Science.gov

Sample records for pyridone thioxopyridine pyrazolopyridine

  1. Synthesis and antimalarial potential of some novel quinoline-pyrazolopyridine derivatives

    PubMed Central

    Saini, Deepika; Jain, Sandeep; Kumar, Ajay; Jain, Neelam

    2016-01-01

    A series of 1-(4-methylquinolin-2-yl)-4,6-diaryl-1H-pyrazolo[3,4-b]pyridin-3-amine derivatives was synthesized by the reaction of 3-cinnamoyl-4-hydroxy-6-methyl-2H-pyran-2-ones with 2-chloro-4,6-diphenylnicotinonitrile analogues in the presence of 2-hydrazino-4-methyl quinoline and ethanol. The newly synthesized compounds were characterized by IR, 1H NMR and mass spectral data. The synthetic series of novel quinoline-pyrazolopyridine hybrids were screened for in vitro schizont maturation assay against chloroquine sensitive 3D7 strain of Plasmodium falciparum, from which the most five active analogues were further evaluated for in vivo 4-day suppressive test in Swiss albino mice. Among the series, 5p (containing 4-Cl substituent attached to both aryl ring) portrayed considerable potent antimalarial activity during in vitro as well as in vivo study. PMID:28337104

  2. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of type 2 diabetes mellitus.

    PubMed

    Pfefferkorn, Jeffrey A; Tu, Meihua; Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Aspnes, Gary E; Sammons, Matthew F; Song, Wei; Li, Jian-Cheng; Jones, Christopher S; Patel, Leena; Rasmusson, Tim; Zeng, Dongxiang; Karki, Kapil; Hamilton, Michael; Hank, Richard; Atkinson, Karen; Litchfield, John; Aiello, Robert; Baker, Levenia; Barucci, Nicole; Bourassa, Patricia; Bourbonais, Francis; Bourbounais, Francis; D'Aquila, Theresa; Derksen, David R; MacDougall, Margit; Robertson, Alan

    2012-12-01

    Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.

  3. The regioselective iodination of quinolines, quinolones, pyridones, pyridines and uracil.

    PubMed

    Dutta, Uttam; Deb, Arghya; Lupton, David W; Maiti, Debabrata

    2015-12-28

    A radical based direct C-H iodination protocol for quinolines, quinolones, pyridones, pyridines, and uracil has been developed. The iodination occurs in a C3 selective manner for quinolines and quinolones. Pyridones and pyridines undergo C3 and C5 iodination, while dimethyl uracil undergoes C5 iodination. Scope of the method was demonstrated through the rapid synthesis of both electron rich as well as electron poor heteroaromatic iodides. The protocol was found to be scalable and general, while a mechanism has been proposed.

  4. Biaryl ethers as potent allosteric inhibitors of reverse transcriptase and its key mutant viruses: aryl substituted pyrazole as a surrogate for the pyrazolopyridine motif.

    PubMed

    Su, Dai-Shi; Lim, John J; Tinney, Elizabeth; Tucker, Thomas J; Saggar, Sandeep; Sisko, John T; Wan, Bang-Lin; Young, Mary Beth; Anderson, Kenneth D; Rudd, Deanne; Munshi, Vandna; Bahnck, Carolyn; Felock, Peter J; Lu, Meiquing; Lai, Ming-Tain; Touch, Sinoeun; Moyer, Gregory; Distefano, Daniel J; Flynn, Jessica A; Liang, Yuexia; Sanchez, Rosa; Perlow-Poehnelt, Rebecca; Miller, Mike; Vacca, Joe P; Williams, Theresa M; Anthony, Neville J

    2010-08-01

    Biaryl ethers were recently reported as potent NNRTIs. Herein, we disclose a detailed effort to modify the previously reported compound 1. We have designed and synthesized a series of novel pyrazole derivatives as a surrogate for pyrazolopyridine motif that were potent inhibitors of HIV-1 RT with nanomolar intrinsic activity on the WT and key mutant enzymes and potent antiviral activity in infected cells.

  5. Synthesis of new heterocyclic compounds based on pyrazolopyridine scaffold and evaluation of their neuroprotective potential in MPP(+)-induced neurodegeneration.

    PubMed

    Jouha, Jabrane; Loubidi, Mohammed; Bouali, Jamila; Hamri, Salha; Hafid, Abderrafia; Suzenet, Franck; Guillaumet, Gérald; Dagcı, Taner; Khouili, Mostafa; Aydın, Fadime; Saso, Luciano; Armagan, Güliz

    2017-03-31

    Neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, and Huntington's disease affect millions of people in the world. Thus several new approaches to treat brain disorders are under development. The aim of the present study is to synthesize potential neuroprotective heterocyclic compounds based on pyrazolopyridine derivatives and then to evaluate their effects in MPP(+)-induced neurodegeneration in human neuroblastoma cell line (SH-SY5Y cells). The effects of the compounds on cell viability were measured by MTT assay and the changes in apoptosis-related proteins including bax, Bcl-2, Bcl-xl and caspase-3 were investigated by western blot technique. Based on the cell viability results obtained by MTT assay, the percentage of neuroprotection-induced by compounds against MPP(+)-induced neurotoxicity in SH-SY5Y cells was between 20% and 30% at 5 μM concentrations of all synthesized compounds. Moreover, the downregulation in pro-apoptotic proteins including bax and caspase-3 were found following the novel synthesized compounds treatments and these effects were observed in a dose-dependent manner. Our results provide an evidence that these heterocyclic compounds based on pyrazolopyridine derivatives may have a role on dopaminergic neuroprotection via antiapoptotic pathways.

  6. Gold(I)-Catalyzed Intramolecular Hydroamination of Unactivated Terminal and Internal Alkenes with 2-Pyridones.

    PubMed

    Timmerman, Jacob C; Laulhé, Sébastien; Widenhoefer, Ross A

    2017-03-17

    The cationic gold phosphine complex [(P1)Au(NCMe)](+)SbF6(-) [P1 = P(t-Bu)2o-biphenyl; 2] catalyzes the intramolecular hydroamination of 6-alkenyl-2-pyridones to form 1,6-carboannulated 2-pyridones in high yield. The hydroamination of 6-(γ-alkenyl)-2-pyridones was effective for monosubstituted and 1,1- and 1,2-disubstituted aliphatic alkenes, and the method was likewise effective for the hydroamination of 6-(δ-alkenyl)-2-pyridones. Spectroscopic analysis of mixtures of 6-(3-butenyl)-2-pyridone, (P1)AuCl, and AgSbF6 established the N-bound 2-hydroxypyridine complex [(P1)Au(NC6H3-2-OH-6-CH2CH2CH═CH2)](+) SbF6(-) as the catalyst resting state.

  7. Synthesis and luminescent properties and theoretical investigation on electronic structure of nitrile-based 2-pyridone molecules

    NASA Astrophysics Data System (ADS)

    Chen, Liuqing; Liu, Xuguang; Xu, Bingshe; Sun, Chunyan; Tao, Peng

    2011-09-01

    3-Cyano-4,6-dimethyl-2-pyridone and 3-cyano-4-methyl-6-phenyl-2-pyridone were synthesized effectively by the reaction of readily available 1,3-diketone and malononitrile directly and in good yield. Upon photoexcitation, 3-cyano-4-methyl-6-phenyl-2-pyridone in ethanol shows strong blue emission. The ground- and excited-state geometries, charge distributions, and excitation energies of 2-pyridone derivatives were evaluated by ab initio calculations. Organic light-emitting diodes (OLED) made using 3-cyano-4-methyl-6-phenyl-2-pyridone as dopant showed blue light emission with a maximum electroluminescence (EL) emission at around 456 nm.

  8. Synthesis of multi ring-fused 2-pyridones via an acyl-ketene imine cyclocondensation.

    PubMed

    Pemberton, Nils; Jakobsson, Lotta; Almqvist, Fredrik

    2006-03-02

    Polycyclic ring-fused 2-pyridones (5a-e and 9a-e) have been prepared via a microwave-assisted acyl-ketene imine cyclocondensation. Starting from 3,4-dihydroisoquinolines (4a-b) or 3,4-dihydroharman (8), fused 2-pyridones could be prepared in a one-step procedure. By using either Meldrum's acid derivatives (1a-d) or 1,3-dioxine-4-ones (7a-b) as acyl-ketene sources, mono- or disubstitution of the fused 2-pyridone ring could be accomplished. As an application of the method, a formal synthesis of the indole alkaloid sempervilam was performed.

  9. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  10. Saccharide recognition-induced transformation of pyridine-pyridone alternate oligomers from self-dimer to helical complex.

    PubMed

    Abe, Hajime; Machiguchi, Hiroshi; Matsumoto, Shinya; Inouye, Masahiko

    2008-06-20

    Co-oligomers involving (1H)-4-pyridone and 4-alkoxypyridine rings were studied, and it was found that their supramolecular transformation was caused by saccharide recognition. In the co-oligomers, pyridone and pyridine rings are alternately linked at their 2,6-position with an acetylene bond. The pyridine rings behave as a hydrogen bonding acceptor, and the pyridone rings and tautomerized 4-pyridinol work as a donor. Pyridine-pyridone-pyridine 3-mer was found to self-dimerize on the basis of vapor pressure osmometry in CHCl(3), and the association constant was obtained as 2.3 x 10(3) M(-1) by (1)H NMR titration. Longer 5-, 7-, 9-, and 11-mer oligomers showed considerable broadening and anisotropy in the (1)H NMR spectra due to self-association. These longer oligomers recognized octyl beta-D-glucopyranoside and changed their form into a chiral helical complex, showing characteristic circular dichroism.

  11. Discovery of Aryl Aminoquinazoline Pyridones as Potent, Selective, and Orally Efficacious Inhibitors of Receptor Tyrosine Kinase c-Kit

    SciTech Connect

    Hu, Essa; Tasker, Andrew; White, Ryan D.; Kunz, Roxanne K.; Human, Jason; Chen, Ning; Bürli, Roland; Hungate, Randall; Novak, Perry; Itano, Andrea; Zhang, Xuxia; Yu, Violeta; Nguyen, Yen; Tudor, Yanyan; Plant, Matthew; Flynn, Shaun; Xu, Yang; Meagher, Kristin L.; Whittington, Douglas A.; Ng, Gordon Y.

    2008-12-09

    Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.

  12. Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana.

    PubMed

    Andrioli, W J; Lopes, A A; Cavalcanti, B C; Pessoa, C; Nanayakkara, N P D; Bastos, J K

    2016-12-29

    Two novel compounds bearing heterocyclic nitrogen, 2-pyridone alkaloid (1) and alloxazine derivative (2), along with the known pretenellin B (3), pyridovericin (4) and lumichrome (5) were isolated from a culture of the entomopathogenic fungal strain Beauveria bassiana. The chemical structures of 2-pyridone alkaloid and alloxazine derivative were established on the basis of the interpretation of spectroscopic data. The isolated compounds were evaluated in a panel of five cancer cell lines and pyridovericin exhibited cytotoxicity (IC50, μM) against cancer cell lines: HL-60 (25.9 ± 0.3), HCT8 (34.6 ± 3.6), MDA-MB435 (34.8 ± 3.8) and SF295 (31.1 ± 0.6). Considering that other pyridone compounds display good cytotoxic activity, it would be suggested to obtain new semi synthetic derivatives of pyridovericin, for the development of new cytotoxic chemical entities.

  13. Protonation effect on the electronic properties of 2-pyridone monomer, dimer and its water clusters: A theoretical study

    SciTech Connect

    Saed, Behnaz; Omidyan, Reza E-mail: reza.omidyan@u-psud.fr

    2014-01-14

    The CC2 (second order approximate coupled cluster method) has been applied to investigate protonation effect on electronic transition energies of 2-pyridone (2PY), 2-pyridone dimer, and micro-solvated 2-pyridone (0-2 water molecules). The PE profiles of protonated 2-pyridone (2PYH{sup +}) as well as monohydrated 2PYH{sup +} at the different electronic states have been investigated. The {sup 1}πσ* state in protonated species (2PYH{sup +}) is a barrier free and dissociative state along the O-H stretching coordinate. In this reaction coordinate, the lowest lying {sup 1}πσ* predissociates the bound S{sub 1}({sup 1}ππ*) state, connecting the latter to a conical intersection with the S{sub 0} state. These conical intersections lead the {sup 1}ππ* state to proceed as predissociative state and finally direct the excited system to the ground state. Furthermore, in presence of water molecule, the {sup 1}πσ* state still remains dissociative but the conical intersection between {sup 1}πσ* and ground state disappears. In addition, according to the CC2 calculation results, it has been predicted that protonation significantly blue shifts the S{sub 1}-S{sub 0} electronic transition of monomer, dimer, and microhydrated 2-pyridone.

  14. Enantioselective synthesis of planar-chiral ferrocene-fused 4-pyridones and their application in construction of pyridine-based organocatalyst library.

    PubMed

    Ogasawara, Masamichi; Wada, Shiro; Isshiki, Erika; Kamimura, Takumi; Yanagisawa, Akira; Takahashi, Tamotsu; Yoshida, Kazuhiro

    2015-05-01

    A couple of planar-chiral ferrocene-fused 4-pyridone derivatives 2a and 2b were synthesized in enantiomerically pure form by scalable asymmetric transformations. Pyridones 2 are versatile precursors to various ferrocene-fused pyridine derivatives, which are useful nucleophilic asymmetric organocatalysts.

  15. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  16. Two new antibiotic pyridones produced by a marine fungus, Trichoderma sp. strain MF106.

    PubMed

    Wu, Bin; Oesker, Vanessa; Wiese, Jutta; Schmaljohann, Rolf; Imhoff, Johannes F

    2014-03-06

    Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC₅₀ values of 24 μM and 4 μM, respectively.

  17. Two New Antibiotic Pyridones Produced by a Marine Fungus, Trichoderma sp. Strain MF106

    PubMed Central

    Wu, Bin; Oesker, Vanessa; Wiese, Jutta; Schmaljohann, Rolf; Imhoff, Johannes F.

    2014-01-01

    Two unusual pyridones, trichodin A (1) and trichodin B (2), together with the known compound, pyridoxatin (3), were extracted from mycelia and culture broth of the marine fungus, Trichoderma sp. strain MF106 isolated from the Greenland Seas. The structures of the new compounds were characterized as an intramolecular cyclization of a pyridine basic backbone with a phenyl group. The structure and relative configuration of the new compounds were established by spectroscopic means. The new compound 1 and the known compound 3 showed antibiotic activities against the clinically relevant microorganism, Staphylococcus epidermidis, with IC50 values of 24 μM and 4 μM, respectively. PMID:24663111

  18. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

    PubMed Central

    Capper, Michael J.; O’Neill, Paul M.; Fisher, Nicholas; Strange, Richard W.; Moss, Darren; Ward, Stephen A.; Berry, Neil G.; Lawrenson, Alexandre S.; Hasnain, S. Samar; Biagini, Giancarlo A.; Antonyuk, Svetlana V.

    2015-01-01

    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles. PMID:25564664

  19. Pyridones as NNRTIs against HIV-1 mutants: 3D-QSAR and protein informatics

    NASA Astrophysics Data System (ADS)

    Debnath, Utsab; Verma, Saroj; Jain, Surabhi; Katti, Setu B.; Prabhakar, Yenamandra S.

    2013-07-01

    CoMFA and CoMSIA based 3D-QSAR of HIV-1 RT wild and mutant (K103, Y181C, and Y188L) inhibitory activities of 4-benzyl/benzoyl pyridin-2-ones followed by protein informatics of corresponding non-nucleoside inhibitors' binding pockets from pdbs 2BAN, 3MED, 1JKH, and 2YNF were analysed to discover consensus features of the compounds for broad-spectrum activity. The CoMFA/CoMSIA models indicated that compounds with groups which lend steric-cum-electropositive fields in the vicinity of C5, hydrophobic field in the vicinity of C3 of pyridone region and steric field in aryl region produce broad-spectrum anti-HIV-1 RT activity. Also, a linker rendering electronegative field between pyridone and aryl moieties is common requirement for the activities. The protein informatics showed considerable alteration in residues 181 and 188 characteristics on mutation. Also, mutants' isoelectric points shifted in acidic direction. The study offered fresh avenues for broad-spectrum anti-HIV-1 agents through designing new molecules seeded with groups satisfying common molecular fields and concerns of mutating residues.

  20. Pyridone Annulation via Tandem Curtius Rearrangement/6π-Electrocyclization: Total Synthesis of (−)-Lyconadin C

    PubMed Central

    Cheng, Xiayun

    2013-01-01

    A concise, enantioselective total synthesis of the Lycopodium alkaloid (−)-lyconadin C was achieved in 12 steps and high overall yield. Key features include construction of a luciduline congener through Mannich-type cyclization and a one-pot, tandem Curtius rearrangement/6π-electrocyclization to fashion the 2-pyridone system of lyconadin C. PMID:23909645

  1. Design and synthesis of 2-pyridones as novel inhibitors of the Bacillus anthracis enoyl-ACP reductase.

    PubMed

    Tipparaju, Suresh K; Joyasawal, Sipak; Forrester, Sara; Mulhearn, Debbie C; Pegan, Scott; Johnson, Michael E; Mesecar, Andrew D; Kozikowski, Alan P

    2008-06-15

    Enoyl-ACP reductase (ENR), the product of the FabI gene, from Bacillus anthracis (BaENR) is responsible for catalyzing the final step of bacterial fatty acid biosynthesis. A number of novel 2-pyridone derivatives were synthesized and shown to be potent inhibitors of BaENR.

  2. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media.

    PubMed

    Mehrparvar, Saber; Balalaie, Saeed; Rabbanizadeh, Mahnaz; Ghabraie, Elmira; Rominger, Frank

    2014-08-01

    Novel analogs of 2-pyridone-3-carboxylic acids 4a-l have been prepared by the three-component reaction of 3-formyl chromone, Meldrum's acid, and primary amines in the presence of a catalytic amount of diammonium hydrogen phosphate in water. Good-to-high yields, easy work-up, and an environmentally friendly profile are the advantages of this method for the synthesis of 2-pyridone-3-carboxylic acid derivatives.

  3. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-02

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee.

  4. Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the entomopathogenic fungus Beauveria bassiana.

    PubMed

    Halo, Laura M; Heneghan, Mary N; Yakasai, Ahmed A; Song, Zhongshu; Williams, Katherine; Bailey, Andrew M; Cox, Russell J; Lazarus, Colin M; Simpson, Thomas J

    2008-12-31

    Late stage oxidations during the biosynthesis of the 2-pyridone tenellin in the insect pathogenic fungus Beauveria bassiana were investigated by a combination of gene knockout, antisense RNA, and gene coexpression studies. Open reading frames (ORF) 3 and 4 of the tenellin biosynthetic gene cluster were previously shown to encode a trans-acting enoyl reductase and a hybrid polyketide synthase nonribosomal peptide synthetase (PKS-NRPS), respectively, which together synthesize the acyltetramic acid pretenellin-A. In this work, we have shown that ORF1 encodes a cytochrome P450 oxidase, which catalyzes an unprecedented oxidative ring expansion of pretenellin-A to form the 2-pyridone core of tenellin and related metabolites, and that this enzyme does not catalyze the formation of a hydroxylated precursor. Similar genes appear to be associated with PKS-NRPS genes in other fungi. ORF2 encodes an unusual cytochrome P450 monooxygenase required for the selective N-hydroxylation of the 2-pyridone which is incapable of N-hydroxylation of acyltetramic acids.

  5. Biomolecule Analogues 2-Hydroxypyridine and 2-Pyridone Base Pairing on Ice Nanoparticles.

    PubMed

    Rubovič, Peter; Pysanenko, Andriy; Lengyel, Jozef; Nachtigallová, Dana; Fárník, Michal

    2016-07-14

    Ice nanoparticles (H2O)N, N ≈ 450 generated in a molecular beam experiment pick up individual gas phase molecules of 2-hydroxypyridine and 2-pyridone (HP) evaporated in a pickup cell at temperatures between 298 and 343 K. The mass spectra of the doped nanoparticles show evidence for generation of clusters of adsorbed molecules (HP)n up to n = 8. The clusters are ionized either by 70 eV electrons or by two photons at 315 nm (3.94 eV). The two ionization methods yield different spectra, and their comparison provides an insight into the neutral cluster composition, ionization and intracluster ion-molecule reactions, and cluster fragmentation. Quite a few molecules were reported not to coagulate on ice nanoparticles previously. The (HP)n cluster generation on ice nanoparticles represents the first evidence for coagulating of molecules and cluster formation on free ice nanoparticles. For comparison, we investigate the coagulation of HP molecules picked up on large clusters ArN, N ≈ 205, and also (HP)n clusters generated in supersonic expansions with Ar buffer gas. This comparison points to a propensity for the (HP)2 dimer generation on ice nanoparticles. This shows the feasibility of base pairing for model of biological molecules on free ice nanoparticles. This result is important for hypotheses of the biomolecule synthesis on ice grains in the space. We support our findings by theoretical calculations that show, among others, the HP dimer structures on water clusters.

  6. Discovery of novel 5-hydroxy-4-pyridone-3-carboxy acids as potent inhibitors of influenza Cap-dependent endonuclease.

    PubMed

    Miyagawa, Masayoshi; Akiyama, Toshiyuki; Mikamiyama-Iwata, Minako; Hattori, Kazunari; Kurihara, Naoko; Taoda, Yoshiyuki; Takahashi-Kageyama, Chika; Kurose, Noriyuki; Mikamiyama, Hidenori; Suzuki, Naoyuki; Takaya, Kenji; Tomita, Kenji; Matsuo, Kenji; Morimoto, Kenji; Yoshida, Ryu; Shishido, Takao; Yoshinaga, Tomokazu; Sato, Akihiko; Kawai, Makoto

    2016-10-01

    We report the discovery of a novel series of influenza Cap-dependent EndoNuclease (CEN) inhibitors based on the 4-pyridone-carboxylic acid (PYXA) scaffold, which were found from our chelate library. Our SAR research revealed the lipophilic domain to be the key to CEN inhibition. In particular, the position between the chelate and the lipophilic domain in the derivatives was essential for enhancing the potency. Our study, based on virtual modeling, led to the identification of 2y as a potent CEN inhibitor with an IC50 of 5.12nM.

