Science.gov

Sample records for pyridone thioxopyridine pyrazolopyridine

  1. Design and synthesis of a series of novel pyrazolopyridines as HIF-1alpha prolyl hydroxylase inhibitors.

    PubMed

    Warshakoon, Namal C; Wu, Shengde; Boyer, Angelique; Kawamoto, Richard; Renock, Sean; Xu, Kevin; Pokross, Matthew; Evdokimov, Artem G; Zhou, Songtao; Winter, Carol; Walter, Richard; Mekel, Marlene

    2006-11-01

    Recently resolved X-ray crystal structure of HIF-1alpha prolyl hydroxylase was used to design and develop a novel series of pyrazolopyridines as potent HIF-1alpha prolyl hydroxylase inhibitors. The activity of these compounds was determined in a human EGLN-1 assay. Structure-based design aided in optimizing the potency of the initial lead (2, IC(50) of 11 microM) to a potent (11l, 190 nM) EGLN-1 inhibitor. Several of these analogs were potent VEGF inducers in a cell-based assay. These pyrazolopyridines were also effective in stabilizing HIF-1alpha.

  2. Design And Synthesis of 2-Amino-Pyrazolopyridines As Polo-Like Kinase 1 Inhibitors

    SciTech Connect

    Fucini, R.V.; Hanan, E.J.; Romanowski, M.J.; Elling, R.A.; Lew, W.; Barr, K.J.; Zhu, J.; Yoburn, J.C.; Liu, Y.; Fahr, B.T.; Fan, J.; Lu, Y.; Pham, P.; Choong, I.C.; VanderPorten, E.C.; Bui, M.; Purkey, H.E.; Evanchik, M.J.; Yang, W.

    2009-05-18

    A series of 2-amino-pyrazolopyridines was designed and synthesized as Polo-like kinase (Plk) inhibitors based on a low micromolar hit. The SAR was developed to provide compounds exhibiting low nanomolar inhibitory activity of Plk1; the phenotype of treated cells is consistent with Plk1 inhibition. A co-crystal structure of one of these compounds with zPlk1 confirms an ATP-competitive binding mode.

  3. Hydrolysis of α-Chloro-Substituted 2- and 4-Pyridones: Rate Enhancement by Zwitterionic Structure

    PubMed Central

    Tan, Ronald C.; Vien, Janie Q. T.; Wu, Weiming

    2011-01-01

    The hydrolysis of α-chloro-N-methyl-4-pyridone was found to be more than five times faster than that of α-chloro-N-methyl-2-pyridone. Structural studies of 2- and 4-pyridones have revealed the higher polarity and greater extent of zwitterionic content in 4-pyridone. The results are thus consistent with the hypothesis that polarization and higher zwitterionic content in the heterocyclic structures enhances the rate of hydrolysis in α-substituted pyridone and uracil derivatives. PMID:22178555

  4. Hydrolysis of α-chloro-substituted 2- and 4-pyridones: rate enhancement by zwitterionic structure.

    PubMed

    Tan, Ronald C; Vien, Janie Q T; Wu, Weiming

    2012-01-15

    The hydrolysis of α-chloro-N-methyl-4-pyridone was found to be more than five times faster than that of α-chloro-N-methyl-2-pyridone. Structural studies of 2- and 4-pyridones have revealed the higher polarity and greater extent of zwitterionic content in 4-pyridone. The results are thus consistent with the hypothesis that polarization and higher zwitterionic content in the heterocyclic structures enhances the rate of hydrolysis in α-substituted pyridone and uracil derivatives. PMID:22178555

  5. The design and synthesis of indazole and pyrazolopyridine based glucokinase activators for the treatment of type 2 diabetes mellitus.

    PubMed

    Pfefferkorn, Jeffrey A; Tu, Meihua; Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Aspnes, Gary E; Sammons, Matthew F; Song, Wei; Li, Jian-Cheng; Jones, Christopher S; Patel, Leena; Rasmusson, Tim; Zeng, Dongxiang; Karki, Kapil; Hamilton, Michael; Hank, Richard; Atkinson, Karen; Litchfield, John; Aiello, Robert; Baker, Levenia; Barucci, Nicole; Bourassa, Patricia; Bourbonais, Francis; Bourbounais, Francis; D'Aquila, Theresa; Derksen, David R; MacDougall, Margit; Robertson, Alan

    2012-12-01

    Glucokinase activators represent a promising potential treatment for patients with Type 2 diabetes. Herein, we report the identification and optimization of a series of novel indazole and pyrazolopyridine based activators leading to the identification of 4-(6-(azetidine-1-carbonyl)-5-fluoropyridin-3-yloxy)-2-ethyl-N-(5-methylpyrazin-2-yl)-2H-indazole-6-carboxamide (42) as a potent activator with favorable preclinical pharmacokinetic properties and in vivo efficacy.

  6. Palladium catalyzed C3-arylation of 4-hydroxy-2-pyridones.

    PubMed

    Anagnostaki, Elissavet E; Fotiadou, Anna D; Demertzidou, Vera; Zografos, Alexandros L

    2014-07-01

    The direct arylation of N-substituted-4-hydroxy-2-pyridones with aryl boronic acids has been achieved under palladium catalysis. The mild reaction conditions applied in this method and the use of a conventional catalytic system offer an attractive protocol for the efficient synthesis of a variety of 3-arylated products.

  7. Synthesis of substituted 2-pyridones and 4-aza-3-fluoridones

    SciTech Connect

    Prostakov, N.S.; Rani, S.S.; Mikhailova, N.M.; Shevtsov, V.K.; Sergeeva, N.D.

    1987-01-01

    Substituted N-methyl-2-pyridones and N-methyl-4-aza-3-fluoridones, a previously unknown group of heterocyclic compounds, were obtained by oxidation of 3-methyl-2-phenylpyridine, 3-methyl-2-phenyl-5-(3'-methyl-2'-phenylpyridin-6'-yl)pyridine iodomethylates, as well as of 4-aza-fluorenes substituted at the 9-position.

  8. [Formation of pyridone derivates from maltose and lactose. XII. Investigations on the Maillard-reaction (authors transl)].

    PubMed

    Severine, T; Loidl, A

    1976-01-01

    Maltose and lactose react with methylammoniumacetate in a hot aqueous solution giving a dark brown mixture of products. 1,2-dimethyl-3-hydroxy-4-pyridone (5) can be isolated from the volatile compounds. Maltol and Isomaltol can be converted into the pyridone 5 with methylammoniumacetate. 1-Carboxymethyl-3-hydroxy-2-methyl-4-pyridone is obtained from isomaltol and glycine. PMID:973453

  9. Regioselective synthesis of multisubstituted isoquinolones and pyridones via Rh(III)-catalyzed annulation reactions.

    PubMed

    Shi, Liangliang; Yu, Ke; Wang, Baiquan

    2015-12-18

    A mild and efficient Rh(III)-catalyzed regioselective synthesis of isoquinolones and pyridones has been developed. The protocol uses readily available N-methoxybenzamide or N-methoxymethacrylamide and diazo compounds as starting materials. The process involving tandem C-H activation, cyclization, and condensation steps proceeds under mild conditions, and the corresponding isoquinolone and pyridone derivatives were obtained in good to excellent yields with excellent regioselectivities. The process provides a facile approach for the construction of isoquinolone and pyridone derivatives containing various functional groups. PMID:26463232

  10. Structure-Based Design and Synthesis of 3-Amino-1,5-dihydro-4H-pyrazolopyridin-4-one Derivatives as Tyrosine Kinase 2 Inhibitors.

    PubMed

    Yogo, Takatoshi; Nagamiya, Hiroyuki; Seto, Masaki; Sasaki, Satoshi; Shih-Chung, Huang; Ohba, Yusuke; Tokunaga, Norihito; Lee, Gil Nam; Rhim, Chul Yun; Yoon, Cheol Hwan; Cho, Suk Young; Skene, Robert; Yamamoto, Syunsuke; Satou, Yousuke; Kuno, Masako; Miyazaki, Takahiro; Nakagawa, Hideyuki; Okabe, Atsutoshi; Marui, Shogo; Aso, Kazuyoshi; Yoshida, Masato

    2016-01-28

    We report herein the discovery and optimization of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one TYK2 inhibitors. High-throughput screening against TYK2 and JAK1-3 provided aminoindazole derivative 1 as a hit compound. Scaffold hopping of the aminoindazole core led to the discovery of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one derivative 3 as a novel chemotype of TYK2 inhibitors. Interestingly, initial SAR study suggested that this scaffold could have a vertically flipped binding mode, which prompted us to introduce a substituent at the 7-position as a moiety directed toward the solvent-exposed region. Introduction of a 1-methyl-3-pyrazolyl moiety at the 7-position resulted in a dramatic increase in TYK2 inhibitory activity, and further optimization led to the discovery of 20. Compound 20 inhibited IL-23-induced IL-22 production in a rat PD assay, as well as inhibited IL-23 signaling in human PBMC. Furthermore, 20 showed selectivity for IL-23 signaling inhibition against GM-CSF, demonstrating the unique cytokine selectivity of the novel TYK2 inhibitor. PMID:26701356

  11. Structure-Based Design and Synthesis of 3-Amino-1,5-dihydro-4H-pyrazolopyridin-4-one Derivatives as Tyrosine Kinase 2 Inhibitors.

    PubMed

    Yogo, Takatoshi; Nagamiya, Hiroyuki; Seto, Masaki; Sasaki, Satoshi; Shih-Chung, Huang; Ohba, Yusuke; Tokunaga, Norihito; Lee, Gil Nam; Rhim, Chul Yun; Yoon, Cheol Hwan; Cho, Suk Young; Skene, Robert; Yamamoto, Syunsuke; Satou, Yousuke; Kuno, Masako; Miyazaki, Takahiro; Nakagawa, Hideyuki; Okabe, Atsutoshi; Marui, Shogo; Aso, Kazuyoshi; Yoshida, Masato

    2016-01-28

    We report herein the discovery and optimization of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one TYK2 inhibitors. High-throughput screening against TYK2 and JAK1-3 provided aminoindazole derivative 1 as a hit compound. Scaffold hopping of the aminoindazole core led to the discovery of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one derivative 3 as a novel chemotype of TYK2 inhibitors. Interestingly, initial SAR study suggested that this scaffold could have a vertically flipped binding mode, which prompted us to introduce a substituent at the 7-position as a moiety directed toward the solvent-exposed region. Introduction of a 1-methyl-3-pyrazolyl moiety at the 7-position resulted in a dramatic increase in TYK2 inhibitory activity, and further optimization led to the discovery of 20. Compound 20 inhibited IL-23-induced IL-22 production in a rat PD assay, as well as inhibited IL-23 signaling in human PBMC. Furthermore, 20 showed selectivity for IL-23 signaling inhibition against GM-CSF, demonstrating the unique cytokine selectivity of the novel TYK2 inhibitor.

  12. Accessing the structural diversity of pyridone alkaloids: concise total synthesis of rac-citridone A.

    PubMed

    Fotiadou, Anna D; Zografos, Alexandros L

    2011-09-01

    A unique route to the structural diversity of pyridone alkaloids is described based on the concept of a common synthetic strategy. Three different core structure analogues corresponding to akanthomycin, septoriamycin A, and citridone A have been prepared by using a highly selective and novel carbocyclization reaction.

  13. Pyridone Methylsulfone Hydroxamate LpxC Inhibitors for the Treatment of Serious Gram-Negative Infections

    SciTech Connect

    Montgomery, Justin I.; Brown, Matthew F.; Reilly, Usa; Price, Loren M.; Abramite, Joseph A.; Arcari, Joel; Barham, Rose; Che, Ye; Chen, Jinshan Michael; Chung, Seung Won; Collantes, Elizabeth M.; Desbonnet, Charlene; Doroski, Matthew; Doty, Jonathan; Engtrakul, Juntyma J.; Harris, Thomas M.; Huband, Michael; Knafels, John D.; Leach, Karen L.; Liu, Shenping; Marfat, Anthony; McAllister, Laura; McElroy, Eric; Menard, Carol A.; Mitton-Fry, Mark; Mullins, Lisa; Noe, Mark C.; O’Donnell, John; Oliver, Robert; Penzien, Joseph; Plummer, Mark; Shanmugasundaram, Veerabahu; Thoma, Christy; Tomaras, Andrew P.; Uccello, Daniel P.; Vaz, Alfin; Wishka, Donn G.

    2012-11-09

    The synthesis and biological activity of a new series of LpxC inhibitors represented by pyridone methylsulfone hydroxamate 2a is presented. Members of this series have improved solubility and free fraction when compared to compounds in the previously described biphenyl methylsulfone hydroxamate series, and they maintain superior Gram-negative antibacterial activity to comparator agents.

  14. Enantioselectivity in visible light-induced, singlet oxygen [2+4] cycloaddition reactions (type II photooxygenations) of 2-pyridones.

    PubMed

    Wiegand, Christian; Herdtweck, Eberhardt; Bach, Thorsten

    2012-10-21

    3-Substituted 2-pyridones were enantioselectively (68-90% ee) converted into the respective 3-hydroxypyridine-2,6-diones by a sequence consisting of a template-mediated type II photooxygenation and an acid-catalysed rearrangement.

  15. Discovery of Aryl Aminoquinazoline Pyridones as Potent, Selective, and Orally Efficacious Inhibitors of Receptor Tyrosine Kinase c-Kit

    SciTech Connect

    Hu, Essa; Tasker, Andrew; White, Ryan D.; Kunz, Roxanne K.; Human, Jason; Chen, Ning; Bürli, Roland; Hungate, Randall; Novak, Perry; Itano, Andrea; Zhang, Xuxia; Yu, Violeta; Nguyen, Yen; Tudor, Yanyan; Plant, Matthew; Flynn, Shaun; Xu, Yang; Meagher, Kristin L.; Whittington, Douglas A.; Ng, Gordon Y.

    2008-12-09

    Inhibition of c-Kit has the potential to treat mast cell associated fibrotic diseases. We report the discovery of several aminoquinazoline pyridones that are potent inhibitors of c-Kit with greater than 200-fold selectivity against KDR, p38, Lck, and Src. In vivo efficacy of pyridone 16 by dose-dependent inhibition of histamine release was demonstrated in a rodent pharmacodynamic model of mast cell activation.

  16. Competitive intramolecular C-C vs. C-O bond coupling reactions toward C6 ring-fused 2-pyridone synthesis.

    PubMed

    Lepitre, T; Pintiala, C; Muru, K; Comesse, S; Rebbaa, A; Lawson, A M; Daïch, A

    2016-04-14

    An interesting competitive C-C vs. C-O bond coupling reaction on N,3,5-trisubstituted pyridones is reported. These coupling reactions provided selective access to C- or O-ring-fused pyridones, both at the challenging C6-pyridone position. 1,6-C-Annulated pyridones were generally achieved in good yields with excellent chemoselectivity under Pd(0) conditions. On the other hand, full C6-regioselective Csp(2) aryloxylation was achieved under oxidative coupling promoted by silver salts to access 5,6-O-annulated pyridones. Based on various experiments and observations, mechanistic evidence of these competitive reactions was provided and it was proposed that C-O bond formation proceeded through radical cyclization. These processes were performed under mild reaction conditions and offer an efficient and attractive methodology to selectively access a large scope of C-arylated and O-arylated pyridones of biological interest. PMID:26976735

  17. A Novel Pyrazolopyridine with in Vivo Activity in Plasmodium berghei- and Plasmodium falciparum-Infected Mouse Models from Structure-Activity Relationship Studies around the Core of Recently Identified Antimalarial Imidazopyridazines.

    PubMed

    Le Manach, Claire; Paquet, Tanya; Brunschwig, Christel; Njoroge, Mathew; Han, Ze; Gonzàlez Cabrera, Diego; Bashyam, Sridevi; Dhinakaran, Rajkumar; Taylor, Dale; Reader, Janette; Botha, Mariette; Churchyard, Alisje; Lauterbach, Sonja; Coetzer, Theresa L; Birkholtz, Lyn-Marie; Meister, Stephan; Winzeler, Elizabeth A; Waterson, David; Witty, Michael J; Wittlin, Sergio; Jiménez-Díaz, María-Belén; Santos Martínez, María; Ferrer, Santiago; Angulo-Barturen, Iñigo; Street, Leslie J; Chibale, Kelly

    2015-11-12

    Toward improving pharmacokinetics, in vivo efficacy, and selectivity over hERG, structure-activity relationship studies around the central core of antimalarial imidazopyridazines were conducted. This study led to the identification of potent pyrazolopyridines, which showed good in vivo efficacy and pharmacokinetics profiles. The lead compounds also proved to be very potent in the parasite liver and gametocyte stages, which makes them of high interest. PMID:26502160

  18. Copper-Catalyzed N-Arylation of 2-Pyridones Employing Diaryliodonium Salts at Room Temperature.

    PubMed

    Jung, Seo-Hee; Sung, Dan-Bi; Park, Cho-Hee; Kim, Won-Suk

    2016-09-01

    A new and mild synthetic approach for the N-arylation of 2-pyridones with diaryliodonium salts has been developed. Most reactions proceed readily at room temperature in the presence of 10 mol % of copper chloride. As a result, a wide range of N-arylpyridine-2-ones were synthesized in yields of 23% to 99%. With this method, an antifibrotic drug, Pirfenidone, was successfully synthesized in 99% yield within 30 min at room temperature. PMID:27484240

  19. Enantioselective synthesis of planar-chiral ferrocene-fused 4-pyridones and their application in construction of pyridine-based organocatalyst library.

    PubMed

    Ogasawara, Masamichi; Wada, Shiro; Isshiki, Erika; Kamimura, Takumi; Yanagisawa, Akira; Takahashi, Tamotsu; Yoshida, Kazuhiro

    2015-05-01

    A couple of planar-chiral ferrocene-fused 4-pyridone derivatives 2a and 2b were synthesized in enantiomerically pure form by scalable asymmetric transformations. Pyridones 2 are versatile precursors to various ferrocene-fused pyridine derivatives, which are useful nucleophilic asymmetric organocatalysts. PMID:25893666

  20. Enantioselective synthesis of planar-chiral ferrocene-fused 4-pyridones and their application in construction of pyridine-based organocatalyst library.

    PubMed

    Ogasawara, Masamichi; Wada, Shiro; Isshiki, Erika; Kamimura, Takumi; Yanagisawa, Akira; Takahashi, Tamotsu; Yoshida, Kazuhiro

    2015-05-01

    A couple of planar-chiral ferrocene-fused 4-pyridone derivatives 2a and 2b were synthesized in enantiomerically pure form by scalable asymmetric transformations. Pyridones 2 are versatile precursors to various ferrocene-fused pyridine derivatives, which are useful nucleophilic asymmetric organocatalysts.

  1. Discovery of Pyrrolopyridine−Pyridone Based Inhibitors of Met Kinase: Synthesis, X-ray Crystallographic Analysis, and Biological Activities

    SciTech Connect

    Kim, Kyoung Soon; Zhang, Liping; Schmidt, Robert; Cai, Zhen-Wei; Wei, Donna; Williams, David K.; Lombardo, Louis J.; Trainor, George L.; Xie, Dianlin; Zhang, Yaquan; An, Yongmi; Sack, John S.; Tokarski, John S.; Darienzo, Celia; Kamath, Amrita; Marathe, Punit; Zhang, Yueping; Lippy, Jonathan; Jeyaseelan, Sr., Robert; Wautlet, Barri; Henley, Benjamin; Gullo-Brown, Johnni; Manne, Veeraswamy; Hunt, John T.; Fargnoli, Joseph; Borzilleri, Robert M.

    2008-10-02

    Conformationally constrained 2-pyridone analogue 2 is a potent Met kinase inhibitor with an IC50 value of 1.8 nM. Further SAR of the 2-pyridone based inhibitors of Met kinase led to potent 4-pyridone and pyridine N-oxide inhibitors such as 3 and 4. The X-ray crystallographic data of the inhibitor 2 bound to the ATP binding site of Met kinase protein provided insight into the binding modes of these inhibitors, and the SAR of this series of analogues was rationalized. Many of these analogues showed potent antiproliferative activities against the Met dependent GTL-16 gastric carcinoma cell line. Compound 2 also inhibited Flt-3 and VEGFR-2 kinases with IC{sub 50} values of 4 and 27 nM, respectively. It possesses a favorable pharmacokinetic profile in mice and demonstrates significant in vivo antitumor activity in the GTL-16 human gastric carcinoma xenograft model.

  2. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-pyridonate catalytic system.

    PubMed

    Zhu, Mingwen; Fujita, Ken-ichi; Yamaguchi, Ryohei

    2012-10-19

    A simple and convenient CuI/2-pyridonate catalytic system for the oxidative amidation of aldehydes with secondary amines has been developed. With this system, a variety of useful arylamides have been synthesized in moderate to good yields in the presence of small amount of copper catalyst and the pyridonate ligand, generating only water as a coproduct. Synthesis of cinnamamides was also achieved by the reactions of cinnamaldehydes with secondary amines in moderate yields. Air was successfully employed as a green oxidant in this catalytic system, achieving a safe and atom-efficient system for the synthesis of amides. PMID:23006061

  3. Arthpyrones A-C, pyridone alkaloids from a sponge-derived fungus Arthrinium arundinis ZSDS1-F3.

    PubMed

    Wang, Junfeng; Wei, Xiaoyi; Qin, Xiaochu; Lin, Xiuping; Zhou, Xuefeng; Liao, Shengrong; Yang, Bin; Liu, Juan; Tu, Zhengchao; Liu, Yonghong

    2015-02-01

    Three new 4-hydroxy-2-pyridone alkaloids, arthpyrones A-C (1-3), were isolated from the sponge-derived fungus Arthrinium arundinis ZSDS1-F3. Their structures were elucidated on the basis of spectroscopic analysis, CD spectra, quantum chemical calculation, and X-ray single-crystal diffraction analysis. Compounds 1 and 2 possessed a 2-pyridone core featured with a decalin moiety linked via a carboxide bridge bearing a novel oxabicyclo[3.3.1]nonane ring system rarely discovered in nature. A possible biosynthetic pathway for them was proposed.

  4. Tetramic Acids and Pyridone Alkaloids from the Endolichenic Fungus Tolypocladium cylindrosporum.

    PubMed

    Li, Xiao-Bin; Li, Lin; Zhu, Rong-Xiu; Li, Wei; Chang, Wen-Qiang; Zhang, Lu-Lu; Wang, Xiao-Ning; Zhao, Zun-Tian; Lou, Hong-Xiang

    2015-09-25

    Three new tetramic acid derivatives, tolypocladenols A1, A2, and B (1-3), a new pyridone alkaloid, tolypyridone A (4), and a new coumarin derivative, 3,8-dihydroxy-4-(4-hydroxyphenyl)-6-methylcoumarin (5), together with four known compounds (6-9) were isolated from the endolichenic fungus Tolypocladium cylindrosporum, which inhabits the lichen Lethariella zahlbruckneri. Structures of these compounds were determined by comprehensive analysis of spectroscopic data and single-crystal X-ray diffraction determination. Bioassay of the isolated compounds found that pyridoxatin (7) was cytotoxic to human cancer cells by induction of G0/G1 cell cycle arrest and apoptosis. PMID:26356746

  5. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1

    PubMed Central

    Capper, Michael J.; O’Neill, Paul M.; Fisher, Nicholas; Strange, Richard W.; Moss, Darren; Ward, Stephen A.; Berry, Neil G.; Lawrenson, Alexandre S.; Hasnain, S. Samar; Biagini, Giancarlo A.; Antonyuk, Svetlana V.

    2015-01-01

    Cytochrome bc1 is a proven drug target in the prevention and treatment of malaria. The rise in drug-resistant strains of Plasmodium falciparum, the organism responsible for malaria, has generated a global effort in designing new classes of drugs. Much of the design/redesign work on overcoming this resistance has been focused on compounds that are presumed to bind the Qo site (one of two potential binding sites within cytochrome bc1) using the known crystal structure of this large membrane-bound macromolecular complex via in silico modeling. Cocrystallization of the cytochrome bc1 complex with the 4(1H)-pyridone class of inhibitors, GSK932121 and GW844520, that have been shown to be potent antimalarial agents in vivo, revealed that these inhibitors do not bind at the Qo site but bind at the Qi site. The discovery that these compounds bind at the Qi site may provide a molecular explanation for the cardiotoxicity and eventual failure of GSK932121 in phase-1 clinical trial and highlight the need for direct experimental observation of a compound bound to a target site before chemical optimization and development for clinical trials. The binding of the 4(1H)-pyridone class of inhibitors to Qi also explains the ability of this class to overcome parasite Qo-based atovaquone resistance and provides critical structural information for future design of new selective compounds with improved safety profiles. PMID:25564664

  6. One-Pot Synthesis of Strained Macrocyclic Pyridone Hexamers and Their High Selectivity toward Cu(2+) Recognition.

    PubMed

    Ren, Changliang; Shen, Jie; Zeng, Huaqiang

    2015-12-18

    The removal of Cu(2+) ions is relevant to environmental pollution control and neurodegenerative disease treatment. A novel family of strained macrocyclic pyridone hexamers, which exhibit highly selective recognition of Cu(2+) ions and reduce copper content in artificial seawater by 97% at a very low [host]:[CuCl2] molar ratio of 2:1, is documented. PMID:26640958

  7. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media.

    PubMed

    Mehrparvar, Saber; Balalaie, Saeed; Rabbanizadeh, Mahnaz; Ghabraie, Elmira; Rominger, Frank

    2014-08-01

    Novel analogs of 2-pyridone-3-carboxylic acids 4a-l have been prepared by the three-component reaction of 3-formyl chromone, Meldrum's acid, and primary amines in the presence of a catalytic amount of diammonium hydrogen phosphate in water. Good-to-high yields, easy work-up, and an environmentally friendly profile are the advantages of this method for the synthesis of 2-pyridone-3-carboxylic acid derivatives.

  8. An efficient method for the construction of polysubstituted 4-pyridones via self-condensation of β-keto amides mediated by P2O5 and catalyzed by zinc bromide.

    PubMed

    Tan, Liquan; Zhou, Peng; Chen, Cui; Liu, Weibing

    2013-01-01

    A self-condensation cyclization reaction mediated by phosphorus pentoxide (P2O5) and catalyzed by zinc bromide (ZnBr2) is presented for the synthesis of polysubstituted 4-pyridones and 2-pyridones from β-keto amides. A variety of β-keto amides are used in this approach, and a wide range of functionalized 4-pyridones and 2-pyridones were obtained in good to excellent yields. When employing the N-aryl β-keto amides as the substrates in this protocol, 4-pyridones are resulted, however, when using N-aliphatic-substituted β-keto amides as the partners of N-aryl β-keto amides under the same conditions, 2-pyridones are afforded.

  9. Synthesis, structure and solvatochromic properties of some novel 5-arylazo-6-hydroxy-4-phenyl-3-cyano-2-pyridone dyes

    PubMed Central

    2012-01-01

    Background A series of some novel arylazo pyridone dyes was synthesized from the corresponding diazonium salt and 6-hydroxy-4-phenyl-3-cyano-2-pyridone using a classical reaction for the synthesis of the azo compounds. Results The structure of the dyes was confirmed by UV-vis, FT-IR, 1H NMR and 13C NMR spectroscopic techniques and elemental analysis. The solvatochromic behavior of the dyes was evaluated with respect to their visible absorption properties in various solvents. Conclusions The azo-hydrazone tautomeric equilibration was found to depend on the substituents as well as on the solvent. The geometry data of the investigated dyes were obtained using DFT quantum-chemical calculations. The obtained calculational results are in very good agreement with the experimental data. PMID:22824496

  10. Highly regio- and enantioselective synthesis of N-substituted 2-pyridones: iridium-catalyzed intermolecular asymmetric allylic amination.

    PubMed

    Zhang, Xiao; Yang, Ze-Peng; Huang, Lin; You, Shu-Li

    2015-02-01

    The first iridium-catalyzed intermolecular asymmetric allylic amination reaction with 2-hydroxypyridines has been developed, thus providing a highly efficient synthesis of enantioenriched N-substituted 2-pyridone derivatives from readily available starting materials. This protocol features a good tolerance of functional groups in both the allylic carbonates and 2-hydroxypyridines, thereby delivering multifunctionalized heterocyclic products with up to 98% yield and 99% ee. PMID:25504907

  11. Noncovalent interactions between classical supramolecular synthons in solution: Hydrogen bonding in hindered 2-acylaminopyridine/2-pyridone associates

    NASA Astrophysics Data System (ADS)

    Ośmiałowski, Borys

    2012-06-01

    Two classical supramolecular synthons were studied in the light of heterocomplexation. The (6-methyl)-2-pyridones were associated with 2-acylaminopyridines and 6-methyl-2-acetylaminopyridine. Titrations monitored with 1H NMR showed that heterocomplexes were readily formed. The calculations at DFT level and the use of QTAIM methodology support experimental findings. The hydrogen bond length and the energy of association were correlated to Taft's constants.

  12. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Pschibul, Annica; Lai, Cheng-Tsung; Hirschbeck, Maria; Kuper, Jochen; Davoodi, Shabnam; Zou, Junjie; Liu, Nina; Pan, Pan; Shah, Sonam; Daryaee, Fereidoon; Bommineni, Gopal R; Lai, Cristina; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2016-05-31

    The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156.

  13. Selectivity of Pyridone- and Diphenyl Ether-Based Inhibitors for the Yersinia pestis FabV Enoyl-ACP Reductase.

    PubMed

    Neckles, Carla; Pschibul, Annica; Lai, Cheng-Tsung; Hirschbeck, Maria; Kuper, Jochen; Davoodi, Shabnam; Zou, Junjie; Liu, Nina; Pan, Pan; Shah, Sonam; Daryaee, Fereidoon; Bommineni, Gopal R; Lai, Cristina; Simmerling, Carlos; Kisker, Caroline; Tonge, Peter J

    2016-05-31

    The enoyl-ACP reductase (ENR) catalyzes the last reaction in the elongation cycle of the bacterial type II fatty acid biosynthesis (FAS-II) pathway. While the FabI ENR is a well-validated drug target in organisms such as Mycobacterium tuberculosis and Staphylococcus aureus, alternate ENR isoforms have been discovered in other pathogens, including the FabV enzyme that is the sole ENR in Yersinia pestis (ypFabV). Previously, we showed that the prototypical ENR inhibitor triclosan was a poor inhibitor of ypFabV and that inhibitors based on the 2-pyridone scaffold were more potent [Hirschbeck, M. (2012) Structure 20 (1), 89-100]. These studies were performed with the T276S FabV variant. In the work presented here, we describe a detailed examination of the mechanism and inhibition of wild-type ypFabV and the T276S variant. The T276S mutation significantly reduces the affinity of diphenyl ether inhibitors for ypFabV (20-fold → 100-fold). In addition, while T276S ypFabV generally displays an affinity for 2-pyridone inhibitors higher than that of the wild-type enzyme, the 4-pyridone scaffold yields compounds with similar affinity for both wild-type and T276S ypFabV. T276 is located at the N-terminus of the helical substrate-binding loop, and structural studies coupled with site-directed mutagenesis reveal that alterations in this residue modulate the size of the active site portal. Subsequently, we were able to probe the mechanism of time-dependent inhibition in this enzyme family by extending the inhibition studies to include P142W ypFabV, a mutation that results in a gain of slow-onset inhibition for the 4-pyridone PT156. PMID:27136302

  14. Efficient synthesis of biazoles by aerobic oxidative homocoupling of azoles catalyzed by a copper(I)/2-pyridonate catalytic system.

