic acid. The gel adds mechanical stability to the matrix while not greatly affecting the conductivity of the IL.
USDA-ARS?s Scientific Manuscript database
Maleic anhydride (MA) grafted polylactic acid (PLA) acting as reactive compatibilizer for PLA blends and composites has been reported. However, melt free-radical grafting of MA on PLA is often subject to steric and electron effects of the substituents in the monomer and low initiation efficiency, yi...
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.
2013-02-01
Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N; 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acid, were also detected together with aromatic diacids (phthalic, iso-phthalic and tere-phthalic acids). ω-Oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (> 6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June showing a maximum on 7 June and then significantly decreased during 8-11 June when the wind direction shifted from northeasterly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning products of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.
Amino and fatty acids in carbonaceous meteorites
NASA Technical Reports Server (NTRS)
Kvenvolden, K. A.
1974-01-01
Analyses of two carbonaceous meteorites have provided much of the latest evidence which seems to support Oparin's theory on the origin of life. The meteorites involved are the Murray meteorite, which fell in 1950, and the Murchison meteorite, which fell in 1969. The amino acids in the two meteorites are similar in composition. Eight of the twenty amino acids found belong to amino acids present in proteins. A number of monocarboxylic and dicarboxylic fatty acids were also found in the meteorites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yuzhan; Zhang, Yuehong; Rios, Orlando
In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less
NASA Astrophysics Data System (ADS)
Zhao, Shuai; Hao, Xue-Min; Liu, Jia-Lin; Wu, Lin-Wei; Wang, Hao; Wu, Yi-Bo; Yang, Dan; Guo, Wen-Li
2017-11-01
Two isostructural lanthanide MOFs, [Ln3K2(FDA)4(NO3)3(MeCN)2]n (Ln = Eu 1, Tb 2) (H2FDA= furan-2,5-dicarboxylic acid), have been constructed under solvothermal conditions. Structures analyses demonstrate two complexes possess three-dimensional network with monoclinic space group C2/c. The topology analysis shows that the whole framework can be simplified to a 3,8T24 topology constructed from trinuclear {Ln3} as secondary building units (SBUs) without considering K+ ions. Solid state luminescent studies indicate that 1 and 2 show the characteristic red and green emissions of the corresponding Ln3+ ions, respectively. The luminescence lifetimes of 1 and 2 are approximately 1.04 ms and 0.41 ms. In addition, activated 1 exhibits excellent fluorescence sensing for small molecules, especially for nitrobenzene.
By-products of electrochemical synthesis of suberic acid
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shirobokova, O.I.; Adamov, A.A.; Freidlin, G.N.
By-products of the electrochemical synthesis of dimethyl suberate from glutaric anhydride were studied. This is isolated by thermal dehydration of a mixture of lower dicarboxylic acids that are wastes from the production of adipic acid. To isolate the by-products, they used the methods of vacuum rectification and preparative gas-liquid chromatography, and for their identification, PMR, IR spectroscopy, gas-liquid chromatography, and other known physicochemical methods of investigation.
Process for etching mixed metal oxides
Ashby, C.I.H.; Ginley, D.S.
1994-10-18
An etching process is described using dicarboxylic and tricarboxylic acids as chelating etchants for mixed metal oxide films such as high temperature superconductors and ferroelectric materials. Undesirable differential etching rates between different metal oxides are avoided by selection of the proper acid or combination of acids. Feature sizes below one micron, excellent quality vertical edges, and film thicknesses in the 100 Angstrom range may be achieved by this method. 1 fig.
Understanding the Nature of Marine Aerosols and Their Effects in the Coupled Ocean-Atmosphere System
2013-09-30
into aqueous- phase mechanistic relationships leading up to oxalate production. Monocarboxylic and dicarboxylic acids exhibited contrasting spatial...ocean surface. Three case flights show that oxalate (and no other organic acid ) concentrations drop by nearly an order of magnitude relative to...aerosol- cloud interactions. REFERENCES Crahan, K. K., D. Hegg, D. S. Covert, and H. Jonsson (2004), An exploration of aqueous oxalic acid
Ruibin Wang; Liheng Chen; J.Y. Zhu; Rendang Yang
2017-01-01
This study demonstrates the feasibility of tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) from bleached pulp fibers through hydrolysis using a recyclable dicarboxylic acid. Hydrolysis experiments were conducted using ranges of 15â75 wt% maleic acid concentrations, 60â120°C temperatures, and 5â300 min reaction...
NASA Astrophysics Data System (ADS)
Huang, Xiao-Feng; Chen, Dong-Lei; Lan, Zi-Juan; Feng, Ning; He, Ling-Yan; Yu, Guang-He; Luan, Sheng-Ji
2012-10-01
A one-year-long observation on major organic compounds in PM2.5 was performed in a coastal mega-city in South China, Shenzhen, in order to gain information of their ambient concentration levels and the implications for sources. The compounds identified included alkanes, PAHs, hopanes, fatty acids and dicarboxylic acids, whose annual average concentrations during the year were 56.0, 14.8, 2.51, 253, and 25.2 ng m- 3, respectively. The seasonal molecular distributions of these organic compounds were discussed to explore their contributing sources in Shenzhen. Conclusively, alkanes and PAHs had the dominant source of fossil fuel combustion, although alkanes also had significant contribution from plant wax (~ 16%). The hopane series distributions further indicated that vehicle emissions were the dominant fossil fuel combustion source for PM2.5 in Shenzhen. Cooking emissions were inferred to be the most possible main source for fatty acids, while both primary and secondary origins were implied for azelaic acid, the dominant one in the dicarboxylic acids identified. Most of the organic compounds analyzed showed a size distribution pattern peaking at 0.32-0.56 or 0.56-1 μm in the accumulation mode, except that the cooking-related organic acids showed implication of a coarse mode-dominated pattern.
Lee, Heeseok; Sugiharto, Yohanes Eko Chandra; Lee, Seunghoon; Park, Gyuyeon; Han, Changpyo; Jang, Hyeran; Jeon, Wooyoung; Park, Heejoon; Ahn, Jungoh; Kang, Kyungbo; Lee, Hongwoen
2017-08-01
α, ω-Dicarboxylic acids (DCAs) are multipurpose chemicals widely used in polymers, perfumes, plasticizers, lubricants, and adhesives. The biotransformation of DCAs from alkanes and fatty acids by microorganisms has attracted recent interest, since synthesis via chemical oxidation causes problems in terms of the environment and safety. We isolated an ω-oxidizing yeast from a wastewater disposal facility of a petrochemical factory by chemostat enrichment culture. The haploid strain identified as Candida sorbophila DS02 grew on glucose and dodecane, exhibiting greater cell shrinkage on the latter. In flask cultures with mixed alkanes (C10-16) and fatty acid methyl esters (C10-16), DS02 used mixed alkanes simultaneously unlike Candida tropicalis and Yarrowia lipolytica and showed high substrate resistance. In flask cultures with acrylic acid-a known inhibitor of β-oxidation-DS02 produced 0.28 g/l dodecanedioic acid (DDDA) from dodecane, similar to wild-type C. tropicalis ATCC 20336. In fed-batch fermentation, DS02 produced 9.87 g/l DDDA, which was 5.7-fold higher than wild-type C. tropicalis. These results suggest that C. sorbophila strain DS02 has potential applications for the large-scale production of DCA.
NASA Astrophysics Data System (ADS)
Sharma, Swati; Yawer, Mohd; Kariem, Mukaddus; Sheikh, Haq Nawaz
2016-08-01
Two new 3D MOFs [Nd2(TDA)3(DEF)2(H2O)]n (1) and [Y4(TDA)6(DEF)4]n (2) [Thiophene-2,5-dicarboxylic acid (H2TDA) and N,N‧-diethylformamide (DEF)] were synthesized by solvothermal method. They were characterized by elemental analyses, infrared spectroscopy and single crystal X-ray diffraction studies. The two MOFs (1) and (2) belong to the monoclinic system with space group P21/n and C 2 respectively. Structural characterizations by single-crystal X-ray crystallography reveal that 1 and 2 adopt three-dimensional frameworks constructed by cross-linking of rod shaped infinite chain secondary building unit (SBU) by thiophene-2,5-dicarboxylates as linker. These frameworks feature rhomboidal channels, inside which coordinated DEF/H2O solvent molecules are located. DEF plays pivotal role in reaction and design of MOFs. Thermogravimetric analysis shows that both MOFs are thermally robust.
Koltunowska, D; Gibula-Bruzda, E; Kotlinska, J H
2013-08-01
Chronic amphetamine use results in anxiety-like states after drug cessation. The aim of the study was to determine a role of ionotropic and metabotropic glutamate receptor ligands in amphetamine-evoked withdrawal anxiety in the elevated plus-maze test in rats. In our study memantine (8 and 12 mg/kg), a noncompetitive N-methyl-d-aspartate (NMDA) receptor antagonist did not reduce amphetamine withdrawal anxiety. Acamprosate (NMDA and metabotropic glutamate 5 receptor (mGluR5) antagonist) at the dose 200 and 400mg/kg showed anxiolytic-like effect, thus increasing the percent of time spent in open arms and a number of open arm entries. mGluR5 selective antagonist, MTEP (3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]pyridine hydrochloride) and mGluR2/3 agonist, LY354740 (1S,2S,5R,6S)-2-aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid), caused effects similar to acamprosate at doses 1.25-5mg/kg and 2.5-5mg/kg, respectively. None of the glutamate ligands influenced locomotor activity of rats when given to the saline-treated group. Taking into account the positive correlation between amphetamine withdrawal-induced anxiety and relapse to amphetamine taking, our results suggest that modulation of mGluRs may prevent relapse to amphetamine and might pose a new direction in amphetamine abuse therapy. Copyright © 2013 Elsevier Inc. All rights reserved.
Sarcevica, Inese; Orola, Liana; Veidis, Mikelis V; Belyakov, Sergey
2014-04-01
A new polymorph of the cinnamic acid-isoniazid cocrystal has been prepared by slow evaporation, namely cinnamic acid-pyridine-4-carbohydrazide (1/1), C9H8O2·C6H7N3O. The crystal structure is characterized by a hydrogen-bonded tetrameric arrangement of two molecules of isoniazid and two of cinnamic acid. Possible modification of the hydrogen bonding was investigated by changing the hydrazide group of isoniazid via an in situ reaction with acetone and cocrystallization with cinnamic acid. In the structure of cinnamic acid-N'-(propan-2-ylidene)isonicotinohydrazide (1/1), C9H8O2·C9H11N3O, carboxylic acid-pyridine O-H···N and hydrazide-hydrazide N-H···O hydrogen bonds are formed.
Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids
NASA Astrophysics Data System (ADS)
Mashhadi, Syed Muddassir Ali; Yunus, Uzma; Bhatti, Moazzam Hussain; Tahir, Muhammad Nawaz
2014-11-01
Isoniazid is the primary constituent of “triple therapy” used to effectively treat tuberculosis. In tuberculosis and other diseases, tissue inflammation and free radical burst from macrophages results in oxidative stress. These free radicals cause pulmonary inflammation if not countered by anti-oxidants. Therefore, in the present study cocrystals of isoniazid with four anti-oxidant hydroxy benzoic acids have been reported. Gallic acid, 2,3-dihydroxybenzoic acid, 3,5-dihydroxybenzoic acid, and 3-hydroxybenzoic acid resulted in the formation of cocrystals when reacted with isoniazid. Cocrystal structure analysis confirmed the existence of pyridine-carboxylic acid synthon in the cocrystals of isoniazid with Gallic acid, 2,3-dihydroxybenzoic acid and 3-hydroxybenzoic acid. While cocrystal of 3,5-dihydroxybenzoic acid formed the pyridine-hydroxy group synthon. Other synthons of different graph sets are formed between hydrazide group of isoniazid and coformers involving Nsbnd H⋯O and Osbnd H⋯N bonds. All the cocrystals were in 1:1 stoichiometric ratio.
Kore, Nitin; Pazdera, Pavel
2016-12-22
A method for preparation of a new stable Cu(I) catalyst supported on weakly acidic polyacrylate resin without additional stabilizing ligands is described. A simple and efficient methodology for Ullmann Cu(I) catalyzed C-N cross coupling reactions using this original catalyst is reported. Coupling reactions of 4-chloropyridinium chloride with anilines containing electron donating (EDG) or electron withdrawing (EWG) groups, naphthalen-2-amine and piperazine, respectively, are successfully demonstrated.
NASA Astrophysics Data System (ADS)
Bergamini, F. R. G.; Ribeiro, M. A.; Lancellotti, M.; Machado, D.; Miranda, P. C. M. L.; Cuin, A.; Formiga, A. L. B.; Corbi, P. P.
2016-09-01
This article describes the synthesis and characterization of the 1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydrazide (hzd) and six carbonyl hydrazones derivatives of the nalidixic with 1H-pyrrol-2-ylmethylidene (hpyrr), 1H-imidazol-2-ylmethylidene (h2imi), pyridin-2-ylmethylidene (h2py), pyridin-3-ylmethylidene (h3py), pyridin-4-ylmethylidene(h4py) and (2-hydroxyphenyl)methylidene (hsali). The carbonyl hydrazones were characterized by elemental and ESI-QTOF-MS analyses, IR and detailed NMR spectroscopic measurements. The 2D NMR experiments allowed the unambiguous assignment of the hydrogen, carbon and nitrogen atoms, which have not been reported for nalidixic acid carbonyl hydrazone derivatives so far. Crystal structures of hzd and the new carbonyl hydrazones h2imi, hpyrr and h3py were determined by X-ray diffraction studies. Although the synthesis of hzd was reported decades ago, the hzd crystal structure have not been reported yet. Geometric optimizations of all the characterized structures were performed with the aid of DFT studies. Despite the fact that the hydrazones with 2-pyridine carboxylic acid (h2py) and salicyl aldehyde (hsali) were already reported by literature, a detailed spectroscopic study followed by DFT studies are also reported for such compounds in this manuscript. Antimicrobial studies of the compounds are also presented.
Thermally resistant polymers for fuel tank sealants
NASA Technical Reports Server (NTRS)
Webster, J. A.
1972-01-01
Conversion of fluorocarbon dicarboxylic acid to intermediates whose terminal functional groups permit polymerization is discussed. Resulting polymers are used as fuel tank sealers for jet fuels at elevated temperatures. Stability and fuel resistance of the prototype polymers is explained.
Polymerization of beta-amino acids in aqueous solution
NASA Technical Reports Server (NTRS)
Liu, R.; Orgel, L. E.; Bada, J. L. (Principal Investigator)
1998-01-01
We have compared carbonyl diimidazole (CDI) and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDAC) as activating agents for the oligomerization of negatively-charged alpha- and beta-amino acids in homogeneous aqueous solution. alpha-Amino acids can be oligomerized efficiently using CDI, but not by EDAC. beta-Amino acids can be oligomerized efficiently using EDAC, but not by CDI. Aspartic acid, an alpha- and beta-dicarboxylic acid is oligomerized efficiently by both reagents. These results are explained in terms of the mechanisms of the reactions, and their relevance to prebiotic chemistry is discussed.
Biofilm Formation by a Metabolically Versatile Bacterium
2005-10-02
Rhodopseudomonas palustris is a photosynthetic bacterium that has good potential to be developed as a biocatalyst for the production of hydrogen, a...A for none) Samanta, S. K and C. S. Harwood. 2005. Use of the Rhodopseudomonas palustris genome to identify a single amino acid that contributes to...operon from Rhodopseudomonas palustris mediates dicarboxylic acid degradation and participates in anaerobic benzoate degradation. Microbiology 151
NASA Astrophysics Data System (ADS)
Anwar, M.; Wahyuningsih, T. D.
2017-12-01
Nonionic surfactant of dialkanolamide derivates was synthesized and characterized from castor oil (Ricinus comunnis). Ricinoleic acid was isolated from castor oil by hydrolysis in alkaline (KOH) condition at 65 °C. Oxidation of ricinoleic acid by dilute potassium permanganate (KMnO4) in alkaline condition at 75-90 °C gave dicarboxylic acid which was then reacted with ethanolamine at 140-160 °C for 6 hours. The product was recrystallized with isopropanol, and the structure elucidation was performed by FTIR, 1HNMR spectrometer, and GC-MS with silylation method. Characterization of surfactants was carried out by surface tension measurement (capillary rise method), Critical Micelle Concentration (CMC) based on turbidity method and calculation of Hydrophilic-Lipophilic Balance (HLB) value with Griffin method and Bancroft rule. The result showed that ricinoleic acid in castor oil is 86.19 % and it is oxidation give an azelaic acid and octanedioic acid in 53.25 %. Amidation of a dicarboxylic acid and ethanolamine at 140-160 °C for 6 hours yielded of N1,N9-bis(2-hydroxyethyl)nona diamide in 49.35 %. Surfactant characterization indicates that dialkanolamide derivates can be used as a surfactant due to its ability to reduce the surface tension of ethanol with CMC at 1.2 g/L, HLB value is 5.58 and can be used as emulsifier water in oil (W/O).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel
2014-11-15
Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract:more » Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.« less
Electrosorptive Detection of Simple Organic Compounds in Liquid Chromatography.
1987-09-30
that there is some "noise" in the azelaic acid peak. Similar noise was also noted for other highly hydrophobic/surface-active compounds. .- Amines...3 97 ’For 20-jtL injections of 10 wm( concentration, E -- 0.525 V. 2Relative to glutaric acid . 3Higher (succinic) and lower ( azelaic , sebacic...dicarboxylic - acids , aminies, and -~anolamines. The difffeirential capacitance measurements were condte le zeo h gwhere adsorption of such species is most
Bueno, Ana Belén; Collado, Iván; de Dios, Alfonso; Domínguez, Carmen; Martín, José Alfredo; Martín, Luisa M; Martínez-Grau, María Angeles; Montero, Carlos; Pedregal, Concepción; Catlow, John; Coffey, D Scott; Clay, Michael P; Dantzig, Anne H; Lindstrom, Terry; Monn, James A; Jiang, Haiyan; Schoepp, Darryle D; Stratford, Robert E; Tabas, Linda B; Tizzano, Joseph P; Wright, Rebecca A; Herin, Marc F
2005-08-11
(+)-2-Aminobicyclo[3.1.0]hexane-2,6-dicarboxylic acid (1), also known as LY354740, is a highly potent and selective agonist for group II metabotropic glutamate receptors (mGlu receptors 2 and 3) tested in clinical trials. It has been shown to block anxiety in the fear-potentiated startle model. Its relatively low bioavailability in different animal species drove the need for an effective prodrug form that would produce a therapeutic response at lower doses for the treatment of anxiety disorders. We have investigated the increase of intestinal absorption of this compound by targeting the human peptide transporter hPepT1 for active transport of di- and tripeptides derived from 1. We have found that oral administration of an N dipeptide derivative of 1 (12a) in rats shows up to an 8-fold increase in drug absorption and a 300-fold increase in potency in the fear-potentiated startle model in rats when compared with the parent drug 1.
Determination of ideal-gas enthalpies of formation for key compounds:
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steele, W.V.; Chirico, R.D.; Nguyen, A.
1991-10-01
The results of a study aimed at improvement of group-contribution methodology for estimation of thermodynamic properties of organic and organosilicon substances are reported. Specific weaknesses where particular group-contribution terms were unknown, or estimated because of lack of experimental data, are addressed by experimental studies of enthalpies of combustion in the condensed phase, vapor-pressure measurements, and differential scanning calorimetric (d.s.c.) heat-capacity measurements. Ideal-gas enthalpies of formation of ({plus minus})-butan-2-ol, tetradecan-1-ol, hexan-1,6-diol, methacrylamide, benzoyl formic acid, naphthalene-2,6-dicarboxylic acid dimethyl ester, and tetraethylsilane are reported. A crystalline-phase enthalpy of formation at 298.15 K was determined for naphthalene-2,6-dicarboxylic acid, which decomposed at 695 Kmore » before melting. The combustion calorimetry of tetraethylsilane used the proven fluorine-additivity methodology. Critical temperature and critical density were determined for tetraethylsilane with differential scanning calorimeter and the critical pressure was derived. Group-additivity parameters useful in the application of group- contribution correlations are derived. 112 refs., 13 figs., 19 tabs.« less
NASA Astrophysics Data System (ADS)
Hoque, Mir Md. Mozammal; Kawamura, Kimitaka
2016-03-01
Remote marine aerosol samples (total suspended particles) were collected during a cruise in the central Pacific from Japan to Mexico (1°59'N-35°N and 171°54'E-90°58'W). The aerosol samples were analyzed for dicarboxylic acids (C2-C11), ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids as well as organic and elemental carbon, water-soluble organic carbon, and total nitrogen (WSTN). During the study, diacids were the most abundant compound class followed by fatty acids, ω-oxoacids, and α-dicarbonyls. Molecular compositions of diacids showed a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Oxalic acid comprises 74% of total diacids. This result suggests that photochemical production of oxalic acid is significant over the central Pacific. Spatial distributions of diacids, ω-oxoacids, pyruvic acid, α-dicarbonyls, and fatty acids together with total carbon and WSTN showed higher abundances in the eastern equatorial Pacific where the upwelling of high-nutrient waters followed by high biological productivity is common, indicating that their in situ production is important in the warmer central Pacific through photochemical oxidation from their gaseous and particulate precursors. This study demonstrates that there is a strong linkage in biogeochemical cycles of carbon in the sea-air interface via ocean upwelling, phytoplankton productivity, sea-to-air emissions of organic matter, and formation of secondary organic aerosols in the eastern equatorial Pacific.
Lead optimization of a pyridine-carboxamide series as DGAT-1 inhibitors.
Ting, Pauline C; Lee, Joe F; Zorn, Nicolas; Kim, Hyunjin M; Aslanian, Robert G; Lin, Mingxiang; Smith, Michelle; Walker, Scott S; Cook, John; Van Heek, Margaret; Lachowicz, Jean
2013-02-15
The structure-activity relationship studies of a novel series of carboxylic acid derivatives of pyridine-carboxamides as DGAT-1 inhibitors is described. The optimization of the initial lead compound 6 based on in vitro and in vivo activity led to the discovery of key compounds 10j and 17h. Copyright © 2013 Elsevier Ltd. All rights reserved.
(E)-4-{[(Pyridin-4-ylmethylidene)amino]methyl}benzoic acid
Han, Sun Hwa; Lee, Soon W.
2012-01-01
The title molecule, C14H12N2O2, exhibits a V-shaped conformation with a dihedral angle of 59.69 (3)° between the benzene and pyridine rings. In the crystal, O—H⋯N hydrogen bonds link the molecules into zigzag chains along [010]. PMID:22346932
Nagashima, Jiro; Matsunami, Katsuyoshi; Otsuka, Hideaki; Lhieochaiphant, Duangporn; Lhieochaiphant, Sorasak
2010-09-01
From the leaves of Cananga odorata var. fruticosa, five unusual monoterpene glucosides, named canangafruticosides A-E (1-5), along with two unusual non-glucosidic monoterpenes (6, 7) were isolated. An aryldihydronaphthalene-type lignan dicarboxylate (8) was also isolated, with two moles of canangafruticoside A (1) on its ester moiety. This lignan also showed strong blue fluorescence emission under basic conditions. The structures of these compounds were elucidated by means of spectroscopic methods, with their absolute configurations determined by application of the modified Mosher's method to a compound chemically derived from canangafruticoside E. (c) 2010 Elsevier Ltd. All rights reserved.
Characterization of polar organics in airborne particulate matter
NASA Astrophysics Data System (ADS)
Yokouchi, Y.; Ambe, Y.
The methanol-extractable highly polar organics in atmospheric aerosol were characterized using GC-MS. Dicarboxylic acids having 2-16 carbon numbers were detected with a total concentration of 172 ng m -3. Azelaic acid ( C9) was the most abundant diacid and it possibly originated from the ozonolysis of unsaturated carboxylic acids such as oleic acid and linoleic acid, which mainly originate from terrestrial plants. A compound, which was tentatively identified as tetrahydrofuroic acid, contributed to about 10% of the highly polar organics. Other polyfunctional compounds found in the samples included some ketocarboxylic acids and aromatic acids such as phthalic acids, anisic acid and vanillic acid.
Rezvani, Zolfaghar; Arjomandi Rad, Farzad; Khodam, Fatemeh
2015-01-21
In the present work, Mg2Al-layered double hydroxide (LDH) intercalated with cubane-1,4-dicarboxylate anions was prepared from the reaction of solutions of Mg(ii) and Al(iii) nitrate salts with an alkaline solution of cubane-1,4-dicarboxylic acid by using the coprecipitation method. The successful preparation of a nanohybrid of cubane-1,4-dicarboxylate(cubane-dc) anions with LDH was confirmed by powder X-ray diffraction, FTIR spectroscopy and thermal gravimetric analysis (TGA). The increase in the basal spacing of LDHs from 8.67 Å to 13.40 Å shows that cubane-dc anions were successfully incorporated into the interlayer space. Thermogravimetric analyses confirm that the thermal stability of the intercalated cubane-dc anions is greater than that of the pure form before intercalation because of host-guest interactions involving hydrogen bonds. The interlayer structure, hydrogen bonding, and subsequent distension of LDH compounds containing cubane-dc anions were shown by molecular simulation. The RDF (radial distribution function), mean square displacement (MSD), and self-diffusion coefficient were calculated using the trajectory files on the basis of molecular dynamics (MD) simulations, and the results indicated that the cubane-dc anions were more stable when intercalated into the LDH layers. A good agreement was obtained between calculated and measured X-ray diffraction patterns and between experimental and calculated basal spacings.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.; Okuzawa, K.; Aggarwal, S. G.; Kanaya, Y.; Wang, Z. F.
2013-08-01
Aerosol (TSP) samples were collected at the summit of Mount Tai (elevation: 1534 m a.s.l., 36.25° N, 117.10° E) located in the North China Plain using a high-volume air sampler and pre-combusted quartz filters. Sampling was conducted on day/night or 3 h basis in the period from 29 May to 28 June 2006 during the field burning of wheat straw residue and the post-burning season. The filter samples were analyzed for low-molecular-weight dicarboxylic acids, ketoacids and α-dicarbonyls using capillary gas chromatography (GC) and GC-MS employing water extraction and butyl ester derivatization. Molecular distributions of dicarboxylic acids (C2-C11, 220-6070 ng m-3) were characterized by a predominance of oxalic (C2) acid (105-3920 ng m-3) followed by succinic (C4) or malonic (C3) acid. Unsaturated aliphatic diacids, including maleic (M), isomaleic (iM) and fumaric (F) acids, were also detected together with aromatic diacids (phthalic, isophthalic and terephthalic acids). ω-oxocarboxylic acids (C2-C9, 24-610 ng m-3) were detected as the second most abundant compound class with the predominance of glyoxylic acid (11-360 ng m-3), followed by α-ketoacid (pyruvic acid, 3-140 ng m-3) and α-dicarbonyls (glyoxal, 1-230 ng m-3 and methylglyoxal, 2-120 ng m-3). We found that these levels (>6000 ng m-3 for diacids) are several times higher than those reported in Chinese megacities at ground levels. The concentrations of diacids increased from late May to early June, showing a maximum on 7 June, and then significantly decreased during the period 8-11 June, when the wind direction shifted from southerly to northerly. Similar temporal trends were found for ketocarboxylic acids and α-dicarbonyls as well as total carbon (TC) and water-soluble organic carbon (WSOC). The temporal variations of water-soluble organics were interpreted by the direct emission from the field burning of agricultural wastes (wheat straw) in the North China Plain and the subsequent photochemical oxidation of volatile and semi-volatile organic precursors emitted from field burning as well as dark ozonolysis of volatile organic compounds and other organics, accretion reactions and oxidation of nonvolatile organics such as unsaturated fatty acids. This study demonstrates that the field burning of agricultural wastes in early summer strongly influenced the air quality of the free troposphere over the North China Plain.
NASA Astrophysics Data System (ADS)
Nandy, Purnendu; Nayak, Amrita; Biswas, Sharmita Nandy; Pedireddi, V. R.
2016-03-01
Solid state structures of 2,4-diamino-6-(4-methylphenyl)-1,3,5-triazine, 1, in the form of methanol and dimethylsulfoxide (DMSO) solvates, as well as supramolecular assemblies of 1 with various aliphatic dicarboxylic acids, oxalic (a), malonic (b), succinic (c), glutaric (d) and adipic (e) have been reported. Analysis of the assemblies has been carried out by single crystal X-ray diffraction and thermal methods. Triazine 1 yields anhydrous molecular adducts with acids a-d, upon co-crystallization either from CH3OH and DMSO solvents. However acid e gives anhydrous adduct from DMSO solvent, while it gives a methanol adduct from CH3OH. Structure determination reveals that molecular adducts 1a, 1d and 1e are in a 2:1 ratio of 1 and the corresponding acid. However the ratio is 1:1, in 1b, perhaps due to the involvement of one of the acid groups in the intramolecular hydrogen bonding and in adduct 1c the ratio observed is 3:2. Structural features in all these assemblies have been rationalised in terms of various recognition patterns formed between the acceptor and donor groups. A noteworthy feature is that -COOH groups in acid a establish interaction with 1 through amino groups, while such interactions are observed to be through hetero -N atoms in case of the acids b-e.
Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V
2006-06-28
A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.
Water soluble dicarboxylic acids and related compounds in Antarctic aerosols
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; SeméRé, Richard; Imai, Yoshie; Fujii, Yoshiyuki; Hayashi, Masahiko
1996-08-01
Antarctic aerosols collected at Syowa Station were studied for water soluble organic compounds by employing a water extraction and dibutyl ester derivatization and using a capillary gas chromatography (GC) and GC/mass spectrometry (GC/MS). Total carbon and nitrogen were also determined. A homologous series of α,ω-dicarboxylic acids (C2-C11), ω-oxocarboxylic acids (C2-C9), and α-dicarbonyls (C2-C3) were detected, as well as pyruvic acid and aromatic (phthalic) diacid. Succinic (C4) or oxalic (C2) acid was found to be the dominant diacid species, followed by azelaic (C9), adipic (C6), or malonic (C3) acid. Concentration range of the total diacids was 5.9-88 ng m-3, with an average of 29 ng m-3. Highest concentrations were observed in the summer sample with a predominance of succinic acid (61.5 ng m-3), which comprised approximately 70% of the total diacids and accounted for 3.5% of total aerosol carbon (1020 ng m-3). The succinic acid (C4) is likely produced by photooxidation of 4-oxocarboxylic acids, which are present in the atmosphere as intermediates of the photooxidation of unsaturated fatty acids. These results indicate that the Antarctic organic aerosols originate from marine-derived lipids and are transformed largely by photochemical oxidations. ω-Oxocarboxylic acids (C2-C9, 0.36-3.0 ng m-3) also showed the highest concentration in the summer sample, again suggesting a secondary production in the atmosphere of the Antarctic and in the Southern Ocean.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, O.K.; Crouse, D.J.; Mailen, J.C.
1980-12-17
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
Method for cleaning solution used in nuclear fuel reprocessing
Tallent, Othar K.; Crouse, David J.; Mailen, James C.
1982-01-01
Nuclear fuel processing solution consisting of tri-n-butyl phosphate and dodecane, with a complex of uranium, plutonium, or zirconium and with a solvent degradation product such as di-n-butyl phosphate therein, is contacted with an aqueous solution of a salt formed from hydrazine and either a dicarboxylic acid or a hydroxycarboxylic acid, thereby removing the aforesaid complex from the processing solution.
Hydroisomerization of n-dodecane over Pt/Al-MCM-48 catalysts.
Yun, Soyoung; Park, Young-Kwon; Jeong, Soon-Yong; Han, Jeongsik; Jeon, Jong-Ki
2014-04-01
The objective of this study is to evaluate the catalytic potential of Pt/Al-MCM-48 catalysts in hydroisomerization of n-dodecane. The effects of the Si/Al ratio and platinum loading on the acid characteristics of Al-MCM-48 and the catalytic performance in n-dodecane hydroisomerization were analyzed. The catalysts were characterized by X-ray diffraction, nitrogen adsorption, infrared spectroscopy of pyridine adsorption, and temperature programmed desorption of ammonia. The number of weak strength acid sites on Al-MCM-48 increased with 0.5 wt% platinum loading. The weak strength acid sites of Pt/Al-MCM-48 catalysts were ascribed to Lewis acid sites, which can be confirmed by NH3-TPD and FTIR spectra of pyridine adsorption. Iso-dodecane can be produced with high selectivity in n-dodecane hydrosisomerization over Pt/Al-MCM-48 catalysts. This is attributed to the mild acidic properties of Pt/Al-MCM-48 catalysts.
De Rosa, Michael; Arnold, David; Hartline, Douglas; Truong, Linda; Verner, Roman; Wang, Tianwei; Westin, Christian
2015-12-18
Reaction of 3-aminopyrrole (as its salt) with trifluoromethyl-β-diketones gave γ-1H-pyrrolo[3,2-b]pyridines via reaction at the less reactive carbonyl group. The trifluoromethyl group increased the electrophilicity of the adjacent carbonyl group and decreased the basicity of the hydroxyl group of the CF3 amino alcohol formed. This amino alcohol was formed faster, but its subsequent dehydration to the β-enaminone was slow resulting in the preferential formation of the γ-regioisomer. Reaction of 4,4,4-trifluoro-1-phenyl-1,3-butadione with 3-aminopyrrole was carried out using a series of 6 amine buffers. Yields of the α-1H-pyrrolo[3,2-b]pyridine increased as the pKa of the amine buffer decreased. Surprisingly the yield went down at higher pKas. There was a change in mechanism as the reaction mixture became more basic. With strong amines trifluoromethyl-β-diketones were present mainly or completely as the enolate. Under reductive conditions (3-nitropyrrole/Sn/AcOH/trifluoromethyl-β-diketone) the α-1H-pyrrolo[3,2-b]pyridine was the major product as a result of Lewis acid catalysis by Sn(2+). Similar α-regiochemistry was observed when the reaction of the 3-aminopyrrole salt with trifluoromethyl-β-diketones was carried out in the presence of base and tin(II) acetate.