  7. Infrared assisted production of 3,4-dihydro-2(1H)-pyridones in solvent-free conditions.

    PubMed

    Noguez, M Olivia; Marcelino, Vanessa; Rodríguez, Hortensia; Martín, Osnieski; Martínez, Joel O; Arroyo, Gabriel A; Pérez, Francisco J; Suárez, Margarita; Miranda, René

    2011-01-01

    A green approach for the synthesis of a set of ten 4-aryl substituted-5-alcoxy carbonyl-6-methyl-3,4-dihydro-2(1H)-pyridones using Meldrum's acid has been devised, the absence of solvent and the activation with infrared irradiation in addition to a multicomponent protocol are the main reaction conditions. The transformations proceeded with moderated yields (50-75%) with a reasonable reaction rate (3 h). It is worth noting that two novel molecules of the new class of the bis-3,4-dihydropyridones were also obtained. In addition, a comparison without the use of infrared irradiation was performed.

  8. In vitro and cellular effects of 4-pyridone-3-carboxamide riboside on enzymes of nucleotide metabolism.

    PubMed

    Slominska, Ewa M; Borkowski, Tomasz; Rybakowska, Iwona; Abramowicz-Glinka, Magdalena; Orlewska, Czesława; Smolenski, Ryszard T

    2014-01-01

    4-Pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR) is an endogenously produced nucleoside that has recently been identified as a substrate for intracellular phosphorylation to form nucleotide derivatives. Low level of 4PYR is normally present in human plasma, but 4PYR massively accumulates in patients with renal failure. This study aimed to evaluate effects of 4PYR and its monophosphate derivative (4PYMP) on several enzymes of nucleotide metabolism in homogenates and intact cells. Activities of adenosine monophosphate deaminase (AMPD), adenosine deaminase, ecto-5'-nucleotidase (e5NT), adenine phosphoribosyltransferase (APRT), hypoxanthine/guanine phosphoribosyltransferase, purine nucleoside phosphorylase, and S-adenosylhomocysteine hydrolase (SAHH) were evaluated in erythrocyte lysates, rat heart homogenates, and in the intact rat cardiomyocytes by high performance liquid chromatography-based assays. 4PYMP caused significant inhibition of AMPD in both erythrocyte lysate and heart homogenate with 50% inhibitory concentration (IC50) of 74 and 55 μM, respectively. Inhibition of e5NT in heart homogenates was also noted with IC50 of 63 μM. 4PYMP slightly inhibited APRT and 4PYR caused moderate activation of SAHH. No effects on other enzymes studied were noted. Inhibition of AMPD by 4PYMP in homogenates was confirmed in the intact cell experiments with isolated cardiomyocytes that were allowed to accumulate 4PYMP by incubation with 4PYR. We conclude that among pathways studied, most important is the effect of 4PYMP on AMPD and that such effect could be one of the consequences of elevated plasma 4PYR concentration.

  9. The Thermodynamic and Kinetic Properties of 2-Hydroxypyridine/2-Pyridone Tautomerization: A Theoretical and Computational Revisit

    PubMed Central

    Hejazi, Safiyah A.; Osman, Osman I.; Alyoubi, Abdulrahman O.; Aziz, Saadullah G.; Hilal, Rifaat H.

    2016-01-01

    The gas-phase thermal tautomerization reaction between 2-hydroxypyridine (2-HPY) and 2-pyridone (2-PY) was investigated by applying 6-311++G** and aug-cc-pvdz basis sets incorporated into some density functional theory (DFT) and coupled cluster with singles and doubles (CCSD) methods. The geometrical structures, dipole moments, HOMO-LUMO energy gaps, total hyperpolarizability, kinetics and thermodynamics functions were monitored against the effects of the corrections imposed on these functionals. The small experimental energy difference between the two tautomers of 3.23 kJ/mol; was a real test of the accuracy of the applied levels of theory. M062X and CCSD methods predicted the preference of 2-HPY over 2-PY by 5–9 kJ/mol; while B3LYP functional favoured 2-PY by 1–3 kJ/mol. The CAM-B3LYP and ωB97XD functionals yielded mixed results depending on the basis set used. The source of preference of 2-HPY is the minimal steric hindrance and electrostatic repulsion that subdued the huge hyperconjugation in 2-PY. A 1,3-proton shift intramolecular gas-phase tautomerization yielded a high average activation of 137.152 kJ/mol; while the intermolecular mixed dimer interconversion gave an average barrier height of 30.844 kJ/mol. These findings are boosted by a natural bond orbital (NBO) technique. The low total hyperpolarizabilities of both tautomers mark out their poor nonlinear optical (NLO) behaviour. The enhancement of the total hyperpolarizability of 2-HPY over that of 2-PY is interpreted by the bond length alternation. PMID:27854244

  10. Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    PubMed Central

    2014-01-01

    Background The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behaviour especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined the toxicity and larvicidal activity on this vector of extracts from six selected plants found in Kenya and two compounds identified from Ricinus communis: 3-carbonitrile-4-methoxy-N-methyl-2-pyridone (ricinine), and its carboxylic acid derivative 3-carboxy-4-methoxy-N-methyl-2-pyridone, the latter compound being reported for the first time from this plant. Methods Feeding assays tested for toxic effects of extracts from the plants Artemisia afra Jacq. ex Willd, Bidens pilosa L., Parthenium hysterophorus L., Ricinus coummunis L., Senna didymobotrya Fresen. and Tithonia diversifolia Hemsl. on adult females and larvicidal activity was tested against third-instar larvae of Anopheles gambiae s.s. Mortality of larvae and adult females was monitored for three and eight days, respectively; Probit analysis was used to calculate LC50. Survival was analysed with Kaplan-Meier Model. LC-MS was used to identify the pure compounds. Results Of the six plants screened, extracts from T. diversifolia and R. communis were the most toxic against adult female mosquitoes after 7 days of feeding, with LC50 of 1.52 and 2.56 mg/mL respectively. Larvicidal activity of all the extracts increased with the exposure time with the highest mortality recorded for the extract from R. communis after 72 h of exposure (LC50 0.18 mg/mL). Mosquitoes fed on solutions of the pure compounds, 3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine survived almost as long as those fed on the R. communis extract with mean survival of 4.93 ± 0.07, 4.85 ± 0.07 and 4.50 ± 0.05 days respectively. Conclusions Overall, these findings demonstrate that extracts from the six plant species exhibit

  11. Theoretical analysis of the S{sub 2}←S{sub 0} vibronic spectrum of the 2-pyridone dimer

    SciTech Connect

    Kopec, Sabine; Köppel, Horst

    2016-01-14

    The interplay between excitonic and vibronic coupling in hydrogen-bonded molecular dimers leads to complex spectral structures and other intriguing phenomena such as a quenching of the excitonic energy splitting. We recently extended our analysis from that of the quenching mechanism to the theoretical investigation of the complete vibronic spectrum for the ortho-cyanophenol dimer. We now apply the same approach to the vibronic spectrum of the 2-pyridone dimer and discuss the assignment of vibronic lines to gain insight into the underlying coupling mechanism. This is based on potential energy surfaces obtained at the RI-CC2/aug-cc-pVTZ level. They are used for the dynamical analysis in the framework of a multi-mode vibronic coupling approach. The theoretical results based on the quadratic vibronic coupling model are found to be in good agreement with the experimental resonant two-photon ionization spectrum.

  12. Theoretical analysis of the S2←S0 vibronic spectrum of the 2-pyridone dimer.

    PubMed

    Kopec, Sabine; Köppel, Horst

    2016-01-14

    The interplay between excitonic and vibronic coupling in hydrogen-bonded molecular dimers leads to complex spectral structures and other intriguing phenomena such as a quenching of the excitonic energy splitting. We recently extended our analysis from that of the quenching mechanism to the theoretical investigation of the complete vibronic spectrum for the ortho-cyanophenol dimer. We now apply the same approach to the vibronic spectrum of the 2-pyridone dimer and discuss the assignment of vibronic lines to gain insight into the underlying coupling mechanism. This is based on potential energy surfaces obtained at the RI-CC2/aug-cc-pVTZ level. They are used for the dynamical analysis in the framework of a multi-mode vibronic coupling approach. The theoretical results based on the quadratic vibronic coupling model are found to be in good agreement with the experimental resonant two-photon ionization spectrum.

  13. 2(1H)-pyridinone (2-pyridone): self-association and association with water. Spectral and structural characteristics: infrared study and ab initio calculations.

    PubMed

    Boisdon, M T; Castillo, S; Brazier, J F; Favrot, J; Marsden, C J

    2003-12-01

    DFT calculations of 2(1H)-pyridinone (2-pyridone NHP), the centrosymmetric dimer (NHP)2 and the closed complexes (NHP, H2O) and (NHP, 2H2O), with their deuterated homologues NDP, (NDP)2, (NDP, D2O) and (NDP, 2D2O), are compared with vibrational spectra of NHP and NDP in ternary mixtures CH3CN, NHP, H2O. Experimental data are also obtained for NHP or NDP in various solvents. The protic solvent effects demonstrate that mechanical couplings are different in the 1500-1700 cm(-1) range for the nuC=O and nu8b (valence of the ring) modes in NHP and NDP (or (NHP, H2O) and (NDP, D2O)). For the first time, data are obtained for NDP in the dimer (NHP, NDP). Comparison of data for pyridone, monomer, dimer or complexed with water, shows that in the complexes, water is a weaker proton acceptor and a stronger proton donor than a second pyridone molecule in the centrosymmetric dimer.

  14. Influence of process parameters on the photodegradation of synthesized azo pyridone dye in TiO2 water suspension under simulated sunlight.

    PubMed

    Dostanić, Jasmina M; Loncarević, Davor R; Banković, Predrag T; Cvetković, Olga G; Jovanović, Dusan M; Mijin, Dusan Z

    2011-01-01

    Photocatalytic degradation of synthesized azo pyridone dye (5-(4-sulpho phenylazo)-6-hydroxy-4-methyl-3-cyano-2-pyridone), in aqueous solutions by simulated sunlight in the presence of commercial TiO(2), Aeroxide P25, was studied. The reaction kinetics analysis showed that photodegradation exhibits pseudo first-order kinetics according to Langmuir-Hinshelwood model. The effects of various process parameters on the photocatalytic degradation were investigated. The optimal catalyst content and pH were determined. A decrease in the reaction rate was observed upon the increase of the initial dye concentration. Degradation of the dye was enhanced by hydrogen peroxide, but it was inhibited by ethanol. The influence of temperature was studied, and the energy of activation was determined. According to total organic carbon (TOC) analysis, 54% of TOC remained when 100% of the dye was decolorized. Although the intermediates were not determined in this study, the TOC results clearly indicate their presence during the reaction. In addition, photocatalytic degradation of simulated dyehouse effluents, containing tested azo pyridone dye and associated auxiliary chemicals was investigated.

  15. New nonsteroidal steroid 5 alpha-reductase inhibitors. Syntheses and structure-activity studies on carboxamide phenylalkyl-substituted pyridones and piperidones.

    PubMed

    Hartmann, R W; Reichert, M

    2000-05-01

    In the search for nonsteroidal inhibitors of 5 alpha-reductase for the treatment of benign prostatic hyperplasia (BPH), we synthesized diisopropyl (1a-8a) and tert-butyl (1b-8b) benzamides, as well as ethyl benzoates (1c, 3c), which were substituted in 4 position via variable alkyl spacer (n = 0: 1-4, n = 1: 5, 7 and n = 3: 6, 8) with a 1-methyl-2-pyridone (1, 2, 5, 6) or a 1-methyl-2-piperidone (3, 4, 7, 8) moiety mimicking steroidal ring A. The directly connected benzamides (1a-4a, 1b-4b) and benzoates (1c, 3c) were obtained by palladium-catalysed coupling reaction of diethyl(3-pyridyl)-borane with 4-bromobenzoic acid derivatives, followed by alpha-oxidation of the 1-methyl-pyridinium salt and subsequent separation of the regioisomers. Catalytic hydrogenation of the pyridones (1, 2) led to the piperidones (3, 4). The preparation of the benzamides with a methylene (5, 7) and a propylene spacer (6, 8), respectively, started with the reduction of the keto group of 5-benzoyl-1,2-dihydro-1-methyl-2(1H)-pyridone and catalytic hydrogenation of the alkene obtained by Wittig reaction of 5-formyl-1,2-dihydro-1-methyl-2(1H)-pyridone with (2-phenylethyl)triphenylphosphonium bromide, respectively. The phenyl ring was functionalized by Friedel-Crafts reaction, haloform cleavage to give the acid, formation of the acid chloride, and subsequent treatment with the appropriate amines. Again, catalytic hydrogenation of the pyridones (5, 6) led to the piperidones (7, 8). The 5 alpha-reductase inhibitory properties were determined using rat ventral prostate, as well as human BPH tissue as enzyme source, 1 beta-2 beta-[3H]testosterone as substrate and a HPLC procedure for the separation of dihydrotestosterone (DHT). Tested at a concentration of 100 microM, the inhibition values of 1-8 ranged from 0-79%. Significant differences were observed between rat and human enzyme. The most active compound was ethyl 4-(1-methyl-2-oxopiperid-5-yl)benzoate 3c (68%) for the human enzyme and N,N-bis(1

  16. Synthesis and Antimicrobial Evaluation of Some Novel Thiazole, Pyridone, Pyrazole, Chromene, Hydrazone Derivatives Bearing a Biologically Active Sulfonamide Moiety

    PubMed Central

    Darwish, Elham S.; Abdel Fattah, Azza M.; Attaby, Fawzy A.; Al-Shayea, Oqba N.

    2014-01-01

    This study aimed for the synthesis of new heterocyclic compounds incorporating sulfamoyl moiety suitable for use as antimicrobial agents via a versatile, readily accessible N-[4-(aminosulfonyl)phenyl]-2-cyanoacetamide (3). The 2-pyridone derivatives were obtained via reaction of cyanoacetamide with acetylacetone or arylidenes malononitrile. Cycloaddition reaction of cyanoacetamide with salicyaldehyde furnished chromene derivatives. Diazotization of 3 with the desired diazonium chloride gave the hydrazone derivatives 13a–e. Also, the reactivity of the hydrazone towards hydrazine hydrate to give Pyrazole derivatives was studied. In addition, treatment of 3 with elemental sulfur and phenyl isothiocyanate or malononitrile furnished thiazole and thiophene derivatives respectively. Reaction of 3 with phenyl isothiocyanate and KOH in DMF afforded the intermediate salt 17 which reacted in situ with 3-(2-bromoacetyl)-2H-chromen-2-one and methyl iodide afforded the thiazole and ketene N,S-acetal derivatives respectively. Finally, reaction of 3 with carbon disulfide and 1,3-dibromopropane afforded the N-[4-(aminosulfonyl) phenyl]-2-cyano-2-(1,3-dithian-2-ylidene)acetamide product 22. All newly synthesized compounds were elucidated by considering the data of both elemental and spectral analysis. The compounds were evaluated for both their in vitro antibacterial and antifungal activities and showed promising results. PMID:24445259

  17. Infrared depletion spectra of 2-aminopyridineṡ2-pyridone, a Watson-Crick mimic of adenineṡuracil

    NASA Astrophysics Data System (ADS)

    Frey, Jann A.; Müller, Andreas; Frey, Hans-Martin; Leutwyler, Samuel

    2004-11-01

    The 2-aminopyridineṡ2-pyridone (2APṡ2PY) dimer is linked by N-H⋯O=C and N-H⋯N hydrogen bonds, providing a model for the Watson-Crick hydrogen bond configuration of the adenineṡthymine and adenineṡuracil nucleobase pairs. Mass-specific infrared spectra of 2APṡ2PY and its seven N-H deuterated isotopomers have been measured between 2550 and 3650 cm-1 by IR laser depletion combined with UV two-color resonant two-photon ionization. The 2PY amide N-H stretch is a very intense band spread over the range 2700-3000 cm-1 due to large anharmonic couplings. It is shifted to lower frequency by 710 cm-1 or ≈20% upon H bonding to 2AP. On the 2AP moiety, the "bound" amino N-H stretch gives rise to a sharp band at 3140 cm-1, which is downshifted by 354 cm-1 or ≈10% upon H bonding to 2PY. The amino group "free" N-H stretch and the H-N-H bend overtone are sharp bands at ≈3530 cm-1 and 3320 cm-1. Ab initio structures and harmonic vibrations were calculated at the Hartree-Fock level and with the PW91 and B3LYP density functionals. The PW91/6-311++G(d,p) method provides excellent predictions for the frequencies and IR intensities of all the isotopomers.

  18. Mitigation of reactive metabolite formation for a series of 3-amino-2-pyridone inhibitors of Bruton's tyrosine kinase (BTK).

    PubMed

    Lou, Yan; Lopez, Francisco; Jiang, Yongying; Han, Xiaochun; Brotherton, Chris; Billedeau, Roland; Gabriel, Steve; Gleason, Shelly; Goldstein, David M; Hilgenkamp, Ramona; Kocer, Buelent; Orzechowski, Lucja; Tan, Jenny; Wovkulich, Peter; Wen, Bo; Fry, David; Di Lello, Paola; Chen, Lucy; Zhang, Fang-Jie; Fretland, Jennifer; Nangia, Anjali; Yang, Tian; Owens, Timothy D

    2017-02-01

    Reactive metabolites have been putatively linked to many adverse drug reactions including idiosyncratic toxicities for a number of drugs with black box warnings or withdrawn from the market. Therefore, it is desirable to minimize the risk of reactive metabolite formation for lead molecules in optimization, in particular for non-life threatening chronic disease, to maximize benefit to risk ratio. This article describes our effort in addressing reactive metabolite issues for a series of 3-amino-2-pyridone inhibitors of BTK, e.g. compound 1 has a value of 459pmol/mg protein in the microsomal covalent binding assay. Parallel approaches were taken to successfully resolve the issues: establishment of a predictive screening assay with correlation association of covalent binding assay, identification of the origin of reactive metabolite formation using MS/MS analysis of HLM as well as isolation and characterization of GSH adducts. This ultimately led to the discovery of compound 7 (RN941) with significantly reduced covalent binding of 26pmol/mg protein.

  19. N-methyl-2-pyridone-5-carboxamide (2PY)—Major Metabolite of Nicotinamide: An Update on an Old Uremic Toxin

    PubMed Central

    Lenglet, Aurélie; Liabeuf, Sophie; Bodeau, Sandra; Louvet, Loïc; Mary, Aurélien; Boullier, Agnès; Lemaire-Hurtel, Anne Sophie; Jonet, Alexia; Sonnet, Pascal; Kamel, Said; Massy, Ziad A.

    2016-01-01

    N-methyl-2-pyridone-5-carboxamide (2PY, a major metabolite of nicotinamide, NAM) was recently identified as a uremic toxin. Recent interventional trials using NAM to treat high levels of phosphorus in end-stage renal disease have highlighted new potential uremic toxicities of 2PY. In the context of uremia, the accumulation of 2PY could be harmful—perhaps by inhibiting poly (ADP-ribose) polymerase-1 activity. Here, we review recently published data on 2PY’s metabolism and toxicological profile. PMID:27854278

  20. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-06

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures.

  1. 4(1H)-Pyridone and 4(1H)-Quinolone Derivatives as Antimalarials with Erythrocytic, Exoerythrocytic, and Transmission Blocking Activities

    PubMed Central

    Monastyrskyi, Andrii; Kyle, Dennis E.; Manetsch, Roman

    2015-01-01

    Infectious diseases are the second leading cause of deaths in the world with malaria being responsible for approximately the same amount of deaths as cancer in 2012. Despite the success in malaria prevention and control measures decreasing the disease mortality rate by 45% since 2000, the development of single-dose therapeutics with radical cure potential is required to completely eradicate this deadly condition. Targeting multiple stages of the malaria parasite is becoming a primary requirement for new candidates in antimalarial drug discovery and development. Recently, 4(1H)-pyridone, 4(1H)-quinolone, 1,2,3,4-tetrahydroacridone, and phenoxyethoxy-4(1H)-quinolone chemotypes have been shown to be antimalarials with blood stage activity, liver stage activity, and transmission blocking activity. Advancements in structure-activity relationship and structure-property relationship studies, biological evaluation in vitro and in vivo, as well as pharmacokinetics of the 4(1H)-pyridone and 4(1H)-quinolone chemotypes will be discussed. PMID:25116582

  2. The discovery of new cytotoxic pyrazolopyridine derivatives.

    PubMed

    Giannouli, Vassiliki; Lougiakis, Nikolaos; Kostakis, Ioannis K; Pouli, Nicole; Marakos, Panagiotis; Skaltsounis, Alexios-Leandros; Nam, Sangkil; Jove, Richard; Horne, David; Tenta, Roxane; Pratsinis, Harris; Kletsas, Dimitris

    2016-11-01

    A number of new 3,7-disubstituted pyrazolo[3,4-c]pyridines have been designed and synthesized from suitable 2-aminopyridines. The antiproliferative activity of the derivatives was determined against the pancreatic MIA PaCa-2 and ovarian SCOV3 cancer cell-lines. IC50 values of the most promising analogue 46 lie in the submicromolar or low micromolar range. Furthermore, compound 46 shows similar inhibitory activities against DU145, A2058 and PC-3 cancer cells, blocks the cell cycle at the G0/G1 phase and induce apoptosis, as determined by the appearance of apoptotic nuclei.

  3. Watson-Crick and sugar-edge base pairing of cytosine in the gas phase: UV and infrared spectra of cytosine·2-pyridone.

    PubMed

    Frey, Jann A; Ottiger, Philipp; Leutwyler, Samuel

    2014-01-23

    While keto-amino cytosine is the dominant species in aqueous solution, spectroscopic studies in molecular beams and in noble gas matrices show that other cytosine tautomers prevail in apolar environments. Each of these offers two or three H-bonding sites (Watson-Crick, wobble, sugar-edge). The mass- and isomer-specific S1 ← S0 vibronic spectra of cytosine·2-pyridone (Cyt·2PY) and 1-methylcytosine·2PY are measured using UV laser resonant two-photon ionization (R2PI), UV/UV depletion, and IR depletion spectroscopy. The UV spectra of the Watson-Crick and sugar-edge isomers of Cyt·2PY are separated using UV/UV spectral hole-burning. Five different isomers of Cyt·2PY are observed in a supersonic beam. We show that the Watson-Crick and sugar-edge dimers of keto-amino cytosine with 2PY are the most abundant in the beam, although keto-amino-cytosine is only the third most abundant tautomer in the gas phase. We identify the different isomers by combining three different diagnostic tools: (1) methylation of the cytosine N1-H group prevents formation of both the sugar-edge and wobble isomers and gives the Watson-Crick isomer exclusively. (2) The calculated ground state binding and dissociation energies, relative gas-phase abundances, excitation and the ionization energies are in agreement with the assignment of the dominant Cyt·2PY isomers to the Watson-Crick and sugar-edge complexes of keto-amino cytosine. (3) The comparison of calculated ground state vibrational frequencies to the experimental IR spectra in the carbonyl stretch and NH/OH/CH stretch ranges strengthen this identification.