    PubMed

    Zhu, Mingwen; Fujita, Ken-ichi; Yamaguchi, Ryohei

    2011-12-28

    A highly efficient and convenient CuCl/2-pyridonate catalytic system for oxidative homocoupling of azoles affording a biazole product has been developed. With this system, a variety of biazoles have been effectively synthesized in good to excellent yields in the presence of a very small amount of copper catalyst (1.0 mol%). It was feasible to employ air as a green oxidant. PMID:22076830

  15. Theoretical investigation of the mode-specific induced non-radiative decay in 2-pyridone

    NASA Astrophysics Data System (ADS)

    Barbatti, Mario; Aquino, Adélia J. A.; Lischka, Hans

    2008-06-01

    Experiments on 2-pyridone (2PY) [Y. Matsuda, T. Ebata, N. Mikami, J. Chem. Phys. 113 (2000) 573; J.A. Frey, R. Leist, C. Tanner, H.M. Frey, S. Leutwyler, J. Chem. Phys. 125 (2006) 114308] have revealed that specific vibrational bands in the laser-induced fluorescence spectrum are missing in comparison to the fluorescence depletion spectrum. The possibility of mode-induced non-radiative decay has been raised in order to explain the effect. In the present work, this hypothesis is tested by an extensive investigation of the excited-state energy surfaces of 2PY by means of multireference ab initio methods. Several conical intersections have been located and the paths connecting them to the minimum on the S 1 surface have been explored. Mixed quantum-classical dynamics simulations were used to estimate how the bias towards specific modes can modify the non-radiative decay rate. These investigations nicely confirm the proposed mode-induced non-radiative decay mechanism.

  16. A [4 + 4] 2-pyridone approach to taxol. 3. Stereocontrol during elaboration of the cyclooctane.

    PubMed

    Lee, Y G; McGee, K F; Chen, J; Rucando, D; Sieburth, S M

    2000-10-01

    Intramolecular photocycloaddition of 2-pyridones connected through a four-carbon tether (6-[4-(1,2-dihydro-1-methyl-2-oxo-3-pyridinyl)-4-[[(1,1-dimethylethyl)++ +dimethylsilyl]oxy]butyl]-4-methoxy-1,3-dimethyl-2(1H)-pyridinone) yields a single tetracyclic product with four new stereogenic centers. The diastereoselectivity of this [4 + 4] reaction is fully controlled by a stereogenic carbon of the tether. Treatment of the photoproduct with osmium tetraoxide transforms the alkene to a diol and the enol ether to an alpha-hydroxy ketone, with stereocontrol dictated by nearby lactams that block one face of each alkene. Allylmagnesium bromide addition to the ketone also yields a single diastereomer, but unexpectedly this product results from approach of the nucleophile to the most-hindered face of the ketone. Study of this reaction in a model system has found the allylic nucleophile to be unique, with nonallylic reagents approaching along the expected, least-hindered path. This contrasteric addition likely results from coordination of the allylic nucleophile to the nearby amide. The amide can therefore act either as a steric shield or as a directing group. The three steps of photocycloaddition, cis-hydroxylation, and nucleophilic addition constructs both quaternary carbons of the cyclooctane and four of the five stereogenic centers found in the eight-membered ring of Taxol.

  17. Intrinsic electrophilicity of the 4-methylsulfonyl-2-pyridone scaffold in glucokinase activators: role of glutathione-S-transferases and in vivo quantitation of a glutathione conjugate in rats.

    PubMed

    Litchfield, John; Sharma, Raman; Atkinson, Karen; Filipski, Kevin J; Wright, Stephen W; Pfefferkorn, Jeffrey A; Tan, Beijing; Kosa, Rachel E; Stevens, Benjamin; Tu, Meihua; Kalgutkar, Amit S

    2010-11-01

    Previous studies on the in vitro metabolism of 4-alkylsulfonyl-2-pyridone-based glucokinase activators revealed a facile, non-enzymatic displacement of the 4-alkylsulfonyl group by glutathione. In the present studies, a role for glutathione-S-transferases (GST) as catalysts in the desulfonylation reaction was demonstrated using a combination of human liver microsomes, human liver cytosol and human GSTs. The identification of a glutathione conjugate in circulation following intravenous administration of a candidate 4-methylsulfonyl-2-pyridone to rats confirmed the relevance of the in vitro findings.

  18. Isoxazole mediated synthesis of 4-(1H)pyridones: improved preparation of antimalarial candidate GSK932121.

    PubMed

    Fernández, Jorge; Chicharro, Jesús; Bueno, José M; Lorenzo, Milagros

    2016-08-01

    A new synthesis of the antimalarial clinical candidate GSK932121 is described. This approach has two key reactions, the selective acylation of an unprotected 3-hydroxymethyl-5-methyl isoxazole and the reductive N-O bond cleavage of the previously functionalized isoxazole derivative, to give the 4-(1H)pyridone ring present in the final structure. The complete synthesis consists of 5 steps (versus 10 steps in previously published reports) and has enabled the preparation of the material in kilogram scale to support clinical studies.

  19. Crystal structure of benzene-1,3,5-tri-carb-oxy-lic acid-4-pyridone (1/3).

    PubMed

    Staun, Selena L; Oliver, Allen G

    2015-11-01

    Slow co-crystallization of a solution of benzene-1,3,5-tri-carb-oxy-lic acid with a large excess of 4-hy-droxy-pyridine produces an inter-penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri-carb-oxy-lic acid mol-ecules, C9H6O6·3C5H5NO. This structure represents an ortho-rhom-bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014 ▸). Acta Cryst. E70, o453-o454]. PMID:26594492

  20. Infrared Assisted Production of 3,4-Dihydro-2(1H)-pyridones in Solvent-Free Conditions

    PubMed Central

    Noguez, M. Olivia; Marcelino, Vanessa; Rodríguez, Hortensia; Martín, Osnieski; Martínez, Joel O.; Arroyo, Gabriel A.; Pérez, Francisco J.; Suárez, Margarita; Miranda, René

    2011-01-01

    A green approach for the synthesis of a set of ten 4-aryl substituted-5-alcoxy carbonyl-6-methyl-3,4-dihydro-2(1H)-pyridones using Meldrum’s acid has been devised, the absence of solvent and the activation with infrared irradiation in addition to a multicomponent protocol are the main reaction conditions. The transformations proceeded with moderated yields (50–75%) with a reasonable reaction rate (3 h). It is worth noting that two novel molecules of the new class of the bis-3,4-dihydropyridones were also obtained. In addition, a comparison without the use of infrared irradiation was performed. PMID:21731463

  1. Isoxazole mediated synthesis of 4-(1H)pyridones: improved preparation of antimalarial candidate GSK932121.

    PubMed

    Fernández, Jorge; Chicharro, Jesús; Bueno, José M; Lorenzo, Milagros

    2016-08-01

    A new synthesis of the antimalarial clinical candidate GSK932121 is described. This approach has two key reactions, the selective acylation of an unprotected 3-hydroxymethyl-5-methyl isoxazole and the reductive N-O bond cleavage of the previously functionalized isoxazole derivative, to give the 4-(1H)pyridone ring present in the final structure. The complete synthesis consists of 5 steps (versus 10 steps in previously published reports) and has enabled the preparation of the material in kilogram scale to support clinical studies. PMID:27469938

  2. Discovery of a new family of Dieckmann cyclases essential to tetramic acid and pyridone-based natural products biosynthesis.

    PubMed

    Gui, Chun; Li, Qinglian; Mo, Xuhua; Qin, Xiangjing; Ma, Junying; Ju, Jianhua

    2015-02-01

    Bioinformatic analyses indicate that TrdC, SlgL, LipX2, KirHI, and FacHI belong to a group of highly homologous proteins involved in biosynthesis of actinomycete-derived tirandamycin B, streptolydigin, α-lipomycin, kirromycin, and factumycin, respectively. However, assignment of their biosynthetic roles has remained elusive. Gene inactivation and complementation, in vitro biochemical assays with synthetic analogues, point mutations, and phylogenetic tree analyses reveal that these proteins represent a new family of Dieckmann cyclases that drive tetramic acid and pyridone scaffold biosynthesis.

  3. Comparative binding energy (COMBINE) analysis of human neutrophil elastase inhibition by pyridone-containing trifluoromethylketones.

    PubMed

    Cuevas, C; Pastor, M; Pérez, C; Gago, F

    2001-12-01

    The complexes of human neutrophil elastase with a series of 40 N3-substituted trifluoromethylketone-based pyridone inhibitors have been modelled. The series spans three orders of magnitude in inhibition constants despite the fact that it was originally developed in an attempt to improve the oral activity of a lead compound. Ligand-receptor interaction energies calculated using molecular mechanics did not correlate well with the experimental activities. A good correlation with activity was found, however, when a COMBINE analysis of the same data was carried out, which allowed a quantitative interpretation of the modelled complexes. The essence of this method is to partition the ligand-receptor interaction energies into individual residue-based van der Waals and electrostatic contributions, and to subject the resulting energy matrix to partial least squares analysis. Incorporation of two additional descriptors representing the electrostatic energy contributions to the partial desolvation of both the receptor and the ligands improved the QSAR model, as did the replacement of the distance-dependent electrostatic contributions with solvent-screened electrostatic interactions calculated by numerically solving the Poisson-Boltzmann equation. The model was validated both internally (cross-validation) and externally, using a set of twelve 6-phenyl-pyridopyrimidine analogs. The analysis reveals the subtle interplay of binding forces which occurs within the enzyme active site and provides objective information that can be interpreted in the light of the receptor structure. This information, gained from a series of real compounds, can be easily translated into 3D real or virtual database queries in the search for more active derivatives.

  4. Quantitative structure-activity relationship analysis of substituted arylazo pyridone dyes in photocatalytic system: Experimental and theoretical study.

    PubMed

    Dostanić, J; Lončarević, D; Zlatar, M; Vlahović, F; Jovanović, D M

    2016-10-01

    A series of arylazo pyridone dyes was synthesized by changing the type of the substituent group in the diazo moiety, ranging from strong electron-donating to strong electron-withdrawing groups. The structural and electronic properties of the investigated dyes was calculated at the M062X/6-31+G(d,p) level of theory. The observed good linear correlations between atomic charges and Hammett σp constants provided a basis to discuss the transmission of electronic substituent effects through a dye framework. The reactivity of synthesized dyes was tested through their decolorization efficiency in TiO2 photocatalytic system (Degussa P-25). Quantitative structure-activity relationship analysis revealed a strong correlation between reactivity of investigated dyes and Hammett substituent constants. The reaction was facilitated by electron-withdrawing groups, and retarded by electron-donating ones. Quantum mechanical calculations was used in order to describe the mechanism of the photocatalytic oxidation reactions of investigated dyes and interpret their reactivities within the framework of the Density Functional Theory (DFT). According to DFT based reactivity descriptors, i.e. Fukui functions and local softness, the active site moves from azo nitrogen atom linked to benzene ring to pyridone carbon atom linked to azo bond, going from dyes with electron-donating groups to dyes with electron-withdrawing groups.

  5. Toxicity of six plant extracts and two pyridone alkaloids from Ricinus communis against the malaria vector Anopheles gambiae

    PubMed Central

    2014-01-01

    Background The African malaria vector, Anopheles gambiae s.s., is known to feed selectively on certain plants for sugar sources. However, the adaptive significance of this behaviour especially on how the extracts of such plants impact on the fitness of this vector has not been explored. This study determined the toxicity and larvicidal activity on this vector of extracts from six selected plants found in Kenya and two compounds identified from Ricinus communis: 3-carbonitrile-4-methoxy-N-methyl-2-pyridone (ricinine), and its carboxylic acid derivative 3-carboxy-4-methoxy-N-methyl-2-pyridone, the latter compound being reported for the first time from this plant. Methods Feeding assays tested for toxic effects of extracts from the plants Artemisia afra Jacq. ex Willd, Bidens pilosa L., Parthenium hysterophorus L., Ricinus coummunis L., Senna didymobotrya Fresen. and Tithonia diversifolia Hemsl. on adult females and larvicidal activity was tested against third-instar larvae of Anopheles gambiae s.s. Mortality of larvae and adult females was monitored for three and eight days, respectively; Probit analysis was used to calculate LC50. Survival was analysed with Kaplan-Meier Model. LC-MS was used to identify the pure compounds. Results Of the six plants screened, extracts from T. diversifolia and R. communis were the most toxic against adult female mosquitoes after 7 days of feeding, with LC50 of 1.52 and 2.56 mg/mL respectively. Larvicidal activity of all the extracts increased with the exposure time with the highest mortality recorded for the extract from R. communis after 72 h of exposure (LC50 0.18 mg/mL). Mosquitoes fed on solutions of the pure compounds, 3-carboxy-4-methoxy-N-methyl-2-pyridone and ricinine survived almost as long as those fed on the R. communis extract with mean survival of 4.93 ± 0.07, 4.85 ± 0.07 and 4.50 ± 0.05 days respectively. Conclusions Overall, these findings demonstrate that extracts from the six plant species exhibit

  6. Systematic comparison of the mono-, dimethyl- and trimethyl 3-hydroxy-4(1H)-pyridones - Attempted optimization of the orally active iron chelator, deferiprone.

    PubMed

    Xie, Yuan-Yuan; Lu, Zidong; Kong, Xiao-Le; Zhou, Tao; Bansal, Sukhi; Hider, Robert

    2016-06-10

    A range of close analogues of deferiprone have been synthesised. The group includes mono-, di- and tri-methyl-3-hydroxy-4(1H)-pyridones. These compounds were found to possess similar pFe(3+) values to that of deferiprone, with the exception of the 2.5-dimethylated derivatives. Surprisingly the NH-containing hydroxy-4(1H)-pyridones were found to be marginally more lipophilic than the corresponding N-Me containing analogues. This same group are also metabolised less efficiently by Phase 1 hydroxylating enzymes than the corresponding N-Me analogues. As result of this study, three compounds have been identified for further investigation centred on neutropenia and agranulocytosis. PMID:27014847

  7. A novel redox reaction between 8-Aza-5,7-dimethyl-2-trifluoromethylchromone and alkyl mercaptoacetates. Facile synthesis of CF3-containing 2-pyridone derivatives.

    PubMed

    Sosnovskikh, Vyacheslav Ya; Barabanov, Mikhail A; Usachev, Boris I

    2004-11-26

    8-Aza-5,7-dimethyl-2-trifluoromethylchromone reacts with alkyl mercaptoacetates in the presence of triethylamine to give pyrido derivatives of 2-oxa-7-thiabicyclo[3.2.1]octane, which undergo the reductive ring opening to alkyl 2-[[3-(4,6-dimethyl-2-oxo-1,2-dihydropyridin-3-yl)-3-oxo-1-(trifluoromethyl)propyl]sulfanyl]acetates. The latter can be also obtained directly from 8-aza-5,7-dimethyl-2-trifluoromethylchromone and behave as the masked alpha,beta-unsaturated ketone, 4,6-dimethyl-3-(4,4,4-trifluorobut-2-enoyl)pyridin-2(1H)-one. This compound was independently synthesized from 3-acetyl-4,6-dimethyl-2-pyridone, and its synthetic potential was studied. A wide variety of 2-pyridone derivatives containing the CF(3) group have been prepared in good to moderate yields.

  8. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-01

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures.

  9. Conjugate addition reactions of N-carbamoyl-4-pyridones and 2,3-dihydropyridones with Grignard reagents in the absence of Cu(I) salts.

    PubMed

    Guo, Fenghai; Dhakal, Ramesh C; Dieter, R Karl

    2013-09-01

    N-Boc- and N-ethoxycarbonyl-4-pyridones and the resulting 2,3-dihydropyridones undergo 1,4-addition reactions with Grignard reagents in the presence of chlorotrimethylsilane (TMSCl) or BF3·Et2O in excellent yields. Copper catalysis is not required, and mechanistic considerations suggest that the reaction is proceeding by a conjugate addition pathway rather than by a pathway involving 1,2-addition to an intermediate pyridinium ion. TMSCl-mediated conjugate addition of Grignard reagents to 2-substituted-2,3-dihydropyridones gives the trans-2,6-disubstitued piperidinones stereoselectively, while cuprate reagents give either the trans or cis diastereomers or mixtures. PMID:23937057

  10. Crystal structure of benzene-1,3,5-tri­carb­oxy­lic acid–4-pyridone (1/3)

    PubMed Central

    Staun, Selena L.; Oliver, Allen G.

    2015-01-01

    Slow co-crystallization of a solution of benzene-1,3,5-tri­carb­oxy­lic acid with a large excess of 4-hy­droxy­pyridine produces an inter­penetrating, three-dimensional, hydrogen-bonded framework consisting of three 4-pyridone and one benzene-1,3,5-tri­carb­oxy­lic acid mol­ecules, C9H6O6·3C5H5NO. This structure represents an ortho­rhom­bic polymorph of the previously reported C-centered, monoclinic structure [Campos-Gaxiola et al. (2014 ▸). Acta Cryst. E70, o453–o454]. PMID:26594492

  11. Prevention of leucaena toxicosis of cattle in Florida by ruminal inoculation with 3-hydroxy-4-(1H)-pyridone-degrading bacteria.

    PubMed

    Hammond, A C; Allison, M J; Williams, M J; Prine, G M; Bates, D B

    1989-12-01

    Ruminal microorganisms in cattle at a Florida agriculture research station did not have the ability to detoxify leucaena by degradation of 3-hydroxy-4(1H)-pyridone (3,4,-DHP), but a DHP isomer (2,3-DHP) was degraded in some cattle. Cattle with microorganisms that degraded 2,3-DHP were mostly Senepol cattle imported from St. Croix, US Virgin Islands, where leucaena is an indigenous species. Hereford cattle at the research station in Florida generally did not degrade 3,4-DHP or 2,3-DHP. An experiment was conducted in which a pure culture of 3,4-DHP-degrading bacteria was inoculated into Hereford cattle (with ruminal fistula) grazing leucaena. The bacteria successfully colonized the rumen of recipient cattle and persisted through the following winter when there was no leucaena in the diet. PMID:2610447

  12. 2-pyridone: The role of out-of-plane vibrations on the S1<-->S0 spectra and S1 state reactivity

    NASA Astrophysics Data System (ADS)

    Frey, Jann A.; Leist, Roman; Tanner, Christian; Frey, Hans-Martin; Leutwyler, Samuel

    2006-09-01

    The S1↔S0 vibronic spectra of supersonic jet-cooled 2-pyridone [pyridin-2-one (2PY)] and its N-H deuterated isotopomer (d-2PY) have been recorded by two-color resonant two-photon ionization, laser-induced fluorescence and emission, and fluorescence depletion spectroscopies. By combining these methods, the B origin of 2PY at 000+98cm-1 and the bands at +218 and +252cm-1 are identified as overtones of the S1 state out-of-plane vibrations ν1' and ν2', as are the analogous bands of d-2PY. Anharmonic double-minimum potentials are derived for the respective out-of-plane coordinates that predict further ν1' and ν2' overtones and combinations, reproducing ˜80% of the vibronic bands up to 600cm-1 above the 000 band. The fluorescence spectra excited at the electronic origins and the ν1' and ν2' out-of-plane overtone levels confirm these assignments. The S1 nonplanar minima and S1←S0 out-of-plane progressions are in agreement with the determination of nonplanar vibrationally averaged geometries for the 000 and 000+98cm-1 upper states by Held et al. [J. Chem. Phys. 95, 8732 (1991)]. The fluorescence lifetimes of the S1 state vibrations show strong mode dependence: Those of the out-of-plane levels decrease rapidly above 200cm-1 excess vibrational energy, while the in-plane vibrations ν5', ν8', and ν9' have longer lifetimes, although they are above or interspersed with the "dark" out-of-plane states. This is interpreted in terms of an S1' state reaction with a low barrier towards a conical intersection with a prefulvenic geometry. Out-of-plane vibrational states can directly surmount this barrier, whereas in-plane vibrations are much less efficient in this respect. Analysis of the fluorescence spectra allows to identify nine in-plane S0' state fundamentals, overtones of the S0 state ν1″ and ν2″ out-of-plane vibrations, and >30 other overtones and combination bands. The B3LYP /6-311++G(d,p) calculated anharmonic wave numbers are in very good agreement with the

  13. Structural Simplification of Bioactive Natural Products with Multicomponent Synthesis. 2. Antiproliferative and Antitubulin Activities of Pyrano[3,2-c]pyridones and Pyrano[3,2-c]quinolones

    PubMed Central

    Magedov, Igor V.; Manpadi, Madhuri; Ogasawara, Marcia A.; Dhawan, Adriana S.; Rogelj, Snezna; Van slambrouck, Severine; Steelant, Wim F. A.; Evdokimov, Nikolai M.; Uglinskii, Pavel Y.; Elias, Eerik M.; Knee, Erica J.; Tongwa, Paul; Antipin, Mikhail Yu.; Kornienko, Alexander

    2011-01-01

    Pyrano[3,2-c]pyridone and pyrano[3,2-c]quinolone structural motifs are commonly found in alkaloids manifesting diverse biological activities. As part of a program aimed at structural simplification of bioactive natural products utilizing multicomponent synthetic processes, we developed compound libraries based on these privileged heterocyclic scaffolds. The selected library members display low nanomolar antiproliferative activity and induce apoptosis in human cancer cell lines. Mechanistic studies reveal that these compounds induce cell cycle arrest in the G2/M phase and block in vitro tubulin polymerization. Because of the successful clinical use of microtubule-targeting agents, these heterocyclic libraries are expected to provide promising new leads in anticancer drug design. PMID:18361483

  14. 4-Pyridone-3-carboxamide-1-β-D-ribonucleoside triphosphate (4PyTP), a novel NAD metabolite accumulating in erythrocytes of uremic children: a biomarker for a toxic NAD analogue in other tissues?

    PubMed

    Synesiou, Elena; Fairbanks, Lynnette D; Simmonds, H Anne; Slominska, Ewa M; Smolenski, Ryszard T; Carrey, Elizabeth A

    2011-06-01

    We have identified a novel nucleotide, 4-pyridone 3/5-carboxamide ribonucleoside triphosphate (4PyTP), which accumulates in human erythrocytes during renal failure. Using plasma and erythrocyte extracts obtained from children with chronic renal failure we show that the concentration of 4PyTP is increased, as well as other soluble NAD(+) metabolites (nicotinamide, N(1)-methylnicotinamide and 4Py-riboside) and the major nicotinamide metabolite N(1)-methyl-2-pyridone-5-carboxamide (2PY), with increasing degrees of renal failure. We noted that 2PY concentration was highest in the plasma of haemodialysis patients, while 4PyTP was highest in erythrocytes of children undergoing peritoneal dialysis: its concentration correlated closely with 4Py-riboside, an authentic precursor of 4PyTP, in the plasma. In the dialysis patients, GTP concentration was elevated: similar accumulation was noted previously, as a paradoxical effect in erythrocytes during treatment with immunosuppressants such as ribavirin and mycophenolate mofetil, which deplete GTP through inhibition of IMP dehydrogenase in nucleated cells such as lymphocytes. We predict that 4Py-riboside and 4Py-nucleotides bind to this enzyme and alter its activity. The enzymes that regenerate NAD(+) from nicotinamide riboside also convert the drugs tiazofurin and benzamide riboside into NAD(+) analogues that inhibit IMP dehydrogenase more effectively than the related ribosides: we therefore propose that the accumulation of 4PyTP in erythrocytes during renal failure is a marker for the accumulation of a related toxic NAD(+) analogue that inhibits IMP dehydrogenase in other cells. PMID:22069723

  15. Antiplatelet pyrazolopyridines derivatives: pharmacological, biochemical and toxicological characterization.

    PubMed

    Saito, Max Seidy; Lourenço, André Luiz; Dias, Luiza Rosaria Sousa; Freitas, Antônio Carlos Carreira; Vitorino, Maíra Ingrid; Albuquerque, Magaly Girão; Rodrigues, Carlos Rangel; Cabral, Lúcio Mendes; Dias, Eliane Pedra; Castro, Helena Carla; Satlher, Plínio Cunha

    2016-12-01

    Platelet aggregation is one of the main events involved in vascular thrombus formation. Recently, N'-substituted-phenylmethylene-3-methyl-1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine-4-carbohydrazides were described as antiplatelet derivatives. In this work, we explore the properties of these antiplatelet agents through a series of pharmacological, biochemical and toxicological studies. The antiplatelet activity of each derivative was confirmed as 3a, 3b and 3 h significantly inhibited human platelet aggregation induced by arachidonic acid, with no detectable effect on clotting factors or healthy erythrocytes. Importantly, mice treated with derivative 3a showed a higher survival rate at an in vivo model of pulmonary thromboembolism with a lower bleeding risk in comparison to aspirin. The in silico studies pointed a series of structural parameters related to thromboxane synthase (TXS) inhibition by 3a, which was confirmed by tracking plasma levels of PGE2 and TXB2 through an in vitro enzyme immunoassay. Derivative 3a showed selective TXS inhibition allied with low bleeding risk and increased animal survival, revealing the derivative as a promising candidate for treatment of cardiovascular diseases.

  16. Pyrazolopyridines as potent PDE4B inhibitors: 5-Heterocycle SAR

    SciTech Connect

    Mitchell, Charlotte J.; Ballantine, Stuart P.; Coe, Diane M.; Cook, Caroline M.; Delves, Christopher J.; Dowle, Mike D.; Edlin, Chris D.; Hamblin, J. Nicole; Holman, Stuart; Johnson, Martin R.; Jones, Paul S.; Keeling, Sue E.; Kranz, Michael; Lindvall, Mika; Lucas, Fiona S.; Neu, Margarete; Solanke, Yemisi E.; Somers, Don O.; Trivedi, Naimisha A.; Wiseman, Joanne O.

    2012-05-03

    Following the discovery of 4-(substituted amino)-1-alkyl-pyrazolo[3,4-b]pyridine-5-carboxamides as potent and selective phosphodiesterase 4B inhibitors, [Hamblin, J. N.; Angell, T.; Ballentine, S., et al. Bioorg. Med. Chem. Lett.2008, 18, 4237] the SAR of the 5-position was investigated further. A range of substituted heterocycles showed good potencies against PDE4. Optimisation using X-ray crystallography and computational modelling led to the discovery of 16, with sub-nM inhibition of LPS-induced TNF-{alpha} production from isolated human peripheral blood mononuclear cells.

  17. Simultaneous determination of niacin and its metabolites--nicotinamide, nicotinuric acid and N-methyl-2-pyridone-5-carboxamide--in human plasma by LC-MS/MS and its application to a human pharmacokinetic study.

    PubMed

    Inamadugu, Jaswanth Kumar; Damaramadugu, Rajasekhar; Mullangi, Ramesh; Ponneri, Venkateswarlu

    2010-10-01

    An LC-MS/MS method for the simultaneous quantitation of niacin (NA) and its metabolites, i.e. nicotinamide (NAM), nicotinuric acid (NUA) and N-methyl-2-pyridone-5-carboxamide (2-Pyr), in human plasma (1 mL) was developed and validated using nevirapine as an internal standard (IS). Extraction of the NA and its metabolites along with the IS from human plasma was accomplished using a simple liquid-liquid extraction. The chromatographic separation of NA, NAM, NUA, 2-Pyr and IS was achieved on a Hypersil-BDS column (150 x 4.6 mm, 5 microm) column using a mobile phase consisting of 0.1% formic acid : acetonitrile (20:80 v/v) at a flow rate of 1 mL/min. The total run time of analysis was 2 min and elution of NA, NAM, NUA, 2-Pyr and IS occurred at 1.37, 1.46, 1.40, 1.06 and 1.27 min, respectively. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 100-20000 ng/mL for NA; 10-1600 ng/mL for NUA and NAM and 50-5000 ng/mL for 2-Pyr with mean correlation coefficient of ≥ 0.99 for each analyte. The method was sensitive, specific, precise, accurate and suitable for bioequivalence and pharmacokinetic studies. The developed assay method was successfully applied to a pharmacokinetic study in humans.

  18. midD-encoded 'rhizomimosinase' from Rhizobium sp. strain TAL1145 is a C-N lyase that catabolizes L-mimosine into 3-hydroxy-4-pyridone, pyruvate and ammonia.

    PubMed

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2013-06-01

    Rhizobium sp. strain TAL1145 catabolizes mimosine, which is a toxic non-protein amino acid present in Leucaena leucocephala (leucaena). The objective of this investigation was to study the biochemical and catalytic properties of the enzyme encoded by midD, one of the TAL1145 genes involved in mimosine degradation. The midD-encoded enzyme, MidD, was expressed in Escherichia coli, purified and used for biochemical and catalytic studies using mimosine as the substrate. The reaction products in the enzyme assay were analyzed by HPLC and mass spectrometry. MidD has a molecular mass of ~45 kDa and its catalytic activity was found to be optimal at 37 °C and pH 8.5. The major product formed in the reaction had the same retention time as that of synthetic 3-hydroxy-4-pyridone (3H4P). It was confirmed to be 3H4P by MS/MS analysis of the HPLC-purified product. The K m, V max and K cat of MidD were 1.27 × 10(-4) mol, 4.96 × 10(-5) mol s(-1) mg(-1), and 2,256.05 s(-1), respectively. Although MidD has sequence similarities with aminotransferases, it is not an aminotransferase because it does not require a keto acid as the co-substrate in the degradation reaction. It is a pyridoxal-5'-phosphate (PLP)-dependent enzyme and the addition of 50 μM hydroxylamine completely inhibited the reaction. However, the supplementation of the reaction with 0.1 μM PLP restored the catalytic activity of MidD in the reaction containing 50 μM hydroxylamine. The catalytic activity of MidD was found to be specific to mimosine, and the presence of its structural analogs including L-tyrosine, L-tryptophan and L-phenylalanine did not show any competitive inhibition. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products in equimolar quantities of the substrate used. The degradation of mimosine into a ring compound, 3H4P with the release of ammonia indicates that MidD of Rhizobium sp. strain TAL1145 is a C-N lyase. PMID:23462928

  19. Quantitation of the niacin metabolites 1-methylnicotinamide and l-methyl-2-pyridone-5-carboxamide in random spot urine samples, by ion-pairing reverse-phase HPLC with UV detection, and the implications for the use of spot urine samples in the assessment of niacin status.

    PubMed

    Creeke, Paul I; Seal, Andrew J

    2005-03-25

    A simple ion-pairing reverse-phase HPLC method, with UV diode array detection, was developed and validated for quantitation of the urinary niacin metabolites 1-methylnicotinamide and l-methyl-2-pyridone-5-carboxamide in a single run. Urine samples were purified using a polymer-based mixed mode anion exchange reverse-phase cartridge. Analysis was performed on a reverse-phase C18 column, using a methanol gradient elution system, containing phosphate buffer pH 7.0, 1-heptanesulphonic acid as the ion-pairing agent and trimethylamine as a modifier. The assay was applied to the measurement of the niacin status of two subjects using spot urine samples. The samples were collected over 4 consecutive days and at four time points during 1 day. Status, expressed as the concentration ratios (2-PYR or 1-MN)/creatinine and 2-PYR/l-MN, varied within and between days and was least for fasting samples. This work illustrates the potential of spot urine sampling for niacin status assessment, but highlights the need for further validation prior to its use in field nutritional surveys.

  20. 2-Ethyl-3-hy­droxy-1-isopropyl-4-pyridone

    PubMed Central

    Molokoane, Pule P.; Schutte, M.; Steyl, G.

