Sample records for pyroelectric infrared detectors

  1. Active Pyroelectric Infrared Detector

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Zalameda, Joseph N. (Inventor); Mina, Joseph M. (Inventor)

    1995-01-01

    A noncontact pyroelectric infrared detector is described. A pyroelectric film that also has piezoelectric properties is held in place so that it is free to vibrate. It is electrically stimulated to vibrate at a resonance frequency. The vibrating film forms part of a balanced bridge circuit. As thermal radiation impinges on the film the pyroelectric effect causes the resonance frequency to change, thereby unbalancing the bridge circuit. A differential amplifier tracks the change in voltage across the bridge. The resulting voltage signal is further processed by a bandpass filter and a precision rectifier. The device allows for DC or static temperature measurements without the use of a mechanical chopping device.

  2. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  3. Design of the flame detector based on pyroelectric infrared sensor

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Yu, Benhua; Dong, Lei; Li, Kai

    2017-10-01

    As a fire detection device, flame detector has the advantages of short reaction time and long distance. Based on pyroelectric infrared sensor working principle, the passive pyroelectric infrared alarm system is designed, which is mainly used for safety of tunnel to detect whether fire occurred or not. Modelling and Simulation of the pyroelectric Detector Using Labview. An attempt was made to obtain a simple test platform of a pyroelectric detector which would make an excellent basis for the analysis of its dynamic behaviour. After many experiments, This system has sensitive response, high anti-interference ability and safe and reliable performance.

  4. Polymer-Ceramic Composite Materials for Pyroelectric Infrared Detectors: An Overview

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D; Currie, J. R.; Penn, B. G.; Batra, A. K.; Lal, R. B.

    2007-01-01

    Ferroelectrics:Polymer composites can be considered an established substitute for conventional electroceramics and ferroelectric polymers. The composites have a unique blend of polymeric properties such as mechanical flexibility, high strength, formability, and low cost, with the high electro-active properties of ceramic materials. They have attracted considerable interest because of their potential use in pyroelectric infrared detecting devices and piezoelectric transducers. These flexible sensors and transducers may eventually be useful for their health monitoring applications for NASA crew launch vehicles and crew exploration vehicles being developed. In the light of many technologically important applications in this field, it is worthwhile to present an overview of the pyroelectric infrared detector theory, models to predict dielectric behavior and pyroelectric coefficient, and the concept of connectivity and fabrication techniques of biphasic composites. An elaborate review of Pyroelectric-Polymer composite materials investigated to date for their potential use in pyroelectric infrared detectors is presented.

  5. Effect of space exposure on pyroelectric infrared detectors

    NASA Technical Reports Server (NTRS)

    Robertson, James B.; Clark, Ivan O.

    1991-01-01

    Twenty pyroelectric type infrared detectors were flown onboard the Long Duration Exposure Facility (LDEF). The detector chips were of three different pyroelectric materials: lithium-tantalate, strontium-barium-niobate, and triglycine-sulfide. The experiment was passive; no measurements were taken during the flight. Performance of the detectors was measured before and after flight. Postflight measurements revealed that detectors made of lithium-tantalate and strontium-barium-niobate suffered no measureable loss in performance. Detectors made of triglycine-sulfide suffered complete loss of performance, but so did the control samples of the same material. Repoling of the triglycine-sulfide failed to revive the detectors.

  6. Pyroelectric Ceramics for Infrared Detection Applications

    NASA Technical Reports Server (NTRS)

    Guggilla, Padmaja; Batra, A. K.; Currie, J. R.; Aggarwal, M. D.; Penn, B.; Lal, R. B.

    2004-01-01

    Pyroelectric and dielectric properties of modified PZT and PZ have been studied for their use in infrared detectors. Various material figure-of-merits for their use in infrared detector are calculated including when the pyroelectric element is placed on heat-sink condition. The results are compared with exiting candidate materials.

  7. Modified lead titanate thin films for pyroelectric infrared detectors on gold electrodes

    NASA Astrophysics Data System (ADS)

    Ahmed, Moinuddin; Butler, Donald P.