Lamp, Jessica; Keyser, Britta; Koeller, David M; Ullrich, Kurt; Braulke, Thomas; Mühlhausen, Chris
2011-05-20
The inherited neurodegenerative disorder glutaric aciduria type 1 (GA1) results from mutations in the gene for the mitochondrial matrix enzyme glutaryl-CoA dehydrogenase (GCDH), which leads to elevations of the dicarboxylates glutaric acid (GA) and 3-hydroxyglutaric acid (3OHGA) in brain and blood. The characteristic clinical presentation of GA1 is a sudden onset of dystonia during catabolic situations, resulting from acute striatal injury. The underlying mechanisms are poorly understood, but the high levels of GA and 3OHGA that accumulate during catabolic illnesses are believed to play a primary role. Both GA and 3OHGA are known to be substrates for Na(+)-coupled dicarboxylate transporters, which are required for the anaplerotic transfer of the tricarboxylic acid cycle (TCA) intermediate succinate between astrocytes and neurons. We hypothesized that GA and 3OHGA inhibit the transfer of succinate from astrocytes to neurons, leading to reduced TCA cycle activity and cellular injury. Here, we show that both GA and 3OHGA inhibit the uptake of [(14)C]succinate by Na(+)-coupled dicarboxylate transporters in cultured astrocytic and neuronal cells of wild-type and Gcdh(-/-) mice. In addition, we demonstrate that the efflux of [(14)C]succinate from Gcdh(-/-) astrocytic cells mediated by a not yet identified transporter is strongly reduced. This is the first experimental evidence that GA and 3OHGA interfere with two essential anaplerotic transport processes: astrocytic efflux and neuronal uptake of TCA cycle intermediates, which occur between neurons and astrocytes. These results suggest that elevated levels of GA and 3OHGA may lead to neuronal injury and cell death via disruption of TCA cycle activity. © 2011 by The American Society for Biochemistry and Molecular Biology, Inc.
Perdih, Andrej; Hrast, Martina; Barreteau, Hélène; Gobec, Stanislav; Wolber, Gerhard; Solmajer, Tom
2014-08-01
Enzymes catalyzing the biosynthesis of bacterial peptidoglycan represent traditionally a collection of highly selective targets for novel antibacterial drug design. Four members of the bacterial Mur ligase family-MurC, MurD, MurE and MurF-are involved in the intracellular steps of peptidoglycan biosynthesis, catalyzing the synthesis of the peptide moiety of the Park's nucleotide. In our previous virtual screening campaign, a chemical class of benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole derivatives exhibiting dual MurD/MurE inhibition properties was discovered. In the present study we further investigated this class of compounds by performing inhibition assays on all four Mur ligases (MurC-MurF). Furthermore, molecular dynamics (MD) simulation studies of one of the initially discovered compound 1 were performed to explore its geometry as well as its energetic behavior based on the Linear Interaction Energy (LIE) method. Further in silico virtual screening (VS) experiments based on the parent active compound 1 were conducted to optimize the discovered series. Selected hits were assayed against all Escherichia coli MurC-MurF enzymes in biochemical inhibition assays and molecules 10-14 containing benzene-1,3-dicarboxylic acid 2,5-dimethylpyrrole coupled with five member-ring rhodanine moiety were found to be multiple inhibitors of the whole MurC-MurF cascade of bacterial enzymes in the micromolar range. Steady-state kinetics studies suggested this class to act as competitive inhibitors of the MurD enzyme towards d-Glu. These compounds represent novel valuable starting point in the development of novel antibacterial agents. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.
2012-11-01
Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice was retreating. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coast of Antarctica. Because the marine aerosols that showed a depletion of C2 were collected under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7 to -24.7‰, suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range: -24.7‰ to -17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. -26.6‰) and C4 (-25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Ono, K.; Tachibana, E.; Charriére, B.; Sempéré, R.
2012-08-01
Oxalic and other small dicarboxylic acids have been reported as important water-soluble organic constituents of atmospheric aerosols from different environments. Their molecular distributions are generally characterized by the predominance of oxalic acid (C2) followed by malonic (C3) and/or succinic (C4) acids. In this study, we collected marine aerosols from the Arctic Ocean during late summer in 2009 when sea ice is retreated. The marine aerosols were analyzed for the molecular distributions of dicarboxylic acids as well as ketocarboxylic acids and α-dicarbonyls to better understand the source of water-soluble organics and their photochemical processes in the high Arctic marine atmosphere. We found that diacids are more abundant than ketoacids and α-dicarbonyls, but their concentrations are generally low (< 30 ng m-3), except for one sample (up to 70 ng m-3) that was collected near the mouth of Mackenzie River during clear sky condition. Although the molecular compositions of diacids are in general characterized by the predominance of oxalic acid, a depletion of C2 was found in two samples in which C4 became the most abundant. Similar depletion of oxalic acid has previously been reported in the Arctic aerosols collected at Alert after polar sunrise and in the summer aerosols from the coastal Antarctica. Because the marine aerosols that showed a depletion of C2 were observed under the overcast and/or foggy conditions, we suggest that a photochemical decomposition of oxalic acid may have occurred in aqueous phase of aerosols over the Arctic Ocean via the photo dissociation of oxalate-Fe (III) complex. We also determined stable carbon isotopic compositions (δ13C) of bulk aerosol carbon and individual diacids. The δ13C of bulk aerosols showed -26.5‰ (range: -29.7‰ to -24.7‰), suggesting that marine aerosol carbon is derived from both terrestrial and marine organic materials. In contrast, oxalic acid showed much larger δ13C values (average: -20.9‰, range: -24.7‰ to -17.0‰) than those of bulk aerosol carbon. Interestingly, δ13C values of oxalic acid were higher than C3 (av. -26.6‰) and C4 (-25.8‰) diacids, suggesting that oxalic acid is enriched with 13C due to its photochemical processing (aging) in the marine atmosphere.
NASA Astrophysics Data System (ADS)
Wang, Li; Yan, Wei; He, Chi; Wen, Hang; Cai, Zhang; Wang, Zixuan; Chen, Zhengzheng; Liu, Weifeng
2018-03-01
Nitrogen-doped biochars derived from Phragmites australis (PA) were prepared using ammonium chloride (AC) and ammonium acetate (AA) as nitrogen sources by phosphoric acid activation via microwave assisted treatment. Their physicochemical properties, acid red 18 (AR18) adsorption performance and possible mechanisms were systematically evaluated. Nitrogen was successfully doped onto the biochar's surface in the formation of pyrrole-N, pyridine-N and oxidized-N with pyridine-N being the major component (64%). The pHiep and basic foundational groups of the biochars increased consequently however their surface areas slightly decreased. The adsorption kinetic data were best fit to the pseudo-second order model and the equilibrium data were well simulated by Freundlich model for all biochars, indicating the important role of chemical interactions. The maximum AR18 adsorption capacities of PAB-AA and PAB-AC were 1.41 and 1.18 times higher compared with the non N-doped biochar, which were mainly attributed to the π-π EDA interaction between the pyridine-N and AR18 as revealed by the comparison of XPS analyses before and after AR18 adsorption. Meanwhile, other mechanisms such as pore filling effect, Lewis acid-base interaction, electrostatic attraction and hydrogen bonding also existed as demonstrated by BET, XPS and FTIR analyses.
CINNAMIC ACID HYDROXYLASE IN SPINACH,
An acetone precipitate from an extract of spinach leaves catalysed the hydroxylation of trans- cinnamic acid to p-coumaric acid . The enzyme was...and addition of L-phenylalanine inhibited cinnamic acid hydroxylase activity. (Author)...Tetrahydrofolic acid and a reduced pyridine nucleotide coenzyme were necessary for maximum activity. Aminopterin was a potent inhibitor of the hydroxylating
Developing a novel catalytic approach for imine formation by using self-replicating catalyst
NASA Astrophysics Data System (ADS)
Nasir, Fatin Ilyani; Philp, Douglas; Hasbullah, Siti Aishah; Hassan, Nurul Izzaty
2015-09-01
Synthesis of imine compounds usually results in moderate yield due its reversibility characteristic and prone to hydrolysis. Hence, to increase the formation of imine compound, self-replicating catalyst was introduced. The self-replicating catalyst is the imine product itself. The first imine compound, 4-{[4-(3,5-Dimethyl-phenylcarbamoyl)-benzylidene]-amino}-phenyl)-acetic acid has been synthesized from 4-Amino-N-(3,5-dimethyl-phenyl)-benzamide and (4-formyl-phenyl)-acetic acid. Simultaneously, 4-formylbenzoic acid was reacted with thionyl chloride to produce 4-formylbenzoyl chloride, which was then reacted with 2-amino-4,6-dimethylpyridine in the presence of triethylamine to afford N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide. N-(4,6-dimethyl-pyridin-2-yl)-4-formyl-benzamide formed then reacted with 4-amino-2-methylbenzoic acid to form the second imine derivative, 4-{[4-(4,6-dimethyl-pyridin-2-ylcarbamoyl)-benzylidene]-amino}-2-methyl-benzoic acid. The concentration time profile for the synthesis of self-replicating imine 1 reveals the classic sigmoidal shape characteristics of an autocatalytic process and the rate of the reaction are higher than that observed in the absence of recognition. In order to demonstrate the nature of self-replicating catalyst, a preformed imine 1 was doped into the reaction mixture of amine 1 and the corresponding aldehyde, 4-formylbenzoic acid. The insertion of substoichiometric amounts (15 mol%) of imine 1 at the start of the reaction has accelerated the rate formation of imine 1.
Rhie, Mi Na; Yoon, Hyo Eun; Oh, Hye Yun; Zedler, Sandra; Unden, Gottfried; Kim, Ok Bin
2014-07-01
Actinobacillus succinogenes, which is known to produce large amounts of succinate during fermentation of hexoses, was able to grow on C4-dicarboxylates such as fumarate under aerobic and anaerobic conditions. Anaerobic growth on fumarate was stimulated by glycerol and the major product was succinate, indicating the involvement of fumarate respiration similar to succinate production from glucose. The aerobic growth on C4-dicarboxylates and the transport proteins involved were studied. Fumarate was oxidized to acetate. The genome of A. succinogenes encodes six proteins with similarity to secondary C4-dicarboxylate transporters, including transporters of the Dcu (C4-dicarboxylate uptake), DcuC (C4-dicarboxylate uptake C), DASS (divalent anion : sodium symporter) and TDT (tellurite resistance dicarboxylate transporter) family. From the cloned genes, Asuc_0304 of the DASS family protein was able to restore aerobic growth on C4-dicarboxylates in a C4-dicarboxylate-transport-negative Escherichia coli strain. The strain regained succinate or fumarate uptake, which was dependent on the electrochemical proton potential and the presence of Na(+). The transport had an optimum pH ~7, indicating transport of the dianionic C4-dicarboxylates. Transport competition experiments suggested substrate specificity for fumarate and succinate. The transport characteristics for C4-dicarboxylate uptake by cells of aerobically grown A. succinogenes were similar to those of Asuc_0304 expressed in E. coli, suggesting that Asuc_0304 has an important role in aerobic fumarate uptake in A. succinogenes. Asuc_0304 has sequence similarity to bacterial Na(+)-dicarboxylate cotransporters and contains the carboxylate-binding signature. Asuc_0304 was named SdcA (sodium-coupled C4-dicarboxylate transporter from A. succinogenes). © 2014 The Authors.
NASA Astrophysics Data System (ADS)
Dirri, F.; Palomba, E.; Longobardo, A.; Zampetti, E.
2016-02-01
We present here a novel experimental set-up that is able to measure the enthalpy of sublimation of a given compound by means of piezoelectric crystal microbalances (PCMs). The PCM sensors have already been used for space measurements, such as for the detection of organic and non-organic volatile species and refractory materials in planetary environments. In Earth atmospherics applications, PCMs can be also used to obtain some physical-chemical processes concerning the volatile organic compounds (VOCs) present in atmospheric environments. The experimental set-up has been developed and tested on dicarboxylic acids. In this work, a temperature-controlled effusion cell was used to sublimate VOC, creating a molecular flux that was collimated onto a cold PCM. The VOC recondensed onto the PCM quartz crystal, allowing the determination of the deposition rate. From the measurements of deposition rates, it has been possible to infer the enthalpy of sublimation of adipic acid, i.e. ΔHsub : 141.6 ± 0.8 kJ mol-1, succinic acid, i.e. 113.3 ± 1.3 kJ mol-1, oxalic acid, i.e. 62.5 ± 3.1 kJ mol-1, and azelaic acid, i.e. 124.2 ± 1.2 kJ mol-1. The results obtained show an accuracy of 1 % for succinic, adipic, and azelaic acid and within 5 % for oxalic acid and are in very good agreement with previous works (within 6 % for adipic, succinic, and oxalic acid and within 11 % or larger for azelaic acid).
Liquid crystalline epoxy networks with exchangeable disulfide bonds
Li, Yuzhan; Zhang, Yuehong; Rios, Orlando; ...
2017-06-09
In this study, a liquid crystalline epoxy network (LCEN) with exchangeable disulfide bonds is synthesized by polymerizing a biphenyl-based epoxy monomer with an aliphatic dicarboxylic acid curing agent containing a disulfide bond. The effect of disulfide bonds on curing behavior and liquid crystalline (LC) phase formation of the LCEN is investigated. The presence of the disulfide bonds results in an increase in the reaction rate, leading to a reduction in liquid crystallinity of the LCEN. In order to promote LC phase formation and stabilize the self-assembled LC domains, a similar aliphatic dicarboxylic acid without the disulfide bond is used asmore » a co-curing agent to reduce the amount of exchangeable disulfide bonds in the system. After optimizing the molar ratio of the two curing agents, the resulting LCEN exhibits improved reprocessability and recyclability because of the disulfide exchange reactions, while preserving LC properties, such as the reversible LC phase transition and macroscopic LC orientation, for shape memory applications.« less
2015-01-01
The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a–f) and 2,2′-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a–f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a–e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a–e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product. PMID:24620711
Izydore, Robert A; Jones, Joseph T; Mogesa, Benjamin; Swain, Ira N; Davis-Ward, Ronda G; Daniels, Dwayne L; Kpakima, Felicia Frazier; Spaulding-Phifer, Sharnelle T
2014-04-04
The synthesis of the title compounds was carried out by reacting dicarboxylic acid chlorides with oximes in the presence of excess triethylamine. Disubstituted malonyl chlorides gave 2-alkenyl-4,4-dialkyl-3,5-isoxazolidinediones (8a-f) and 2,2'-ethylidene-bis[4,4-dialkyl-3,5-isoxazolidinedione]s (9a-f). Compounds 9 were formed from 8 and its N-unsubstituted 3,5-isoxazolidinedione decomposition product. Phthaloyl chlorides reacted with acetone oxime to yield 3-(1-methylethenyl)-1H-2,3-benzoxazine-1,4(3H)-diones (16a-e). Products 16 spontaneously decomposed to give N-unsubstituted 1H-2,3-benzoxazine-1,4(3H)-diones (17a-e) at rates that were dependent on temperature and solvent. Kinetic studies showed that two of the compounds decomposed by zero-order kinetics under neutral conditions. Butanedioyl chloride did not produce a cyclic product.
NASA Astrophysics Data System (ADS)
Zhang, Yan-Feng; Zhu, Na; Komeda, T.
The fabrication of Mn-based coordination networks on a Au(1 1 1) substrate with 4-4 '-biphenyl dicarboxylic acid (BDA) as the linker molecule was investigated by scanning tunneling microscopy. Intriguing structures of ladder and rectangular-shaped networks were obtained by controlling the ratios of deposited amount of BDA molecules and Mn atoms. These structures are well explained by models in which BDA molecules occupy the perimeter of the rectangles and a pair of two Mn atoms are placed at the lattice points. For the rectangular structure, further two phases of a rectangular and a square networks were identified in which the paired Mn atoms were directing an identical direction and 90° rotated in an alternate manner, respectively. In addition, it was revealed that the open space surrounded by rectangle BDA molecules could capture a dimer of C60 molecules which were deposited on the Mn-based BDA networks.
Microbial Transformation of Dicarboxylic Acids by Airborne Bacteria
NASA Astrophysics Data System (ADS)
Cote, V.; Ariya, P.
2004-05-01
Organic aerosols are assumed to be key players in driving climatic changes and can cause health problems for human. Dicarboxylic acids (DCA) include a large fraction of identified important class of organic aerosols. In addition to direct sources, DCA are partly formed as the result of ozonolysis of terpenes and cyclic alkenes. Previous works in our laboratory show that airborne fungi collected from urban and suburban air play an important role in the transformation of severals organic aerosols such as DCA. Our present study focuses on understanding the potential chemical transformation induced by airborne bacteria and on identification of the transformation products. Airborne bacteria have been collected using a biosampler and cultivated on a solid media. Each bacterial colony is being tested by HPLC for their ability to transform DCA in liquid cultures. Also, GC-MS, SPME and NMR are being used to identify the metabolites generated from the transformation. We will present our preliminary results and we will discuss the application of bacterial activities on the chemical transformation of organics in atmosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Yue; Yang, Meng-Lin; Hu, Huai-Ming, E-mail: ChemHu1@NWU.EDU.CN
Six new coordination polymers, [ZnLCl]{sub n}(1), [ZnL{sub 2}]{sub n}·2nH{sub 2}O (2), [Zn{sub 2}L(o-bdc)(OH)]{sub n}·0.5nH{sub 2}O (3), [Zn{sub 2}L(m-bdc)(OH)]{sub n}·nH{sub 2}O (4), [Zn{sub 2}L{sub 2}(p-bdc) (H{sub 2}O){sub 2}]{sub n}·nH{sub 2}O (5), [Zn{sub 2}L(1,2,4-btc)(H{sub 2}O)]{sub n}(6), (HL=4′-(3-carboxyphenyl)- 3,2′:6′,3″-terpyridine, H{sub 2}(o-bdc)= benzene-1,2-dicarboxylic acid, H{sub 2}(m-bdc)= benzene-1,3-dicarboxylic acid, H{sub 2}(p-bdc)= benzene-1,4-dicarboxylic acid, H{sub 3}(1,2,4-btc)= benzene-1,2,4-tricarboxylic acid) have been synthesized under the hydrothermal conditions. Compound 1 displays a 3-connected 2D network structure with point symbol of {8"2.10}. Compound 2 exhibits 1D infinite loop chain structure. Compound 3 possesses a (3,8)-connected 3D framework composed of tetranuclear units with point symbol of {4"3}{sub 2}{4"6.6"1"8.8"4}. Compound 4 featuresmore » a typical 2D hcb network based on tetranuclear zinc(II) units with point symbol of {4"4.6"2}. Compound 5 presents a classical two-fold penetration sql network with point symbol of {6"3}. Compound 6 can be seen as a (3,3,6)-connected 3D net with point symbol of {4"2.6"4.8"9}{4"2.6}{6"3}. The thermal stability and luminescent properties of compounds 1–6 in the solid state are discussed in detail. - Graphical abstract: Six new Zn(II) coordination polymers based on multicarboxylate and terpyridyl derivative ligands have synthesized under the hydrothermal conditions and the thermal stability and luminescence are discussed. Display Omitted.« less
Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush
2015-02-01
Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities.
Gheibi, Nematollah; Taherkhani, Negar; Ahmadi, Abolfazl; Haghbeen, Kamahldin; Ilghari, Dariush
2015-01-01
Objective(s): Involvement of tyrosinase in the synthesis of melanin and cell signaling pathway has made it an attractive target in the search for therapeutic inhibitors for treatment of different skin hyperpigmentation disorders and melanoma cancers. Materials and Methods: In the present study, we conducted a comprehensive kinetic analysis to understand the mechanisms of inhibition imposed by 2-amino benzoic acid, 4-amino benzoic acid, nicotinic acid, and picolinic acid on the monophenolase and diphenolase activities of the mushroom tyrosinase, and then MTT assay was exploited to evaluate their toxicity on the melanoma cells. Results: Kinetic analysis revealed that nicotinic acid and picolinic acid competitively restricted the monophenolase activity with inhibition constants (Ki) of 1.21 mM and 1.97 mM and the diphenolase activity with Kis of 2.4 mM and 2.93 mM, respectively. 2-aminobenzoic acid and 4-aminobenzoic acid inhibited the monophenolase activity in a non-competitive fashion with Kis of 5.15 µM and 3.8 µM and the diphenolase activity with Kis of 4.72 µM and 20 µM, respectively. Conclusion: Our cell-based data revealed that only the pyridine derivatives imposed cytotoxicity in melanoma cells. Importantly, the concentrations of the inhibitors leading to 50% decrease in the cell density (IC50) were comparable to those causing 50% drop in the enzyme activity, implying that the observed cytotoxicity is highly likely due to the tyrosinase inhibition. Moreover, our cell-based data exhibited that the pyridine derivatives acted as anti-proliferative agents, perhaps inducing cytotoxicity in the melanoma cells through inhibition of the tyrosinase activities. PMID:25810885
NASA Astrophysics Data System (ADS)
Gowda, Divyavani; Kawamura, Kimitaka
2018-05-01
Concentrations of homologous hydroxy-dicarboxylic acids (diacids) (hC3-hC6) and keto-diacid (oxaloacetic acid) were measured in the atmospheric aerosols collected at Chichijima Island (27.04° N, 142.13° E) in the western North Pacific from December 2010 to November 2011. The monthly averaged concentrations of hydroxy-diacids and oxaloacetic acid were significantly higher in spring followed by winter and autumn. Molecular distributions of hydroxy-diacids demonstrated that malic acid was the most abundant species in all four seasons, followed by tartronic acid in winter and spring and 3- and 2-hydroxyglutaric acids in summer and autumn. Hydroxy-diacids and keto-diacid maximized in spring and winter when air masses originated from the Asian continent with westerly winds. The concentrations of total hydroxy-diacids and oxaloacetic acid ranged from 0.1 to 27.3 ng m-3 and <0.005 to 2 ng m-3, respectively. The enhanced concentrations of diacids and their intermediates in winter and spring are associated with a long-range atmospheric transport of pollutants from East Asia to remote Chichijima Island followed by photochemical processing of organic aerosols. Seasonal molecular distribution of hydroxy-diacids and oxaloacetic acid was found to be dependent on the source strengths and plausible photochemical processing to form smaller diacids. Moderate to strong correlations among hydroxy-diacids, oxaloacetic acid and low molecular weight (LMW) diacids suggest that hydroxy-diacids and oxaloacetic acid are the intermediates in the photochemical oxidation of LMW diacid. Hence, photochemical formation of the most abundant LMW diacids, i.e., oxalic acid, could be produced from hydroxy- and keto-diacid as intermediates.
USSR and Eastern Europe Scientific Abstracts, Biomedical and Behavioral Sciences, Number 79
1977-10-13
1 Western. USSR UDC 577.154.3 DENATURATION OF ALPHA-AMYLASE OF BACILLUS SUBTILIS IN AN ACID MEDIUM Moscow PRIKLADNAYA BIOKHIMIYA I...42,000 units per gram, the protein content is 140 xng/g. KMDM gel is a carboxyl cationite based on methacrylic acid . The denaturation rate constants of...tables 3; refer- ences 10: 9 Russian, 1 English. 13 UDC 577.1.547.965:612.8.015:591.35 USSR CONTENT OF DICARBOXYLIC AMINO ACIDS AND y-AMINOBUTYRIC
Interfacial assembly structures and nanotribological properties of saccharic acids.
Shi, Hongyu; Liu, Yuhong; Zeng, Qingdao; Yang, Yanlian; Wang, Chen; Lu, Xinchun
2017-01-04
Saccharides have been recognized as potential bio-lubricants because of their good hydration ability. However, the interfacial structures of saccharides and their derivatives are rarely studied and the molecular details of interaction mechanisms have not been well understood. In this paper, the supramolecular assembly structures of saccharic acids (including galactaric acid and lactobionic acid), mediated by hydrogen bonds O-HN and O-HO, were successfully constructed on a highly oriented pyrolytic graphite (HOPG) surface by introducing pyridine modulators and were explicitly revealed by using scanning tunneling microscopy (STM). Furthermore, friction forces were measured in the saccharic acid/pyridine co-assembled system by atomic force microscopy (AFM), revealing a larger value than a pristine saccharic acid system, which could be attributed to the stronger tip-assembled molecule interactions that lead to the higher potential energy barrier needed to overcome. The effort on saccharide-related supramolecular self-assembly and nanotribological behavior could provide a novel and promising pathway to explore the interaction mechanisms underlying friction and reveal the structure-property relationship at the molecular level.
Pérez-García, Fernando; Vasco-Cárdenas, María F; Barreiro, Carlos
2016-09-02
Production enhancement of industrial microbial products or strains has been traditionally tackled by mutagenesis with chemical methods, irradiation or genetic manipulation. However, the final yield increase must go hand in hand with the resistance increasing against the usual inherent toxicity of the final products. Few studies have been carried out on resistance improvement and even fewer on the initial selection of naturally-generated biotypes, which could decrease the artificial mutagenesis. This fact is vital in the case of GRAS microorganisms as Corynebacterium glutamicum involved in food, feed and cosmetics production. The characteristic wide diversity and plasticity in terms of their genetic material of Actinobacteria eases the biotypes generation. Thus, differences in morphology, glutamate and lysine production and growth in media supplemented with dicarboxylic acids were analysed in four biotypes of C. glutamicum ATCC 13032. A 2D-DIGE analysis of these biotypes growing with itaconic acid allowed us to define their differences. Thus, an optimized central metabolism and better protection against the generated stress conditions present the CgL biotype as a suitable platform for production of itaconic acid, which is used as a building block (e.g.: acrylic plastic). This analysis highlights the preliminary biotypes screening as a way to reach optimal industrial productions.
NASA Astrophysics Data System (ADS)
Nechipadappu, Sunil Kumar; Trivedi, Darshak R.
2017-08-01
Salts of common anti-inflammatory drugs mefenamic acid (MFA), tolfenamic acid (TFA) and naproxen (NPX) with various pyridine derivatives (4-amino pyridine (4AP), 4-dimethylaminopyridine (DMAP) and 2-amino pyridine (2AP)) were synthesized by crystal engineering approach based on the pKa values of API's and the salt former. All the salts were characterized systematically by various spectroscopic methods including FT-IR and 1H NMR and the crystal structure was determined by single-crystal X-ray diffraction techniques (SCXRD). DMAP salt of NPX and 2AP salts of MFA and TFA were not obtained in the salt screening experiments. All the molecular salts exhibited 1:1 molecular stoichiometry in the asymmetric unit and except NPX-2AP salt, all the molecular salts included a water molecule in the crystal lattice. Physicochemical and structural properties between drug-drug molecular salts of MFA-4AP, TFA-4AP and NPX-4AP have been evaluated and it was found that these molecular salts were found to be stable for a time period of six months at ambient condition and further hydration of molecular salts were not observed even at accelerated humid conditions (∼75% RH). It was found that 4AP salts of MFA and TFA and DMAP salts of MFA and TFA are isostructural.
Crystal Structure and Properties of Imidazo-Pyridine Ionic Liquids.
Farren-Dai, Marco; Cameron, Stanley; Johnson, Michel B; Ghandi, Khashayar
2018-07-05
Computational studies were performed on novel protic ionic liquids imidazolium-[1,2-a]-pyridine trifluoroacetate [ImPr][TFA] synthesized by the reaction of imidazo-[1,2a]-pyridine (ImPr) with trifluoroacetic acid (TFA), and on fused salt imidazolium-[1,2-a]-pyridine maleamic carbonate [ImPr][Mal] synthesized by reaction of ImPr with maleamic acid (Mal). Synthesis was performed as one-pot reactions, which applies green chemistry tenets. Both these compounds begin to decompose at 180°C. Our computational studies suggest another thermal reaction channel, in which [ImPr][Mal] can also thermally polymerizes to polyacrylamide which then cyclizes. This is thermal product remains stable up to 700 degrees, consistent with our thermogravimetric studies. [ImPr][TFA] exhibited good conductivity and ideal ionic behavior, as evaluated by a Walden plot. X-ray crystallography of [ImPr][TFA] revealed a tightly packed system for the crystals as a result of strong ionic interaction, pi-stacking, and fluorine-CH interactions. Both synthesized compounds exhibited some CO 2 absorptivity, with [ImPr][Mal] outperforming [ImPr][TFA] in this regard. The quantum chemistry based computational methods can shed light on many properties of these ionic liquids, but they are challenged in fully describing their ionic nature. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengyueqing@nbu.edu.cn; Wang, Jin-Jian
A new bismuth-based polymer, [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O (H{sub 2}pydc=pyridine-2,5-dicarboxylic acid, bpe=trans-bis(4-pyridyl) ethylene) has been hydrothermally synthesized. Transient photocurrent response and electrochemical impedance spectroscopy studies indicate that the synthesized polymer with efficient charge separation and transportation can be used as a potential photocatalyst. So we use it for the degradation of rhodamine B (RhB) dye wastewater under visible light. The comparative study on commercial Bi{sub 2}O{sub 3} shows [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O has the higher photocatalytic performance, with the degradation rate of 97% and 2% within 100 min for [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O and commercial Bi{sub 2}O{sub 3} respectively. Additionally, the five cyclemore » reproducibility results of [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O implies that it can be used as a stable photocatalyst. - Graphical abstract: We report a new 1D coordination polymer [Hbpe][Bi(Hpydc){sub 2}(pydc)]·H{sub 2}O by a facile hydrothermal method. The Bi-CP shows good photoelectric property and photocatalytic activity for RhB degradation under visible white LED lamp irradiation. And the stability of the visible-light-responsive bismuth-based coordination polymer has also been examined. - Highlights: • A new Bi(III) coordination polymer is hydrothermally synthesized. • The Bi-CP shows good photoelectric and photocatalytic properties. • Bi-CP shows higher activity than the commercial Bi{sub 2}O{sub 3} for RhB degradation.« less
Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature.
Rao, Lei; Xu, Zhenzhen; Wang, Yongtao; Zhao, Feng; Hu, Xiaosong; Liao, Xiaojun
2015-07-16
The objective of this study was to investigate the inactivation of the Bacillus subtilis spores by high pressure CO2 combined with high temperature (HPCD+HT) and to analyze the clumping effect of the spores on their HPCD+HT resistance. The spores of B. subtilis were subjected to heat at 0.1 MPa and HPCD at 6.5-25 MPa, and 82 °C, 86 °C, and 91 °C for 0-120 min. The spores were effectively inactivated by HPCD+HT, but a protective effect on the spores was also found, which was closely correlated to the pressure, temperature and time. The spores treated by HPCD+HT at 6.5 and 10 MPa exhibited a two-stage inactivation curve of shoulder and log-linear regions whereas the spores at 15-25 MPa exhibited a three-stage inactivation curve of shoulder, log-linear and tailing regions, and these curves were well fitted to the Geeraerd model. Approximately 90% of pyridine-2,6-dicarboxylic acid (DPA) was released after HPCD+HT and the 90% DPA release time depend on the pressure and temperature. Moreover, the spore clumping in suspensions was examined by dynamic light scattering. The particle size of the spore suspensions increased with the increase of pressure, temperature and time, indicating the spore clumping. 0.1% Tween 80 as a surfactant inhibited the spore clumping and increased the inactivation ratio of the spores by HPCD+HT. These results indicated that the spore clumping enhanced the spores' resistance to HPCD+HT and induced a protective effect. Copyright © 2015 Elsevier B.V. All rights reserved.
Azelaic acid (15% gel) in the treatment of acne rosacea.
Gupta, Aditya K; Gover, Melissa D
2007-05-01
In December of 2002, the FDA approved azelaic acid 15% gel for the topical treatment of inflammatory papules and pustules of mild to moderate rosacea. Azelaic acid is a saturated dicarboxylic acid, which is naturally occurring and has been used in the treatment of rosacea, acne, and melasma. The 15% gel has a high efficacy and is generally well tolerated, with the local irritation (burning, stinging, itching, and scaling) being typically mild and transient. Azelaic acid 15% gel is considered effective and safe as a therapy for inflammatory papulo-pustular rosacea and is suitable for use on all skin types.
Diaz, E; Zacarias, A K; Pérez, S; Vanegas, O; Köhidai, L; Padrón-Nieves, M; Ponte-Sucre, A
2015-11-01
In the sand-fly mid gut, Leishmania promastigotes are exposed to acute changes in nutrients, e.g. amino acids (AAs). These metabolites are the main energy sources for the parasite, crucial for its differentiation and motility. We analysed the migratory behaviour and morphological changes produced by aliphatic, monocarboxylic, dicarboxylic, heterocyclic and sulphur-containing AAs in Leishmania amazonensis and Leishmania braziliensis and demonstrated that L-methionine (10-12 m), L-tryptophan (10-11 m), L-glutamine and L-glutamic acid (10-6 m), induced positive chemotactic responses, while L-alanine (10-7 m), L-methionine (10-11 and 10-7 m), L-tryptophan (10-11 m), L-glutamine (10-12 m) and L-glutamic acid (10-9 m) induced negative chemotactic responses. L-proline and L-cysteine did not change the migratory potential of Leishmania. The flagellum length of L. braziliensis, but not of L. amazonensis, decreased when incubated in hyperosmotic conditions. However, chemo-repellent concentrations of L-alanine (Hypo-/hyper-osmotic conditions) and L-glutamic acid (hypo-osmotic conditions) decreased L. braziliensis flagellum length and L-methionine (10-11 m, hypo-/hyper-osmotic conditions) decreased L. amazonensis flagellum length. This chemotactic responsiveness suggests that Leishmania discriminate between slight concentration differences of small and structurally closely related molecules and indicates that besides their metabolic effects, AAs play key roles linked to sensory mechanisms that might determine the parasite's behaviour.
Formulation of itraconazole nanococrystals and evaluation of their bioavailability in dogs.
