Sample records for pyrocatechin

  1. [The effect of phenols on the parameters of chlorophyll fluorescence and reaction of P700 in the green algae Scenedesmus quadricauda].


    Matorin, D N; Plekhanov, S E; Bratkovskaia, L B; Iakovleva, O V; Alekseev, A A


    The effect of phenols, present in drains of the tsellyulozo-paper industry, on photosynthesis of the microalgae Scenedesmus quadricauda has been studied. The analysis of induction curves of the slowed-down fluorescence and light curves of non-photochemical quenching of chlorophyll fluorescence of microalgae Scenedesmus quadricauda is carried out. It was observed that energization of photosynthetic membranes was inhibited at low concentration of phenol and pyrocatechin (0.1 mM). At higher concentrations phenol and pyrocatechin inhibited electron transport in FSII and increased a share of QB not restoring centers. As a result of it the rate of P700 pigment regeneration slowed down. The results obtained indicate that parameters of induction curves of the fast and slowed-down fluorescence can be used for detecting phenol and pyrocatechin in the environment at early stages of toxic effects.

  2. Complexation of Hg (II) ions with humic acids of tundra soils

    NASA Astrophysics Data System (ADS)

    Vasilevich, Roman


    Humic acids (HA) play an important role in processes of heavy metals migration, controlling their geochemical streams in environment. Accumulative and detoxification abilities of HA to heavy metals are realized by means of formation of steady complexes salycylate and pyrocatechin types. Modern researches show that HA of the Arctic and Subarctic areas are poorly enriched by aromatic frames, so and metalbinding centres. The work purpose is to study interaction mechanisms of Hg (II) ions with HA and to define tread possibilities of a tundra soils humic acids. It is established that binding ability of Hg (II) ions depends on concentration of an element, on quantity of functional groups in peripheral and nuclear parts of HA molecule as well as on a solution pH. coomplexation proceeds at pH 2.5-3.5 efficiently. On the basis of kinetic models it is shown that HA interaction with Hg (II) ions, at microconcentration of a pollutant (0.025-5.0 mkmol/dm3), has a zero order of reaction. Rate of a reaction does not depend on initial components concentration and is defined by process of Hg (II) ions diffusion to organic ligands. High correlation of a HA sorption capacity to Hg (II) ions is observed: with the nitrogen content and maintenance of amino groups (according to a 13C-NMR, element composition) and negative correlation - with degree of HA aromaticity. It testifies to primary binding of Hg (II) ions by amino-acid fragments of a HA molecule peripheral part. When concentration of Hg (II) ions increases, binding proceeds on carboxylic and phenolic groups of a molecule nuclear part. Higher order of kinetic models reaction and FTIR spectroscopy data testify to it. Comparison of FTIR spectra of HA preparations and mercury humates, shows that Hg (II) ions binding in humate complexes is carried out mainly by -COOH. Reduction of a spectral line intensity not ionized -COOH at 1700-1720 sm-1 and intensity increases of dissymetric valency vibration at 1610-1650 sm-1 diagnose increase