    2015-07-01

    Pyroelectric infrared detectors provide the advantage of both a wide spectral response and dynamic range, which also has enabled systems to be developed with reduced size, weight and power consumption. This paper demonstrates the deposition of lead zirconium titanate (PZT) and lead calcium titanate (PCT) thin films for uncooled pyroelectric detectors with the utilization of gold electrodes. The modified lead titanate thin films were deposited by pulsed laser deposition on gold electrodes. The PZT and PCT thins films deposited and annealed at temperatures of 650 °C and 550 °C respectively demonstrated the best pyroelectric performance in this work. The thin films displayed a pyroelectric effect that increased with temperature. Poling of the thin films was carried out for a fixed time periods and fixed dc bias voltages at elevated temperature in order to increase the pyroelectric coefficient by establishing a spontaneous polarization of the thin films. Poling caused the pyroelectric current to increase one order of magnitude.

  8. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.

    PubMed

    Theocharous, E; Engtrakul, C; Dillon, A C; Lehman, J

    2008-08-01

    The performance of a 10 mm diameter pyroelectric detector coated with a single-wall carbon nanotube (SWCNT) was evaluated in the 0.8 to 20 microm wavelength range. The relative spectral responsivity of this detector exhibits significant fluctuations over the wavelength range examined. This is consistent with independent absorbance measurements, which show that SWCNTs exhibit selective absorption bands in the visible and near-infrared. The performance of the detector in terms of noise equivalent power and detectivity in wavelength regions of high coating absorptivity was comparable with gold-black-coated pyroelectric detectors based on 50 microm thick LiTaO(3) crystals. The response of this detector was shown to be nonlinear for DC equivalent photocurrents >10(-9) A, and its spatial uniformity of response was comparable with other pyroelectric detectors utilizing gold-black coatings. The nonuniform spectral responsivity exhibited by the SWCNT-coated detector is expected to severely restrict the use of SWCNTs as black coatings for thermal detectors. However, the deposition of SWCNT coatings on a pyroelectric crystal followed by the study of the prominence of the spectral features in the relative spectral responsivity of the resultant pyroelectric detectors is shown to provide an effective method for quantifying the impurity content in SWCNT samples.

  9. The pyroelectric properties of TGS for application in infrared detection

    NASA Technical Reports Server (NTRS)

    Kroes, R. L.; Reiss, D.

    1981-01-01

    The pyroelectric property of triglycine sulfate and its application in the detection of infrared radiation are described. The detectivities of pyroelectric detectors and other types of infrared detectors are compared. The thermal response of a pyroelectric detector element and the resulting electrical response are derived in terms of the material parameters. The noise sources which limit the sensitivity of pyroelectric detectors are described, and the noise equivalent power for each noise source is given as a function of frequency and detector area.

  10. Fast response pyroelectric detector-preamplifier assembled device

    NASA Astrophysics Data System (ADS)

    Bai, PiJi; Tai, Yunjian; Liu, Huiping

    2008-03-01

    The pyroelectric detector is wide used for its simple structure and high performance to price ratio. It has been used in thermal detecting, infrared spectrum and laser testing. When the pyroelectric detector was applied in practice, fast reponse speed is need. For improving the response speed of the pyroelectric detector some specific technology has been used in the preamplifier schematic. High sense and fast response character of the pyroelectric detector-preamplifier assembled device had been achieved. When the device is applied in acute concussion condition, it must survive from the acute concussion condition testing. For it reliability some specific technology was used in the device fabricating procedure. At last the performance parameter testing result and simulation application condition result given in this paper show the performance of the pyroelectric detector-preamplifier assembled device had achieved the advance goal.

  11. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. (Inventor)

    1982-01-01

    A pyroelectric detector array and the method for using it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strips. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  12. [Study on the application of pyroelectric infrared sensor to safety protection system].

    PubMed

    Wang, Song-de; Zhang, Shuan-ji; Zhu, Xiao-long; Yang, Jie-hui

    2006-11-01

    Using the infrared ray of human body, which is received and magnified by pyroelectric infrared sensor to form a certain voltage control signal, and using the control signal to trigger a voice recording-reproducing circuit, a pyroelectric infrared detector voice device with auto-control function designed. The circuit adopted new pyroelectric infrared detector assembly and voice recording-reproducing assembly. When someone is present in the detectable range of the pyroelectric infrared detector, first, the pyroelectric infrared sensor will transform the incepted radiation energy to a electric signal, which is then magnified and compared by an inside circuit, and an output control signal, touches off the voice recording-reproducing assembly with the reproducer sending out a beforehand transcribed caution voice to wise the man who does not know well the surrounding condition that the frontage is a danger zone and should not be approched. With the design of integrated structures, the distance-warning device has the advantages of strong anti-jamming ability, low temperature resistance, working stability and use-convenience, and it can be suitably installed and used in several locations which may endanger person safety, such as substation, high voltage switch panel, electric transformer, etc.