De Smet, Lieselotte; Saerens, Lien; De Beer, Thomas; Carleer, Robert; Adriaensens, Peter; Van Bocxlaer, Jan; Vervaet, Chris; Remon, Jean Paul
2014-05-01
The aim of the study is to increase the bioavailability of itraconazole (ITRA) using nanosized cocrystals prepared via wet milling of ITRA in combination with dicarboxylic acids. Wet milling was used in order to create a nanosuspension of ITRA in combination with dicarboxylic acids. After spray-drying and bead layering, solid state was characterized by MDSC, XRD, Raman and FT-IR. The release profiles and bioavailability of the nanococrystalline suspension, the spray-dried and bead layered formulation were evaluated. A monodisperse nanosuspension (549±51nm) of ITRA was developed using adipic acid and Tween®80. Solid state characterization indicated the formation of nanococrystals by hydrogen bounds between the triazole group of ITRA and the carboxyl group of adipic acid. A bioavailability study was performed in dogs. The faster drug release from the nanocrystal-based formulation was reflected in the in vivo results since Tmax of the formulations was obtained 3h after administration, while Tmax of the reference formulation was observed only 6h after administration. This fast release of ITRA was obtained by a dual concept: manufacturing of nanosized cocrystals of ITRA and adipic acid via wet milling. Formation of stable nanosized cocrystals via this approach seems a good alternative for amorphous systems to increase the solubility and obtain a fast drug release of BCS class II drugs. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosendahl, L.; Pedersen, W.B.; Vance, C.P.
1990-05-01
Products of the nodule cytosol in vivo dark ({sup 14}C)CO{sub 2} fixation were detected in the plant cytosol as well as in the bacteroids of pea (Pisum sativum L. cv Bodil) nodules. The distribution of the metabolites of the dark CO{sub 2} fixation products was compared in effective (fix{sup +}) nodules infected by a wild-type Rhizobium leguminosarum (MNF 300), and ineffective (fix{sup {minus}}) nodules of the R. leguminosarum mutant MNF 3080. The latter has a defect in the dicarboxylic acid transport system of the bacterial membrane. The {sup 14}C incorporation from ({sup 14}C)CO{sub 2} was about threefold greater in themore » wild-type nodules than in the mutant nodules. Similarly, in wild-type nodules the in vitro phosphoenolpyruvate carboxylase activity was substantially greater than that of the mutant. Almost 90% of the {sup 14}C label in the cytosol was found in organic acids in both symbioses. The results indicate a central role for nodule cytosol dark CO{sub 2} fixation in the supply of the bacteroids with dicarboxylic acids.« less
NASA Astrophysics Data System (ADS)
Zhang, Y. Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.
2010-08-01
Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated aerosol samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2 = 0.79, n = 52, Ea = 126 ± 10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2 = 0.60, n = 56, Ea = 84 ± 9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.
NASA Astrophysics Data System (ADS)
Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.
2010-05-01
Filter samples of fine and coarse air particulate matter (PM) collected over a period of one year in central Europe (Mainz, Germany) were analyzed for water-soluble organic compounds (WSOCs), including the α- and β-pinene oxidation products pinic acid, pinonic acid and 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA), as well as a variety of dicarboxylic acids and nitrophenols. Seasonal variations and other characteristic features in fine, coarse, and total PM (TSP) are discussed with regard to aerosol sources and sinks in comparison to data from other studies and regions. The ratios of adipic acid and phthalic acid to azelaic acid indicate that the investigated samples were mainly influenced by biogenic sources. A strong Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature (R2=0.79, n=52, Ea=126±10 kJ mol-1, temperature range 275-300 K). Model calculations suggest that the temperature dependence observed for 3-MBTCA can be explained by enhanced photochemical production due to an increase of hydroxyl radical (OH) concentration with increasing temperature, whereas the influence of gas-particle partitioning appears to play a minor role. The results indicate that the OH-initiated oxidation of pinonic acid is the rate-limiting step in the formation of 3-MBTCA, and that 3-MBTCA may be a suitable tracer for the chemical aging of biogenic secondary organic aerosol (SOA) by OH radicals. An Arrhenius-type temperature dependence was also observed for the concentration of pinic acid (R2=0.60, n=56, Ea=84±9 kJ mol-1); it can be tentatively explained by the temperature dependence of biogenic pinene emission as the rate-limiting step of pinic acid formation.
One-step synthesis of pyridines and dihydropyridines in a continuous flow microwave reactor
Fusillo, Vincenzo; Jenkins, Robert L; Lubinu, M Caterina; Mason, Christopher
2013-01-01
Summary The Bohlmann–Rahtz pyridine synthesis and the Hantzsch dihydropyridine synthesis can be carried out in a microwave flow reactor or using a conductive heating flow platform for the continuous processing of material. In the Bohlmann–Rahtz reaction, the use of a Brønsted acid catalyst allows Michael addition and cyclodehydration to be carried out in a single step without isolation of intermediates to give the corresponding trisubstituted pyridine as a single regioisomer in good yield. Furthermore, 3-substituted propargyl aldehydes undergo Hantzsch dihydropyridine synthesis in preference to Bohlmann–Rahtz reaction in a very high yielding process that is readily transferred to continuous flow processing. PMID:24204407
NASA Astrophysics Data System (ADS)
Gierlus, Kelly M.; Laskina, Olga; Abernathy, Tricia L.; Grassian, Vicki H.
2012-01-01
Dicarboxylic acids, which make up a significant portion of the atmospheric organic aerosol, are emitted directly through biomass burning as well as produced through the oxidation of volatile organic compounds. Oxalic acid, the most abundant of the dicarboxylic acids, has been shown by recent field studies to be present in mineral dust aerosol particles. The presence of these internally mixed organic compounds can alter the water absorption and cloud condensation nuclei (CCN) abilities of mineral particles in the Earth's atmosphere. The University of Iowa's Multi-Analysis Aerosol Reactor System ( MAARS) was used to measure the CCN activity of internally mixed particles that were generated from a mixture of either calcite or polystyrene latex spheres (PSLs) in an aqueous solution of oxalic acid. Although PSL is not a mineral dust component, it is used here as a non-reactive, insoluble particle. CCN measurements indicate that the internally mixed oxalate/calcite particles showed nearly identical CCN activity compared to the original calcite particles whereas oxalic acid/PSL internally mixed particles showed much greater CCN activity compared to PSL particles alone. This difference is due to the reaction of calcite with oxalic acid, which produces a relatively insoluble calcium oxalate coating on the particle surface and not a soluble coating as it does on the PSL particle. Our results suggest that atmospheric processing of mineral dust aerosol through heterogeneous processes will likely depend on the mineralogy and the specific chemistry involved. Increase in the CCN activity by incorporation of oxalic acid are only expected for unreactive insoluble dust particles that form a soluble coating.
NASA Astrophysics Data System (ADS)
Tziaras, T.; Spyros, A.; Mandalakis, M.; Apostolaki, M.; Stephanou, E. G.
2010-05-01
Fine marine aerosols influence the climate system by acting as cloud condensation nuclei (CCN) in the atmosphere. The organic chemical composition and origin of the marine fine particulate matter are still largely unknown, because of the insufficient reports on in situ studies, the large variability in the emission from the sea, from the complex transfer of gases and particles at the air-sea interface, and the transport of aerosol particles from very distant sources. As important processes of formation of marine organic aerosol production we consider: transport of terrestrial particles, secondary organic aerosol (SOA) formation from the oxidation of biogenic dimethyl-sulfide (DMS), and biogenic particle emissions through sea spray. Specific compounds related to the above-mentioned processes have been proposed as molecular markers: e.g. n-alkanoic acids and n-alkanes (terrestrial particles), levoglucosan (biomass burning aerosol), aminoacids (biological terrestrial or marine particles), methanesulphonate (MSA) (DMS oxidation), C8 and C9 dicarboxylic acids and oxo-carboxylic acids (marine SOA) and other short-chain dicarboxylic acids (marine or terrestrial SOA), and humic-like compounds (emission of marine organic carbon). In our study, we made an effort to characterize the water-soluble organic fraction of marine aerosols collected at a background sampling site of Eastern Mediterranean (Finokalia, N35o20', E25o40', Island of Crete, Greece). The sampling period was 2007-2008. In order to identify and quantify the water-soluble organic compounds of marine aerosols determined in the present study we have used gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance spectroscopy (NMR) and ion chromatography (IC). The origin of air masses arriving in the study area was studied by using backward trajectories calculation (NOAA HYSPLIT Model). In addition, we have used the "MODIS fire products" for fire detects. The sampling period was 2007-2008. Measurements of collective parameters such as organic/elemental carbon (OC/EC), dissolved organic carbon (DOC), and aerosol surface active substances as methylene blue active substances (MBAS) were also performed. The concentration ranges for total suspended particles (TSP) was 12.3-61.1 microg m-3, for OC and EC 0.6-2.2 microg m-3 and 0.1-0.4 microg m-3 respectively, for DOC 0.7-1.8 microg m-3, and for MBAS 7.4-15.4 ng m-3. The average ratio OC/EC was 6.9 (+/- 3.5) and the proportion of DCO in relation to OC was 83 (+/-13) %, indicating a high degree of oxidation in the water-soluble organic matter. OC and DOC were statistically strongly correlated with the intensity of fire events in southern Europe. The analysis of the water soluble organic extract by GC/MS, NMR and revealed the presence of 130 individual organic compounds which made the 17% of DOC. The most significant categories were: I) Twenty (20) amino acids were determined as free (FAA) and combined (CAA) amino acids with an average concentration of 16 and 66 ng m-3 respectively. The average concentration of total amino acids (TAA) was 82 ng m-3. Glycine, glutamine, glutamic acid, aspartic acid and alanine made the 87% of the FAA fraction and glycine, alanine, glutamic acid, aspartic acid, valine and leucine the 87% of CAA. Statistically significant correlations were found between FAA and CAA, and MBAS and the intensity of fire events. II) Twenty six (26) n-alkanoic acids (C2-C14) were detected with an average concentration of 145 ng m-3. Acetic acid, tridecanoic and heneicosanoic acids demonstrated the highest correlation with fire events. III) Twenty two (22) saturated, unsaturated and branched dicarboxylic acids were analysed with an average concentration of 526 ng m-3. The highest statistical correlation with fire events was determined for the concentration of dicarboxylic acids with Cn larger than 6. IV) Thirty one (31) hydroxy-, oxo- and keto- carboxylic and dicarboxylic acids were also determined. Their average concentration was 126 ng m-3. The most significant statistical correlation with fire events were determined for the concentration of glycolic acid and keto-octanoic acid. V) Various aromatic aromatic acids and polycarboxylic acids, such as 4-hydroxy-benzoic acid, syringic acid and trans-7-carbomethoxy-2-octendioic acid have shown the highest concentration correlation with fire events. VI) Pinic and pinonic acids were present in relatively low concentrations (ca. 3 ng m-3). It is interesting that organosulfates of these acids were determined in the Eastern Mediterranean marine aerosol by using LC/MS. Our results show that fire events (biomass burning) in southern Europe is a major source of water-soluble oxygenated organic compounds in the marine atmosphere. The concurrent use of mass spectrometry and NMR techniques allowed a better determination of the organic content of marine aerosols.
Ligand exchange in quaternary alloyed nanocrystals--a spectroscopic study.
Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Kotwica, Kamil; Ostrowski, Andrzej; Malinowska, Karolina; Lisowski, Wojciech; Sobczak, Janusz W; Pron, Adam
2014-11-14
Exchange of initial, predominantly stearate ligands for pyridine in the first step and butylamine (BA) or 11-mercaptoundecanoic acid (MUA) in the second one was studied for alloyed quaternary Cu-In-Zn-S nanocrystals. The NMR results enabled us to demonstrate, for the first time, direct binding of the pyridine labile ligand to the nanocrystal surface as evidenced by paramagnetic shifts of the three signals attributed to its protons to 7.58, 7.95 and 8.75 ppm. XPS investigations indicated, in turn, a significant change in the composition of the nanocrystal surface upon the exchange of initial ligands for pyridine, which being enriched in indium in the 'as prepared' form became enriched in zinc after pyridine binding. This finding indicated that the first step of ligand exchange had to involve the removal of the surface layer enriched in indium with simultaneous exposure of a new, zinc-enriched layer. In the second ligand exchange step (replacement of pyridine with BA or MUA) the changes in the nanocrystal surface compositions were much less significant. The presence of zinc in the nanocrystal surface layer turned out necessary for effective binding of pyridine as shown by a comparative study of ligand exchange in Cu-In-Zn-S, Ag-In-Zn-S and CuInS2, carried out by complementary XPS and NMR investigations.
In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry...
40 CFR 721.3000 - Dicarboxylic acid monoester.
Code of Federal Regulations, 2010 CFR
2010-07-01
... prevent dermal contact for any person involved in any processing or use operation where dermal contact may... prevent contact or exposure. —Promptly remove contaminated non-imprevious clothing, wash before reuse... smoking. —Keep container closed. FIRST AID: In case of contact. EYES: Immediately flush with water for at...
40 CFR 180.293 - Endothall; tolerances for residues.
Code of Federal Regulations, 2014 CFR
2014-07-01
... established for residues of the herbicide endothall (7 - oxabicyclo[2.2.1] heptane-2,3-dicarboxylic acid) in...,-dimethylalkylamine salts as algicides or herbicides to control aquatic plants in canals, lakes, ponds, and other... indirect or inadvertent combined residues of the herbicide, endothall (7 - oxabicyclo[2.2.1] heptane-2,3...
Liner Technology Program. Volume 3. Liner Development Methodology Manual
1982-05-01
derivative of trimesic acid, trimenoyl-l- (2-ethyl) aziridine BNO Hydroxyl ethyl ester of carboxy-terminated polybutadiene Catocene Liquid ferrocene ...diisocyanate MAPO rris-l-(2-methyl) aziridinyl phosphine oxide I.’ lNA Methyl nedic anhydride; methyl endo-cis-cicyolo-2,2,1-5- heptene-2,3-dicarboxylic
Selective Mono-reduction of Pyrrole-2,5 and 2,4-Dicarboxylates.
Yasui, Eiko; Tsuda, Jyunpei; Ohnuki, Satoshi; Nagumo, Shinji
2016-01-01
Pyrrole-2,5-dicarboxylates were rapidly and selectively reduced to the corresponding mono-alcohol using 3 eq of diisobutylaluminum hydride at 0°C. Pyrrole-2,4-dicarboxylate showed the same reactivity; however, the selectivity decreased with pyrrole-3,4-dicarboxylate. When the nitrogen atom of the pyrrole-2,5-dicarboxylate is protected with a benzyl group, selective mono-reduction does not occur. Considering that furan-2,5-dicarboxylates did not give the corresponding mono-alcohol under the same conditions, the unprotected nitrogen atom of pyrrole apparently plays an important role in this selective mono-reduction.
Synthesis and antiplatelet activity of thioaryloxyacids analogues of clofibric acid.
Ammazzalorso, Alessandra; Amoroso, Rosa; Baraldi, Mario; Bettoni, Giancarlo; Braghiroli, Daniela; De Filippis, Barbara; Giampietro, Letizia; Tricca, Maria L; Vezzalini, Francesca
2005-09-01
The thiophene-, benzothiazole- and pyridine-thioaryloxyacids analogues of clofibric acid were synthesized and their antiplatelet activity was screened. Some compounds exhibited antiaggregating properties. The platelet-related haemostasis was measured on a PFA-100 analyzer using bull blood.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Xiu-Li; Wu, Xiao-Mei; Liu, Guo-Cheng
By tuning metal ions and combining with different dicarboxylates, four new semi-rigid thiophene-bis-pyridyl-bis-amide-based coordination polymers, namely, [Zn(3-bptpa)(1,3-BDC)]·DMA·2H{sub 2}O (1), [Zn(3-bptpa)(5-MIP)] (2), [Cd(3-bptpa)(1,3-BDC)]·2H{sub 2}O (3) and [Cd(3-bptpa)(5-MIP)]·4H{sub 2}O (4) (3-bptpa=N,N′-bis(pyridine-3-yl)thiophene-2,5-dicarboxamide, 1,3-H{sub 2}BDC=1,3-benzenedicarboxylic acid, 5-H{sub 2}MIP=5-methylisophthalic acid, DMA=N,N-dimethylacetamide), were solvothermally/hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction analyses, IR spectra, UV–vis diffuse-reflectance spectra (DRS), powder X-ray diffraction (PXRD) and thermal gravimetric analyses (TG). The structural analysis reveals that Zn-complexes 1 and 2 are similar 2D networks. While Cd-complexes 3 and 4 exhibit similar 2-fold interpenetrating 3D α-Po frameworks with the (4{sup 12}·6{sup 3}) topology. The photocatalytic properties for the degradation ofmore » methylene blue (MB) under ultraviolet light irradiation of the title complexes have been investigated in detail. Furthermore, the luminescent sensing behaviors for metal cations of 1–4 have been studied, the results indicate that 3 is an excellent fluorescent probe, with high sensitivity, selectivity, and simple regeneration, for environmentally relevant Fe{sup 3+} ions. - Graphical abstract: Four Zn{sup II}/Cd{sup II} coordination polymers with a thiophene-pyridyl-amide ligand have been prepared. The photocatalytic activities and fluorescent sensing properties for metal ions of the title complexes have been investigated. - Highlights: • Four coordination polymers with thiophene-pyridyl-amide ligands have been obtained. • The central metal ions play an important role in the formation of the frameworks. • The photoluminescent sensing and the photocatalytic properties have been investigated.« less
Ramírez-Guadiana, Fernando H; Meeske, Alexander J; Rodrigues, Christopher D A; Barajas-Ornelas, Rocío Del Carmen; Kruse, Andrew C; Rudner, David Z
2017-09-01
One of the hallmarks of bacterial endospore formation is the accumulation of high concentrations of pyridine-2,6-dicarboxylic acid (dipicolinic acid or DPA) in the developing spore. This small molecule comprises 5-15% of the dry weight of dormant spores and plays a central role in resistance to both wet heat and desiccation. DPA is synthesized in the mother cell at a late stage in sporulation and must be translocated across two membranes (the inner and outer forespore membranes) that separate the mother cell and forespore. The enzymes that synthesize DPA and the proteins required to translocate it across the inner forespore membrane were identified over two decades ago but the factors that transport DPA across the outer forespore membrane have remained mysterious. Here, we report that SpoVV (formerly YlbJ) is the missing DPA transporter. SpoVV is produced in the mother cell during the morphological process of engulfment and specifically localizes in the outer forespore membrane. Sporulating cells lacking SpoVV produce spores with low levels of DPA and cells engineered to express SpoVV and the DPA synthase during vegetative growth accumulate high levels of DPA in the culture medium. SpoVV resembles concentrative nucleoside transporters and mutagenesis of residues predicted to form the substrate-binding pocket supports the idea that SpoVV has a similar structure and could therefore function similarly. These findings provide a simple two-step transport mechanism by which the mother cell nurtures the developing spore. DPA produced in the mother cell is first translocated into the intermembrane space by SpoVV and is then imported into the forespore by the SpoVA complex. This pathway is likely to be broadly conserved as DPA synthase, SpoVV, and SpoVA proteins can be found in virtually all endospore forming bacteria.
Macromolecules for Inhibition of Corrosion and Wear
1992-12-14
phthalocyanine TCAUPC tetrakis-(N-carboxy-12-aminoundecanoic acid ) phthalocyanine TCACPC tetrakis-(N-carboxy-6- aminocaproic acid ) phthalocyanine Table 2... acid ); (TCACPC] - tetrakis(N- carboxy-6- aminocaproic acid ). •* Containing p-hydroxy pyridine groups in the voids. 9 NAWCADWAR-92112-60 protection...fluids .......... ................................ 10 8 PFPE degradation in the presence of FeF 3 Lewis Acid ..... 11 9 The degradation mechanism for PFPE
Pereira, W.E.
1982-01-01
Volcanic ash, surface-water, and bottom-material samples obtained in the vicinity of Mount St. Helens after the May 18, 1980, eruption were analyzed for organic contaminants by using capillary gas chromatography-mass spectrometry-computer techniques. Classes of compounds identified include n-alkanes, fatty acids, dicarboxylic acids, aromatic acids and aldehydes, phenols, resin acids, terpenes, and insect juvenile hormones. The most probable source of these compounds is from pyrolysis of plant and soil organic matter during and after the eruption. The toxicity of selected compounds and their environmental significance are discussed.
Maeda, Yasuhiro; Nakajima, Yoko; Gotoh, Kana; Hotta, Yuji; Kataoka, Tomoya; Sugiyama, Naruji; Shirai, Naohiro; Ito, Tetsuya; Kimura, Kazunori
2016-01-01
Newborns are routinely screened for organic acidemias by acylcarnitine analysis. We previously reported the partial catalytic methylesterification of dicarboxylic acylcarnitines by benzenesulfonic acid moiety in the solid extraction cartridge during extraction from serum. Since the diagnosis of organic acidemias by tandem mass spectrometry is affected by the higher molecular weight of these derivatized acylcarnitines, we investigated the methylesterification conditions. The kinetic constants for the methylesterification of carboxyl groups on the acyl and carnitine sides of carnitine were 2.5 and 0.24h(-1), respectively. The physical basis underlying this difference in methylesterification rates was clarified theoretically, illustrating that methylesterification during extraction proceeds easily and must be prevented. Copyright © 2015 Elsevier Ltd. All rights reserved.
Drew, Geoffrey M; Mitchell, Vanessa A; Vaughan, Christopher W
2008-01-23
Glutamate spillover regulates GABAergic synaptic transmission at several CNS synapses via presynaptic ionotropic and metabotropic glutamate receptors (mGluRs). We have previously demonstrated that activation of group I-III mGluRs inhibits GABAergic transmission in the midbrain periaqueductal gray (PAG), a region involved in organizing behavioral responses to threat, stress, and pain. Here, we examined the role of glutamate spillover in the modulation of GABAergic transmission in the PAG. Using whole-cell recordings from rat PAG slices, we found that evoked IPSCs were reduced by the nonspecific glutamate transport blockers DL-threo-beta-benzyloxyaspartic acid (TBOA) and L-trans-pyrrolidine-2,4-dicarboxylic acid, but not by the glial GLT1-specific blocker dihydrokainate. In contrast, TBOA had no effect on evoked IPSCs when glutamate uptake into the postsynaptic neuron was selectively impaired. TBOA increased the paired-pulse ratio of evoked IPSCs and reduced the rate but not the amplitude of spontaneous miniature IPSCs. The effect of TBOA on evoked IPSCs was abolished by the broad-spectrum mGluR antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (100 microM), reduced by the mGluR5-specific antagonist 2-methyl-6-(phenylethynyl)pyridine hydrochloride (MPEP) and mimicked by the mGluR1/5 agonist (RS)-3,5-dihydroxyphenylglycine (DHPG). Furthermore, the effects of both TBOA and DHPG were reduced by the cannabinoid CB1 receptor antagonist 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide (AM251). Finally, although MPEP and AM251 had no effect on single evoked IPSCs, they increased evoked IPSCs during repetitive stimulation. These results indicate that neuronal glutamate transporters limit mGluR5 activation and endocannabinoid signaling, but may be overwhelmed during conditions of elevated glutamate release. Thus, neuronal glutamate transporters play a key role in regulating endocannabinoid-mediated cross talk between glutamatergic and GABAergic synapses within the PAG.
NASA Astrophysics Data System (ADS)
Jabłońska-Wawrzycka, Agnieszka; Rogala, Patrycja; Czerwonka, Grzegorz; Hodorowicz, Maciej; Stadnicka, Katarzyna
2016-02-01
The reaction of zinc salts with heterocyclic ether (1-ethoxymethyl-2-methylimidazole (1-ExMe-2-MeIm)), acid (pyridine-2,3-dicarboxylic acid (2,3-pydcH2)) and amide (3,5-dimethylpyrazole-1-carboxamide (3,5-DMePzCONH2)) yielded three new zinc complexes formulated as [Zn(1-ExMe-2-MeIm)2Cl2] 1, fac-[Zn(H2O)6][Zn(2,3-pydcH)3]22 and [Zn(3,5-DMePz)2(NCO)2] 3. Complexes of 1 and 3 are four-coordinated with a tetrahedron as coordination polyhedron. However, compound 2 forms an octahedral cation-anion complex. The complex 3 was prepared by eliminating of the carboxamide group from the ligand and then the 3,5-dimethylpyrazole (3,5-DMePz) and isocyanates formed were employed as new ligands. The IR and X-ray studies have confirmed a bidentate fashion of coordination of the 2,3-pydcH and monodentate fashion of coordination of the 1-ExMe-2-MeIm and 3,5-DMePz to the Zn(II) ions. The crystal packing of Zn(II) complexes are stabilized by intermolecular classical hydrogen bonds of O-H⋯O and N-H⋯O types. The most interesting feature of the supramolecular architecture of complexes is the existence of C-H⋯O, C-H⋯Cl and C-H⋯π interactions and π⋯π stacking, which also contributes to structural stabilisation. The correlation between crystal structure and thermal stability of zinc complexes is observed. In all compounds the fragments of ligands donor-atom containing go in the last steps. Additionally, antimicrobial activities of compounds were carried out against certain Gram-positive and Gram-negative bacteria and counts of CFU (colony forming units) were also determined. The achieved results confirmed a significant antibacterial activity of some tested zinc complexes. On the basis of the Δ log CFU values the antibacterial activity of zinc complexes follows the order: 3 > 2 > 1. Influence a number of N-donor atoms in zinc environment on antibacterial activity is also observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, T.; Petersen, G.
2004-08-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol.
Lee, Kijae; Pham, Van Chung; Choi, Min Ji; Kim, Kyung Ju; Lee, Kyung-Tae; Han, Seong-Gu; Yu, Yeon Gyu; Lee, Jae Yeol
2013-01-01
Microsomal prostaglandin E synthase-1 (mPGES-1) is an inducible prostaglandin E synthase that catalyzes the conversion of prostaglandin PGH(2) to PGE(2) and represents a novel target for therapeutic treatment of inflammatory disorders. It is essential to identify mPGES-1 inhibitor with novel scaffold as new hit or lead compound for the purpose of the next-generation anti-inflammatory drugs. Herein we report the discovery of sulfonamido-1,2,3-triazole-4,5-dicarboxylic derivatives as a novel class of mPGES-1 inhibitors identified through fragment-based virtual screening and in vitro assays on the inhibitory activity of the actual compounds. 1-[2-(N-Phenylbenzenesulfonamido)ethyl]-1H-1,2,3-triazole-4,5-dicarboxylic acid (6f) inhibits human mPGES-1 (IC(50) of 1.1 μM) with high selectivity (ca.1000-fold) over both COX-1 and COX-2 in a cell-free assay. In addition, the activity of compound 6f was again tested at 10 μM concentration in presence of 0.1% Triton X-100 and found to be reduced to 1/4 of its original activity without this detergent. Compared to the complete loss of activity of nuisance inhibitor with the detergent, therefore, compound 6f would be regarded as a partial nuisance inhibitor of mPGES-1 with a novel scaffold for the optimal design of more potent mPGES-1 inhibitors. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.
2012-12-01
The 2:2 ionic crystals of pyridine betaine (PyB) with squaric acid (H2SQ) belong to monoclinic space group C2/c. Supramolecular structure of the crystals investigated is formed by the loss of one proton from every two squaric acid molecules. Pyridine betaines form a homoconjugated cation, [(PyB)2H]+, through a short, symmetric COO⋯H⋯OOC hydrogen bond of 2.463(2) Å. The hydrogen squarate anions are linked into a homoconjugated anion, [(HSQ)2H]-, by a short symmetric, non-linear O⋯H⋯O hydrogen bond of 2.453(1) Å, with the H-atom located on the twofold axis. The bis(hydrogen squarate)hydrogen anions are linked into a centrosymmetric cyclic dimer by two identical asymmetric Osbnd H⋯O hydrogen bonds of 2.536(2) Å. The (PyB)2H cation and cyclic dimer of hydrogen squarate anions are placed around two different systems of inversion centers in the unit cell. The FTIR spectrum is consistent with the X-ray results. The 13C chemical shift of the Cdbnd O atom confirms the presence of the hydrogen squarate anion in the complex studied. The complex decomposed in three thermal stages.
cis,cis-Muconic acid: separation and catalysis to bio-adipic acid for nylon-6,6 polymerization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vardon, Derek R.; Rorrer, Nicholas A.; Salvachúa, Davinia
cis,cis-Muconic acid is a polyunsaturated dicarboxylic acid that can be produced renewably via the biological conversion of sugars and lignin-derived aromatic compounds. Subsequently, muconic acid can be catalytically converted to adipic acid -- the most commercially significant dicarboxylic acid manufactured from petroleum. Nylon-6,6 is the major industrial application for adipic acid, consuming 85% of market demand; however, high purity adipic acid (99.8%) is required for polymer synthesis. As such, process technologies are needed to effectively separate and catalytically transform biologically derived muconic acid to adipic acid in high purity over stable catalytic materials. To that end, this study: (1) demonstratesmore » bioreactor production of muconate at 34.5 g L-1 in an engineered strain of Pseudomonas putida KT2440, (2) examines the staged recovery of muconic acid from culture media, (3) screens platinum group metals (e.g., Pd, Pt, Rh, Ru) for activity and leaching stability on activated carbon (AC) and silica supports, (4) evaluates the time-on-stream performance of Rh/AC in a trickle bed reactor, and (5) demonstrates the polymerization of bio-adipic acid to nylon-6,6. Separation experiments confirmed AC effectively removed broth color compounds, but subsequent pH/temperature shift crystallization resulted in significant levels of Na, P, K, S and N in the crystallized product. Ethanol dissolution of muconic acid precipitated bulk salts, achieving a purity of 99.8%. Batch catalysis screening reactions determined that Rh and Pd were both highly active compared to Pt and Ru, but Pd leached significantly (1-9%) from both AC and silica supports. Testing of Rh/AC in a continuous trickle bed reactor for 100 h confirmed stable performance after 24 h, although organic adsorption resulted in reduced steady-state activity. Lastly, polymerization of bio-adipic acid with hexamethyldiamine produced nylon-6,6 with comparable properties to its petrochemical counterpart, thereby demonstrating a path towards bio-based nylon production via muconic acid.« less
2009-10-14
sulfate. DEA is likely produced via the reaction of the gaseous amine and acidic sulfates. Subsaturated aerosol hygroscopicity data indicate 14 that the...D., and A. Wiedensohler (1998). NaCl aerosol particle hygroscopicity dependence on mixing with organic compounds, J. Atmos. Chem., 31, 321–346...M. N., and C. K. Chan (2001). The hygroscopic properties of dicarboxylic and multifunctional acids : measurements and UNIFAC
40 CFR 721.3000 - Dicarboxylic acid monoester.
Code of Federal Regulations, 2011 CFR
2011-07-01
... smoking. —Keep container closed. FIRST AID: In case of contact. EYES: Immediately flush with water for at... prevent dermal contact for any person involved in any processing or use operation where dermal contact may... CAUSE REPRODUCTIVE EFFECTS. —Do not get in eye, on skin, or clothing. —Do not breathe (vapor, mist...
40 CFR 180.509 - Mefenpyr-diethyl; tolerance for residues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of the herbicide safener, mefenpyr-diethyl, 1-(2,4-dichlorophenyl)-4,5-dihydro-5-methyl-1H-pyrazole-3,5-dicarboxylic acid, diethyl ester and its 2,4-dichlorophenyl-pyrazoline metabolites, when applied... agricultural commodities: Commodity Parts per million Barley, grain 0.05 Barley, hay 0.2 Barley, straw 0.5...
Jiaqi Guo; Khan Mohammad Ahsan Uddin; Karl Mihhels; Wenwen Fang; Päivi Laaksonen; J. Y. Zhu; Orlando J. Rojas
2017-01-01
Cellulosic nanofibrils (CNFs) were isolated from one of the most widespread freshwater macroalgae, Aegagropila linnaei. The algae were first carboxylated with a recyclable dicarboxylic acid, which facilitated deconstruction into CNFs via microfluidization while preserving the protein component. For comparison, cellulosic fibrils were also isolated by chemical treatment...
40 CFR 180.319 - Interim tolerances.
Code of Federal Regulations, 2012 CFR
2012-07-01
...-oxabicyclo-(2,2,1) heptane 2,3-dicarboxylic acid Herbicide 0.2 Beet, sugar None. Isopropyl carbanilate (IPC) Herbicide 5.0 Alfalfa, hay; clover, hay; and grass, hay None. 2.0 Alfalfa, forage; clover, forage; and grass...; poultry, meat; and poultry, meat byproducts None. Methyl parathion Herbicide 0.5 Rye 12/31/13. (b) Section...
Magnetic Properties and Moessbauer Spectra of Several Iron(III) Dicarboxylic Acid Complexes.
1980-10-01
model CS-202 Displex Cryogenic refrigerator with a model APD-E temperature controller manufactured by Air Products and Chemicals , Inc ., Allentown, Pa...coupled tL a special, helium gas filled shroud, Model DMX-20, supplied by Air Products and Chemicals , Inc . Infrared spectra were obtained on a Beckman IR
Kim, Minjune; Su, Yaqiong; Fukuoka, Atsushi; Hensen, Emiel J M; Nakajima, Kiyotaka
2018-05-14
The utilization of 5-(hydroxymethyl)furfural (HMF) for the large-scale production of essential chemicals has been largely limited by the formation of solid humin as a byproduct, which prevents the operation of stepwise batch-type and continuous flow-type processes. The reaction of HMF with 1,3-propanediol produces an HMF acetal derivative that exhibits excellent thermal stability. Aerobic oxidation of the HMF acetal with a CeO 2 -supported Au catalyst and Na 2 CO 3 in water gives a 90-95 % yield of furan 2,5-dicarboxylic acid, an increasingly important commodity chemical for the biorenewables industry, from concentrated solutions (10-20 wt %) without humin formation. The six-membered acetal ring suppresses thermal decomposition and self-polymerization of HMF in concentrated solutions. Kinetic studies supported by DFT calculations identify two crucial steps in the reaction mechanism, that is, the partial hydrolysis of the acetal into 5-formyl-2-furan carboxylic acid involving OH - and Lewis acid sites on CeO 2 , and subsequent oxidative dehydrogenation of the in situ generated hemiacetal involving Au nanoparticles. These results represent a significant advance over the current state of the art, overcoming an inherent limitation of the oxidation of HMF to an important monomer for biopolymer production. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Characterization of mitochondrial dicarboxylate/tricarboxylate transporters from grape berries.