  4. Regioselectivity and Mechanism of Synthesizing N-Substituted 2-Pyridones and 2-Substituted Pyridines via Metal-Free C-O and C-N Bond-Cleaving of Oxazoline[3,2-a]pyridiniums

    PubMed Central

    Li, Bo; Xue, Susu; Yang, Yang; Feng, Jia; Liu, Peng; Zhang, Yong; Zhu, Jianming; Xu, Zhijian; Hall, Adrian; Zhao, Bo; Shi, Jiye; Zhu, Weiliang

    2017-01-01

    Novel intermediate oxazoline[3,2-a]pyridiniums were facilely prepared from 2-(2,2-dimethoxyethoxy)-pyridines via acid promoted intramolecular cyclization. Sequentially, the quaternary ammonium salts were treated with different nucleophiles for performing regioselective metal-free C-O and C-N bond-cleaving to afford prevalent heterocyclic structures of N-substituted pyridones and 2-substituted pyridines. The reaction mechanism and regioselectivity were then systematically explored by quantum chemistry calculations at B3LYP/6-31 g(d) level. The calculated free energy barrier of the reactions revealed that aniline and aliphatic amines (e.g., methylamine) prefer to attack C8 of intermediate 4a, affording N-substituted pyridones, while phenylmethanamine, 2-phenylethan-1-amine and 3-phenylpropan-1-amine favor to attack C2 of the intermediate to form 2-substituted pyridines. With the optimized geometries of the transition states, we found that the aromatic ring of the phenyl aliphatic amines may form cation-π interaction with the pyridinium of the intermediates, which could stabilize the transition states and facilitate the formation of 2-substituted pyridines. PMID:28120894

  5. Regioselectivity and Mechanism of Synthesizing N-Substituted 2-Pyridones and 2-Substituted Pyridines via Metal-Free C-O and C-N Bond-Cleaving of Oxazoline[3,2-a]pyridiniums

    NASA Astrophysics Data System (ADS)

    Li, Bo; Xue, Susu; Yang, Yang; Feng, Jia; Liu, Peng; Zhang, Yong; Zhu, Jianming; Xu, Zhijian; Hall, Adrian; Zhao, Bo; Shi, Jiye; Zhu, Weiliang

    2017-01-01

    Novel intermediate oxazoline[3,2-a]pyridiniums were facilely prepared from 2-(2,2-dimethoxyethoxy)-pyridines via acid promoted intramolecular cyclization. Sequentially, the quaternary ammonium salts were treated with different nucleophiles for performing regioselective metal-free C-O and C-N bond-cleaving to afford prevalent heterocyclic structures of N-substituted pyridones and 2-substituted pyridines. The reaction mechanism and regioselectivity were then systematically explored by quantum chemistry calculations at B3LYP/6-31 g(d) level. The calculated free energy barrier of the reactions revealed that aniline and aliphatic amines (e.g., methylamine) prefer to attack C8 of intermediate 4a, affording N-substituted pyridones, while phenylmethanamine, 2-phenylethan-1-amine and 3-phenylpropan-1-amine favor to attack C2 of the intermediate to form 2-substituted pyridines. With the optimized geometries of the transition states, we found that the aromatic ring of the phenyl aliphatic amines may form cation-π interaction with the pyridinium of the intermediates, which could stabilize the transition states and facilitate the formation of 2-substituted pyridines.

  6. Caging and solvent effects on the tautomeric equilibrium of 3-pyridone/3-hydroxypyridine in the ground state: a study in cyclodextrins and binary solvents.

    PubMed

    Abou-Zied, Osama K; Al-Shihi, Othman I K

    2009-07-14

    The tautomeric equilibrium between 3-pyridone (3Py) and 3-hydroxypyridine (3HP) shows characteristic absorption peaks for the zwitterion form of 3Py in water that may be used as a probe of the hydrophobic nature inside macromolecules such as proteins and other biologically related systems. We studied this equilibrium in the ground state in aqueous cyclodextrins (CDs) and in binary solvent mixtures of 1,4-dioxane and water by absorption spectroscopy, and by ab initio calculations. Upon the addition of alpha-CD or beta-CD to an aqueous solution of the 3Py/3HP system, the absorbance intensity of the zwitterion tautomer decreases with a concomitant increase in the intensity of the enol tautomer of 3HP. The results reflect the nature of the tautomeric equilibrium and point to the hydrophobic environment inside the CD cavities. The effect of inclusion is noticeably less in the case of alpha-CD. This is attributed to the small cavity size of alpha-CD which sustains only partial inclusion. Upon the addition of gamma-CD, the intensity of the zwitterion tautomer slightly increased over that in water which is attributed to the direct interaction between the charged sides of the tautomer with the outer primary or secondary hydroxyls of the glycopyranose units of gamma-CD. This interaction is a result of the large cavity size of gamma-CD which does not support a stable complex. The largest caging effect was observed in 2,6-di-O-methyl-beta-CD (DMbeta-CD) which is an indication of a more hydrophobic environment around the guest. The large hydrophobicity of DMbeta-CD is due to the presence of the two methyl groups in the beta-CD derivative which reduce the amount of water inside the cavity upon encapsulation. In the binary mixtures of 1,4-dioxane and water, the change in the absorbance intensity of the enol and the zwitterion tautomers was analyzed quantitatively and three water molecules were found to solvate the polar centers of each tautomer. Ab initio calculations of the

  7. Influence of 4-pyridone-3-carboxamide-1Β-D-ribonucleoside (4PYR) on activities of extracellular enzymes in endothelial human cells.

    PubMed

    Pelikant-Małecka, I; Sielicka, A; Kaniewska, E; Smoleński, R T; Słomińska, E M

    2016-12-01

    Previous studies demonstrated that human endothelial cells were capable to phosphorylate 4-pyridone-3-carboxamide-1β-D-ribonucleoside (4PYR) to monophosphate (4PYMP) and formed another metabolite-an analog of NAD (4PYRAD). Elevated levels of 4PYMP and 4PYRAD had an adverse effect on energy balance-depressed adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NAD) concentration in human endothelial cells. Ecto-enzymes such as ecto-nucleoside triphosphate diphosphohydrolase (eNTPD); ecto-5'-nucleotidase (e5'NT); and ecto-adenosine deaminase (eADA) are involved in controlling of inflammation and platelet aggregation. This study aimed to evaluate influence of 4PYR and its metabolites on activities of extracellular enzymes in human endothelial cells. Endothelial cells (endothelial cell line HMEC-1) were treated with 100 uM 4PYR for 0, 24, 48, or 72 hours. After incubation, intact HMEC-1 cells were incubated with suitable substrate. Simultaneously, in another path of experiments intracellular concentration of 4PYMP and 4PYRAD had been analyzed. Conversion of extracellular nucleotides into their products and intracellular concentration of 4PYMP and 4PYRAD were measured by high performance liquid chromatography (HPLC). We demonstrated that eNTPD and e5'NT activities increase after 72 hours of cell treatment with 4PYR as compared to control (0.40 ± 0.02 versus 0.29 ± 0.02 nmol/min/mg protein; 13.3 ± 0.6 versus 8.30 ± 0.34 nmol/min/mg protein, respectively, mean ± SEM). eADA activity decreases after 24 hours of cells treatment with 4PYR as compared to control (1.55 ± 0.06 versus 1.92 ± 0.13 nmol/min/mg protein, respectively, mean ± SEM). 4PYR and its derivatives have positive effect on ecto-enzymes related with ATP degradation pathway. We conclude that these increases in extracellular enzyme activities are an adaptive response to decreased intracellular ATP and NAD arising from 4PYR uptake. These changes may protect the cells from the inflammatory

  8. Structural simplification of bioactive natural products with multicomponent synthesis. 2. antiproliferative and antitubulin activities of pyrano[3,2-c]pyridones and pyrano[3,2-c]quinolones.

    PubMed

    Magedov, Igor V; Manpadi, Madhuri; Ogasawara, Marcia A; Dhawan, Adriana S; Rogelj, Snezna; Van Slambrouck, Severine; Steelant, Wim F A; Evdokimov, Nikolai M; Uglinskii, Pavel Y; Elias, Eerik M; Knee, Erica J; Tongwa, Paul; Antipin, Mikhail Yu; Kornienko, Alexander

    2008-04-24

    Pyrano[3,2- c]pyridone and pyrano[3,2- c]quinolone structural motifs are commonly found in alkaloids manifesting diverse biological activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed compound libraries based on these privileged heterocyclic scaffolds. The selected library members display low nanomolar antiproliferative activity and induce apoptosis in human cancer cell lines. Mechanistic studies reveal that these compounds induce cell cycle arrest in the G2/M phase and block in vitro tubulin polymerization. Because of the successful clinical use of microtubule-targeting agents, these heterocyclic libraries are expected to provide promising new leads in anticancer drug design.

  9. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside triphosphate (4PyTP), a novel NAD metabolite accumulating in erythrocytes of uremic children: a biomarker for a toxic NAD analogue in other tissues?

    PubMed

    Synesiou, Elena; Fairbanks, Lynnette D; Simmonds, H Anne; Slominska, Ewa M; Smolenski, Ryszard T; Carrey, Elizabeth A

    2011-06-01

    We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD(+) metabolites (nicotinamide, N(1)-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N(1)-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD(+) from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD(+) analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD(+) analogue that inhibits IMP dehydrogenase in other cells.

  10. Antiplatelet pyrazolopyridines derivatives: pharmacological, biochemical and toxicological characterization.

    PubMed

    Saito, Max Seidy; Lourenço, André Luiz; Dias, Luiza Rosaria Sousa; Freitas, Antônio Carlos Carreira; Vitorino, Maíra Ingrid; Albuquerque, Magaly Girão; Rodrigues, Carlos Rangel; Cabral, Lúcio Mendes; Dias, Eliane Pedra; Castro, Helena Carla; Satlher, Plínio Cunha

    2016-12-01

    Platelet aggregation is one of the main events involved in vascular thrombus formation. Recently, N'-substituted-phenylmethylene-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-4-carbohydrazides were described as antiplatelet derivatives. In this work, we explore the properties of these antiplatelet agents through a series of pharmacological, biochemical and toxicological studies. The antiplatelet activity of each derivative was confirmed as 3a, 3b and 3 h significantly inhibited human platelet aggregation induced by arachidonic acid, with no detectable effect on clotting factors or healthy erythrocytes. Importantly, mice treated with derivative 3a showed a higher survival rate at an in vivo model of pulmonary thromboembolism with a lower bleeding risk in comparison to aspirin. The in silico studies pointed a series of structural parameters related to thromboxane synthase (TXS) inhibition by 3a, which was confirmed by tracking plasma levels of PGE2 and TXB2 through an in vitro enzyme immunoassay. Derivative 3a showed selective TXS inhibition allied with low bleeding risk and increased animal survival, revealing the derivative as a promising candidate for treatment of cardiovascular diseases.

  11. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    SciTech Connect

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O.

    2012-05-03

    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  12. Synthesis and antioxidant evaluation of some new pyrazolopyridine derivatives.

    PubMed

    Gouda, Moustafa A

    2012-02-01

    4,6-Dimethyl-1H-pyrazolo[3,4-b]pyridine-3-amine (1) was used as a key intermediate for the synthesis of imidazolopyrazole derivatives 7-11 upon interaction with 3-(2-bromoacetyl)-2H-chromen-2-one (2), 2-(benzothiazol-2-yl)-4-chloro-3-oxobutanenitrile (3), 2,3-dibromonaphthalene-1,4-dione (4), naphtha[2,3-b]oxirene-2,7-dione (5), 2,5-dichloro-3,6-dihydroxyhexa-2,5-diene-1,4-dione (6), respectively. Acetylation of 11 afforded the bis-acetyl 12. Also, the imidazolopyrimidine 15 was prepared via treatment of 1 with sodium 3,4-dioxo-3,4-dihydronaphthalene-1-sulfonate (13) in DMF followed by cyclization of the bis-pyrazolopyrimidine 14 with glacial acetic acid. On the other hand, compound 1 was reacted with (E)-1-(4-methoxyphenyl)-5-(piperidin-1-yl)pent-1-en-3-one hydrochloride (16), 2-hydroxy-3-((piperidin-1-yl)-methyl)-naphthalene-1,4-dione (17), 2-styryl-2H-indene-1,3-dione (18), enaminone 22, chloroquinoline-3-carbaldehyde 27a, chloroquinoline-(6-methyl)-3-carbaldehyde 27b and 5-chloro-3-methyl-1-phenyl-1H-pyrazole-4-carbaldehyde (28) to afford pyrazolo[3,4-a]pyrimidines 19-21, 23, 29a, 29b and 30, respectively. Also, the pyrazolopyrimidinone 33 was obtained via treatment of 1 with 1-cyanoacetyl-3,5-dimethylpyrazole (31) followed by cyclization of the formed intermediate 32 with glacial acetic acid. Finally, treatment of 1 with o-terephthalaldehyde in glacial acetic acid afforded diazepine 34. The newly synthesized compounds were screened for their antioxidant properties in which some of them exhibited promising activities. Compounds 1, 14, 15, 23, 26, 29a, 30 and 32 have the ability to protect DNA from the damage induced by bleomycin.

  13. 2-Ethyl-3-hy­droxy-1-isopropyl-4-pyridone

    PubMed Central

    Molokoane, Pule P.; Schutte, M.; Steyl, G.

    2012-01-01

    The title compound, C10H15NO2, crystallized with three mol­ecules in the asymmetric unit. These three mol­ecules are quite similar except for slight differences in the torsion angles of the substituents on the ring. The isopropyl C—C—N—C torsion angles (towards the carbon next to the ethyl bound carbon), for example, are −150.63 (11), −126.77 (13) and −138.76 (11)° for mol­ecules A, B and C, respectively, and the C—C—C—N torsion angles involving the ethyl C atoms are 102.90 (13), 87.81 (14) and 86.47 (13)°. The main difference between the three mol­ecules lies in the way they are arranged in the solid-state structure. All three mol­ecules form dimers that are connected through strong O—H⋯O hydrogen bonds with R 2 2(10) graph-set motifs. The symmetry of the dimers formed does however differ between mol­ecules. Mol­ecules B connect with each other to form inversion dimers. Mol­ecules A and C, on the other hand, form dimers with local twofold symmetry, but the two mol­ecules are crystallographically distinct. The B and C molecules are linked to themselves and to each other via C—H⋯O hydrogen bonds. This results in the formation of a three-dimensional network structure. PMID:23284535

  14. Theoretical and experimental study of the transformation of 2-pyridone-5-amide into nitrile

    NASA Astrophysics Data System (ADS)

    Koval', Ya. I.; Okul', E. M.; Yatsenko, A. V.; Babaev, E. V.; Polyakova, I. N.; Rybakov, V. B.

    2017-02-01

    Molecular and crystal structures of 2,4-dimethyl-6-oxo-1,6-dihydropyridine-3-carboxamide ( 1), 2,4-dimethyl-6-oxo-1,6-dihydropyridine-3-carbonitrile ( 2), and 2-chloro-4,6-dimethylnicotinonitrile ( 3), which are the products of sequential transformations, are studied by means of single crystal diffraction. The procedure for synthesizing each compound is described. All of the compounds are characterized using IR and 1H NMR spectra. Possible reaction pathways are simulated using the density functional theory (DFT).

  15. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α.

  16. An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 55 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins....

  17. [Levels of carbon monoxide and hydrogen cyanide in blood of fire victims in the autopsy material of the Department of Forensic Medicine, Medical University of Białystok].

    PubMed

    Wardaszka, Zofia; Niemcunowicz-Janica, Anna; Janica, Jerzy; Koc-Zórawska, Ewa

    2005-01-01

    The authors present the results of toxicological examination of blood of fatal victims of fires in "closed" spaces. Hydrogen cyanide was present in 26 out of 64 postmortem blood samples. COHb was found in 52 cases. The hydrogen cyanide levels ranged from 0.8 to 39.2 microg/l, the COHb levels ranged from 16.0 to 85.0%. The level of hydrogen cyanide was determined by the pyrazolopyridine method modified by Nedoma, and the COHb level was determined by the Wolff method.

  18. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.

    PubMed

    Turan, Ilke Simsek; Yildiz, Deniz; Turksoy, Abdurrahman; Gunaydin, Gurcan; Akkaya, Engin U

    2016-02-18

    The photosensitized generation of singlet oxygen within tumor tissues during photodynamic therapy (PDT) is self-limiting, as the already low oxygen concentrations within tumors is further diminished during the process. In certain applications, to minimize photoinduced hypoxia the light is introduced intermittently (fractional PDT) to allow time for the replenishment of cellular oxygen. This condition extends the time required for effective therapy. Herein, we demonstrated that a photosensitizer with an additional 2-pyridone module for trapping singlet oxygen would be useful in fractional PDT. Thus, in the light cycle, the endoperoxide of 2-pyridone is generated along with singlet oxygen. In the dark cycle, the endoperoxide undergoes thermal cycloreversion to produce singlet oxygen, regenerating the 2-pyridone module. As a result, the photodynamic process can continue in the dark as well as in the light cycles. Cell-culture studies validated this working principle in vitro.

  19. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-04

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  20. Rhodium(III)-catalyzed C-H activation/annulation with vinyl esters as an acetylene equivalent.

    PubMed

    Webb, Nicola J; Marsden, Stephen P; Raw, Steven A

    2014-09-19

    The behavior of electron-rich alkenes in rhodium-catalyzed C-H activation/annulation reactions is investigated. Vinyl acetate emerges as a convenient acetylene equivalent, facilitating the synthesis of sixteen 3,4-unsubstituted isoquinolones, as well as select heteroaryl-fused pyridones. The complementary regiochemical preferences of enol ethers versus enol esters/enamides is discussed.

  1. A practical two-step synthesis of imidazo[1,2-a]pyridines from N-(prop-2-yn-1-yl)pyridin-2-amines.

    PubMed

    Sucunza, David; Samadi, Abdelouahid; Chioua, Mourad; Silva, Daniel B; Yunta, Cristina; Infantes, Lourdes; Carmo Carreiras, M; Soriano, Elena; Marco-Contelles, José

    2011-05-07

    The Sandmeyer reaction of differently C-2 substituted N-(prop-2-yn-1-ylamino)pyridines is an efficient, mild, new and practical method for the stereospecific synthesis of (E)-exo-halomethylene bicyclic pyridones bearing the imidazo[1,2-a]pyridine heterocyclic ring system.

  2. Binding of quinolizidine alkaloids to nicotinic and muscarinic acetylcholine receptors.

    PubMed

    Schmeller, T; Sauerwein, M; Sporer, F; Wink, M; Müller, W E

    1994-09-01

    Fourteen quinolizidine alkaloids, isolated from Lupinus albus, L. mutabilis, and Anagyris foetida, were analyzed for their affinity for nicotinic and/or muscarinic acetylcholine receptors. Of the compounds tested, the alpha-pyridones, N-methylcytisine and cytisine, showed the highest affinities at the nicotinic receptor, while several quinolizidine alkaloid types were especially active at the muscarinic receptor.

  3. Specific solute solvent interactions and dual fluorescence of electron donor substituted bis-pyrazoquinoline in binary mixed solvents

    NASA Astrophysics Data System (ADS)

    Rotkiewicz, Krystyna; Rettig, Wolfgang; Köhler, Gottfried; Rechthaler, Karl; Danel, Andrzej; Grabka, Danuta

    2004-12-01

    Some extended electron donor and acceptor substituted π-electron systems, composed of a dimethyl- or diethylanilino (DMA or DEA, respectively) group as electron donor and bis-pyrazoloquinoline (DPPQ) or bis-pyrazolopyridine (DMPP) derivatives as acceptors, were studied with the aim to elucidate the contributions of various solute interactions with solvent molecules upon intramolecular charge separation. Steady state and time resolved fluorescence studies were performed for DMA-DPPQ, DMA-DMPP and DEA-DMPP in alcohols and their binary mixtures with heptane. The decay kinetics of the fluorescence of DMA-DPPQ was also studied in neat 1-propanol in dependence of the temperature between 170 and 293 K. Several different fluorescent species, which were ascribed to different complexes with alcohol molecules, contribute to the fluorescence of the various compounds in these binary mixtures and account for the complex fluorescence decay. A simplified consecutive model is proposed to explain the decay behaviour of the excited species.

  4. CNS depressants accelerate the dissociation of /sup 35/S-TBPS binding and GABA enhances their displacing potencies

    SciTech Connect

    Maksay, G.; Ticku, M.K.

    1988-01-01

    The specific binding of /sup 35/S-t-butylbicyclophosphorothionate (TBPS) was studied in synaptosomal membranes of rat cerebral cortex. The displacing potencies of eleven CNS depressants and three convulsants were determined in the presence of 1 /sup +/M GABA and 10 nM R 5135. GABA enhanced the displacing potencies of depressants of most diverse chemical structures: diaryltriazine (LY 81067), pyrazolopyridine (etazolate), cinnamide, glutarimide, 2,3-benzodiazepine (tofizopam) and alcohol derivatives, barbiturates, (+)etomidate, methaqualone and meprobamate. In contrast, the IC/sub 50/ values of convulsants (picrotoxinin, pentetrazol and the barbiturate enantiomer S(+)MPPB) were not significantly affected. The depressants accelerated either basal or GABA-augmented dissociation of /sup 35/-TBPS mainly by increasing the contribution of its rapid first phase.

  5. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  6. Oxidation of quinolones with peracids (an in situ EPR study).

    PubMed

    Staško, Andrej; Milata, Viktor; Barbieriková, Zuzana; Brezová, Vlasta

    2014-01-01

    4-Oxoquinoline derivatives (quinolones) represent heterocyclic compounds with a variety of biological activities, along with interesting chemical reactivity. The quinolone derivatives possessing secondary amino hydrogen at the nitrogen of the enaminone system are oxidized with 3-chloroperbenzoic acid to nitroxide radicals in the primary step while maintaining their 4-pyridone ring. Otherwise, N-methyl substituted quinolones also form nitroxide radicals coupled with the opening of the 4-pyridone ring in a gradual oxidation of the methyl group via the nitrone-nitroxide spin-adduct cycle. This was confirmed in an analogous oxidation using N,N-dimethylaniline as a model compound. N-Ethyl quinolones in contrast to its N-methyl analog form only one nitroxide radical without a further degradation.