  13. Pyroelectric detector arrays

    NASA Technical Reports Server (NTRS)

    Fripp, A. L.; Robertson, J. B.; Breckenridge, R. A. (Inventor)

    1982-01-01

    A pryoelectric detector array and the method for making it are described. A series of holes formed through a silicon dioxide layer on the surface of a silicon substrate forms the mounting fixture for the pyroelectric detector array. A series of nontouching strips of indium are formed around the holes to make contact with the backside electrodes and form the output terminals for individual detectors. A pyroelectric detector strip with front and back electrodes, respectively, is mounted over the strip. Biasing resistors are formed on the surface of the silicon dioxide layer and connected to the strips. A metallized pad formed on the surface of the layer is connected to each of the biasing resistors and to the film to provide the ground for the pyroelectric detector array.

  14. Potassium dihydrogen phosphate and potassium tantalate niobate pyroelectric materials and far-infrared detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumann, Hilary Beatrix

    1993-10-01

    This thesis discusses characterization of two ferroelectric materials and the fabrication of bolometers. Potassium tantalate niobate (KTN) and potassium dihydrogen phosphate (KDP) are chosen because they can be optimized for operation near 100K. Chap. 2 reviews the physics underlying pyroelectric materials and its subclass of ferroelectric materials. Aspects of pyroelectric detection are discussed in Chap. 3 including measurement circuit, noise sources, and effects of materials properties on pyroelectric response. Chap. 4 discusses materials selection and specific characteristics of KTN and KDP; Chap. 5 describes materials preparation; and Chap. 6 presents detector configuration and a thermal analysis of the pyroelectric detector.more » Electrical techniques used to characterize the materials and devices and results are discussed in Chap. 7 followed by conclusions on feasibility of KDP and KTN pyroelectric detectors in Chap. 8.« less

  15. Properties of reactively sputtered AlxNy thin films for pyroelectric detectors

    NASA Astrophysics Data System (ADS)

    Calvano, Nicholas; Chrostoski, Philip; Voshell, Andrew; Braithwaite, Keesean; Rana, Mukti

    2017-08-01

    Uncooled infrared detectors are utilized in various radiometric devices and cameras because of their low cost, light weight and performance. A pyroelectric detector is a class of uncooled infrared detector whose polarization changes with change in temperature. Infrared radiation from objects falls on top of the sensing layer of the pyroelectric detector and the absorbed radiation causes the temperature of the sensing layer to change. This work describes the deposition and characterization of AlxNy thin films for using them as pyroelectric detector's sensing material. To test the sensitivity of infrared detection or pyroelectric effect of AlxNy thin films, capacitors of various sizes were fabricated. The diameter of the electrodes for capacitor used during testing of the device was 1100 μm while the distances between these two electrodes was 1100 μm. On a 3-inch diameter cleaned silicon wafer, 100 nm thick AlxNy thin films were deposited by radio frequency (RF) sputtering from an Al target in Ar: N2 environment. On top of this, a 100-nm thick Au layer was deposited and lifted off by using conventional photo lithography to form the electrodes of capacitors. All the layers were deposited by RF sputtering at room temperature. The thin film samples were annealed at 700 °C in N2 environment for 10 minutes. X-ray diffraction showed the films are poly-crystalline with peaks in (100), (002) and (101) directions. When the temperature varied between 303 K to 353 K, the pyroelectric coefficient was increased from 8.60 × 10-9 C/m2K to 3.76 × 10-8C/m2K with a room temperature pyroelectric coefficient value of 8.60×10-9C/m2K. The non-annealed films were found to be transparent between the wavelengths of 600 nm to 3000 nm. The refraction coefficient was found to be varied between 2.0 and 2.2 while the extinction coefficient was found to be zero. The optical bandgap determined using Tauc's equation was 1.65 eV.