Regalado, Ana; Pierri, Ciro Leonardo; Bitetto, Maria; Laera, Valentina Liliana; Pimentel, Catarina; Francisco, Rita; Passarinho, José; Chaves, Maria M; Agrimi, Gennaro
2013-03-01
Grape berries (Vitis vinifera L fruit) exhibit a double-sigmoid pattern of development that results from two successive periods of vacuolar swelling during which the nature of accumulated solutes changes significantly. Throughout the first period, called green or herbaceous stage, berries accumulate high levels of organic acids, mainly malate and tartrate. At the cellular level fruit acidity comprises both metabolism and vacuolar storage. Malic acid compartmentation is critical for optimal functioning of cytosolic enzymes. Therefore, the identification and characterization of the carriers involved in malate transport across sub-cellular compartments is of great importance. The decrease in acid content during grape berry ripening has been mainly associated to mitochondrial malate oxidation. However, no Vitis vinifera mitochondrial carrier involved in malate transport has been reported to date. Here we describe the identification of three V. vinifera mitochondrial dicarboxylate/tricarboxylate carriers (VvDTC1-3) putatively involved in mitochondrial malate, citrate and other di/tricarboxylates transport. The three VvDTCs are very similar, sharing a percentage of identical residues of at least 83 %. Expression analysis of the encoding VvDTC genes in grape berries shows that they are differentially regulated exhibiting a developmental pattern of expression. The simultaneous high expression of both VvDTC2 and VvDTC3 in grape berry mesocarp close to the onset of ripening suggests that these carriers might be involved in the transport of malate into mitochondria.
Lewis, Thomas A; Leach, Lynne; Morales, Sergio; Austin, Paula R; Hartwell, Hadley J; Kaplan, Benjamin; Forker, Cynthia; Meyer, Jean-Marie
2004-02-01
The bacterial metabolite and transition metal chelator pyridine-2,6-dithiocarboxylic acid (PDTC), promotes a novel and effective means of dechlorination of the toxic and carcinogenic pollutant, carbon tetrachloride. Pyridine-2,6-dithiocarboxylic acid has been presumed to act as a siderophore in the Pseudomonas strains known to produce it. To explore further the physiological function of PDTC production, we have examined its regulation, the phenotype of PDTC-negative (pdt) mutants, and envelope proteins associated with PDTC in P. putida strain DSM 3601. Aspects of the regulation of PDTC production and outer membrane protein composition were consistent with siderophore function. Pyridine-2,6-dithiocarboxylic acid production was coordinated with production of the well-characterized siderophore pyoverdine; exogenously added pyoverdine led to decreased PDTC production, and added PDTC led to decreased pyoverdine production. Positive regulation of a chromosomal pdtI-xylE transcriptional fusion, and of a 66 kDa outer membrane protein (IROMP), was seen in response to exogenous PDTC. Tests with transition metal chelators indicated that PDTC could provide a benefit under conditions of metal limitation; the loss of PDTC biosynthetic capacity caused by a pdtI transposon insertion resulted in increased sensitivity to 1,10-phenanthroline, a chelator that has high affinity for a range of divalent transition metals (e.g. Fe(2+), Cu(2+), Zn(2+)). Exogenously added PDTC could also suppress a phenotype of pyoverdine-negative (Pvd-) mutants, that of sensitivity to EDDHA, a chelator with higher affinity and specificity for Fe(3+). Measurement of 59Fe incorporation showed uptake from 59Fe:PDTC by DSM 3601 grown in low-iron medium, but not by cells grown in high iron medium, or by the pdtI mutant, which did not show expression of the 66 kDa envelope protein. These data verified a siderophore function for PDTC, and have implicated it in the uptake of transition metals in addition to iron.
Staehle, Robert; Tong, Lianpeng; Wang, Lei; Duan, Lele; Fischer, Andreas; Ahlquist, Mårten S G; Sun, Licheng; Rau, Sven
2014-02-03
A new water oxidation catalyst [Ru(III)(bda)(mmi)(OH2)](CF3SO3) (2, H2bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; mmi = 1,3-dimethylimidazolium-2-ylidene) containing an axial N-heterocyclic carbene ligand and one aqua ligand was synthesized and fully characterized. The kinetics of catalytic water oxidation by 2 were measured using stopped-flow technique, and key intermediates in the catalytic cycle were probed by density functional theory calculations. While analogous Ru-bda water oxidation catalysts [Ru(bda)L2] (L = pyridyl ligands) are supposed to catalyze water oxidation through a bimolecular coupling pathway, our study points out that 2, surprisingly, undergoes a single-site water nucleophilic attack (acid-base) pathway. The diversion of catalytic mechanisms is mainly ascribed to the different ligand environments, from nonaqua ligands to an aqua ligand. Findings in this work provide some critical proof for our previous hypothesis about how alternation of ancillary ligands of water oxidation catalysts influences their catalytic efficiency.
NASA Astrophysics Data System (ADS)
Sun, Yan-Qiong; Liu, Qi; Zhong, Jie-Cen; Pan, Qun-Feng; Chen, Yi-Ping
2013-10-01
Two isostructural 3D lanthanide arenedisulfonate metal-organic frameworks (MOFs) [Ln(Hbidc)(nds)0.5(H2O)]n(Ln=Eu(1), La(2)) have been successfully synthesized by the hydrothermal reaction of lanthanide oxide with 2,6-naphthalenedisulfonate sodium (Na2nds) and an auxiliary ligand, 1H-benzimidazole-5,6-dicarboxylic acid (H3bidc). The two complexes are both constructed from 2D [Ln(Hbidc)]+ double layers pillared by nds2- ligands to generate 3D (3, 8)-connected open-framework structures with 1D long narrow channels running along the a axis. From topological point of view, the 3D framework is a (3, 8)-connected tfz-d net. The weak interactions including N-H⋯O, O-H⋯O hydrogen bonds and π-π stacking are observed in 1. The 2D IR correlation spectroscopy was applied to study the molecular interactions induced by thermal perturbation. The emission spectra of 1 exhibit the characteristic transition of 5D0→7FJ(J=0-4) of Eu(III).
New organic binary solids with phenolic coformers for NLO applications
NASA Astrophysics Data System (ADS)
Draguta, Sergiu; Fonari, Marina S.; Leonova, Evgenia; Timofeeva, Tatiana V.
2015-10-01
Five binary adducts between N,N-dimethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 1, N,N-diethyl-4-[(E)-2-(pyridin-4-yl)ethenyl]aniline) 2, N,N-dimethyl-4-[(E)-pyridin-3-yldiazenyl]aniline 3, and coformers that include 4-nitrophenol I, 4-nitrobenzoic acid II, benzene-1,3-diol III, and 2,4-dinitrophenol IV were synthesized to follow the factors influencing the formation of polar crystals. New solids were characterized by melting points and absorption spectra, while their structures were proven by single crystal X-ray diffraction. Adducts differ by the components' ratio and position of the acidic hydrogen atom, thus giving examples of four new cocrystals and one salt. The single crystal X-ray analysis revealed the acentric packing for two compounds, 1 (I) and 3(3) (III) that crystallize in the Pca21 and P1 space groups. The melting point data and the cut-off wavelength from absorption spectra show that these materials are stable till relatively high temperatures and transparent in a wide range of spectrum.
Židková, Monika; Linhart, Igor; Balíková, Marie; Himl, Michal; Dvořáčková, Veronika; Lhotková, Eva; Páleníček, Tomáš
2018-06-01
1. Methylone (3,4-methylenedioxy-N-methylcathinone, MDMC), which appeared on the illicit drug market in 2004, is a frequently abused synthetic cathinone derivative. Known metabolic pathways of MDMC include N-demethylation to normethylone (3,4-methylenedioxycathinone, MDC), aliphatic chain hydroxylation and oxidative demethylenation followed by monomethylation and conjugation with glucuronic acid and/or sulphate. 2. Three new phase II metabolites, amidic conjugates of MDC with succinic, glutaric and adipic acid, were identified in the urine of rats dosed subcutaneously with MDMC.HCl (20 mg/kg body weight) by LC-ESI-HRMS using synthetic reference standards to support identification. 3. The main portion of administered MDMC was excreted unchanged. Normethylone, was a major urinary metabolite, of which a minor part was conjugated with dicarboxylic acids. 4. Previously identified ring-opened metabolites 4-hydroxy-3-methoxymethcathinone (4-OH-3-MeO-MC), 3-hydroxy-4-methoxymeth-cathinone (3-OH-4-MeO-MC) and 3,4-dihydroxymethcathinone (3,4-di-OH-MC) mostly in conjugated form with glucuronic and/or sulphuric acids were also detected. 5. Also, ring-opened metabolites derived from MDC, namely, 4-hydroxy-3-methoxycathinone (4-OH-3-MeO-C), 3-hydroxy-4-methoxycathinone (3-OH-4-MeO-C) and 3,4-dihydroxycathinone (3,4-di-OH-C) were identified for the first time in vivo.
Ahmad, Gulraiz; Rasool, Nasir; Ikram, Hafiz Mansoor; Gul Khan, Samreen; Mahmood, Tariq; Ayub, Khurshid; Zubair, Muhammad; Al-Zahrani, Eman; Ali Rana, Usman; Akhtar, Muhammad Nadeem; Alitheen, Noorjahan Banu
2017-01-27
The present study describes palladium-catalyzed one pot Suzuki cross-coupling reaction to synthesize a series of novel pyridine derivatives 2a - 2i , 4a - 4i . In brief, Suzuki cross-coupling reaction of 5-bromo-2-methylpyridin-3-amine ( 1 ) directly or via N -[5-bromo-2-methylpyridine-3-yl]acetamide ( 3 ) with several arylboronic acids produced these novel pyridine derivatives in moderate to good yield. Density functional theory (DFT) studies were carried out for the pyridine derivatives 2a - 2i and 4a - 4i by using B3LYP/6-31G(d,p) basis with the help of GAUSSIAN 09 suite programme. The frontier molecular orbitals analysis, reactivity indices, molecular electrostatic potential and dipole measurements with the help of DFT methods, described the possible reaction pathways and potential candidates as chiral dopants for liquid crystals. The anti-thrombolytic, biofilm inhibition and haemolytic activities of pyridine derivatives were also investigated. In particular, the compound 4b exhibited the highest percentage lysis value (41.32%) against clot formation in human blood among all newly synthesized compounds. In addition, the compound 4f was found to be the most potent against Escherichia coli with an inhibition value of 91.95%. The rest of the pyridine derivatives displayed moderate biological activities.
Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Fujisawa, Ayano; Watanabe, Kayo; Fujimaki, Hideo; Kumada, Hidefumi; Inoue, Kaoru; Morikawa, Tomomi; Takahashi, Miwa; Kawakami, Tsuyoshi; Sakoda, Hideyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Tanoue, Akito; Miyazaki, Ken-Ichi; Chung, Ung-Il; Ogawa, Kumiko; Yoshida, Midori; Haishima, Yuji
2018-04-01
Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC), is eluted from PVC-made blood containers and protects against red blood cell (RBC) hemolysis. However, concerns have arisen regarding the reproductive and developmental risks of DEHP in humans, and the use of alternative plasticizers for medical devices has been recommended worldwide. In this study, we propose that the use of a novel plasticizer, 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH), could help produce more useful and safe blood containers. PVC sheet containing DL9TH and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH) provides comparable or superior protective effects to RBCs relative to PVC sheet containing DEHP or di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH ® , an alternative plasticizer that has been used in PVC sheets for blood containers). The total amount of plasticizer eluted from DOTH/DL9TH-PVC sheets is nearly the same as that eluted from DEHP-PVC sheets. In addition, DOTH/DL9TH-PVC has better cold resistance than DEHP- and DINCH ® -PVC sheets. In vitro and in vivo tests for biological safety based on International Organization for Standardization guidelines (10993 series) suggest that the DOTH/DL9TH-PVC sheet can be used safely. Subchronic toxicity testing of DL9TH in male rats in accordance with the principles of Organisation for Economic Co-operation and Development Test Guideline 408 showed that DL9TH did not induce adverse effects up to the highest dose level tested (717 mg/kg body weight/day). There were no effects on testicular histopathology and sperm counts, and no indications of endocrine effects: testosterone, thyroid-stimulating hormone, follicle-stimulating hormone, and 17β-estradiol were unchanged by the treatment, compared with the control group. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1052-1063, 2018. © 2017 Wiley Periodicals, Inc.
Jiang, Min; Ma, Jiangfeng; Wu, Mingke; Liu, Rongming; Liang, Liya; Xin, Fengxue; Zhang, Wenming; Jia, Honghua; Dong, Weiliang
2017-12-01
Succinic acid is a four-carbon dicarboxylic acid, which has attracted much interest due to its abroad usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Facing the shortage of crude oil supply and demand of sustainable development, biological production of succinic acid from renewable resources has become a topic of worldwide interest. In recent decades, robust producing strain selection, metabolic engineering of model strains, and process optimization for succinic acid production have been developed. This review provides an overview of succinic acid producers and cultivation technology, highlight some of the successful metabolic engineering approaches. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Biosynthesis of adipic acid].
Han, Li; Chen, Wujiu; Yuan, Fei; Zhang, Yuanyuan; Wang, Qinhong; Ma, Yanhe
2013-10-01
Adipic acid is a six-carbon dicarboxylic acid, mainly for the production of polymers such as nylon, chemical fiber and engineering plastics. Its annual demand is close to 3 million tons worldwide. Currently, the industrial production of adipic acid is based on the oxidation of aromatics from non-renewable petroleum resources by chemo-catalytic processes. It is heavily polluted and unsustainable, and the possible alternative method for adipic acid production should be developed. In the past years, with the development of synthetic biology and metabolic engineering, green and clean biotechnological methods for adipic acid production attracted more attention. In this study, the research advances of adipic acid and its precursor production are reviewed, followed by addressing the perspective of the possible new pathways for adipic acid production.
Palladium-catalyzed cross coupling reactions of 4-bromo-6H-1,2-oxazines
Schmidt, Elmar; Andrä, Michal; Duhs, Marcel-Antoine; Linder, Igor
2009-01-01
Summary A number of 4-aryl- and 4-alkynyl-substituted 6H-1,2-oxazines 8 and 9 have been prepared in good yields via cross coupling reactions of halogenated precursors 2, which in turn are easily accessible by bromination of 6H-1,2-oxazines 1. Lewis-acid promoted reaction of 1,2-oxazine 9c with 1-hexyne provided alkynyl-substituted pyridine derivative 12 thus demonstrating the potential of this approach for the synthesis of pyridines. PMID:19936264
Latli, Bachir; Hrapchak, Matt; Cheveliakov, Maxim; Reeves, Jonathan T; Marsini, Maurice; Busacca, Carl A; Senanayake, Chris H
2018-05-15
1-(4-Fluorophenyl)-1H-pyrazolo[3,4-c]pyridine-4-carboxylic acid (2-methanesulfonyl-pyridin-4-ylmethyl)-amide (1) and its analogs (2) and (3) are potent CCR1 antagonists intended for the treatment of rheumatoid arthritis. The detailed syntheses of these 3 compounds labeled with carbon-13 as well as the preparation of (1) and (2) labeled with carbon-14, and (1) labeled with tritium, are described. Copyright © 2018 John Wiley & Sons, Ltd.
3-Fluorobenzoic acid–4-acetylpyridine (1/1) at 100 K
Craig, Gavin A.; Thomas, Lynne H.; Adam, Martin S.; Ballantyne, Angela; Cairns, Andrew; Cairns, Stephen C.; Copeland, Gary; Harris, Clifford; McCalmont, Eve; McTaggart, Robert; Martin, Alan R. G.; Palmer, Sarah; Quail, Jenna; Saxby, Harriet; Sneddon, Duncan J.; Stewart, Graeme; Thomson, Neil; Whyte, Alex; Wilson, Chick C.; Parkin, Andrew
2009-01-01
In the title compound, C7H5FO2·C7H7NO, a moderate-strength hydrogen bond is formed between the carboxyl group of one molecule and the pyridine N atom of the other. The benzoic acid molecule is observed to be disordered over two positions with the second orientation only 4% occupied. This disorder is also reflected in the presence of diffuse scattering in the diffraction pattern. PMID:21581976
NASA Astrophysics Data System (ADS)
Narukawa, M.; Kawamura, K.; Okada, K.; Zaizen, Y.; Makino, Y.
2003-07-01
Aircraft observation of aerosols was conducted in February 2000, for spatial and vertical distributions of dicarboxylic acids in the free troposphere over the western to central North Pacific. Oxalic, malonic, adipic and azelaic acids were detected in the aerosol samples as the major species. Concentrations of these diacids decreased exponentially with an increase in altitude. They were higher in the western North Pacific (130°E) and decrease eastward. Local flights conducted over Naha (Okinawa), Iwo-jima and Saipan showed that diacid concentrations decreased from the lower to upper troposphere. In the atmosphere over Saipan, where the air is not strongly affected from polluted East Asia, diacid concentrations were almost below the detection limit. Vertical profiles of diacids over Naha and Iwo-jima would be typical over the western North Pacific during winter, suggesting that diacids were significantly injected to the free troposphere from East Asia. Backward air mass trajectories also suggested that the diacids in the free troposphere over the North Pacific are strongly affected by the outflow from East Asia. Diacids, which were produced by both primary emission and secondary photochemical processes in polluted air of East Asia, could alter the physico-chemical properties of aerosols in the free troposphere over the western North Pacific.
Aluminium and titanium modified mesoporous TUD-1: A bimetal acid catalyst for Biginelli reaction
NASA Astrophysics Data System (ADS)
Pasupathi, M.; Santhi, N.; Pachamuthu, M. P.; Alamelu Mangai, G.; Ragupathi, C.
2018-05-01
Using a simple, non-surfactant template triethanolamine (TEA), bimetal (Al3+ and Ti4+ ions) incorporated mesoporous catalyst AlTiTUD-1 (Si/Al+Ti = 50) was synthesized. The catalyst was characterized by XRD (Low and High angle), N2 Sorption, FTIR, SEM, TEM, DR UV Visible, and pyridine adsorbed FT-IR techniques. The XRD and N2 sorption studies confirmed its amorphous, mesoporous nature, which possessed a BET surface area of 590 m2 g-1 and pore diameter of 4.4 nm. The Al3+ and Ti4+ co-ordination within the TUD-1 was evaluated by DR UV-Vis. Pyridine adsorbed FTIR revealed both Bronsted (B) and Lewis (L) acidity, which is responsible for the catalytic activity. The acid catalyst showed a good catalytic performance in Biginelli type multicomponent coupling reaction for the substituted aldehydes, ethyl acetoacetate and thiourea to yield about 70% in reflux condition.
Volume effects in the decay of free radicals in organic crystals. [cobalt 60 gamma radiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Markaryan, R.E.; Kovarskii, A.L.; Tshetinin, V.G.
The decay kinetics of the free radicals produced by {gamma}-irradiation of single crystals of organic dicarboxylic acids is studied at hydrostatic pressures up to 200 MPa. Correlation is established between the reaction's activation parameters (V{sup *} and E{sup *}) and the crystals macrocharacteristics - the compressibility and thermal expansion coefficients. A common equation is proposed to describe the variation of the radical decay rate constant with temperature and pressure in malonic, succinic, adipic, glutaric, suberic, and sebacic acids.
NASA Technical Reports Server (NTRS)
Oshkaya, V. P.; Vanag, G. Y.
1985-01-01
Phthalic anhydride was condensed with acetoacetic ester in acetic anhydride and triethylamine solution, and when phthalyl chloride was reacted with sodium acetoacetic ester compounds were formed of the phthalide and indandione series: phthalylacetoacetic ester and a derivative of indan-1,3-dione which after boiling with hydrochloric acid yielded indan-1,3-dione. Phthalylmalonic ester was obtained from phthalic anhydride and malonic ester in the presence of triethylamine.
Tailor making high performance graphite fiber reinforced PMR polyimides
NASA Technical Reports Server (NTRS)
Serafini, T. T.; Vannucci, R. D.
1974-01-01
Studies performed to demonstrate the feasibility of using the polymerization of monomer reactants (PMR) approach to tailor make processable polyimide matrix resins are described. Monomeric reactant solutions containing the dimethyl ester of 3,3',4,4' -benzophenonetetracarboxylic acid, 4, 4' -methylenedianiline and the monomethyl ester of 5-norbornene-2, 3-dicarboxylic acid were used to impregnate Hercules HTS graphite fiber. Six different monomeric reactant stoichiometries were studied. The processing characteristics and elevated temperature mechanical properties of the PMR polyimide/HTS graphite fiber composites are described.
Million-fold electrical conductivity enhancement in Fe 2(DEBDC) versus Mn 2(DEBDC) (E = S, O)
Sun, Lei; Hendon, Christopher H.; Minier, Mikael A.; ...
2015-05-01
Reaction of FeCl 2 and H 4DSBDC (2,5-disulfhydrylbenzene-1,4-dicarboxylic acid) leads to the formation of Fe 2(DSBDC), an analogue of M 2(DOBDC) (MOF-74, DOBDC 4– = 2,5-dihydroxybenzene-1,4-dicarboxylate). The bulk electrical conductivity values of both Fe 2(DSBDC) and Fe 2(DOBDC) are ~6 orders of magnitude higher than those of the Mn 2+ analogues, Mn 2(DEBDC) (E = O, S). Because the metals are of the same formal oxidation state, the increase in conductivity is attributed to the loosely bound Fe 2+ β-spin electron. Lastly, these results provide important insight for the rational design of conductive metal–organic frameworks, highlighting in particular the advantagesmore » of iron for synthesizing such materials.« less
NASA Astrophysics Data System (ADS)
Bikkina, Srinivas; Kawamura, Kimitaka; Miyazaki, Yuzo
2015-05-01
The present study aims to assess the molecular distributions of water-soluble dicarboxylic acids (diacids: C2-C12), oxocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal) in aerosols collected over the western North Pacific (WNP) during a summer cruise (August to September 2008). The measured water-soluble organics show pronounced latitudinal distributions with higher concentrations in the region of 30°N-45°N (average 63 ng m-3) than 10°N-30°N (18 ng m-3). Mass fraction of oxalic acid (C2) in total aliphatic diacids (ΣC2-C12) showed higher values (72 ± 10%) in lower latitude (10°N-30°N) than that (56 ± 16%) in higher latitude (30°N-45°N), suggesting a photochemical production of C2 due to an increased insolation over the tropical WNP. A similar trend was found in other diagnostic ratios such as oxalic to succinic (C2/C4) and oxalic to glyoxylic acid (C2/ωC2), which further corroborate an enhanced photochemical aging over the WNP. In addition, relative abundances of oxalic acid in total diacids showed a marked increase as a function of ambient temperature, supporting their photochemical production. Constantly low concentration ratios of adipic and phthalic acids relative to azelaic acid suggest a small contribution of anthropogenic sources and an importance of oceanic sources during the study period. Significant production of C2 through oxidation of biogenic volatile organic compounds emitted from the sea surface is also noteworthy, as inferred from the strong linear correlations among water-soluble organic carbon, methanesulphonic acid, and oxalic acid. Sea-to-air emission of unsaturated fatty acids also contributes to formation of diacids over the WNP.
NASA Astrophysics Data System (ADS)
Kawamura, Kimitaka; Bikkina, Srinivas
2016-03-01
This review aims to update our understanding on molecular distributions of water-soluble dicarboxylic acids and related compounds in atmospheric aerosols with a focus on their geographical variability, size distribution, sources and formation pathways. In general, molecular distributions of diacids in aerosols from the continental sites and over the open ocean waters are often characterized by the predominance of oxalic acid (C2) followed by malonic acid (C3) and/or succinic acid (C4), while those sampled over the polar regions often follow the order of C4 ≥ C2 and C3. The most abundant and ubiquitous diacid is oxalic acid, which is principally formed via atmospheric oxidation of its higher homologues of long chain diacids and other pollution-derived organic precursors (e.g., olefins and aromatic hydrocarbons). However, its occurrence in marine aerosols is mainly due to the transport from continental outflows (e.g., East Asian outflow during winter/spring to the North Pacific) and/or governed by photochemical/aqueous phase oxidation of biogenic unsaturated fatty acids (e.g., oleic acid) and isoprene emitted from the productive open ocean waters. The long-range atmospheric transport of pollutants from mid latitudes to the Arctic in dark winter facilitates to accumulate the reactants prior to their intense photochemical oxidation during springtime polar sunrise. Furthermore, the relative abundances of C2 in total diacid mass showed similar temporal trends with downward solar irradiation and ambient temperatures, suggesting the significance of atmospheric photochemical oxidation processing. Compound-specific isotopic analyses of oxalic acid showed the highest δ13C among diacids whereas azelaic acid showed the lowest value, corroborating the significance of atmospheric aging of oxalic acid. On the other hand, other diacids gave intermediate values between these two diacids, suggesting that aging of oxalic acid is associated with 13C enrichment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yuanzhe; College of Chemistry and Material Science, Hebei Normal University, Shijiazhuang, Hebei 050016; Xu Yanqing, E-mail: xyq@bit.edu.c
2010-05-15
Inorganic-organic hybrid frameworks, namely [Ce(H{sub 2}O){sub 3}(pdc)]{sub 4}[SiW{sub 12}O{sub 40}].6H{sub 2}O 1, [M(H{sub 2}O){sub 4}(pdc)]{sub 4}[SiW{sub 12}O{sub 40}].2H{sub 2}O (M=Ce for 2a, La for 2b, Nd for 2c; H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) were assembled through incorporation of Keggin-type heteropolyanion [SiW{sub 12}O{sub 40}]{sup 4-} within the voids of lanthanides-pdc network as pillars or guests under hydrothermal condition. Single-crystal X-ray analyses of these crystals reveal that compound 1 presents 3D pillar-layered framework with the [SiW{sub 12}O{sub 40}]{sup 4-} anions located on the square voids of the two-dimensional Ce-pdc bilayer. Compounds 2a-c are isostructural and constructed from 3D Ln-pdc-based metal-organic framework (MOF) incorporating noncoordinatingmore » guests Keggin structure [SiW{sub 12}O{sub 40}]{sup 4-}. Solid-state properties of compounds 1 and 2a-c such as thermal stability and photoluminescence have been further investigated. - Graphical abstract: Two types of new inorganic-organic hybrid frameworks through incorporation of Keggin-type heteropolyanion [SiW{sub 12}O{sub 40}]{sup 4-} within the voids of lanthanides-pdc network as pillars or guests under hydrothermal condition were successfully assembled. Solid-state properties of compounds 1 and 2a such as thermal stability and photoluminescence have been further investigated.« less
Fitian, Asem I; Nelson, David R; Liu, Chen; Xu, Yiling; Ararat, Miguel; Cabrera, Roniel
2014-10-01
The metabolic pathway disturbances associated with hepatocellular carcinoma (HCC) remain unsatisfactorily characterized. Determination of the metabolic alterations associated with the presence of HCC can improve our understanding of the pathophysiology of this cancer and may provide opportunities for improved disease monitoring of patients at risk for HCC development. To characterize the global metabolic alterations associated with HCC arising from hepatitis C (HCV)-associated cirrhosis using an integrated non-targeted metabolomics methodology employing both gas chromatography/mass spectrometry (GC/MS) and ultrahigh-performance liquid chromatography/electrospray ionization tandem mass spectrometry (UPLC/MS-MS). The global serum metabolomes of 30 HCC patients, 27 hepatitis C cirrhosis disease controls and 30 healthy volunteers were characterized using a metabolomics approach that combined two metabolomics platforms, GC/MS and UPLC/MS-MS. Random forest, multivariate statistics and receiver operator characteristic analysis were performed to identify the most significantly altered metabolites in HCC patients vs. HCV-cirrhosis controls and which therefore exhibited a close association with the presence of HCC. Elevated 12-hydroxyeicosatetraenoic acid (12-HETE), 15-HETE, sphingosine, γ-glutamyl oxidative stress-associated metabolites, xanthine, amino acids serine, glycine and aspartate, and acylcarnitines were strongly associated with the presence of HCC. Elevations in bile acids and dicarboxylic acids were highly correlated with cirrhosis. Integrated metabolomic profiling through GC/MS and UPLC/MS-MS identified global metabolic disturbances in HCC and HCV-cirrhosis. Aberrant amino acid biosynthesis, cell turnover regulation, reactive oxygen species neutralization and eicosanoid pathways may be hallmarks of HCC. Aberrant dicarboxylic acid metabolism, enhanced bile acid metabolism and elevations in fibrinogen cleavage peptides may be signatures of cirrhosis. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Addition-type polyimides from solutions of monomeric reactants
NASA Technical Reports Server (NTRS)
Delvigs, P.; Serafini, T. T.; Lightsey, G. R.
1972-01-01
The monomeric reactants approach was used to fabricate addition-type polyimide/graphite fiber composites with improved mechanical properties and thermal stability characteristics over those of composites derived from addition-type amide acid prepolymers. A screening study of 24 different monomer combinations was performed. The results of a more extensive investigation of a selected number of monomer combinations showed that the combination providing the best thermomechanical properties was 5-norbornene-2,3-dicarboxylic acid monomethyl ester/4,4'-methylenedianiline/3,3'4,4'-benzophenone tetracarboxylic acid dimethyl ester at a molar ratio of 2/3.09/2.09.
Brunson, Roy J.
1982-01-01
Scale formation during the liquefaction of lower ranking coals and similar carbonaceous materials is significantly reduced and/or prevented by pretreatment with a pretreating agent selected from the group consisting of phthalic acid, phthalic anhydride, pyromellitic acid and pyromellitic anhydride. The pretreatment is believed to convert the scale-forming components to the corresponding phthalate and/or pyromellitate prior to liquefaction. The pretreatment is accomplished at a total pressure within the range from about 1 to about 2 atmospheres. Temperature during pretreatment will generally be within the range from about 5.degree. to about 80.degree. C.
Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.; ...
2016-09-30
Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashley, Mark A.; Ivanov, Alexander S.; Bryantsev, Vyacheslav S.
Studies of the complexation of new promising ligands with uranyl (UO 2 2+) and other seawater cations can aid the development of more efficient, selective, and robust sorbents for the recovery of uranium from seawater. Here, we propose that the ligand design principles based on structural preorganization can be successfully applied to obtain a dramatic enhancement in UO 2 2+ ion binding affinity and selectivity. This concept is exemplified through the investigation of the com-plexes of UO 2 2+, VO 2+, and VO 2+ with the highly preorganized ligand PDA (1,10-phenanthroline-2,9-dicarboxylic acid) using a combination of fluores-cence and absorbance techniques,more » along with den-sity functional theory (DFT) calculations. Moreover, the measured stability constant value, log K1, of 16.5 for the UO 2 2+/PDA complex is very high compared to uranyl complexes with other dicarboxylic ligands. Moreover, PDA exhibits strong selectivity for uranyl over vanadium ions, since the determined sta-bility constant values of the PDA complexes of the vanadium ions are quite low (V(IV) log K1 = 7.4, V(V) = 7.3). Finally, the structures of the corresponding UO 2 2+, VO 2+, and VO 2+ complexes with PDA were identified by systematic DFT calculations, and helped to interpret the stronger binding affinity for uranium over the vanadium ions. Due to its high chemical stability, selectivity, and structural preor-ganization for UO 2 2+ complexation, PDA is a very promising candidate that can be potentially used in the development of novel adsorbent materials for the selective extraction of uranium from sea-water.« less
NASA Astrophysics Data System (ADS)
SempéRé, Richard; Kawamura, Kimitaka
2003-06-01
Marine aerosol samples were collected during a western Pacific cruise covering the latitude range between 35°N and 40°S (140°E-180°E). They were analyzed for total carbon (TC), total nitrogen (TN), water-soluble organic carbon (WSOC) along with the molecular distributions of C2-C10 α, ω-dicarboxylic acids, and related polar compounds, mainly, ω-oxocarboxylic acids (C2-C9) and α-dicarbonyls (C2-C3). Oxalic acid (C2) was the most abundant followed by malonic (C3) and succinic (C4) acids. The total diacid concentration range was 7-605 ng m-3 (av. 85 ng m-3) and the diacid-carbon accounted for 2-15% (average 8%) of WSOC which comprised 29-55% (average 40%) of TC. Dry depositions of total diacids over the northern and southern Pacific Ocean were estimated to be 256-1907 μg m-2 yr-1 (average 735; n = 4) and 22-396 μg m-2 yr-1 (average 134; n = 14), respectively, whereas the air-to-sea flux of oxalic acid was 18-1351 μg m-2 yr-1 (average 466 μg m-2 yr-1) and 7.5-275 μg m-2 yr-1 (average 75 μg m-2 yr-1) in the Northern and Southern Hemispheres. We observed that the concentration ratios of diacid-C/WSOC, azelaic acid (C9)/ω-oxononanoic acid, maleic acid (iC4cis)/fumaric (iC4trans) acid and succinic acid (C4)/total diacids were correlated with air temperature. These findings showed that the intensity of photochemical oxidation reactions and thus the variation in sunlight intensity characterized here by air temperature, significantly control the molecular distribution of water-soluble organic compounds during the long-range transport of anthropogenic and/or biogenic higher molecular weight organic compounds.
The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier
Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A.; Traub, Michaela; Martinoia, Enrico; Neuhaus, H. Ekkehard
2003-01-01
Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter. PMID:12947042
The plant homolog to the human sodium/dicarboxylic cotransporter is the vacuolar malate carrier.
Emmerlich, Vera; Linka, Nicole; Reinhold, Thomas; Hurth, Marco A; Traub, Michaela; Martinoia, Enrico; Neuhaus, H Ekkehard
2003-09-16
Malate plays a central role in plant metabolism. It is an intermediate in the Krebs and glyoxylate cycles, it is the store for CO2 in C4 and crassulacean acid metabolism plants, it protects plants from aluminum toxicity, it is essential for maintaining the osmotic pressure and charge balance, and it is therefore involved in regulation of stomatal aperture. To fulfil many of these roles, malate has to be accumulated within the large central vacuole. Many unsuccessful efforts have been made in the past to identify the vacuolar malate transporter; here, we describe the identification of the vacuolar malate transporter [A. thaliana tonoplast dicarboxylate transporter (AttDT)]. This transporter exhibits highest sequence similarity to the human sodium/dicarboxylate cotransporter. Independent T-DNA [portion of the Ti (tumor-inducing) plasmid that is transferred to plant cells] Arabidopsis mutants exhibit substantially reduced levels of leaf malate, but respire exogenously applied [14C]malate faster than the WT. An AttDT-GFP fusion protein was localized to vacuole. Vacuoles isolated from Arabidopsis WT leaves exhibited carbonylcyanide m-chlorophenylhydrazone and citrate inhibitable malate transport, which was not stimulated by sodium. Vacuoles isolated from mutant plants import [14C]-malate at strongly reduced rates, confirming that this protein is the vacuolar malate transporter.