  7. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  8. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo

    PubMed Central

    Pastor-Cavada, Elena; Pardo, Leticia M.; Kandil, Dalia; Torres-Fuentes, Cristina; Clarke, Sarah L.; Shaban, Hamdy; McGlacken, Gerard P.; Schellekens, Harriet

    2016-01-01

    Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand. PMID:27819353

  9. A Novel Non-Peptidic Agonist of the Ghrelin Receptor with Orexigenic Activity In vivo

    NASA Astrophysics Data System (ADS)

    Pastor-Cavada, Elena; Pardo, Leticia M.; Kandil, Dalia; Torres-Fuentes, Cristina; Clarke, Sarah L.; Shaban, Hamdy; McGlacken, Gerard P.; Schellekens, Harriet

    2016-11-01

    Loss of appetite in the medically ill and ageing populations is a major health problem and a significant symptom in cachexia syndromes, which is the loss of muscle and fat mass. Ghrelin is a gut-derived hormone which can stimulate appetite. Herein we describe a novel, simple, non-peptidic, 2-pyridone which acts as a selective agonist for the ghrelin receptor (GHS-R1a). The small 2-pyridone demonstrated clear agonistic activity in both transfected human cells and mouse hypothalamic cells with endogenous GHS-R1a receptor expression. In vivo tests with the hit compound showed significant increased food intake following peripheral administration, which highlights the potent orexigenic effect of this novel GHS-R1a receptor ligand.

  10. Design, synthesis and structure-activity relationships of novel biarylamine-based Met kinase inhibitors

    SciTech Connect

    Williams, David K; Chen, Xiao-Tao; Tarby, Christine; Kaltenbach, Robert; Cai, Zhen-Wei; Tokarski, John S; An, Yongmi; Sack, John S; Wautlet, Barri; Gullo-Brown, Johnni; Henley, Benjamin J; Jeyaseelan, Robert; Kellar, Kristen; Manne, Veeraswamy; Trainor, George L; Lombardo, Louis J; Fargnoli, Joseph; Borzilleri, Robert M

    2010-09-03

    Biarylamine-based inhibitors of Met kinase have been identified. Lead compounds demonstrate nanomolar potency in Met kinase biochemical assays and significant activity in the Met-driven GTL-16 human gastric carcinoma cell line. X-ray crystallography revealed that these compounds adopt a bioactive conformation, in the kinase domain, consistent with that previously seen with 2-pyridone-based Met kinase inhibitors. Compound 9b demonstrated potent in vivo antitumor activity in the GTL-16 human tumor xenograft model.

  11. An example of designed multiple ligands spanning protein classes: dual MCH-1R antagonists/DPPIV inhibitors.

    PubMed

    Gattrell, William T; Sambrook Smith, Colin P; Smith, Alun J

    2012-04-01

    A ligand-based approach to identify potential starting points for a dual MCH-1R antagonist/DPPIV inhibitor medicinal chemistry program was undertaken. Potential ligand pairs were identified by analysis of MCH-1R and DPPIV in vitro data. A highly targeted synthetic effort lead to the discovery of pyridone 11, a dual MCH-1R antagonist/DPPIV inhibitor with selectivity over DPP8 and DPP9.

  12. Slow-Binding Inhibition: A Theoretical and Practical Course for Students

    ERIC Educational Resources Information Center

    Golicnik, Marko; Stojan, Jure

    2004-01-01

    Tyrosinase (EC 1.14.18.1) catalyzes the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) to 2,3,5,6-tetrahydro-5,6-dioxo-1H-indole-2-carboxylate (dopachrome), according to the classical Michaelis-Menten kinetic mechanism. The enzyme is strongly but slowly inhibited by alpha-amino-beta-[N-(3-hydroxy-4-pyridone)] propionic acid (L-mimosine), a…

  13. Rational Design Synthesis and Evaluation of First Generation Inhibitors of the Giardia Lamblia Fructose-1 6-biphosphate Aldolase

    SciTech Connect

    Z Li; Z Liu; D Cho; J Zou; M Gong; R Breece; A Galkin; L Li; H Zhao; et al.

    2011-12-31

    Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn{sup 2+} binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (K{sub i} = 14 {micro}M) that is comparable to that of FBP (K{sub m} = 2 {micro}M) or its inert analog TBP (K{sub i} = 1 {micro}M). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 {angstrom}) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn{sup 2+}. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn{sup 2+} are not consistent with a strong interaction. To determine if Zn{sup 2+} coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn{sup 2+} coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn{sup 2+} coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn{sup 2+} coordination to binding of 8 to GlFBPA.

  14. Pyridine adsorption on NiSn/MgO-Al2O3: An FTIR spectroscopic study of surface acidity

    NASA Astrophysics Data System (ADS)

    Penkova, Anna; Bobadilla, Luis F.; Romero-Sarria, Francisca; Centeno, Miguel A.; Odriozola, José A.

    2014-10-01

    The acid-base properties of MgO-Al2O3 supports and NiSn/MgO-Al2O3 catalysts were evaluated by IR spectroscopy using pyridine as a probe molecule. The results indicate that only Lewis acid sites were detected on the surface of the supports as well as on the catalysts. Nevertheless, Brønsted acid sites were not detected. In the support without MgO three kinds of coordinatively unsaturated acid sites were detected: Al3+ cations occupying octahedral, tetrahedral and tetrahedral with cationic vacancy in the neighbourhood. The last sites appear as the strongest. Moreover, they are able to activate the pyridine molecules leading to the formation of an intermediate α-pyridone complex. When MgO or NiO were added to the alumina, the number and strength of the Lewis acid sites decreased and significant changes were observed in the tetrahedral sites with adjoining cation vacancies. The incorporation of the Mg2+ cations into the alumina's structure takes place on the vacant tetrahedral positions, forming spinel MgAl2O4. As a result, the fraction of tetrahedral sites with adjoining cationic vacancy diminished and the intermediate α-pyridone complex in the support with the highest MgO loading was hardly detected. The addition of Ni2+ cations leads to the filling of the free octahedral positions, resulting in the formation of a NiAl2O4 spinel structure and the thermal stability of the α-pyridone species decreases. In the catalysts, the progressive reduction of the number and strength of the Lewis acid sites is due to a competitive formation of the two types of MgAl2O4 and NiAl2O4 spinels. In the catalyst NiSn/30MgO-Al2O3 no cationic vacancies were detected and the surface reaction with α-pyridone formation did not occur.

  15. Acid-free aza Diels-Alder reaction of Danishefsky's diene with imines.

    PubMed

    Yuan, Yu; Li, Xin; Ding, Kuiling

    2002-09-19

    [reaction: see text] A highly efficient aza Diels-Alder reaction of Danishefsky's diene with imines was found to occur in methanol in the absence of any acids at room temperature to give corresponding 2-substituted dihydro-4-pyridone derivatives in high yields. This reaction can be also carried out in a three-component one-pot reaction manner. The reaction was found to proceed through a Mannich-type condensation mechanism.

  16. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  17. Rational design of broad spectrum antibacterial activity based on a clinically relevant enoyl-acyl carrier protein (ACP) reductase inhibitor.

    PubMed

    Schiebel, Johannes; Chang, Andrew; Shah, Sonam; Lu, Yang; Liu, Li; Pan, Pan; Hirschbeck, Maria W; Tareilus, Mona; Eltschkner, Sandra; Yu, Weixuan; Cummings, Jason E; Knudson, Susan E; Bommineni, Gopal R; Walker, Stephen G; Slayden, Richard A; Sotriffer, Christoph A; Tonge, Peter J; Kisker, Caroline

    2014-06-06

    Determining the molecular basis for target selectivity is of particular importance in drug discovery. The ideal antibiotic should be active against a broad spectrum of pathogenic organisms with a minimal effect on human targets. CG400549, a Staphylococcus-specific 2-pyridone compound that inhibits the enoyl-acyl carrier protein reductase (FabI), has recently been shown to possess human efficacy for the treatment of methicillin-resistant Staphylococcus aureus infections, which constitute a serious threat to human health. In this study, we solved the structures of three different FabI homologues in complex with several pyridone inhibitors, including CG400549. Based on these structures, we rationalize the 65-fold reduced affinity of CG400549 toward Escherichia coli versus S. aureus FabI and implement concepts to improve the spectrum of antibacterial activity. The identification of different conformational states along the reaction coordinate of the enzymatic hydride transfer provides an elegant visual depiction of the relationship between catalysis and inhibition, which facilitates rational inhibitor design. Ultimately, we developed the novel 4-pyridone-based FabI inhibitor PT166 that retained favorable pharmacokinetics and efficacy in a mouse model of S. aureus infection with extended activity against Gram-negative and mycobacterial organisms.

  18. Differentiation of the pyridine radical cation from its distonic isomers by ion-molecule reactions with dioxygen

    NASA Astrophysics Data System (ADS)

    Jobst, Karl J.; de Winter, Julien; Flammang, Robert; Terlouw, Johan K.; Gerbaux, Pascal

    2009-09-01

    In a previous study on the pyridine ion (1) and the pyridine-2-ylid isomer (2), we reported that ions 2 readily react with H2O to produce 2-pyridone ions at m/z 95, by O-atom abstraction. The mechanism for this intriguing reaction, however, was not established. This prompted us to use model chemistry calculations (CBS-QB3) to probe various mechanistic scenarios and to perform complementary experiments with the new, more versatile, ion-molecule reaction chamber of the Mons Autospec 6F mass spectrometer. It appears that H2O is not reacting neutral that produces the 2-pyridone ion of the above reaction, but rather O2 from air co-introduced with the water vapour. Theory and experiment agree that the exothermic reaction of O2 with the pyridine-2-ylid ion leads to loss of 3O from a stable peroxide-type adduct ion at m/z 111. Similarly, pyridine-3-ylid ions (3) generate 3-pyridone ions, but the reaction in this case is thermoneutral. The m/z 111:95 peak intensity ratios in the spectra of the ion-molecule products from ions 2 and 3 may serve to differentiate the isomers.

  19. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells.

  20. Coordination chemistry of the soft chiral Lewis acid [Cp*Ir(TsDPEN)]+.

    PubMed

    Letko, Christopher S; Heiden, Zachariah M; Rauchfuss, Thomas B; Wilson, Scott R

    2011-06-20

    The paper surveys the binding of anions to the unsaturated 16e Lewis acid [Cp*Ir(TsDPEN)](+) ([1H](+)), where TsDPEN is racemic H(2)NCHPhCHPhNTs(-). The derivatives Cp*IrX(TsDPEN) were characterized crystallographically for X(-) = CN(-), Me(C═NH)S(-), NO(2)(-), 2-pyridonate, and 0.5 MoS(4)(2-). [(1H)(2)(μ-CN)](+) forms from [1H](+) and 1H(CN). Aside from 2-pyridone, amides generally add reversibly and bind to Ir through N. Thioacetamide binds irreversibly through sulfur. Compounds of the type Cp*IrX(TsDPEN) generally form diastereoselectively, although diastereomeric products were observed for the strong ligands (X = CN(-), H(-) (introduced via BH(4)(-)), or Me(C═NH)S(-)). Related experiments on the reaction (p-cymene)Ru(TsDPEN-H) + BH(4)(-) gave two diastereomers of (p-cymene)RuH(TsDPEN), the known hydrogenation catalyst and a second isomer that hydrogenated acetophenone more slowly. These experiment provide new insights into the enantioselectivity of these catalysts. Diastereomerization in all cases was first order in metal with modest solvent effects. The diphenyl groups are generally diequatorial for the stable diastereomers. For the 2-pyridonate adduct, axial phenyl groups are stabilized in the solid state by puckering of the IrN(2)C(2) ring induced by intramolecular hydrogen-bonding. Crystallographic analysis of [Cp*Ir(TsDPEN)](2)(MoS(4)) revealed a unique example of a κ(1),κ(1)-tetrathiometallate ligand. Cp*Ir(SC(NH)Me)TsDPEN) is the first example of a κ(1)-S-thioamidato complex.

  1. Drought associated poisoning of cattle in South Texas by the high quality forage legume Leucaena leucocephala.

    PubMed

    Anderson, R C; Anderson, T J; Nisbet, D J; Kibbe, A S; Elrod, D; Wilkinson, G

    2001-04-01

    Approximately 80 head of yearling cattle grazing on 680 acres exhibited signs of Leucaena leucocephala toxicosis, which was confirmed in 3 animals by detection of 3-hydroxy-4 (IH)-pyridone, the metabolite of the poisonous principle mimosine, in their urine. The animals had grazed leucaena almost exclusively due to lack of alternative forage resulting from drought conditions. Toxicosis from this otherwise high quality forage would likely not have occurred had animals consumed lower amounts of leucaena and could probably have been prevented, as it has been elsewhere, had the animals been colonized with Synergistes jonesii, a beneficial ruminal bacterium capable of degrading the toxic metabolites.

  2. 3-Hydroxy-4-pyrones as Precursors of 4-Methoxy-3-oxidopyridinium Ylides. An Expeditious Entry to Highly Substituted 8-Azabicyclo[3.2.1]octanes.

    PubMed

    Rumbo, Antonio; Mouriño, Antonio; Castedo, Luis; Mascareñas, José L.

    1996-09-06

    3-Hydroxy-4-pyridones, which are easily prepared from commercially available 3-hydroxy-4-pyrones, can be readily transformed into 4-methoxy-3-oxidopyridinium ylides by treatment with methyl trifluoromethanesulfonate and subsequent deprotonation with a non-nucleophilic base. These ylides are capable of undergoing cycloaddition to several electron-deficient alkenes, thus allowing the synthesis of highly functionalized azabicyclo[3.2.1]octane moieties. The rich substitution patterns of these frameworks might allow their divergent conversion to a variety of natural and non-natural tropane alkaloids.

  3. Double-Stereodifferentiation in Rhodium-Catalyzed [2 + 2 + 2] Cycloaddition: Chiral Ligand/Chiral Counterion Matched Pair.

    PubMed

    Augé, Mylène; Feraldi-Xypolia, Alexandra; Barbazanges, Marion; Aubert, Corinne; Fensterbank, Louis; Gandon, Vincent; Kolodziej, Emilie; Ollivier, Cyril

    2015-08-07

    The first enantioselective metal-catalyzed [2 + 2 + 2] cycloaddition involving a double asymmetric induction has been devised. It relies on the use of an in situ generated chiral cationic rhodium(I) catalyst with a matched chiral ligand/chiral counterion pair. Careful optimization of the catalytic system, as well as of the reaction conditions, led to atroposelective [2 + 2 + 2] pyridone cycloadducts with high ee's up to 96%. This strategy outperformed those previously described involving a chiral ligand only or a chiral counterion only.

  4. Atroposelective [2+2+2] cycloadditions catalyzed by a rhodium(I)-chiral phosphate system.

    PubMed

    Augé, Mylène; Barbazanges, Marion; Tran, Anh Tuan; Simonneau, Antoine; Elley, Paulin; Amouri, Hani; Aubert, Corinne; Fensterbank, Louis; Gandon, Vincent; Malacria, Max; Moussa, Jamal; Ollivier, Cyril

    2013-09-14

    Enantioselective cationic Rh(I)-catalyzed [2+2+2] cycloaddition reactions between diynes and isocyanates relying on the chiral anion strategy have been devised. In the presence of [Rh(cod)Cl]2, 1,4-bis(diphenylphosphino)butane, and the silver phosphate salt Ag(S)-TRIP as the unique source of chirality, axially chiral pyridones were isolated with ees up to 82%. This approach is novel in the field of chiral anion-mediated asymmetric catalysis since atroposelective transformations have so far remained unprecedented. It also proves to be complementary to the classical strategy based on chiral L-type ligands.

  5. Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

    SciTech Connect

    Schroeder, Gretchen M.; An, Yongmi; Cai, Zhen-Wei; Chen, Xiao-Tao; Clark, Cheryl; Cornelius, Lyndon A.M.; Dai, Jun; Gullo-Brown, Johnni; Gupta, Ashok; Henley, Benjamin; Hunt, John T.; Jeyaseelan, Robert; Kamath, Amrita; Kim, Kyoung; Lippy, Jonathan; Lombardo, Louis J.; Manne, Veeraswamy; Oppenheimer, Simone; Sack, John S.; Schmidt, Robert J.; Shen, Guoxiang; Stefanski, Kevin; Tokarski, John S.; Trainor, George L.; Wautlet, Barri S.; Wei, Donna; Williams, David K.; Zhang, Yingru; Zhang, Yueping; Fargnoli, Joseph; Borzilleri, Robert M.

    2009-12-01

    Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.

  6. Identification of small molecule inhibitors that block the Toxoplasma gondii rhoptry kinase ROP18.

    PubMed

    Simpson, Catherine; Jones, Nathaniel G; Hull-Ryde, Emily A; Kireev, Dmitri; Stashko, Michael; Tang, Keliang; Janetka, Jim; Wildman, Scott A; Zuercher, William J; Schapira, Matthieu; Hui, Raymond; Janzen, William; Sibley, L David

    2016-03-11

    The protozoan parasite Toxoplasma gondii secretes a family of serine-threonine protein kinases into its host cell in order to disrupt signaling and alter immune responses. One prominent secretory effector is the rhoptry protein 18 (ROP18), a serine-threonine kinase that phosphorylates immunity related GTPases (IRGs) and hence blocks interferon gamma-mediated responses in rodent cells. Previous genetic studies show that ROP18 is a major virulence component of T. gondii strains from North and South America. Here, we implemented a high throughput screen to identify small molecule inhibitors of ROP18 in vitro and subsequently validated their specificity within infected cells. Although ROP18 was not susceptible to many kinase-directed inhibitors that affect mammalian kinases, the screen identified several sub micromolar inhibitors that belong to three chemical scaffolds: oxindoles, 6-azaquinazolines, and pyrazolopyridines. Treatment of interferon gamma-activated cells with one of these inhibitors enhanced immunity related GTPase recruitment to wild type parasites, recapitulating the defect of Δrop18 mutant parasites, consistent with targeting ROP18 within infected cells. These compounds provide useful starting points for chemical biology experiments or as leads for therapeutic interventions designed to reduce parasite virulence.

  7. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/-S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and trazolate, and a diaryl-triazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin

  8. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  9. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea.

    PubMed

    Liu, Linxia; Zhang, Jun; Chen, Chuan; Teng, Jitao; Wang, Chengshu; Luo, Duqiang

    2015-08-01

    Fumosorinone, isolated from the entomogenous fungus Isaria fumosorosea, is a new 2-pyridone alkaloid which is elucidated by HRESIMS 1D and 2DNMR. Fumosorinone is structurally similar to tenellin and desmethylbassianin but it differs in chain length and degree of methylation. It is characterized by a classic noncompetitive inhibitor of protein tyrosine phosphatase 1B (IC50 14.04μM) which was implicated as a negative regulator of insulin receptor signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. For further study, we identified the biosynthetic gene cluster of fumosorinone from ongoing genome sequencing project, and it was verified by a direct knock-out strategy, reported for the first time in I. fumosorosea, using the Agrobacterium-mediated transformation in conjunction with linear deletion cassettes. The biosynthetic gene cluster includes a hybrid polyketide synthase-nonribosomal peptide synthetase gene, two cytochrome P450 enzyme genes, a trans-enoyl reductase gene, and other two transcription regulatory genes. Comparison of fumosorinone biosynthetic cluster with known gene clusters gives further insight into biosynthesis of pyridone alkaloids and provides the foundation for combinatorial biosynthesis for new fumosorinone derivatives.

  10. Electronic, structural and vibrational induced effects upon ionization of 2-quinolinone

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Pan, Y.; Al Mogren, M. M.; Lau, K. C.; Hochlaf, M.

    2016-07-01

    Using first principle methodologies, we characterize the lowest electronic states of 2-quinolinone+ cation. The ground state of this ion is of X˜2A″ nature. We deduce the adiabatic ionization energy of 2-quinolinone to be equal 8.249 eV using the explicitly correlated coupled cluster level and where zero point vibrational energy, core-valence and scalar relativistic effects are taken into account. We examine also the ionization induced structural changes and vibrational shifts and analyze the electron density differences between the neutral and ionic species. These data show that the formation of 2-quinolinone+X˜2A″ from 2-quinolinone affects strongly the HNCO group, whereas the carbon skeletal is perturbed when the upper electronic cationic states are populated. The comparison to 2-pyridone allows the elucidation of the effect of benzene ring fused with this heterocyclic ring. Since quinolones and pyridones are both model systems of DNA bases, these findings might help in understanding the charge redistribution in these biological entities upon ionization.

  11. Metal complexes with the quinolone antibacterial agent N-propyl-norfloxacin: synthesis, structure and bioactivity.

    PubMed

    Efthimiadou, Eleni K; Psomas, George; Sanakis, Yiannis; Katsaros, Nikos; Karaliota, Alexandra

    2007-03-01

    Nine new metal complexes of the quinolone antibacterial agent N-propyl-norfloxacin, pr-norfloxacin, with VO(2+), Mn(2+), Fe(3+), Co(2+), Ni(2+), Zn(2+), MoO(2)(2+), Cd(2+) and UO(2)(2+) have been prepared and characterized with physicochemical and spectroscopic techniques while molecular mechanics calculations for Fe(3+), VO(2+) and MoO(2)(2+) complexes have been performed. In all complexes, pr-norfloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone and one carboxylate oxygen atoms. All complexes are six-coordinate with slightly distorted octahedral geometry. For the complex VO(N-propyl-norfloxacinato)(2)(H(2)O) the axial position, trans to the vanadyl oxygen, is occupied by one pyridone oxygen atom. The investigation of the interaction of the complexes with calf-thymus DNA has been performed with diverse spectroscopic techniques and has shown that the complexes can be bound to calf-thymus DNA resulting to a B-->A DNA transition. The antimicrobial activity of the complexes has been tested on three different microorganisms. The complexes show equal or decreased biological activity in comparison to the free pr-norfloxacin except UO(2)(pr-norf)(2) which shows better inhibition against S. aureus.

  12. Discovery of Orally Available Runt-Related Transcription Factor 3 (RUNX3) Modulators for Anticancer Chemotherapy by Epigenetic Activation and Protein Stabilization.