  16. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  17. 3D-Printing of inverted pyramid suspending architecture for pyroelectric infrared detectors with inhibited microphonic effect

    NASA Astrophysics Data System (ADS)

    Xu, Qing; Zhao, Xiangyong; Li, Xiaobing; Deng, Hao; Yan, Hong; Yang, Linrong; Di, Wenning; Luo, Haosu; Neumann, Norbert

    2016-05-01

    A sensitive chip with ultralow dielectric loss based on Mn doped PMNT (71/29) has been proposed for high-end pyroelectric devices. The dielectric loss at 1 kHz is 0.005%, one order lower than the minimum value reported so far. The detective figure of merit (Fd) is up to 92.6 × 10-5 Pa-1/2 at 1 kHz and 53.5 × 10-5 Pa-1/2 at 10 Hz, respectively. In addition, an inverted pyramid suspending architecture for supporting the sensitive chip has been designed and manufactured by 3D printing technology. The combination of this sensitive chip and the proposed suspending architecture largely enhances the performance of the pyroelectric detectors. The responsivity and specific detectivity are 669,811 V/W and 3.32 × 109 cm Hz1/2/W at 10 Hz, respectively, 1.9 times and 1.5 times higher than those of the highest values in literature. Furthermore, the microphonic effect can be largely inhibited according to the theoretical and experimental analysis. This architecture will have promising applications in high-end and stable pyroelectric infrared detectors.

  18. Lightweight biometric detection system for human classification using pyroelectric infrared detectors.

    PubMed

    Burchett, John; Shankar, Mohan; Hamza, A Ben; Guenther, Bob D; Pitsianis, Nikos; Brady, David J

    2006-05-01

    We use pyroelectric detectors that are differential in nature to detect motion in humans by their heat emissions. Coded Fresnel lens arrays create boundaries that help to localize humans in space as well as to classify the nature of their motion. We design and implement a low-cost biometric tracking system by using off-the-shelf components. We demonstrate two classification methods by using data gathered from sensor clusters of dual-element pyroelectric detectors with coded Fresnel lens arrays. We propose two algorithms for person identification, a more generalized spectral clustering method and a more rigorous example that uses principal component regression to perform a blind classification.

  19. Intelligent lightening system of urban and rural road traffic based on pyroelectric infrared detector

    NASA Astrophysics Data System (ADS)

    Miao, Man-Xiang

    2007-12-01

    By using the photo-voltage characteristics of pyroelectric infrared detector to fulfill signal acquisition, the detecting signal is processed with the core of a single chip microprocessor AT89C51. AT89C51 controls the CAN bus controller SJA1000/transceiver 82C250 to structure CAN bus communication system to transmit data through serial interface MAX232 connected with PC. The intelligent lightening system of urban and rural road traffic was carried out. In this paper, its construction and part's methods of hardware and software design were introduced in detail.

  20. Development of improved pyroelectric detectors. Measurements of pyroelectric material characteristics and FET characteristics

    NASA Technical Reports Server (NTRS)

    Weiner, S.; Beerman, H. P.; Schwarz, F. C.

    1990-01-01

    Research was undertaken to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation were undertaken: (1) to improve responsivity through the use of new materials; and (2) to reduce noise through improved field effect transistor characteristics, and improved electroding of the pyroelectric material. FET's are being obtained from various manufacturers, evaulated, and selected units tested for evaluation of characteristics critical to their use as preamplifiers with pyroelectric detectors.

  1. Noise effect on performance of IR PVDF pyroelectric detector

    NASA Astrophysics Data System (ADS)

    Abdullah, K. Al; Batal, M. Anwar; Hamdan, Rawad; Khalil, Toni; Salame, Chafic

    2018-05-01

    The spin-casting and casting technology were used to make IR pyroelectric PVDF detectors, where the operational amplifier, TC75S63TU, is used to amplify pyroelectrical signal. The pyroelectric coefficient is measured by charge integration method, which is 23 µC/m2K. The voltage responsivity and noise equivalent power depending on the dielectric constant, specific conductivity and loss tangent, which are measured at various frequencies, is estimated where changing of detector capacitance and resistor with frequency is taken into account. Maximum voltage responsivity was for detector thickness d=116.05 µm at chopping frequency (f=0.8Hz). Influence of thermal, Johnson and amplifier noises on output voltage are studied. At frequencies (<1kHz), Johnson noise dominates whereas at frequencies (>1kHz), amplifier voltage noise dominates. The thinner detector, the lower noise affects on output voltage. The optimal signal to noise ratio (SNR) of pyroelectrical detector is for thickness d=30.1 µm at frequency f=20Hz. The reducing electrode area decreases slightly total noise at low frequency and enhances slightly SNR of pyroelectrical detector.

  2. Development of improved pyroelectric detectors; Literature survey of pyroelectric materials and their characteristics

    NASA Technical Reports Server (NTRS)

    Weiner, S.; Beerman, H. P.