Generation of gas-phase sodiated arenes such as [(Na3(C6H4)+] from benzene dicarboxylate salts.
Attygalle, Athula B; Chan, Chang-Ching; Axe, Frank U; Bolgar, Mark
2010-01-01
Upon collision-induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2- 1,3-, and 1,4-benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO(2) by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem-in-space mass spectrometer, and subjected to collision-induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO(2) loss to produce a peak at m/z 145 for a sodiated arene of formula (Na(3)C(6)H(4))(+). This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(*C(6)H(4)CO(2)Na(2))(+)], which then eliminated CO(2) to produce a peak at m/z 122 for the distonic cation (*C(6)H(4)Na(2))(+). Copyright 2009 John Wiley & Sons, Ltd.
Fontaine, Fanny; Héquet, Arnaud; Voisin-Chiret, Anne-Sophie; Bouillon, Alexandre; Lesnard, Aurélien; Cresteil, Thierry; Jolivalt, Claude; Rault, Sylvain
2015-05-05
In response to the extensive use of antibiotics, bacteria have evolved numerous mechanisms of defense against antimicrobial agents. Among them, extrusion of the antimicrobial agents outside the bacterial cell through efflux pumps is a major cause of concern. At first limited to one or few structurally-related antibiotics, bacterial resistance have then progressed towards cross-resistance between different classes of antibiotics, leading to multidrug-resistant microorganisms. Emergence of these pathogens requires development of novel therapeutic strategies and inhibition of efflux pumps appears to be a promising strategy that could restore the potency of existing antibiotics. NorA is the most studied chromosomal efflux pump of Staphylococcus aureus; it is known to be implied in resistance of Methicillin-resistant S. aureus (MRSA) strains against a wide range of unrelated substrates, including hydrophilic fluoroquinolones. Starting from 6-benzyloxypyridine-3-boronic acid I that we previously identified as a potential inhibitor of the NorA efflux pump against the NorA-overexpressing S. aureus 1199B strain (SA1199B), we describe here the synthesis and biological evaluation of a series of 6-(aryl)alkoxypyridine-3-boronic acids. 6-(3-Phenylpropoxy)pyridine-3-boronic acid 3i and 6-(4-phenylbutoxy)pyridine-3-boronic acid 3j were found to potentiate ciprofloxacin activity by a 4-fold increase compared to the parent compound I. In addition, it has been shown that both compounds promote Ethidium Bromide (EtBr) accumulation in SA1199B, thus corroborating their potential mode of action as NorA inhibitors. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Carboxylic acids permeases in yeast: two genes in Kluyveromyces lactis.
Lodi, Tiziana; Fontanesi, Flavia; Ferrero, Iliana; Donnini, Claudia
2004-09-15
Two new genes KlJEN1 and KlJEN2 were identified in Kluyveromyces lactis. The deduced structure of their products is typical of membrane-bound carriers and displays high similarity to Jen1p, the monocarboxylate permease of Saccharomyces cerevisiae. Both KlJEN1 and KlJEN2 are under the control of glucose repression mediated by FOG1 and FOG2, corresponding to S. cerevisiae GAL83 and SNF1 respectively, and KlCAT8, proteins involved in glucose signalling cascade in K. lactis. KlJEN1, but not KlJEN2, is induced by lactate. KlJEN2 in contrast is expressed at high level in ethanol and succinate. The physiological characterization of null mutants showed that KlJEN1 is the functional homologue of ScJEN1, whereas KlJEN2 encodes a dicarboxylic acids transporter. In fact, KlJen1p [transporter classification (TC) number: 2.A.1.12.2.] is required for lactate uptake and therefore for growth on lactate. KlJen2p is required for succinate transport, as demonstrated by succinate uptake experiments and by inability of Kljen2 mutant to grow on succinate. This carrier appears to transport also malate and fumarate because the Kljen2 mutant cannot grow on these substrates and the succinate uptake is competed by these carboxylic acids. We conclude that KlJEN2 is the first yeast gene shown to encode a dicarboxylic acids permease.
Hernáez, M J; Floriano, B; Ríos, J J; Santero, E
2002-10-01
Two new genes whose products are involved in biodegradation of the organic solvent tetralin were identified. These genes, designated thnE and thnF, are located downstream of the previously identified thnD gene and code for a hydratase and an aldolase, respectively. A sequence comparison of enzymes similar to ThnE showed the significant similarity of hydratases involved in biodegradation pathways to 4-oxalocrotonate decarboxylases and established four separate groups of related enzymes. Consistent with the sequence information, characterization of the reaction catalyzed by ThnE showed that it hydrated a 10-carbon dicarboxylic acid. The only reaction product detected was the enol tautomer, 2,4-dihydroxydec-2-ene-1,10-dioic acid. The aldolase ThnF showed significant similarity to aldolases involved in different catabolic pathways whose substrates are dihydroxylated dicarboxylic acids and which yield pyruvate and a semialdehyde. The reaction products of the aldol cleavage reaction catalyzed by ThnF were identified as pyruvate and the seven-carbon acid pimelic semialdehyde. ThnF and similar aldolases showed conservation of the active site residues identified by the crystal structure of 2-dehydro-3-deoxy-galactarate aldolase, a class II aldolase with a novel reaction mechanism, suggesting that these similar enzymes are class II aldolases. In contrast, ThnF did not show similarity to 4-hydroxy-2-oxovalerate aldolases of other biodegradation pathways, which are significantly larger and apparently are class I aldolases.
Greyling, Guilaume; Pasch, Harald
2017-08-25
Multidetector thermal field-flow fractionation (ThFFF) is shown to be a versatile characterisation platform that can be used to characterise hydrophilic polymers in a variety of organic and aqueous solutions with various ionic strengths. It is demonstrated that ThFFF fractionates isotactic and syndiotactic poly(methacrylic acid) (PMAA) as well as poly(2-vinyl pyridine) (P2VP) and poly(4-vinyl pyridine) (P4VP) according to microstructure in organic solvents and that the ionic strength of the mobile phase has no influence on the retention behaviour of the polymers. With regard to aqueous solutions, it is shown that, despite the weak retention, isotactic and syndiotactic PMAA show different retention behaviours which can qualitatively be attributed to microstructure. Additionally, it is shown that the ionic strength of the mobile phase has a significant influence on the thermal diffusion of polyelectrolytes in aqueous solutions and that the addition of an electrolyte is essential to achieve a microstructure-based separation of P2VP and P4VP in aqueous solutions. Copyright © 2017 Elsevier B.V. All rights reserved.
Separation of americium from europium using 3,3'-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6-pyridine
Hill, Talon G.; Chin, Ai Lin; Tai, Serene; ...
2017-03-22
Development of liquid-liquid separation processes for the effective removal of the minor actinide Am(III) from used nuclear fuel using ligand-based strategies continues to be an area of significant research focus. The current investigation demonstrates the efficacy of a nitrogen-based bis-triazinyl pyridine (BTP) derivative to selectively extract Am(III) from nitric acid solutions containing light lanthanides. The performance of 3,3’-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6- pyridine (MOB-BTP) was compared to that of a camphor substituted BTP (CA-BTP). The results of this investigation demonstrate the novel 3,3’-methoxy-BTP extractant dissolved in a polar diluent was a more efficient extractant for Am(III) at a lower concentration than CA-BTP under comparablemore » conditions.« less
Separation of americium from europium using 3,3'-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6-pyridine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Talon G.; Chin, Ai Lin; Tai, Serene
Development of liquid-liquid separation processes for the effective removal of the minor actinide Am(III) from used nuclear fuel using ligand-based strategies continues to be an area of significant research focus. The current investigation demonstrates the efficacy of a nitrogen-based bis-triazinyl pyridine (BTP) derivative to selectively extract Am(III) from nitric acid solutions containing light lanthanides. The performance of 3,3’-dimethoxy-phenyl-bis-1,2,4-triazinyl-2,6- pyridine (MOB-BTP) was compared to that of a camphor substituted BTP (CA-BTP). The results of this investigation demonstrate the novel 3,3’-methoxy-BTP extractant dissolved in a polar diluent was a more efficient extractant for Am(III) at a lower concentration than CA-BTP under comparablemore » conditions.« less
Genome-scale model-driven strain design for dicarboxylic acid production in Yarrowia lipolytica.
Mishra, Pranjul; Lee, Na-Rae; Lakshmanan, Meiyappan; Kim, Minsuk; Kim, Byung-Gee; Lee, Dong-Yup
2018-03-19
Recently, there have been several attempts to produce long-chain dicarboxylic acids (DCAs) in various microbial hosts. Of these, Yarrowia lipolytica has great potential due to its oleaginous characteristics and unique ability to utilize hydrophobic substrates. However, Y. lipolytica should be further engineered to make it more competitive: the current approaches are mostly intuitive and cumbersome, thus limiting its industrial application. In this study, we proposed model-guided metabolic engineering strategies for enhanced production of DCAs in Y. lipolytica. At the outset, we reconstructed genome-scale metabolic model (GSMM) of Y. lipolytica (iYLI647) by substantially expanding the previous models. Subsequently, the model was validated using three sets of published culture experiment data. It was finally exploited to identify genetic engineering targets for overexpression, knockout, and cofactor modification by applying several in silico strain design methods, which potentially give rise to high yield production of the industrially relevant long-chain DCAs, e.g., dodecanedioic acid (DDDA). The resultant targets include (1) malate dehydrogenase and malic enzyme genes and (2) glutamate dehydrogenase gene, in silico overexpression of which generated additional NADPH required for fatty acid synthesis, leading to the increased DDDA fluxes by 48% and 22% higher, respectively, compared to wild-type. We further investigated the effect of supplying branched-chain amino acids on the acetyl-CoA turn-over rate which is key metabolite for fatty acid synthesis, suggesting their significance for production of DDDA in Y. lipolytica. In silico model-based strain design strategies allowed us to identify several metabolic engineering targets for overproducing DCAs in lipid accumulating yeast, Y. lipolytica. Thus, the current study can provide a methodological framework that is applicable to other oleaginous yeasts for value-added biochemical production.
NASA Astrophysics Data System (ADS)
Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.
2015-01-01
To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.
NASA Astrophysics Data System (ADS)
Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.
2015-07-01
To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.
Rat urinary metabolites of [9,10-methylene-14C] sterculic acid.
Eisele, T A; Yoss, J K; Nixon, J E; PAwlowski, N E; Libbey, L M; Sinnhuber, R O
1977-07-20
1. The metabolism of [9,10-methylene-14C] sterculic acid was studied in corn oil and Stercula foetida oil fed rats. The majority of the radioactivity was excreted into the urine as short chain dicarboxylic acids. The main urinary metabolites were cis-3,4-methylene adipic acid, cis-3,4-methylene suberic acid, trans-3,4-methylene adipic acid, cis-3,4-methylene pimelic acid, and cis-3,4-methylene azelic acid. 2. Formation of these urinary metabolites requires alpha-, beta-, and omega-oxidation plus reduction of the cyclopropene ring to a cyclopropane ring. Sterculic acid must be transported through both mitochondrial and microsomal systems. 3. Other non-radioactive urinary compounds were also identified. A proposed pathway for the metabolism of sterculic acid and possible detrimental effects caused by these metabolites is discussed.
NASA Astrophysics Data System (ADS)
Sun, Di; Liu, Fu-Jing; Hao, Hong-Jun; Huang, Rong-Bin; Zheng, Lan-Sun
2011-10-01
Two mixed-ligand Ag(I) coordination polymers (CPs), [Ag 2(bipy) 2(sub)·5H 2O] n ( 1), [Ag 2(bipy) 2(aze)·3H 2O] n ( 2), (bipy = 4,4'-bipyridine, H 2sub = suberic acid, H 2aze = azelaic acid) have been synthesized and structurally characterized by elemental analysis, infrared (IR) spectroscopy, powder X-ray diffraction (PXRD), thermogravimetric (TG) analysis, and single crystal X-ray diffraction. Both 1 and 2 are two-dimensional (2D) sheets based on infinite [Ag(bipy)] n double chain incorporating Ag⋯Ag interactions. Interestingly, two different water clusters are encapsulated in the voids between the sheets of 1 and 2. For 1, one water decamer (H 2O) 10 based on a cyclic water tetramer was hydrogen-bonded with the host 2D sheet. While, one water hexamer (H 2O) 6 also based on a cyclic water tetramer was observed in 2. Comparing the experimental results, it is comprehensible that the dicarboxylates play a crucial role in the formation of the different water clusters. Moreover, the thermal stabilities of them were also discussed.
Cocrystallization of adamantane-1,3-dicarboxylic acid and 4,4'-bipyridine.
Pan, Yue; Li, Kunhao; Bi, Wenhua; Li, Jing
2008-02-01
The cocrystallization of adamantane-1,3-dicarboxylic acid (adc) and 4,4'-bipyridine (4,4'-bpy) yields a unique 1:1 cocrystal, C(12)H(16)O(4).C(10)H(8)N(2), in the C2/c space group, with half of each molecule in the asymmetric unit. The mid-point of the central C-C bond of the 4,4'-bpy molecule rests on a center of inversion, while the adc molecule straddles a twofold rotation axis that passes through two of the adamantyl C atoms. The constituents of this cocrystal are joined by hydrogen bonds, the stronger of which are O-H...N hydrogen bonds [O...N = 2.6801 (17) A] and the weaker of which are C-H...O hydrogen bonds [C...O = 3.367 (2) A]. Alternate adc and 4,4'-bpy molecules engage in these hydrogen bonds to form zigzag chains. In turn, these chains are linked through pi-pi interactions along the c axis to generate two-dimensional layers. These layers are neatly packed into a stable crystalline three-dimensional form via weak C-H...O hydrogen bonds [C...O = 3.2744 (19) A] and van der Waals attractions.
NASA Astrophysics Data System (ADS)
Lin, Jian-Di; Rong, Cheng; Lv, Ri-Xin; Wang, Zu-Jian; Long, Xi-Fa; Guo, Guo-Cong; Pan, Chun-Yang
2018-01-01
Self-assembly reaction of Pb(NO3)2 with thiophene-2, 5-dicarboxylic acid (H2TDC) led to an acentric three-dimensional (3D) metal-organic framework under solvothermal conditions, namely, Pb(TDC) (1). The 3D framework of 1 is a pillared-layer structure with the I2O1 type which is composed of a 2D inorganic Pb-O-Pb substructural layer and two independent μ6-TDC2- anions pillars. This 3D framework shows a six-connected pcu topological net according to the topological analysis. Compound 1 crystallizes in an acentric space group and displays potential ferroelectric property which could be due to the swing of the thiophene rings. The remnant polarization (Pr), coercive field (Ec) and saturation spontaneous polarization (Ps) of 1 are ca. 0.034 μC cm-2, 15.7 kV cm-1 and 0.0997 μC cm-2, respectively. Among the H2TDC-based MOFs, the present compound is the first example which shows ferroelectric property. In addition, 1 also exhibits photoluminescent property which can be attributed to ligand-to-metal charge transfer.
van Nuland, Youri M; de Vogel, Fons A; Scott, Elinor L; Eggink, Gerrit; Weusthuis, Ruud A
2017-11-01
Direct and selective terminal oxidation of medium-chain n-alkanes is a major challenge in chemistry. Efforts to achieve this have so far resulted in low specificity and overoxidized products. Biocatalytic oxidation of medium-chain n-alkanes - with for example the alkane monooxygenase AlkB from P. putida GPo1- on the other hand is highly selective. However, it also results in overoxidation. Moreover, diterminal oxidation of medium-chain n-alkanes is inefficient. Hence, α,ω-bifunctional monomers are mostly produced from olefins using energy intensive, multi-step processes. By combining biocatalytic oxidation with esterification we drastically increased diterminal oxidation upto 92mol% and reduced overoxidation to 3% for n-hexane. This methodology allowed us to convert medium-chain n-alkanes into α,ω-diacetoxyalkanes and esterified α,ω-dicarboxylic acids. We achieved this in a one-pot reaction with resting-cell suspensions of genetically engineered Escherichia coli. The combination of terminal oxidation and esterification constitutes a versatile toolbox to produce α,ω-bifunctional monomers from n-alkanes. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Li-shar; Sun, Gang; Cobessi, David
We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator ofmore » succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Ho Won; Tschaplinski, Timothy J; Wang, Lin
Upon local infection, plants possess inducible systemic defense responses against their natural enemies. Bacterial infection results in the accumulation to high levels of the mobile metabolite C9-dicarboxylic acid azelaic acid in the vascular sap of Arabidopsis. Azelaic acid confers local and systemic resistance against Pseudomonas syringae. The compound primes plants to strongly accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of a gene induced by azelaic acid (AZI1) results in the specific loss in plants of systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction. AZI1, a predicted secreted protein, ismore » also important for generating vascular sap that confers disease resistance. Thus, azelaic acid and AZI1 comprise novel components of plant systemic immunity involved in priming defenses.« less
Methods of making organic compounds by metathesis
Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John
2015-09-01
Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.
Bio-based production of monomers and polymers by metabolically engineered microorganisms.
Chung, Hannah; Yang, Jung Eun; Ha, Ji Yeon; Chae, Tong Un; Shin, Jae Ho; Gustavsson, Martin; Lee, Sang Yup
2015-12-01
Recent metabolic engineering strategies for bio-based production of monomers and polymers are reviewed. In the case of monomers, we describe strategies for producing polyamide precursors, namely diamines (putrescine, cadaverine, 1,6-diaminohexane), dicarboxylic acids (succinic, glutaric, adipic, and sebacic acids), and ω-amino acids (γ-aminobutyric, 5-aminovaleric, and 6-aminocaproic acids). Also, strategies for producing diols (monoethylene glycol, 1,3-propanediol, and 1,4-butanediol) and hydroxy acids (3-hydroxypropionic and 4-hydroxybutyric acids) used for polyesters are reviewed. Furthermore, we review strategies for producing aromatic monomers, including styrene, p-hydroxystyrene, p-hydroxybenzoic acid, and phenol, and propose pathways to aromatic polyurethane precursors. Finally, in vivo production of polyhydroxyalkanoates and recombinant structural proteins having interesting applications are showcased. Copyright © 2015 Elsevier Ltd. All rights reserved.
Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping
2017-01-01
Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene (SlTDT) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT, we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles. PMID:28261242
Liu, Ruiling; Li, Boqiang; Qin, Guozheng; Zhang, Zhanquan; Tian, Shiping
2017-01-01
Acidity plays an important role in flavor and overall organoleptic quality of fruit and is mainly due to the presence of organic acids. Understanding the molecular basis of organic acid metabolism is thus of primary importance for fruit quality improvement. Here, we cloned a putative tonoplast dicarboxylate transporter gene ( SlTDT ) from tomato, and submitted it to the NCBI database (GenBank accession number: KC733165). SlTDT protein contained 13 putative transmembrane domains in silico analysis. Confocal microscopic study using green fluorescent fusion proteins revealed that SlTDT was localized on tonoplast. The expression patterns of SlTDT in tomato were analyzed by RT-qPCR. The results indicated that SlTDT expressed in leaves, roots, flowers and fruits at different ripening stages, suggesting SlTDT may be associated with the development of different tissues. To further explore the function of SlTDT , we constructed both overexpression and RNAi vectors and obtained transgenic tomato plants by agrobacterium-mediated method. Gas chromatography-mass spectrometer (GC-MS) analysis showed that overexpression of SlTDT significantly increased malate content, and reduced citrate content in tomato fruit. By contrast, repression of SlTDT in tomato reduced malate content of and increased citrate content. These results indicated that SlTDT played an important role in remobilization of malate and citrate in fruit vacuoles.
Medeiros, David B; Barros, Kallyne A; Barros, Jessica Aline S; Omena-Garcia, Rebeca P; Arrivault, Stéphanie; Sanglard, Lílian M V P; Detmann, Kelly C; Silva, Willian Batista; Daloso, Danilo M; DaMatta, Fábio M; Nunes-Nesi, Adriano; Fernie, Alisdair R; Araújo, Wagner L
2017-11-01
Malate is a central metabolite involved in a multiplicity of plant metabolic pathways, being associated with mitochondrial metabolism and playing significant roles in stomatal movements. Vacuolar malate transport has been characterized at the molecular level and is performed by at least one carrier protein and two channels in Arabidopsis ( Arabidopsis thaliana ) vacuoles. The absence of the Arabidopsis tonoplast Dicarboxylate Transporter (tDT) in the tdt knockout mutant was associated previously with an impaired accumulation of malate and fumarate in leaves. Here, we investigated the consequences of this lower accumulation on stomatal behavior and photosynthetic capacity as well as its putative metabolic impacts. Neither the stomatal conductance nor the kinetic responses to dark, light, or high CO 2 were highly affected in tdt plants. In addition, we did not observe any impact on stomatal aperture following incubation with abscisic acid, malate, or citrate. Furthermore, an effect on photosynthetic capacity was not observed in the mutant lines. However, leaf mitochondrial metabolism was affected in the tdt plants. Levels of the intermediates of the tricarboxylic acid cycle were altered, and increases in both light and dark respiration were observed. We conclude that manipulation of the tonoplastic organic acid transporter impacted mitochondrial metabolism, while the overall stomatal and photosynthetic capacity were unaffected. © 2017 American Society of Plant Biologists. All Rights Reserved.
NASA Astrophysics Data System (ADS)
Mei, Hong-Xin; Zhang, Ting; Huang, Hua-Qi; Huang, Rong-Bin; Zheng, Lan-Sun
2016-03-01
Three mix-ligand Ag(I) coordination compounds, namely, {[Ag10(tpyz) 5(L1) 5(H2 O)2].(H2 O)4}n (1, tpyz = 2,3,4,5-tetramethylpyrazine, H2 L1 = phthalic acid), [Ag4(tpyz) 2(L2) 2(H2 O)].(H2 O)5}n (2, H2 L2 = isophthalic acid) {[Ag2(tpyz) 2(L3) (H2 O)4].(H2 O)8}n (3, H2 L3 = terephthalic acid), have been synthesized and characterized by elemental analysis, IR, PXRD and X-ray single-crystal diffraction. 1 exhibits a 2D layer which can be simplified as a (4,4) net. 2 is a 3D network which can be simplified as a (3,3)-connected 2-nodal net with a point symbol of {102.12}{102}. 3 consists of linear [Ag(tpyz) (H2 O)2]n chain. Of particular interest, discrete hexamer water clusters were observed in 1 and 2, while a 2D L10(6) water layer exists in 3. The results suggest that the benzene dicarboxylates play pivotal roles in the formation of the different host architectures as well as different water aggregations. Moreover, thermogravimetric analysis (TGA) and emissive behaviors of these compounds were investigated.
NASA Astrophysics Data System (ADS)
Deshmukh, Dhananjay K.; Mozammel Haque, Md.; Kawamura, Kimitaka; Kim, Yongwon
2018-04-01
The presence of water-soluble dicarboxylic acids in atmospheric aerosols has a significant influence on the regional radiative forcing through direct aerosol effect and cloud formation process. Fine aerosol (PM2.5) samples collected in central Alaska (Fairbanks: 64.51°N and 147.51°W) during summer of 2009 were measured for water-soluble diacids (C2-C12), oxoacids (C2-C9) and α-dicarbonyls (C2-C3) as well as elemental carbon (EC), organic carbon (OC) and water-soluble OC (WSOC) to assess their sources and formation processes. We found the predominance of oxalic acid (C2) followed by malonic (C3) and succinic acid (C4) in Alaskan aerosols. Higher C3/C4 diacid ratios (ave. 1.2) in Alaskan aerosols than those reported for fresh aerosols emitted from fossil fuel combustion (ave. 0.35) and biomass burning (0.51-0.66) suggest that organic aerosols in central Alaska were photochemically processed. The relatively high correlations of major diacids and related compounds with levoglucosan (r = 0.80-0.99) than those with 2-methylglyceric acid (r = 0.59-0.98) suggest that they were significantly produced from biomass burning emission. Strong correlations of C2 with normal-chain saturated diacids (C3-C9: r = 0.80-0.98), glyoxylic acid (ωC2: r = 0.95) and methylglyoxal (MeGly: r = 0.88), together with strong correlations of solar radiation with ratio of C2 to C2-C12 diacids (r = 0.83), ωC2 (r = 0.80) and MeGly (r = 0.82) suggest that oxalic acid in PM2.5 aerosol was produced by the photooxidation of higher homologous diacids, glyoxylic acid and methylglyoxal in the atmosphere of central Alaska. These results reveal that photochemical processing of organic precursors mainly produced from biomass burning control the water-soluble organic chemical composition of fine aerosols in central Alaska.
Stefan, Amy R; Dockery, Christopher R; Nieuwland, Alexander A; Roberson, Samantha N; Baguley, Brittany M; Hendrix, James E; Morgan, Stephen L
2009-08-01
The extraction and separation of dyes present on textile fibers offers the possibility of enhanced discrimination between forensic trace fiber evidence. An automated liquid sample handling workstation was programmed to deliver varying solvent combinations to acid-dyed nylon samples, and the resulting extracts were analyzed by an ultraviolet/visible microplate reader to evaluate extraction efficiencies at different experimental conditions. Combinatorial experiments using three-component mixture designs varied three solvents (water, pyridine, and aqueous ammonia) and were employed at different extraction temperatures for various extraction durations. The extraction efficiency as a function of the three solvents (pyridine/ammonia/water) was modeled and used to define optimum conditions for the extraction of three subclasses of acid dyes (anthraquinone, azo, and metal complex) from nylon fibers. The capillary electrophoresis analysis of acid dye extracts is demonstrated using an electrolyte solution of 15 mM ammonium acetate in acetonitrile/water (40:60, v/v) at pH 9.3. Excellent separations and discriminating diode array spectra are obtained even for dyes of similar color.
Isolation of Nicotinic Acid (Vitamin B3) and N-Propylamine after Myosmine Peroxidation.
Zwickenpflug, Wolfgang; Högg, Christof; Feierfeil, Johannes; Dachs, Manuel; Gudermann, Thomas
2016-01-13
The alkaloid myosmine (3-(1-pyrroline-2-yl)pyridine) is widespread in biological matrixes including foodstuffs and tobacco products. Some in vitro tests in cellular systems showed mutagenic activity for myosmine. Myosmine activation including peroxidation mechanism employs unstable oxazirane intermediates. The formation of minor metabolite 3-hydroxymethyl-pyridine in rat metabolism experiments as well as in in vitro peroxidation assays suggests its further oxidation to nicotinic acid and possible concomitant formation of n-propylamine. A sensitive high-performance liquid chromatography-ultraviolet (HPLC-UV) method was developed for the direct analysis of n-propylamine in the peroxidation assay solution of myosmine employing derivatization with 3,5-dinitrobenzoyl chloride. Additionally, during peroxidation procedures, formation of 3-pyridylmethanol to nicotinic acid, the essential vitamin B3, was observed and characterized using HPLC-UV and gas chromatography/mass spectrometry. This new reaction pathway may present further contribution to our knowledge of myosmine's significance in human food including its activation in human organism, foodstuffs, and biological systems.
McGuire, Chad M.; Albrecht-Schmitt, Thomas E.
2018-01-01
The title compound {systematic name: 3-carboxy-2-[2-(3-carboxypyridin-2-yl)disulfan-1-yl)]pyridin-1-ium chloride monohydrate}, C12H9N2O4S2 +·Cl−·H2O, crystallizes in the triclinic space group P . A pair of 2-mercaptonicotinic acid moieties is connected by a 2,2′-disulfide bond with a dihedral angle of 78.79 (3)°. One of the N atom is protonated, as are both carboxylate groups, resulting in an overall +1 charge on the dimer. The structure comprises a zigzagging layer of the dimerized dithiodinicotinic acid rings, with charge-balancing chloride ions and water molecules between the layers. Hydrogen bonding between the chloride and water sites with the dimer appears to hold the structure together. Nearest neighbor nicotinic acid rings are offset when viewed down the a axis, suggesting no added stability from ring stacking. The asymmetric unit corresponds to the empirical formula of the compound, and it packs with two formula units per unit cell.
Steinmetz, Philipp Aloysius; Wörner, Sebastian; Unden, Gottfried
2014-10-01
The C4-dicarboxylate responsiveness of the sensor kinase DcuS is only provided in concert with C4-dicarboxylate transporters DctA or DcuB. The individual roles of DctA and DcuS for the function of the DctA/DcuS sensor complex were analysed. (i) Variant DctA(S380D) in the C4-dicarboxylate site of DctA conferred C4-dicarboxylate sensitivity to DcuS in the DctA/DcuS complex, but was deficient for transport and for growth on C4-dicarboxylates. Consequently transport activity of DctA is not required for its function in the sensor complex. (ii) Effectors like fumarate induced expression of DctA/DcuS-dependent reporter genes (dcuB-lacZ) and served as substrates of DctA, whereas citrate served only as an inducer of dcuB-lacZ without affecting DctA function. (iii) Induction of dcuB-lacZ by fumarate required 33-fold higher concentrations than for transport by DctA (Km = 30 μM), demonstrating the existence of different fumarate sites for both processes. (iv) In titration experiments with increasing dctA expression levels, the effect of DctA on the C4-dicarboxylate sensitivity of DcuS was concentration dependent. The data uniformly show that C4-dicarboxylate sensing by DctA/DcuS resides in DcuS, and that DctA serves as an activity switch. Shifting of DcuS from the constitutive ON to the C4-dicarboxylate responsive state, required presence of DctA but not transport by DctA. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Soleimannejad, Janet; Nazarnia, Esfandiar; Stoeckli-Evans, Helen
2014-11-01
A new pseudopolymorph (B; tetragonal, I41/acd) of the cocrystal biphenyl-2,2‧-dicarboxylic acid (diphenic acid) and 4,4‧-bipyridine was synthesized. Its solid-state structure and supramolecular synthons responsible for extending the supramolecular network have been compared with those of the previously reported polymorph (A; triclinic, P1bar). DFT calculations at the B3LYP/6-311G++ (2d,2p) level have been performed. Energies of the intermolecular hydrogen bonds in the crystal structure were calculated and their electronic aspects were investigated by NBO and AIM analysis.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Mochida, M.; Uemoto, N.; Bertram, T.; Huebert, B.
2001-12-01
During the ACE-Asia campaign with C-130 aircraft, aerosol samples were collected over the western North Pacific, East China Sea, and Japan Sea, as well as over Japanese Islands and Korean Peninsula in 8 April to 3 May 2001. The filter samples (N=15) were extracted with organic-free pure water to separate water-soluble dicarboxylic acids and related compounds. The extracts were reacted with 14% BF3 in n-butanol and the dibutyl esters and other derivatives were determined using a capillary GC and GC/MS. The results showed that 14 species of diacids (C2-C11) and 4 species of ketoacids (C2-C4) were detected in the aerosols over the East Asia. Total concentrations of the diacids were 113-500 (av. 330) ng/m3 whereas those of ketoacids were 43-260 (av. 103) ng/m3. The concentrations are equivalent to or more abundant than those reported for the urban Tokyo atmosphere in this season on the ground level. All the samples showed that oxalic acid (C2) is the most abundant diacid, which accounted for 58-83% of total diacids. These values are greater than that (ca. 50%) reported in the urban air near the ground, suggesting that oxalic acid is preferentially produced and/or longer diacids are selectively decomposed in the upper troposphere. Malonic (C3) acid is the second most abundant species followed by succinic (C4) acid. Longer diacids are less abundant, but azelaic (C9) acid is generally more abundant than C6-C8 diacids. Glyoxylic acid (C2) is the most abundant ketoacid followed by pyruvic acid. However, C3 and C4 omega-oxoacids were found as minor species. Although oxalic acid is the dominant component in the aerosols, few samples showed the predominance of glyoxylic acid over oxalic acid. This feature has not been reported for the urban aerosols collected near the ground level. We will discuss a potential photochemical production of water-soluble organic acids in the upper troposphere over the eastern ridge of the Asian continent.
Dai, Zhongxue; Zhou, Huiyuan; Zhang, Shangjie; Gu, Honglian; Yang, Qiao; Zhang, Wenming; Dong, Weiliang; Ma, Jiangfeng; Fang, Yan; Jiang, Min; Xin, Fengxue
2018-06-01
Malic acid (2-hydroxybutanedioic acid) is a four-carbon dicarboxylic acid, which has attracted great interest due to its wide usage as a precursor of many industrially important chemicals in the food, chemicals, and pharmaceutical industries. Several mature routes for malic acid production have been developed, such as chemical synthesis, enzymatic conversion and biological fermentation. With depletion of fossil fuels and concerns regarding environmental issues, biological production of malic acid has attracted more attention, which mainly consists of three pathways, namely non-oxidative pathway, oxidative pathway and glyoxylate cycle. In recent decades, metabolic engineering of model strains, and process optimization for malic acid production have been rapidly developed. Hence, this review comprehensively introduces an overview of malic acid producers and highlight some of the successful metabolic engineering approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
Wang, Qi-Fang; Hui, Li; Hou, Hong; Yan, Chao-Guo
2010-03-08
An efficient synthetic procedure for the preparation of the unusual charge-separated pyridinium-Meldrum acid and N,N-dimethylbarbiturate acid zwitterionic salts was developed though a unique one-pot four-component reaction involving pyridine, aromatic aldehyde, Meldrum acid or N,N-dimethylbarbituric acid, and p-nitrobenzyl bromide in acetonitrile. By varying combinations of four components involving nitrogen-containing heterocycles, we conveniently established reactive alpha-halomethylene compounds, aldehydes and beta-dicarbonyl compounds a library of zwitterionic salts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMurtry, Brandon M.; Saito, Sean E. J.; Turner, A
With a binary ice mixture of benzene (C{sub 6}H{sub 6}) and carbon dioxide (CO{sub 2}) at 10 K under contamination-free ultrahigh vacuum conditions, the formation of benzene carboxylic acids in interstellar ice grains was studied. Fourier transform infrared spectroscopy was used to probe for the formation of new species during the chemical processing of the ice mixture and during the following temperature-programmed desorption. Newly formed benzene carboxylic acid species, i.e., benzoic acid, as well as meta - and para -benzene dicarboxylic acid, were assigned using newly emerging bands in the infrared spectrum; a reaction mechanism, along with rate constants, wasmore » proposed utilizing the kinetic fitting of the coupled differential equations.« less
A new redox-active coordination polymer with cobalticinium dicarboxylate.