    PubMed

    Yang, Jee Sun; Lee, Chulho; Cho, Misun; Kim, Hyuntae; Kim, Jae Hyun; Choi, Seonghwi; Oh, Soo Jin; Kang, Jong Soon; Jeong, Jin-Hyun; Kim, Hyun-Jung; Han, Gyoonhee

    2015-04-23

    Recently, we identified a novel strategy for anticancer chemotherapy by restoring runt-related transcription factor 3 (RUNX3) levels via lactam-based histone deacetylase (HDAC) inhibitors that stabilize RUNX3. Described here are the synthesis, biological evaluation, and pharmacokinetic evaluation of new synthetic small molecules based on pyridone-based HDAC inhibitors that specifically stabilize RUNX3 by acetylation and regulate its function. Many of the newly synthesized compounds showed favorable RUNX activities, HDAC inhibitory activities, and inhibitory activities on the growth of human cancer cell lines. Notably, one of these new derivatives, (E)-N-hydroxy-3-(2-oxo-1-(quinolin-2-ylmethyl)-1,2-dihydropyridin-3-yl)acrylamide (4l), significantly restored RUNX3 in a dose-dependent manner and showed high metabolic stability, a good pharmacokinetic profile with high oral bioavailability and long half-life, and strong antitumor activity. This study suggests that pyridone-based analogues modulate RUNX3 activity through epigenetic regulation as well as strong transcriptional and post-translational regulation of RUNX3 and could be potential clinical candidates as orally available RUNX3 modulators for the treatment of cancer.

  13. Electrochemical anodic oxidation of nitrogen doped carbon nanowall films: X-ray photoelectron and Micro-Raman spectroscopy study

    NASA Astrophysics Data System (ADS)

    Achour, A.; Vizireanu, S.; Dinescu, G.; Le Brizoual, L.; Djouadi, M.-A.; Boujtita, M.

    2013-05-01

    Unintentional nitrogen doped carbon nanowall (CNW) films were oxidized through anodic polarization in different applied potential windows, in a mild neutral K2SO4 electrolyte solution. Applied potentials in the range of [0-1], [0-1.5] and [0-2] V vs. SCE were explored. The films were characterized with X-ray photoelectron (XPS) and Micro-Raman spectroscopy, in order to investigate the surface chemistry and structural changes after treatment, respectively. The XPS analysis revealed that this electrochemical treatment leads to an increase of oxygen functional groups, and influences the nitrogen proportion and bonding configuration (such as pyridinic/pyridonic nitrogen) on the film surface at room temperature. In particular, an obvious enhancement of pyrrolic/pyridonic nitrogen doping of CNWs via electrochemical cycling in the range of [0-1.5] and [0-2] V vs. SCE was achieved. Such enhancement happened, because of the oxidation of nitrogen atoms in pyridine as a result of OH ions injection upon electrochemical cycling. Micro-Raman analysis indicates structural quality degradation with increasing the applied potential window. Moreover, the electrochemical capacitance of CNW films was increased after treatment in the range of [0-1] and [0-1.5] and decreased in the range of [0-2] V vs. SCE. The results show that harsh oxidation happened in the range [0-2] V.

  14. Etazolate, a phosphodiesterase 4 inhibitor reverses chronic unpredictable mild stress-induced depression-like behavior and brain oxidative damage.

    PubMed

    Jindal, Ankur; Mahesh, Radhakrishnan; Bhatt, Shvetank

    2013-04-01

    Etazolate, a pyrazolopyridine class compound is selective inhibitor of type 4 phosphodiesterase (PDE4). Previous study in our laboratory has demonstrated that etazolate produced antidepressant-like effect in rodent models of behavioral despair. The present study was designed to investigate whether etazolate could affect the chronic unpredictable mild stress (CUMS)-induced depression in mice. The effect of etazolate on CUMS-induced depression was examined by measuring behavioral parameters and oxidant/antioxidant status of brain tissue. Mice were subjected to different stress paradigms daily for a period of 28days to induce depressive-like behavior. The results showed that CUMS caused depression-like behavior in mice, as indicated by significant (p<0.05) decrease in sucrose consumption and increase in duration of immobility. Moreover, CUMS also significantly (p<0.05) increased the oxidative stress markers and decreased the antioxidant enzymes activity. Chronic administration of etazolate (0.5 and 1mg/kg., p.o.) and fluoxetine (20mg/kg., p.o.) significantly (p<0.05) inhibited the CUMS-induced behavioral (decreased sucrose consumption and increased duration of immobility) and biochemical (increased lipid peroxidation and nitrite level; decreased glutathione, superoxide dismutase and catalase activity) changes. No alteration was observed in locomotor activity. Additionally, in the present study, the efficacy of etazolate (1mg/kg., p.o.) on the behavioral and biochemical paradigms was found comparable to that of fluoxetine, used as standard antidepressant. In conclusion, the results of the present study suggested that etazolate alleviated the CUMS-induced depression in mice, which is at least in part mediated by modulating oxidative-nitrosative stress status in mice brain.

  15. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  16. Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

    PubMed Central

    Talamas, Francisco X.; Abbot, Sarah C.; Anand, Shalini; Brameld, Ken A.; Carter, David S.; Chen, Jun; Davis, Dana; de Vicente, Javier; Fung, Amy D.; Gong, Leyi; Harris, Seth F.; Inbar, Petra; Labadie, Sharada S.; Lee, Eun K.; Lemoine, Remy; Le Pogam, Sophie; Leveque, Vincent; Li, Jim; McIntosh, Joel; Nájera, Isabel; Park, Jaehyeon; Railkar, Aruna; Rajyaguru, Sonal; Sangi, Michael; Schoenfeld, Ryan C.; Staben, Leanna R.; Tan, Yunchou; Taygerly, Joshua P.; Villaseñor, Armando G.; Weller, Paul E.

    2013-01-01

    In the last few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAA). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. Continuing our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic head groups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109) which was selected for advancement to clinical development. PMID:24195700

  17. Multi-component Cycloaddition Approaches in the Catalytic Asymmetric Synthesis of Alkaloid Targets†

    PubMed Central

    Perreault, Stéphane; Rovis, Tomislav

    2010-01-01

    Cycloaddition reactions are attractive strategies for rapid formation of molecular complexity in organic synthesis as multiple bonds are formed in a single process. To this end, several research groups have been actively involved in the development of catalytic methods to activate readily accessible π-components to achieve cycloadditions. However, the use of C-N π-components for the formation of heterocycles by these processes is less well developed. It has been previously demonstrated that the combination of different isocyanates with two alkynes yields pyridones of several types by metal-catalyzed [2+2+2] cycloadditions. The potential of this chemistry has been extended to alkenes as C-C π-components, allowing the formation of sp3-stereocenters. In this tutorial review directed towards [n+2+2] cycloaddition of heterocumulenes, alkynes and alkenes, the recent advances in catalytic asymmetric synthesis of indolizidine, quinolizidine and azocine skeletons are discussed. PMID:19847348

  18. The role of dolutegravir in the management of HIV infection

    PubMed Central

    Miller, Misty M; Liedtke, Michelle D; Lockhart, Staci M; Rathbun, R Chris

    2015-01-01

    Dolutegravir is the most recent integrase strand transfer inhibitor approved for HIV-1 infection in both treatment-naïve and experienced patients. As a tricyclic carbamoyl pyridone analog, dolutegravir is rapidly absorbed and distributes through the cerebrospinal fluid. It is hepatically metabolized by uridine diphosphate glucuronosyl transferase 1A1; no inhibition or induction of cytochrome P450 enzymes is noted. As a substrate of CYP 3A4, dolutegravir is affected by rifampin, efavirenz, tipranavir/ritonavir, fosamprenavir/ritonavir, and dose increase is required. Dolutegravir inhibits the organic cation transporter 2, resulting in decreased creatinine clearance with no apparent decrease in renal function. Other adverse effects are minimal but include diarrhea, headache, and nausea. Clinical trials in treatment-naïve and experienced patients are ongoing and will be presented in this text. PMID:25733917

  19. Sparfloxacin-metal complexes as antifungal agents - Their synthesis, characterization and antimicrobial activities

    NASA Astrophysics Data System (ADS)

    Sultana, Najma; Arayne, M. Saeed; Gul, Somia; Shamim, Sana

    2010-06-01

    Metal complexes with the third-generation quinolone antibacterial agent sparfloxacin (SPFX) or 5-amino-1-cyclopropyl-7-(cis-3,5-dimethyl-1-piperazinyl)-6,8,di-fluoro-1-4-dihydro-4-oxo-3-quinocarboxylic acid have been synthesized and characterized with physicochemical and spectroscopic techniques such as TLC, IR, NMR and elemental analyses. In these complexes, sparfloxacin acts as bidentate deprotonated ligands bound to the metal through the pyridone oxygen and one carboxylate oxygen. The antimicrobial activity of these complexes has been evaluated against four Gram-positive and seven Gram-negative bacteria. Antifungal activity against five different fungi has been evaluated and compared with reference drug sparfloxacin. Fe 2+-SPFX and Cd 2+-SPFX complexes showed remarkable potency as compared to the parent drug.

  20. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE PAGES

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; ...

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  1. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  2. Accumulation of quinolizidine alkaloids in plants and cell suspension cultures: genera lupinus, cytisus, baptisia, genista, laburnum, and sophora.

    PubMed

    Wink, M; Witte, L; Hartmann, T; Theuring, C; Volz, V

    1983-08-01

    The patterns of quinolizidine alkaloids in cell cultures of 10 species of Fabaceae were analyzed by high-resolution GLC and GLC-MS and compared with the alkaloids present in the leaves of the respective plants. Lupanine was produced in all 10 cell suspension cultures as the main alkaloid. It was accompanied by sparteine, tetrahydrorhombifoline, 17-oxosparteine, 13-hydroxylupanine, 4-hydroxylupanine, 17-oxolupanine, and 13-hydroxylupanine esters as minor alkaloids in some species. The alkaloid patterns of the plants differed markedly in that alpha-pyridone alkaloids were the major alkaloids in the genera Cytisus, Genista, Laburnum and Sophora but were not accumulated in the cell cultures. These data further support the assumption that the pathway leading to lupanine is the basic pathway of quinolizidine alkaloids biosynthesis and that the other alkaloids are derived from lupanine.

  3. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance.

    PubMed

    Fallon, Ann M

    2015-10-01

    The plant allelochemical L-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6-7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30-35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels.

  4. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  5. The effects of glycine, L-threonine, and L-cystine supplementation to a 9% casein diet on the conversions of L-tryptophan to nicotinamide and to serotonin in rats.

    PubMed

    Shibata, Katsumi; Imai, Shoko; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Nicotinamide and serotonin are synthesized from L-tryptophan in mammals. It is important to know the nutritional factors affecting the synthesis of nicotinamide and serotonin. We investigated the effects of amino acid composition. Young adult rats were fed ad libitum for 21 d a low-protein (9% casein) diet([1] control), or one of the low protein diets supplemented with following amino acids: [2] glycine, L-threonine, and L-cystine, [3] L-threonine and L-cystine, [4] glycine and L-cystine, and [5] glycine and L-threonine. The amounts of glycine, L-threonine and L-cystine supplementations were 2%, 0.078%, and 0.2%, respectively, and the amino acid contents of all diet were adjusted with supplementation of L-glutamic acid. The body weight gain, food efficiency ratio, and the amino acid nutrition biomarker, which is the urinary excretion ratio of (N(1)-methyl-2-pyridone-5-carboxamide+N(1)-methyl-4-pyridone-3-carboxamide)/N(1)-methylnicotinamide, improved by adding the amino acids glycine, L-threonine and L-cystine to a 9% casein diet. The conversion percentage of L-tryptophan to nicotinamide decreased with the addition of the amino acids glycine, L-threonine and L-cystine to a 9% casein diet, while the concentrations of serotonin in the brain, stomach and small intestine were not affected at all. The effects of each amino acid on body weight gain and the conversion ratios were also investigated. Glycine did not affect these variables. L-Cystine improved the body weight gain, the food efficiency ratio and the urine ratio, and decreased the conversion percentage. L-Threonine did not affect body weight gain or food efficiency ratio; however, it improved the urine ratio and decreased the conversion percentage.

  6. Influence of the counterion and the solvent molecules in the spin crossover system [Co(4-terpyridone)2]Xp.nH2O.

    PubMed

    Galet, Ana; Gaspar, Ana Belén; Muñoz, M Carmen; Real, José Antonio

    2006-05-29

    A series of new complexes belonging to the [Co(4-terpyridone)2]X(p) x nS family (4-terpyridone = 2,6-bis(2-pyridyl)-4(1H)-pyridone) have been synthesized and characterized, using X-ray single crystal determination and magnetic susceptibility studies, to be X = [BF4]- (p = 2) and S = H2O for polymorphs 1 and 2, X = [BF4]- (p = 1) and [SiF6]2- (p = 0.5) and S = CH(3)OH for 3, X = [SiF6]2- (p = 1) and S = 3CH3OH and H2O for 4, X = [Co(NCS)4]2- (p = 1) and S = 0.5CH3OH for 5, X = I- (p = 2) and S = 5H2O for 6, X = [PF6]- (p = 1) for 7, and X = [NO3]- (p = 2) for 8. Compounds 1-7 can be grouped in three sets according to the space group in which they crystallize: (i) P1 triclinic (1, 3), (ii) P2(1) monoclinic (2), and (iii) P2(1)/c monoclinic (4-7). The tridentate 4-terpyridone ligands coordinate the Co(II) ions in a mer fashion defining essentially tetragonally compressed [CoN6] octahedrons. The Co-N axial bonds involving the pyridone rings are markedly shorter than the Co-N equatorial bonds collectively denoted as Co-N(central) and Co-N(distal), respectively. The differences in the average Co-N(central) or Co-N(distal) distances observed for 1-7 reflect the different spin states of Co(II). Complexes 7 and 4' are fully high spin (HS), while 5 and 6 are low spin (LS). However, the counterion [Co(NCS)4]2- in complex 5 is high spin. Complexes 1, 2, 3, and 8 exhibit spin-crossover behavior in the 400-100 K temperature region. Compounds 1 and 2 are polymorphs, and interestingly, 1 irreversibly transforms into 2 above 340 K because of a crystallographic phase transition which involves a drastic modification of the crystal packing. The relevant thermodynamic parameters associated with the spin transition of polymorph 2 have been estimated using the regular solution theory leading to DeltaH = 3.04 kJ mol(-1), DeltaS = 20 J K(-1) mol(-1), and Gamma = 0.95 kJ mol(-1).

  7. Sterically variable dizinc complexes bearing bis(iminopyridyl)phenolate ligands: synthesis, structures and reactivity studies.

    PubMed

    Champouret, Yohan D M; Nodes, William J; Scrimshire, Jason A; Singh, Kuldip; Solan, Gregory A; Young, Isla

    2007-10-28

    A series of chiral dizinc complexes of the type [(2,6-{ArN=C(Me)C5H3N}2C6H3O)Zn2(micro-Cl)Cl2] [Ar=2,6-i-Pr2C6H3 (), 2,6-Me2C6H3 (), 2,4,6-Me3-C6H2 (), 2,4-Me2C6H3 ()] can be conveniently prepared in good yield by the template reaction of 2,6-{O=C(Me)C5H3N}2C6H3OH with an excess of the corresponding aniline and two equivalents of zinc dichloride in n-BuOH at elevated temperature. Alternatively, the pro-ligands, 2,6-{(ArN=C(Me)C5H3N}2C6H3OH [Ar=2,6-i-Pr2C6H3 (L1-H), 2,6-Me2C6H3 (L2-H), 2,4,6-Me3C6H2 (L3-H), 2,4-Me2C6H3 (L4-H)], can be isolated and then treated with two equivalents of zinc dichloride to afford . Interaction of with two equivalents of NaOAc in the presence of TlBF4 gives the diacetate-bridged salt [(L1)Zn2(micro-OAc)2](BF4) () while with Nadbm (dbm=dibenzoylmethanato) the bis(dbm)-chelated salt [(L1)Zn2(dbm)2](BF4) () is obtained. Hydrolysis occurs on reaction of with TlOEt to furnish [(L1)Zn2(micro-OH)Cl2] () as the only isolable product. Conversely, reaction of with Tlhp (hp=2-pyridonate) affords the neutral bis(pyridonate)-bridged trimetallic complex [(L1)Zn3(micro-hp)2Cl3] () as the major product along with as the minor one. Complex and mixtures of / act as modest activators for the ring-opening polymerisation of epsilon-caprolactone. Single crystal X-ray diffraction studies have been performed on , , , , and reveal Zn...Zn separations in the range: 3.069(4)-4.649(6) A.

  8. Fast relaxation dynamics of the cardiotonic drug milrinone in water solutions.

    PubMed

    el-Kemary, Maged; Organero, Juan Angel; Douhal, Abderrazzak

    2006-06-01

    The fast relaxation dynamics of 1,6-dihydro-2-methyl-6-oxo-3,4'-bipyridine-5-carbonitrile (milrinone, MIR), a cardiotonic drug, has been characterized in water solutions at different pH. In acidic media, a blue emission reflects a charge-transfer state in the cation (C) leading to a more stabilized structure with an emission lifetime of 90 ps. The emission lifetimes of the keto (K) and anion (A) structures are approximately 65 and 310 ps, respectively. Reasons for efficient nonradiative channels are discussed in terms of hydrogen-bonding interactions, intramolecular charge transfer (ICT), and twisting motion. A blue nanosecond-emission observed in almost all the studied pH range is suggested to be due to relaxed K due to an ICT reaction. B3LYP (6-31+G**) calculations showed that, in a water cavity, K is more stable than the enol form by 7 kcal/mol, and the ICT may take place within the pyridone moiety. At the physiological pH, the inotropic K structure is the dominant species (approximately 100%).

  9. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia.

  10. Reproductive performance of South African indigenous goats inoculated with DHP-degrading rumen bacteria and maintained on Leucaena leucocephala/grass mixture and natural pasture.

    PubMed

    Akingbade, A A.; Nsahlai, I V.; Bonsi, M L.K.; Morris, C D.; du Toit, L P.

    2001-01-01

    This study examined the reproductive performance of dihydroxy pyridone (DHP)-inoculated South African indigenous (SAIG) female goats maintained on two dietary treatments: (i) Leucaena leucocephala/grass mixture and (ii) natural pasture prior to conception, and during gestation. Leucaena leucocephala/grass mixture was nutritionally superior (crude protein and mineral elements) than the natural pasture. The average daily gain, products of pregnancy and foetal development in gravid goats raised on leucaena/grass mixture were significantly (P<0.03, P<0.009 and P<0.005, respectively) higher than those raised on natural pasture. Conception rate of goats fed natural pasture was higher than the band fed Leucaena leucocephala/grass mixture. Leucaena/grass mixture fed goats had kids that were heavier at birth than their counterparts on natural pasture. Pre-weaning kid mortality over the period of study was significantly (P<0.01) higher in the Leucaena leucocephala/grass mixture treatment. Colostrum from kidded goats fed leucaena was viscous and difficult to sample. The absence of mimosine toxicity symptoms suggests a possibility of safe use of leucaena as a feed resource to DHP-inoculated SAIG.

  11. The co-occurrence of two pyridine alkaloids, mimosine and trigonelline, in Leucaena leucocephala.

    PubMed

    Ogita, Shinjiro; Kato, Misako; Watanabe, Shin; Ashihara, Hiroshi

    2014-01-01

    Leucaena leucocephala is a nitrogen-fixing tropical leguminous tree that produces two pyridine alkaloids, i. e. mimosine [beta-(3-hydroxy-4-pyridon-1-yl)-L-alanine] and trigonelline (1-methylpyridinium-3-carboxylate). Mimosine has been detected in leaves, flowers, pods, seeds, and roots, and it is one of the principal non-protein amino acids that occurs in all organs. Asparagine was the most abundant amino acid in flowers. The mimosine content varied from 3.3 micromol/g fresh weight (FW) in developing flowers to 171 micromol/g FW in mature seeds. Trigonelline was also detected in leaves, flowers, pods, and seeds, but not roots. The trigonelline content was lower than that of mimosine in all organs. It varied from 0.12 micromol/g FW in developing seeds to 2.6 micromol/g FW in mature seeds. [2-14C]Nicotinic acid supplied to the developing seeds was incorporated into trigonelline but not mimosine. This indicates that the pyridine and dihydroxypyridine structures of these two alkaloids are derived from distinct precursors. The physiological functions of mimosine and trigonelline are discussed briefly.

  12. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  13. Antifibrotic effect of pirfenidone in a mouse model of human nonalcoholic steatohepatitis

    PubMed Central

    Komiya, Chikara; Tanaka, Miyako; Tsuchiya, Kyoichiro; Shimazu, Noriko; Mori, Kentaro; Furuke, Shunsaku; Miyachi, Yasutaka; Shiba, Kumiko; Yamaguchi, Shinobu; Ikeda, Kenji; Ochi, Kozue; Nakabayashi, Kazuhiko; Hata, Ken-ichiro; Itoh, Michiko; Suganami, Takayoshi; Ogawa, Yoshihiro

    2017-01-01

    Non-alcoholic steatohepatitis (NASH) is characterized by steatosis with lobular inflammation and hepatocyte injury. Pirfenidone (PFD) is an orally bioavailable pyridone derivative that has been clinically used for the treatment of idiopathic pulmonary fibrosis. However, it remains unknown whether PFD improves liver fibrosis in a mouse model with human NASH-like phenotypes. In this study, we employed melanocortin 4 receptor-deficient (MC4R-KO) mice as a mouse model with human NASH-like phenotypes to elucidate the effect and action mechanisms of PFD on the development of NASH. PFD markedly attenuated liver fibrosis in western diet (WD)-fed MC4R-KO mice without affecting metabolic profiles or steatosis. PFD prevented liver injury and fibrosis associated with decreased apoptosis of liver cells in WD-fed MC4R-KO mice. Pretreatment of PFD inhibited the tumor necrosis factor-α (TNF-α)-induced liver injury and fibrogenic responses associated with decreased apoptosis of liver cells in wild-type mice. PFD also prevented TNF-α-induced hepatocyte apoptosis in vitro with reduced activation of caspase-8 and -3. This study provides evidence for the antifibrotic effect of PFD in a mouse model of human NASH. The data of this study highlight hepatocyte apoptosis as a potential therapeutic target, and suggest that PFD can be repositioned as an antifibrotic drug for human NASH. PMID:28303974

  14. Excess nicotinamide increases plasma serotonin and histamine levels.

    PubMed

    Tian, Yan-Jie; Li, Da; Ma, Qiang; Gu, Xin-Yi; Guo, Ming; Lun, Yong-Zhi; Sun, Wu-Ping; Wang, Xin-Yuan; Cao, Yu; Zhou, Shi-Sheng

    2013-02-25

    Methylation, a methyl group-consuming reaction, plays a key role in the degradation (i.e., inactivation) of monoamine neurotransmitters, including catecholamines, serotonin and histamine. Without labile methyl groups, the methylation-mediated degradation cannot take place. Although high niacin (nicotinic acid and nicotinamide) intake, which is very common nowadays, is known to deplete the body's methyl-group pool, its effect on monoamine-neurotransmitter degradation is not well understood. The aim of this article was to investigate the effect of excess nicotinamide on the levels of plasma serotonin and histamine in healthy subjects. Urine and venous blood samples were collected from nine healthy male volunteers before and after oral loading with 100 mg nicotinamide. Plasma N(1)-methylnicotinamide, urinary N(1)-methyl-2-pyridone-5-carboxamide (2-Py), and plasma betaine levels were measured by using high-performance liquid chromatography (HPLC). Plasma concentrations of choline, serotonin and histamine were measured using commercial kits. The results showed that the plasma N(1)-methylnicotinamide level and the urinary excretion of 2-Py significantly increased after oral loading with 100 mg nicotinamide, which was accompanied with a decrease in the methyl-group donor betaine. Compared with those before nicotinamide load, five-hour postload plasma serotonin and histamine levels significantly increased. These results suggest that excess nicotinamide can disturb monoamine-neurotransmitter metabolism. These findings may be of significance in understanding the etiology of monoamine-related mental diseases, such as schizophrenia and autism (a neurodevelopmental disorder).