    2012-01-01

    The title compound, C10H15NO2, crystallized with three mol­ecules in the asymmetric unit. These three mol­ecules are quite similar except for slight differences in the torsion angles of the substituents on the ring. The isopropyl C—C—N—C torsion angles (towards the carbon next to the ethyl bound carbon), for example, are −150.63 (11), −126.77 (13) and −138.76 (11)° for mol­ecules A, B and C, respectively, and the C—C—C—N torsion angles involving the ethyl C atoms are 102.90 (13), 87.81 (14) and 86.47 (13)°. The main difference between the three mol­ecules lies in the way they are arranged in the solid-state structure. All three mol­ecules form dimers that are connected through strong O—H⋯O hydrogen bonds with R 2 2(10) graph-set motifs. The symmetry of the dimers formed does however differ between mol­ecules. Mol­ecules B connect with each other to form inversion dimers. Mol­ecules A and C, on the other hand, form dimers with local twofold symmetry, but the two mol­ecules are crystallographically distinct. The B and C molecules are linked to themselves and to each other via C—H⋯O hydrogen bonds. This results in the formation of a three-dimensional network structure. PMID:23284535

  1. Design and Synthesis of C-2 Substituted Thiazolo and Dihydrothiazolo Ring-Fused 2-Pyridones; Pilicides with Increased Antivirulence Activity

    PubMed Central

    Chorell, Erik; Pinkner, Jerome S.; Phan, Gilles; Edvinsson, Sofie; Buelens, Floris; Remaut, Han; Waksman, Gabriel; Hultgren, Scott J.; Almqvist, Fredrik

    2010-01-01

    Pilicides block pili formation by binding to pilus chaperones and blocking their function in the chaperone/usher pathway in E. coli. Various C-2 substituents were introduced on the pilicide scaffold by design and synthetic method developments. Experimental evaluation showed that proper substitution of this position affected the biological activity of the compound. Aryl substituents resulted in pilicides with significantly increased potencies as measured in pili-dependent biofilm and hemagglutination assays. The structural basis of the PapD chaperone-pilicide interactions was determined by X ray crystallography. PMID:20586493

  2. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α.

  3. Ricinine: a pyridone alkaloid from Ricinus communis that activates the Wnt signaling pathway through casein kinase 1α.

    PubMed

    Ohishi, Kensuke; Toume, Kazufumi; Arai, Midori A; Sadhu, Samir K; Ahmed, Firoj; Mizoguchi, Takamasa; Itoh, Motoyuki; Ishibashi, Masami

    2014-09-01

    Wnt signaling plays important roles in proliferation, differentiation, development of cells, and various diseases. Activity-guided fractionation of the MeOH extract of the Ricinus communis stem led to the isolation of four compounds (1-4). The TCF/β-catenin transcription activities of 1 and 3 were 2.2 and 2.5 fold higher at 20 and 30μM, respectively. Cells treated with ricinine (1) had higher β-catenin and lower of p-β-catenin (ser 33, 37, 45, Thr 41) protein levels, whereas glycogen synthase kinase 3β (GSK3β) and casein kinase 1α (CK1α) protein levels remained unchanged. Cells treated with pyrvinium, an activator of CK1α, had lower β-catenin levels. However, the combined treatment of pyrvinium and 1 led to higher β-catenin levels than those in cells treated with pyrvinium alone, which suggested that 1 inhibited CK1α activity. Furthermore, 1 increased β-catenin protein levels in zebrafish embryos. These results indicated that 1 activated the Wnt signaling pathway by inhibiting CK1α. PMID:25124862

  4. An Aspergillus flavus secondary metabolic gene cluster containing a hybrid PKS-NRPS is necessary for synthesis of the 2-pyridones, leporins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The genome of the filamentous fungus, Aspergillus flavus, has been shown to harbor as many as 55 putative secondary metabolic gene clusters including the one responsible for production of the toxic and carcinogenic, polyketide synthase (PKS)-derived family of secondary metabolites termed aflatoxins....

  5. Discovery of a potent enoyl-acyl carrier protein reductase (FabI) inhibitor suitable for antistaphylococcal agent.

    PubMed

    Kim, Yun Gyeong; Seo, Jae Hong; Kwak, Jin Hwan; Shin, Kye Jung

    2015-10-15

    We report the discovery, synthesis, and biological activities of phenoxy-4-pyrone and phenoxy-4-pyridone derivatives as novel inhibitors of enoyl-acyl carrier protein reductase (FabI). Pyridone derivatives showed better activities than pyrone derivatives against FabI and Staphylococcus aureus strains, including methicillin-resistant Staphylococcus aureus (MRSA). Among the pyridone derivatives, compound 16l especially exhibited promising activities against the MRSA strain and good pharmacokinetic profiles. PMID:26343826

  6. Carbanions from Decarboxylation of Orotate Analogues: Stability and Mechanistic Implications

    PubMed Central

    Yeoh, Fong Ying; Cuasito, Roxanne R.; Capule, Christina C.; Wong, Freeman M.; Wu, Weiming

    2009-01-01

    The pKa’s of the 6–CH groups of 1,3-dimethyluracil, N-methyl-2-pyridone, and N-methyl-4-pyridone were determined through their reactions with bases derived from carbon acids with known pKa and the reactions of their corresponding carbanions with the carbon acids. No correlation between the stability of the carbanions and the rate of decarboxylation of corresponding carboxylic acids was found. PMID:17400276

  7. Pyrimidone-based series of glucokinase activators with alternative donor-acceptor motif.

    PubMed

    Filipski, Kevin J; Guzman-Perez, Angel; Bian, Jianwei; Perreault, Christian; Aspnes, Gary E; Didiuk, Mary T; Dow, Robert L; Hank, Richard F; Jones, Christopher S; Maguire, Robert J; Tu, Meihua; Zeng, Dongxiang; Liu, Shenping; Knafels, John D; Litchfield, John; Atkinson, Karen; Derksen, David R; Bourbonais, Francis; Gajiwala, Ketan S; Hickey, Michael; Johnson, Theodore O; Humphries, Paul S; Pfefferkorn, Jeffrey A

    2013-08-15

    Glucokinase activators are a class of experimental agents under investigation as a therapy for Type 2 diabetes mellitus. An X-ray crystal structure of a modestly potent agent revealed the potential to substitute the common heterocyclic amide donor-acceptor motif for a pyridone moiety. We have successfully demonstrated that both pyridone and pyrimidone heterocycles can be used as a potent donor-acceptor substituent. Several sub-micromolar analogs that possess the desired partial activator profile were synthesized and characterized. Unfortunately, the most potent activators suffered from sub-optimal pharmacokinetic properties. Nonetheless, these donor-acceptor motifs may find utility in other glucokinase activator series or beyond.

  8. [2+2+2] cyclotrimerization of alkynes and isocyanates/isothiocyanates catalyzed by ruthenium-alkylidene complexes.

    PubMed

    Alvarez, Silvia; Medina, Sandra; Domínguez, Gema; Pérez-Castells, Javier

    2013-10-01

    Ruthenium carbene catalysts are able to catalyze crossed [2+2+2] cyclotrimerizations of α,ω-diynes with isocyanates, isothiocyanates, and carbon disulfide. Both aliphatic and aromatic isocyanates can be used to produce fused 2-pyridones, although aliphatic isocyanates were more reactive. Aromatic isocyanates give better results when they bear electron-donating substituents. The reaction of unsymmetrical α,ω-diynes gave a product only with the substituent adjacent to the 2-pyridone nitrogen. Isothiocyanates gave thiopyranimines upon reaction with the C═S bond, whereas CS2 reacted efficiently to give a thioxothiopyrane.

  9. The urinary excretory ratio of nicotinamide catabolites was associated with the conversion ratio of tryptophan to nicotinamide in growing rats fed a niacin-free 20% casein diet.

    PubMed

    Shibata, Katsumi; Imai, Eri; Sano, Mitsue; Fukuwatari, Tsutomu

    2012-01-01

    Weaning rats were fed a niacin-free 20% casein diet. Twenty-four-h-urine samples were collected, and nicotinamide and its catabolites were measured. A correlation was found between the urinary excretory ratio of nicotinamide catabolites (N(1)-methyl-2-pyridone-5-carboxamide + N(1)-methyl-4-pyridone-3-carboxamide)/N(1)-methylnicotinamide and the tryptophan-nicotinamide conversion ratio during growing period of the rats. This indicates the possibility that the conversion ratio can be deduced from the excretory ratio.

  10. Structure-Guided Evolution of Potent and Selective CHK1 Inhibitors through Scaffold Morphing

    PubMed Central

    2011-01-01

    Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines. A potent and highly selective isoquinoline CHK1 inhibitor (SAR-020106) was identified, which potentiated the efficacies of irinotecan and gemcitabine in SW620 human colon carcinoma xenografts in nude mice. PMID:22111927

  11. A novel redox reaction between 8-aza-5,7-dimethyl-2-trifluoromethylchromone and alkyl mercaptoacetates.

    PubMed

    Sosnovskikh, Vyacheslav Ya; Barabanov, Mikhail A; Usachev, Boris I

    2003-07-10

    [reaction: see text] 8-Aza-5,7-dimethyl-2-trifluoromethylchromone reacts with alkyl mercaptoacetates to give pyrido derivatives of 2-oxa-7-thiabicyclo[3.2.1]octane, which undergo the reductive ring-opening to sulfanyl acetates. The latter compounds are useful CF(3)-containing building blocks for the preparation of a variety of 2-pyridone derivatives.

  12. Effects of vitamin B6 deficiency on the conversion ratio of tryptophan to niacin.

    PubMed

    Shibata, K; Mushiage, M; Kondo, T; Hayakawa, T; Tsuge, H

    1995-11-01

    To investigate how vitamin B6 (B6) deficiency affects the whole metabolism of tryptophan-niacin, rats were fed for 19 days with each of the following four kinds of diets; a complete 20% casein diet (control diet), the control diet without B6, the control diet without nicotinic acid, and the control diet without nicotinic acid and B6, and the urinary excretion of such tryptophan metabolites as kynurenic acid, xanthurenic acid, nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide each and the enzyme activities involved in tryptophan-niacin pathway were measured. The urinary excretion of kynurenic acid decreased while that of xanthurenic acid increased drastically in the two B6-deficient groups, when compared with the B6-containing groups. These results indicate that the rats fed with the B6-free diets were in the vitamin-deficient state. The conversion ratio was calculated from the ratio of the urinary excretion of sum of nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, to the Trp intake. The ratio was statistically lower in the B6-free diet than in the B6-containing diet under the niacin-free conditions.

  13. Effects of sex hormones on the metabolism of tryptophan to niacin and to serotonin in male rats.

    PubMed

    Shibata, K; Toda, S

    1997-07-01

    It is known that deaths attributable to pellagra, which is considered to be a disease caused by the disturbance of tryptophan metabolism, have been approximately two-fold higher in women than in men. We investigated the effects of the administration of female and male sex hormones on the contents of tryptophan and such metabolites as serotonin, nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, and on the conversion ratio of tryptophan to niacin in male rats. Feeding a diet containing estrone or testosterone had no effect on the concentrations of tryptophan and serotonin in the blood and brain, or on the concentration of 5-hydroxyindole-3-acetic acid in the brain. On the contrary, feeding a diet containing estrone caused to a decrease in the urinary excretion of nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, and of the conversion ratio of tryptophan to niacin when compared with the control rats. Feeding a diet containing testosterone had no effect on any parameter. We postulate from these findings that the cause of higher pellagra deaths in women than in men is attributable to the decrease in the formation of niacin from tryptophan, but not in the formation of serotonin by the female hormone. It seems likely that female sex hormones inhibit the synthesis of niacin from tryptophan, and that women, especially during pregnancy, will be more at risk to pellagra than are men.

  14. Distribution of purine nucleotides in uremic fluids and tissues.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Swierczyński, Julian

    2010-09-01

    There are almost 100 different substances called uremic toxins. In this study, we analyze all findings concerning the new family of uremic compounds--nicotinamide end products: N-methyl-2-pyridone-5-carboxamide (Met2PY), N-methyl-4-pyridone-5-carboxamide, newly described 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside (4PYR) and 4-pyridone-3-carboxamide-1-beta-D-ribonucleoside triphosphate (4PYTP). After few years of studies, we have found that these substances have higher plasma concentration in patients with chronic renal failure (CRF) in comparison with the healthy population. We noted a 40-fold increase in plasma 4PYR concentration in patients with CRF. This increment correlates significantly with the decline of kidney function measured as an increase of serum creatinine concentration and decrease of estimated glomerular filtration rate. Tested compounds are present and measurable in physiological fluids and tissues. We found higher saliva Met2PY concentration in patients with CRF in comparison with controls. Saliva Met2PY correlated negatively with estimated glomerular filtration rate and positively with serum creatinine concentration. One-third of studied group had higher concentration of Met2PY in the saliva than in plasma, and this segment of patients may be called as "good excretors." In rats with experimental CRF, we found that both Met2PY and N-methyl-4-pyridone-5-carboxamide accumulated in selected tissues. We also demonstrated formation of 4PYTP in intact human erythrocytes during incubation with the precursor 4PYR. Incubation with 4PYR leads to lowering concentration of adenosine-5'-triphosphate. 4PYTP formation may be a way to remove 4PYR from the circulation and save adenosine-5'-triphosphate depletion. Summarizing, end products of the nicotinamide family are members of uremic toxins; however, exact pathophysiological role of these compounds in the development of uremic syndrome needs further studies. PMID:20797575

  15. Anticancer activities of some newly synthesized pyrazole and pyrimidine derivatives.

    PubMed

    Mohamed, Ashraf M; El-Sayed, Weal A; Alsharari, Musaed A; Al-Qalawi, Husam R M; Germoush, Mousa O

    2013-09-01

    A series of pyrazolopyridine and pyridopyrimidine derivatives 2-6 were newly synthesized using 3,5-bisarylmethylene-1-methylpiperidone as the starting material. The anticancer activities of the synthesized compounds were evaluated using 59 different human tumor cell lines, representing cancers of CNS, ovary, renal, breast, colon, lung, leukemia, and melanoma, prostate as well as kidney. Some of the tested compounds, especially those with a fluorine substituent at the para-position in the phenyl ring and those with a pyridopyrimidine-2-thione with a free -NH or -SH, exhibited greater in vitro anti-tumor activities at low concentrations (log 10 [GI₅₀] = -4.6) against the human tumor cell lines. Additionally, some of the compounds had moderate inhibitory effects on the growth of the cancer cell lines. The detailed synthesis, spectroscopic data and antitumor properties of the synthesized compounds are reported.

  16. The crystal structure of 3-chloro-2-(4-methyl-phenyl)-2H-pyrazolo-[3,4-b]quinoline.

    PubMed

    Sowmya, Haliwana B V; Suresha Kumara, Tholappanavara H; Jasinski, Jerry P; Millikan, Sean P; Yathirajan, Hemmige S; Glidewell, Christopher

    2015-05-01

    In the mol-ecule of 3-chloro-2-(4-methyl-phen-yl)-2H-pyrazolo-[3,4-b]quinoline, C17H12ClN3, (I), the dihedral angle between the planes of the pyrazole ring and the methyl-ated phenyl ring is 54.25 (9)°. The bond distances in the fused tricyclic system provide evidence for 10-π delocalization in the pyrazolo-pyridine portion of the mol-ecule, with diene character in the fused carbocyclic ring. In the crystal, mol-ecules of (I) are linked by two independent C-H⋯N hydrogen bonds, forming sheets containing centrosymmetric R 2 (2)(16) and R 6 (4)(28) rings, and these sheets are all linked together by π-π stacking inter-actions with a ring-centroid separation of 3.5891 (9) Å.

  17. CNS depressants accelerate the dissociation of /sup 35/S-TBPS binding and GABA enhances their displacing potencies

    SciTech Connect

    Maksay, G.; Ticku, M.K.

    1988-01-01

    The specific binding of /sup 35/S-t-butylbicyclophosphorothionate (TBPS) was studied in synaptosomal membranes of rat cerebral cortex. The displacing potencies of eleven CNS depressants and three convulsants were determined in the presence of 1 /sup +/M GABA and 10 nM R 5135. GABA enhanced the displacing potencies of depressants of most diverse chemical structures: diaryltriazine (LY 81067), pyrazolopyridine (etazolate), cinnamide, glutarimide, 2,3-benzodiazepine (tofizopam) and alcohol derivatives, barbiturates, (+)etomidate, methaqualone and meprobamate. In contrast, the IC/sub 50/ values of convulsants (picrotoxinin, pentetrazol and the barbiturate enantiomer S(+)MPPB) were not significantly affected. The depressants accelerated either basal or GABA-augmented dissociation of /sup 35/-TBPS mainly by increasing the contribution of its rapid first phase.

  18. Sulfamic acid promoted one-pot three-component synthesis and cytotoxic evaluation of spirooxindoles.

    PubMed

    Kamal, Ahmed; Babu, Korrapati Suresh; Vishnu Vardhan, M V P S; Hussaini, S M Ali; Mahesh, Rasala; Shaik, Siddiq Pasha; Alarifi, Abdullah

    2015-01-01

    A simple, mild and efficient method for the synthesis of pyrazolopyridine based spirooxindoles by the three-component reaction has been developed using sulfamic acid (H2NSO3H) as a green catalyst. The method involves use of water as a solvent which makes it eco-friendly. The catalyst used is readily available and is prominent for short reaction time, operational simplicity and high yields. After completion of the reaction the catalyst could be recovered and reused for up to four cycles without loss in catalytic activity. Employing this method a library of 34 compounds has been synthesized and investigated for their cytotoxicity against a panel of three human cancer cell lines. Some of the compounds like 4o and 4p exhibited remarkable cytotoxicities with IC50 values of 0.35μM and 1.92μM against MDA-MB-231 cell line. PMID:25870131

  19. Chemical modification of antitumor alkaloids, 20(S)-camptothecin and 7-ethylcamptothecin: reaction of the E-lactone ring portion with hydrazine hydrate.

    PubMed

    Yaegashi, T; Sawada, S; Furuta, T; Yokokura, T; Yamaguchi, K; Miyasaka, T

    1993-05-01

    The structure of the N-amino pyridone (4a) obtained by the reaction of camptothecin (1a) with hydrazine was determined by X-ray crystallography. A mixture of 7-ethylcamptothecin (1b) and hydrazine hydrate was stirred at room temperature, and the hydrazide (2b) was isolated as its diacetate 2c. Treatment of the 17-O-acetyl amide (5a) with hydrazine gave 1b (74% yield) and the N-amino lactam 6 (11% yield). Compounds with bulky acyl groups, 5c--e, gave 6 in modest yields. The N-amino lactam 6 was smoothly dehydrated into the pyridone 4d by refluxing in hydrazine hydrate. PMID:8339343

  20. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides

    PubMed Central

    Bolla, Geetha; Nangia, Ashwini

    2016-01-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ–NAM–2HP (1:1:1). PMID:27006778

  1. Binary and ternary cocrystals of sulfa drug acetazolamide with pyridine carboxamides and cyclic amides.

    PubMed

    Bolla, Geetha; Nangia, Ashwini

    2016-03-01

    A novel design strategy for cocrystals of a sulfonamide drug with pyridine carboxamides and cyclic amides is developed based on synthon identification as well as size and shape match of coformers. Binary adducts of acetazolamide (ACZ) with lactams (valerolactam and caprolactam, VLM, CPR), cyclic amides (2-pyridone, labeled as 2HP and its derivatives MeHP, OMeHP) and pyridine amides (nicotinamide and picolinamide, NAM, PAM) were obtained by manual grinding, and their single crystals by solution crystallization. The heterosynthons in the binary cocrystals of ACZ with these coformers suggested a ternary combination for ACZ with pyridone and nicotinamide. Novel supramolecular synthons of ACZ with lactams and pyridine carboxamides are reported together with binary and ternary cocrystals for a sulfonamide drug. This crystal engineering study resulted in the first ternary cocrystal of acetazolamide with amide coformers, ACZ-NAM-2HP (1:1:1).

  2. Impact of passive permeability and gut efflux transport on the oral bioavailability of novel series of piperidine-based renin inhibitors in rodents.

    PubMed

    Lévesque, Jean-François; Bleasby, Kelly; Chefson, Amandine; Chen, Austin; Dubé, Daniel; Ducharme, Yves; Fournier, Pierre-André; Gagné, Sébastien; Gallant, Michel; Grimm, Erich; Hafey, Michael; Han, Yongxin; Houle, Robert; Lacombe, Patrick; Laliberté, Sébastien; MacDonald, Dwight; Mackay, Bruce; Papp, Robert; Tschirret-Guth, Richard

    2011-09-15

    An oral bioavailability issue encountered during the course of lead optimization in the renin program is described herein. The low F(po) of pyridone analogs was shown to be caused by a combination of poor passive permeability and gut efflux transport. Substitution of pyridone ring for a more lipophilic moiety (logD>1.7) had minimal effect on rMdr1a transport but led to increased passive permeability (P(app)>10 × 10(-6) cm/s), which contributed to overwhelm gut transporters and increase rat F(po). LogD and in vitro passive permeability determination were found to be key in guiding SAR and improve oral exposure of renin inhibitors.

  3. Design and evaluation of novel 8-oxo-pyridopyrimidine Jak1/2 inhibitors.

    PubMed

    Labadie, Sharada; Barrett, Kathy; Blair, Wade S; Chang, Christine; Deshmukh, Gauri; Eigenbrot, Charles; Gibbons, Paul; Johnson, Adam; Kenny, Jane R; Kohli, Pawan Bir; Liimatta, Marya; Lupardus, Patrick J; Shia, Steven; Steffek, Micah; Ubhayakar, Savita; van Abbema, Anne; Zak, Mark

    2013-11-01

    A highly ligand efficient, novel 8-oxo-pyridopyrimidine containing inhibitor of Jak1 and Jak2 isoforms with a pyridone moiety as the hinge-binding motif was discovered. Structure-based design strategies were applied to significantly improve enzyme potency and the polarity of the molecule was adjusted to gain cellular activity. The crystal structures of two representative inhibitors bound to Jak1 were obtained to enable SAR exploration.

  4. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain Site Characterization study. [Quarterly] progress report, April 1, 1995--June 3, 1995

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1995-08-01

    The focus for this quarter has been on completing the laboratory studies in preparation for the C-Well tracer tests. These studies include measuring the solubilities for each of the fluorinated benzoic acids as well as determining the stabilities of these compounds through both batch and column testing. A batch test for four pyridone compounds was also initiated. The Tracer QA procedures were approved by the YM USGS on May 24, 1995. The batch testing was repeated using these procedures.

  5. a Novel Method to Synthesize N-DOPED CNTs Arrays via Chemical Modifying Porous Alumina Membrane

    NASA Astrophysics Data System (ADS)

    Li, Chengyong; He, Lei

    2014-01-01

    N-doped carbon nanotubes (CNTs) arrays were fabricated via simply chemical modifying porous alumina membrane (PAM) with dopamine. The diameter of N-doped CNTs is about 60-70 nm. The N/C atomic ratio is calculated to be 0.05 and the main functionality is pyridone/pyrrole N. This chemical modifying method can be used to fabricate mass of N-doped CNTs arrays in one step with single raw material.

  6. Efficient short step synthesis of Corey's tamiflu intermediate.

    PubMed

    Kipassa, Nsiama Tienabe; Okamura, Hiroaki; Kina, Kengo; Hamada, Toshiyuki; Iwagawa, Tetsuo

    2008-03-01

    Corey's tamiflu intermediate was synthesized from a bicyclolactam adduct obtained by base-catalyzed Diels-Alder reaction of N-nosyl-3-hydroxy-2-pyridone with ethyl acrylate. A compound that has the same array of functional groups with the Corey's intermediate was obtained in four steps from the DA adduct in 47% overall yield. The intermediate itself was also prepared efficiently by simply changing the protective group.

  7. Rational Design Synthesis and Evaluation of First Generation Inhibitors of the Giardia Lamblia Fructose-1 6-biphosphate Aldolase

    SciTech Connect

    Z Li; Z Liu; D Cho; J Zou; M Gong; R Breece; A Galkin; L Li; H Zhao; et al.

    2011-12-31

    Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn{sup 2+} binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (K{sub i} = 14 {micro}M) that is comparable to that of FBP (K{sub m} = 2 {micro}M) or its inert analog TBP (K{sub i} = 1 {micro}M). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 {angstrom}) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn{sup 2+}. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn{sup 2+} are not consistent with a strong interaction. To determine if Zn{sup 2+} coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn{sup 2+} coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn{sup 2+} coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn{sup 2+} coordination to binding of 8 to GlFBPA.

  8. Rational Design, Synthesis and Evaluation of First Generation Inhibitors of the Giardia lamblia Fructose-1,6-biphosphate Aldolase

    PubMed Central

    Li, Zhimin; Liu, Zhengang; Cho, Dae Won; Zou, Jiwen; Gong, Maozhen; Breece, Robert M.; Galkin, Andrey; Li, Ling; Zhao, Hong; Maestas, Gabriel D.; Tierney, David L.; Herzberg, Osnat; Dunaway-Mariano, Debra; Mariano, Patrick S.

    2011-01-01

    Inhibitors of the Giardia lamblia fructose 1,6-bisphosphate aldolase (GlFBPA), which transforms fructose 1,6-bisphosphate (FBP) to dihydroxyacetone phosphate and glyceraldehyde 3-phosphate, were designed based on 3-hydroxy-2-pyridone and 1,2-dihydroxypyridine scaffolds that position two negatively charged tetrahedral groups for interaction with substrate phosphate binding residues, a hydrogen bond donor to the catalytic Asp83, and a Zn2+ binding group. The inhibition activities for the GlFBPA catalyzed reaction of FBP of the prepared alkyl phosphonate/phosphate substituted 3-hydroxy-2-pyridinones and a dihydroxypyridine were determined. The 3-hydroxy-2-pyridone inhibitor 8 was found to bind to GlFBPA with an affinity (Ki = 14 μM) that is comparable to that of FBP (Km = 2 μM) or its inert analog TBP (Ki = 1 μM). The X-ray structure of the GlFBPA-inhibitor 8 complex (2.3 Å) shows that 8 binds to the active site in the manner predicted by in silico docking with the exception of coordination with Zn2+. The observed distances and orientation of the pyridone ring O=C-C-OH relative to Zn2+ are not consistent with a strong interaction. To determine if Zn2+coordination occurs in the GlFBPA-inhibitor 8 complex in solution, EXAFS spectra were measured. A four coordinate geometry comprised of the three enzyme histidine ligands and an oxygen atom from the pyridone ring O=C-C-OH was indicated. Analysis of the Zn2+ coordination geometries in recently reported structures of class II FBPAs suggests that strong Zn2+ coordination is reserved for the enediolate-like transition state, accounting for minimal contribution of Zn2+ coordination to binding of 8 to GlFBPA. PMID:21333622

  9. Efficient sonochemical synthesis of alkyl 4-aryl-6-chloro-5-formyl-2-methyl-1,4-dihydropyridine-3-carboxylate derivatives.

    PubMed

    Ruiz, Enrique; Rodríguez, Hortensia; Coro, Julieta; Niebla, Vladimir; Rodríguez, Alfredo; Martínez-Alvarez, Roberto; de Armas, Hector Novoa; Suárez, Margarita; Martín, Nazario

    2012-03-01

    A facile, efficient and environment-friendly protocol for the synthesis of 6-chloro-5-formyl-1,4-dihydropyridine derivatives has been developed by the convenient ultrasound-mediated reaction of 2(1H)pyridone derivatives with the Vilsmeier-Haack reagent. This method provides several advantages over current reaction methodologies including a simpler work-up procedure, shorter reaction times and higher yields.

  10. Synthesis of highly functionalized diaryl ethers by copper-mediated O-arylation of phenols using trivalent arylbismuth reagents.

    PubMed

    Crifar, Cynthia; Petiot, Pauline; Ahmad, Tabinda; Gagnon, Alexandre

    2014-03-01

    Highly functionalized diaryl ethers were prepared by copper(II) acetate mediated O-arylation reaction of phenols using trivalent organobismuthanes. The reaction is performed under simple conditions and tolerates a wide diversity of functional groups on the phenol and on the organobismuth reagent. Substoichiometric amounts of catalyst can be used by performing the reaction under an oxygen atmosphere. The N-arylation of pyridones is also reported. PMID:24519720

  11. Slow-Binding Inhibition: A Theoretical and Practical Course for Students

    ERIC Educational Resources Information Center

    Golicnik, Marko; Stojan, Jure

    2004-01-01

    Tyrosinase (EC 1.14.18.1) catalyzes the oxidation of L-3,4-dihydroxyphenylalanine (L-DOPA) to 2,3,5,6-tetrahydro-5,6-dioxo-1H-indole-2-carboxylate (dopachrome), according to the classical Michaelis-Menten kinetic mechanism. The enzyme is strongly but slowly inhibited by alpha-amino-beta-[N-(3-hydroxy-4-pyridone)] propionic acid (L-mimosine), a…

  12. Direct inhibitors of InhA active against Mycobacterium tuberculosis

    PubMed Central

    Manjunatha, Ujjini H.; Rao, Srinivasa P. S.; Kondreddi, Ravinder Reddy; Noble, Christian G.; Camacho, Luis R.; Tan, Bee H.; Ng, Seow H.; Ng, Pearly Shuyi; Ma, N. L.; Lakshminarayana, Suresh B.; Herve, Maxime; Barnes, S. Whitney; Yu, Weixuan; Kuhen, Kelli; Blasco, Francesca; Beer, David; Walker, John R.; Tonge, Peter J.; Glynne, Richard; Smith, Paul W.; Diagana, Thierry T.

    2015-01-01

    New chemotherapeutic agents are urgently required to combat the global spread of multi-drug resistant tuberculosis (MDR-TB). The mycobacterial enoyl reductase, InhA, is one of the few clinically-validated targets in tuberculosis drug discovery. Here, we report the identification of a new class of direct InhA inhibitors, the 4-hydroxy-2-pyridones, using phenotypic high-throughput whole-cell screening. This class of orally-active compounds showed potent bactericidal activity against common isoniazid-resistant TB clinical isolates. Biophysical studies revealed that 4-hydroxy-2-pyridones bound specifically to InhA in an NADH-dependent manner and blocked the enoyl-substrate binding pocket. The lead compound NITD-916 directly blocked InhA in a dose-dependent manner and showed in vivo efficacy in acute and established mouse models of infection by Mycobacterium tuberculosis. Collectively, our structural and biochemical data open up new avenues for rational structure-guided optimization of the 4-hydroxy-2-pyridone class of compounds for the treatment of MDR-TB. PMID:25568071

  13. Electrochemical activation of commercial polyacrylonitrile-based carbon fiber for the oxygen reduction reaction.

    PubMed

    Xu, Haibo; Xia, Guangsen; Liu, Haining; Xia, Shuwei; Lu, Yonghong

    2015-03-28

    Nitrogen (N)-doped carbon and its non-noble metal composite replacing platinum-based oxygen reduction reaction (ORR) electrocatalysts still have some fundamental problems that remain. Here the micron-sized commercial polyacrylonitrile-based carbon fiber (PAN-CF) electrode was modified using an electrochemical method, converting its inherent pyridinic-N into 2-pyridone (or 2-hydroxyl pyridine) functional group existing in three-dimensional active layers with remarkable ORR catalytic activity and stability. The carbon atom adjacent to the nitrogen and oxygen atoms is prone to act as an active site to efficiently catalyze a two-electron ORR process. However, after coordinating pyridone to the Cu(2+) ion, together with the electrochemical reaction, the chemical redox between Cu(+) and ORR intermediates synergistically tends towards a four-electron pathway in alkaline solution. In different medium, the complexation and dissociation can induce the charge transfer and reconstruction among proton, metal ion and pyridone functionalities, eventually leading to the changes of ORR performance. PMID:25712410

  14. Attenuating Listeria monocytogenes Virulence by Targeting the Regulatory Protein PrfA

    PubMed Central

    Good, James A.D.; Andersson, Christopher; Hansen, Sabine; Wall, Jessica; Krishnan, K. Syam; Begum, Afshan; Grundström, Christin; Niemiec, Moritz S.; Vaitkevicius, Karolis; Chorell, Erik; Wittung-Stafshede, Pernilla; Sauer, Uwe H.; Sauer-Eriksson, A. Elisabeth; Almqvist, Fredrik; Johansson, Jörgen

    2016-01-01

    Summary The transcriptional activator PrfA, a member of the Crp/Fnr family, controls the expression of some key virulence factors necessary for infection by the human bacterial pathogen Listeria monocytogenes. Phenotypic screening identified ring-fused 2-pyridone molecules that at low micromolar concentrations attenuate L. monocytogenes cellular uptake by reducing the expression of virulence genes. These inhibitors bind the transcriptional regulator PrfA and decrease its affinity for the consensus DNA-binding site. Structural characterization of this interaction revealed that one of the ring-fused 2-pyridones, compound 1, binds at two separate sites on the protein: one within a hydrophobic pocket or tunnel, located between the C- and N-terminal domains of PrfA, and the second in the vicinity of the DNA-binding helix-turn-helix motif. At both sites the compound interacts with residues important for PrfA activation and helix-turn-helix formation. Ring-fused 2-pyridones represent a new class of chemical probes for studying virulence in L. monocytogenes. PMID:26991105

  15. [Development of Zn(2+) selective fluorescent probes for biological applications].