Kondo, Mitsuru; Hayakawa, Yuri; Miyazawa, Makoto; Oyama, Aiko; Unoura, Kei; Kawaguchi, Hiroyuki; Naito, Tetsuyoshi; Maeda, Kenji; Uchida, Fumio
2004-09-20
A new two-dimensional coordination polymer with cobalticinium 1,1'-dicarboxylate (ccdc) incorporated in the framework has been prepared, the ccdc functioning as unique monoanionic dicarboxylate ligands. The compound shows a high redox activity based on the ccdc units. Copyright 2004 American Chemical Society
Structural analysis of pyridine-imino boronic esters involving secondary interactions on solid state
NASA Astrophysics Data System (ADS)
Sánchez-Portillo, Paola; Arenaza-Corona, Antonino; Hernández-Ahuactzi, Irán F.; Barba, Victor
2017-04-01
Twelve boronic esters (1a-1l) synthesized from 4-halo- substituted arylboronic acids (halo = F, Cl, Br, I and CF3) with 2-amino-2- alkyl (H, Me) -1,3-propanediol in presence of (3- or 4)-pyridine carboxaldehyde are described. A solvent mixture toluene/methanol 1:4 ratio was used. All compounds include both donor/acceptor functional groups, which are the necessary elements to self-assembly of the molecular species. Several secondary interactions as I⋯N, Br⋯Br, Br⋯B, F⋯B, Csbnd H⋯N, Csbnd H⋯O, Br⋯π and Csbnd H⋯π support the 1D and 2D polymeric frameworks in solid state. The coordination of the nitrogen atom from the pyridine moiety with the boron atom was not observed in either solution or solid state.
NASA Astrophysics Data System (ADS)
Hoque, Mir Md. Mozammal; Kawamura, Kimitaka; Uematsu, Mitsuo
2017-03-01
Aerosol samples (TSP) were collected during a cruise in the North (3°05‧N-34°02‧N) and South (6°59‧S-25°46‧S) Pacific to investigate the spatio-temporal distributions of water-soluble dicarboxylic acids and related compounds. The molecular distributions of diacids were characterized by the predominance of oxalic (C2) acid followed by malonic (C3) and then succinic (C4) acid. However, we found a predominance of C4 over C3 in the aerosol sample that was collected in the western North Pacific Rim with a heavy influence from continental air masses. Atmospheric abundances of short chain diacids (C2-C4) are 2-3 times higher in the North Pacific than in the South Pacific. During the cruise, abundances of C2 in the western North Pacific are 5 times higher than those in the rest of the samples collected. Moreover, the aerosol samples collected in the western North Pacific demonstrated that glyoxylic (ωC2) acid and methylglyoxal (MeGly) were dominant together with C2. We found a strong correlation between C2 and ωC2 (r = 0.87) and C2 and MeGly (r = 0.97) in the western North Pacific aerosols but the correlations are significantly weak in the samples from the central North Pacific and Southern Ocean. Diacids were found to account for 1.6 to 14% of organic carbon with higher values in the western North Pacific. These results, together with 7-day backward air mass trajectories, indicate that ωC2 and MeGly are both originated from the photochemical oxidation of continent-derived organic precursors including isoprene, which can serve as precursors for the production of C2 during long-range atmospheric transport.
Hu, Qihou; Xie, Zhouqing; Wang, Xinming; Kang, Hui; Zhang, Yuqing; Ding, Xiang; Zhang, Pengfei
2018-05-30
Organic acids are major components in marine organic aerosols. Many studies on the occurrence, sources and sinks of organic acids over oceans in the low and middle latitudes have been conducted. However, the understanding of relative contributions of specific sources to organic acids over oceans, especially in the high latitudes, is still inadequate. This study measured organic acids, including C 14:0 - C 32:0 saturated monocarboxylic acids (MCAs), C 16:1 , C 18:1 and C 18:2 unsaturated MCAs, and di-C 4 - di-C 10 dicarboxylic acids (DCAs), in the marine boundary layer from the East China Sea to the Arctic Ocean during the 3rd Chinese Arctic Research Expedition (CHINARE 08). The average concentrations were 18 ± 16 ng/m 3 and 11 ± 5.4 ng/m 3 for ΣMCA and ΣDCA, respectively. The levels of saturated MCAs were much higher than those of unsaturated DCAs, with peaks at C 16:0 , C 18:0 and C 14:0 . DCAs peaked at di-C 4 , followed by di-C 9 and di-C 8 . Concentrations of MCAs and DCAs generally decreased with increasing latitudes. Sources of MCAs and DCAs were further investigated using principal component analysis with a multiple linear regression (PCA-MLR) model. Overall, carboxylic acids originated from ocean emissions, continental input (including biomass burning, anthropogenic emissions and terrestrial plant emissions), and secondary formation. All the five sources contributed to MCAs with ocean emissions as the predominant source (48%), followed by biomass burning (20%). In contrast, only 3 sources (i.e., secondary formation (50%), anthropogenic emissions (41%) and biomass burning (9%)) contributed to DCAs. Furthermore, the sources varied with regions. Over the Arctic Ocean, only secondary formation and anthropogenic emissions contributed to MCAs and DCAs. Copyright © 2018 Elsevier B.V. All rights reserved.
Effect of sulfuric acid concentration of bentonite and calcination time of pillared bentonite
NASA Astrophysics Data System (ADS)
Mara, Ady; Wijaya, Karna; Trisunaryati, Wega; Mudasir
2016-04-01
An activation of natural clay has been developed. Activation was applied by refluxing the natural bentonite in variation of the sulfuric acid concentration and calcination time of pillared bentonite (PLC). Calcination was applied using oven in microwave 2,45 GHz. Determination of acidity was applied by measuring the amount of adsorbed ammonia and pyridine. Morphological, functional groups and chrystanility characterizations were analyzed using SEM, TEM, FTIR and XRD. Porosity was analyzed using SSA. The results showed that the greater of the concentration of sulfuric acid and calcination time was, the greater the acidity of bentonite as well as the pore diameter were. FTIR spectra showed no fundamental changes in the structure of the natural bentonite, SEM, and TEM images were showing an increase in space or field due to pillarization while the XRD patterns showed a shift to a lower peak. Optimization was obtained at a concentration of 2 M of sulfuric acid and calcination time of 20 minutes, keggin ion of 2.2 and suspension of 10 mmol, respectively each amounted to 11.7490 mmol/gram of ammonia and 2.4437 mmol/gram of pyridine with 154.6391 m2/gram for surface area, 0.130470 m3/gram of pore volume and 3.37484 nm of pore diameter.
Van Emelen, K; De Wit, T; Hoornaert, G J; Compernolle, F
2000-10-05
Indanol intermediates 5, prepared via Michael addition of 1-indanone beta-ketoester and acrylonitrile followed by reduction or Grignard reaction of the ketone group, were submitted to intramolecular Ritter reaction using various acid reaction conditions to produce tricyclic lactams 4. This cis-fused hexahydro-4aH-indeno[1,2-b]pyridine ring system, substituted at both angular positions 4a and 9b, provides access to constrained analogues of non-peptide NK(1)-antagonists with monocyclic piperidine structure.
NASA Astrophysics Data System (ADS)
Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.
2017-03-01
Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.
Iaconelli, Amerigo; Gastaldelli, Amalia; Chiellini, Chiara; Gniuli, Donatella; Favuzzi, Angela; Binnert, Christophe; Macé, Katherine; Mingrone, Geltrude
2010-01-01
OBJECTIVE Dicarboxylic acids are natural products with the potential of being an alternate dietary source of energy. We aimed to evaluate the effect of sebacic acid (a 10-carbon dicarboxylic acid; C10) ingestion on postprandial glycemia and glucose rate of appearance (Ra) in healthy and type 2 diabetic subjects. Furthermore, the effect of C10 on insulin-mediated glucose uptake and on GLUT4 expression was assessed in L6 muscle cells in vitro. RESEARCH DESIGN AND METHODS Subjects ingested a mixed meal (50% carbohydrates, 15% proteins, and 35% lipids) containing 0 g (control) or 10 g C10 in addition to the meal or 23 g C10 as a substitute of fats. RESULTS In type 2 diabetic subjects, the incremental glucose area under the curve (AUC) decreased by 42% (P < 0.05) and 70% (P < 0.05) in the 10 g C10 and 23 g C10 groups, respectively. At the largest amounts used, C10 reduced the glucose AUC in healthy volunteers also. When fats were substituted with 23 g C10, AUC of Ra was significantly reduced on the order of 18% (P < 0.05) in both healthy and diabetic subjects. The insulin-dependent glucose uptake by L6 cells was increased in the presence of C10 (38.7 ± 10.3 vs. 11.4 ± 5.4%; P = 0.026). This increase was associated with a 1.7-fold raise of GLUT4. CONCLUSIONS Sebacic acid significantly reduced hyperglycemia after a meal in type 2 diabetic subjects. This beneficial effect was associated with a reduction in glucose Ra, probably due to lowered hepatic glucose output and increased peripheral glucose disposal. PMID:20724647
Measuring Enthalpy of Sublimation of Volatiles by Means of Piezoelectric Crystal Microbalances
NASA Astrophysics Data System (ADS)
Dirri, Fabrizio; Palomba, Ernesto; Longobardo, Andrea; Zampetti, Emiliano
2017-12-01
Piezoelectric Crystal Microbalances (PCM's) are widely used to study the chemical processes involving volatile compounds in any environment, such as condensation process. Since PCM's are miniaturized sensor, they are very suitable for planetary in situ missions, where can be used to detect and to measure the mass amount of astrobiologically significant compounds, such as water and organics. This work focuses on the realization and testing of a new experimental setup, able to characterize volatiles which can be found in a planetary environment. In particular the enthalpy of sublimation of some dicarboxylic acids has been measured. The importance of dicarboxylic acids in planetology and astrobiology is due to the fact that they have been detected in carbonaceous chondritic material (e.g. Murchinson), among the most pristine material present in our Solar System. In this work, a sample of acid was heated in an effusion cell up to its sublimation. For a set of temperatures (from 30 °C to 75 °C), the deposition rate on the PCM surface has been measured. From these measurements, it has been possible to infer the enthalpy of sublimation of Adipic acid, i.e. ΔH = 141.6 ± 0.8 kJ/mol and Succinic acid, i.e. ΔH = 113.3 ± 1.3 kJ/mol. This technique has so demonstrated to be a good choice to recognise a single compound or a mixture (with an analysis upstream) even if some improvements concerning the thermal stabilization of the system will be implemented in order to enhance the results' accuracy. The experiment has been performed in support of the VISTA (Volatile In Situ Thermogravimetry Analyzer) project, which is included in the scientific payload of the ESA MarcoPolo-R mission study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werpy, Todd A.; Holladay, John E.; White, James F.
2004-11-01
This report identifies twelve building block chemicals that can be produced from sugars via biological or chemical conversions. The twelve building blocks can be subsequently converted to a number of high-value bio-based chemicals or materials. Building block chemicals, as considered for this analysis, are molecules with multiple functional groups that possess the potential to be transformed into new families of useful molecules. The twelve sugar-based building blocks are 1,4-diacids (succinic, fumaric and malic), 2,5-furan dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-hydroxybutyrolactone, glycerol, sorbitol, and xylitol/arabinitol. In addition to building blocks, themore » report outlines the central technical barriers that are preventing the widespread use of biomass for products and chemicals.« less
Sinha, Reema; Sara, Udai Vir Singh; Khosa, Ratan Lal; Stables, James; Jain, Jainendra
2013-06-01
A series of twelve compounds (Compounds RNH1-RNH12) of acid hydrazones of pyridine-3-carbohydrazide or nicotinic acid hydrazide was synthesized and evaluated for anticonvulsant activity by MES, scPTZ, minimal clonic seizure and corneal kindling seizure test. Neurotoxicity was also determined for these compounds by rotarod test. Results showed that halogen substitution at meta and para position of phenyl ring exhibited better protection than ortho substitution. Compounds RNH4 and RNH12, were found to be the active analogs displaying 6Hz ED50 of 75.4 and 14.77 mg/kg while the corresponding MES ED50 values were 113.4 and 29.3 mg/kg respectively. In addition, compound RNH12 also showed scPTZ ED50 of 54.2 mg/kg. In the series, compound RNH12 with trifluoromethoxy substituted phenyl ring was the most potent analog exhibiting protection in all four animal models of epilepsy. Molecular docking study has also shown significant binding interactions of these two compounds with 1OHV, 2A1H and 1PBQ receptors. Thus, N-[(meta or para halogen substituted) benzylidene] pyridine-3-carbohydrazides could be used as lead compounds in anticonvulsant drug design and discovery.
Reaction intermediates in the catalytic Gif-type oxidation from nuclear inelastic scattering
NASA Astrophysics Data System (ADS)
Rajagopalan, S.; Asthalter, T.; Rabe, V.; Laschat, S.
2016-12-01
Nuclear inelastic scattering (NIS) of synchrotron radiation, also known as nuclear resonant vibrational spectroscopy (NRVS), has been shown to provide valuable insights into metal-centered vibrations at Mössbauer-active nuclei. We present a study of the iron-centered vibrational density of states (VDOS) during the first step of the Gif-type oxidation of cyclohexene with a novel trinuclear Fe3(μ 3-O) complex as catalyst precursor. The experiments were carried out on shock-frozen solutions for different combinations of reactants: Fe3(μ 3-O) in pyridine solution, Fe3(μ 3-O) plus Zn/acetic acid in pyridine without and with addition of either oxygen or cyclohexene, and Fe3(μ 3-O)/Zn/acetic acid/pyridine/cyclohexene (reaction mixture) for reaction times of 1 min, 5 min, and 30 min. The projected VDOS of the Fe atoms was calculated on the basis of pseudopotential density functional calculations. Two possible reaction intermediates were identified as [Fe(III)(C5H5N)2(O2CCH3)2]+ and Fe(II)(C5H5N)4(O2CCH3)2, yielding evidence that NIS (NRVS) allows to identify the presence of iron-centered intermediates also in complex reaction mixtures.
Meng, Jingjing; Wang, Gehui; Li, Jianjun; Cheng, Chunlei; Ren, Yanqin; Huang, Yao; Cheng, Yuting; Cao, Junji; Zhang, Ting
2014-09-15
PM10 aerosols from the summit of Mt. Hua (2060 m a.s.l) in central China during the winter and summer of 2009 were analyzed for dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls. Molecular composition of dicarboxylic acids (C2-C11) in the free tropospheric aerosols reveals that oxalic acid (C2, 399 ± 261 ng m(-3) in winter and 522 ± 261 ng m(-3) in summer) is the most abundant species in both seasons, followed by malonic (C3) and succinic (C4) acids, being consistent with that on ground levels. Most of the diacids are more abundant in summer than in winter, but adipic (C6) and phthalic (Ph) acids are twice lower in summer, suggesting more significant impact of anthropogenic pollution on the wintertime alpine atmosphere. Moreover, glyoxal (Gly) and methylglyoxal (mGly) are also lower in summer (12 ± 6.1 ng m(-3)) than in winter (22 ± 13 ng m(-3)). As both dicarbonyls are a major precursor of C2, their seasonal variation patterns, which are opposite to those of the diacids, indicate that the mountain troposphere is more oxidative in summer. C2 showed strong linear correlations with levoglucosan in winter and oxidation products of isoprene and monoterpene in summer. PCA analysis further suggested that the wintertime C2 and related SOA in the Mt. Hua troposphere mostly originate from photochemical oxidations of anthropogenic pollutants emitted from biofuel and coal combustion in lowland regions. On contrast, the summertime C2 and related SOA mostly originate from further oxidation of the mountainous isoprene and monoterpene oxidation products. The AIM model calculation results showed that oxalic acid concentration well correlated with particle acidity (R(2)=0.60) but not correlated with particle liquid water content, indicating that particle acidity favors the organic acid formation because aqueous-phase C2 production is the primary mechanism of C2 formation in ambient aerosols and is driven by acid-catalyzed oxidation. Copyright © 2014 Elsevier B.V. All rights reserved.
Nitta, I; Ueda, T; Nojima, T; Watanabe, K
1995-10-01
We demonstrate here that a high concentration (40-70%) of pyridine, an aromatic tertiary amine catalyst, is able to promote translation on ribosomes without the presence of soluble protein factors or chemical energy sources. Compared with Monro's fragment reaction [Methods Enzymol. 20, 472-481 (1971)] which reflects only the peptidyltransferase step, this novel translation system can produce polypeptides with chain lengths of at least several tens of residues depending on the template RNA. In the presence of 60% pyridine, poly(U) and poly(UC) promoted incorporation of the respective amino acids, phenylalanine and serine-leucine, twofold, whereas poly(A) promoted the incorporation of lysine by only 25%. The degrees of polymerization of phenylalanine and lysine were up to the decamer and around 40mer, respectively. In poly(UC)-dependent oligo(serine-leucine) synthesis, oligopeptides with a serine and leucine alternate sequence were the main products. This novel pyridine system evidently differs from the non-enzymatic translation system reported by Gavrilova and Spirin [FEBS Lett. 17, 324-326 (1971)]; the former system displays partial resistance toward deproteinization reagents such as SDS and proteinase K, whereas the latter system is completely sensitive.
Wencewicz, Timothy A; Yang, Baiyuan; Rudloff, James R; Oliver, Allen G; Miller, Marvin J
2011-10-13
The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ∼100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring-opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC(90) = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds.
Wencewicz, Timothy A.; Yang, Baiyuan; Rudloff, James R.; Oliver, Allen G.; Miller, Marvin J.
2011-01-01
The discovery, syntheses, and structure-activity relationships (SAR) of a new family of heterocyclic antibacterial compounds based on N-alkyl-N-(pyridin-2-yl)hydroxylamine scaffolds are described. A structurally diverse library of ~100 heterocyclic molecules generated from Lewis acid-mediated nucleophilic ring opening reactions with nitroso Diels-Alder cycloadducts and nitroso ene reactions with substituted alkenes was evaluated in whole cell antibacterial assays. Compounds containing the N-alkyl-N-(pyridin-2-yl)hydroxylamine structure demonstrated selective and potent antibacterial activity against the Gram-positive bacterium Micrococcus luteus ATCC 10240 (MIC90 = 2.0 μM or 0.41 μg/mL) and moderate activity against other Gram-positive strains including antibiotic resistant strains of Staphylococcus aureus (MRSA) and Enterococcus faecalis (VRE). A new synthetic route to the active core was developed using palladium-catalyzed Buchwald-Hartwig amination reactions of N-alkyl-O-(4-methoxybenzyl)hydroxylamines with 2-halo-pyridines that facilitated SAR studies and revealed the simplest active structural fragment. This work shows the value of using a combination of diversity-oriented synthesis (DOS) and parallel synthesis for identifying new antibacterial scaffolds. PMID:21859126
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin Jing; Han Xiao; Meng Qin
2013-01-15
Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexesmore » were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS. Black-Right-Pointing-Pointer By the energy-band theory and the crystal filed theory, the SPS are analyzed and assigned.« less
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matheu, Roc; Francàs, Laia; Chernev, Petko
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Behavior of the Ru-bda water oxidation catalyst covalently anchored on glassy carbon electrodes
Matheu, Roc; Francàs, Laia; Chernev, Petko; ...
2015-05-07
Electrochemical reduction of the dizaonium complex, [Ru II(bda)(NO)(N–N 2) 2] 3+, 2 3+ (N–N 2 2+ is 4-(pyridin-4-yl) benzenediazonium and bda 2– is [2,2'-bipyridine]-6,6'-dicarboxylate), in acetone produces the covalent grafting of this molecular complex onto glassy carbon (GC) electrodes. Multiple cycling voltammetric experiments on the GC electrode generates hybrid materials labeled as GC-4, with the corresponding Ru-aqua complex anchored on the graphite surface. GC-4 has been characterized at pH = 7.0 by electrochemical techniques and X-ray absorption spectroscopy (XAS) and has been shown to act as an active catalyst for the oxidation of water to dioxygen. This new hybrid materialmore » has a lower catalytic performance than its counterpart in homogeneous phase and progressively decomposes to form RuO 2 at the electrode surface. The resulting metal oxide attached at the GC electrode surface, GC-RuO 2, is a very fast and rugged heterogeneous water oxidation catalyst with TOF is of 300 s –1 and TONs >45000. The observed performance is comparable to the best electrocatalysts reported so far, at neutral pH.« less
Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly
Sherman, Benjamin D.; Xie, Yan; Sheridan, Matthew V.; ...
2016-12-09
The preparation and characterization of new Ru(II) polypyridyl-based chromophore–catalyst assemblies, [(4,4'-PO 3H 2-bpy) 2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)] 2+ (1, bpy = 2,2'-bipyridine; 4-Mebpy-4'-epic = 4-(4-methylbipyridin-4'-yl-ethyl)-pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate; pic = 4-picoline), and [(bpy) 2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)] 2+ (1') are described, as is the application of 1 in a dye-sensitized photoelectrosynthesis cell (DSPEC) for solar water splitting. Furthermore, on SnO 2/TiO 2 core–shell electrodes in a DSPEC configuration with a Pt cathode, the chromophore–catalyst assembly undergoes light-driven water oxidation at pH 5.7 in a 0.1 M acetate buffer, 0.5 M in NaClO 4. We observed photocurrents of ~0.85 mA cm –2, with illumination by a 100more » mW cm –2 white light source, after 30 s under a 0.1 V vs Ag/AgCl applied bias with a faradaic efficiency for O 2 production of 74% measured over a 5 min illumination period.« less
Jornet-Mollá, Verónica; Duan, Yan; Giménez-Saiz, Carlos; Waerenborgh, João C; Romero, Francisco M
2016-11-28
The paper reports the syntheses, crystal structures, thermal and (photo)magnetic properties of spin crossover salts of formula [Fe(bpp) 2 ](C 6 H 8 O 4 )·4H 2 O (1·4H 2 O), [Fe(bpp) 2 ](C 8 H 4 O 4 )·2CH 3 OH·H 2 O (2·2MeOH·H 2 O) and [Fe(bpp) 2 ](C 8 H 4 O 4 )·5H 2 O (2·5H 2 O) (bpp = 2,6-bis(pyrazol-3yl)pyridine; C 6 H 8 O 4 = adipate dianion; C 8 H 4 O 4 = terephthalate dianion). The salts exhibit an intricate network of hydrogen bonds between low-spin iron(ii) complexes and carboxylate dianions, with solvent molecules sitting in the voids. Desolvation is accompanied by a low-spin (LS) to high-spin (HS) transformation in the materials. The dehydrated phase 2 undergoes a two-step transition with a second step showing thermal hysteresis (T 1/2 ↑ = 139 K and T 1/2 ↓ = 118 K). 2 displays a quantitative LS to HS photomagnetic conversion, with a T(LIESST) value of 63 K.
Light-Driven Water Splitting by a Covalently Linked Ruthenium-Based Chromophore–Catalyst Assembly
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherman, Benjamin D.; Xie, Yan; Sheridan, Matthew V.
The preparation and characterization of new Ru(II) polypyridyl-based chromophore–catalyst assemblies, [(4,4'-PO 3H 2-bpy) 2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)] 2+ (1, bpy = 2,2'-bipyridine; 4-Mebpy-4'-epic = 4-(4-methylbipyridin-4'-yl-ethyl)-pyridine; bda = 2,2'-bipyridine-6,6'-dicarboxylate; pic = 4-picoline), and [(bpy) 2Ru(4-Mebpy-4'-epic)Ru(bda)(pic)] 2+ (1') are described, as is the application of 1 in a dye-sensitized photoelectrosynthesis cell (DSPEC) for solar water splitting. Furthermore, on SnO 2/TiO 2 core–shell electrodes in a DSPEC configuration with a Pt cathode, the chromophore–catalyst assembly undergoes light-driven water oxidation at pH 5.7 in a 0.1 M acetate buffer, 0.5 M in NaClO 4. We observed photocurrents of ~0.85 mA cm –2, with illumination by a 100more » mW cm –2 white light source, after 30 s under a 0.1 V vs Ag/AgCl applied bias with a faradaic efficiency for O 2 production of 74% measured over a 5 min illumination period.« less
Rogers, Donald W; Zavitsas, Andreas A
2017-01-06
Despite their abundance in nature and their importance in biology, medicine, nutrition, and in industry, gas phase enthalpies of formation of many long chain saturated and unsaturated fatty acids and of dicarboxylic acids are either unavailable or have been estimated with large uncertainties. Available experimental values for stearic acid show a spread of 68 kJ mol -1 . This work fills the knowledge gap by obtaining reliable values by quantum theoretical calculations using G4 model chemistry. Compounds with up to 20 carbon atoms are treated. The theoretical results are in excellent agreement with well established experimental values when such values exist, and they provide a large number of previously unavailable values.
Benzoate Mediates Repression of C4-Dicarboxylate Utilization in “Aromatoleum aromaticum” EbN1
Trautwein, Kathleen; Grundmann, Olav; Wöhlbrand, Lars; Eberlein, Christian; Boll, Matthias
2012-01-01
Diauxic growth was observed in anaerobic C4-dicarboxylate-adapted cells of “Aromatoleum aromaticum” EbN1 due to preferred benzoate utilization from a substrate mixture of a C4-dicarboxylate (succinate, fumarate, or malate) and benzoate. Differential protein profiles (two-dimensional difference gel electrophoresis [2D DIGE]) revealed dynamic changes in abundance for proteins involved in anaerobic benzoate catabolism and C4-dicarboxylate uptake. In the first active growth phase, benzoate utilization was paralleled by maximal abundance of proteins involved in anaerobic benzoate degradation (e.g., benzoyl-coenzyme A [CoA] reductase) and minimal abundance of DctP (EbA4158), the periplasmic binding protein of a predicted C4-dicarboxylate tripartite ATP-independent periplasmic (TRAP) transporter (DctPQM). The opposite was observed during subsequent succinate utilization in the second active growth phase. The increased dctP (respectively, dctPQM) transcript and DctP protein abundance following benzoate depletion suggests that repression of C4-dicarboxylate uptake seems to be a main determinant for the observed diauxie. PMID:22081395
NASA Astrophysics Data System (ADS)
Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri
2011-09-01
The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.
Rousová, Jana; Chintapalli, Manikyala R; Lindahl, Anastasia; Casey, Jana; Kubátová, Alena
2018-04-06
Carboxylic acids and aldehydes are present in ambient air particulate matter (PM) originating from both primary emission and secondary production in air and may, due to their polarity have, an impact on formation of cloud condensation nuclei. Their simultaneous determination may provide improved understanding of atmospheric processes. We developed a new analytical method allowing for a single step determination of majority of carboxylic acids and aldehydes (+95 compounds). This sample preparation employed O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine (PFBHA·HCl) in methanol to yield oximes (for aldehydes) and methyl esters (for majority of acids); with the limits of detection of 0.02-1 ng per injection, corresponding to approximately 0.4-20 μg/g PM . Subsequent trimethylsilylation with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) was employed only for aromatic acids, which were not completely esterified, and for hydroxyl groups. Our method, in contrast to previous primarily qualitative studies, based on derivatization with an aqueous PFBHA followed by BSTFA derivatization, is less labor-intesive and reduces sample losses caused by an evaporation. The method was tested with a broad range of functionalized compounds (95), including monocarboxylic, dicarboxylic and aromatic acids, ketoacids, hydroxyacids and aldehydes. The developed protocol was applied to wood smoke (WS) and urban air standard reference material 1648b (UA) PM. The observed concentrations of aldehydes were 10-3000 μg/g PM in WS PM and 10-900 μg/g PM in UA PM, while those of acids were 20-1800 μg/g PM in WS PM and 15-1200 μg/g PM in UA PM. The most prominent aldehydes were syringaldehyde and vanillin in WS PM and glyoxal in UA PM. The most abundant acids in both PM samples were short-chain dicarboxylic acids (≤C 10 ). WS PM had a high abundance of hydroxyacids (vanillic and malic acids) as well as ketoacids (glutaric and oxalacetic) while UA PM also featured a high abundance of long-chain monocarboxylic acids (≥C 16 ). Copyright © 2018 Elsevier B.V. All rights reserved.
Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions.
Chimentão, R J; Lorente, E; Gispert-Guirado, F; Medina, F; López, F
2014-10-13
The hydrolysis of dilute acid-pretreated cellulose was investigated in a conventional oven and under microwave heating. Two acids--sulfuric and oxalic--were studied. For both hydrothermal conditions (oven and microwave) the resultant total organic carbon (TOC) values obtained by the hydrolysis of the cellulose pretreated with sulfuric acid were higher than those obtained by the hydrolysis of the cellulose pretreated with oxalic acid. However, the dicarboxylic acid exhibited higher hydrolytic efficiency towards glucose. The hydrolysis of cellulose was greatly promoted by microwave heating. The Rietveld method was applied to fit the X-ray patterns of the resultant cellulose after hydrolysis. Oxalic acid preferentially removed the amorphous region of the cellulose and left the crystalline region untouched. On the other hand, sulfuric acid treatment decreased the ordering of the cellulose by partially disrupting its crystalline structure. Copyright © 2014 Elsevier Ltd. All rights reserved.
Anaerobic Fermentation for Production of Carboxylic Acids as Bulk Chemicals from Renewable Biomass.
Wang, Jufang; Lin, Meng; Xu, Mengmeng; Yang, Shang-Tian
Biomass represents an abundant carbon-neutral renewable resource which can be converted to bulk chemicals to replace petrochemicals. Carboxylic acids have wide applications in the chemical, food, and pharmaceutical industries. This chapter provides an overview of recent advances and challenges in the industrial production of various types of carboxylic acids, including short-chain fatty acids (acetic, propionic, butyric), hydroxy acids (lactic, 3-hydroxypropionic), dicarboxylic acids (succinic, malic, fumaric, itaconic, adipic, muconic, glucaric), and others (acrylic, citric, gluconic, pyruvic) by anaerobic fermentation. For economic production of these carboxylic acids as bulk chemicals, the fermentation process must have a sufficiently high product titer, productivity and yield, and low impurity acid byproducts to compete with their petrochemical counterparts. System metabolic engineering offers the tools needed to develop novel strains that can meet these process requirements for converting biomass feedstock to the desirable product.
Cu-based metal-organic framework thin films: A morphological and photovoltaic study
NASA Astrophysics Data System (ADS)
Khajavian, Ruhollah; Ghani, Kamal
2018-06-01
This work explores the layer-by-layer (LbL) fabrication of [Cu2(bdc)2(bpy)]n thin films by using pyridine and acetic acid as capping agents onto mesoporous titania surface. While in the presence of acetic acid highly-ordered crystals with nanoplate morphology are formed, modulation with pyridine gives rise to formation of leaf-like crystals. In addition, processing sequence also matters when modulator is added. According to our results, modulators should be added to metal solution rather than linker/pillar during LbL assembly. These films were subsequently shown to generate photocurrent in a sandwich-type Grätzel solar cell device in response to simulated 1 sun illumination. The results also demonstrated that the device consisted of well-aligned nanoplates exhibits higher power conversion efficiency than the similar cell with disordered leaf-like crystals after iodine loading.
New hydrolytically stable solvent for Am/Eu separation in acidic media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smirnov, I.V.; Babain, V.A.; Chirkov, A.V.
Americium and europium extraction by synergistic mixture of 2,6-bis(1-aryl-1H-tetrazol-5-yl)pyridines (ATP) - chlorinated cobalt dicarbollide (CCD) in polar diluent s from HNO{sub 3} media was studied. Meta-nitro-benzo-trifluoride, phenyl-tri-fluoro-methyl sulfone and 1,2-dichloroethane were used as diluents. The effect of diluent, composition of aqueous phase and substituent nature in aryl ring of ATPs on the extraction efficiency and selectivity of americium and europium separation was investigated. At the optimal ratio of nATP:CCD 1:1 the Am - Eu separation factor exceeded 90. Extraction of {sup 85}Sr, {sup 137}Cs and {sup 133}Ba was investigated and it was found that the mixture nATP-CCD provided the separationmore » of Sr /Ba pair with a factor of 35. High resistance of 2,6-bisaryltetrazolyl pyridines to the action of nitric acid was demonstrated. (authors)« less
Ursuegui, S; Yougnia, R; Moutin, S; Burr, A; Fossey, C; Cailly, T; Laayoun, A; Laurent, A; Fabis, F
2015-03-28
Isatoic anhydride derivatives, including a biotin and a disulfide linker were specifically designed for nucleic acid separation. 2'-OH selective RNA acylation, capture of biotinylated RNA adducts by streptavidin-coated magnetic beads and disulfide chemical cleavage led to isolation of highly enriched RNA samples from an initial 9/1 DNA-RNA mixture. Starting from the parent compound N-methylisatoic anhydride A which was used at 65 °C, we improved the extraction process by designing a new generation of isatoic anhydrides that are able to react under smoother conditions. Among them, a pyridine-based isatoic anhydride derivative 15f was found to be reactive at room temperature, leading to enhance the efficiency and selectivity of the extraction process by significantly reducing DNA side extraction. The extracted and purified RNAs can then be detected by RT-PCR.