    1971-01-01

    The object of this program is to improve the detectivity of the pyroelectric detector with the ultimate goal of operation at or near the temperature-noise limit. Two general areas of investigation are undertaken. The first is to improve responsivity through the use of new materials. The second is directed toward reduction of noise and will be effected with improved field effect transistor characteristics, and improved electroding of the pyroelectric material. The search for new materials has begun with a review of the literature on pyroelectric materials in several languages. The compiled data includes an extensive list of references. From this, several materials have already been selected for investigation. FETs are being obtained from various manufacturers, evaluated, and selected units will be tested with pyroelectric elements as complete detectors.

  3. Improved detectivity of pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Marshall, D. E.; Gelpey, J. C.; Marciniec, J. W.; Chiang, A. M.; Maciolek, R. B.

    1978-01-01

    High detectivity single-element SBN pyroelectric detectors were fabricated. The theory and technology developments related to improved detector performance were identified and formulated. Improved methods of material characterization, thinning, mounting, blackening and amplifier matching are discussed. Detectors with detectivities of 1.3 x 10 to the 9th power square root of Hz/watt at 1 Hz are reported. Factors limiting performance and recommendations for future work are discussed.

  4. Novel infrared detector based on a tunneling displacement transducer

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Waltman, S. B.; Reynolds, J. K.

    1991-01-01

    The paper describes the design, fabrication, and characteristics of a novel infrared detector based on the principle of Golay's (1947) pneumatic infrared detector, which uses the expansion of a gas to detect infrared radiation. The present detector is constructed entirely from micromachined silicon and uses an electron tunneling displacement transducer for the detection of gas expansion. The sensitivity of the new detector is competitive with the best commercial pyroelectric sensors and can be readily improved by an order of magnitude through the use of an optimized transducer.

  5. Research on the Multiple Factors Influencing Human Identification Based on Pyroelectric Infrared Sensors

    PubMed Central

    Lou, Ping; Hu, Jianmin

    2018-01-01

    Analysis of the multiple factors affecting human identification ability based on pyroelectric infrared technology is a complex problem. First, we examine various sensed pyroelectric waveforms of the human body thermal infrared signal and reveal a mechanism for affecting human identification. Then, we find that the mechanism is decided by the distance, human target, pyroelectric infrared (PIR) sensor, the body type, human moving velocity, signal modulation mask, and Fresnel lens. The mapping relationship between the sensed waveform and multiple influencing factors is established, and a group of mathematical models are deduced which fuse the macro factors and micro factors. Finally, the experimental results show the macro-factors indirectly affect the recognition ability of human based on the pyroelectric technology. At the same time, the correctness and effectiveness of the mathematical models is also verified, which make it easier to obtain more pyroelectric infrared information about the human body for discriminating human targets. PMID:29462908

  6. Graphene-based mid-infrared room-temperature pyroelectric bolometers with ultrahigh temperature coefficient of resistance.

    PubMed

    Sassi, U; Parret, R; Nanot, S; Bruna, M; Borini, S; De Fazio, D; Zhao, Z; Lidorikis, E; Koppens, F H L; Ferrari, A C; Colli, A

    2017-01-31

    There is a growing number of applications demanding highly sensitive photodetectors in the mid-infrared. Thermal photodetectors, such as bolometers, have emerged as the technology of choice, because they do not need cooling. The performance of a bolometer is linked to its temperature coefficient of resistance (TCR, ∼2-4% K -1 for state-of-the-art materials). Graphene is ideally suited for optoelectronic applications, with a variety of reported photodetectors ranging from visible to THz frequencies. For the mid-infrared, graphene-based detectors with TCRs ∼4-11% K -1 have been demonstrated. Here we present an uncooled, mid-infrared photodetector, where the pyroelectric response of a LiNbO 3 crystal is transduced with high gain (up to 200) into resistivity modulation for graphene. This is achieved by fabricating a floating metallic structure that concentrates the pyroelectric charge on the top-gate capacitor of the graphene channel, leading to TCRs up to 900% K -1 , and the ability to resolve temperature variations down to 15 μK.