    PubMed

    Hagimori, Masayori

    2013-01-01

    Zn(2+) is an essential element for life and is known to play important roles in biological processes including gene expression, apoptosis, enzyme regulation, immune system and neurotransmission. To investigate physiological roles of free or chelatable Zn(2+) in living cells, Zn(2+)-selective fluorescent probes are valuable tools. A variety of fluorescent probes based on quinoline, BF2 chelated dipyrromethene, fluorescein, etc. has been developed recently. In principle, such tools can provide useful information about zinc biology. However, most of the fluorescent probes presented so far possess a fluorescent core and a separate part for binding to Zn(2+) within the molecule, so that the molecular weight is usually large and the molecules are hydrophobic. As a result, the applications of such molecules in biological systems often face difficulties. Therefore, we need to develop a new class of fluorescent probes for Zn(2+) with improved molecular characteristics. If the initial core structure is small enough, the fluorescent probes may still be molecular weight below 500 with desirable physico-chemical properties, even after the modifications. In this review, we described novel low-molecular-weight fluorescent probes for Zn(2+) based on pyridine-pyridone. Small modification of pyridine-pyridone core structure brought about a marked improvement such as aqueous solubility, affinity toward Zn(2+), and fluorescence ON/OFF switching. Fluorescence images of Zn(2+) in cells showed that the pyridine-pyridone probe can be used in biological applications.

  16. Studies on the decomposition of the oxime HI 6 in aqueous solution.

    PubMed

    Eyer, P; Hell, W; Kawan, A; Klehr, H

    1986-12-01

    HI 6 has been shown to be efficacious in soman intoxication of laboratory animals by reactivation of acetylcholinesterase. To assess possible risks involved in the administration of HI 6 its degradation products were analyzed at pH 2.0, 4.0, 7.4, and 9.0. At pH 2.0, where HI 6 in aqueous solution has its maximal stability, attack on the aminal-acetal bond of the "ether bridge" predominates, with formation of formaldehyde, isonicotinamide, and pyridine-2-aldoxime. Besides, HI 6 decomposes at the oxime group yielding 2-cyanopyridine. Liberation of hydrocyanic acid at pH 2.0 is below 5%. At pH 7.4, primary attack is on the oxime group, resulting in formation of the corresponding pyridone via an intermediate nitrile. The pyridone has been isolated and identified as 2-pyridinone, 1-[(4-carbamoylpyridinio)methoxy)methyl)formate. This major metabolite deaminates further to the 2-pyridinone, 1-[(4-carboxypyridinio)methoxy)methyl) derivative, which ultimately decomposes into formaldehyde, isonicotinic acid, and 2-pyridone. Hydrolysis of the acid amide group probably also occurs with HI 6 itself. Significant amounts of free hydrocyanic acid were only detected in the presence of an alkali trap; otherwise hydrocyanic acid reacts with formaldehyde to yield hydroxyacetonitrile from which hydrocyanic acid can be liberated again. Up to 0.6 equivalents of hydrocyanic acid were evolved at pH 7.4. After repetitive administration and impaired renal elimination of HI 6, e.g. during renal shock, there might be some risk of cyanide intoxication. PMID:3827594

  17. Cellular toxicity of nicotinamide metabolites.

    PubMed

    Rutkowski, Bolesław; Rutkowski, Przemysław; Słomińska, Ewa; Smolenski, Ryszard T; Swierczyński, Julian

    2012-01-01

    There are almost 100 different substances called uremic toxins. Nicotinamide derivatives are known as new family of uremic toxins. These uremic compounds play a role in an increased oxidative stress and disturbances in cellular repair processes by inhibiting poly (ADP-ribose) polymerase activity. New members of this family were discovered and described. Their toxic properties were a subject of recent studies. This study evaluated the concentration of 4-pyridone-3-carboxamid-1-β-ribonucleoside-triphosphate (4PYTP) and 4-pyridone-3-carboxamid-1-β-ribonucleoside-monophosphate (4PYMP) in erythrocytes of patients with chronic renal failure. Serum and red blood cells were collected from chronic renal failure patients on conservative treatment, those treated with hemodialysis, and at different times from those who underwent kidney transplantation. Healthy volunteers served as a control group. Nicotinamide metabolites were determined using liquid chromatography with mass spectrometry based on originally discovered and described method. Three novel compounds were described: 4-pyridone-3-carboxamid-1-β-ribonucleoside (4PYR), 4PYMP, and 4PYTP. 4PYR concentration was elevated in the serum, whereas 4PYMP and 4PYTP concentrations were augmented in erythrocytes of dialysis patients. Interestingly, concentrations of these compounds were less elevated during the treatment with erythropoietin-stimulating agents (ESAs). After successful kidney transplantation, concentrations of 4PYR and 4PYMP normalized according to the graft function, whereas that of 4PYTP was still elevated. During the incubation of erythrocytes in the presence of 4PYR, concentration of 4PYMP rose very rapidly while that of 4PYTP increased slowly. Therefore, we hypothesized that 4PYR, as a toxic compound, was actively absorbed by erythrocytes and metabolized to the 4PYMP and 4PYTP, which may interfere with function and life span of these cells. PMID:22200423

  18. Discovery of N-(4-(2-Amino-3-chloropyridin-4-yloxy)-3-fluorophenyl)-4-ethoxy-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamide (BMS-777607), a Selective and Orally Efficacious Inhibitor of the Met Kinase Superfamily

    SciTech Connect

    Schroeder, Gretchen M.; An, Yongmi; Cai, Zhen-Wei; Chen, Xiao-Tao; Clark, Cheryl; Cornelius, Lyndon A.M.; Dai, Jun; Gullo-Brown, Johnni; Gupta, Ashok; Henley, Benjamin; Hunt, John T.; Jeyaseelan, Robert; Kamath, Amrita; Kim, Kyoung; Lippy, Jonathan; Lombardo, Louis J.; Manne, Veeraswamy; Oppenheimer, Simone; Sack, John S.; Schmidt, Robert J.; Shen, Guoxiang; Stefanski, Kevin; Tokarski, John S.; Trainor, George L.; Wautlet, Barri S.; Wei, Donna; Williams, David K.; Zhang, Yingru; Zhang, Yueping; Fargnoli, Joseph; Borzilleri, Robert M.

    2009-12-01

    Substituted N-(4-(2-aminopyridin-4-yloxy)-3-fluoro-phenyl)-1-(4-fluorophenyl)-2-oxo-1,2-dihydropyridine-3-carboxamides were identified as potent and selective Met kinase inhibitors. Substitution of the pyridine 3-position gave improved enzyme potency, while substitution of the pyridone 4-position led to improved aqueous solubility and kinase selectivity. Analogue 10 demonstrated complete tumor stasis in a Met-dependent GTL-16 human gastric carcinoma xenograft model following oral administration. Because of its excellent in vivo efficacy and favorable pharmacokinetic and preclinical safety profiles, 10 has been advanced into phase I clinical trials.

  19. A combination of pharmacophore modeling, atom-based 3D-QSAR, molecular docking and molecular dynamics simulation studies on PDE4 enzyme inhibitors.

    PubMed

    Tripuraneni, Naga Srinivas; Azam, Mohammed Afzal

    2016-11-01

    Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R(2 )= .9949), cross validation coefficient (Q(2 )= .7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R(2) value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU-ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.

  20. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/-S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and trazolate, and a diaryl-triazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin

  1. Crystal structure of (2-hy-droxy-5-methyl-phen-yl)(3-methyl-1-phenyl-1H-pyrazolo-[3,4-b]pyridin-5-yl)methanone.

    PubMed

    Raja, Rajamani; Poomathi, Nataraj; Perumal, Paramasivam T; SubbiahPandi, A

    2015-07-01

    In the title compound, C21H17N3O2, the 2-hy-droxy-5-methyl-phenyl ring and the phenyl ring are inclined to the mean plane of the pyrazolo-pyridine moiety (r.m.s. deviation = 0.013 Å) by 52.89 (9) and 19.63 (8)°, respectively, and to each other by 42.83 (11)°. In the mol-ecule, there are intra-molecular O-H⋯O and C-H⋯N hydrogen bonds, both enclosing an S(6) ring motif. In the crystal, mol-ecules stack along the c-axis direction, forming columns within which there are a number of π-π inter-actions [the inter-centroid distances vary from 3.5278 (10) to 3.8625 (10) Å]. The columns are linked by C-H⋯π inter-actions, forming slabs parallel to (100). PMID:26279931

  2. TLN-05220, TLN-05223, new Echinosporamicin-type antibiotics, and proposed revision of the structure of bravomicins(*).

    PubMed

    Banskota, Arjun H; Aouidate, Mustapha; Sørensen, Dan; Ibrahim, Ashraf; Piraee, Mahmood; Zazopoulos, Emmanuel; Alarco, Anne-Marie; Gourdeau, Henriette; Mellon, Christophe; Farnet, Chris M; Falardeau, Pierre; McAlpine, James B

    2009-10-01

    The deposited strain of the hazimicin producer, Micromonospora echinospora ssp. challisensis NRRL 12255 has considerable biosynthetic capabilities as revealed by genome scanning. Among these is a locus containing both type I and type II PKS genes. The presumed products of this locus, TLN-05220 (1) and TLN-05223 (2), bear a core backbone composed of six fused rings starting with a 2-pyridone moiety. The structures were confirmed by conventional spectral analyses including MS, and 1D and 2D NMR experiments. Comparison of both the 1H and 13C NMR data of the newly isolated compound with those of echinosporamicin and bravomicin A led us to propose a revision of the structure of the latter to include a 2-pyridone instead of the pyran originally postulated. Both compounds (1 and 2) possessed strong antibacterial activity against a series of gram-positive pathogens including several strains of methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci (VRE), and cytotoxic activities against several human tumor cell lines. The TLN compounds are the first of this group with reported anticancer activity.

  3. Nonpeptidic inhibitors of human neutrophil elastase. 7. Design, synthesis, and in vitro activity of a series of pyridopyrimidine trifluoromethyl ketones.

    PubMed

    Edwards, P D; Andisik, D W; Strimpler, A M; Gomes, B; Tuthill, P A

    1996-03-01

    Using molecular modeling and the information derived from X-ray crystal structures of human neutrophil elastase (HNE) and porcine pancreatic elastase (PPE) complexed to peptidic ligands, we have developed a new series of nonpeptidic inhibitors of HNE, the pyridopyrimidine trifluoromethyl ketones (TFMKs). These bicyclic inhibitors were designed to extend the concept of the related pyridone trifluoromethyl ketones by incorporating a rigidly positioned carbonyl group to participate in a hydrogen bonding interaction with the backbone NH groups of Gly-218 and Gly-219 of the enzyme. In addition, the pyrimidine ring serves as a scaffold to vector substituents toward the S5-S4 subsites of the enzyme's extended binding pocket. Furthermore, the heteroatoms of the pyrimidine ring generally increase the aqueous solubility of the pyridopyrimidines relative to pyridone TFMKs. Pyridopyrimidine TFMKs containing a 6-phenyl substituent afforded potent inhibitors of elastase, and several inhibitors from this class of compounds possessed aqueous solubilities of > 0.1 mg/mL and Ki values of < or = 10 nM.

  4. Modulation of Curli Assembly and Pellicle Biofilm Formation by Chemical and Protein Chaperones

    PubMed Central

    Andersson, Emma K.; Bengtsson, Christoffer; Evans, Margery L.; Chorell, Erik; Sellstedt, Magnus; Lindgren, Anders E.G.; Hufnagel, David A.; Bhattacharya, Moumita; Tessier, Peter M.; Wittung-Stafshede, Pernilla; Almqvist, Fredrik; Chapman, Matthew R.

    2014-01-01

    SUMMARY Enteric bacteria assemble functional amyloid fibers, curli, on their surfaces that share structural and biochemical properties with disease-associated amyloids. Here, we test rationally designed 2-pyridone compounds for their ability to alter amyloid formation of the major curli subunit CsgA. We identified several compounds that discourage CsgA amyloid formation and several compounds that accelerate CsgA amyloid formation. The ability of inhibitor compounds to stop growing CsgA fibers was compared to the same property of the CsgA chaperone, CsgE. CsgE blocked CsgA amyloid assembly and arrested polymerization when added to actively polymerizing fibers. Additionally, CsgE and the 2-pyridone inhibitors prevented biofilm formation by Escherichia coli at the air-liquid interface of a static culture. We demonstrate that curli amyloid assembly and curli-dependent biofilm formation can be modulated not only by protein chaperones, but also by “chemical chaperones.” PMID:24035282

  5. Discovery of Orally Available Runt-Related Transcription Factor 3 (RUNX3) Modulators for Anticancer Chemotherapy by Epigenetic Activation and Protein Stabilization.

    PubMed

    Yang, Jee Sun; Lee, Chulho; Cho, Misun; Kim, Hyuntae; Kim, Jae Hyun; Choi, Seonghwi; Oh, Soo Jin; Kang, Jong Soon; Jeong, Jin-Hyun; Kim, Hyun-Jung; Han, Gyoonhee

    2015-04-23

    Recently, we identified a novel strategy for anticancer chemotherapy by restoring runt-related transcription factor 3 (RUNX3) levels via lactam-based histone deacetylase (HDAC) inhibitors that stabilize RUNX3. Described here are the synthesis, biological evaluation, and pharmacokinetic evaluation of new synthetic small molecules based on pyridone-based HDAC inhibitors that specifically stabilize RUNX3 by acetylation and regulate its function. Many of the newly synthesized compounds showed favorable RUNX activities, HDAC inhibitory activities, and inhibitory activities on the growth of human cancer cell lines. Notably, one of these new derivatives, (E)-N-hydroxy-3-(2-oxo-1-(quinolin-2-ylmethyl)-1,2-dihydropyridin-3-yl)acrylamide (4l), significantly restored RUNX3 in a dose-dependent manner and showed high metabolic stability, a good pharmacokinetic profile with high oral bioavailability and long half-life, and strong antitumor activity. This study suggests that pyridone-based analogues modulate RUNX3 activity through epigenetic regulation as well as strong transcriptional and post-translational regulation of RUNX3 and could be potential clinical candidates as orally available RUNX3 modulators for the treatment of cancer. PMID:25811792

  6. Structure and biosynthesis of fumosorinone, a new protein tyrosine phosphatase 1B inhibitor firstly isolated from the entomogenous fungus Isaria fumosorosea.

    PubMed

    Liu, Linxia; Zhang, Jun; Chen, Chuan; Teng, Jitao; Wang, Chengshu; Luo, Duqiang

    2015-08-01

    Fumosorinone, isolated from the entomogenous fungus Isaria fumosorosea, is a new 2-pyridone alkaloid which is elucidated by HRESIMS 1D and 2DNMR. Fumosorinone is structurally similar to tenellin and desmethylbassianin but it differs in chain length and degree of methylation. It is characterized by a classic noncompetitive inhibitor of protein tyrosine phosphatase 1B (IC50 14.04μM) which was implicated as a negative regulator of insulin receptor signaling and a potential drug target for the treatment of type II diabetes and other associated metabolic syndromes. For further study, we identified the biosynthetic gene cluster of fumosorinone from ongoing genome sequencing project, and it was verified by a direct knock-out strategy, reported for the first time in I. fumosorosea, using the Agrobacterium-mediated transformation in conjunction with linear deletion cassettes. The biosynthetic gene cluster includes a hybrid polyketide synthase-nonribosomal peptide synthetase gene, two cytochrome P450 enzyme genes, a trans-enoyl reductase gene, and other two transcription regulatory genes. Comparison of fumosorinone biosynthetic cluster with known gene clusters gives further insight into biosynthesis of pyridone alkaloids and provides the foundation for combinatorial biosynthesis for new fumosorinone derivatives. PMID:25857260

  7. Urinary metabolomic profiling in mice with diet-induced obesity and type 2 diabetes mellitus after treatment with metformin, vildagliptin and their combination.

    PubMed

    Pelantová, Helena; Bugáňová, Martina; Holubová, Martina; Šedivá, Blanka; Zemenová, Jana; Sýkora, David; Kaválková, Petra; Haluzík, Martin; Železná, Blanka; Maletínská, Lenka; Kuneš, Jaroslav; Kuzma, Marek

    2016-08-15

    Metformin, vildagliptin and their combination are widely used for the treatment of diabetes, but little is known about the metabolic responses to these treatments. In the present study, NMR-based metabolomics was applied to detect changes in the urinary metabolomic profile of a mouse model of diet-induced obesity in response to these treatments. Additionally, standard biochemical parameters and the expression of enzymes involved in glucose and fat metabolism were monitored. Significant correlations were observed between several metabolites (e.g., N-carbamoyl-β-alanine, N1-methyl-4-pyridone-3-carboxamide, N1-methyl-2-pyridone-5-carboxamide, glucose, 3-indoxyl sulfate, dimethylglycine and several acylglycines) and the area under the curve of glucose concentrations during the oral glucose tolerance test. The present study is the first to present N-carbamoyl-β-alanine as a potential marker of type 2 diabetes mellitus and consequently to demonstrate the efficacies of the applied antidiabetic interventions. Moreover, the elevated acetate level observed after vildagliptin administration might reflect increased fatty acid oxidation.

  8. [Effect of feeding with a poisonous mushroom Clitocybe acromelalga on the metabolism of tryptophan-niacin in rats].

    PubMed

    Fukuwatari, T; Sugimoto, E; Shibata, K

    2001-06-01

    The poisonous mushroom Clitocybe acromelalga contains clitidine, which resembles nicotinic acid mononucleotide, and 4-amino-pyridine-2,3-dicarboxylic acid, which resembles quinolinic acid. Both are important intermediates in the tryptophan-niacin pathway. Therefore, we investigated the effect of feeding a niacin-free and tryptophan-limited diet containing the toadstool Clitocybe acromelalga on the metabolism of tryptophan to niacin in rats. The toadstool diet was fed to the rats for only one day (this day was designated day 0). Urinary excretion of intermediates in the tryptophan-niacin pathway, such as anthranilic acid, kynurenic acid, xanthurenic acid, 3-hydroxyanthranilic acid, quinolinic acid, nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, was higher in the toadstool group than in the control on day 0-day 1 and day 1-day 2. The blood levels of tryptophan and NAD on day 1 were also higher in the toadstool group. Accordingly, intake of Clitocybe acromelalga appeared to increase the conversion of tryptophan to niacin.

  9. Effect of the rate of niacin administration on the plasma and urine pharmacokinetics of niacin and its metabolites.

    PubMed

    Menon, Rajeev M; González, Mario A; Adams, Marijke H; Tolbert, Dwain S; Leu, Jocelyn H; Cefali, Eugenio A

    2007-06-01

    The metabolic profile of niacin is influenced by the rate of niacin administration. This study characterizes the effect of administration rate on the pharmacokinetics of niacin and its metabolites. Twelve healthy males were enrolled in an open-label, dose-rate escalation study and received 2000 mg niacin at 3 different dosing rates. Plasma was analyzed for niacin, nicotinuric acid, nicotinamide, and nicotinamide-N-oxide. Urine was analyzed for niacin and the metabolites nicotinuric acid, nicotinamide, nicotinamide-N-oxide, N-methylnicotinamide, and N-methyl-2-pyridone-5-carboxamide. C(max) and AUC(0-t) for niacin and nicotinuric acid increased with an increase in dosing rate. The changes observed in plasma nicotinamide and nicotinamide-N-oxide parameters, however, did not correlate to dosing rate. The total amount of niacin and metabolites excreted in urine was comparable for all 3 treatments. However, with the increase in dosing rate, urine recovery of niacin and nicotinuric acid showed a significant increase, whereas N-methyl-2-pyridone-5-carboxamide and N-methylnicotinamide showed a significant decrease.

  10. Tryptophan-niacin metabolism in liver cirrhosis rat caused by carbon tetrachloride.

    PubMed

    Egashira, Y; Isagawa, A; Komine, T; Yamada, E; Ohta, T; Shibata, K; Sanada, H

    1999-08-01

    We investigated the change of tryptophan-niacin metabolism induced by carbon tetrachloride (CCl4) in rats with liver cirrhosis. The rats were injected with CCl4 (0.5 or 1 mL of 50% olive oil solution/kg body weight) twice a week for 1 or 2 mo and given phenobarbital water simultaneously. The urinary excretions of nicotinamide (Nam) and its metabolites were assayed. As the result, the urinary excretion of Nam, N1-methyl-4-pyridone-3-carboxamide (4-Py), Nam + N1-methylnicotinamide (MNA) + N1-methyl-2-pyridone-5-carboxamide (2-Py) + 4-Py was lower in the CCl4-treated groups than in the non-treated group (control) regardless of the experimental period (1 mo and 2 mo) or dosing amount of CCl4 (0.5 and 1 mL). Moreover, we investigated which pathway of tryptophan-niacin metabolism was affected in CCl4-treated rat. As the result, the possibility that the MNA-->4-Py reaction is inhibited by CCl4 treatment was suggested in this experiment.

  11. Effects of fatty liver induced by niacin-free diet with orotic acid on the metabolism of tryptophan to niacin in rats.

    PubMed

    Fukuwatari, Tsutomu; Morikawa, Yuko; Sugimoto, Etsuro; Shibata, Katsumi

    2002-06-01

    The effects of dietary orotic acid on the metabolism of tryptophan to niacin in weaning rats was investigated. The rats were fed with a niacin-free, 20% casein diet containing 0% (control diet) or 1% orotic acid diet (test diet) for 29 d. Retardation of growth, development of fatty liver, and enlargement of liver were observed in the test group in comparison with the control group. The concentrations of NAD and NADP in liver significantly decreased, while these in blood did not decrease compared to the control group. The formation of the upper metabolites of tryptophan to niacin such as anthranilic acid, kynurenic acid, and 3-hydroxyanthranilic acid were not affected, but the quinolinic acid and beyond, such as nicotinamide, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, were significantly reduced by the administration of orotic acid. Therefore, the conversion ratio of tryptophan to niacin significantly decreased in the test group in comparison with the control group.

  12. Pharmacological doses of nicotinic acid and nicotinamide are independently metabolized in rats.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu; Suzuki, Chiyomi

    2014-01-01

    Two compounds are known as the vitamin niacIn: nicotinic acid (NiA) and nicotinamide (Nam). The physiological functions and metabolic fates of NiA and Nam are identical, but differ when pharmacological doses are administered. Our study aimed to investigate the metabolic interactions between NiA and Nam when their pharmacological doses were administered together. We measured seven major niacin catabolites, including NiA, Nam, N(1)-methylnicotinamide (MNA), N(1)-methyl-2-pyridone-5-carboxamide (2-Py), N(1)-methyl-4-pyridone-3-carboxamide (4-Py), Nam N-oxide, and nicotinuric acid (NuA). Under physiological conditions, niacin is chiefly catabolized to 4-Py via MNA. However, this was not the primary pathway when rats were fed a diet containing excess niacin. When rats were fed a diet containing excess NiA, NuA was the major catabolite, and on being fed a diet containing excess Nam, MNA was the major catabolite. When rats were fed a diet containing an excess of both NiA and Nam, MNA and NuA were the major catabolites. The metabolic fates of excess NiA and Nam did not mutually interfere. Therefore, the administration of NiA and Nam together may be better than the administration of NiA or Nam alone because different pharmacological effects are expected.

  13. Change of tryptophan-niacin metabolism in D-galactosamine-induced liver injury in rat.

    PubMed

    Egashira, Y; Komine, T; Ohta, T; Shibata, K; Sanada, H

    1997-04-01

    The change of tryptophan-niacin metabolism in D-galactosamine (D-galN) injected rats was investigated. Rats fed with niacin-free diets containing 40% casein for 11 days were injected with D-galN (0.8 g/kg body weight). The urinary excretions of nicotinamide and its metabolites, and the activity of liver alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase (ACMSD) (EC 4.1.1.45), a key enzyme of tryptophan-niacin metabolism, were assayed. As the result, the urinary excretions of N1-methylnicotinamide (MNA), N1-methyl-2-pyridone-5-carboxamide (2-Py), N1-methyl-4-pyridone-3-carboxamide (4-Py) and their sum (nicotinamide+MNA+2-Py+4-Py) were higher in the D-galN-injected group than in the control group. Hepatic ACMSD activity in the D-galN-injected group was lower than that of the control group. These results suggest that the increase in urinary excretion of nicotinamide and its metabolites after the injection of D-galN is considered to be attributable to a decrease in liver ACMSD activity.

  14. Increase in conversion of tryptophan to niacin in pregnant rats.

    PubMed

    Shibata, Katsumi; Fukuwatari, Tsutomu; Murakami, Mayumi; Sasaki, Ryuzo

    2003-01-01

    There is the report that the deaths by pellagra in women is approximately twofold excess that in men. In the present experiment, in order to clarify a factor in the etiology of pellagra in female and to get basic information how much niacin should be supplemented in pregnant state, we investigated the effects of pregnant on the metabolism of tryptophan to niacin in rats. The daily urine samples were collected from day -17 and day +6 (the delivery day was designated as day 0) and the intermediates of tryptophan to niacin were measured. The metabolites such as kynurenic acid, xanthurenic acid, anthranilic acid, 3-hydroxyanthranilic acid, quinolinic acid, N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, N1-methyl-4-pyridone-3-carboxamide were increased with progress in pregnant and returned to normal levels after the delivery. The catabolism of tryptophan is accelerated during pregnancy, indicataing that pregnancy would not be an etiology of pellagra and no niacin supplement needs but tryptohan supplement would need.

  15. Electronic, structural and vibrational induced effects upon ionization of 2-quinolinone

    NASA Astrophysics Data System (ADS)

    Bellili, A.; Pan, Y.; Al Mogren, M. M.; Lau, K. C.; Hochlaf, M.

    2016-07-01

    Using first principle methodologies, we characterize the lowest electronic states of 2-quinolinone+ cation. The ground state of this ion is of X˜2A″ nature. We deduce the adiabatic ionization energy of 2-quinolinone to be equal 8.249 eV using the explicitly correlated coupled cluster level and where zero point vibrational energy, core-valence and scalar relativistic effects are taken into account. We examine also the ionization induced structural changes and vibrational shifts and analyze the electron density differences between the neutral and ionic species. These data show that the formation of 2-quinolinone+X˜2A″ from 2-quinolinone affects strongly the HNCO group, whereas the carbon skeletal is perturbed when the upper electronic cationic states are populated. The comparison to 2-pyridone allows the elucidation of the effect of benzene ring fused with this heterocyclic ring. Since quinolones and pyridones are both model systems of DNA bases, these findings might help in understanding the charge redistribution in these biological entities upon ionization.

  16. Electronic, structural and vibrational induced effects upon ionization of 2-quinolinone.

    PubMed

    Bellili, A; Pan, Y; Al Mogren, M M; Lau, K C; Hochlaf, M

    2016-07-01

    Using first principle methodologies, we characterize the lowest electronic states of 2-quinolinone(+) cation. The ground state of this ion is of X˜(2)A(″) nature. We deduce the adiabatic ionization energy of 2-quinolinone to be equal 8.249eV using the explicitly correlated coupled cluster level and where zero point vibrational energy, core-valence and scalar relativistic effects are taken into account. We examine also the ionization induced structural changes and vibrational shifts and analyze the electron density differences between the neutral and ionic species. These data show that the formation of 2-quinolinone(+)X˜(2)A(″) from 2-quinolinone affects strongly the HNCO group, whereas the carbon skeletal is perturbed when the upper electronic cationic states are populated. The comparison to 2-pyridone allows the elucidation of the effect of benzene ring fused with this heterocyclic ring. Since quinolones and pyridones are both model systems of DNA bases, these findings might help in understanding the charge redistribution in these biological entities upon ionization. PMID:27060413

  17. Saturable binding of /sup 35/S-t-butylbicyclophosphorothionate to the sites linked to the GABA receptor and the interaction with gabaergic agents

    SciTech Connect

    Wong, D.T.; Threlkeld, P.G.; Bymaster, F.P.; Squires, R.F.

    1984-02-27

    /sup 35/S-t-Butylbicyclophosphorothionate (/sup 35/S-TBPS) binds in a concentration-saturable manner to specific sites on membranes from rat cerebral cortex. Using a filtration assay at 25/sup 0/C, in 250 mM NaCl, specific binding of /sup 35/S-TBPS constitutes about 84 to 94 percent of total binding, depending on radioligand concentrations. /sup 35/S-TBPS binding is optimal in the presence of NaCl or NaBr and substantially less in the presence of NaI or NaF. It is sensitive to the treatment with 0.05 percent Triton X-100 but not to repeated freezing and thawing, procedures which increase /sup 3/H-GABA binding. Pharmacological studies show that /sup 35/S-TBPS binding is strongly inhibited by GABA-A receptor agonists (e.g., GABA and muscimol) and by the noncompetitive antagonist, picrotoxin, but not the competitive antagonist, bicuculline. Compounds which enhance binding of radioactive GABA and benzodiazepines, such as the pyrazolopyridines, cartazolate and tracazolate, and a diaryltriazine, LY81067, are also potent inhibitors of /sup 35/S-TBPS binding, with LY81067 being the most effective. The effects of GABA, picrotoxin and LY81067 on the saturable binding of /sup 35/S-TBPS in cortical membranes are compared. The present findings are consistent with the interpretation that /sup 35/S-TBPS bind at or near the picrotoxin-sensitive anion recognition sites of the GABA/benzodiazepine/picrotoxin receptor complex.

  18. 1,3-Dipolar cycloadditions of azomethine imines.

    PubMed

    Nájera, Carmen; Sansano, José M; Yus, Miguel

    2015-08-28

    Azomethine imines are considered 1,3-dipoles of the aza-allyl type which are transient intermediates and should be generated in situ but can also be stable and isolable compounds. They react with electron-rich and electron-poor olefins as well as with acetylenic compounds and allenoates mainly by a [3 + 2] cycloaddition but they can also take part in [3 + 3], [4 + 3], [3 + 2 + 2] and [5 + 3] with different dipolarophiles. These 1,3-dipolar cycloadditions (1,3-DC) can be performed not only under thermal or microwave conditions but also using metallo- and organocatalytic systems. In recent years enantiocatalyzed 1,3-dipolar cycloadditions have been extensively considered and applied to the synthesis of a great variety of dinitrogenated heterocycles with biological activity. Acyclic azomethine imines derived from mono and disubstituted hydrazones could be generated by prototropy under heating or by using Lewis or Brønsted acids to give, after [3 + 2] cycloadditions, pyrazolidines and pyrazolines. Cyclic azomethine imines, incorporating a C-N bond in a ring, such as isoquinolinium imides are the most widely used dipoles in normal and inverse-electron demand 1,3-DC allowing the synthesis of tetrahydro-, dihydro- and unsaturated pyrazolo[1,5-a]isoquinolines in racemic and enantioenriched forms with interesting biological activity. Pyridinium and quinolinium imides give the corresponding pyrazolopyridines and indazolo[3,2-a]isoquinolines, respectively. In the case of cyclic azomethine imines with an N-N bond incorporated into a ring, N-alkylidene-3-oxo-pyrazolidinium ylides are the most popular stable and isolated dipoles able to form dinitrogen-fused saturated and unsaturated pyrazolopyrazolones as racemic or enantiomerically enriched compounds present in many pharmaceuticals, agrochemicals and other useful chemicals.