Htet, April N; Noguchi, Mana; Ninomiya, Kazuaki; Tsuge, Yota; Kuroda, Kosuke; Kajita, Shinya; Masai, Eiji; Katayama, Yoshihiro; Shikinaka, Kazuhiro; Otsuka, Yuichiro; Nakamura, Masaya; Honda, Ryo; Takahashi, Kenji
2018-06-01
Actual biomass of microalgae was tested as a fermentation substrate for microbial production of 2-pyrone 4,6-dicarboxylic acid (PDC). Acid-hydrolyzed green microalgae Chlorella emersonii (algae hydrolysate) was diluted to adjust the glucose concentration to 2 g/L and supplemented with the nutrients of Luria-Bertani (LB) medium (tryptone 10 g/L and yeast extract 5 g/L). When the algae hydrolysate was used as a fermentation source for recombinant Escherichia coli producing PDC, 0.43 g/L PDC was produced with a yield of 20.1% (mol PDC/mol glucose), whereas 0.19 g/L PDC was produced with a yield of 8.6% when LB medium supplemented with glucose was used. To evaluate the potential of algae hydrolysate alone as a fermentation medium for E. coli growth and PDC production, the nutrients of LB medium were reduced from the algae hydrolysate medium. Interestingly, 0.17 g/L PDC was produced even without additional nutrient, which was comparable to the case using pure glucose medium with nutrients of LB medium. When using a high concentration of hydrolysate without additional nutrients, 1.22 g/L PDC was produced after a 24-h cultivation with the yield of 16.1%. Overall, C. emersonii has high potential as cost-effective fermentation substrate for the microbial production of PDC. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Dong, Jun-Liang; He, Kun-Huan; Wang, Duo-Zhi; Zhang, Ying-Hui; Wang, Dan-Hong
2018-07-01
Three new Co(II) coordination polymers with formulas of {[Co2(L1)(1,4-NDC)2]·3H2O}n (1), [Co3(L2)2(HCOO)2(1,4-NDC)2]n (2) and [Co2(L2)(μ3-OH)(1,4-NDC)1.5]n (3) (1,4-H2NDC = Naphthalene-1,4-dicarboxylic acid, L1 = di(1H-imidazol-1-yl)methane, L2 = 1,4-di(1H-imidazol-1-yl)benzene) were solvothermal synthesized from 1,4-H2NDC with the aid of three different length-controllable auxiliary ligands and fully characterized. Their structures are determined by single-crystal X-ray diffraction, IR spectra, elemental analysis, powder X-ray diffraction and thermogravimetric analysis. Complexes 1 and 3 display 3D framework structures, corresponding to a 6-connected (412·63) net, a 8-connected (424·5·63) net, respectively. However, it is noteworthy that the complex 1 displays a 2-fold interpenetrating framework structure, complex 3 possesses a self-interpenetrating framework structure. Complex 2 displays 2D 4-connected undulating plane net structure. Moreover, magnetic studies indicate antiferromagnetic interactions between the Co(II) ions in the four complexes.
Catanionic mixtures forming gemini-like amphiphiles.
Sakai, Hideki; Okabe, Yuji; Tsuchiya, Koji; Sakai, Kenichi; Abe, Masahiko
2011-01-01
The properties of aqueous mixtures of cationic species with alkyl dicarboxylic acid compounds have been studied. The cationic compounds used in this study were tertiary amine-type N-methyl-N-(2,3-dioxypropyl)hexadecylamine (C16amine) and quaternary ammonium-type N,N-dimethyl-N-(2,3-dioxypropyl)hexadecylammonium chloride (C16Q). The alkyl dicarboxylic acid compounds used were HOOC(CH(2))(10)COOH (C12H) and its sodium salt (C12Na). Three aqueous mixtures were examined in this study: (System I) C16amine + C12H, (System II) C16Q + C12Na, and (System III) C16Q + C12H. The solution pH was set at 12 for System III. The combination of (1)H-NMR and mass spectroscopy data has suggested that a stoichiometric complex is formed in the aqueous solutions at a mole fraction of C12H (or C12Na) = 0.33. Here, the C12H (or C12Na) molecule added to the system bridges two cationic molecules, like a spacer of gemini surfactants. In fact, the static surface tensiometry has demonstrated that the stoichiometric complex behaves as gemini-like amphiphiles in aqueous solutions. Our current study offers a possible way for easily preparing gemini surfactant systems.
Structure-activity relationships among derivatives of dicarboxylic acid esters of tropine.
Gyermek, Laszlo
2002-10-01
Several categories of neuromuscular blocking bisquaternary tropine and tropane derivatives were synthesized and studied in the past five decades, mainly with the purpose of arriving at meaningful information about structure-activity relationships. Such a structure-activity relationship database is important in the development of new muscle relaxants with improved pharmacological characteristics. Although quaternary tropine diesters were explored since 1952, most of them were developed in the last decade. Over 250 such agents are being reviewed here. The skeleton of the majority of them consists of two tropines, connected through their 3-OH group with various dicarboxylic acid ester linkages and quaternized by several mostly di- and trisubstituted benzyl groups. The significance of changing the quaternizing group; the diester linker; and, to a smaller extent, the substituents and their steric orientation on the tropane ring and some alterations of the tropane ring itself have been explored in in vivo experiments on anesthetized rats. Di- or trisubstituted alkoxy and/or acyloxybenzyl quaternaries of certain tropinyl diesters, e.g., glutaryl, fumaryl, and cyclobutane-1,2-dicarboxylyl, showed an optimal profile with respect to desirable neuromuscular blocking actions and side effects, which was confirmed on other experimental animal species. The details of the structural changes toward obtaining new ultrashort-acting nondepolarizing muscle relaxants are discussed.
Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R
2010-09-01
A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Donnelly, Mark
2006-08-01
The present invention provides soluble cytochrome p450 reductase (CPR) proteins from Candida sp. having an altered N-terminal region which results in reduced hydrophobicity of the N-terminal region. Also provided are host cells comprising the subject soluble CPR proteins. In addition, the present invention provides nucleotide and corresponding amino acid sequences for soluble CPR proteins and vectors comprising the nucleotide sequences. Methods for producing a soluble CPR, for increasing production of a dicarboxylic acid, and for detecting a cytochrome P450 are also provided.
Hai, Feng; Zhang, Qian-Cheng; Wang, Zhi-Wei; Jian, Li
2011-04-01
Using SiO2, activated carbon (AC) and Al2O3 as supports, the supported photocatalysts Ni-V-O/SiO2, Ni-V-O/AC and Ni-V-O/Al2O3 were prepared by impregnation method, and their spectralsignatures were investigated. The carbonylation of methanol with CO2 under UV irradiation was used as a probe reaction to compare the photocatalytic performance of the prepared catalysts. Integrated with the testing results of carbonylation, the effects of different supports on selectivity for the carbonylation products of methyl formate (MF) and dimethyl carbonate (DMC) were discussed by pyridine-IR and UV-Vis techniques. XRD results showed that the particles of nickel and vanadium supported on SiO2 had the highest degree of dispersion. Results of pyridine-IR indicated that all catalysts retained Lewis acid sites. The acid strength was different from catalyst samples with different supports but with the same active components. The acid strengths could be arranged as follows: Ni-V-O/SiO2 > Ni-V-O/Al2 O3 > Ni-V-O/AC. Different acid strengths exhibited different influence on the selectivity of products MF and DMC of carbonylation. The surface acid strengths of catalysts were the major factor influencing the selectivity of carbonylation products.
Podstawka, Edyta; Olszewski, Tomasz K; Boduszek, Bogdan; Proniewicz, Leonard M
2009-09-03
Here, we report a systematic surface-enhanced Raman spectroscopy (SERS) study of the structures of phosphonate derivatives of the N-heterocyclic aromatic compounds imidazole (ImMeP ([hydroxy(1H-imidazol-5-yl)methyl]phosphonic acid) and (ImMe)(2)P (bis[hydroxy-(1H-imidazol-4-yl)-methyl]phosphinic acid)), thiazole (BAThMeP (butylaminothiazol-2-yl-methyl)phosphonic acid) and BzAThMeP (benzylaminothiazol-2-yl-methyl)phosphonic acid)), and pyridine ((PyMe)(2)P (bis[(hydroxypyridin-3-yl-methyl)]phosphinic acid)) adsorbed on nanometer-sized colloidal particles. We compared these structures to those on a roughened silver electrode surface to determine the relationship between the adsorption strength and the geometry. For example, we showed that all of these biomolecules interact with the colloidal surface through aromatic rings. However, for BzAThMeP, a preferential interaction between the benzene ring and the colloidal silver surface is observed more so than that between the thiazole ring and this substrate. The PC(OH)C fragment does not take part in the adsorption process, and the phosphonate moiety of ImMeP and (ImMe)(2)P, being removed from the surface, only assists in this process.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.; Mochida, M.
2006-12-01
To understand a long-range atmospheric transport of water-soluble organics in the western North Pacific, remote marine aerosols were collected on weekly basis at a subtropical island (Chichijima, 142E; 27N) from 2001 to 2006 using a high volume air sampler and pre-combusted quartz filter. The island is located in the boundary of westerly and trade wind regimes. The aerosols were analyzed for dicarboxylic acids, ketoacids and dicarbonyls employing butyl ester derivatization followed by GC determination. Homologous saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids as well as unsaturated diacids, including maleic (M), fumaric (F), phthalic acids. Ketoacids and dicarbonyls were also detected. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The winter/spring maximum can be explained by a combinattion of enhanced emissions of polluted aerosols and their precursors in Asia and the intensified westerlies over the North Pacific in the season. Seasonal trends of the molecular compositions were also found. For example, concentration ratios of C3 to C4 acid showed a maximum in summer, indicating more oxidation of longer-chain diacids to shorter ones. M/F ratios increased from summer to winter as a result of photochemically-induced isomerization of cis and trans configuration of unsaturated diacids. On the other hand, azelaic acid (C9) relative to other diacids showed a sharp increase in summer. Because C9 is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid, this demonstrates an enhanced sea-to- air emission of unsaturated fatty acids in summer followed by photochemical oxidation. Long-term trends of diacids and related compounds in the aerosols will be discussed for 2001 to 2006. The results will also be compared with those obtained at the same site for 1990 to 1993 to detect long-term changes in the organic aerosol compositions that might be happened over the western North Pacific due to the enhanced human activity in East Asia.
NASA Astrophysics Data System (ADS)
Wang, Gehui; Cheng, Chunlei; Meng, Jingjing; Huang, Yao; Li, Jianjun; Ren, Yanqin
2015-07-01
Chemical evolution of East Asian dust during transpacific transport has been given much attention for inorganic species such as sulfate, nitrate and ammonium. However, the role of organic species during the transport has almost entirely been ignored. To understand the formation mechanism of secondary organic aerosols (SOA) on dust surfaces, this study investigated the concentrations and compositions of dicarboxylic acids, keto-carboxylic acids, α-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) collected in Xi'an, central China during the two dust storm episodes in the springs of 2009 and 2011 and compared with those in nondust storm periods. During the events the ambient particulate dicarboxylic acids were 932-2240 ng m-3, which are comparable and even higher than those in nondust periods. Molecular compositions of the above SOA are similar to those in nondust periods with oxalic acid being the leading species. In the presence of the dust storms, all the above mentioned SOA species in Xi'an were predominantly enriched on the coarse particles (>2.1 μm), and oxalic acid well correlated with NO3- (R2 = 0.72, p < 0.001) rather than SO42-. This phenomenon differs greatly from the SOA in any other nondust period that is usually characterized by an enrichment of oxalic acid in fine mode and a strong correlation of oxalic acid with SO42-. We propose a formation pathway to explain these observations, in which nitric acid and/or nitrogen oxides react with dust to produce Ca(NO3)2 and form a liquid phase on the surface of dust aerosols via water vapor-absorption of Ca(NO3)2, followed by a partitioning of the gas-phase water-soluble organic precursors (e.g.,glyoxal and methylglyoxal) into the aqueous-phase and a subsequent oxidation into oxalic acid. To the best of our knowledge, we found for the first time the enrichment of glyoxal and methylglyoxal on dust surface. Our data suggest an important role of nitrate in the heterogeneous formation process of SOA on the surface of dust.
Organosilicon compounds. XVIII - Silicon-containing dianhydrides
NASA Technical Reports Server (NTRS)
Pratt, J. R.; Thames, S. F.
1973-01-01
Description of four new silicon-containing dianhydrides synthetized in an attempt to provide useful silicon-containing polyimide precursors. They were prepared by aqueous potassium permanganate-pyridine oxidations of corresponding tetramethyl intermediates to form tetracarboxylic acids, which were dehydrated to the dianhydrides.
Randoux, A; CornilletStoupy, J; Desanti, M; Borel, J P
1976-09-28
Structural glycoproteins have been extracted by 8 M ureau from the insoluble residue remaining after collagenase digestion of rabbit dermis and purified by Sepharose 4 B chromatography. After reduction and alkylation, Dowex 1 x 2 chromatography allowed separation of two structural glycoproteins (D1 and D2) in an homogenous state as shown by chromatographic and electrophoretic behaviour as well as N terminal amino acid determination. These two glycoproteins have a molecular weight of about 16 000. Their amino acid compositions (very similar), are characterized by a high level of dicarboxylic amino acids and the absence of hydroxyproline and hydroxylysine. The less acidic glycoprotein (D1) has glycine for N terminal amino acid and contains 10.4 percent of bound carbohydrates. The glycoprotein D2 contains 5.1 percent of bound carbohydrates and its N terminal amino acid is glutamic acid.
Zhao, Junwei; Cheng, Yamin; Shang, Sensen; Zhang, Fang; Chen, Li; Chen, Lijuan
2013-12-01
Three new two-dimensional Cu(I)-Ln(III) heterometallic coordination polymers [Ln(III)Cu2(I)(Hbpdc)4] · Cl · xH2O [Ln(III) = La(III), x = 8 (1); Ln(III) = Pr(III), x=9 (2); Ln(III) = Eu(III), x = 8 (3)] (H2bpdc = 2,2'-bipyridyl-5,5'-dicarboxylic acid) have been prepared under hydrothermal conditions and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. X-ray diffraction indicates that the isomorphic 1-3 display the two-dimensional sheet structure constructed from [Cu(I)(Hbpdc)2](-) fragments through Ln(3+) connectors. Moreover, the solid-state photoluminescence measurements of 3 indicate that the Eu(III) ions, Hbpdc(-) ligands and Cu(I) cations make contributions to its luminescent properties simultaneously. Copyright © 2013 Elsevier B.V. All rights reserved.
Dimacrolide Sesquiterpene Pyridine Alkaloids from the Stems of Tripterygium regelii.
Fan, Dongsheng; Zhu, Guo-Yuan; Li, Ting; Jiang, Zhi-Hong; Bai, Li-Ping
2016-08-29
Two new dimacrolide sesquiterpene pyridine alkaloids (DMSPAs), dimacroregelines A (1) and B (2), were isolated from the stems of Tripterygium regelii. The structures of both compounds were characterized by extensive 1D and 2D NMR spectroscopic analyses, as well as HRESIMS data. Compounds 1 and 2 are two rare DMSPAs possessing unique 2-(3'-carboxybutyl)-3-furanoic acid units forming the second macrocyclic ring, representing the first example of DMSPAs bearing an extra furan ring in their second macrocyclic ring system. Compound 2 showed inhibitory effects on the proliferation of human rheumatoid arthritis synovial fibroblast cell (MH7A) at a concentration of 20 μM.
NASA Astrophysics Data System (ADS)
Cody, G. D.; Boctor, N. Z.; Hazen, R. M.; Brandes, J. A.; Morowitz, Harold J.; Yoder, H. S.
2001-10-01
Recent theories have proposed that life arose from primitive hydrothermal environments employing chemical reactions analogous to the reductive citrate cycle (RCC) as the primary pathway for carbon fixation. This chemistry is presumed to have developed as a natural consequence of the intrinsic geochemistry of the young, prebiotic, Earth. There has been no experimental evidence, however, demonstrating that there exists a natural pathway into such a cycle. Toward this end, the results of hydrothermal experiments involving citric acid are used as a method of deducing such a pathway. Homocatalytic reactions observed in the citric acid-H2O experiments encompass many of the reactions found in modern metabolic systems, i.e., hydration-dehydration, retro-Aldol, decarboxylation, hydrogenation, and isomerization reactions. Three principal decomposition pathways operate to degrade citric acid under thermal and aquathermal conditions. It is concluded that the acid catalyzed βγ decarboxylation pathway, leading ultimately to propene and CO2, may provide the most promise for reaction network reversal under natural hydrothermal conditions. Increased pressure is shown to accelerate the principal decarboxylation reactions under strictly hydrothermal conditions. The effect of forcing the pH via the addition of NaOH reveals that the βγ decarboxylation pathway operates even up to intermediate pH levels. The potential for network reversal (the conversion of propene and CO2 up to a tricarboxylic acid) is demonstrated via the Koch (hydrocarboxylation) reaction promoted heterocatalytically with NiS in the presence of a source of CO. Specifically, an olefin (1-nonene) is converted to a monocarboxylic acid; methacrylic acid is converted to the dicarboxylic acid, methylsuccinic acid; and the dicarboxylic acid, itaconic acid, is converted into the tricarboxylic acid, hydroaconitic acid. A number of interesting sulfur-containing products are also formed that may provide for additional reaction. The intrinsic catalytic qualities of FeS and NiS are also explored in the absence of CO. It was shown that the addition of NiS has a minimal effect in the product distribution, whereas the addition of FeS leads to the formation of hydrogenated and sulfur-containing products (thioethers). These results point to a simple hydrothermal redox pathway for citric acid synthesis that may have provided a geochemical ignition point for the reductive citrate cycle.
NASA Astrophysics Data System (ADS)
Zhao, Wanyu; Kawamura, Kimitaka; Yue, Siyao; Wei, Lianfang; Ren, Hong; Yan, Yu; Kang, Mingjie; Li, Linjie; Ren, Lujie; Lai, Senchao; Li, Jie; Sun, Yele; Wang, Zifa; Fu, Pingqing
2018-02-01
This study investigates the seasonal variation, molecular distribution and stable carbon isotopic composition of diacids, oxocarboxylic acids and α-dicarbonyls to better understand the sources and formation processes of fine aerosols (PM2.5) in Beijing. The concentrations of total dicarboxylic acids varied from 110 to 2580 ng m-3, whereas oxoacids (9.50-353 ng m-3) and dicarbonyls (1.50-85.9 ng m-3) were less abundant. Oxalic acid was found to be the most abundant individual species, followed by succinic acid or occasionally by terephthalic acid (tPh), a plastic waste burning tracer. Ambient concentrations of phthalic acid (37.9 ± 27.3 ng m-3) and tPh (48.7 ± 51.1 ng m-3) were larger in winter than in other seasons, illustrating that fossil fuel combustion and plastic waste incineration contribute more to wintertime aerosols. The year-round mass concentration ratios of malonic acid to succinic acid (C3 / C4) were relatively low by comparison with those in other urban aerosols and remote marine aerosols. The values were less than or equal to unity in Beijing, implying that the degree of photochemical formation of diacids in Beijing is insignificant. Moreover, strong correlation coefficients of major oxocarboxylic acids and α-dicarbonyls with nss-K+ suggest that biomass burning contributes significantly to these organic acids and related precursors. The mean δ13C value of succinic acid is the highest among all species, with values of -17.1 ± 3.9 ‰ (winter) and -17.1 ± 2.0 ‰ (spring), while malonic acid is more enriched in 13C than others in autumn (-17.6 ± 4.6 ‰) and summer (-18.7 ± 4.0 ‰). The δ13C values of major species in Beijing aerosols are generally lower than those in the western North Pacific atmosphere, the downwind region, which indicates that stable carbon isotopic compositions of diacids depend on their precursor sources in Beijing. Therefore, our study demonstrates that in addition to photochemical oxidation, high abundances of diacids, oxocarboxylic acids and α-dicarbonyls in Beijing are largely associated with anthropogenic primary emissions, such as biomass burning, fossil fuel combustion and plastic waste burning.
Pilot study on novel blood containers with alternative plasticizers for red cell concentrate storage
Fukui, Chie; Kawakami, Tsuyoshi; Ikeda, Toshiyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-ichi; Yamaoka, Hisatoki; Miyazaki, Ken-ichi; Okazaki, Hitoshi
2017-01-01
Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC) blood containers, is eluted from the blood containers and exerts protective effects on red blood cells. However, a concern for detrimental effects of DEHP on human health has led to the development of potential DEHP substitutes. Here, we compared the red blood cell preservation ability of two types of non-DEHP blood containers with safe alternative plasticizers to that of DEHP blood containers. Red cell concentrates in mannitol-adenine-phosphate solution (MAP/RCC) were stored for 6 weeks in PVC blood bags containing DEHP, di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH) and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH), or 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH) and DOTH. There was no significant difference in the total amount of plasticizer eluted into MAP/RCC (till 3 weeks from the beginning of the experiment), hemolysis of MAP/RCC, and osmotic fragility of MAP/RCC between the non-DEHP blood containers and DEHP blood containers. Hematological and blood chemical indices of MAP/RCC in all containers were nearly the same. Thus, DOTH/DINCH and DOTH/DL9TH blood containers demonstrate the same quality of MAP/RCC storing as the DEHP blood containers. Since DOTH, DINCH, and DL9TH were reported to be safe, DOTH/DINCH and DOTH/DL9TH blood containers are promising candidate substitutes for DEHP blood containers. PMID:28957448
Morishita, Yuki; Nomura, Yusuke; Fukui, Chie; Kawakami, Tsuyoshi; Ikeda, Toshiyuki; Mukai, Tomokazu; Yuba, Toshiyasu; Inamura, Ken-Ichi; Yamaoka, Hisatoki; Miyazaki, Ken-Ichi; Okazaki, Hitoshi; Haishima, Yuji
2017-01-01
Di (2-ethylhexyl) phthalate (DEHP), a typical plasticizer used for polyvinyl chloride (PVC) blood containers, is eluted from the blood containers and exerts protective effects on red blood cells. However, a concern for detrimental effects of DEHP on human health has led to the development of potential DEHP substitutes. Here, we compared the red blood cell preservation ability of two types of non-DEHP blood containers with safe alternative plasticizers to that of DEHP blood containers. Red cell concentrates in mannitol-adenine-phosphate solution (MAP/RCC) were stored for 6 weeks in PVC blood bags containing DEHP, di-isononyl-cyclohexane-1,2-dicarboxylate (DINCH) and di (2-ethylhexyl) 4-cyclohexene-1,2-dicarboxylate (DOTH), or 4-cyclohexene-1,2-dicarboxylic acid dinonyl ester (DL9TH) and DOTH. There was no significant difference in the total amount of plasticizer eluted into MAP/RCC (till 3 weeks from the beginning of the experiment), hemolysis of MAP/RCC, and osmotic fragility of MAP/RCC between the non-DEHP blood containers and DEHP blood containers. Hematological and blood chemical indices of MAP/RCC in all containers were nearly the same. Thus, DOTH/DINCH and DOTH/DL9TH blood containers demonstrate the same quality of MAP/RCC storing as the DEHP blood containers. Since DOTH, DINCH, and DL9TH were reported to be safe, DOTH/DINCH and DOTH/DL9TH blood containers are promising candidate substitutes for DEHP blood containers.
Fukui, Keita; Nanatani, Kei; Hara, Yoshihiko; Tokura, Mitsunori; Abe, Keietsu
2018-05-01
Enterobacter aerogenes, a gram-negative, rod-shaped bacterium, is an effective producer of succinate from glucose via the reductive tricarboxylic acid cycle under anaerobic conditions. However, to date, succinate-exporter genes have not been identified in E. aerogenes, although succinate exporters have a large impact on fermentative succinate production. Recently, we genetically identified yjjP and yjjB, as genes encoding a succinate transporter in Escherichia coli. Evaluation of the yjjPB homologs in E. aerogenes (EayjjPB genes) showed that succinate accumulation increased from 4.1 g L -1 to 9.1 g L -1 when the EayjjPB genes were expressed under aerobic conditions. Under anaerobic conditions, succinate yield increased from 53% to 60% by EayjjPB expression and decreased to 48% by deletion of EayjjPB. Furthermore, the production levels of fumarate and malate, which are intermediates of the succinate-biosynthesis pathway, were also increased by EayjjPB expression. A complementation assay conducted in Corynebacterium glutamicum strain AJ110655ΔsucE1 demonstrated that both EaYjjP and EaYjjB are required for the restoration of succinate production. Taken together, these results suggest that EaYjjPB function as a dicarboxylate transporter in E. aerogenes and that the products of both genes are required for dicarboxylate transport. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Hou, Yucui; Li, Jian; Ren, Shuhang; Niu, Muge; Wu, Weize
2014-11-26
Because of similar properties and very low volatility, isomers of benzene poly(carboxylic acid)s (BPCAs) are very difficult to separate. In this work, we found that isomers of BPCAs could be separated efficiently by quaternary ammonium salts (QASs) via formation of deep eutectic solvents (DESs). Three kinds of QASs were used to separate the isomers of BPCAs, including the isomers of benzene tricarboxylic acids (trimellitic acid, trimesic acid, and hemimellitic acid) and the isomers of benzene dicarboxylic acids (phthalic acid and isophthalic acid). Among the QASs, tetraethylammonium chloride was found to have the best performance, which could completely separate BPCA isomers in methyl ethyl ketone solutions. It was found that the hydrogen bond forming between QAS and BPCA results in the selective separation of BPCA isomers. QAS in DES was regenerated effectively by the antisolvent method, and the regenerated QAS was reused four times with the same high efficiency.
Kinetics of Maleic Acid and Aluminum Chloride Catalyzed Dehydration and Degradation of Glucose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Ximing; Hewetson, Barron B.; Mosier, Nathan S.
We report the positive effect of maleic acid, a dicarboxylic acid, on the selectivity of hexose dehydration to 5-hydroxymethyfurfural (HMF) and subsequent hydrolysis to levulinic and formic acids. We also describe the kinetic analysis of a Lewis acid (AlCl3) alone and in combination with HCl or maleic acid to catalyze the isomerization of glucose to fructose, dehydration of fructose to HMF, hydration of HMF to levulinic and formic acids, and degradation of these compounds to humins. The results show that AlCl3 significantly enhances the rate of glucose conversion to HMF and levulinic acid in the presence of both maleic acidmore » and HCl. In addition, the degradation of HMF to humins, rather than levulinic and formic acids, is reduced by 50% in the presence of maleic acid and AlCl3 compared to HCl combined with AlCl3. The results suggest different reaction mechanisms for the dehydration of glucose and rehydration of HMF between maleic acid and HCl.« less
2016-01-01
γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5′-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5′-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general. PMID:25616005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunbeom; Doud, Emma H.; Wu, Rui
gamma-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently,more » CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.« less
Carboxylic and dicarboxylic acids extracted from crushed magnesium oxide single crystals
NASA Technical Reports Server (NTRS)
Freund, F.; Gupta, A. D.; Kumar, D.
1999-01-01
Carboxylic and dicarboxylic acids (glycolic, oxalic, malonic and succinic) have been extracted with tetrahydrofuran (THF) and H2O from large synthetic MgO crystals, crushed to a medium fine powder. The extracts were characterized by infrared spectroscopy and 1H-NMR. The THF extracts were derivatized with tert-butyldimethylsilyl (t-BDMS) for GC-MS analysis. A single crystal separated from the extract was used for an x-ray structure analysis, giving the monoclinic unit cell, space group P21/c with ao = 5.543 A, bo = 8.845 A, co = 5.086 A, and beta = 91.9 degrees, consistent with beta-succinic acid, HOOC(CH2)COOH. The amount of extracted acids is estimated to be of the order of 0.1 to 0.5 mg g-1 MgO. The MgO crystals from which these organic acids were extracted grew from the 2860 degrees C hot melt, saturated with CO/CO2 and H2O, thereby incorporating small amounts of the gaseous components to form a solid solution (ss) with MgO. Upon cooling, the ss becomes supersaturated, causing solute carbon and other solute species to segregate not only to the surface but also internally, to dislocations and subgrain boundaries. The organic acids extracted from the MgO crystals after crushing appear to derive from these segregated solutes that formed C-C, C-H and C-O bonds along dislocations and other defects in the MgO structure, leading to entities that can generically be described as (HxCyOz)n-. The processes underlying the formation of these precursors are fundamental in nature and expected to be operational in any minerals, preferentially those with dense structures, that crystallized in H2O-CO2-laden environments. This opens the possibility that common magmatic and metamorphic rocks when weathering at the surface of a tectonically active planet like Earth may be an important source of abiogenically formed complex organic compounds.
NASA Astrophysics Data System (ADS)
Vani, D.; Kawamura, K.; Tachibana, E.; Boreddy, S. K. R.
2015-12-01
Dicarboxylic acids (diacids) are dominant components of organic aerosols in the atmosphere. They contribute significantly to the total aerosol mass and have a serious impacts on global climate changes. However, studies on keto- and hydroxy-diacids in marine aerosols are limited. Compare to diacids, keto- and hydroxy-diacids are more hygroscopic due to the additional polar groups (OH and CO) and, hence, acts as cloud condensation nuclei (CCN). Molecular characterization of these compounds provides insight into organic aerosols sources and transformation pathways. We collected marine aerosols from remote Chichijima Island in the western North Pacific from December 2010 to November 2011 and studied for water-soluble keto- and hydroxy-diacids. Carboxyl groups were derivatized to dibutyl esters with 14% boron trifluoride/n-butanol, whereas hydroxyl groups were derivatized to trimethylsilyl ethers using N,O-Bis (trimethylsilyl) trifluoroacetamide (BSTFA). After two-step derivatization, samples were injected to GC, GC/MS and GC/TOF-MS. In the GC chromatogram, we detected several new peaks after BSTFA derivatization of dibutyl ester fraction. Based on mass spectral interpretation, we found these peaks as homologues series of hydroxy-diacids and keto-diacids. Some of these hydroxy-diacids have been individually reported in literature in the laboratory photo-oxidation experiments and forest environments samples. But, there are no evidences to prove their sources and formation mechanism in the atmosphere. Here, we report for the first time homologous series of hydroxy-diacids (hC3di-hC6di) and keto-diacid (oxaloacetic acid, enol and keto forms) in remote marine atmosphere. Molecular distributions of hydroxy-diacids generally showed the predominance of malic acid followed by tartronic acid. Both hydroxy- and keto-diacids show significant positive correlation with oxalic acid and SO42-, suggesting that they are generated in the atmosphere and play an important role in the formation of smaller diacids through aqueous phase photo-oxidation.
Compagnon, Vincent; Diehl, Patrik; Benveniste, Irène; Meyer, Denise; Schaller, Hubert; Schreiber, Lukas; Franke, Rochus; Pinot, Franck
2009-01-01
Suberin composition of various plants including Arabidopsis (Arabidopsis thaliana) has shown the presence of very long chain fatty acid derivatives C20 in addition to the C16 and C18 series. Phylogenetic studies and plant genome mining have led to the identification of putative aliphatic hydroxylases belonging to the CYP86B subfamily of cytochrome P450 monooxygenases. In Arabidopsis, this subfamily is represented by CYP86B1 and CYP86B2, which share about 45% identity with CYP86A1, a fatty acid ω-hydroxylase implicated in root suberin monomer synthesis. Here, we show that CYP86B1 is located to the endoplasmic reticulum and is highly expressed in roots. Indeed, CYP86B1 promoter-driven β-glucuronidase expression indicated strong reporter activities at known sites of suberin production such as the endodermis. These observations, together with the fact that proteins of the CYP86B type are widespread among plant species, suggested a role of CYP86B1 in suberin biogenesis. To investigate the involvement of CYP86B1 in suberin biogenesis, we characterized an allelic series of cyp86B1 mutants of which two strong alleles were knockouts and two weak ones were RNA interference-silenced lines. These root aliphatic plant hydroxylase lines had a root and a seed coat aliphatic polyester composition in which C22- and C24-hydroxyacids and α,ω-dicarboxylic acids were strongly reduced. However, these changes did not affect seed coat permeability and ion content in leaves. The presumed precursors, C22 and C24 fatty acids, accumulated in the suberin polyester. These results demonstrate that CYP86B1 is a very long chain fatty acid hydroxylase specifically involved in polyester monomer biosynthesis during the course of plant development. PMID:19525321
Lee, Hyunbeom; Doud, Emma H; Wu, Rui; Sanishvili, Ruslan; Juncosa, Jose I; Liu, Dali; Kelleher, Neil L; Silverman, Richard B
2015-02-25
γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently, CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. This represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.
Lee, Hyunbeom; Doud, Emma H.; Wu, Rui; ...
2015-01-23
γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently,more » CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Hong-Jian, E-mail: hjcheng@cslg.cn; Tang, Hui-Xiang; Shen, Ya-Li
2015-12-15
Solvothermal reactions of Zn(NO{sub 3}){sub 2}·6H{sub 2}O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H{sub 2}bdc), p-phenylenediacetic acid (p-H{sub 2}pda), benzophenone-4,4-dicarboxylic acid (H{sub 2}bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]{sub n} (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H_2O}{sub n} (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H_2O}{sub n} (3). Complexes 1–3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1–3 at ambient temperature were alsomore » investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored. - Graphical abstract: Reactions of Zn(NO{sub 3}){sub 2} and 3,6-(1-imidazolyl)carbazole with 1,4-benzenedicarboxylic acid, p-phenylenediacetic acid or benzophenone-4,4-dicarboxylic acid afforded three coordination polymers with different topologies and photocatalytic activity. - Highlights: • Reactions of 1,4-H{sub 2}bdc, p-H{sub 2}pda or H{sub 2}bpda with 3,6-bmcz and Zn(II) gave three CPs. • Complex 1 is a 3D entanglement. • Complex 2 or 3 is a 3D supramolecular structure based on different 2D layers. • Complex 2 exhibited good catalytic activity of methylene blue photodegradation.« less
Sulfonated poly(ether sulfone)s containing pyridine moiety for PEMFC.