  15. Pirfenidone treatment of idiopathic pulmonary fibrosis

    PubMed Central

    Gan, Ye; Herzog, Erica L; Gomer, Richard H

    2011-01-01

    Idiopathic pulmonary fibrosis (IPF) is a discrete clinicopathologic entity defined by the presence of usual interstitial pneumonia on high-resolution CT scan and/or open lung biopsy and the absence of an alternate diagnosis or exposure explaining these findings. There are currently no FDA-approved therapies available to treat this disease, and the 5-year mortality is ∼80%. The pyridone derivative pirfenidone has been studied extensively as a possible therapeutic agent for use in this deadly disease. This review will present the unique clinical features and management issues encountered by physicians caring for IPF patients, including the poor response to conventional therapy. The biochemistry and preclinical efficacy of pirfenidone will be discussed along with a comprehensive review of the clinical efficacy, safety, and side effects and patient-centered foci such as quality of life and tolerability. It is hoped that this information will lend insight into the complex issues surrounding the use of pirfenidone in IPF and lead to further investigation of this agent as a possible therapy in this devastating disease. PMID:21339942

  16. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents

    NASA Astrophysics Data System (ADS)

    Helal, M. H.; El-Awdan, S. A.; Salem, M. A.; Abd-elaziz, T. A.; Moahamed, Y. A.; El-Sherif, A. A.; Mohamed, G. A. M.

    2015-01-01

    This paper presents a combined synthesis; characterization, computational and biological activity studies of novel series of pyridines heterocyclic compounds. The compounds have been characterized by elemental analyses and spectral like IR, 1H NMR, 13C NMR and MS studies. Michael addition of substituted-2-methoxycarbonylacetanilide 2a,b on the α-substituted cinnamonitriles 3a-d gave the corresponding 2-pyridone derivatives 5-10. Structures of the titled compounds cited in this article were elucidated by spectrometric data (IR, 1H NMR, 13C NMR and MS). The molecular modeling of the synthesized compounds has been drawn and their molecular parameters were calculated. Also, valuable information is obtained from the calculation of molecular parameters including electronegativity, net dipole moment of the compounds, total energy, electronic energy, binding energy, HOMO and LUMO energy. Various in vitro antitumor as well as in vivo anti-inflammatory and analgesic activities of the synthesized compounds were investigated. Evaluation of anti-inflammatory activity of test compounds was performed using carrageenan induced paw edema in rats. All the tested compounds showed moderate to good activity. The SAR results indicate that all compounds showed moderate to good activity, among these 7 and 10 compounds having -N(CH3)2 group are most effective.

  17. Evolution of functional six-nucleotide DNA.

    PubMed

    Zhang, Liqin; Yang, Zunyi; Sefah, Kwame; Bradley, Kevin M; Hoshika, Shuichi; Kim, Myong-Jung; Kim, Hyo-Joong; Zhu, Guizhi; Jiménez, Elizabeth; Cansiz, Sena; Teng, I-Ting; Champanhac, Carole; McLendon, Christopher; Liu, Chen; Zhang, Wen; Gerloff, Dietlind L; Huang, Zhen; Tan, Weihong; Benner, Steven A

    2015-06-03

    Axiomatically, the density of information stored in DNA, with just four nucleotides (GACT), is higher than in a binary code, but less than it might be if synthetic biologists succeed in adding independently replicating nucleotides to genetic systems. Such addition could also add functional groups not found in natural DNA, but useful for molecular performance. Here, we consider two new nucleotides (Z and P, 6-amino-5-nitro-3-(1'-β-D-2'-deoxyribo-furanosyl)-2(1H)-pyridone and 2-amino-8-(1'-β-D-2'-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one). These are designed to pair via complete Watson-Crick geometry. These were added to a library of oligonucleotides used in a laboratory in vitro evolution (LIVE) experiment; the GACTZP library was challenged to deliver molecules that bind selectively to liver cancer cells, but not to untransformed liver cells. Unlike in classical in vitro selection, low levels of mutation allow this system to evolve to create binding molecules not necessarily present in the original library. Over a dozen binding species were recovered. The best had Z and/or P in their sequences. Several had multiple, nearby, and adjacent Zs and Ps. Only the weaker binders contained no Z or P at all. This suggests that this system explored much of the sequence space available to this genetic system and that GACTZP libraries are richer reservoirs of functionality than standard libraries.

  18. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  19. Cyclobutane Synthesis and Fragmentation. A Cascade Route to the Lycopodium Alkaloid (-)-Huperzine A.

    PubMed

    White, James D; Li, Yang; Kim, Jungchul; Terinek, Miroslav

    2015-12-04

    An asymmetric total synthesis of the nootropic alkaloid (-)-huperzine A was completed using a cascade sequence initiated by an intramolecular aza-Prins reaction and terminated by a stereoelectronically guided fragmentation of a cyclobutylcarbinyl cation as the key step in assembling the bicyclo[3.3.1]nonene core of the natural product. Intramolecular [2 + 2]-photocycloaddition of the crotyl ether of (S)-4-hydroxycyclohex-2-enone afforded a bicyclo[4.2.0]octanone containing an embedded tetrahydrofuran in which the cyclohexanone moiety was converted to a triisopropylsilyl enol ether and functionalized as an allylic azide. The derived primary amine was acylated with α-phenylselenylacrylic acid, and the resulting amide was reacted with trimethylaluminum to give a [2 + 2]-cycloadduct, which underwent retroaldol fission to produce a fused α-phenylselenyl δ-lactam. Periodate oxidation of this lactam led directly to an α-pyridone, which was converted to a fused 2-methoxypyridine. Reductive cleavage of the activated "pyridylic" C-O bond in this tetracycle and elaboration of the resultant hydroxy ketone to a diketone was followed by chemoselective conversion of the methyl ketone in this structure to an endo isopropenyl group. Condensation of the remaining ketone with methyl carbamate in the presence of acid initiated the programmed cascade sequence and furnished a known synthetic precursor to huperzine A. Subsequent demethylation of the carbamate and the methoxypyridine, accompanied by in situ decarboxylation of the intermediate carbamic acid, gave (-)-huperzine A.

  20. Protective effect of Qnr on agents other than quinolones that target DNA gyrase.

    PubMed

    Jacoby, George A; Corcoran, Marian A; Hooper, David C

    2015-11-01

    Qnr is a plasmid-encoded and chromosomally determined protein that protects DNA gyrase and topoisomerase IV from inhibition by quinolones. Despite its prevalence worldwide and existence prior to the discovery of quinolones, its native function is not known. Other synthetic compounds and natural products also target bacterial topoisomerases. A number were studied as molecular probes to gain insight into how Qnr acts. Qnr blocked inhibition by synthetic compounds with somewhat quinolone-like structure that target the GyrA subunit, such as the 2-pyridone ABT-719, the quinazoline-2,4-dione PD 0305970, and the spiropyrimidinetrione pyrazinyl-alkynyl-tetrahydroquinoline (PAT), indicating that Qnr is not strictly quinolone specific, but Qnr did not protect against GyrA-targeting simocyclinone D8 despite evidence that both simocyclinone D8 and Qnr affect DNA binding to gyrase. Qnr did not affect the activity of tricyclic pyrimidoindole or pyrazolopyridones, synthetic inhibitors of the GyrB subunit, or nonsynthetic GyrB inhibitors, such as coumermycin A1, novobiocin, gyramide A, or microcin B17.Thus, in this set of compounds the protective activity of Qnr was confined to those that, like quinolones, trap gyrase on DNA in cleaved complexes.

  1. Semiempirical MNDO and UV Absorption Studies on Tautomerism of 2-Quinolones

    NASA Astrophysics Data System (ADS)

    Mirek, Julian; Syguła, Andrzej

    1982-11-01

    Semiempirical MNDO calculations with geometry optimization were carried out for seven 4-X-2-quinolone tautomers (X = H, CH3, Cl, OCH3, N(CH3)2, COOH, COOCH3). The results show that 2-hydroxyquinolines are less stabilized compared to 2-quinoIones than 2-hydroxypyridines vs. 2-pyridones. The earlier estimated correction applied to these MNDO results suggests that 4-X-2-quinolones have lower chemical binding energies than the corresponding 4-X-2- hydroxyquinolines by ca. 2.1-3.3 kcal/mol. It is additionally shown that the substituent in position 4 does not influence significantly the relative stabilities of the tautomers. The results of the calculations are verified by UV absorption studies of diluted decane solutions of 2-quinolones at ca. 120°. CNDO/S-Cl-1 calculations based on the optimal MNDO geometries were carried out for 4-X-2- quinolone tautomers. The results generally agree well with the experimental data. A disagreement of the data for 4-COOR-2-quinolones is rationalized.

  2. Evaluation of antidesmone alkaloid as a photosynthesis inhibitor.

    PubMed

    Sampaio, Olívia Moreira; Lima, Murilo Marinho de Castro; Veiga, Thiago André Moura; King-Díaz, Beatriz; da Silva, Maria Fátima das Graças Fernandes; Lotina-Hennsen, Blas

    2016-11-01

    Antidesmone, isolated from Waltheria brachypetala Turcz., owns special structural features as two α,β-unsaturated carbonyl groups and a side alkyl chain that can compete with the quinones involved in the pool of plastoquinones at photosystem II (PSII). In this work, we showed that the alkaloid is an inhibitor of Hill reaction and its target was located at the acceptor side of PSII. Studies of chlorophyll (Chl) a fluorescence showed a J-band that indicates direct action of antidesmone in accumulation of QA(-) (reduced plastoquinone A) due to the electron transport blocked at the QB (plastoquinone B) level similar to DCMU. In vivo assays indicated that antidesmone is a selective post-emergent herbicide probe at 300μM by reducing the biomass production of Physalis ixacarpa plants. Furthermore, antidesmone also behaves as pre-emergent herbicide due to inhibit Physalis ixacarpa plant growth about 60%. Antidesmone, a natural product containing a 4(1H)-pyridones scaffold, will serve as a valuable tool in further development of a new class of herbicides.

  3. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents.

    PubMed

    Helal, M H; El-Awdan, S A; Salem, M A; Abd-elaziz, T A; Moahamed, Y A; El-Sherif, A A; Mohamed, G A M

    2015-01-25

    This paper presents a combined synthesis; characterization, computational and biological activity studies of novel series of pyridines heterocyclic compounds. The compounds have been characterized by elemental analyses and spectral like IR, (1)H NMR, (13)C NMR and MS studies. Michael addition of substituted-2-methoxycarbonylacetanilide 2a,b on the α-substituted cinnamonitriles 3a-d gave the corresponding 2-pyridone derivatives 5-10. Structures of the titled compounds cited in this article were elucidated by spectrometric data (IR, (1)H NMR, (13)C NMR and MS). The molecular modeling of the synthesized compounds has been drawn and their molecular parameters were calculated. Also, valuable information is obtained from the calculation of molecular parameters including electronegativity, net dipole moment of the compounds, total energy, electronic energy, binding energy, HOMO and LUMO energy. Various in vitro antitumor as well as in vivo anti-inflammatory and analgesic activities of the synthesized compounds were investigated. Evaluation of anti-inflammatory activity of test compounds was performed using carrageenan induced paw edema in rats. All the tested compounds showed moderate to good activity. The SAR results indicate that all compounds showed moderate to good activity, among these 7 and 10 compounds having -N(CH3)2 group are most effective.

  4. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: Spectroscopic, structure, thermal analyses, kinetics and biological evaluation (L = An, DMF, Py and Et3N)

    NASA Astrophysics Data System (ADS)

    Zordok, Wael A.

    2014-08-01

    The preparation and characterization of the new solid complexes [VO(CIP)2L]SO4ṡnH2O, where L = aniline (An), dimethylformamide (DMF), pyridine (Py) and triethylamine (Et3N) in the reaction of ciprofloxacin (CIP) with VO(SO4)2·2H2O in ethanol. The isolated complexes have been characterized with their melting points, elemental analysis, IR spectroscopy, magnetic properties, conductance measurements, UV-Vis. and 1H NMR spectroscopic methods and thermal analyses. The results supported the formation of the complexes and indicated that ciprofloxacin reacts as a bidentate ligand bound to the vanadium ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, ΔS*; enthalpies, ΔH*; Gibbs free energies, ΔG*, of the thermal decomposition reactions have been derived from thermo gravimetric (TGA) and differential thermo gravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand and their metal complexes were also evaluated for their antibacterial activity against several bacterial species, such as Bacillus Subtilis (B. Subtilis), Staphylococcus aureus (S. aureus), Nesseria Gonorrhoeae (N. Gonorrhoeae), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli).

  5. A Crystal Structure of a Functional RNA Molecule Containing an Artificial Nucleobase Pair.

    PubMed

    Hernandez, Armando R; Shao, Yaming; Hoshika, Shuichi; Yang, Zunyi; Shelke, Sandip A; Herrou, Julien; Kim, Hyo-Joong; Kim, Myong-Jung; Piccirilli, Joseph A; Benner, Steven A

    2015-08-17

    As one of its goals, synthetic biology seeks to increase the number of building blocks in nucleic acids. While efforts towards this goal are well advanced for DNA, they have hardly begun for RNA. Herein, we present a crystal structure for an RNA riboswitch where a stem C:G pair has been replaced by a pair between two components of an artificially expanded genetic-information system (AEGIS), Z and P, (6-amino-5-nitro-2(1H)-pyridone and 2-amino-imidazo[1,2-a]-1,3,5-triazin-4-(8H)-one). The structure shows that the Z:P pair does not greatly change the conformation of the RNA molecule nor the details of its interaction with a hypoxanthine ligand. This was confirmed in solution by in-line probing, which also measured a 3.7 nM affinity of the riboswitch for guanine. These data show that the Z:P pair mimics the natural Watson-Crick geometry in RNA in the first example of a crystal structure of an RNA molecule that contains an orthogonal added nucleobase pair.

  6. Spectroscopic, thermal analyses, structural and antibacterial studies on the interaction of some metals with ofloxacin

    NASA Astrophysics Data System (ADS)

    Zordok, W. A.; El-Shwiniy, W. H.; El-Attar, M. S.; Sadeek, S. A.

    2013-09-01

    Reaction between the fluoroquinolone antibacterial agent ofloxacin and V(IV), Zr(IV) and U(VI) in methanol and acetone was studied. The ability of ofloxacin to form metal complexes is high. The isolated solid complexes were characterized by elemental analysis, magnetic moment, conductance measurements, infrared, electronic, 1H NMR spectra and thermal investigation. In all complexes the ofloxacin ligand is coordinated through the pyridone and carboxylate oxygen forming 1:2 M:HOfl complexes. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.73 Å and 640.83 N m-1, respectively. The metal-ligand binding of the V(IV) and Zr(IV) complexes was predicted by using the density functional theory (DFT) at the B3LYP-CEP-31G level of theory and total energy, dipole moment estimation of different V(IV) and Zr(IV) ofloxacin structures. All the synthesized complexes exhibited higher biocidal activity against S. aureus K1, Bacillus subtilis K22, Br. otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. compared to parent compounds and standard drugs.

  7. Insights into the activity of maturation inhibitor PF-46396 on HIV-1 clade C

    PubMed Central

    Ghimire, Dibya; Timilsina, Uddhav; Srivastava, Tryambak Pratap; Gaur, Ritu

    2017-01-01

    HIV maturation inhibitors are an emerging class of anti-retroviral compounds that inhibit the viral protease-mediated cleavage of the Gag, CA-SP1 (capsid-spacer peptide 1) peptide to mature CA. The first-in-class maturation inhibitor bevirimat (BVM) displayed potent activity against HIV-1 clade B but was ineffective against other HIV-1 clades including clade C. Another pyridone-based maturation inhibitor, PF-46396 displayed potent activity against HIV-1 clade B. In this study, we aimed at determining the activity of PF-46396 against HIV-1 clade C. We employed various biochemical and virological assays to demonstrate that PF-46396 is effective against HIV-1 clade C. We observed a dose dependent accumulation of CA-SP1 intermediate in presence of the compound. We carried out mutagenesis in the CA- SP1 region of HIV-1 clade C Gag and observed that the mutations conferred resistance against the compound. Many mutations inhibited Gag processing thereby reducing virus release in the absence of the compound. However, presence of PF-46396 rescued these defects and enhanced virus release, replication capacity and infectivity of HIV-1 clade C. These results put together identify PF-46396 as a broadly active maturation inhibitor against HIV-1 clade B and C and help in rational designing of novel analogs with reduced toxicity and increased efficacy for its potential use in clinics. PMID:28252110

  8. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  9. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria.

    PubMed

    Pinkner, Jerome S; Remaut, Han; Buelens, Floris; Miller, Eric; Aberg, Veronica; Pemberton, Nils; Hedenström, Mattias; Larsson, Andreas; Seed, Patrick; Waksman, Gabriel; Hultgren, Scott J; Almqvist, Fredrik

    2006-11-21

    A chemical synthesis platform with broad applications and flexibility was rationally designed to inhibit biogenesis of adhesive pili assembled by the chaperone-usher pathway in Gram-negative pathogens. The activity of a family of bicyclic 2-pyridones, termed pilicides, was evaluated in two different pilus biogenesis systems in uropathogenic Escherichia coli. Hemagglutination mediated by either type 1 or P pili, adherence to bladder cells, and biofilm formation mediated by type 1 pili were all reduced by approximately 90% in laboratory and clinical E. coli strains. The structure of the pilicide bound to the P pilus chaperone PapD revealed that the pilicide bound to the surface of the chaperone known to interact with the usher, the outer-membrane assembly platform where pili are assembled. Point mutations in the pilicide-binding site dramatically reduced pilus formation but did not block the ability of PapD to bind subunits and mediate their folding. Surface plasmon resonance experiments confirmed that the pilicide interfered with the binding of chaperone-subunit complexes to the usher. These pilicides thus target key virulence factors in pathogenic bacteria and represent a promising proof of concept for developing drugs that function by targeting virulence factors.

  10. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: spectroscopic, structure, thermal analyses, kinetics and biological evaluation (L=An, DMF, Py and Et3N).

    PubMed

    Zordok, Wael A

    2014-08-14

    The preparation and characterization of the new solid complexes [VO(CIP)2L]SO4⋅nH2O, where L=aniline (An), dimethylformamide (DMF), pyridine (Py) and triethylamine (Et3N) in the reaction of ciprofloxacin (CIP) with VO(SO4)2·2H2O in ethanol. The isolated complexes have been characterized with their melting points, elemental analysis, IR spectroscopy, magnetic properties, conductance measurements, UV-Vis. and (1)H NMR spectroscopic methods and thermal analyses. The results supported the formation of the complexes and indicated that ciprofloxacin reacts as a bidentate ligand bound to the vanadium ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E(*); entropies, ΔS(*); enthalpies, ΔH(*); Gibbs free energies, ΔG(*), of the thermal decomposition reactions have been derived from thermo gravimetric (TGA) and differential thermo gravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand and their metal complexes were also evaluated for their antibacterial activity against several bacterial species, such as Bacillus Subtilis (B. Subtilis), Staphylococcus aureus (S. aureus), Nesseria Gonorrhoeae (N. Gonorrhoeae), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli).

  11. Cobalt(II) complexes with hydroxypyridines and halogenides

    NASA Astrophysics Data System (ADS)

    Dojer, Brina; Pevec, Andrej; Jagličić, Zvonko; Kristl, Matjaž

    2017-01-01

    We have synthesized and characterized two new cobalt(II) complexes: difluoridotetrakis(3-hydroxypyridine-κN)cobalt(II), [CoF2(C5H5NO)4] (1) and hexa(2-pyridone-κO)cobalt(II) tetrachloridocobaltate(II), [Co(C5H5NO)6][CoCl4] (2). The complexes were prepared by solvothermal synthesis. A methanol solution of hydroxypyridine was added to water solution of cobalt(II) acetate dihydrate followed by a few drops of concentrated hydrofluoric or hydrochloric acid into the mixture. The crystals of the compounds 1 and 2 are stable on air. The compounds were characterized structurally by single-crystal X-ray diffraction analysis, spectrally by FT-IR spectroscopy and thermally. Thermal analysis showed that the final product of both complexes after heating to 900 °C is elemental cobalt. The interactions between building units in the crystal structures include intra- and intermolecular hydrogen bonds in both compounds and π-π interactions in compound 2.