  7. An infrared-driven flexible pyroelectric generator for non-contact energy harvester

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Jiang, Weitao; Liu, Hongzhong; Niu, Dong; Li, Xin; Liu, Weihua; Li, Xuan; Chen, Bangdao; Shi, Yongsheng; Yin, Lei; Lu, Bingheng

    2016-04-01

    In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat source and realizes remote energy transfer exploiting the photothermal and penetrability of infrared light. The output voltage (under the input impedance of 100 MOhm) and short-circuit current of the pyroelectric generator consisting of a CNT/PVDF/CNT layer (20 mm × 5 mm × 100 μm) can be as large as 1.2 V and 9 nA, respectively, under a 1.45 W cm-2 near-infrared laser (808 nm). We also demonstrate the means by which the pyroelectric generator can modulate square waveforms with controllable periods through irradiation frequency, which is essential for signal sources and medical stimulators. The overshoot of square waveforms are in a range of 9.0%-13.1% with a rise time of 120 ms. The prepared pyroelectric generator can light a liquid crystal display (LCD) in a vacuum chamber from outside. This work paves the way for non-contact energy harvesting for some particular occasions where near-field energy control is not available.In recent years, energy harvesting technologies, which can scavenge many kinds of energies from our living environment to power micro/nanodevices, have attracted increasing attention. However, remote energy transmission, flexibility and electric waveform controllability remain the key challenges for wireless power supply by an energy harvester. In this paper, we design a new infrared-driven non-contact pyroelectric generator for harvesting heat energy, which avoids direct contact between the pyroelectric generator and heat

  8. Selective Pyroelectric Detection of Millimetre Waves Using Ultra-Thin Metasurface Absorbers

    PubMed Central

    Kuznetsov, Sergei A.; Paulish, Andrey G.; Navarro-Cía, Miguel; Arzhannikov, Andrey V.

    2016-01-01

    Sensing infrared radiation is done inexpensively with pyroelectric detectors that generate a temporary voltage when they are heated by the incident infrared radiation. Unfortunately the performance of these detectors deteriorates for longer wavelengths, leaving the detection of, for instance, millimetre-wave radiation to expensive approaches. We propose here a simple and effective method to enhance pyroelectric detection of the millimetre-wave radiation by combining a compact commercial infrared pyro-sensor with a metasurface-enabled ultra-thin absorber, which provides spectrally- and polarization-discriminated response and is 136 times thinner than the operating wavelength. It is demonstrated that, due to the small thickness and therefore the thermal capacity of the absorber, the detector keeps the high response speed and sensitivity to millimetre waves as the original infrared pyro-sensor does against the regime of infrared detection. An in-depth electromagnetic analysis of the ultra-thin resonant absorbers along with their complex characterization by a BWO-spectroscopy technique is presented. Built upon this initial study, integrated metasurface absorber pyroelectric sensors are implemented and tested experimentally, showing high sensitivity and very fast response to millimetre-wave radiation. The proposed approach paves the way for creating highly-efficient inexpensive compact sensors for spectro-polarimetric applications in the millimetre-wave and terahertz bands. PMID:26879250

  9. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    PubMed

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  10. Absolute linearity measurements on a gold-black-coated deuterated L-alanine-doped triglycine sulfate pyroelectric detector.

    PubMed

    Theocharous, E

    2008-07-20

    The nonlinearity characteristics of a commercially available deuterated L-alanine-doped triglycine sulfate (DLATGS) pyroelectric detector were experimentally investigated at high levels of illumination using the National Physical Laboratory detector linearity characterization facility. The detector was shown to exhibit a superlinear response at high levels of illumination. Moreover, the linearity factor was shown to depend on the area of the spot on the detector active area being illuminated, i.e., the incident irradiance. Possible reasons for the observed behavior are proposed and discussed. The temperature coefficient of the response of the DLATGS pyroelectric detector was measured and found to be higher than +2.5% degrees C(-1). This large and positive temperature coefficient of response is the most likely cause of the superlinear behavior of the DLATGS pyroelectric detector.

  11. Photothermal Spectroscopy Using a Pyroelectric Thin Film Detector.

    DTIC Science & Technology

    1983-09-16

    FRD-fi34 291 PHOTOTHERNAL SPECTROSCOPYIJ SING A PYROELECTRIC THIN- I/IT, F FILM DETECTOR(J) INTERNATIONAL BUSINESS MACHINES CORP I SAN JOSE CALIF SAN...Coufal N01-1C01 9, PERFORMING3 ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK International Business Machines Corp. AE OKUI UBR San Jose

  12. The flexoelectric effect associated size dependent pyroelectricity in solid dielectrics

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Liu, Zhiguo; Xie, Qiyun; Guo, Yanyan; Li, Wei; Yan, Xiaobing

    2015-09-01

    A phenomenological thermodynamic theory is used to investigate the effect of strain gradient on the pyroelectric effect in centrosymmetric dielectric solids. Direct pyroelectricity can exist as external mechanical stress is applied to non-pyroelectric dielectrics with shapes such as truncated pyramids, due to elastic strain gradient induced flexoelectric polarization. Effective pyroelectric coefficient was analyzed in truncated pyramids. It is found to be controlled by size, ambient temperature, stress, and aspect ratio and depends mainly on temperature sensitivity of flexoelectric coefficient (TSFC) and strain gradient of the truncated pyramids dielectric solids. These results show that the pyroelectric property of Ba0.67Sr0.33TiO3 above Tc similar to PZT and other lead-based ferroelectrics can be obtained. This feature might widely broaden the selection of materials for infrared detectors with preferable properties.