Jang, Hohyoun; Islam, Md Monirul; Lim, Youngdon; Hossain, Md Awlad; Cho, Younggil; Joo, Hyunho; Kim, Whangi; Jeon, Heung-Seok
2014-10-01
Sulfonated poly(ether sulfone)s with varied degree of sulfonation (DS) were prepared via post-sulfonation of synthesized pyridine based poly(ether sulfone) (PPES) using concentrated sulfuric acid as sulfonating agent. The DS was varied with different mole ratio of 4,4'-(2,2-diphenylethenylidene)diphenol, DHTPE in the polymer unit. PPES copolymers were synthesized by direct polycondensation of pyridine unit with bis-(4-fluorophenyl)-sulfone, 4, 4'-sulfonyldiphenol and DHTPE. The structure of the resulting PPES copolymer membranes with different sulfonated units were studied by 1H NMR spectroscopy and thermogravimetric analysis (TGA). Sorption experiments were conducted to observe the interaction of sulfonated polymer with water. The ion exchange capacity (IEC) and proton conductivity were evaluated according to the increase of DS. The water uptake (WU) of the resulting membranes was in the range of 17-58%, compared to that of Nafion 211 28%. The membranes provided proton conductivities of 65-95 mS/cm in contrast to 103 mS/cm of Nafion 211.
NASA Astrophysics Data System (ADS)
Kawamura, K.; Tachibana, E.
2010-12-01
A rapid industrial development in China and East Asian countries for last two decades may have seriously changed the air quality of the North Pacific. To better understand a long-term atmospheric changes of organic aerosols in the western North Pacific, we collected marine aerosol samples on weekly basis at a remote island, Chichijima (27°04'E; 142°13'N) in 2001-2010. The island is located in the boundary of westerly and easterly wind regimes. The aerosol samples were analyzed for dicarboxylic acids, ketoacids and α-dicarbonyls employing butyl ester derivatization followed by GC determination, together with total carbon (TC) and water-soluble organic carbon (WSOC). Homologous series of saturated diacids (C2-C11) were detected with a predominance of oxalic (C2) acid followed by malonic (C3) and succinic (C4) acids. Unsaturated diacids, including maleic (M), fumaric (F), phthalic, and iso-/tere-phthalic acids, were also detected together with ketoacids and α-dicarbonyls. Concentrations of total diacids fluctuated significantly in a range of 10-600 ngm-3 with winter/spring maximum and summer minimum. The maximum was explained by a combination of enhanced emissions of polluted aerosols and their precursors in Asia and enhanced atmospheric transport to the North Pacific due to the intensified westerly winds in winter/spring. Concentration ratios of C3 to C4 diacid (range 0.2-28, av. 2.8) showed a maximum during summer, indicating more oxidation of longer-chain diacids to shorter ones. Azelaic acid (C9) that is a specific photo-oxidation product of unsaturated fatty acid such as oleic acid showed a sharp increase relative to other diacids in summer, suggesting enhanced sea-to-air emission of unsaturated fatty acids followed by photochemical oxidation during summer. On the other hand, M/F ratios (range 0-8.7, av. 1.1) significantly decreased from winter to summer due to photochemical cis-to-trans isomerization. We also discuss decadal trends in the concentrations of diacids and related compounds as well as TC and WSOC, and their compositions and relative abundances.
NASA Astrophysics Data System (ADS)
Furukawa, T.; Takahashi, Y.
2011-05-01
Atmospheric aerosols have both a direct and an indirect cooling effect that influences the radiative balance at the Earth's surface. It has been estimated that the degree of cooling is large enough to weaken the warming effect of carbon dioxide. Among the cooling factors, secondary organic aerosols (SOA) play an important role in the solar radiation balance in the troposphere as SOA can act as cloud condensation nuclei (CCN) and extend the lifespan of clouds because of their high hygroscopic and water soluble nature. Oxalic acid is an important component of SOA, and is produced via several formation pathways in the atmosphere. However, it is not certain whether oxalic acid exists as free oxalic acid or as metal oxalate complexes in aerosols, although there is a marked difference in their solubility in water and their hygroscopicity. We employed X-ray absorption fine structure spectroscopy to characterize the calcium (Ca) and zinc (Zn) in aerosols collected at Tsukuba in Japan. Size-fractionated aerosol samples were collected for this purpose using an impactor aerosol sampler. It was shown that 10-60% and 20-100% of the total Ca and Zn in the finer particles (<2.1 μm) were present as Ca and Zn oxalate complexes, respectively. Oxalic acid is hygroscopic and can thus increase the CCN activity of aerosol particles, while complexes with various polyvalent metal ions such as Ca and Zn are not hygroscopic, which cannot contribute to the increase of the CCN activity of aerosols. Based on the concentrations of noncomplexed and metal-complexed oxalate species, we found that most of the oxalic acid is present as metal oxalate complexes in the aerosols, suggesting that oxalic acid does not always increase the hygroscopicity of aerosols in the atmosphere. Similar results are expected for other dicarboxylic acids, such as malonic and succinic acids. Thus, it is advisable that the cooling effect of organic aerosols should be estimated by including the information on metal oxalate complexes and metal complexes with other dicarboxylic acids in aerosols.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyunbeom; Doud, Emma H.; Wu, Rui
γ-Aminobutyric acid aminotransferase (GABA-AT) is a pyridoxal 5'-phosphate (PLP)-dependent enzyme that degrades GABA, the principal inhibitory neurotransmitter in mammalian cells. When the concentration of GABA falls below a threshold level, convulsions can occur. Inhibition of GABA-AT raises GABA levels in the brain, which can terminate seizures as well as have potential therapeutic applications in treating other neurological disorders, including drug addiction. Among the analogues that we previously developed, (1S,3S)-3-amino-4-difluoromethylene-1-cyclopentanoic acid (CPP-115) showed 187 times greater potency than that of vigabatrin, a known inactivator of GABA-AT and approved drug (Sabril) for the treatment of infantile spasms and refractory adult epilepsy. Recently,more » CPP-115 was shown to have no adverse effects in a Phase I clinical trial. Here we report a novel inactivation mechanism for CPP-115, a mechanism-based inactivator that undergoes GABA-AT-catalyzed hydrolysis of the difluoromethylene group to a carboxylic acid with concomitant loss of two fluoride ions and coenzyme conversion to pyridoxamine 5'-phosphate (PMP). The partition ratio for CPP-115 with GABA-AT is about 2000, releasing cyclopentanone-2,4-dicarboxylate (22) and two other precursors of this compound (20 and 21). Time-dependent inactivation occurs by a conformational change induced by the formation of the aldimine of 4-aminocyclopentane-1,3-dicarboxylic acid and PMP (20), which disrupts an electrostatic interaction between Glu270 and Arg445 to form an electrostatic interaction between Arg445 and the newly formed carboxylate produced by hydrolysis of the difluoromethylene group in CPP-115, resulting in a noncovalent, tightly bound complex. Ultimately, this represents a novel mechanism for inactivation of GABA-AT and a new approach for the design of mechanism-based inactivators in general.« less
Electrochemistry of Metal Surfaces
1990-06-30
i) 3-pyridine carboxylic acid ( nicotinic acid, NA) binds to Pt surfaces through both the nitrogen atom and an oxygen atom of the carboxylate group...formed from aqueous electrolytes at Pt(1l1) electrode surfaces have been compared with the IR and Raman spectra of the unadsorbed compounds in order...vibrational absorptivities between EELS spectra of adsorbed species and IR and Raman spectra of the corresponding unadsorbed compounds (146). Of
Konopski, Leszek; Kiełczewska, Anna
2012-01-01
2-Trichloromethylbenzimidazole (TCMB) was used as a chromogenic reagent in organic or inorganic analysis, mainly in thin-layer chromatography (TLC). In reactions of TCMB with some heteroaromatic nitrogen containing compounds, such as azines, azoles and benzazoles, a formation of high colored products occurred. For azines, the chromogenic reaction was highly regioselective, since the both adjacent α-positions versus the nitrogen atom(s) must not be substituted. A TLC method of detection was developed. Thirty azines, azoles, and benzazoles were detected at the detection limit 10 ng to 1 μg. This method was also applied for detection of heteroaromatic pesticides, and the attempts to construct active and passive dosimeters for nicotine were made. In a prechromatographic reaction of aromatic o-diamines with methyl trichloroacetimidate, TCMB or its derivatives were formed in situ. Followed by TLC and visualization in pyridine vapors, this procedure was applied for detection of o-phenylenediamine derivatives. The reaction product of TCMB and pyridine (LI Complex) was identified and fully characterized. Two different reaction mechanisms: with electron deficient basic heteroaromatic compounds, like pyridine, and with more acidic compounds, for example, pyrrole, were discussed. In aqueous solutions, the LI Complex may be also used as a new indicator for complexometric, adsorption and acid-base titration of inorganic compounds. PMID:22567563
Polymeric foams from cross-linkable poly-N-ary lenebenzimidazoles
NASA Technical Reports Server (NTRS)
Harrison, E. S.; Delano, C. B.; Riccitello, S. R. (Inventor)
1978-01-01
Foamed cross-linked poly-N-arylenebinzimidazoles are prepared by mixing an organic tetraamine and an ortho substituted aromatic dicarboxylic acid anhydride in the presence of a blowing agent, and then heating the prepolymer to a temperature sufficient to complete polymerization and foaming of the reactants. In another embodiment of the process, the reactants are heated to form a prepolymer. The prepolymer is then cured at higher temperatures to complete foaming and polymerization.
Reprocessing system with nuclide separation based on chromatography in hydrochloric acid solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Tatsuya; Tachibana, Yu; Koyama, Shi-ichi
2013-07-01
We have proposed the reprocessing system with nuclide separation processes based on the chromatographic technique in the hydrochloric acid solution system. Our proposed system consists of the dissolution process, the reprocessing process, the minor actinide separation process, and nuclide separation processes. In the reprocessing and separation processes, the pyridine resin is used as a main separation media. It was confirmed that the dissolution in the hydrochloric acid solution is easily achieved by the plasma voloxidation and by the addition of oxygen peroxide into the hydrochloric acid solution.
Surface characterization of acidic ceria-zirconia prepared by direct sulfation
NASA Astrophysics Data System (ADS)
Azambre, B.; Zenboury, L.; Weber, J. V.; Burg, P.
2010-05-01
Acidic ceria-zirconia (SCZ) solid acid catalysts with a nominal surface density of ca 2 SO 42-/nm 2 were prepared by a simple route consisting in soaking high specific surface area Ce xZr 1- xO 2 (with x = 0.21 and 0.69) mixed oxides solutions in 0.5 M sulphuric acid. Characterizations by TPD-MS, TP-DRIFTS and FT-Raman revealed that most of surface structures generated by sulfation are stable at least up to 700 °C under inert atmosphere and consist mainly as isolated sulfates located on defects or crystal planes and to a lesser extent as polysulfates. Investigations by pyridine adsorption/desorption have stated that: SCZ possess both strong Brønsted (B) and Lewis (L) acid sites, some of them being presumably superacidic; the B/L site ratio was found to be more dependent on the temperature and hydration degree than on the composition of the ceria-zirconia. By contrast, the reactivity of the parent Ce xZr 1- xO 2 materials towards pyridine is mostly driven by redox properties resulting in the formation of Py-oxide with the participation of Lewis acid sites of moderate strength ( cus Ce x+ and Zr x+ cations). Basicity studies by CO 2 adsorption/desorption reveal that SCZ surfaces are solely acidic whereas the number and strength of Lewis basic sites increases with the Ce content for the parent Ce xZr 1- xO 2 materials.
Dai, Fangna; Dou, Jianmin; He, Haiyan; Zhao, Xiaoliang; Sun, Daofeng
2010-05-03
To assemble metal-organic supramolecules such as a metallamacrocycle and metal-organic coordination cage (MOCC), a series of flexible dicarboxylate ligands with the appropriate angle, 2,2'-(2,3,5,6-tetramethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(1)), 2,2'-(2,5-dimethyl-1,4-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(2)), 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dinicotinic acid (H(2)L(3)), and 2,2'-(2,4,6-trimethyl-1,3-phenylene)bis(methylene)bis(sulfanediyl)dibenzoic acid (H(2)L(4)), have been designed and synthesized. Using these flexible ligands to assemble with metal ions, six metal-organic supramolecules, Cd(2)(L(1))(2)(dmf)(4)(H(2)O)(2).H(2)O (1), Mn(3)((1)L(2))(2)((2)L(2))(dmf)(2)(H(2)O)(2).5dmf (2), Cu(4)(L(3))(4)(H(2)O)(4).3dmf (3), Cu(4)(L(4))(4)(dmf)(2)(EtOH)(2).8dmf.6H(2)O (4), Mn(4)(L(4))(4)(dmf)(4)(H(2)O)(4).6dmf.H(2)O (5), and Mn(3)(L(4))(3)(dmf)(4).2dmf.3H(2)O (6), possessing a rectangular macrocycle, MOCCs or their extensions, and 1D or 2D coordination polymers, have been isolated. All complexes have been characterized by single-crystal X-ray diffraction, elemental analysis, and thermogravimetric analysis. Complex 1 is a discrete rectangular macrocycle, while complex 2 is a 2D macrocycle-based coordination polymer in which the L(2) ligand adopts both syn and anti conformations. Complexes 3-5 are discrete MOCCs in which two binuclear metal clusters are engaged by four organic ligands. The different geometries of the secondary building units (SBUs) and the axial coordinated solvates on the SBUs result in their different symmetries. Complex 6 is a 1D coordination polymer, extended from a MOCC made up of two metal ions and three L(4) ligands. All of the flexible dicarboxylate ligands adopt a syn conformation except that in complex 2, indicating that the syn conformational ligand is helpful for the formation of a metallamacrocycle and a MOCC. The magnetic properties of complexes 5 and 6 have also been studied.
1991-07-16
germacranolides, they also identified the two pentacyclic trzterpenes, lupeol and lupenone. In the present study, we found betulinic and ursolic acids as...O07 . tFurther elution with the same solvents yielded another minor product (22 mg), which proved to be ursolic acid , mp 26G-265’. Both triterpene...performed with ceric sulfate-sulfuric acid spray alcohol 5b (1.0 mg) in pyridine (0.2 mL) was added thionyl chloride reagent (heated at approximately 150 0 C
NASA Astrophysics Data System (ADS)
Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.
2010-06-01
Tropical aerosol (PM10) samples (n = 49) collected from southeast coast of India were studied for water-soluble dicarboxylic acids (C2-C12), ketocarboxylic acids (C2-C9), and α-dicarbonyls (glyoxal and methylglyoxal), together with analyses of total carbon (TC) and water-soluble organic carbon (WSOC). Their distributions were characterized by a predominance of oxalic acid followed by terephthalic (t-Ph), malonic, and succinic acids. Total concentrations of diacids (227-1030 ng m-3), ketoacids (16-105 ng m-3), and dicarbonyls (4-23 ng m-3) are comparative to those from other Asian megacities such as Tokyo and Hong Kong. t-Ph acid was found as the second most abundant diacid in the Chennai aerosols. This feature has not been reported previously in atmospheric aerosols. t-Ph acid is most likely derived from the field burning of plastics. Water-soluble diacids were found to contribute 0.4%-3% of TC and 4%-11% of WSOC. Based on molecular distributions and backward air mass trajectories, we found that diacids and related compounds in coastal South Indian aerosols are influenced by South Asian and Indian Ocean monsoons. Organic aerosols are also suggested to be significantly transported long distances from North India and the Middle East in early winter and from Southeast Asia in late winter, but some originate from photochemical reactions over the Bay of Bengal. In contrast, the Arabian Sea, Indian Ocean, and South Indian continent are suggested as major source regions in summer. We also found daytime maxima of most diacids, except for C9 and t-Ph acids, which showed nighttime maxima in summer. Emissions from marine and terrestrial plants, combined with land/sea breezes and in situ photochemical oxidation, are suggested especially in summer as an important factor that controls the composition of water-soluble organic aerosols over the southeast coast of India. Regional emissions from anthropogenic sources are also important in megacity Chennai, but their influence is weakened due to the dispersion caused by dynamic land/sea breeze on the coast.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids.
Terpolilli, Jason J; Masakapalli, Shyam K; Karunakaran, Ramakrishnan; Webb, Isabel U C; Green, Rob; Watmough, Nicholas J; Kruger, Nicholas J; Ratcliffe, R George; Poole, Philip S
2016-10-15
Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2 Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [(13)C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2 However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Lipogenesis and Redox Balance in Nitrogen-Fixing Pea Bacteroids
Terpolilli, Jason J.; Masakapalli, Shyam K.; Karunakaran, Ramakrishnan; Webb, Isabel U. C.; Green, Rob; Watmough, Nicholas J.; Kruger, Nicholas J.; Ratcliffe, R. George
2016-01-01
ABSTRACT Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the tricarboxylic acid (TCA) cycle to generate NAD(P)H for reduction of N2. Metabolic flux analysis of laboratory-grown Rhizobium leguminosarum showed that the flux from [13C]succinate was consistent with respiration of an obligate aerobe growing on a TCA cycle intermediate as the sole carbon source. However, the instability of fragile pea bacteroids prevented their steady-state labeling under N2-fixing conditions. Therefore, comparative metabolomic profiling was used to compare free-living R. leguminosarum with pea bacteroids. While the TCA cycle was shown to be essential for maximal rates of N2 fixation, levels of pyruvate (5.5-fold reduced), acetyl coenzyme A (acetyl-CoA; 50-fold reduced), free coenzyme A (33-fold reduced), and citrate (4.5-fold reduced) were much lower in bacteroids. Instead of completely oxidizing acetyl-CoA, pea bacteroids channel it into both lipid and the lipid-like polymer poly-β-hydroxybutyrate (PHB), the latter via a type III PHB synthase that is active only in bacteroids. Lipogenesis may be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. Direct reduction by NAD(P)H of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance the production of NAD(P)H from oxidation of acetyl-CoA in the TCA cycle with its storage in PHB and lipids. IMPORTANCE Biological nitrogen fixation by symbiotic bacteria (rhizobia) in legume root nodules is an energy-expensive process. Within legume root nodules, rhizobia differentiate into bacteroids that oxidize host-derived dicarboxylic acids, which is assumed to occur via the TCA cycle to generate NAD(P)H for reduction of N2. However, direct reduction of the likely electron donors for nitrogenase, such as ferredoxin, is inconsistent with their redox potentials. Instead, bacteroids must balance oxidation of plant-derived dicarboxylates in the TCA cycle with lipid synthesis. Pea bacteroids channel acetyl-CoA into both lipid and the lipid-like polymer poly-β-hydroxybutyrate, the latter via a type II PHB synthase. Lipogenesis is likely to be a fundamental requirement of the redox poise of electron donation to N2 in all legume nodules. PMID:27501983
Synthesis of (azelaic-co-dodecanedioic) polyanhydride by microwave technique
NASA Astrophysics Data System (ADS)
Gutiérrez, M.; Sierra, C.; Acevedo Morantes, M.; Herrera, A. P.
2016-02-01
A polyanhydride was synthesized through microwave radiation using azelaic acid and dodecanedioic dicarboxylic acid at concentrations of 75:25, 50:50, and 25:75%w/w with acetic anhydride as crosslinking agent. Polymerization was carried out during 3 and 5 minutes. The copolymer with the highest molecular weight was selected using the intrinsic viscometry technique and by Huggin/Kraemer and Solomon/Ciuta methods. Based on these measurements, the 50:50 copolymer was selected with a polymerization time of 3 minutes in the microwave. This sample displayed the highest intrinsic viscosity (41.82cm3/g), demonstrating the relevance of the microwave technique for the synthesis of biopolymers.
Sladowska, Helena; Filipek, Barbara; Szkatuła, Dominika; Sabiniarz, Aleksandra; Kardasz, Małgorzata; Potoczek, Joanna; Sieklucka-Dziuba, Maria; Rajtar, Grazyna; Kleinrok, Zdzisław; Lis, Tadeusz
2002-11-01
Synthesis of 2-[2-hydroxy-3-(4-aryl-1-piperazinyl)propyl] derivatives of 4-alkoxy-6-methyl-1H-pyrrolo[3,4-c]pyridine-1,3(2H)-diones (8-12) is described. The chlorides used in the above synthesis can exist in two isomeric forms: chain (18-20) and cyclic (19a, 20a). The compounds 8-12 exhibited potent analgesic activity which was superior than that of acetylsalicylic acid in two different tests. Most of the investigated imides suppressed significantly spontaneous locomotor activity in mice.
NASA Astrophysics Data System (ADS)
Harrad, Stuart; Hassoun, Suzanne; Callén Romero, María. S.; Harrison, Roy M.
Concentrations of n-alkanes, petroleum biomarkers such as hopanes and steranes, n-alkanoic acids, n-alkanols, polycyclic aromatic hydrocarbons (PAH), dicarboxylic acids, and selected oxygenated PAH were separately determined in total suspended particulate matter and associated vapour phase in ambient air in Birmingham, UK. Samples were taken simultaneously at two locations on 24 separate occasions every 1-2 weeks between August 1999 and August 2000. Site A was 10 m from a busy road, 800 m from site B that was located within the "green space" of the University of Birmingham campus. Despite some differences in concentrations of some compounds, data from this study is in line with that reported in London, UK and in California. Differences between Sites A and B in both concentrations and carbon preference indices are consistent with greater traffic inputs at Site A, with some evidence of an appreciable biogenic input of n-alkanols and n-alkanes at the less-traffic influenced and more vegetated Site B. The biogenic input at Site B appears greater in the spring and summer months and suggests that biogenic emissions are appreciable even in British urban areas. Secondary formation mechanisms for some compounds including dicarboxylic acids and oxygenated PAH like fluoren-9-one are indicated by the lack of any significant intersite difference in concentrations. Intersite differences in concentrations provide new evidence that while petroleum biomarkers arise predominantly from local traffic, regional as well as local sources play an important rôle for the higher molecular weight PAH which exist predominantly in the particle phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Ya-Jing; Zheng, Yue-Qing, E-mail: zhengnbu@163.com; Zhu, Hong-Lin
A new Bi(III) coordination polymer Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O (H{sub 2}pdc=pyridine-2,6-dicarboxylic acid) was synthesized by hydrothermal method. Solid state thermal decomposition of this complex under 500 °C for 1 h led to the foliated Bi{sub 2}O{sub 3} nanoparticles, which were then characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Comparative study on their photocatalytic activity toward the degradation of rhodamine B (RhB), methylene blue (MB) and methyl orange (MO) in polluted water was explored, and the mechanism of these photocatalytic degradation was discussed. These results provided some interesting insights into their photocatalytic applications. - Graphical abstract: Wemore » regard Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O with 1D chain structures as the precursor, then calcinate the complex to prepare nano-powder α-Bi{sub 2}O{sub 3}. The photochemical experiment indicates that Bi{sub 2}(Hpdc){sub 2}(pdc){sub 2}·2H{sub 2}O can be used as an efficient photocatalyst for the degradation of RhB and MB. Interestingly, nano α-Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of RhB, MB or MO. Display Omitted - Highlights: • A novel dinuclear Bi(III) coordination polymer is hydrothermally synthesized. • Calcinating the precursor Bi-CP will result in the nano Bi{sub 2}O{sub 3} with foliated morphology. • Nano Bi{sub 2}O{sub 3} shows higher activity than the commercial Bi{sub 2}O{sub 3} for the degradation of dyes.« less
NASA Astrophysics Data System (ADS)
Dumpala, Rama Mohana Rao; Rawat, Neetika; Tomar, B. S.
2017-06-01
Neptunyl ion as NpO2+ is the least reacting and most mobile radioactive species among all the actinides. The picolinic acid used for decontamination is co-disposed along with the radioactive waste. Thus, in long term storage of HLW, there is high possibility of interaction of actinides and long lived fission products with the picolinate and can cause migration. The complexation of NpO2+ with the three structural isomers of pyridine monocarboxylates provides an insight to explore the role of hetero atom (nitrogen) with respect to key binding moiety (carboxylate). In the present study, the log β values, speciation and spectral properties of NpO2+ complexes with pyridine monocarboxylates viz. picolinate, nicotinate and isonicotinate, have been studied at 298 K in 0.1 M NaClO4 medium using spectrophotometry. The complexation reactions involving protonated ligands are always accompanied by protonation/deprotonation process; thus, the protonation constants of all the three pyridine monocarboxylates under same conditions were also determined by potentiometry. The spectrophotometric data analysis for complexation of NpO2+ with pyridine monocarboxylates indicated the presence of ML and ML2 complexes with log β values of 2.96 ± 0.04, 5.67 ± 0.08 for picolinate, 1.34 ± 0.09, 1.65 ± 0.12 for nicotinate and 1.52 ± 0.04, 2.39 ± 0.06 for isonicotinate. The higher values of log β for picolinate were attributed to chelation while in other two isomers, the binding is through carboxylate group only. Density Functional Theory (DFT) calculations were carried out to get optimized geometries and electrostatic charges on various atoms of the complexes and free pyridine monocarboxylates to support the experimental data. The higher stability of NpO2+ nicotinate and isonicotinate complexes compared to simple carboxylates and the difference in log β between the two is due to the charge polarization from unbound nitrogen to the bound carboxylate oxygen atoms.
Polymer-phyllosilicate nanocomposites and their preparation
Chaiko, David J.
2007-01-09
Polymer-phyllosilicate nanocomposites that exhibit superior properties compared to the polymer alone, and methods-for producing these polymer-phyllosilicate nanocomposites, are provided. Polymeric surfactant compatabilizers are adsorbed onto the surface of hydrophilic or natural phyllosilicates to facilitate the dispersal and exfoliation of the phyllosilicate in a polymer matrix. Utilizing polymeric glycol based surfactants, polymeric dicarboxylic acids, polymeric diammonium surfactants, and polymeric diamine surfactants as compatabilizers facilitates natural phyllosilicate and hydrophilic organoclay dispersal in a polymer matrix to produce nanocomposites.
Edwards, Gerald E.; Black, Clanton C.
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given. The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C4-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO2 enters a leaf about 85% is fixed by the C4-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells. A technique also is given for the isolation of mesophyll cells from spinach leaves. Images PMID:16657571
Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Wang, Hai-Bin; Zhao, Jun; Wang, Yao-Yu
2014-11-07
Two new Co(II) based metal-organic frameworks, namely {[Co5(μ3-OH)2(m-pda)3(bix)4]·2ClO4}n (1) and {[Co2(p-pda)2(bix)2(H2O)]·H2O}n (2), were prepared by hydrothermal reactions of Co(II) salt with two isomeric dicarboxyl tectons 1,3-phenylenediacetic acid (m-pda) and 1,4-phenylenediacetic acid (p-pda), along with 1,3-bis(imidazol-L-ylmethyl)benzene (bix). Both complexes 1 and 2 have been characterized by elemental analysis, IR spectroscopy, single-crystal X-ray diffraction, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). 1 shows a 6-connected 3-D pcu cationic framework with pentanuclear [Co5(μ3-OH)2(COO)6(bix)2](2+) units, while 2 exhibits a 6-connected 3-D msw net based on [Co2(μ2-H2O)(COO)2](2+) clusters. The results indicate that the different dispositions of the carboxylic groups of dicarboxylates have an important effect on the overall coordination frameworks. Perchlorate anions in 1 can be partly exchanged by thiocyanate and azide anions, however they are unavailable to nitrate anions. Magnetic susceptibility measurements indicate that both 1 and 2 show weak antiferromagnetic interactions between the adjacent Co(II) ions.
Quantum transport in alkane molecular wires: Effects of binding modes and anchoring groups
NASA Astrophysics Data System (ADS)
Sheng, W.; Li, Z. Y.; Ning, Z. Y.; Zhang, Z. H.; Yang, Z. Q.; Guo, H.
2009-12-01
Effects of binding modes and anchoring groups on nonequilibrium electronic transport properties of alkane molecular wires are investigated from atomic first-principles based on density functional theory and nonequilibrium Green's function formalism. Four typical binding modes, top, bridge, hcp-hollow, and fcc-hollow, are considered at one of the two contacts. For wires with three different anchoring groups, dithiol, diamine, or dicarboxylic acid, the low bias conductances resulting from the four binding modes are all found to have either a high or a low value, well consistent with recent experimental observations. The trend can be rationalized by the behavior of electrode-induced gap states at small bias. When bias increases to higher values, states from the anchoring groups enter into the bias window and contribute significantly to the tunneling process so that transport properties become more complicated for the four binding modes. Other low bias behaviors including the values of the inverse length scale for tunneling characteristic, contact resistance, and the ratios of the high/low conductance values are also calculated and compared to experimental results. The conducting capabilities of the three anchoring groups are found to decrease from dithiol, diamine to dicarboxylic-acid, largely owing to a decrease in binding strength to the electrodes. Our results give a clear microscopic picture to the transport physics and provide reasonable qualitative explanations for the corresponding experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Xin-Hui, E-mail: iamxhzhou@njupt.edu.cn; Chen, Qiang
The title coordination polymer ([Cd{sub 12}(tda){sub 8}(H{sub 2}O){sub 11}] · (H{sub 2}O){sub 6.25}){sub n} (H{sub 3}tda = 1,2,3-triazole-4,5-dicarboxylic acid), has been hydrothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complex crystallizes in orthorhombic sp. gr. Pmn2{sub 1} with Z = 4. The Cd{sub 2} unit doublebridged by one carboxylate oxygen atom and two neighboring nitrogen atoms from the tda{sup 3–} ligands are linked by the tda{sup 3–}ligands to lead to the 2D (4,4) network in the ac plane. The almost coplanar Cd{sub 2}(μ{sub 5}-tda){sub 2} unit comprised of two Cd ions double-bridged by two tda{sup 3–} ligands through themore » neighboring nitrogen atoms is connected with the other four Cd{sub 2}(μ{sub 5}-tda){sub 2} units form the undulating 2D network in the ac plane. The (4,4) networks and undulating 2D networks are alternatively connected along the b axis by the tda{sup 3–} ligands coordinating to the Cd ions to form the 3D framework.« less
Edwards, G E; Black, C C
1971-01-01
A technique is described for the separation of mesophyll and bundle sheath cells from Digitaria sanguinalis leaves and evidence for separation is given with light and scanning electron micrographs. Gentle grinding of fully differentiated leaves in a mortar releases mesophyll cells which are isolated on nylon nets by filtration. More extensive grinding of the remaining tissue yields bundle sheath strands which are isolated by filtration with stainless steel sieves and nylon nets. Further grinding of bundle sheath strands in a tissue homogenizer releases bundle sheath cells which are collected on nylon nets. Percentage of purity derived from cell counts and yield data on a chlorophyll basis are given.The internal leaf cell morphology is presented in scanning electron micrographs and compared with light micrographs of fully-differentiated D. sanguinalis leaves. In leaves of plants which possess the C(4)-dicarboxylic acid cycle of photosynthesis, the relationship of leaf morphology to photosynthesis in mesophyll and bundle sheath cells is considered, and the hypothesis is presented that as atmospheric CO(2) enters a leaf about 85% is fixed by the C(4)-dicarboxylic acid cycle in the mesophyll cells and 10 to 15% is fixed by the reductive pentose phosphate cycle in the bundle sheath cells.A technique also is given for the isolation of mesophyll cells from spinach leaves.
A prodrug approach to enhance azelaic acid percutaneous availability.
Al-Marabeh, Sara; Khalil, Enam; Khanfar, Mohammad; Al-Bakri, Amal G; Alzweiri, Muhammed
2017-06-01
Azelaic acid is a dicarboxylic acid compound used in treatment of acne vulgaris. However, high concentration (ca 20%) is needed to guarantee the drug availability in the skin. The latter increases the incidence of side effects such as local irritation. The prodrug strategy to enhance azelaic acid diffusion through skin was not reported before. Thus, a lipophilic prodrug of azelaic acid (diethyl azelate [DEA]) was synthesized and investigated to improve percutaneous availability of azelaic acid, with a subsequent full physical, chemical, and biological characterization. Expectedly, DEA exhibited a significant increase in diffusion compared to azelaic acid through silicone membrane. In contrast, the diffusion results through human stratum corneum (SC) displayed weaker permeation for DEA with expected retention in the SC. Therefore, a desorption study of DEA from SC was conducted to examine the reservoir behavior in SC. Results showed an evidence of sustained release behavior of DEA from SC. Consequently, enhancement of keratolytic effect is expected due to azelaic acid produced from enzymatic conversion of DEA released from SC.
Aqueous infrared carboxylate absorbances: Aliphatic di-acids
Cabaniss, S.E.; Leenheer, J.A.; McVey, I.F.
1998-01-01
Aqueous attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectra of 18 aliphatic di-carboxylic acids are reported as a function of pH. The spectra show isosbestic points and intensity changes which indicate that Beer's law is obeyed, and peak frequencies lie within previously reported ranges for aqueous carboxylates and pure carboxylic acids. Intensity sharing from the symmetric carboxylate stretch is evident in many cases, so that bands which are nominally due to alkyl groups show increased intensity at higher pH. The asymmetric stretch of the HA- species is linearly related to the microscopic acidity constant of the H2A species, with ??pK 2 intervening atoms). The results suggest that aqueous ATR-FTIR may be able to estimate 'intrinsic' pKa values of carboxylic acids, in addition to providing quantitative estimates of ionization. ?? 1998 Elsevier Science B.V. All rights reserved.
Matsukawa, M; Mukai, T; Akizawa, T; Miyatake, S; Yoshioka, M; Morris, J F; Butler, V P
1998-12-01
We have previously described the structures of four novel unconjugated bufadienolides in the ovary of the toad, Bufo marinus. In this study, we report the separation and characterization of three novel bufadienolide conjugates. These compounds were purified by HPLC, and their structures were determined to be 11alpha, 19-dihydroxytelocinobufagin-3-(12-hydroxydodecanoic acid) ester, 11alpha,19-dihydroxytelocinobufagin-3-(14-hydroxy-7-tetra decenoic acid) ester, and 11alpha, 19-dihydroxytelocinobufagin-3-(14-hydroxytetradecanoic acid) ester on the basis of NMR and MS data. Numerous dicarboxylic acid esters of bufadienolides have previously been described, but the three bufadienolide conjugates described in this report differ from previously described esters in that they contain hydroxylated monocarboxylic acids. The function of these three conjugates is not known but they are, like bufotoxins, potent inhibitors of Na+, K+-ATPase and may play a developmental role in the differentiation of toad oocytes.