  12. Effect of Heteroatoms in Ordered Microporous Carbons on Their Electrochemical Capacitance.

    PubMed

    Itoi, Hiroyuki; Nishihara, Hirotomo; Kyotani, Takashi

    2016-11-22

    Micropores play a more important role in enhancing the electrochemical capacitance than mesopores and macropores; therefore, the effect of heteroatom doping into micropores on the electrochemical behavior is interesting. However, heteroatom doping into porous carbon materials would potentially change their pore structures and pore sizes, which also affect their electrochemical capacitive behaviors. To gain insight into the intrinsic effects of heteroatoms on the electrochemical capacitive behaviors, zeolite-templated carbon (ZTC) may be the most suitable candidate. ZTC is an ordered microporous carbon with a uniform micropore size of 1.2 nm, a high surface area, and a large micropore volume. In this work, a series of ZTCs containing oxygen, nitrogen, or boron as heteroatoms, with an ordered pore structure and the same pore size, are prepared. By examining their electrochemical capacitive behaviors in an organic electrolyte, the effect of heteroatom doping can be isolated and discussed without considering the effects of pore structure and pore size. Acid anhydride groups are found to generate pseudocapacitance in two potential ranges, -1.0 to -0.3 V (vs Ag/AgClO4) and -0.2 to 0.4 V. B is introduced into the ZTC framework solely as -B(OH)2, which is found to be an electrochemically inert species. N is introduced as pyridine (3.0%), pyridone/pyrrole (23.8%), quaternary (66.6%), and oxidized N (6.6%), and these species exhibit noticeable pseudocapacitance in the microporous carbon.

  13. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.

    PubMed

    Laos, Roberto; Shaw, Ryan; Leal, Nicole A; Gaucher, Eric; Benner, Steven

    2013-08-06

    Artificial genetic systems have been developed by synthetic biologists over the past two decades to include additional nucleotides that form additional nucleobase pairs independent of the standard T:A and C:G pairs. Their use in various tools to detect and analyze DNA and RNA requires polymerases that synthesize duplex DNA containing unnatural base pairs. This is especially true for nested polymerase chain reaction (PCR), which has been shown to dramatically lower noise in multiplexed nested PCR if nonstandard nucleotides are used in their external primers. We report here the results of a directed evolution experiment seeking variants of Taq DNA polymerase that can support the nested PCR amplification with external primers containing two particular nonstandard nucleotides, 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (trivially called P) that pairs with 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (trivially called Z). Variants emerging from the directed evolution experiments were shown to pause less when challenged in vitro to incorporate dZTP opposite P in a template. Interestingly, several sites involved in the adaptation of Taq polymerases in the laboratory were also found to have displayed "heterotachy" (different rates of change) in their natural history, suggesting that these sites were involved in an adaptive change in natural polymerase evolution. Also remarkably, the polymerases evolved to be less able to incorporate dPTP opposite Z in the template, something that was not selected. In addition to being useful in certain assay architectures, this result underscores the general rule in directed evolution that "you get what you select for".

  14. Whole blood NAD and NADP concentrations are not depressed in subjects with clinical pellagra.

    PubMed

    Creeke, Paul I; Dibari, Filippo; Cheung, Edith; van den Briel, Tina; Kyroussis, Eustace; Seal, Andrew J

    2007-09-01

    Population surveys for niacin deficiency are normally based on clinical signs or on biochemical measurements of urinary niacin metabolites. Status may also be determined by measurement of whole blood NAD and NADP concentrations. To compare these methods, whole blood samples and spot urine samples were collected from healthy subjects (n = 2) consuming a western diet, from patients (n = 34) diagnosed with pellagra and attending a pellagra clinic in Kuito (central Angola, where niacin deficiency is endemic), and from female community control subjects (n = 107) who had no clinical signs of pellagra. Whole blood NAD and NADP concentrations were measured by microtiter plate-based enzymatic assays and the niacin urinary metabolites 1-methyl-2-pyridone-5-carboxamide (2-PYR) and 1-methylnicotinamide (1-MN) by HPLC. In healthy volunteers, inter- and intra-day variations for NAD and NADP concentrations were much lower than for the urinary metabolites, suggesting a more stable measure of status. However, whole blood concentrations of NAD and NADP or the NAD:NADP ratio were not significantly depressed in clinical pellagra. In contrast, the concentrations of 2-PYR and 1-MN, expressed relative to either creatinine or osmolality, were lower in pellagra patients and markedly higher following treatment. The use of the combined cut-offs (2-PYR <3.0 micromol/mmol creatinine and 1-MN <1.3 micromol/mmol creatinine) gave a sensitivity of 91% and specificity of 72%. In conclusion, whole blood NAD and NADP concentrations gave an erroneously low estimate of niacin deficiency. In contrast, spot urine sample 2-PYR and 1-MN concentrations, relative to creatinine, were a sensitive and specific measure of deficiency.

  15. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation.

    PubMed

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2014-02-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future.

  16. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  17. Structural and Thermodynamic Characterization of the TYK2 and JAK3 Kinase Domains in Complex with CP-690550 and CMP-6

    SciTech Connect

    Chrencik, Jill E.; Patny, Akshay; Leung, Iris K.; Korniski, Brian; Emmons, Thomas L.; Hall, Troii; Weinberg, Robin A.; Gormley, Jennifer A.; Williams, Jennifer M.; Day, Jacqueline E.; Hirsch, Jeffrey L.; Kiefer, James R.; Leone, Joseph W.; Fischer, H. David; Sommers, Cynthia D.; Huang, Horng-Chih; Jacobsen, E.J.; Tenbrink, Ruth E.; Tomasselli, Alfredo G.; Benson, Timothy E.

    2010-11-01

    Janus kinases (JAKs) are critical regulators of cytokine pathways and attractive targets of therapeutic value in both inflammatory and myeloproliferative diseases. Although the crystal structures of active JAK1 and JAK2 kinase domains have been reported recently with the clinical compound CP-690550, the structures of both TYK2 and JAK3 with CP-690550 have remained outstanding. Here, we report the crystal structures of TYK2, a first in class structure, and JAK3 in complex with PAN-JAK inhibitors CP-690550 ((3R,4R)-3-[4-methyl-3-[N-methyl-N-(7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino]piperidin-1-yl]-3-oxopropionitrile) and CMP-6 (tetracyclic pyridone 2-t-butyl-9-fluoro-3,6-dihydro-7H-benz[h]-imidaz[4,5-f]isoquinoline-7-one), both of which bind in the ATP-binding cavities of both JAK isozymes in orientations similar to that observed in crystal structures of JAK1 and JAK2. Additionally, a complete thermodynamic characterization of JAK/CP-690550 complex formation was completed by isothermal titration calorimetry, indicating the critical role of the nitrile group from the CP-690550 compound. Finally, computational analysis using WaterMap further highlights the critical positioning of the CP-690550 nitrile group in the displacement of an unfavorable water molecule beneath the glycine-rich loop. Taken together, the data emphasize the outstanding properties of the kinome-selective JAK inhibitor CP-690550, as well as the challenges in obtaining JAK isozyme-selective inhibitors due to the overall structural and sequence similarities between the TYK2, JAK1, JAK2 and JAK3 isozymes. Nevertheless, subtle amino acid variations of residues lining the ligand-binding cavity of the JAK enzymes, as well as the global positioning of the glycine-rich loop, might provide the initial clues to obtaining JAK-isozyme selective inhibitors.

  18. Productive performance and urinary excretion of mimosine metabolites by hair sheep grazing in a silvopastoral system with high densities of Leucaena leucocephala.

    PubMed

    Barros-Rodríguez, Marcos; Solorio-Sánchez, Javier; Ku-Vera, Juan; Ayala-Burgos, Armín; Sandoval-Castro, Carlos; Solís-Pérez, Georgina

    2012-12-01

    The aim of this study was to evaluate daily weight gain (DWG), total dry matter (DM) intake, rumen degradability of forage, and urinary excretion of mimosine metabolites by hair sheep in a silvopastoral system with high densities of Leucaena leucocephala. A completely randomized design was carried out with two treatments: treatment 1 (T1) silvopastoral system with leucaena at a density of 35,000 plants/ha and treatment 2 (T2), leucaena at a density of 55,000 plants/ha. Leucaena was associated with tropical grasses Panicum maximum and Cynodon nlemfluensis. Twenty-four male Pelibuey lambs of 23.2 ± 3.4 kg live weight (LW) were used (12 lambs per treatment). Results showed differences (P < 0.05) in DWG of T1 (106.41 ± 11.66 g(-1) sheep(-1)) with respect to that of T2 (81.33 ± 11.81 g(-1) sheep). Voluntary intake was higher in lambs from T1 (83.81 ± 04.07 g DM/kg LW(0.75)) with respect to that from T2 (71.67 ± 8.12 g DM/kg LW(0.75)). There was a difference in color of urine between sheep of T1 and T2, the latter giving positive results for the presence of metabolites derived from mimosine (3-4 dihydroxypyridine and 2-3 dihydroxy pyridone). Rumen degradability of DM of L. leucocephala was higher (P < 0.05) compared to that of P. maximum and C. nlemfluensis (72.94 ± 0.40 vs. 67.06 ± 1.50 and 63.25 ± 1.51 %, respectively). It is concluded that grazing at high densities of L. leucocephala affects daily weight gain of hair sheep, possibly due to ingestion of high amounts of mimosine which may exert an adverse effect on voluntary intake.

  19. In vivo effects of 3-iodocytisine: pharmacological and genetic analysis of hypothermia and evaluation of chronic treatment on nicotinic binding sites.

    PubMed

    Zambrano, C A; Marks, M J; Cassels, B K; Maccioni, R B

    2009-09-01

    Several cytisine derivatives have been developed in the search for more selective drugs at nicotinic acetylcholine receptors (nAChR). Binding experiments in transfected cell lines showed that the iodination of cytisine in the position 3 of the pyridone ring increased potency at alpha7-nAChR and to a lesser extent at the alpha4beta2 subtypes, both of which are widely expressed in the brain. However, no in vivo studies have been published on this compound. Inhibition curves presented here using wild type, beta2, and beta4-null mutant mice confirm that 3-IC binds to alpha4beta2 *, alpha7 * and alpha3beta4 * receptors with higher affinity than cytisine (asterisk indicates the receptor may contain additional subunits, Lukas et al., 1999). Intraperitoneal injection of 3-iodocytisine (3-IC) induced considerable dose-dependent hypothermia in DBA/2J and C57BL/6J mice. This response was blocked by mecamylamine and partially inhibited by hexamethonium. beta4-null mice displayed significantly less 3-IC-induced hypothermia than wild-type mice, beta2-null mice were somewhat less affected than wild types, while responses of alpha7 *-null mice were similar to wild types. Mice treated chronically with 3-IC display a marked increase in alpha7 * and alpha4beta2 * binding sites determined by radioligand binding in membrane preparations from cerebral cortex and hippocampus. Quantitative autoradiographic analysis of 28 brain regions of mice treated with 3-IC was consistent with the membrane binding, detecting an increase of cytisine-sensitive [(125)I]epibatidine binding sites, while cytisine-resistant [(125)I]epibatidine sites were unchanged. [(125)I]alpha-Bungarotoxin binding sites also exhibited up-regulation. These results give a first evaluation of in vivo consequences of 3-IC as a potent agonist with marked effects on mice.

  20. Structure, antimicrobial activity, DNA- and albumin-binding of manganese(II) complexes with the quinolone antimicrobial agents oxolinic acid and enrofloxacin.

    PubMed

    Zampakou, Marianthi; Akrivou, Melpomeni; Andreadou, Eleni G; Raptopoulou, Catherine P; Psycharis, Vassilis; Pantazaki, Anastasia A; Psomas, George

    2013-04-01

    The reaction of MnCl2 with the quinolone antibacterial drug oxolinic acid (Hoxo) results to the formation of [KMn(oxo)3(MeOH)3]. Interaction of MnCl2 with the quinolone Hoxo or enrofloxacin (Herx) and the N,N'-donor heterocyclic ligand 1,10-phenanthroline (phen) results in the formation of metal complexes with the general formula [Mn(quinolonato)2(phen)]. The crystal structures of [KMn(oxo)3(MeOH)3] and [Mn(erx)2(phen)], exhibiting a 1D polymeric and a mononuclear structure, respectively, have been determined by X-ray crystallography. In these complexes, the deprotonated bidentate quinolonato ligands are coordinated to manganese(II) ion through the pyridone oxygen and a carboxylato oxygen. All complexes can act as potential antibacterial agents with [Mn(erx)2(phen)] exhibiting the most pronounced antimicrobial activity against five different microorganisms. Interaction of the complexes with calf-thymus DNA (CT DNA), studied by UV spectroscopy, has shown that they bind to CT DNA. Competitive study with ethidium bromide (EB) has shown that all complexes can displace the DNA-bound EB indicating their binding to DNA in strong competition with EB. Intercalative binding mode is proposed for the interaction of the complexes with CT DNA and has also been verified by DNA solution viscosity measurements and cyclic voltammetry. DNA electrophoretic mobility experiments suggest that [Mn(erx)2(phen)] binds strongly to supercoiled pDNA and to linearized pDNA possibly by an intercalative manner provoking double-stranded cleavage reflecting in a nuclease-like activity. The complexes exhibit good binding propensity to human or bovine serum albumin protein showing relatively high binding constant values. The binding constants of the complexes towards CT DNA and albumins have been compared to their corresponding zinc(II) and nickel(II) complexes.

  1. Preparation, structure and microbial evaluation of metal complexes of the second generation quinolone antibacterial drug lomefloxacin

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-09-01

    Lomefloxacinate of Y(III), Zr(IV) and U(VI) were isolated as solids with the general formula; [Y(LFX) 2Cl 2]Cl·12H 2O, [ZrO(LFX) 2Cl]Cl·15H 2O and [UO 2(LFX) 3](NO 3) 2·4H 2O. The new synthesized complexes were characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopies) as well as thermal analyses. In these complexes lomefloxacin act as bidentate ligand bound to the metal ions through the pyridone oxygen and one carboxylate oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, activation energy, enthalpy of activation and Gibbs free energy evaluated by using Coats- Redfern and Horowitz- Metzger equations for free lomefloxacin and three complexes were carried out. The bond stretching force constant and length of the U dbnd O bond for the [UO 2(LFX) 3](NO 3) 2·4H 2O complex were calculated. The antimicrobial activity of lomefloxacin and its metal complexes was tested against different bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) as Gram-positive and Gram-negative bacterial species and also against two species of antifungal, penicillium ( P. rotatum) and trichoderma ( T. sp.). The three complexes are of a good action against three bacterial species but the Y(III) complex exhibit excellent activity against Pseudomonas aeruginosa ( P. aeruginosa), when compared to the free lomefloxacin.

  2. Nickel-quinolones interaction. Part 5-Biological evaluation of nickel(II) complexes with first-, second- and third-generation quinolones.

    PubMed

    Skyrianou, Kalliopi C; Perdih, Franc; Papadopoulos, Athanasios N; Turel, Iztok; Kessissoglou, Dimitris P; Psomas, George

    2011-10-01

    The nickel(II) complexes with the quinolone antibacterial agents oxolinic acid, flumequine, enrofloxacin and sparfloxacin in the presence of the N,N'-donor heterocyclic ligand 2,2'-bipyridylamine have been synthesized and characterized. The quinolones act as bidentate ligands coordinated to Ni(II) ion through the pyridone oxygen and a carboxylato oxygen. The crystal structure of [(2,2'-bipyridylamine)bis(sparfloxacinato)nickel(II)] has been determined by X-ray crystallography. UV study of the interaction of the complexes with calf-thymus DNA (CT DNA) has shown that they bind to CT DNA with [(2,2'-bipyridylamine)bis(flumequinato)nickel(II)] exhibiting the highest binding constant to CT DNA. The cyclic voltammograms of the complexes have shown that in the presence of CT DNA the complexes can bind to CT DNA by the intercalative binding mode which has also been verified by DNA solution viscosity measurements. Competitive study with ethidium bromide (EB) has shown that the complexes can displace the DNA-bound EB indicating that they bind to DNA in strong competition with EB. The complexes exhibit good binding propensity to human or bovine serum albumin protein having relatively high binding constant values. The biological properties of the [Ni(quinolonato)(2)(2,2'-bipyridylamine)] complexes have been evaluated in comparison to the previously reported Ni(II) quinolone complexes [Ni(quinolonato)(2)(H(2)O)(2)], [Ni(quinolonato)(2)(2,2'-bipyridine)] and [Ni(quinolonato)(2)(1,10-phenanthroline)]. The quinolones and their Ni(II) complexes have been tested for their antioxidant and free radical scavenging activity. They have been also tested in vitro for their inhibitory activity against soybean lipoxygenase.

  3. A Carbon-Nitrogen Lyase from Leucaena leucocephala Catalyzes the First Step of Mimosine Degradation1[C][W][OPEN

    PubMed Central

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X.; Borthakur, Dulal

    2014-01-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5′-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5′-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16 × 10−4 m and 5.05 × 10−5 mol s−1 mg−1, respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future. PMID:24351687

  4. Zero-point tunneling splittings in compounds with multiple hydrogen bonds calculated by the rainbow instanton method.

    PubMed

    Smedarchina, Zorka; Siebrand, Willem; Fernández-Ramos, Antonio

    2013-10-31

    Zero-point tunneling splittings are calculated, and the values are compared with the experimentally observed values for four compounds in which the splittings are due to multiple-proton transfer along hydrogen bonds. These compounds are three binary complexes, namely, the formic acid and benzoic acid dimer and the 2-pyridone-2-hydroxypyridine complex, in which the protons move in pairs, and the calix[4]arene molecule, in which they move as a quartet. The calculations make use of and provide a test for the newly developed rainbow approximation for the zero-temperature instanton action which governs the tunneling splitting (as well as the transfer rate). This approximation proved to be much less drastic than the conventional adiabatic and sudden approximations, leading to a new general approach to approximate the instanton action directly. As input parameters the method requires standard electronic-structure data and the Hessians of the molecule or complex at the stationary configurations only; the same parameters also yield isotope effects. Compared to our earlier approximate instanton method, the rainbow approximation offers an improved treatment of the coupling of the tunneling mode to the other vibrations. Contrary to the conventional instanton approach based on explicit evaluation of the instanton trajectory, both methods bypass this laborious procedure, which renders them very efficient and capable of handling systems that thus far have not been handled by other theoretical methods. Past results for model systems have shown that the method should be valid for a wide range of couplings. The present results for real compounds show that it gives a satisfactory account of tunneling splittings and isotope effects in systems with strong coupling that enhances tunneling, thus demonstrating its applicability to low-temperature proton dynamics in systems with multiple hydrogen bonds.

  5. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles.

  6. In vitro antimycotic activity and nail permeation models of a piroctone olamine (octopirox) containing transungual water soluble technology.

    PubMed

    Dubini, Francesco; Bellotti, Maria Grazia; Frangi, Alessandra; Monti, Daniela; Saccomani, Luigi

    2005-01-01

    Several in vitro studies with a new medical device (Myfungar) containing 0.5% of piroctone olamine (CAS 68890-66-4, octopirox) in a hydroxypropyl chitosan hydroalcoholic solution were performed. The chemical name of the active ingredient is 1-hydroxy-4-methyl-6 (2,4,4-trimethylpentyl)-2(1H)-pyridone; combination with 2-amino-ethanol (1:1). The antimycotic activity was determined in the most common fungi responsible of nail infections such as Candida parapsilosis, Scopulariopsis brevicaulis or Trichophyton rubrum. The minimum inhibitory concentration (MIC), found by means of the broth dilution susceptibility method, ranged between 0.0003% and 0.006% for all pathogens considered. The in vitro permeation study was performed by using bovine hoof membranes inserted in a modified Gummer vertical permeation cell. The experiment showed, at 30 h, a retention of the product in the nail membranes by 11.1% of the applied dose. No piroctone permeation through bovine hoof membranes could be detected by HPLC due to the limit of quantitation of this method. On the other hand, permeation of nail membranes has been demonstrated by a biological assay: the study of in vitro permeation through bovine hoof membranes, performed by biological assay, showed dose-dependent inhibition rings of T. rubrum growth by the tested device, placed either on disks for antibiogram or on nail fragments. The placebo did not show any inhibition. In vitro experimental infection by T. rubrum showed a preventive activity of the tested device on fungal growth as well as a curative activity, as the pathogen was eradicated by the tested solution in previously infected nails.

  7. Biological phosphorylation of an Unnatural Base Pair (UBP) using a Drosophila melanogaster deoxynucleoside kinase (DmdNK) mutant

    PubMed Central

    Daugherty, Ashley B.; Yang, Zunyi; Shaw, Ryan; Dong, Mengxing; Lutz, Stefan; Benner, Steven A.

    2017-01-01

    One research goal for unnatural base pair (UBP) is to replicate, transcribe and translate them in vivo. Accordingly, the corresponding unnatural nucleoside triphosphates must be available at sufficient concentrations within the cell. To achieve this goal, the unnatural nucleoside analogues must be phosphorylated to the corresponding nucleoside triphosphates by a cascade of three kinases. The first step is the monophosphorylation of unnatural deoxynucleoside catalyzed by deoxynucleoside kinases (dNK), which is generally considered the rate limiting step because of the high specificity of dNKs. Here, we applied a Drosophila melanogaster deoxyribonucleoside kinase (DmdNK) to the phosphorylation of an UBP (a pyrimidine analogue (6-amino-5-nitro-3-(1’-b-d-2’-deoxyribofuranosyl)-2(1H)-pyridone, Z) and its complementary purine analogue (2-amino-8-(1’-b-d-2’-deoxyribofuranosyl)-imidazo[1,2-a]-1,3,5-triazin-4(8H)-one, P). The results showed that DmdNK could efficiently phosphorylate only the dP nucleoside. To improve the catalytic efficiency, a DmdNK-Q81E mutant was created based on rational design and structural analyses. This mutant could efficiently phosphorylate both dZ and dP nucleoside. Structural modeling indicated that the increased efficiency of dZ phosphorylation by the DmdNK-Q81E mutant might be related to the three additional hydrogen bonds formed between E81 and the dZ base. Overall, this study provides a groundwork for the biological phosphorylation and synthesis of unnatural base pair in vivo. PMID:28323896

  8. Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.

    2011-02-01

    The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.

  9. HARNESSING THE CHEMISTRY OF CO2

    SciTech Connect

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  10. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    NASA Astrophysics Data System (ADS)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  11. Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties.

    PubMed

    Psomas, George

    2008-09-01

    Five novel metal complexes of the quinolone antibacterial agent ciprofloxacin with Mn(2+), Fe(3+), Co(2+), Ni(2+) and MoO(2)(2+) have been prepared and characterized with physicochemical, spectroscopic and electrochemical techniques. In all these complexes, ciprofloxacin acts as a bidentate deprotonated ligand bound to the metal through the pyridone oxygen and one carboxylate oxygen. The central metal in each complex is six-coordinate and a slightly distorted octahedral geometry is proposed. The lowest energy model structures of the Mn(2+), Fe(3+) and MoO(2)(2+) complexes have been determined with molecular modeling calculations. The cyclic voltammograms of the complexes have been recorded in dmso solution and in 1/2 dmso/buffer (containing 150mM NaCl and 15mM trisodium citrate at pH 7.0) solution and the corresponding redox potentials have been estimated. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV and fluorescence spectroscopies and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. Competitive studies with ethidium bromide (EB) have shown that the complexes exhibit the ability to displace the DNA-bound EB indicating that the complexes bind to DNA probably via intercalation in strong competition with EB for the intercalative binding site.