  13. Development of improved lithium tantalate pyroelectric detectors

    NASA Technical Reports Server (NTRS)

    Byer, N. E.; Vanderjagt, A.; Holton, W.

    1978-01-01

    A program was undertaken to increase the detectivity of LiTaO3 pyroelectric detectors to meet a performance requirement of D star (500 K, 15 Hz)=4x10 to the 9th power cm Hz1/2W-1. Emphasis was placed on reduction of the thermal conductance of the detector element to its surroundings, thinning the detector wafer to a thickness less than 3 micrometers, and increasing the absorptivity of the standard metallic film coatings. During the program, thermal conductance was reduced 41 percent through the use of reticulated (slotted) structures. Self-supported detector wafers less than 2 micrometers thick were fabricated. Multiple layer coatings, including an AR coating, with 16 percent more absorptance, were designed and fabricated. Later refinements in the multilayer design program have absorptivities of 75-80 percent, but detectors with these coatings had to be more than 2 micrometers thick because of a mismatch in the thermal expansion coefficients with LiTaO3.

  14. EMD-Based Symbolic Dynamic Analysis for the Recognition of Human and Nonhuman Pyroelectric Infrared Signals.

    PubMed

    Zhao, Jiaduo; Gong, Weiguo; Tang, Yuzhen; Li, Weihong

    2016-01-20

    In this paper, we propose an effective human and nonhuman pyroelectric infrared (PIR) signal recognition method to reduce PIR detector false alarms. First, using the mathematical model of the PIR detector, we analyze the physical characteristics of the human and nonhuman PIR signals; second, based on the analysis results, we propose an empirical mode decomposition (EMD)-based symbolic dynamic analysis method for the recognition of human and nonhuman PIR signals. In the proposed method, first, we extract the detailed features of a PIR signal into five symbol sequences using an EMD-based symbolization method, then, we generate five feature descriptors for each PIR signal through constructing five probabilistic finite state automata with the symbol sequences. Finally, we use a weighted voting classification strategy to classify the PIR signals with their feature descriptors. Comparative experiments show that the proposed method can effectively classify the human and nonhuman PIR signals and reduce PIR detector's false alarms.

  15. Pyroelectric response of perovskite heterostructures incorporating conductive oxide electrodes

    NASA Astrophysics Data System (ADS)

    Tipton, Charles Wesley, IV

    2000-10-01

    The use of imaging technologies has become pervasive in many applications as the demand for situational awareness information has increased over the last decade. No better example of the integration of these technologies can be found than that of infrared or thermal imaging. This dissertation, in the field of thermal imaging, has been motivated by the desire to advance the technology of uncooled, thin-film pyroelectric sensors and focuses on the materials and structures from which the detector elements will be built. This work provides a detailed study of the pyroelectric response of the La-Sr-Co-O/Pb-La-Zr-Ti-O/La-Sr-Co-O (LPL) structure. The LPL structure was chosen based on the needs of thin film detectors, the unique properties of the conductive oxide La-Sr-Co-O (LSCO), and the broad applicability of the Pb-La-Zr-Ti-O (PLZT) material system. Epitaxial heterostructures were grown by pulsed laser deposition on single-crystal oxide substrates. Using the oxygen pressure during cooling and heating of the LSCO layer as a key variable, we have been able to produce structures that have a pronounced internal field in the as-grown state. In these capacitors, where the bottom electrode has a large concentration of oxygen vacancies, we have discovered very large pyroelectric responses that are 10 to 30 times larger than expected of PLZT-based pyroelectric materials (typical values are 20 to 40 nCcm-2K -1). The enhanced pyroelectric responses are very repeatable, stable over time, and distinctly different from responses attributed to thermally stimulated currents. Detailed positron annihilation spectroscopy measurements reveal that there is indeed an oxygen concentration gradient across the capacitor. Based on the results of this study, I will present an analysis of the enhanced pyroelectric response. Although the enhanced response has been correlated with high concentrations of oxygen vacancies in the PLZT film and LSCO electrodes, the mechanism by which the large