  19. 1,3-Dipolar cycloadditions of azomethine imines.

    PubMed

    Nájera, Carmen; Sansano, José M; Yus, Miguel

    2015-08-28

    Azomethine imines are considered 1,3-dipoles of the aza-allyl type which are transient intermediates and should be generated in situ but can also be stable and isolable compounds. They react with electron-rich and electron-poor olefins as well as with acetylenic compounds and allenoates mainly by a [3 + 2] cycloaddition but they can also take part in [3 + 3], [4 + 3], [3 + 2 + 2] and [5 + 3] with different dipolarophiles. These 1,3-dipolar cycloadditions (1,3-DC) can be performed not only under thermal or microwave conditions but also using metallo- and organocatalytic systems. In recent years enantiocatalyzed 1,3-dipolar cycloadditions have been extensively considered and applied to the synthesis of a great variety of dinitrogenated heterocycles with biological activity. Acyclic azomethine imines derived from mono and disubstituted hydrazones could be generated by prototropy under heating or by using Lewis or Brønsted acids to give, after [3 + 2] cycloadditions, pyrazolidines and pyrazolines. Cyclic azomethine imines, incorporating a C-N bond in a ring, such as isoquinolinium imides are the most widely used dipoles in normal and inverse-electron demand 1,3-DC allowing the synthesis of tetrahydro-, dihydro- and unsaturated pyrazolo[1,5-a]isoquinolines in racemic and enantioenriched forms with interesting biological activity. Pyridinium and quinolinium imides give the corresponding pyrazolopyridines and indazolo[3,2-a]isoquinolines, respectively. In the case of cyclic azomethine imines with an N-N bond incorporated into a ring, N-alkylidene-3-oxo-pyrazolidinium ylides are the most popular stable and isolated dipoles able to form dinitrogen-fused saturated and unsaturated pyrazolopyrazolones as racemic or enantiomerically enriched compounds present in many pharmaceuticals, agrochemicals and other useful chemicals. PMID:26140443

  20. Lack of effectiveness of ofloxacin against experimental syphilis in rabbits.

    PubMed

    Une, T; Nakajima, R; Otani, T; Katami, K; Osada, Y; Otani, M

    1987-09-01

    Ofloxacin, a new pyridone-carboxylic acid derivative, was evaluated in experimental syphilis in rabbits in comparison with penicillin G. Experimental syphilis was established by intradermal injection of Treponema pallidum subsp. pallidum Nichols. Ten days after infection, the dermal lesions were characterized by syphilitic papula accompanied with central necrosis. These animals were subsequently treated either with ofloxacin twice a day at an oral dose of 10 mg/kg or with penicillin G once a day at an intramuscular dose of 10,000 U/kg for 21 consecutive days. In penicillin G-treated animals, the dermal lesions became smaller as early as day 3 of treatment and almost disappeared during the therapy. In marked contrast to remarkable efficacy of penicillin G was further development of the lesions in ofloxacin-treated animals, showing no difference in pathological manifestations as compared to untreated animals. The results of nontreponemal serologic test correlated well with the response of animals to treatment.

  1. Effect of phosphate activating group on oligonucleotide formation on montmorillonite: the regioselective formation of 3',5'-linked oligoadenylates

    NASA Technical Reports Server (NTRS)

    Prabahar, K. J.; Cole, T. D.; Ferris, J. P.

    1994-01-01

    The effects of amine structure on the montmorillonite-catalyzed oligomerization of the 5'-phosphoramidates of adenosine are investigated. 4-Aminopyridine derivatives yielded oligoadenylates as long as dodecamers with a regioselectivity for 3',5'-phosphodiester bond formation averaging 88%. Linear and cyclic oligomers are obtained and no A5'ppA-containing products are detected. Oligomers as long as the hexanucleotide are obtained using 2-aminobenzimidazole as the activating group. A predominance of pA2'pA is detected in the dimer fraction along with cyclic 3',5'-trimer; no A5'ppA-containing oligomers were detected. Little or no oligomer formation was observed when morpholine, piperidine, pyrazole, 1,2,4-triazole, and 2-pyridone are used as phosphate-activating groups. The effects of the structure of the phosphate activating group on the oligomer structure and chain lengths are discussed.

  2. 1,6-Bis[(benzyloxy)methyl]uracil derivatives-Novel antivirals with activity against HIV-1 and influenza H1N1 virus.

    PubMed

    Geisman, Alexander N; Valuev-Elliston, Vladimir T; Ozerov, Alexander A; Khandazhinskaya, Anastasia L; Chizhov, Alexander O; Kochetkov, Sergey N; Pannecouque, Christophe; Naesens, Lieve; Seley-Radtke, Katherine L; Novikov, Mikhail S

    2016-06-01

    A series of 1,6-bis[(benzyloxy)methyl]uracil derivatives combining structural features of both diphenyl ether and pyridone types of NNRTIs were synthesized. Target compounds were found to inhibit HIV-1 reverse transcriptase at micro- and submicromolar levels of concentrations and exhibited anti-HIV-1 activity in MT-4 cell culture, demonstrating resistance profile similar to first generation NNRTIs. The synthesized compounds also showed profound activity against influenza virus (H1N1) in MDCK cell culture without detectable cytotoxicity. The lead compound of this assay appeared to exceed rimantadine, amantadine, ribavirin and oseltamivir carboxylate in activity. The mechanism of action of 1,6-bis[(benzyloxy)methyl]uracils against influenza virus is currently under investigation. PMID:27112451

  3. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  4. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE PAGESBeta

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  5. Multi-component Cycloaddition Approaches in the Catalytic Asymmetric Synthesis of Alkaloid Targets†

    PubMed Central

    Perreault, Stéphane; Rovis, Tomislav

    2010-01-01

    Cycloaddition reactions are attractive strategies for rapid formation of molecular complexity in organic synthesis as multiple bonds are formed in a single process. To this end, several research groups have been actively involved in the development of catalytic methods to activate readily accessible π-components to achieve cycloadditions. However, the use of C-N π-components for the formation of heterocycles by these processes is less well developed. It has been previously demonstrated that the combination of different isocyanates with two alkynes yields pyridones of several types by metal-catalyzed [2+2+2] cycloadditions. The potential of this chemistry has been extended to alkenes as C-C π-components, allowing the formation of sp3-stereocenters. In this tutorial review directed towards [n+2+2] cycloaddition of heterocumulenes, alkynes and alkenes, the recent advances in catalytic asymmetric synthesis of indolizidine, quinolizidine and azocine skeletons are discussed. PMID:19847348

  6. D-A-D-type narrow-bandgap small-molecule photovoltaic donors: pre-synthesis virtual screening using density functional theory.

    PubMed

    Gim, Yeongrok; Kim, Daekyeom; Kyeong, Minkyu; Byun, Seunghwan; Park, Yuri; Kwon, Sooncheol; Kim, Heejoo; Hong, Sukwon; Lansac, Yves; Jang, Yun Hee

    2016-06-01

    A new series of D-A-D-type small-molecule photovoltaic donors are designed and virtually screened before synthesis using time-dependent density functional theory calculations carefully validated against various polymeric and molecular donors. In this series of new design, benzodithiophene is kept as D to achieve the optimum highest-occupied molecular orbital energy level, while thienopyrroledione is initially chosen as A but later replaced by difluorinated benzodiathiazole or its selenide derivative to achieve the optimum band gap. The D-A-D core is end-capped by pyridone units which could not only enhance their self-assembly via hydrogen bonds but also play a role as an acceptor (A') to form an extended A'-D-A-D-A' small-molecule donor. PMID:27193426

  7. Effects of mimosine on Wolbachia in mosquito cells: cell cycle suppression reduces bacterial abundance

    PubMed Central

    Fallon, Ann M.

    2016-01-01

    The plant allelochemical l-mimosine (β-[N-(3-hydroxy-4-pyridone)]-α-aminopropionic acid; leucenol) resembles the nonessential amino acid, tyrosine. Because the obligate intracellular alphaproteobacterium, Wolbachia pipientis, metabolizes amino acids derived from host cells, the effects of mimosine on infected and uninfected mosquito cells were investigated. The EC50 for mimosine was 6–7 μM with Aedes albopictus C7-10 and C/wStr cell lines, and was not influenced by infection status. Mosquito cells responded to concentrations of mimosine substantially lower than those used to synchronize the mammalian cell cycle; at concentrations of 30–35 μM, mimosine reversibly arrested the mosquito cell cycle at the G1/S boundary and inhibited growth of Wolbachia strain wStr. Although lower concentrations of mimosine slightly increased wStr abundance, concentrations that suppressed the cell cycle reduced Wolbachia levels. PMID:26019119

  8. Vitamin effects on tryptophan-niacin metabolism in primary hepatoma patients.

    PubMed

    Hankes, L V; Schmaeler, M; Jansen, C R; Brown, R R

    1999-01-01

    Metabolism of 14C-labeled tryptophan and 3-hydroxyanthranilic acid were administered to early hepatoma patients to evaluate the conversion of these precursors to niacin metabolites and to assess the effect of dietary supplementation with vitamin B-6, riboflavin, thiamin and vitamin C on the extent of conversion. Expired labeled carbon dioxide and urinary excretion of picolinic acid (PA), quinolinic acid (QA), nicotinic acid (NA), N1-methylnicotinamide (N1MeNAm) and N1-methyl-2-pyridone-5-carboxamide (MPCA) were measured by carrier isolations. There were no consistent statistical differences in these conversions before and after vitamin supplementation, suggesting that the patients' nutrition was adequate and that none of the vitamins were rate-limiting under these conditions.

  9. Discovery of N-[4-[6-tert-Butyl-5-methoxy-8-(6-methoxy-2-oxo-1H-pyridin-3-yl)-3-quinolyl]phenyl]methanesulfonamide (RG7109), a Potent Inhibitor of the Hepatitis C Virus NS5B Polymerase

    PubMed Central

    Talamas, Francisco X.; Abbot, Sarah C.; Anand, Shalini; Brameld, Ken A.; Carter, David S.; Chen, Jun; Davis, Dana; de Vicente, Javier; Fung, Amy D.; Gong, Leyi; Harris, Seth F.; Inbar, Petra; Labadie, Sharada S.; Lee, Eun K.; Lemoine, Remy; Le Pogam, Sophie; Leveque, Vincent; Li, Jim; McIntosh, Joel; Nájera, Isabel; Park, Jaehyeon; Railkar, Aruna; Rajyaguru, Sonal; Sangi, Michael; Schoenfeld, Ryan C.; Staben, Leanna R.; Tan, Yunchou; Taygerly, Joshua P.; Villaseñor, Armando G.; Weller, Paul E.

    2013-01-01

    In the last few years, there have been many advances in the efforts to cure patients with hepatitis C virus (HCV). The ultimate goal of these efforts is to develop a combination therapy consisting of only direct-antiviral agents (DAA). In this paper, we discuss our efforts that led to the identification of a bicyclic template with potent activity against the NS5B polymerase, a critical enzyme on the life cycle of HCV. Continuing our exploration to improve the stilbene series, the 3,5,6,8-tetrasubstituted quinoline core was identified as replacement of the stilbene moiety. 6-Methoxy-2(1H)-pyridone was identified among several heterocyclic head groups to have the best potency. Solubility of the template was improved by replacing a planar aryl linker with a saturated pyrrolidine. Profiling of the most promising compounds led to the identification of quinoline 41 (RG7109) which was selected for advancement to clinical development. PMID:24195700

  10. Modification of dense TiO2 particles using polyethylene glycol template: Synthesis, characterization, and photocatalytic activity

    NASA Astrophysics Data System (ADS)

    Dostanić, J.; Lončarević, D.; Radosavljević-Mihajlović, A.; Jovanović, D. M.

    2015-12-01

    In this study, an effort has been made to prepare TiO2 materials by sol-gel technique using polyethylene glycol (PEG) as pore directing agent. Different PEG amounts were used during samples preparation in order to investigate the change in intrinsic material properties. The photocatalytic activity of prepared catalysts was estimated by measuring the decomposition of arylazo pyridone dye. The optimum template amount was determined, resulting in catalyst with enhanced textural properties, optimal anatase/rutile ratio and hence improved photocatalytic properties. Specific surface area and anatase/rutile ratio were found to be the main contributing factors to the catalyst activity. A synergistic effect between anatase and rutile TiO2 has been observed, since the presence of relatively inactive rutile phase enhanced the photoactivity of mixed TiO2.

  11. Anion Photoelectron Spectroscopy of the Homogenous 2-Hydroxypyridine Dimer Electron Induced Proton Transfer System

    NASA Astrophysics Data System (ADS)

    Vlk, Alexandra; Stokes, Sarah; Wang, Yi; Hicks, Zachary; Zhang, Xinxing; Blando, Nicolas; Frock, Andrew; Marquez, Sara; Bowen, Kit; Bowen Lab JHU Team

    Anion photoelectron spectroscopic (PES) and density functional theory (DFT) studies on the dimer anion of (2-hydroxypyridine)2-are reported. The experimentally measured vertical detachment energy (VDE) of 1.21eV compares well with the theoretically predicted values. The 2-hydroxypyridine anionic dimer system was investigated because of its resemblance to the nitrogenous heterocyclic pyrimidine nucleobases. Experimental and theoretical results show electron induced proton transfer (EIPT) in both the lactim and lactam homogeneous dimers. Upon electron attachment, the anion can serve as the intermediate between the two neutral dimers. A possible double proton transfer process can occur from the neutral (2-hydroxypyridine)2 to (2-pyridone)2 through the dimer anion. This potentially suggests an electron catalyzed double proton transfer mechanism of tautomerization. Research supported by the NSF Grant No. CHE-1360692.

  12. Application of directly coupled HPLC-NMR-MS/MS to the identification of metabolites of 5-trifluoromethylpyridone (2-hydroxy-5-trifluoromethylpyridine) in hydroponically grown plants.

    PubMed

    Bailey, N J; Cooper, P; Hadfield, S T; Lenz, E M; Lindon, J C; Nicholson, J K; Stanley, P D; Wilson, I D; Wright, B; Taylor, S D

    2000-01-01

    Directly coupled HPLC-NMR-MS was used to characterize two major metabolites of 5-trifluoromethylpyridone (2-hydroxy-5-trifluoromethylpyridine), a model compound for herbicides, after it had been dosed into hydroponically grown maize plants. The combination of NMR and MS data allowed the identification of both of these metabolites, namely, the N-glucoside and O-malonylglucoside conjugates of the parent pyridone. This work demonstrates the efficiency and the potential application of HPLC-NMR-MS to the investigation of the metabolism of agrochemicals. The work also indicates that combination of the use of hydroponically grown plants and directly coupled HPLC-NMR-MS allows rapid identification of metabolites with little sample preparation.

  13. Mimosine, a Toxin Present in Leguminous Trees (Leucaena spp.), Induces a Mimosine-Degrading Enzyme Activity in Some Rhizobium Strains

    PubMed Central

    Soedarjo, Muchdar; Hemscheidt, Thomas K.; Borthakur, Dulal

    1994-01-01

    Thirty-seven Rhizobium isolates obtained from the nodules of leguminous trees (Leucaena spp.) were selected on the basis of their ability to catabolize mimosine, a toxin found in large quantities in the seeds, foliage, and roots of plants of the genera Leucaena and Mimosa. A new medium containing mimosine as the sole source of carbon and nitrogen was used for selection. The enzymes of the mimosine catabolic pathway were inducible and were present in the soluble fraction of the cell extract of induced cells. On the basis of a comparison of the growth rates of Rhizobium strains on general carbon and nitrogen sources versus mimosine, the toxin appears to be converted mostly to biomass and carbon dioxide. Most isolates able to grow on mimosine as a source of carbon and nitrogen are also able to utilize 3-hydroxy-4-pyridone, a toxic intermediate of mimosine degradation in other organisms. PMID:16349454

  14. An HIV reverse transcriptase-selective nucleoside chain terminator.

    PubMed

    Fraley, Andrew W; Chen, Dongli; Johnson, Kenneth; McLaughlin, Larry W

    2003-01-22

    The synthesis of a 2',3'-dideoxynucleoside cytidine analogue, but one that lacks the O2-carbonyl, is described from 2-aminopyridine in an overall yield of 60%. The synthesis of the 2-pyridone C-nucleoside relies upon the use of a Heck-type coupling between an appropriately protected sugar glycal and the 5-iodo derivative of 2-aminopyridone. Upon conversion of the dideoxynucleoside to the corresponding 5'-triphosphate, the analogue ddNTP is observed to be a reasonable substrate with HIV reverse transcriptase (for a template dG residue), but is not a substrate for calf thymus DNA polymerase alpha or for human DNA polymerase beta. With the human mitochondrial DNA polymerase the analogue functions as a poor substrate. The observed polymerase selectivities appear to arise from the absence of the O2-carbonyl, which either results in a destabilized Watson-Crick base pair or represents a critical contact for some polymerases.

  15. Effect of counterion on the mesomorphic behavior and optical properties of columnar pyridinium ionic liquid crystals derived from 4-hydroxypyridine

    NASA Astrophysics Data System (ADS)

    Pană, Amalia; Badea, Florentina L.; Iliş, Monica; Staicu, Teodora; Micutz, Marin; Pasuk, Iuliana; Cîrcu, Viorel

    2015-03-01

    A series of 3,4,5-tridodecyloxybenzyl pyridinium salts derived from 4-hydroxypyridine has been designed and prepared. The liquid crystalline properties of these compounds were investigated by polarized optical microscopy, differential scanning calorimetry and powder X-ray diffraction while their thermal stability was studied by thermogravimetric analysis. The N-3,4,5-tridodecyloxybenzyl-4-pyridone intermediate shows a monotropic columnar hexagonal mesophase ranging from 56 °C down to room temperature while the corresponding bromide dodecyl O-alkylated pyridinium salt shows one enantiotropic columnar mesophase and one additional monotropic columnar phase at lower temperatures. Replacing bromide ion (Br-) with other counterions (NO3-, BF4- and PF6-) resulted in mesophase suppression. These luminescent pyridinium salts show weak emission in dichloromethane solutions at room temperature and a pronounced red-shifted emission in solid state. Photoluminescent properties of the pyridinium salts do not depend significantly on the nature of counterion employed.

  16. Redetermination of 3-deaza­uracil

    PubMed Central

    Portalone, Gustavo

    2008-01-01

    The crystal structure of the title compound, 4-hydr­oxy-2-pyridone, C5H5NO2, which has been the subject of several determinations using X-rays and neutron diffraction, was first reported by Low & Wilson [Acta Cryst. (1983). C39, 1688–1690]. It has been redetermined, providing a significant increase in the precision of the derived geometric parameters. The asymmetric unit comprises a planar 4-enol tautomer having some degree of delocalization of π-electron density through the mol­ecule. In the crystal structure, the mol­ecules are connected into chains by two strong O—H⋯O and N—H⋯O hydrogen bonds between the OH and NH groups and the carbonyl O atom. PMID:21202619

  17. Cobalt-Catalyzed sp(2) -C-H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature.

    PubMed

    Thrimurtulu, Neetipalli; Dey, Arnab; Maiti, Debabrata; Volla, Chandra M R

    2016-09-26

    The reactivity of allenes in transition-metal-catalyzed C-H activation chemistry is governed by the formation of either alkenyl-metal (M-alkenyl) or metal-π-allyl intermediates. Although either protonation or a β-hydride elimination is feasible with a M-alkenyl intermediate, cyclization has remained unexplored to date. Furthermore, due to the increased steric hindrance, the regioselectivity for the intramolecular cyclization of the metal-π-allyl intermediate was hampered towards the more substituted side. To address these issues, a unified approach to synthesize a diverse array of biologically and pharmaceutically relevant heterocyclic moieties by cobalt-catalyzed directed C-H functionalization was envisioned. Upon successful implementation, the present strategy led to the regioselective formation of dihydroisoquinolin-1(2H)-ones, isoquinolin-1(2H)-ones, dihydropyridones, and pyridones. PMID:27584828

  18. Computational study on the aminolysis of beta-hydroxy-alpha,beta-unsaturated ester via the favorable path including the formation of alpha-oxo ketene intermediate.

    PubMed

    Jin, Lu; Xue, Ying; Zhang, Hui; Kim, Chan Kyung; Xie, Dai Qian; Yan, Guo Sen

    2008-05-15

    The possible mechanisms of the aminolysis of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone (beta-hydroxy-alpha,beta-unsaturated ester) with dimethylamine are investigated at the hybrid density functional theory B3LYP/6-31G(d,p) level in the gas phase. Single-point computations at the B3LYP/6-311++G(d,p) and the Becke88-Becke95 1-parameter model BB1K/6-311++G(d,p) levels are performed for more precise energy predictions. Solvent effects are also assessed by single-point calculations at the integral equation formalism polarized continuum model IEFPCM-B3LYP/6-311++G(d,p) and IEFPCM-BB1K/6-311++G(d,p) levels on the gas-phase optimized geometries. Three possible pathways, the concerted pathway (path A), the stepwise pathway involving tetrahedral intermediates (path B), and the stepwise pathway via alpha-oxo ketene intermediate due to the participation of beta-hydroxy (path C), are taken into account for the title reaction. Moreover, path C includes two sequential processes. The first process is to generate alpha-oxo ketene intermediate via the decomposition of N-methyl-3-(methoxycarbonyl)-4-hydroxy-2-pyridone; the second process is the addition of dimethylamine to alpha-oxo ketene intermediate. Our results indicate that path C is more favorable than paths A and B both in the gas phase and in solvent (heptane). In path C, the first process is the rate-determining step, and the second process is revealed to be a [4+2] pseudopericyclic reaction without the energy barrier. Being independent of the concentration of amine, the first process obeys the first-order rate law. PMID:18402429

  19. Conversion ratio of tryptophan to niacin in Japanese women fed a purified diet conforming to the Japanese Dietary Reference Intakes.

    PubMed

    Fukuwatari, Tsutomu; Ohta, Mari; Kimtjra, Naoko; Sasaki, Ryuzo; Shibata, Katsumi

    2004-12-01

    In order to establish the human requirements of niacin, it is first important to know how much tryptophan is converted to niacin in the human body. In a general, 60 mg of tryptophan is equivalent to 1 mg of niacin, whereas the conversion ratio of tryptophan to niacin is yet to be confirmed. The aim of this study was to know the conversion ratio of tryptophan to niacin in Japanese females fed a purified diet, which followed the Japanese Dietary Reference Intakes. Ten young Japanese females were housed in the same facility and given the same daily living activity schedule for 7 d. The composition of their purified diet was conformed to the Dietary Reference Intakes in Japan. The diet was niacin free. In order to investigate the conversion ratio, daily urinary outputs were collected. Tryptophan-niacin metabolites in the urine were measured and the conversion ratio of tryptophan to niacin calculated. The conversion ratio was calculated by comparing the dietary intake of tryptophan and the sum of the niacin catabolites such as N1-methylnicotinamide, N1-methyl-2-pyridone-5-carboxamide, and N1-methyl-4-pyridone-3-carboxamide, which were derived only from the dietary intake of tryptophan. The ratio was calculated as 1.5 +/- 0.1 (mean +/-SE for 10 women; in molar basis) on the last day of the experiment. It was calculated that if the excretory percentage of niacin metabolites in the urine were 60%, of the tryptophan ingested, the conversion factor would be a value of 67, meaning that is 67 mg of tryptophan is equal to 1 mg of niacin.

  20. Pantothenic acid deficiency may increase the urinary excretion of 2-oxo acids and nicotinamide catabolites in rats.

    PubMed

    Shibata, Katsumi; Inomoto, Kasumi; Nakata, Chifumi; Fukuwatari, Tsutomu

    2013-01-01

    Pantothenic acid (PaA) is involved in the metabolism of amino acids as well as fatty acid. We investigated the systemic metabolism of amino acids in PaA-deficient rats. For this purpose, urine samples were collected and 2-oxo acids and L-tryptophan (L-Trp) and its metabolites including nicotinamide were measured. Group 1 was freely fed a conventional chemically-defined complete diet and used as an ad lib-fed control, which group was used for showing reference values. Group 2 was freely fed the complete diet without PaA (PaA-free diet) and used as a PaA-deficient group. Group 3 was fed the complete diet, but the daily food amount was equal to the amount of the PaA-deficient group and used as a pair-fed control group. All rats were orally administered 100 mg of L-Trp/kg body weight at 09:00 on day 34 of the experiment and the following 24-h urine samples were collected. The urinary excretion of the sum of pyruvic acid and oxaloacetic acid was higher in rats fed the PaA-free diets than in the rats fed pair-fed the complete diet. PaA deficiency elicited the increased urinary excretion of anthranilic acid and kynurenic acid, while the urinary excretion of xanthurenic acid decreased. The urinary excretion of L-Trp itself, 3-hydroxyanthranilic acid, and quinolinic acid revealed no differences between the rats fed the PaA-free and pair-fed the complete diets. PaA deficiency elicited the increased excretion of N(1)-methylnicotinamide, N(1)-methyl-2-pyridone-5-carboxamide, and N(1)-methyl-4-pyridone-3-carboxamide. These findings suggest that PaA deficiency disturbs the amino acid catabolism.

  1. Simultaneous determination of nicotinic acid and its four metabolites in rat plasma using high performance liquid chromatography with tandem mass spectrometric detection (LC/MS/MS).

    PubMed

    Szafarz, Malgorzata; Lomnicka, Magdalena; Sternak, Magdalena; Chlopicki, Stefan; Szymura-Oleksiak, Joanna

    2010-04-01

    A sensitive and specific liquid chromatography electrospray ionization-tandem mass spectrometry method for the simultaneous quantitation of nicotinic acid (NicA) and its metabolites nicotinamide (NA), 1-methylnicotinamide (MNA), 1-methyl-2-pyridone-5-carboxamide (M2PY) and 1-methyl-4-pyridone-5-carboxamide (M4PY) in rat plasma has been developed and validated. As an internal standard, 6-chloronicotinamide was used. The samples (100 microL) were subjected to deproteinization with acetonitrile (200 microL) and then, after centrifugation, 150 microL of the supernatant was transferred into conical vial and evaporated. Dry residue was reconstituted in 100 microL of the ACN/water (10:90, v/v) mixture. Chromatography was performed on a Waters Spherisorb 5 microm CNRP 4.6 x 150 mm analytical column with gradient elution using a mobile phase containing acetonitrile and water with 0.1% of formic acid. The full separation of all compounds was achieved within 15 min of analysis. Detection was performed by an Applied Biosystems MDS Sciex API 2000 triple quadrupole mass spectrometer set at unit resolution. The mass spectrometer was operated in the selected reactions monitoring mode (SRM), monitoring the transition of the protonated molecular ions m/z 153-110 for M2PY, 153-136 for M4PY, 124-80 for NicA, 123-80 for NA and 137-94 for MNA. The mass spectrometric conditions were optimized for each compound by continuously infusing the standard solution at the rate of 5 microL/min using a Harvard infusion pump. Electrospray ionization (ESI) was used for ion production. The instrument was coupled to an Agilent 1100 LC system. The precision and accuracy for both intra- and inter-day determination of all analytes ranged from 1.3% to 13.3% and from 94.43% to 110.88%. No significant matrix effect (ME) was observed. Stability of compounds was established in a battery of stability studies, i.e. bench-top, autosampler and long-term storage stability as well as freeze/thaw cycles. The method

  2. N,O-Chelating Four-Membered Metallacyclic Titanium(IV) Complexes for Atom-Economic Catalytic Reactions.

    PubMed

    Ryken, Scott A; Schafer, Laurel L

    2015-09-15

    Titanium, as the second most abundant transition metal in the earth's crust, lends itself as a sustainable and inexpensive resource in catalysis. Its nontoxicity and biocompatibility are also attractive features for handling and disposal. Titanium has excelled as a catalyst for a broad range of transformations, including ethylene and α-olefin polymerizations. However, many reactions relevant to fine chemical synthesis have preferrentially employed late transition metals, and reactive, inexpensive early transition metals have been largely overlooked. In addition to promising reactivity, titanium complexes feature more robust character compared with some other highly Lewis-acidic metals such as those found in the lanthanide series. Since the advent of modulating ligand scaffolds, titanium has found use in a growing variety of reactions as a versatile homogeneous catalyst. These catalytic transformations include hydrofunctionalization reactions (adding an element-hydrogen (E-H) bond across a C-C multiple bond), as well as the ring-opening polymerization of cyclic esters, all of which are atom-economic transformations. Our investigations have focused on tight bite angle monoanionic N,O-chelating ligands, forming four-membered metallacycles. These ligand sets, including amidates, ureates, pyridonates, and sulfonamidates, have flexible binding modes offering a range of stable and reactive intermediates necessary for catalytic activity. Additionally, the simple form of these ligands leads to easily prepared proligands, along with facile tuning of steric and electronic factors. A sterically bulky titanium amidate complex has proven to be a leading catalyst for the selective formation of anti-Markovnikov addition products via intermolecular hydroamination of terminal alkynes, while sterically less demanding titanium pyridonates have opened the path to the selective formation of amine substituted cycloalkanes via the intramolecular hydroaminoalkylation of aminoalkenes over

  3. Synthesis of Some Novel Heterocyclic and Schiff Base Derivatives as Antimicrobial Agents.

    PubMed

    Azab, Mohamed E; Rizk, Sameh A; Amr, Abd El-Galil E

    2015-10-07

    Treatment of 2,3-diaryloxirane-2,3-dicarbonitriles 1a-c with different nitrogen nucleophiles, e.g., hydrazine, methyl hydrazine, phenyl hydrazine, hydroxylamine, thiosemicarbazide, and/or 2-amino-5-phenyl-1,3,4-thiadiazole, afforded pyrazole, isoxazole, pyrrolotriazine, imidazolothiadiazole derivatives 2-5, respectively. Reacting pyrazoles 2a-c with aromatic aldehydes and/or methyl glycinate produced Schiff's bases 7a-d and pyrazolo[3,4-b]-pyrazinone derivative 8, respectively. Treating 7 with ammonium acetate and/or hydrazine hydrate, furnished the imidazolopyrazole and pyrazolotriazine derivatives 9 and 10, respectively. Reaction of 8 with chloroacetic acid and/or diethyl malonate gave tricyclic compound 11 and triketone 12, respectively. On the other hand, compound 1 was reacted with active methylene precursors, e.g., acetylacetone and/or cyclopentanone producing adducts 14a,b which upon fusion with ammonium acetate furnished the 3-pyridone derivatives 15a,b, respectively. Some of newly synthesized compounds were screened for activity against bacterial and fungal strains and most of the newly synthesized compounds showed high antimicrobial activities. The structures of the new compounds were elucidated using IR, ¹H-NMR, (13)C-NMR and mass spectroscopy.