  12. Characterization, HPLC method development and impurity identification for 3,4,3-LI(1,2-HOPO), a potent actinide chelator for radionuclide decorporation.

    PubMed

    Liu, Mingtao; Wang, Jennie; Wu, Xiaogang; Wang, Euphemia; Abergel, Rebecca J; Shuh, David K; Raymond, Kenneth N; Liu, Paul

    2015-01-01

    3,4,3-LI(1,2-HOPO), 1,5,10,14-tetra(1-hydroxy-2-pyridon-6-oyl)-1,5,10,14-tetraazatetradecane), is a potent octadentate chelator of actinides. It is being developed as a decorporation treatment for internal contamination with radionuclides. Conventional HPLC methods exhibited speciation peaks and bridging, likely attributable to the agent's complexation with residual metallic ions in the HPLC system. Derivatization of the target ligand in situ with Fe(III) chloride, however, provided a single homogeneous iron-complex that can readily be detected and analyzed by HPLC. The HPLC method used an Agilent Eclipse XDB-C18 column (150 mm × 4.6mm, 5 μm) at 25°C with UV detection at 280 nm. A gradient elution, with acetonitrile (11% to 100%)/buffer mobile phase, was developed for impurity profiling. The buffer consisted of 0.02% formic acid and 10mM ammonium formate at pH 4.6. An Agilent 1200 LC-6530 Q-TOF/MS system was employed to characterize the [Fe(III)-3,4,3-LI(1,2-HOPO)] derivative and impurities. The proposed HPLC method was validated for specificity, linearity (concentration range 0.13-0.35 mg/mL, r = 0.9999), accuracy (recovery 98.3-103.3%), precision (RSD ≤ 1.6%) and sensitivity (LOD 0.08 μg/mL). The LC/HRMS revealed that the derivative was a complex consisting of one 3,4,3-LI(1,2-HOPO) molecule, one hydroxide ligand, and two iron atoms. Impurities were also identified with LC/HRMS. The validated HPLC method was used in shelf-life evaluation studies which showed that the API remained unchanged for one year at 25°C/60% RH.

  13. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    SciTech Connect

    Esboui, Mounir

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  14. [Pellagra].

    PubMed

    Pitche, Palokinam T

    2005-01-01

    Pellagra is a systemic disturbance caused by a cellular deficiency of niacin, resulting from inadequate dietary nicotinic acid and/or its precursors, the essential amino-acid tryptophan. In Europe and North America cases of pellagra are rarely encountered, but in some developing countries this disease is frequent, and is the most frequent clinical feature of nutritional deficiency of adult. The principal causes of pellagra are: nutritional niacin deficiency; chronic alcoholism; gastro-intestinal malabsorption; some medications (5-fluoro-uracil, isoniazid, pyrazinamide ehtionamide, 6-mercaptopurine, hydantoins, phenobarbital and chloramphenicol). The diagnosis of pellagra is based on the patient's history and the presence of "3 D syndrome": dermatitis, diarrhea, and dementia. The dermatitis caused by pellagra is a bilaterally symmetrical erythema at the sites of solar exposure. The dermatitis begins in the form of an erythema with acute or intermittent onset gradually changing to an exsudative eruption on the dorsa of the hand, face, neck, and chest with pruritus and burning. Acute dermatitis of pellagra resembles sunburn in the first stages, sometimes with vesicles and bullae. The gastro-intestinal disturbances are: anorexia, nausea, epigastric discomfort and chronic or recurrent diarrhea. Anorexia and malabsorbative diarrhea lead to a state of malnutrition and cachexia. Stools are typically watery, but occasionally can be bloody and mucoid. Neuropsychologic manifestation included photophobia, asthenia, depression, hallucinations, confusions, memory loss and psychosis. As pellagra advances, patient become disoriented, confused and delirious; then stuporous and finally die. Pathological changes in the skin is non-specific, there are no chemical tests available to definitively diagnose pellagra. However low levels of urinary excretion of N-methylnicotinamide and pyridone indicates niacin deficiency. The treatment of pellagra consisted to exogenous administration of

  15. Selective CO2 Sequestration with Monolithic Bimodal Micro/Macroporous Carbon Aerogels Derived from Stepwise Pyrolytic Decomposition of Polyamide-Polyimide-Polyurea Random Copolymers.

    PubMed

    Saeed, Adnan M; Rewatkar, Parwani M; Majedi Far, Hojat; Taghvaee, Tahereh; Donthula, Suraj; Mandal, Chandana; Sotiriou-Leventis, Chariklia; Leventis, Nicholas

    2017-04-05

    Polymeric aerogels (PA-xx) were synthesized via room-temperature reaction of an aromatic triisocyanate (tris(4-isocyanatophenyl) methane) with pyromellitic acid. Using solid-state CPMAS (13)C and (15)N NMR, it was found that the skeletal framework of PA-xx was a statistical copolymer of polyamide, polyurea, polyimide, and of the primary condensation product of the two reactants, a carbamic-anhydride adduct. Stepwise pyrolytic decomposition of those components yielded carbon aerogels with both open and closed microporosity. The open micropore surface area increased from <15 m(2) g(-1) in PA-xx to 340 m(2) g(-1) in the carbons. Next, reactive etching at 1,000 °C with CO2 opened access to the closed pores and the micropore area increased by almost 4× to 1150 m(2) g(-1) (out of 1750 m(2) g(-1) of a total BET surface area). At 0 °C, etched carbon aerogels demonstrated a good balance of adsorption capacity for CO2 (up to 4.9 mmol g(-1)), and selectivity toward other gases (via Henry's law). The selectivity for CO2 versus H2 (up to 928:1) is suitable for precombustion fuel purification. Relevant to postcombustion CO2 capture and sequestration (CCS), the selectivity for CO2 versus N2 was in the 17:1 to 31:1 range. In addition to typical factors involved in gas sorption (kinetic diameters, quadrupole moments and polarizabilities of the adsorbates), it is also suggested that CO2 is preferentially engaged by surface pyridinic and pyridonic N on carbon (identified with XPS) in an energy-neutral surface reaction. Relatively high uptake of CH4 (2.16 mmol g(-1) at 0 °C/1 bar) was attributed to its low polarizability, and that finding paves the way for further studies on adsorption of higher (i.e., more polarizable) hydrocarbons. Overall, high CO2 selectivities, in combination with attractive CO2 adsorption capacities, low monomer cost, and the innate physicochemical stability of carbon render the materials of this study reasonable candidates for further practical

  16. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  17. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: The electronic Davydov splittings cannot match experiment

    NASA Astrophysics Data System (ADS)

    Ottiger, Philipp; Leutwyler, Samuel; Köppel, Horst

    2012-05-01

    The S1/S2 state exciton splittings of symmetric doubly hydrogen-bonded gas-phase dimers provide spectroscopic benchmarks for the excited-state electronic couplings between UV chromophores. These have important implications for electronic energy transfer in multichromophoric systems ranging from photosynthetic light-harvesting antennae to photosynthetic reaction centers, conjugated polymers, molecular crystals, and nucleic acids. We provide laser spectroscopic data on the S1/S2 excitonic splitting Δexp of the doubly H-bonded o-cyanophenol (oCP) dimer and compare to the splittings of the dimers of (2-aminopyridine)2, [(2AP)2], (2-pyridone)2, [(2PY)2], (benzoic acid)2, [(BZA)2], and (benzonitrile)2, [(BN)2]. The experimental S1/S2 excitonic splittings are Δexp = 16.4 cm-1 for (oCP)2, 11.5 cm-1 for (2AP)2, 43.5 cm-1 for (2PY)2, and <1 cm-1 for (BZA)2. In contrast, the vertical S1/S2 energy gaps Δcalc calculated by the approximate second-order coupled cluster (CC2) method for the same dimers are 10-40 times larger than the Δexp values. The qualitative failure of this and other ab initio methods to reproduce the exciton splitting Δexp arises from the Born-Oppenheimer (BO) approximation, which implicitly assumes the strong-coupling case and cannot be employed to evaluate excitonic splittings of systems that are in the weak-coupling limit. Given typical H-bond distances and oscillator strengths, the majority of H-bonded dimers lie in the weak-coupling limit. In this case, the monomer electronic-vibrational coupling upon electronic excitation must be accounted for; the excitonic splittings arise between the vibronic (and not the electronic) transitions. The discrepancy between the BO-based splittings Δcalc and the much smaller experimental Δexp values is resolved by taking into account the quenching of the BO splitting by the intramolecular vibronic coupling in the monomer S1 ← S0 excitation. The vibrational quenching factors Γ for the five dimers (oCP)2, (2AP)2

  18. Carboxylate-assisted ruthenium-catalyzed alkyne annulations by C-H/Het-H bond functionalizations.

    PubMed

    Ackermann, Lutz

    2014-02-18

    To improve the atom- and step-economy of organic syntheses, researchers would like to capitalize upon the chemistry of otherwise inert carbon-hydrogen (C-H) bonds. During the past decade, remarkable progress in organometallic chemistry has set the stage for the development of increasingly viable metal catalysts for C-H bond activation reactions. Among these methods, oxidative C-H bond functionalizations are particularly attractive because they avoid the use of prefunctionalized starting materials. For example, oxidative annulations that involve sequential C-H and heteroatom-H bond cleavages allow for the modular assembly of regioselectively decorated heterocycles. These structures serve as key scaffolds for natural products, functional materials, crop protecting agents, and drugs. While other researchers have devised rhodium or palladium complexes for oxidative alkyne annulations, my laboratory has focused on the application of significantly less expensive, yet highly selective ruthenium complexes. This Account summarizes the evolution of versatile ruthenium(II) complexes for annulations of alkynes via C-H/N-H, C-H/O-H, or C-H/N-O bond cleavages. To achieve selective C-H bond functionalizations, we needed to understand the detailed mechanism of the crucial C-H bond metalation with ruthenium(II) complexes and particularly the importance of carboxylate assistance in this process. As a consequence, our recent efforts have resulted in widely applicable methods for the versatile preparation of differently decorated arenes and heteroarenes, providing access to among others isoquinolones, 2-pyridones, isoquinolines, indoles, pyrroles, or α-pyrones. Most of these reactions used Cu(OAc)2·H2O, which not only acted as the oxidant but also served as the essential source of acetate for the carboxylate-assisted ruthenation manifold. Notably, the ruthenium(II)-catalyzed oxidative annulations also occurred under an ambient atmosphere of air with cocatalytic amounts of Cu(OAc)2

  19. High-Content pSTAT3/1 Imaging Assays to Screen for Selective Inhibitors of STAT3 Pathway Activation in Head and Neck Cancer Cell Lines

    PubMed Central

    Sen, Malabika; Hua, Yun; Camarco, Daniel; Shun, Tong Ying; Lazo, John S.; Grandis, Jennifer R.

    2014-01-01

    Abstract The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19±4.08 and 16.38±8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H1 receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical

  20. Heterometallic Coordination Polymers Assembled from Trigonal Trinuclear Fe2Ni-Pivalate Blocks and Polypyridine Spacers: Topological Diversity, Sorption, and Catalytic Properties.

    PubMed

    Sotnik, Svetlana A; Polunin, Ruslan A; Kiskin, Mikhail A; Kirillov, Alexander M; Dorofeeva, Victoria N; Gavrilenko, Konstantin S; Eremenko, Igor L; Novotortsev, Vladimir M; Kolotilov, Sergey V

    2015-06-01

    Linkage of the trigonal complex [Fe2NiO(Piv)6] (where Piv(-) = pivalate) by a series of polypyridine ligands, namely, tris(4-pyridyl)triazine (L(2)), 2,6-bis(3-pyridyl)-4-(4-pyridyl)pyridine (L(3)), N-(bis-2,2-(4-pyridyloxymethyl)-3-(4-pyridyloxy)propyl))pyridone-4 (L(4)), and 4-(N,N-diethylamino)phenyl-bis-2,6-(4-pyridyl)pyridine (L(5)) resulted in the formation of novel coordination polymers [Fe2NiO(Piv)6(L(2))]n (2), [Fe2NiO(Piv)6(L(3))]n (3), [Fe2NiO(Piv)6(L(4))]n·nHPiv (4), and [{Fe2NiO(Piv)6}4{L(5)}6]n·3nDEF (5, where DEF is N,N-diethylformamide), which were crystallographically characterized. The topological analysis of 3, 4, and 5 disclosed the 3,3,4,4-connected 2D (3, 4) or 3,4,4-connected 1D (5) underlying networks which, upon further simplification, gave rise to the uninodal 3-connected nets with the respective fes (3, 4) or SP 1-periodic net (4,4)(0,2) (5) topologies, driven by the cluster [Fe2Ni(μ3-O)(μ-Piv)6] nodes and the polypyridine μ3-L(3,4) or μ2-L(5) blocks. The obtained topologies were compared with those identified in other closely related derivatives [Fe2NiO(Piv)6(L(1))]n (1) and {Fe2NiO(Piv)6}8{L(6)}12 (6), where L(1) and L(6) are tris(4-pyridyl)pyridine and 4-(N,N-dimethylamino)phenyl-bis-2,6-(4-pyridyl)pyridine, respectively. It was shown that a key structure-driven role in defining the dimensionality and topology of the resulting coordination network is played by the type of polypyridine spacer. Compounds 2 and 3 possess a porous structure, as confirmed by the N2 and H2 sorption data at 78 K. Methanol and ethanol sorption by 2 was also studied indicating that the pores filled by these substrates did not induce any structural rearrangement of this sorbent. Additionally, porous coordination polymer 2 was also applied as a heterogeneous catalyst for the condensation of salicylaldehyde or 9-anthracenecarbaldehyde with malononitrile. The best activity of 2 was observed in the case of salicylaldehyde substrate, resulting in up to 88

  1. Effect of graded levels of niacin supplementation of a semipurified diet on energy and nitrogen balance, growth performance, diarrhea occurrence, and niacin metabolite excretion by growing swine.

    PubMed

    Ivers, D J; Veum, T L

    2012-01-01

    Thirty-six crossbred barrows with an average initial age of 42 d and BW of 13.8 kg were placed in individual metabolism crates in a 35-d experiment to evaluate the supplementation of a semipurified diet with graded levels of crystalline niacin. Response criteria were energy and N balance, growth performance, occurrence of niacin deficiency diarrhea, and urinary excretion of the niacin metabolite N(1)-methyl-2-pyridone-5-carboxylamide (PYR). The basal diet met the true ileal Trp requirement of growing swine, and supplementation with 6, 10, 14, 18, 22, or 44 mg of niacin/kg made 6 treatments. Pigs were observed for scours twice daily, and pig BW and feed consumption were determined weekly. Total urine collections and fecal grab samples were made twice daily from each pig from d 28 to 35. Pigs fed the diet containing 14 mg of niacin/kg absorbed and retained more (P < 0.05) grams of N/d, had a greater N digestibility (%, P < 0.05), a greater ADFI and ADG (P < 0.10), and no diarrhea (P < 0.05) compared with pigs fed the diet containing 6 mg of niacin/kg, and pigs fed the diet containing 10 mg of niacin/kg were intermediate in ADG. There were no additional improvements in the response criteria with niacin supplementation greater than 14 mg/kg. Urinary PYR criteria (mg/L and mg/d) were greater (P < 0.001) for pigs fed the diet containing 44 mg of niacin/kg than for pigs fed the diets containing 6 to 22 mg of niacin/kg. However, urinary PYR criteria for pigs fed the diets containing 6 to 22 mg of niacin/kg did not differ from each other, indicating that PYR was not a sensitive indicator of niacin status for growing swine. Niacin treatment did not affect the percentages of N retained/N absorbed, N retained/N intake, DE, or ME. In conclusion, 14 mg of crystalline niacin/kg of semipurified diet adequate in Trp was the minimum concentration of niacin that maximized N utilization and growth performance, and prevented niacin deficiency diarrhea of growing swine in the current

  2. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  3. Probing the Watson-Crick, wobble, and sugar-edge hydrogen bond sites of uracil and thymine.

    PubMed

    Müller, Andreas; Frey, Jann A; Leutwyler, Samuel

    2005-06-16

    The nucleobases uracil (U) and thymine (T) offer three hydrogen-bonding sites for double H-bond formation via neighboring N-H and C=O groups, giving rise to the Watson-Crick, wobble and sugar-edge hydrogen bond isomers. We probe the hydrogen bond properties of all three sites by forming hydrogen bonded dimers of U, 1-methyluracil (1MU), 3-methyluracil (3MU), and T with 2-pyridone (2PY). The mass- and isomer-specific S1 <-- S0 vibronic spectra of 2PY.U, 2PY.3MU, 2PY.1MU, and 2PY.T were measured using UV laser resonant two-photon ionization (R2PI). The spectra of the Watson-Crick and wobble isomers of 2PY.1MU were separated using UV-UV spectral hole-burning. We identify the different isomers by combining three different diagnostic tools: (1) Selective methylation of the uracil N3-H group, which allows formation of the sugar-edge isomer only, and methylation of the N1-H group, which leads to formation of the Watson-Crick and wobble isomers. (2) The experimental S1 <-- S0 origins exhibit large spectral blue shifts relative to the 2PY monomer. Ab initio CIS calculations of the spectral shifts of the different hydrogen-bonded dimers show a linear correlation with experiment. This correlation allows us to identify the R2PI spectra of the weakly populated Watson-Crick and wobble isomers of both 2PY.U and 2PY.T. (3) PW91 density functional calculation of the ground-state binding and dissociation energies De and D0 are in agreement with the assignment of the dominant hydrogen bond isomers of 2PY.U, 2PY.3MU and 2PY.T as the sugar-edge form. For 2PY.U, 2PY.T and 2PY.1MU the measured wobble:Watson-Crick:sugar-edge isomer ratios are in good agreement with the calculated ratios, based on the ab initio dissociation energies and gas-phase statistical mechanics. The Watson-Crick and wobble isomers are thereby determined to be several kcal/mol less strongly bound than the sugar-edge isomers. The 36 observed intermolecular frequencies of the nine different H-bonded isomers give

  4. Inhibitory effects of AG490 on H2O2-induced TRPM2-mediated Ca(2+) entry.

    PubMed

    Shimizu, Shunichi; Yonezawa, Ryo; Hagiwara, Tamio; Yoshida, Takashi; Takahashi, Nobuaki; Hamano, Satoshi; Negoro, Takaharu; Toda, Takahiro; Wakamori, Minoru; Mori, Yasuo; Ishii, Masakazu

    2014-11-05

    Transient receptor potential melastatin 2 (TRPM2) is an oxidative stress-sensitive Ca(2+)-permeable channel that controls Ca(2+) signalling. The activation of Janus kinase 2 (Jak2) by oxidative stress is implicated in the production of inflammatory mediators. We found that AG490, a Jak2 inhibitor, had an inhibitory effect on H2O2-induced TRPM2 activation. The purpose of this study was to examine the underlying mechanisms of the inhibitory effects of AG490. Activation of TRPM2 in TRPM2-expressing human embryonic kidney 293 (TRPM2/HEK) cells or the human monocytic cell line U937 was monitored by fluorescence-based Ca(2+) imaging and patch-clamp techniques. Treatment with AG490 almost completely blocked H2O2-induced increase in intracellular Ca(2+) in TRPM2/HEK and U937 cells. In the patch-clamp study, AG490 inhibited the H2O2-evoked inward current but not the ADP-ribose-induced inward current in TRPM2/HEK cells. In contrast, Jak inhibitor 1 (pyridone 6) and staurosporine, both of which inhibit Jak2, had no effect on H2O2-induced increase in intracellular Ca(2+). Moreover, AG490 decreased intracellular reactive oxygen species level, which was measured by using a hydroperoxide-sensitive fluorescent dye, on incubation with H2O2. In the cell-free assay system, AG490 scavenged hydroxyl radicals but not H2O2. These findings indicate that AG490 significantly reduces H2O2-induced TRPM2 activation, presumably by scavenging hydroxyl radicals rather than Jak2-dependent mechanisms. Although transient receptor potential ankyrin 1 (TRPA1) channel is also activated by H2O2, the H2O2-induced Ca(2+) entry through TRPA1 was only slightly delayed by AG490. This validates the potential use of AG490, as one of the materials for characterizing the role of TRPM2 channels in pathological models.

  5. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  6. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396

    PubMed Central

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K.

    2016-01-01

    ABSTRACT HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation

  7. Final report of the safety assessment of niacinamide and niacin.

    PubMed

    2005-01-01

    Niacinamide (aka nicotinamide) and Niacin (aka nicotinic acid) are heterocyclic aromatic compounds which function in cosmetics primarily as hair and skin conditioning agents. Niacinamide is used in around 30 cosmetic formulations including shampoos, hair tonics, skin moisturizers, and cleansing formulations. Niacin is used in a few similar product types. The concentration of use of Niacinamide varies from a low of 0.0001% in night preparations to a high of 3% in body and hand creams, lotions, powders and sprays. Niacin concentrations of use range from 0.01% in body and hand creams, lotions, powders and sprays to 0.1% in paste masks (mud packs). Both ingredients are accepted for use in cosmetics in Japan and the European Union. Both are GRAS direct food additives and nutrient and/or dietary supplements. Niacinamide may be used in clinical treatment of hypercholesteremia and Niacin in prevention of pellegra and treatment of certain psychological disorders. Both ingredients are readily absorbed from skin, blood, and the intestines and widely distribute throughout the body. Metabolites include N1-methylnicotinamide and N1-methyl-4-pyridone-3-carboxamide. Excretion is primarily through the urinary tract. While Niacinamide is more toxic than Niacin in acute toxicity studies, both are relatively non-toxic. Short-term oral, parenteral, or dermal toxicity studies did not identify significant irreversible effects. Niacinamide, evaluated in an in vitro test to predict ocular irritation, was not an acute ocular hazard. Animal testing of Niacinamide in rabbits in actual formulations produced mostly non-irritant reactions, with only some marginally irritating responses. Skin irritation tests of up to 2.5% Niacinamide in rabbits produced only marginal irritation. Skin sensitization tests of Niacinamide at 5% during induction and 20% during challenge were negative in guinea pigs. Neither cosmetic ingredient was mutagenic in Ames tests, with or without metabolic activation