  4. Synthesis of Some Novel Heterocyclic and Schiff Base Derivatives as Antimicrobial Agents.

    PubMed

    Azab, Mohamed E; Rizk, Sameh A; Amr, Abd El-Galil E

    2015-01-01

    Treatment of 2,3-diaryloxirane-2,3-dicarbonitriles 1a-c with different nitrogen nucleophiles, e.g., hydrazine, methyl hydrazine, phenyl hydrazine, hydroxylamine, thiosemicarbazide, and/or 2-amino-5-phenyl-1,3,4-thiadiazole, afforded pyrazole, isoxazole, pyrrolotriazine, imidazolothiadiazole derivatives 2-5, respectively. Reacting pyrazoles 2a-c with aromatic aldehydes and/or methyl glycinate produced Schiff's bases 7a-d and pyrazolo[3,4-b]-pyrazinone derivative 8, respectively. Treating 7 with ammonium acetate and/or hydrazine hydrate, furnished the imidazolopyrazole and pyrazolotriazine derivatives 9 and 10, respectively. Reaction of 8 with chloroacetic acid and/or diethyl malonate gave tricyclic compound 11 and triketone 12, respectively. On the other hand, compound 1 was reacted with active methylene precursors, e.g., acetylacetone and/or cyclopentanone producing adducts 14a,b which upon fusion with ammonium acetate furnished the 3-pyridone derivatives 15a,b, respectively. Some of newly synthesized compounds were screened for activity against bacterial and fungal strains and most of the newly synthesized compounds showed high antimicrobial activities. The structures of the new compounds were elucidated using IR, ¹H-NMR, (13)C-NMR and mass spectroscopy. PMID:26457697

  5. Perampanel Inhibition of AMPA Receptor Currents in Cultured Hippocampal Neurons

    PubMed Central

    Chen, Chao-Yin; Matt, Lucas; Hell, Johannes Wilhelm; Rogawski, Michael A.

    2014-01-01

    Perampanel is an aryl substituted 2-pyridone AMPA receptor antagonist that was recently approved as a treatment for epilepsy. The drug potently inhibits AMPA receptor responses but the mode of block has not been characterized. Here the action of perampanel on AMPA receptors was investigated by whole-cell voltage-clamp recording in cultured rat hippocampal neurons. Perampanel caused a slow (τ∼1 s at 3 µM), concentration-dependent inhibition of AMPA receptor currents evoked by AMPA and kainate. The rates of block and unblock of AMPA receptor currents were 1.5×105 M−1 s−1 and 0.58 s−1, respectively. Perampanel did not affect NMDA receptor currents. The extent of block of non-desensitizing kainate-evoked currents (IC50, 0.56 µM) was similar at all kainate concentrations (3–100 µM), demonstrating a noncompetitive blocking action. Parampanel did not alter the trajectory of AMPA evoked currents indicating that it does not influence AMPA receptor desensitization. Perampanel is a selective negative allosteric AMPA receptor antagonist of high-affinity and slow blocking kinetics. PMID:25229608

  6. Bismuth(III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774.

    PubMed

    Barton, Larry L; Lyle, Daniel A; Ritz, Nathaniel L; Granat, Alex S; Khurshid, Ali N; Kherbik, Nada; Hider, Robert; Lin, Henry C

    2016-04-01

    Sulfate-reducing bacteria have been implicated in inflammatory bowel diseases and ulcerative colitis in humans and there is an interest in inhibiting the growth of these sulfide-producing bacteria. This research explores the use of several chelators of bismuth to determine the most effective chelator to inhibit the growth of sulfate-reducing bacteria. For our studies, Desulfovibrio desulfuricans ATCC 27774 was grown with nitrate as the electron acceptor and chelated bismuth compounds were added to test for inhibition of growth. Varying levels of inhibition were attributed to bismuth chelated with subsalicylate or citrate but the most effective inhibition of growth by D. desulfuricans was with bismuth chelated by deferiprone, 3-hydroxy-1,2-dimethyl-4(1H)-pyridone. Growth of D. desulfuricans was inhibited by 10 μM bismuth as deferiprone:bismuth with either nitrate or sulfate respiration. Our studies indicate deferiprone:bismuth has bacteriostatic activity on D. desulfuricans because the inhibition can be reversed following exposure to 1 mM bismuth for 1 h at 32 °C. We suggest that deferiprone is an appropriate chelator for bismuth to control growth of sulfate-reducing bacteria because deferiprone is relatively nontoxic to animals, including humans, and has been used for many years to bind Fe(III) in the treatment of β-thalassemia. PMID:26896170

  7. Preparation of nitrogen-enriched activated carbons from brown coal

    SciTech Connect

    Robert Pietrzak; Helena Wachowska; Piotr Nowicki

    2006-05-15

    Nitrogen-enriched activated carbons were prepared from a Polish brown coal. Nitrogen was introduced from urea at 350{sup o}C in an oxidizing atmosphere both to carbonizates obtained at 500-700{sup o}C and to activated carbons prepared from them. The activation was performed at 800{sup o}C with KOH in argon. It has been observed that the carbonization temperature determines the amount of nitrogen that is incorporated (DC5U, 8.4 wt % N{sup daf}; DC6U, 6.3 wt % N{sup daf}; and DC7U, 5.4 wt % N{sup daf}). X-ray photoelectron spectroscopy (XPS) measurements have shown that nitrogen introduced both at the stage of carbonizates and at the stage of activated carbons occurs mainly as -6, -5, and imine, amine and amide groups. On the other hand, the activation of carbons enriched with nitrogen results in the formation of pyridonic nitrogen and N-Q. The introduction of nitrogen at the activated carbon stage leads to a slight decrease in surface area. It has been proven that the most effective way of preparing microporous activated carbons enriched with nitrogen to a considerable extent and having high surface area ({approximately} 3000 m{sup 2}/g) is the following: carbonization - activation - reaction with urea. 40 refs., 1 fig., 6 tabs.

  8. Theoretical Characterization of the H-Bonding and Stacking Potential of Two Nonstandard Nucleobases Expanding the Genetic Alphabet.

    PubMed

    Chawla, Mohit; Credendino, Raffaele; Chermak, Edrisse; Oliva, Romina; Cavallo, Luigi

    2016-03-10

    We report a quantum chemical characterization of the non-natural (synthetic) H-bonded base pair formed by 6-amino-5-nitro-2(1H)-pyridone (Z) and 2-aminoimidazo[1,2-a]-1,3,5-triazin-4(8H)-one (P). The Z:P base pair, orthogonal to the classical G:C base pair, has been introduced into DNA molecules to expand the genetic code. Our results indicate that the Z:P base pair closely mimics the G:C base pair in terms of both structure and stability. To clarify the role of the NO2 group on the C5 position of the Z base, we compared the stability of the Z:P base pair with that of base pairs having different functional groups at the C5 position of Z. Our results indicate that the electron-donating/-withdrawing properties of the group on C5 have a clear impact on the stability of the Z:P base pair, with the strong electron-withdrawing nitro group achieving the largest stabilizing effect on the H-bonding interaction and the strong electron-donating NH2 group destabilizing the Z:P pair by almost 4 kcal/mol. Finally, our gas-phase and in-water calculations confirm that the Z-nitro group reinforces the stacking interaction with its adjacent purine or pyrimidine ring. PMID:26882210

  9. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: spectroscopic, structure, thermal analyses, kinetics and biological evaluation (L=An, DMF, Py and Et3N).

    PubMed

    Zordok, Wael A

    2014-08-14

    The preparation and characterization of the new solid complexes [VO(CIP)2L]SO4⋅nH2O, where L=aniline (An), dimethylformamide (DMF), pyridine (Py) and triethylamine (Et3N) in the reaction of ciprofloxacin (CIP) with VO(SO4)2·2H2O in ethanol. The isolated complexes have been characterized with their melting points, elemental analysis, IR spectroscopy, magnetic properties, conductance measurements, UV-Vis. and (1)H NMR spectroscopic methods and thermal analyses. The results supported the formation of the complexes and indicated that ciprofloxacin reacts as a bidentate ligand bound to the vanadium ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E(*); entropies, ΔS(*); enthalpies, ΔH(*); Gibbs free energies, ΔG(*), of the thermal decomposition reactions have been derived from thermo gravimetric (TGA) and differential thermo gravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand and their metal complexes were also evaluated for their antibacterial activity against several bacterial species, such as Bacillus Subtilis (B. Subtilis), Staphylococcus aureus (S. aureus), Nesseria Gonorrhoeae (N. Gonorrhoeae), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli).

  10. Interaction of vanadium (IV) solvates (L) with second-generation fluoroquinolone antibacterial drug ciprofloxacin: Spectroscopic, structure, thermal analyses, kinetics and biological evaluation (L = An, DMF, Py and Et3N)

    NASA Astrophysics Data System (ADS)

    Zordok, Wael A.

    2014-08-01

    The preparation and characterization of the new solid complexes [VO(CIP)2L]SO4ṡnH2O, where L = aniline (An), dimethylformamide (DMF), pyridine (Py) and triethylamine (Et3N) in the reaction of ciprofloxacin (CIP) with VO(SO4)2·2H2O in ethanol. The isolated complexes have been characterized with their melting points, elemental analysis, IR spectroscopy, magnetic properties, conductance measurements, UV-Vis. and 1H NMR spectroscopic methods and thermal analyses. The results supported the formation of the complexes and indicated that ciprofloxacin reacts as a bidentate ligand bound to the vanadium ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, ΔS*; enthalpies, ΔH*; Gibbs free energies, ΔG*, of the thermal decomposition reactions have been derived from thermo gravimetric (TGA) and differential thermo gravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand and their metal complexes were also evaluated for their antibacterial activity against several bacterial species, such as Bacillus Subtilis (B. Subtilis), Staphylococcus aureus (S. aureus), Nesseria Gonorrhoeae (N. Gonorrhoeae), Pseudomonas aeruginosa (P. aeruginosa) and Escherichia coli (E. coli).

  11. The co-occurrence of two pyridine alkaloids, mimosine and trigonelline, in Leucaena leucocephala.

    PubMed

    Ogita, Shinjiro; Kato, Misako; Watanabe, Shin; Ashihara, Hiroshi

    2014-01-01

    Leucaena leucocephala is a nitrogen-fixing tropical leguminous tree that produces two pyridine alkaloids, i. e. mimosine [beta-(3-hydroxy-4-pyridon-1-yl)-L-alanine] and trigonelline (1-methylpyridinium-3-carboxylate). Mimosine has been detected in leaves, flowers, pods, seeds, and roots, and it is one of the principal non-protein amino acids that occurs in all organs. Asparagine was the most abundant amino acid in flowers. The mimosine content varied from 3.3 micromol/g fresh weight (FW) in developing flowers to 171 micromol/g FW in mature seeds. Trigonelline was also detected in leaves, flowers, pods, and seeds, but not roots. The trigonelline content was lower than that of mimosine in all organs. It varied from 0.12 micromol/g FW in developing seeds to 2.6 micromol/g FW in mature seeds. [2-14C]Nicotinic acid supplied to the developing seeds was incorporated into trigonelline but not mimosine. This indicates that the pyridine and dihydroxypyridine structures of these two alkaloids are derived from distinct precursors. The physiological functions of mimosine and trigonelline are discussed briefly. PMID:24873033

  12. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases. PMID:24777760

  13. Spectroscopic, thermal analyses, structural and antibacterial studies on the interaction of some metals with ofloxacin

    NASA Astrophysics Data System (ADS)

    Zordok, W. A.; El-Shwiniy, W. H.; El-Attar, M. S.; Sadeek, S. A.

    2013-09-01

    Reaction between the fluoroquinolone antibacterial agent ofloxacin and V(IV), Zr(IV) and U(VI) in methanol and acetone was studied. The ability of ofloxacin to form metal complexes is high. The isolated solid complexes were characterized by elemental analysis, magnetic moment, conductance measurements, infrared, electronic, 1H NMR spectra and thermal investigation. In all complexes the ofloxacin ligand is coordinated through the pyridone and carboxylate oxygen forming 1:2 M:HOfl complexes. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.73 Å and 640.83 N m-1, respectively. The metal-ligand binding of the V(IV) and Zr(IV) complexes was predicted by using the density functional theory (DFT) at the B3LYP-CEP-31G level of theory and total energy, dipole moment estimation of different V(IV) and Zr(IV) ofloxacin structures. All the synthesized complexes exhibited higher biocidal activity against S. aureus K1, Bacillus subtilis K22, Br. otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. compared to parent compounds and standard drugs.

  14. The comparative bioavailability of an extended-release niacin and lovastatin fixed dose combination tablet versus extended-release niacin tablet, lovastatin tablet and a combination of extended-release niacin tablet and lovastatin tablet.

    PubMed

    Menon, R; Tolbert, D; Cefali, E

    2007-09-01

    Lovastatin and extended-release (ER) niacin in a fixed dose combination (Advicor) is approved for the treatment of dyslipidemia. Since both drugs are extensively metabolized, this study investigated the bioavailability and pharmacokinetics of their co-administration following single-dose administration. In a 4-way crossover study 40 subjects received: two 1000/20 Advicor tablets (ADV), two 1000 mg niacin ER tablets (NSP), two 20mg lovastatin tablets (Mevacor; MEV), and two niacin ER 1000 mg tablets with two lovastatin 20mg tablets (NSP+MEV). Plasma was assayed for niacin, nicotinuric acid (NUA), lovastatin, lovastatin acid and HMGCoA reductase inhibition. Urine was assayed for niacin and its metabolites, NUA, N-methylnicotinamide and N-methyl-2pyridone-5-carboxamide. Least square mean ratios and 90% confidence intervals for C(max) and AUC((0-t)) were determined for NSP+MEV versus MEV or NSP, ADV versus MEV or NSP, and ADV versus NSP+MEV. Co-administration of niacin and lovastatin did not significantly influence C(max) and AUC((0-t)) of lovastatin, niacin, NUA and total urinary recovery of niacin and metabolites. A 22 to 25% decrease in lovastatin acid C(max) was observed while lovastatin acid AUC((0-t)) was not affected. The HMGCoA reductase inhibition C(max) and AUC((0-t)) were not affected indicating that the difference in lovastatin acid C(max) was not clinically relevant.

  15. Niacin (nicotinic acid) in non-physiological doses causes hyperhomocysteineaemia in Sprague-Dawley rats.

    PubMed

    Basu, Tapan K; Makhani, Neelam; Sedgwick, Gary

    2002-02-01

    Niacin (nicotinic acid) in its non-physiological dose level is known to be an effective lipid-lowering agent; its potential risk as a therapeutic agent, however, has not been critically considered. Since niacin is excreted predominantly as methylated pyridones, requiring methionine as a methyl donor, the present study was undertaken to examine whether metabolism of the amino acid is altered in the presence of large doses of niacin. Male Sprague-Dawley rats were given a nutritionally adequate, semi-synthetic diet containing niacin at a level of either 400 or 1000mg/kg diet (compared to 30mg/kg in the control diet) for up to 3 months. Supplementation with niacin (1,000 mg/kg diet) for 3 months resulted in a significant increase in plasma and urinary total homocysteine levels; this increase was further accentuated in the presence of a high methionine diet. The hyperhomocysteineaemia was accompanied by a significant decrease in plasma concentrations of vitamins B6 and B12, which are cofactors for the metabolism of homocysteine. The homocysteine-raising action of niacin, in particular, has an important toxicological implication, as hyperhomocysteineaemia is considered to be an independent risk factor for arterial occlusive disease. The niacin-associated change in homocysteine status may be an important limiting factor in the use of this vitamin as a lipid-lowering agent.

  16. Effects of dietary pyrazinamide, an antituberculosis agent, on the metabolism of tryptophan to niacin and of tryptophan to serotonin in rats.

    PubMed

    Shibata, K; Fukuwatari, T; Sugimoto, E

    2001-06-01

    The effects of pyrazinamide on the metabolism of tryptophan to niacin and of tryptophan to serotonin were investigated to elucidate the mechanism for pyrazinamide action against tuberculosis. Weanling rats were fed with a diet with or without 0.25% pyrazinamide for 61 days. Urine samples were periodically collected for measuring the tryptophan metabolites. The administration of pyrazinamide significantly increased the metabolites, 3-hydroxyanthranilic acid and beyond, especially quinolinic acid, nicotinamide, N'-methylnicotinamide, and N1-methyl-4-pyridone-3-carboxamide, and therefore significantly increased the conversion ratio of tryptophan to niacin and the blood NAD level . However, no difference in the upper metabolites of the tryptophan to niacin pathway such as anthranilic acid, kynurenic acid and xanthurenic acid was apparent between the two groups. No difference in the concentrations of trytptophan and serotonin in the blood were apparent either. It is suggested from these results that the action of pyrazinamide against tuberculosis is linked to the increase in turnover of NAD and to the increased content of NAD in the host cells.

  17. Direct Correlation Between Ligand-Induced α-Synuclein Oligomers and Amyloid-like Fibril Growth

    PubMed Central

    Nors Perdersen, Martin; Foderà, Vito; Horvath, Istvan; van Maarschalkerweerd, Andreas; Nørgaard Toft, Katrine; Weise, Christoph; Almqvist, Fredrik; Wolf-Watz, Magnus; Wittung-Stafshede, Pernilla; Vestergaard, Bente

    2015-01-01

    Aggregation of proteins into amyloid deposits is the hallmark of several neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. The suggestion that intermediate oligomeric species may be cytotoxic has led to intensified investigations of pre-fibrillar oligomers, which are complicated by their transient nature and low population. Here we investigate alpha-synuclein oligomers, enriched by a 2-pyridone molecule (FN075), and the conversion of oligomers into fibrils. As probed by leakage assays, the FN075 induced oligomers potently disrupt vesicles in vitro, suggesting a potential link to disease related degenerative activity. Fibrils formed in the presence and absence of FN075 are indistinguishable on microscopic and macroscopic levels. Using small angle X-ray scattering, we reveal that FN075 induced oligomers are similar, but not identical, to oligomers previously observed during alpha-synuclein fibrillation. Since the levels of FN075 induced oligomers correlate with the amounts of fibrils among different FN075:protein ratios, the oligomers appear to be on-pathway and modeling supports an ‘oligomer stacking model’ for alpha-synuclein fibril elongation. PMID:26020724

  18. Effects of complexometric compounds found in liquid and solid oil shale waste products on release of chemical elements from retorted shale

    SciTech Connect

    Esmaili, E.; Carroll, R.B.; Jackson, L.P.

    1985-05-01

    Complexometric compounds found in oil shale wastes may have the ability to increase the release of trace elements from retorted oil shale when the solid and liquid wastes are codisposed. A laboratory investigation was conducted on the effects of various complexing agents found in liquid and solid oil shale wastes on the leachability of retorted shales. In batch experiments retorted shale samples were contacted with deionized-distilled water (DDW) and 10 different aqueous solutions of complexing agents. These agents included sodium-oxalate, ammonium-carbonate, sodium-thiosulfate, 2-pyridone, 2-hydroxy-6-methylpyridine, potassium-thiocyanate, acetonitrile, sodium-acetate, acetamide, and nicotinic acid. DDW leachate results were used as a baseline to compare with the results for aqueous complexometric leachates. Some of these agents aided in higher release of arsenic, boron, selenium, lead, and vanadium from the solids. The same complexing agents had different effects on different retorted shales, indicating that the results for one retorted shale may or may not be representative of other retorted shales. This is due to differences in mineralogical residence of elements in various retorted shales and differences in leachate chemical systems of various retorted shales. Concentration of cadium and cobalt did not exceed the quantitation limits of these elements in any of the leachates in this study. 10 refs., 15 tabs.

  19. Renal systems biology of patients with systemic inflammatory response syndrome.

    PubMed

    Tsalik, Ephraim L; Willig, Laurel K; Rice, Brandon J; van Velkinburgh, Jennifer C; Mohney, Robert P; McDunn, Jonathan E; Dinwiddie, Darrell L; Miller, Neil A; Mayer, Eric S; Glickman, Seth W; Jaehne, Anja K; Glew, Robert H; Sopori, Mohan L; Otero, Ronny M; Harrod, Kevin S; Cairns, Charles B; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen F; Langley, Raymond J

    2015-10-01

    A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular-weight proteins and acute-phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and N-acetylaspartate were inversely correlated with the majority of significantly downregulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes were not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness.

  20. Evaluation of volatile ion-pair reagents for the liquid chromatography-mass spectrometry analysis of polar compounds and its application to the determination of methadone in human plasma.

    PubMed

    Gao, Songmei; Bhoopathy, Siddhartha; Zhang, Zong-Ping; Wright, D Scott; Jenkins, Rand; Karnes, H Thomas

    2006-02-24

    A liquid chromatography method using volatile ion-pairing reagents and tandem mass spectrometry was developed to obviate observed matrix effect for ionizable polar compounds. The present study investigated the addition of volatile ion-pair reagents to the reconstitution solution instead of the mobile phase to enhance the efficiency of chromatographic separation and minimize the sensitivity loss due to the formation of ion-pairs. The volatile ion-pair reagents used were perfluorinated carboxylic acids with n-alkyl chains: heptafluorobutanoic acid (HFBA), nonafluoropentanoic acid (NFPA), tridecafluoroheptanoic acid (TDFHA) and pentadecafluorooctanoic acid (PDFOA). The model analytes evaluated were N-methylnicotinamide (MNA) chloride, N-methyl 2-pyridone 5-carboxamide (2PY) and phenylephrine. The effects of alkyl chain length and the concentrations of the ion-pair reagents on the retention of analytes were studied, as well as the effect of pH on the retention of phenylephrine. The volatile ion-pair reagents in the reconstitution solution showed significant effect on the retention of the ionizable polar compounds, and the sensitivity of detection was improved for plasma samples through decreasing the matrix effect. This methodology was successfully applied to establish a quantitative assay for the polar drug substance methadone in human plasma with a concentration range from 0.1 to 50 ng/mL. Ion-pair reagents not only shifted the retention time but also reduced the carry-over peak for methadone. PMID:16029944

  1. A Maillard reaction product enhances eNOS activity in human endothelial cells.

    PubMed

    Schmitt, Christoph A; Heiss, Elke H; Schachner, Daniel; Aristei, Yasmin; Severin, Theodor; Dirsch, Verena M

    2010-07-01

    Nitric oxide (NO) produced by the endothelial nitric oxide synthase (eNOS) is an important signaling molecule in the cardiovascular system. Although dietary factors can modulate eNOS activity, putative effects of processed food are barely investigated. We aimed to examine whether the model Maillard reaction product 3-hydroxy-2-methyl-1-propyl-4(1H)-pyridone (HMPP), formed from maltol or starch and propylamine, affects the eNOS system. Incubation of EA.hy926 endothelial cells with 30-300 microM HMPP for 18 h enhanced endothelial NO release measured with the fluorescent probe diaminofluorescein-2 and eNOS activity determined by the [14C]L-arginine-[14C]L-citrulline conversion assay. HMPP increased NO production also in two different types of primary human endothelial cells. Protein levels of eNOS and inducible NO synthase remained unaltered by HMPP. HMPP inhibited eNOS activity within the first 2-4 h, whereas it potently increased eNOS activity after 12-24 h. Levels of eNOS phosphorylation, expression of heat-shock protein 90, caveolin-1 and various antioxidant enzymes were not affected. Intracellular reactive oxygen species remained unchanged by HMPP. This is the first study to demonstrate positive effects of a Maillard reaction product on eNOS activity and endothelial NO production, which is considered favourable for cardiovascular protection. PMID:20112298

  2. catena-Poly[[[diaqua-bis(2-methyl-6-oxo-1,6-dihydro-3,4'-bipyridine-5-carbo-nitrile)copper(II)]-μ-sulfato] tetra-hydrate].

    PubMed

    Niu, Cao-Yuan; Ning, Ai-Min; Feng, Chao-Ling; Dang, Yu-Li; Kou, Chun-Hong

    2008-01-01

    In the title polymer, {[Cu(SO(4))(C(12)H(9)N(3)O)(2)(H(2)O)(2)]·4H(2)O}(n), both the metal center and the sulfate anion are located on a twofold axis. The Cu(II) ion is coordinated by two pyridyl N atoms from two symmetry-related organic ligands, two O atoms from two symmetry-related water mol-ecules, and two O atoms from two symmetry-related sulfate anions, resulting in a distorted octa-hedral geometry. The sulfate anions act as μ(2)-bridges and connect metal ions, forming a one-dimensional chain along the b axis. The three-dimensional crystal structure is established through inter-molecular N-H⋯O and O-H⋯O hydrogen bonds involving the organic ligands, sulfate anions, coordinated and uncoordinated water mol-ecules, and through π-π inter-acting 2-pyridone rings, with centroid-centroid separations of ca 3.96 Å and tilt angles of ca 2.62°. PMID:21581209

  3. Hydrogen generation from alcohols (α-hydroxy carboxylic acids) and alcohol-ammonia coupling in aqueous media catalysed by water-soluble bipyridine-Cp*Ir (Rh or Os) catalyst: a computational mechanism insight

    NASA Astrophysics Data System (ADS)

    Zhang, Dan-Dan; Chen, Xian-Kai; Liu, Hui-Ling; Huang, Xu-Ri

    2015-06-01

    Density functional theory (DFT) calculations were performed to elucidate the mechanism of the dehydrogenative oxidation of various primary alcohols (or α-hydroxy carboxylic acids) and the dehydrogenative coupling of alcohols with ammonia catalysed by the same water-soluble Cp*Ir complex bearing a 2-pyridonate-based ligand (A-Ir). Another two new catalysts A-Rh and A-Os are computationally designed for the dehydrogenative oxidation of alcohols. The plausible pathway for alcohol dehydrogenation includes three steps: alcohol oxidation to aldehyde (step I); the generation of dihydrogen in the metal coordination sphere (step II); and the liberation of dihydrogen accompanied with the regeneration of active catalyst A (step III). Among them, the step I follows bifunctional concerted double hydrogen transfer mechanism rather than the β-H elimination. For step II, the energy barriers involving the addition of one or two water molecules are higher than in absence of water. Our results also confirm that A-Ir can be applied in the dehydrogenation of various α-hydroxy carboxylic acids by the similar mechanism. Remarkably, A-Ir is also found to be efficient for the coupling reactions of various primary benzyl alcohols with ammonia to afford amides.

  4. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents

    NASA Astrophysics Data System (ADS)

    Helal, M. H.; El-Awdan, S. A.; Salem, M. A.; Abd-elaziz, T. A.; Moahamed, Y. A.; El-Sherif, A. A.; Mohamed, G. A. M.

    2015-01-01

    This paper presents a combined synthesis; characterization, computational and biological activity studies of novel series of pyridines heterocyclic compounds. The compounds have been characterized by elemental analyses and spectral like IR, 1H NMR, 13C NMR and MS studies. Michael addition of substituted-2-methoxycarbonylacetanilide 2a,b on the α-substituted cinnamonitriles 3a-d gave the corresponding 2-pyridone derivatives 5-10. Structures of the titled compounds cited in this article were elucidated by spectrometric data (IR, 1H NMR, 13C NMR and MS). The molecular modeling of the synthesized compounds has been drawn and their molecular parameters were calculated. Also, valuable information is obtained from the calculation of molecular parameters including electronegativity, net dipole moment of the compounds, total energy, electronic energy, binding energy, HOMO and LUMO energy. Various in vitro antitumor as well as in vivo anti-inflammatory and analgesic activities of the synthesized compounds were investigated. Evaluation of anti-inflammatory activity of test compounds was performed using carrageenan induced paw edema in rats. All the tested compounds showed moderate to good activity. The SAR results indicate that all compounds showed moderate to good activity, among these 7 and 10 compounds having -N(CH3)2 group are most effective.

  5. Renal systems biology of patients with systemic inflammatory response syndrome

    PubMed Central

    Tsalik, Ephraim L.; Willig, Laurel K.; Rice, Brandon J.; van Velkinburgh, Jennifer C.; Mohney, Robert P.; McDunn, Jonathan; Dinwiddie, Darrell L.; Miller, Neil A.; Mayer, Eric; Glickman, Seth W.; Jaehne, Anja K.; Glew, Robert H.; Sopori, Mohan L.; Otero, Ronny M.; Harrod, Kevin S.; Cairns, Charles B.; Fowler, Vance G.; Rivers, Emanuel P.; Woods, Christopher W.; Kingsmore, Stephen F.; Langley, Raymond J.

    2015-01-01

    A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular weight proteins and acute phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and n-acetylaspartate were inversely correlated with the majority of significantly down-regulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness. PMID:25993322

  6. An O-acetylserine (thiol) lyase from Leucaena leucocephala is a cysteine synthase but not a mimosine synthase.

    PubMed

    Yafuso, Jannai T; Negi, Vishal Singh; Bingham, Jon-Paul; Borthakur, Dulal

    2014-07-01

    In plants, the final step of cysteine formation is catalyzed by O-acetylserine (thiol) lyase (OAS-TL). The purpose of this study was to isolate and characterize an OAS-TL from the tree legume Leucaena leucocephala (leucaena). Leucaena contains a toxic, nonprotein amino acid, mimosine, which is also formed by an OAS-TL, and characterization of this enzyme is essential for developing a mimosine-free leucaena for its use as a protein-rich fodder. The cDNA for a cytosolic leucaena OAS-TL isoform was obtained through interspecies suppression subtractive hybridization. A 40-kDa recombinant protein was purified from Escherichia coli and used in enzyme activity assays where it was found to synthesize only cysteine. The enzyme followed Michaelis-Menten kinetics, and the Km was calculated to be 1,850±414 μM sulfide and the Vmax was 200.6±19.92 μM cysteine min(-1). The N-terminal affinity His-tag was cleaved from the recombinant OAS-TL to eliminate its possible interference in binding with the substrate, 3-hydroxy-4-pyridone, for mimosine formation. The His-tag-cleaved OAS-TL was again observed to catalyze the formation of cysteine but not mimosine. Thus, the cytosolic OAS-TL from leucaena used in this study is specific for only cysteine synthesis and is different from previously reported OAS-TLs that also function as β-substituted alanine synthases.

  7. Renal systems biology of patients with systemic inflammatory response syndrome.

    PubMed

    Tsalik, Ephraim L; Willig, Laurel K; Rice, Brandon J; van Velkinburgh, Jennifer C; Mohney, Robert P; McDunn, Jonathan E; Dinwiddie, Darrell L; Miller, Neil A; Mayer, Eric S; Glickman, Seth W; Jaehne, Anja K; Glew, Robert H; Sopori, Mohan L; Otero, Ronny M; Harrod, Kevin S; Cairns, Charles B; Fowler, Vance G; Rivers, Emanuel P; Woods, Christopher W; Kingsmore, Stephen F; Langley, Raymond J

    2015-10-01

    A systems biology approach was used to comprehensively examine the impact of renal disease and hemodialysis (HD) on patient response during critical illness. To achieve this, we examined the metabolome, proteome, and transcriptome of 150 patients with critical illness, stratified by renal function. Quantification of plasma metabolites indicated greater change as renal function declined, with the greatest derangements in patients receiving chronic HD. Specifically, 6 uremic retention molecules, 17 other protein catabolites, 7 modified nucleosides, and 7 pentose phosphate sugars increased as renal function declined, consistent with decreased excretion or increased catabolism of amino acids and ribonucleotides. Similarly, the proteome showed increased levels of low-molecular-weight proteins and acute-phase reactants. The transcriptome revealed a broad-based decrease in mRNA levels among patients on HD. Systems integration revealed an unrecognized association between plasma RNASE1 and several RNA catabolites and modified nucleosides. Further, allantoin, N1-methyl-4-pyridone-3-carboxamide, and N-acetylaspartate were inversely correlated with the majority of significantly downregulated genes. Thus, renal function broadly affected the plasma metabolome, proteome, and peripheral blood transcriptome during critical illness; changes were not effectively mitigated by hemodialysis. These studies allude to several novel mechanisms whereby renal dysfunction contributes to critical illness. PMID:25993322

  8. The identification of an impurity product, 4,6-dimethyl-3,5-diphenylpyridin-2-one in an amphetamine importation seizure, a potential route specific by-product for amphetamine synthesized by the APAAN to P2P, Leuckart route.

    PubMed

    Power, John D; O'Brien, John; Talbot, Brian; Barry, Michael; Kavanagh, Pierce

    2014-08-01

    During the analysis of a Customs' importation case for the suspected presence of controlled drugs, amphetamine was found to be present. The samples were also found to contain by-products from the amphetamine synthesis and these included benzyl cyanide, phenylacetone (P2P), methyl-phenyl-pyrimidines, N-formylamphetamine, a pair of naphthalene derivatives and amphetamine dimers. During the experimental investigation of the naphthalenes formation, a series of syntheses involved the acid hydrolysis of α-phenylacetoacetonitrile (APAAN). In one such experiment with sulfuric acid, a white substance was visibly deposited on the glassware and this was identified as the pyridone derivative, 4,6-dimethyl-3,5-diphenylpyridin-2-one. This compound was subsequently found to be present in the amphetamine product seized by the Customs and also in the final product of our own laboratory synthesized amphetamine (APAAN hydrolyzed to P2P/Leuckart reaction). Interestingly, the, 4,6-dimethyl-3,5-diphenylpyridin-2-one was not found when commercially supplied P2P underwent the Leuckart reaction to yield amphetamine. This suggests that 4,6-dimethyl-3,5-diphenylpyridin-2-one may be a route specific marker to the use of APAAN as a starting material in the synthesis of P2P and subsequent Leuckart reaction to yield amphetamine.

  9. Synthesis of polybenzoxazine based nitrogen-rich porous carbons for carbon dioxide capture

    NASA Astrophysics Data System (ADS)

    Wan, Liu; Wang, Jianlong; Feng, Chong; Sun, Yahui; Li, Kaixi

    2015-04-01

    Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the CO2 capture performance. At 1 bar, high CO2 uptake of 4.02 and 6.35 mmol g-1 at 25 and 0 °C was achieved for the sample NPC-2 with a molar ratio of F127 : urea = 0.010 : 1. This can be attributed to its well-developed micropore structure and abundant pyridinic nitrogen, pyrrolic nitrogen and pyridonic nitrogen functionalities. The sample NPC-2 also exhibits a remarkable selectivity for CO2/N2 separation and a fast adsorption/desorption rate and can be easily regenerated. This suggests that the polybenzoxazine-based NPCs are desirable for CO2 capture because of possessing a high micropore surface area, a large micropore volume, appropriate pore size distribution, and a large number of basic nitrogen functionalities.Nitrogen-rich porous carbons (NPCs) were synthesized from 1,5-dihydroxynaphthalene, urea, and formaldehyde based on benzoxazine chemistry by a soft-templating method with KOH chemical activation. They possess high surface areas of 856.8-1257.8 m2 g-1, a large pore volume of 0.15-0.65 cm3 g-1, tunable pore structure, high nitrogen content (5.21-5.32 wt%), and high char yields. The amount of the soft-templating agent F127 has multiple influences on the textural and chemical properties of the carbons, affecting the surface area and pore structure, impacting the compositions of nitrogen species and resulting in an improvement of the

  10. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    NASA Astrophysics Data System (ADS)

    Esboui, Mounir

    2015-07-01

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH3)2 complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH3)2 cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″(1πσ∗) and A'(1nσ∗) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A'(1ππ∗) and A″(1nπ∗) potential energy surfaces. For the unconstrained complex, potential energy profiles show two 1ππ∗-1πσ∗ conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  11. Synthesis and characterization of 12-pyridinium derivatives of the [closo-1-CB11H12]- anion.

    PubMed

    Pecyna, Jacek; Ringstrand, Bryan; Domagała, Sławomir; Kaszyński, Piotr; Woźniak, Krzysztof

    2014-12-01

    Diazotization of [closo-1-CB11H10-1-R-12-NH2](-)[NMe4](+) (4[NMe4]) in neat 4-methoxypyridine leads to 12-(4-methoxypyridinium) zwitterions [closo-1-CB11H10-1-R-12-(4-MeOC5H4N)] (2) in ∼50% yield. Demethylation of 2 with LiCl in dimethylformamide provides access to 12-pyridones 5[NMe4], which can be O-alkylated with alkyl triflates giving 12-(4-alkoxypyridinium) zwitterions, such as 1. This three-step process is more efficient than direct diazotization of amine 4[NMe4] in neat higher 4-alkoxypyridine. The new method was demonstrated for the synthesis of [closo-1-CB11H10-1-C5H11-12-(4-C7H15OC5H4N)] (1c), which exhibits a smectic A phase. Molecular and electronic structures of 4-methoxypyridinium zwitterion 2b and its C(1) isomer [closo-1-CB11H11-1-(4-MeOC5H4N)] (3b) were investigated by single-crystal X-ray diffraction and spectroscopic methods, respectively, and the experimental results were compared to those obtained with density functional theory methods. Lastly, the mechanism for formation of zwitterions 2 was investigated computationally revealing low energy for dediazoniation of the [closo-1-CB11H10-1-R-12-N2] (14) intermediate (ΔG298 ≈ 25 kcal/mol) to form boronium ylide 15, with weak dependence on substituent R. Dinitrogen derivative 14c was observed by (11)B NMR spectroscopy. PMID:25393761

  12. Use of UHPLC high-resolution Orbitrap mass spectrometry to investigate the genes involved in the production of secondary metabolites in Aspergillus flavus.

    PubMed

    Arroyo-Manzanares, Natalia; Di Mavungu, José Diana; Uka, Valdet; Malysheva, Svetlana V; Cary, Jeffrey W; Ehrlich, Kenneth C; Vanhaecke, Lynn; Bhatnagar, Deepak; De Saeger, Sarah

    2015-01-01

    The fungus Aspergillus flavus is known for its ability to produce the toxic and carcinogenic aflatoxins in food and feed. While aflatoxins are of most concern, A. flavus is predicted to be capable of producing many more metabolites based on a study of its complete genome sequence. Some of these metabolites could be of great importance in food and feed safety. Here we describe an analytical methodology based on Orbitrap HRMS technology that allows the untargeted determination of fungal metabolites, in support of the study of the function of genes involved in secondary metabolism in fungi. The applied strategy implies the detection and identification of differentially expressed metabolites in extracts of wild-type and mutant fungal strains, using Orbitrap high-resolution mass spectrometry (HRMS) accurate mass data. The suitability of this approach was demonstrated by the confirmation of previously characterised genes involved in the aflatoxin biosynthetic pathway, namely a polyketide synthase (pksA), an oxidoreductase (ordA) and a methyltransferase (omtA) gene. Subsequently, the proposed methodology was applied for the detection and identification of metabolites produced by a yet uncharacterised gene cluster in A. favus, cluster 23. Comparative Orbitrap HRMS analysis of extracts of A. flavus wild-type strain and an over-expression mutant for the transcription factor of gene cluster 23 (lepE) demonstrated that this gene cluster is responsible for the production a set of 2-pyridone derivatives, the leporins. Besides the known derivatives leporin B and leporin B precursor that could be identified by automatic de-replication of the accurate mass data, five other compounds belonging to this class of fungal secondary metabolites were detected and identified for the first time, combining MS and multiple-stage MS data. PMID:26278397

  13. Characterization of the Fe Site in Iron-Sulfur-Cluster-Free Hydrogenase (Hmd) and of a Model Compound via Nuclear Resonance Vibrational Spectroscopy (NRVS)

    PubMed Central

    Guo, Yisong; Wang, Hongxin; Xiao, Yuming; vogt, Sonja; Shima, Seigo; Volkers, Phillip I.; Pelmentschikov, Vladimir; Alp, Ercan E.; Sturhahn, Wolfgang; Yada, Yoshitaka

    2009-01-01

    We have used 57Fe nuclear resonance vibrational spectroscopy (NRVS) to study the iron site in the iron-sulfur-cluster-free hydrogenase Hmd from the methanogenic archaeon Methanothermobacter marburgensis. The spectra have been interpreted by comparison with a cis-(CO)2-ligated Fe model compound, Fe(S2C2H4)(CO)2(PMe3)2, as well as by normal mode simulations of plausible active site structures. For this model complex, normal mode analyses both from an optimized Urey-Bradley force field and from complementary density functional theory (DFT) calculations produced consistent results. Previous IR spectroscopic studies found strong CO stretching modes at 1944 and 2011 cm−1, interpreted as evidence for cis-Fe(CO)2 ligation. The NRVS data provide further insight into the dynamics of the Fe site, revealing Fe-CO stretch and Fe-CO bend modes at 494, 562, 590, and 648 cm−1, consistent with the proposed cis-Fe(CO)2 ligation. The NRVS also reveals a band assigned to Fe-S stretching motion at ~311 cm−1, and another reproducible feature at ~380 cm−1. The 57Fe partial vibrational densities of states (PVDOS) for Hmd can be reasonably well simulated by a normal mode analysis based on a Urey-Bradley force field for a 5-coordinate cis-(CO)2-ligated Fe site with additional cysteine, water, and pyridone cofactor ligands. A final interpretation of the Hmd NRVS data, including DFT analysis, awaits a 3-dimensional structure for the active site. PMID:18407624

  14. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their antifungal, antibacterial, antioxidant, and cytotoxic activities.

    PubMed

    Xiao, Jian; Zhang, Qiang; Gao, Yu-Qi; Tang, Jiang-Jiang; Zhang, An-Ling; Gao, Jin-Ming

    2014-04-23

    Two new metabolites, an α-pyridone derivative, 3-hydroxy-2-methoxy-5-methylpyridin-2(1H)-one (1), and a ceramide derivative, 3-hydroxy-N-(1-hydroxy-3-methylpentan-2-yl)-5-oxohexanamide (2), and a new natural product, 3-hydroxy-N-(1-hydroxy-4-methylpentan-2-yl)-5-oxohexanamide (3), along with 15 known compounds including chaetoglobosin C (7) and chaetoglobosin F (8) were isolated from the solid culture of the endophytic fungus Botryosphaeria dothidea KJ-1, collected from the stems of white cedar (Melia azedarach L). The structures were elucidated on the basis of spectroscopic analysis (1D and 2D NMR experiments and by mass spectrometric measurements), and the structure of 1 was confirmed by X-ray single-crystal diffraction. These metabolites were evaluated in vitro for antimicrobial, antioxidant, and cytotoxicity activities. Pycnophorin (4) significantly inhibited the growth of Bacillus subtilis and Staphyloccocus aureus with equal minimum inhibitory concentration (MIC) values of 25 μM. Stemphyperylenol (5) displayed a potent antifungal activity against the plant pathogen Alternaria solani with MIC of 1.57 μM comparable to the commonly used fungicide carbendazim. Both altenusin (9) and djalonensone (10) showed markedly DPPH radical scavenging activities. In addition, stemphyperylenol (5) and altenuene (6) exhibited strong cytotoxicity against HCT116 cancer cell line with a median inhibitory concentration (IC50) value of 3.13 μM in comparison with the positive control etoposide (IC50 = 2.13 μM). This is the first report of the isolation of these compounds from the endophytic B. dothidea. PMID:24689437

  15. Preparation, characterization and cytotoxicity studies of some transition metal complexes with ofloxacin and 1,10-phenanthroline mixed ligand

    NASA Astrophysics Data System (ADS)

    Sadeek, S. A.; El-Hamid, S. M. Abd

    2016-10-01

    [Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.

  16. Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.

    2011-02-01

    The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.

  17. Preparation, structure and microbial evaluation of metal complexes of the second generation quinolone antibacterial drug lomefloxacin

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.

    2010-09-01

    Lomefloxacinate of Y(III), Zr(IV) and U(VI) were isolated as solids with the general formula; [Y(LFX) 2Cl 2]Cl·12H 2O, [ZrO(LFX) 2Cl]Cl·15H 2O and [UO 2(LFX) 3](NO 3) 2·4H 2O. The new synthesized complexes were characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopies) as well as thermal analyses. In these complexes lomefloxacin act as bidentate ligand bound to the metal ions through the pyridone oxygen and one carboxylate oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, activation energy, enthalpy of activation and Gibbs free energy evaluated by using Coats- Redfern and Horowitz- Metzger equations for free lomefloxacin and three complexes were carried out. The bond stretching force constant and length of the U dbnd O bond for the [UO 2(LFX) 3](NO 3) 2·4H 2O complex were calculated. The antimicrobial activity of lomefloxacin and its metal complexes was tested against different bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) as Gram-positive and Gram-negative bacterial species and also against two species of antifungal, penicillium ( P. rotatum) and trichoderma ( T. sp.). The three complexes are of a good action against three bacterial species but the Y(III) complex exhibit excellent activity against Pseudomonas aeruginosa ( P. aeruginosa), when compared to the free lomefloxacin.

  18. Advances in nickel-catalyzed cycloaddition reactions to construct carbocycles and heterocycles.

    PubMed

    Thakur, Ashish; Louie, Janis

    2015-08-18

    Transition-metal catalysis has revolutionized the field of organic synthesis by facilitating the construction of complex organic molecules in a highly efficient manner. Although these catalysts are typically based on precious metals, researchers have made great strides in discovering new base metal catalysts over the past decade. This Account describes our efforts in this area and details the development of versatile Ni complexes that catalyze a variety of cycloaddition reactions to afford interesting carbocycles and heterocycles. First, we describe our early work in investigating the efficacy of N-heterocyclic carbene (NHC) ligands in Ni-catalyzed cycloaddition reactions with carbon dioxide and isocyanate. The use of sterically hindered, electron donating NHC ligands in these reactions significantly improved the substrate scope as well as reaction conditions in the syntheses of a variety of pyrones and pyridones. The high reactivity and versatility of these unique Ni(NHC) catalytic systems allowed us to develop unprecedented Ni-catalyzed cycloadditions that were unexplored due to the inefficacy of early Ni catalysts to promote hetero-oxidative coupling steps. We describe the development and mechanistic analysis of Ni/NHC catalysts that couple diynes and nitriles to form pyridines. Kinetic studies and stoichiometric reactions confirmed a hetero-oxidative coupling pathway associated with this Ni-catalyzed cycloaddition. We then describe a series of new substrates for Ni-catalyzed cycloaddition reactions such as vinylcyclopropanes, aldehydes, ketones, tropones, 3-azetidinones, and 3-oxetanones. In reactions with vinycyclopropanes and tropones, DFT calculations reveal noteworthy mechanistic steps such as a C-C σ-bond activation and an 8π-insertion of vinylcyclopropane and tropone, respectively. Similarly, the cycloaddition of 3-azetidinones and 3-oxetanones also requires Ni-catalyzed C-C σ-bond activation to form N- and O-containing heterocycles. PMID:26200651

  19. Association of fungal secondary metabolism and sclerotial biology

    PubMed Central

    Calvo, Ana M.; Cary, Jeffrey W.

    2015-01-01

    Fungal secondary metabolism and morphological development have been shown to be intimately associated at the genetic level. Much of the literature has focused on the co-regulation of secondary metabolite production (e.g., sterigmatocystin and aflatoxin in Aspergillus nidulans and Aspergillus flavus, respectively) with conidiation or formation of sexual fruiting bodies. However, many of these genetic links also control sclerotial production. Sclerotia are resistant structures produced by a number of fungal genera. They also represent the principal source of primary inoculum for some phytopathogenic fungi. In nature, higher plants often concentrate secondary metabolites in reproductive structures as a means of defense against herbivores and insects. By analogy, fungi also sequester a number of secondary metabolites in sclerotia that act as a chemical defense system against fungivorous predators. These include antiinsectant compounds such as tetramic acids, indole diterpenoids, pyridones, and diketopiperazines. This chapter will focus on the molecular mechanisms governing production of secondary metabolites and the role they play in sclerotial development and fungal ecology, with particular emphasis on Aspergillus species. The global regulatory proteins VeA and LaeA, components of the velvet nuclear protein complex, serve as virulence factors and control both development and secondary metabolite production in many Aspergillus species. We will discuss a number of VeA- and LaeA-regulated secondary metabolic gene clusters in A. flavus that are postulated to be involved in sclerotial morphogenesis and chemical defense. The presence of multiple regulatory factors that control secondary metabolism and sclerotial formation suggests that fungi have evolved these complex regulatory mechanisms as a means to rapidly adapt chemical responses to protect sclerotia from predators, competitors and other environmental stressors. PMID:25762985

  20. A carbon-nitrogen lyase from Leucaena leucocephala catalyzes the first step of mimosine degradation.

    PubMed

    Negi, Vishal Singh; Bingham, Jon-Paul; Li, Qing X; Borthakur, Dulal

    2014-02-01

    The tree legume Leucaena leucocephala contains a large amount of a toxic nonprotein aromatic amino acid, mimosine, and also an enzyme, mimosinase, for mimosine degradation. In this study, we isolated a 1,520-bp complementary DNA (cDNA) for mimosinase from L. leucocephala and characterized the encoded enzyme for mimosine-degrading activity. The deduced amino acid sequence of the coding region of the cDNA was predicted to have a chloroplast transit peptide. The nucleotide sequence, excluding the sequence for the chloroplast transit peptide, was codon optimized and expressed in Escherichia coli. The purified recombinant enzyme was used in mimosine degradation assays, and the chromatogram of the major product was found to be identical to that of 3-hydroxy-4-pyridone (3H4P), which was further verified by electrospray ionization-tandem mass spectrometry. The enzyme activity requires pyridoxal 5'-phosphate but not α-keto acid; therefore, the enzyme is not an aminotransferase. In addition to 3H4P, we also identified pyruvate and ammonia as other degradation products. The dependence of the enzyme on pyridoxal 5'-phosphate and the production of 3H4P with the release of ammonia indicate that it is a carbon-nitrogen lyase. It was found to be highly efficient and specific in catalyzing mimosine degradation, with apparent Km and Vmax values of 1.16×10(-4) m and 5.05×10(-5) mol s(-1) mg(-1), respectively. The presence of other aromatic amino acids, including l-tyrosine, l-phenylalanine, and l-tryptophan, in the reaction did not show any competitive inhibition. The isolation of the mimosinase cDNA and the biochemical characterization of the recombinant enzyme will be useful in developing transgenic L. leucocephala with reduced mimosine content in the future. PMID:24351687

  1. In vitro antimycotic activity and nail permeation models of a piroctone olamine (octopirox) containing transungual water soluble technology.

    PubMed

    Dubini, Francesco; Bellotti, Maria Grazia; Frangi, Alessandra; Monti, Daniela; Saccomani, Luigi

    2005-01-01

    Several in vitro studies with a new medical device (Myfungar) containing 0.5% of piroctone olamine (CAS 68890-66-4, octopirox) in a hydroxypropyl chitosan hydroalcoholic solution were performed. The chemical name of the active ingredient is 1-hydroxy-4-methyl-6 (2,4,4-trimethylpentyl)-2(1H)-pyridone; combination with 2-amino-ethanol (1:1). The antimycotic activity was determined in the most common fungi responsible of nail infections such as Candida parapsilosis, Scopulariopsis brevicaulis or Trichophyton rubrum. The minimum inhibitory concentration (MIC), found by means of the broth dilution susceptibility method, ranged between 0.0003% and 0.006% for all pathogens considered. The in vitro permeation study was performed by using bovine hoof membranes inserted in a modified Gummer vertical permeation cell. The experiment showed, at 30 h, a retention of the product in the nail membranes by 11.1% of the applied dose. No piroctone permeation through bovine hoof membranes could be detected by HPLC due to the limit of quantitation of this method. On the other hand, permeation of nail membranes has been demonstrated by a biological assay: the study of in vitro permeation through bovine hoof membranes, performed by biological assay, showed dose-dependent inhibition rings of T. rubrum growth by the tested device, placed either on disks for antibiogram or on nail fragments. The placebo did not show any inhibition. In vitro experimental infection by T. rubrum showed a preventive activity of the tested device on fungal growth as well as a curative activity, as the pathogen was eradicated by the tested solution in previously infected nails.

  2. In vitro antimycotic activity and nail permeation models of a piroctone olamine (octopirox) containing transungual water soluble technology.

    PubMed

    Dubini, Francesco; Bellotti, Maria Grazia; Frangi, Alessandra; Monti, Daniela; Saccomani, Luigi

    2005-01-01

    Several in vitro studies with a new medical device (Myfungar) containing 0.5% of piroctone olamine (CAS 68890-66-4, octopirox) in a hydroxypropyl chitosan hydroalcoholic solution were performed. The chemical name of the active ingredient is 1-hydroxy-4-methyl-6 (2,4,4-trimethylpentyl)-2(1H)-pyridone; combination with 2-amino-ethanol (1:1). The antimycotic activity was determined in the most common fungi responsible of nail infections such as Candida parapsilosis, Scopulariopsis brevicaulis or Trichophyton rubrum. The minimum inhibitory concentration (MIC), found by means of the broth dilution susceptibility method, ranged between 0.0003% and 0.006% for all pathogens considered. The in vitro permeation study was performed by using bovine hoof membranes inserted in a modified Gummer vertical permeation cell. The experiment showed, at 30 h, a retention of the product in the nail membranes by 11.1% of the applied dose. No piroctone permeation through bovine hoof membranes could be detected by HPLC due to the limit of quantitation of this method. On the other hand, permeation of nail membranes has been demonstrated by a biological assay: the study of in vitro permeation through bovine hoof membranes, performed by biological assay, showed dose-dependent inhibition rings of T. rubrum growth by the tested device, placed either on disks for antibiogram or on nail fragments. The placebo did not show any inhibition. In vitro experimental infection by T. rubrum showed a preventive activity of the tested device on fungal growth as well as a curative activity, as the pathogen was eradicated by the tested solution in previously infected nails. PMID:16149717

  3. Simultaneous quantification of niacin and its three main metabolites in human plasma by LC-MS/MS.

    PubMed

    Liu, Man; Zhang, Dan; Wang, Xiaolin; Zhang, Lina; Han, Jing; Yang, Man; Xiao, Xue; Zhang, Yanan; Liu, Huichen

    2012-09-01

    A sensitive and specific LC-MS/MS method for the simultaneous quantification of niacin (NA) and its three main metabolites nicotinamide (NAM), nicotinuric acid (NUA) and N-methyl-2-pyridone-5-carboxamide (2-Pyr) in human plasma has been developed and validated. Plasma samples (200 μL) were prepared by deproteinization with acetonitrile (500 μL), then the supernatant after centrifugation was evaporated and reconstituted. Chromatography was performed on a phenomenex synergi hydro-RP column with an isocratic elution of methanol-0.1% formic acid (5:95, v/v). The full separation of all analytes was achieved within 9 min. Multiple-reaction monitoring (MRM) using the fragmentation transitions of m/z 124.1 → 80.1, 123.1 → 80.0, 181.0 → 79.0 and 153.1 → 110.2 in positive electrospray ionization (ESI) mode was performed to quantify NA, NAM, NUA and 2-Pyr, respectively. The calibration curves were linear over the concentration range of 2.0-3000 ng/mL for NA and NUA, 10.0-1600 ng/mL for NAM and 50.0-5000 ng/mL for 2-Pyr. This method has been validated in accordance with the US FDA guidelines for bioanalytical method development and applied to the determination of NA and its three main metabolites in Chinese subjects following a single oral dose of niacin extended-release and simvastatin 1000 mg/20mg. In particular, because of the endogenous NAM and 2-Pyr in human plasma, the concentrations of NAM and 2-Pyr in human plasma after dosing were determined by subtracting blank values of them.

  4. CHARACTERIZATION, HPLC METHOD DEVELOPMENT AND IMPURITY IDENTIFICATION FOR 3,4,3-LI(1,2-HOPO), A POTENT ACTINIDE CHELATOR FOR RADIONUCLIDE DECORPORATION

    PubMed Central

    Liu, Mingtao; Wang, Jennie; Wu, Xiaogang; Wang, Euphemia; Abergel, Rebecca J.; Shuh, David K.; Raymond, Kenneth N.; Liu, Paul

    2014-01-01

    3,4,3-LI(1,2-HOPO), 1,5,10,14-tetra(1-hydroxy-2-pyridon-6-oyl)-1,5,10,14-tetraazatetradecane), is a potent octadentate chelator of actinides. It is being developed as a decorporation treatment for internal contamination with radionuclides. Conventional HPLC methods exhibited speciation peaks and bridging, likely attributable to the agent’s complexation with residual metallic ions in the HPLC system. Derivatization of the target ligand in situ with Fe(III) chloride, however, provided a single homogeneous iron-complex that can readily be detected and analyzed by HPLC. The HPLC method used an Agilent Eclipse XDB-C18 column (150 mm × 4.6 mm, 5 μm) at 25 °C with UV detection at 280 nm. A gradient elution, with acetonitrile (11% to 100%)/buffer mobile phase, was developed for impurity profiling. The buffer consisted of 0.02% formic acid and 10 mM ammonium formate at pH 4.6. An Agilent 1200 LC-6530 Q-TOF/MS system was employed to characterize the [Fe(III)-3,4,3-LI(1,2-HOPO)] derivative and impurities. The proposed HPLC method was validated for specificity, linearity (concentration range 0.13–0.35 mg/mL, r = 0.9999), accuracy (recovery 98.3–103.3%), precision (RSD ≤ 1.6%) and sensitivity (LOD 0.08 μg/mL). The LC/HRMS revealed that the derivative was a complex consisting of one 3,4,3-LI(1,2-HOPO) molecule, one hydroxide ligand, and two iron atoms. Impurities were also identified with LC/HRMS. The validated HPLC method was used in shelf-life evaluation studies which showed that the API remained unchanged for one year at 25°C/60% RH. PMID:25459944

  5. Directed evolution of polymerases to accept nucleotides with nonstandard hydrogen bond patterns.

    PubMed

    Laos, Roberto; Shaw, Ryan; Leal, Nicole A; Gaucher, Eric; Benner, Steven

    2013-08-01

    Artificial genetic systems have been developed by synthetic biologists over the past two decades to include additional nucleotides that form additional nucleobase pairs independent of the standard T:A and C:G pairs. Their use in various tools to detect and analyze DNA and RNA requires polymerases that synthesize duplex DNA containing unnatural base pairs. This is especially true for nested polymerase chain reaction (PCR), which has been shown to dramatically lower noise in multiplexed nested PCR if nonstandard nucleotides are used in their external primers. We report here the results of a directed evolution experiment seeking variants of Taq DNA polymerase that can support the nested PCR amplification with external primers containing two particular nonstandard nucleotides, 2-amino-8-(1'-β-d-2'-deoxyribofuranosyl)imidazo[1,2-a]-1,3,5-triazin-4(8H)-one (trivially called P) that pairs with 6-amino-5-nitro-3-(1'-β-d-2'-deoxyribofuranosyl)-2(1H)-pyridone (trivially called Z). Variants emerging from the directed evolution experiments were shown to pause less when challenged in vitro to incorporate dZTP opposite P in a template. Interestingly, several sites involved in the adaptation of Taq polymerases in the laboratory were also found to have displayed "heterotachy" (different rates of change) in their natural history, suggesting that these sites were involved in an adaptive change in natural polymerase evolution. Also remarkably, the polymerases evolved to be less able to incorporate dPTP opposite Z in the template, something that was not selected. In addition to being useful in certain assay architectures, this result underscores the general rule in directed evolution that "you get what you select for".

  6. Characterization, HPLC method development and impurity identification for 3,4,3-LI(1,2-HOPO), a potent actinide chelator for radionuclide decorporation.

    PubMed

    Liu, Mingtao; Wang, Jennie; Wu, Xiaogang; Wang, Euphemia; Abergel, Rebecca J; Shuh, David K; Raymond, Kenneth N; Liu, Paul

    2015-01-01

    3,4,3-LI(1,2-HOPO), 1,5,10,14-tetra(1-hydroxy-2-pyridon-6-oyl)-1,5,10,14-tetraazatetradecane), is a potent octadentate chelator of actinides. It is being developed as a decorporation treatment for internal contamination with radionuclides. Conventional HPLC methods exhibited speciation peaks and bridging, likely attributable to the agent's complexation with residual metallic ions in the HPLC system. Derivatization of the target ligand in situ with Fe(III) chloride, however, provided a single homogeneous iron-complex that can readily be detected and analyzed by HPLC. The HPLC method used an Agilent Eclipse XDB-C18 column (150 mm × 4.6mm, 5 μm) at 25°C with UV detection at 280 nm. A gradient elution, with acetonitrile (11% to 100%)/buffer mobile phase, was developed for impurity profiling. The buffer consisted of 0.02% formic acid and 10mM ammonium formate at pH 4.6. An Agilent 1200 LC-6530 Q-TOF/MS system was employed to characterize the [Fe(III)-3,4,3-LI(1,2-HOPO)] derivative and impurities. The proposed HPLC method was validated for specificity, linearity (concentration range 0.13-0.35 mg/mL, r = 0.9999), accuracy (recovery 98.3-103.3%), precision (RSD ≤ 1.6%) and sensitivity (LOD 0.08 μg/mL). The LC/HRMS revealed that the derivative was a complex consisting of one 3,4,3-LI(1,2-HOPO) molecule, one hydroxide ligand, and two iron atoms. Impurities were also identified with LC/HRMS. The validated HPLC method was used in shelf-life evaluation studies which showed that the API remained unchanged for one year at 25°C/60% RH.

  7. Identification and characterization of conservative organic tracers for use as hydrologic tracers for the Yucca Mountain site characterization study. Final report

    SciTech Connect

    Stetzenbach, K.; Farnham, I.

    1996-06-01

    Extensive tracer testing is expected to take place at the C-well complex in the Nevada Test Site as part of the Yucca Mountain Site Characterization Project. The C-well complex consists of one pumping well, C3, and two injection wells, C1 and C2 into which tracer will be introduced. The goal of this research was to provide USGS with numerous tracers to completed these tests. Several classes of fluorinated organic acids have been evaluated. These include numerous isomers of fluorinated benzoic acids, cinnamic acids, and salicylic acids. Also several derivatives of 2-hydroxy nicotinic acid (pyridone) have been tested. The stability of these compounds was determined using batch and column tests. Ames testing (mutagenicity/carcinogenicity) was conducted on the fluorinated benzoic acids and a literature review of toxicity of the fluorobenzoates and three perfluoro aliphatic acids was prepared. Solubilities were measured and method development work was performed to optimize the detection of these compounds. A Quality Assurance (QA) Program was developed under existing DOE and USGS guidelines. The program includes QA procedures and technical standard operating procedures. A tracer test, using sodium iodide, was performed at the C-well complex. HRC chemists performed analyses on site, to provide real time data for the USGS hydrologists and in the laboratories at UNLV. Over 2,500 analyses were performed. This report provides the results of the laboratory experiments and literature reviews used to evaluate the potential tracers and reports on the results of the iodide C-well tracer test.

  8. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer.

    PubMed

    Esboui, Mounir

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH3)2 complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH3)2 cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″((1)πσ*) and A'((1)nσ*) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A'((1)ππ*) and A″((1)nπ*) potential energy surfaces. For the unconstrained complex, potential energy profiles show two (1)ππ*-(1)πσ* conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  9. Stepwise vs concerted excited state tautomerization of 2-hydroxypyridine: Ammonia dimer wire mediated hydrogen/proton transfer

    SciTech Connect

    Esboui, Mounir

    2015-07-21

    The stepwise and concerted excited state intermolecular proton transfer (PT) and hydrogen transfer (HT) reactions in 2-hydroxypyridine-(NH{sub 3}){sub 2} complex in the gas phase under Cs symmetry constraint and without any symmetry constraints were performed using quantum chemical calculations. It shows that upon excitation, the hydrogen bonded in 2HP-(NH{sub 3}){sub 2} cluster facilitates the releasing of both hydrogen and proton transfer reactions along ammonia wire leading to the formation of the 2-pyridone tautomer. For the stepwise mechanism, it has been found that the proton and the hydrogen may transfer consecutively. These processes are distinguished from each other through charge translocation analysis and the coupling between the motion of the proton and the electron density distribution along ammonia wire. For the complex under Cs symmetry, the excited state HT occurs on the A″({sup 1}πσ{sup ∗}) and A′({sup 1}nσ{sup ∗}) states over two accessible energy barriers along reaction coordinates, and excited state PT proceeds mainly through the A′({sup 1}ππ{sup ∗}) and A″({sup 1}nπ{sup ∗}) potential energy surfaces. For the unconstrained complex, potential energy profiles show two {sup 1}ππ{sup ∗}-{sup 1}πσ{sup ∗} conical intersections along enol → keto reaction path indicating that proton and H atom are localized, respectively, on the first and second ammonia of the wire. Moreover, the concerted excited state PT is competitive to take place with the stepwise process, because it proceeds over low barriers of 0.14 eV and 0.11 eV with respect to the Franck-Condon excitation of enol tautomer, respectively, under Cs symmetry and without any symmetry constraints. These barriers can be probably overcome through tunneling effect.

  10. Crystal Structures of Non-Natural Nucleobase Pairs in A- and B-DNA†

    PubMed Central

    Georgiadis, Millie M.; Singh, Isha; Kellett, Whitney F.; Hoshika, Shuichi; Benner, Steven A.; Richards, Nigel G. J.

    2015-01-01

    The extent to which synthetic biology can be used to expand genetic information systems compatible with natural enzymes and cells will depend on the extent to which multiple and contiguous non-natural nucleobase pairs fit within the standard double helical conformations of DNA. Toward this goal, two non-standard nucleobases (Z, 6-amino-5-nitro-2(1H)-pyridone and P, 2-amino-imidazo[1,2-a]-1,3,5-triazin-4(8H)one) were designed to form a Z:P pair with a standard “edge on” Watson-Crick geometry, but with rearranged hydrogen bond donor and acceptor groups. Here, we present the crystal structures of two self-complementary 16-mer oligonucleotides containing Z:P pairs. The first contained two consecutive Z:P nucleobase pairs and was found to crystallize within a host-guest complex in B-form. The second contained six consecutive Z:P pairs; it was found to crystallize as an A-form DNA duplex, although it can adopt B-form in solution as inferred from circular dichroism spectra. Although Z:P pairs have some structural properties that are similar to those of G:C pairs, unique features include stacking of the nitro group on Z with the adjacent heterocyclic nucleobase ring in A-DNA. In both B-and A-DNA, major groove widths associated with the Z:P pairs are approximately 1 Å wider than those of comparable G:C pairs potentially due to the presence of the nitro group in Z. Thus, our structural studies suggest that multiple and consecutive Z:P pairs are readily accommodated in DNA duplex structures recognized by natural polymerases, and therefore the GACTZP synthetic genetic system has the requisite properties to expand sequence space. PMID:25961938

  11. Productive performance and urinary excretion of mimosine metabolites by hair sheep grazing in a silvopastoral system with high densities of Leucaena leucocephala.

    PubMed

    Barros-Rodríguez, Marcos; Solorio-Sánchez, Javier; Ku-Vera, Juan; Ayala-Burgos, Armín; Sandoval-Castro, Carlos; Solís-Pérez, Georgina

    2012-12-01

    The aim of this study was to evaluate daily weight gain (DWG), total dry matter (DM) intake, rumen degradability of forage, and urinary excretion of mimosine metabolites by hair sheep in a silvopastoral system with high densities of Leucaena leucocephala. A completely randomized design was carried out with two treatments: treatment 1 (T1) silvopastoral system with leucaena at a density of 35,000 plants/ha and treatment 2 (T2), leucaena at a density of 55,000 plants/ha. Leucaena was associated with tropical grasses Panicum maximum and Cynodon nlemfluensis. Twenty-four male Pelibuey lambs of 23.2 ± 3.4 kg live weight (LW) were used (12 lambs per treatment). Results showed differences (P < 0.05) in DWG of T1 (106.41 ± 11.66 g(-1) sheep(-1)) with respect to that of T2 (81.33 ± 11.81 g(-1) sheep). Voluntary intake was higher in lambs from T1 (83.81 ± 04.07 g DM/kg LW(0.75)) with respect to that from T2 (71.67 ± 8.12 g DM/kg LW(0.75)). There was a difference in color of urine between sheep of T1 and T2, the latter giving positive results for the presence of metabolites derived from mimosine (3-4 dihydroxypyridine and 2-3 dihydroxy pyridone). Rumen degradability of DM of L. leucocephala was higher (P < 0.05) compared to that of P. maximum and C. nlemfluensis (72.94 ± 0.40 vs. 67.06 ± 1.50 and 63.25 ± 1.51 %, respectively). It is concluded that grazing at high densities of L. leucocephala affects daily weight gain of hair sheep, possibly due to ingestion of high amounts of mimosine which may exert an adverse effect on voluntary intake.

  12. HARNESSING THE CHEMISTRY OF CO2

    SciTech Connect

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  13. Synthesis, characterization and biological evaluation of (99m)Tc/Re-tricarbonyl quinolone complexes.

    PubMed

    Kydonaki, Theocharis E; Tsoukas, Evangelos; Mendes, Filipa; Hatzidimitriou, Antonios G; Paulo, António; Papadopoulou, Lefkothea C; Papagiannopoulou, Dionysia; Psomas, George

    2016-07-01

    New rhenium(I) tricarbonyl complexes with the quinolone antimicrobial agents oxolinic acid (Hoxo) and enrofloxacin (Herx) and containing methanol, triphenylphosphine (PPh3) or imidazole (im) as unidentate co-ligands, were synthesized and characterized. The crystal structure of complex [Re(CO)3(oxo)(PPh3)]∙0.5MeOH was determined by X-ray crystallography. The deprotonated quinolone ligands are bound bidentately to rhenium(I) ion through the pyridone oxygen and a carboxylate oxygen. The binding of the rhenium complexes to calf-thymus DNA (CT DNA) was monitored by UV spectroscopy, viscosity measurements and competitive studies with ethidium bromide; intercalation was suggested as the most possible mode and the DNA-binding constants of the complexes were calculated. The rhenium complex [Re(CO)3(erx)(im)] was assayed for its topoisomerase IIα inhibition activity and was found to be active at 100μM concentration. The interaction of the rhenium complexes with human or bovine serum albumin was investigated by fluorescence emission spectroscopy (through the tryptophan quenching) and the corresponding binding constants were determined. The tracer complex [(99m)Tc(CO)3(erx)(im)] was synthesized and identified by comparative HPLC analysis with the rhenium analog. The (99m)Tc complex was found to be stable in solution. Upon injection in healthy mice, fast tissue clearance of the (99m)Tc complex was observed, while both renal and hepatobiliary excretion took place. Preliminary studies in human K-562 erythroleukemia cells showed cellular uptake of the (99m)Tc tracer with distribution primarily in the cytoplasm and the mitochondria and less in the nucleus. These preliminary results indicate that the quinolone (99m)Tc/Re complexes show promise to be further evaluated as imaging or therapeutic agents. PMID:26795497

  14. A pharmacological, crystallographic, and quantum chemical study of new inotropic agents.

    PubMed

    Dorigo, P; Gaion, R M; Belluco, P; Fraccarollo, D; Maragno, I; Bombieri, G; Benetollo, F; Mosti, L; Orsini, F

    1993-08-20

    The cardiac activity of a series of milrinone analogues, 2-substituted 3-acyl-1,6-dihydro-6-oxo-5-pyridinecarbonitriles, 1,6,3,2,11,12-hexahydro-6,3-dioxo-5-quinolinecarbonitriles, the correlated carboxylic acids, 2-substituted 3-acyl-6(1H)-pyridones, and 7,8-dihydro-2,5(1H,6H)-quinolinediones, was evaluated in spontaneously beating and in electrically driven atria from reserpine-treated guinea pigs. Their effects were compared with those induced by amrinone and milrinone in both the atria preparations. Compounds SF28 (3-acetyl-1,6-dihydro-2-methyl-6-oxo-5-pyridinecarbonitrile) and SF40 (7,8-dihydro-7-methyl-2,5(1H,6H)-quinolinedione) were the most effective positive inotropic agents. An inhibition of the negative influence exerted by endogenous adenosine on heart preparations seems to be involved in their contractile activity. SF38 (3-benzoyl-2-phenyl-6(1H)-pyridinone), on the contrary, reduced the contractile force and the frequency rate of guinea pig atria with a mechanism not related to an activation of cholinergic or purinergic inhibitory receptors on the heart. X-ray analysis carried out on the three model compounds, SF28, SF40 (positive inotropic agents), and SF38 (negative inotropic agent), and molecular modeling evidenced that the change from phenyl (SF38) to methyl (SF28) or the introduction of a side cyclic aliphatic chain (SF40) results in a variation of conformational preference and topography which may address the different molecules toward distinct receptor pockets according to the resulting inotropic effect.

  15. Micro- and nano-environments of C sequestration in soil: a multi-elemental STXM-NEXAFS assessment of black C and organomineral associations.

    PubMed

    Solomon, Dawit; Lehmann, Johannes; Wang, Jian; Kinyangi, James; Heymann, Karen; Lu, Yingshen; Wirick, Sue; Jacobsen, Chris

    2012-11-01

    Black C is an essential component of the terrestrial C pool and its formation is often credited as a CO(2) sink by transferring the fast-cycling C from the atmosphere-biosphere system into slower cycling C in the geosphere. This study is the first multi-element K- (C, N, Ca, Fe, Al and Si) soft-X-ray STXM-NEXAFS investigation conducted at a submicron-scale spatial resolution specifically targeting black C and its interaction with the mineral and non-black C organic matter in the organomineral assemblage. The STXM-NEXAFS micrographs and spectra demonstrated that pyrogenic C was dominated by quinoide, aromatic, phenol, ketone, alcohol, carboxylic and hydroxylated- and ether-linked C species. There was also evidence for the presence of pyridinic, pyridonic, pyrrolic, amine and nitril N functionalities. The non-black C organic matter contained amino acids, amino sugars, nucleic acids and polysaccharides known to exhibit negatively charged carboxylic, phenolic, enolic, thiolate and phosphate functionalities highly reactive towards metal ions and black C. The metal-rich mineral matrix was composed of phyllosilicate clay minerals, Fe and Al hydroxypolycations, oxides, hydroxides and oxyhydroxide that can attract and bind organic biopolymers. STXM-NEXAFS provided evidence for interactive association between pyrogenic C, non-black C organic matter and the mineral oxide and oxyhydroxide communities in the organomineral interface. These intimate associations occurred through a "two-way" direct linkage between black C and the mineral or non-black C organic matter or via a "three-way" indirect association where non-black C organic matter could serve as a molecular cross-linking agent binding black C with the mineral matrix or vice versa where inorganic oxides, hydroxides and polycations could act as a bridge to bind black C with non-black C organic matter. The binding and sequestration of black C in the investigated micro- and nano-C repository environments seem to be the

  16. High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines.

    PubMed

    Johnston, Paul A; Sen, Malabika; Hua, Yun; Camarco, Daniel; Shun, Tong Ying; Lazo, John S; Grandis, Jennifer R

    2014-01-01

    The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19 ± 4.08 and 16.38 ± 8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H1 receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical biology

  17. [Pellagra].

    PubMed

    Pitche, Palokinam T

    2005-01-01

    Pellagra is a systemic disturbance caused by a cellular deficiency of niacin, resulting from inadequate dietary nicotinic acid and/or its precursors, the essential amino-acid tryptophan. In Europe and North America cases of pellagra are rarely encountered, but in some developing countries this disease is frequent, and is the most frequent clinical feature of nutritional deficiency of adult. The principal causes of pellagra are: nutritional niacin deficiency; chronic alcoholism; gastro-intestinal malabsorption; some medications (5-fluoro-uracil, isoniazid, pyrazinamide ehtionamide, 6-mercaptopurine, hydantoins, phenobarbital and chloramphenicol). The diagnosis of pellagra is based on the patient's history and the presence of "3 D syndrome": dermatitis, diarrhea, and dementia. The dermatitis caused by pellagra is a bilaterally symmetrical erythema at the sites of solar exposure. The dermatitis begins in the form of an erythema with acute or intermittent onset gradually changing to an exsudative eruption on the dorsa of the hand, face, neck, and chest with pruritus and burning. Acute dermatitis of pellagra resembles sunburn in the first stages, sometimes with vesicles and bullae. The gastro-intestinal disturbances are: anorexia, nausea, epigastric discomfort and chronic or recurrent diarrhea. Anorexia and malabsorbative diarrhea lead to a state of malnutrition and cachexia. Stools are typically watery, but occasionally can be bloody and mucoid. Neuropsychologic manifestation included photophobia, asthenia, depression, hallucinations, confusions, memory loss and psychosis. As pellagra advances, patient become disoriented, confused and delirious; then stuporous and finally die. Pathological changes in the skin is non-specific, there are no chemical tests available to definitively diagnose pellagra. However low levels of urinary excretion of N-methylnicotinamide and pyridone indicates niacin deficiency. The treatment of pellagra consisted to exogenous administration of

  18. Spectroscopic studies, thermal analyses and biological evaluation of new V(IV), Zr(IV) and U(VI) moxifloxacin complexes

    NASA Astrophysics Data System (ADS)

    Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; Kotb, Essam

    2011-12-01

    The synthesis and characterization of the new solid complexes [VO(MOX) 2H 2O]SO 4·11H 2O, [ZrO(MOX) 2Cl]Cl·15H 2O and [UO 2(MOX) 3](NO 3) 2·3H 2O formed in the interaction of moxifloxacin (MOX) with VOSO 4·H 2O, ZrOCl 2·8H 2O and UO 2(NO 3) 2·6H 2O in methanol and acetone as a solvents at room temperature were reported. The isolated solid complexes have been characterized with melting points, elemental analysis, molar conductance, magnetic moments studies, spectral (UV-Visible, IR and 1HNMR) as well as thermal analyses (TGA and DTG). The results support the formation of the complexes and indicate that moxifloxacin reacts as a bidentate ligand chelate to the metal ion through the pyridone oxygen and one carboxylato oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as activation energies, E*, enthalpies, Δ H*, entropies, Δ S* and Gibbs free energies, Δ G*, have been evaluated by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The proposed structure of the ligand and their complexes were detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The bond stretching force constant and length of the U dbnd O for the [UO 2(MOX) 3](NO 3) 2·3H 2O complex were calculated. The antibacterial activity of the free moxifloxacin ligand and their metal complexes have been tested against some selected bacterial strains such as: Streptococcus aureus K1, Bacillus subtilis K22, Brevibacterium otitidis K76, Escherichia coli K32, Pseudomonas aeruginosa SW1 and Klebsiella oxytoca K42. The complexes showed good antibacterial effect to the selected bacterial strains as compared to the free ligand and Zr(IV) complex is very highly significant compared with the other two complexes.

  19. Effect of graded levels of niacin supplementation of a semipurified diet on energy and nitrogen balance, growth performance, diarrhea occurrence, and niacin metabolite excretion by growing swine.

    PubMed

    Ivers, D J; Veum, T L

    2012-01-01

    Thirty-six crossbred barrows with an average initial age of 42 d and BW of 13.8 kg were placed in individual metabolism crates in a 35-d experiment to evaluate the supplementation of a semipurified diet with graded levels of crystalline niacin. Response criteria were energy and N balance, growth performance, occurrence of niacin deficiency diarrhea, and urinary excretion of the niacin metabolite N(1)-methyl-2-pyridone-5-carboxylamide (PYR). The basal diet met the true ileal Trp requirement of growing swine, and supplementation with 6, 10, 14, 18, 22, or 44 mg of niacin/kg made 6 treatments. Pigs were observed for scours twice daily, and pig BW and feed consumption were determined weekly. Total urine collections and fecal grab samples were made twice daily from each pig from d 28 to 35. Pigs fed the diet containing 14 mg of niacin/kg absorbed and retained more (P < 0.05) grams of N/d, had a greater N digestibility (%, P < 0.05), a greater ADFI and ADG (P < 0.10), and no diarrhea (P < 0.05) compared with pigs fed the diet containing 6 mg of niacin/kg, and pigs fed the diet containing 10 mg of niacin/kg were intermediate in ADG. There were no additional improvements in the response criteria with niacin supplementation greater than 14 mg/kg. Urinary PYR criteria (mg/L and mg/d) were greater (P < 0.001) for pigs fed the diet containing 44 mg of niacin/kg than for pigs fed the diets containing 6 to 22 mg of niacin/kg. However, urinary PYR criteria for pigs fed the diets containing 6 to 22 mg of niacin/kg did not differ from each other, indicating that PYR was not a sensitive indicator of niacin status for growing swine. Niacin treatment did not affect the percentages of N retained/N absorbed, N retained/N intake, DE, or ME. In conclusion, 14 mg of crystalline niacin/kg of semipurified diet adequate in Trp was the minimum concentration of niacin that maximized N utilization and growth performance, and prevented niacin deficiency diarrhea of growing swine in the current

  20. [Therapeutic studies on chronic prostatitis--use of AT-2266--Sapporo Clinical Research Group for STD].

    PubMed

    Kumamoto, Y; Sakai, S; Tamate, H; Gohro, T; Inoke, T; Tabata, S; Tanda, H; Kato, S; Saka, T; Henmi, I

    1986-08-01

    AT-2266 is a new antibiotic of the pyridone carboxylic acid class which possesses a broad, low-MIC antibacterial spectrum. Therapeutic studies were carried out on the use of this drug in the treatment of chronic prostatitis, and at the same time a pathological analysis was performed on chronic prostatitis. The subjects were 97 chronic prostatitis patients for whom the prostate fluid had been confirmed to contain at least 30 leukocytes per 400-power magnification field. An analysis of the background factors revealed that 71% of these patients had a past history of gonorrheal or non-gonorrheal urethritis. Culture of the prostate fluid yielded gram-positive cocci (S. epidermidis in most cases) in 44.1% of the patients. E. coli was detected in 3.2% of the patients, while the remaining cases gave negative cultures. In 53.9% of the patients who had not been receiving therapy prior to inclusion in this study, the subjective symptoms consisted of urethral irritation or irritation upon urination. In the other patients, the relationship of the complaints to the disease could not be clearly established. In the patients who had been receiving therapy, the majority did not complain of subjective symptoms. AT-2266 was administered in a daily dosage of 600 mg (in 3 divided doses) for 14 days. The therapeutic efficacy was evaluated. At the end of 7 days of AT-2266 therapy, 15.5% of the previously-untreated group and 8% of the previously-treated group were "excellent" cases, and the efficacy rate was 32.8% and 36%, respectively, when the "good" cases were also included. At the end of the full 14 days of therapy, the corresponding efficacy rates were 21.7% and 17.4%, and 54.3% and 56.5%. Considerable improvement was achieved in the subjective symptoms of urethral irritation and irritation upon urination at the end of 7 days of therapy, and the improvement was even greater following the next 7 days of treatment. With regard to the complaints for which the relationship to the disease

  1. Micro- and nano-environments of C sequestration in soil: a multi-elemental STXM-NEXAFS assessment of black C and organomineral associations.

    PubMed

    Solomon, Dawit; Lehmann, Johannes; Wang, Jian; Kinyangi, James; Heymann, Karen; Lu, Yingshen; Wirick, Sue; Jacobsen, Chris

    2012-11-01

    Black C is an essential component of the terrestrial C pool and its formation is often credited as a CO(2) sink by transferring the fast-cycling C from the atmosphere-biosphere system into slower cycling C in the geosphere. This study is the first multi-element K- (C, N, Ca, Fe, Al and Si) soft-X-ray STXM-NEXAFS investigation conducted at a submicron-scale spatial resolution specifically targeting black C and its interaction with the mineral and non-black C organic matter in the organomineral assemblage. The STXM-NEXAFS micrographs and spectra demonstrated that pyrogenic C was dominated by quinoide, aromatic, phenol, ketone, alcohol, carboxylic and hydroxylated- and ether-linked C species. There was also evidence for the presence of pyridinic, pyridonic, pyrrolic, amine and nitril N functionalities. The non-black C organic matter contained amino acids, amino sugars, nucleic acids and polysaccharides known to exhibit negatively charged carboxylic, phenolic, enolic, thiolate and phosphate functionalities highly reactive towards metal ions and black C. The metal-rich mineral matrix was composed of phyllosilicate clay minerals, Fe and Al hydroxypolycations, oxides, hydroxides and oxyhydroxide that can attract and bind organic biopolymers. STXM-NEXAFS provided evidence for interactive association between pyrogenic C, non-black C organic matter and the mineral oxide and oxyhydroxide communities in the organomineral interface. These intimate associations occurred through a "two-way" direct linkage between black C and the mineral or non-black C organic matter or via a "three-way" indirect association where non-black C organic matter could serve as a molecular cross-linking agent binding black C with the mineral matrix or vice versa where inorganic oxides, hydroxides and polycations could act as a bridge to bind black C with non-black C organic matter. The binding and sequestration of black C in the investigated micro- and nano-C repository environments seem to be the

  2. High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines.

    PubMed

    Johnston, Paul A; Sen, Malabika; Hua, Yun; Camarco, Daniel; Shun, Tong Ying; Lazo, John S; Grandis, Jennifer R

    2014-01-01

    The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19 ± 4.08 and 16.38 ± 8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H1 receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical biology

  3. Vibrational quenching of excitonic splittings in H-bonded molecular dimers: The electronic Davydov splittings cannot match experiment

    NASA Astrophysics Data System (ADS)

    Ottiger, Philipp; Leutwyler, Samuel; Köppel, Horst

    2012-05-01

    The S1/S2 state exciton splittings of symmetric doubly hydrogen-bonded gas-phase dimers provide spectroscopic benchmarks for the excited-state electronic couplings between UV chromophores. These have important implications for electronic energy transfer in multichromophoric systems ranging from photosynthetic light-harvesting antennae to photosynthetic reaction centers, conjugated polymers, molecular crystals, and nucleic acids. We provide laser spectroscopic data on the S1/S2 excitonic splitting Δexp of the doubly H-bonded o-cyanophenol (oCP) dimer and compare to the splittings of the dimers of (2-aminopyridine)2, [(2AP)2], (2-pyridone)2, [(2PY)2], (benzoic acid)2, [(BZA)2], and (benzonitrile)2, [(BN)2]. The experimental S1/S2 excitonic splittings are Δexp = 16.4 cm-1 for (oCP)2, 11.5 cm-1 for (2AP)2, 43.5 cm-1 for (2PY)2, and <1 cm-1 for (BZA)2. In contrast, the vertical S1/S2 energy gaps Δcalc calculated by the approximate second-order coupled cluster (CC2) method for the same dimers are 10-40 times larger than the Δexp values. The qualitative failure of this and other ab initio methods to reproduce the exciton splitting Δexp arises from the Born-Oppenheimer (BO) approximation, which implicitly assumes the strong-coupling case and cannot be employed to evaluate excitonic splittings of systems that are in the weak-coupling limit. Given typical H-bond distances and oscillator strengths, the majority of H-bonded dimers lie in the weak-coupling limit. In this case, the monomer electronic-vibrational coupling upon electronic excitation must be accounted for; the excitonic splittings arise between the vibronic (and not the electronic) transitions. The discrepancy between the BO-based splittings Δcalc and the much smaller experimental Δexp values is resolved by taking into account the quenching of the BO splitting by the intramolecular vibronic coupling in the monomer S1 ← S0 excitation. The vibrational quenching factors Γ for the five dimers (oCP)2, (2AP)2

  4. The role of the JAK2-STAT3 pathway in pro-inflammatory responses of EMF-stimulated N9 microglial cells

    PubMed Central

    2010-01-01

    Background In several neuropathological conditions, microglia can become overactivated and cause neurotoxicity by initiating neuronal damage in response to pro-inflammatory stimuli. Our previous studies have shown that exposure to electromagnetic fields (EMF) activates cultured microglia to produce tumor necrosis factor (TNF)-α and nitric oxide (NO) through signal transduction involving the activator of transcription STAT3. Here, we investigated the role of STAT3 signaling in EMF-induced microglial activation and pro-inflammatory responses in more detail than the previous study. Methods N9 microglial cells were treated with EMF exposure or a sham treatment, with or without pretreatment with an inhibitor (Pyridone 6, P6) of the Janus family of tyrosine kinases (JAK). The activation state of microglia was assessed via immunoreaction using the microglial marker CD11b. Levels of inducible nitric oxide synthase (iNOS), TNF-α and NO were measured using real-time reverse transcription-polymerase chain reaction (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and the nitrate reductase method. Activation of JAKs and STAT3 proteins was evaluated by western blotting for specific tyrosine phosphorylation. The ability of STAT3 to bind to DNA was detected with an electrophoresis mobility shift assay (EMSA). Results EMF was found to significantly induce phosphorylation of JAK2 and STAT3, and DNA-binding ability of STAT3 in N9 microglia. In addition, EMF dramatically increased the expression of CD11b, TNF-α and iNOS, and the production of NO. P6 strongly suppressed the phosphorylation of JAK2 and STAT3 and diminished STAT3 activity in EMF-stimulated microglia. Interestingly, expression of CD11b as well as gene expression and production of TNF-α and iNOS were suppressed by P6 at 12 h, but not at 3 h, after EMF exposure. Conclusions EMF exposure directly triggers initial activation of microglia and produces a significant pro-inflammatory response. Our findings confirm that

  5. Analysis of Conservative Tracer Tests in the Bullfrog, Tram, and Prow Pass Tuffs, 1996 to 1998, Yucca Mountain, Nye County, Nevada

    USGS Publications Warehouse

    Umari, Amjad; Fahy, Michael F.; Earle, John D.; Tucci, Patrick

    2008-01-01

    To evaluate the potential for transport of radionuclides in ground water from the proposed high-level nuclear-waste repository at Yucca Mountain, Nevada, conservative (nonsorbing) tracer tests were conducted among three boreholes, known as the C-hole Complex, and values for transport (or flow) porosity, storage (or matrix) porosity, longitudinal dispersivity, and the extent of matrix diffusion were obtained. The C-holes are completed in a sequence of Miocene tuffaceous rock, consisting of nonwelded to densely welded ash-flow tuff with intervals of ash-fall tuff and volcaniclastic rocks, covered by Quaternary alluvium. The lower part of the tuffaceous-rock sequence includes the Prow Pass, Bullfrog, and Tram Tuffs of the Crater Flat Group. The rocks are pervaded by tectonic and cooling fractures. Paleozoic limestone and dolomite underlie the tuffaceous rocks. Four radially convergent and one partially recirculating conservative (nonsorbing) tracer tests were conducted at the C-hole Complex from 1996 to 1998 to establish values for flow porosity, storage porosity, longitudinal dispersivity, and extent of matrix diffusion in the Bullfrog and Tram Tuffs and the Prow Pass Tuff. Tracer tests included (1) injection of iodide into the combined Bullfrog-Tram interval; (2) injection of 2,6 difluorobenzoic acid into the Lower Bullfrog interval; (3) injection of 3-carbamoyl-2-pyridone into the Lower Bullfrog interval; and (4) injection of iodide and 2,4,5 trifluorobenzoic acid, followed by 2,3,4,5 tetrafluorobenzoic acid, into the Prow Pass Tuff. All tracer tests were analyzed by the Moench single- and dual-porosity analytical solutions to the advection-dispersion equation or by superposition of these solutions. Nonlinear regression techniques were used to corroborate tracer solution results, to obtain optimal parameter values from the solutions, and to quantify parameter uncertainty resulting from analyzing two of the three radially convergent conservative tracer tests

  6. Structure-Activity Relationships of the Human Immunodeficiency Virus Type 1 Maturation Inhibitor PF-46396

    PubMed Central

    Murgatroyd, Christopher; Pirrie, Lisa; Tran, Fanny; Smith, Terry K.

    2016-01-01

    ABSTRACT HIV-1 maturation inhibitors are a novel class of antiretroviral compounds that consist of two structurally distinct chemical classes: betulinic acid derivatives and the pyridone-based compound PF-46396. It is currently believed that both classes act by similar modes of action to generate aberrant noninfectious particles via inhibition of CA-SP1 cleavage during Gag proteolytic processing. In this study, we utilized a series of novel analogues with decreasing similarity to PF-46396 to determine the chemical groups within PF-46396 that contribute to antiviral activity, Gag binding, and the relationship between these essential properties. A spectrum of antiviral activity (active, intermediate, and inactive) was observed across the analogue series with respect to CA-SP1 cleavage and HIV-1 (NL4-3) replication kinetics in Jurkat T cells. We demonstrate that selected inactive analogues are incorporated into wild-type (WT) immature particles and that one inactive analogue is capable of interfering with PF-46396 inhibition of CA-SP1 cleavage. Mutations that confer PF-46396 resistance can impose a defective phenotype on HIV-1 that can be rescued in a compound-dependent manner. Some inactive analogues retained the capacity to rescue PF-46396-dependent mutants (SP1-A3V, SP1-A3T, and CA-P157S), implying that they can also interact with mutant Gag. The structure-activity relationships observed in this study demonstrate that (i) the tert-butyl group is essential for antiviral activity but is not an absolute requirement for Gag binding, (ii) the trifluoromethyl group is optimal but not essential for antiviral activity, and (iii) the 2-aminoindan group is important for antiviral activity and Gag binding but is not essential, as its replacement is tolerated. IMPORTANCE Combinations of antiretroviral drugs successfully treat HIV/AIDS patients; however, drug resistance problems make the development of new mechanistic drug classes an ongoing priority. HIV-1 maturation

  7. Final report of the safety assessment of niacinamide and niacin.

    PubMed

    2005-01-01

    Niacinamide (aka nicotinamide) and Niacin (aka nicotinic acid) are heterocyclic aromatic compounds which function in cosmetics primarily as hair and skin conditioning agents. Niacinamide is used in around 30 cosmetic formulations including shampoos, hair tonics, skin moisturizers, and cleansing formulations. Niacin is used in a few similar product types. The concentration of use of Niacinamide varies from a low of 0.0001% in night preparations to a high of 3% in body and hand creams, lotions, powders and sprays. Niacin concentrations of use range from 0.01% in body and hand creams, lotions, powders and sprays to 0.1% in paste masks (mud packs). Both ingredients are accepted for use in cosmetics in Japan and the European Union. Both are GRAS direct food additives and nutrient and/or dietary supplements. Niacinamide may be used in clinical treatment of hypercholesteremia and Niacin in prevention of pellegra and treatment of certain psychological disorders. Both ingredients are readily absorbed from skin, blood, and the intestines and widely distribute throughout the body. Metabolites include N1-methylnicotinamide and N1-methyl-4-pyridone-3-carboxamide. Excretion is primarily through the urinary tract. While Niacinamide is more toxic than Niacin in acute toxicity studies, both are relatively non-toxic. Short-term oral, parenteral, or dermal toxicity studies did not identify significant irreversible effects. Niacinamide, evaluated in an in vitro test to predict ocular irritation, was not an acute ocular hazard. Animal testing of Niacinamide in rabbits in actual formulations produced mostly non-irritant reactions, with only some marginally irritating responses. Skin irritation tests of up to 2.5% Niacinamide in rabbits produced only marginal irritation. Skin sensitization tests of Niacinamide at 5% during induction and 20% during challenge were negative in guinea pigs. Neither cosmetic ingredient was mutagenic in Ames tests, with or without metabolic activation