  16. Pyroelectricity Assisted Infrared-Laser Desorption Ionization (PAI-LDI) for Atmospheric Pressure Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Yanyan; Ma, Xiaoxiao; Wei, Zhenwei; Gong, Xiaoyun; Yang, Chengdui; Zhang, Sichun; Zhang, Xinrong

    2015-08-01

    A new atmospheric pressure ionization method termed pyroelectricity-assisted infrared laser desorption ionization (PAI-LDI) was developed in this study. The pyroelectric material served as both sample target plate and enhancing ionization substrate, and an IR laser with wavelength of 1064 nm was employed to realize direct desorption and ionization of the analytes. The mass spectra of various compounds obtained on pyroelectric material were compared with those of other substrates. For the five standard substances tested in this work, LiNbO3 substrate produced the highest ion yield and the signal intensity was about 10 times higher than that when copper was used as substrate. For 1-adamantylamine, as low as 20 pg (132.2 fmol) was successfully detected. The active ingredient in (Compound Paracetamol and 1-Adamantylamine Hydrochloride Capsules), 1-adamantylamine, can be sensitively detected at an amount as low as 150 pg, when the medicine stock solution was diluted with urine. Monosaccharide and oligosaccharides in Allium Cepa L. juice was also successfully identified with PAI-LDI. The method did not require matrix-assisted external high voltage or other extra facility-assisted set-ups for desorption/ionization. This study suggested exciting application prospect of pyroelectric materials in matrix- and electricity-free atmospheric pressure mass spectrometry research.

  17. Candle Soot-Driven Performance Enhancement in Pyroelectric Energy Conversion

    NASA Astrophysics Data System (ADS)

    Azad, Puneet; Singh, V. P.; Vaish, Rahul

    2018-05-01

    We observed substantial enhancement in pyroelectric output with the help of candle soot coating on the surface of lead zirconate titanate (PZT). Candle soot of varying thicknesses was coated by directly exposing pyroelectric material to the candle flame. The open-circuit pyroelectric voltage and closed-circuit pyroelectric current were recorded while applying infrared heating across the uncoated and candle soot-coated samples for different heating and cooling cycles. In comparison to the uncoated sample, the maximum open-circuit voltage improves seven times for the candle soot-coated sample and electric current increases by eight times across a resistance of 10Å. Moreover, the harvested energy is enhanced by 50 times for candle soot-coated sample. Results indicate that candle soot coating is an effective and economic method to improve infrared sensing performance of pyroelectric materials.

  18. High performance Bi0.5Na0.5TiO3-BiAlO3-K0.5Na0.5NbO3 lead-free pyroelectric ceramics for thermal detectors

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Ren, Weijun; Peng, Ping; Guo, Shaobo; Lu, Teng; Liu, Yun; Dong, Xianlin; Wang, Genshui

    2018-04-01

    Both high pyroelectric properties and good temperature stability of ferroelectric materials are desirable when used for applications in infrared thermal detectors. In this work, we report lead-free ternary 0.97(0.99Bi0.5Na0.5TiO3-0.01BiAlO3)-0.03K0.5Na0.5NbO3 (BNT-BA-KNN) ceramics, which not only exhibits a large pyroelectric coefficient (p ˜ 3.7 × 10-8 C cm-2 K-1) and figures of merit (Fi, Fv, and Fd) but also shows excellent thermal stable properties. At room temperature, Fi, Fv, and Fd are determined as high as 1.32 × 10-10 m/V, 2.89 × 10-2 m2/C, and 1.15 × 10-5 Pa-1/2 at 1 kHz and 1.32 × 10-10 m/V, 2.70 × 10-2 m2/C, and 1.09 × 10-5 Pa-1/2 at 20 Hz, respectively. During the temperature range of RT to 85 °C, the achieved p, Fi, Fv, and Fd do not vary too much. The high depolarization temperature and the undispersed ferroelectric-ergodic relaxor phase transition with a sharp pyroelectric coefficient peak value of ˜400 × 10-8 C cm-2 K-1 are suggested to be responsible for this thermal stability, which ensures reliable actual operation. The results reveal the BNT-BA-KNN ceramics as promising lead-free candidates for infrared thermal detector applications.

  19. Optimization and improvement of thermal energy harvesting by using pyroelectric materials

    NASA Astrophysics Data System (ADS)

    El Fatnani, Fatima Zahra; Guyomar, Daniel; Mazroui, M.'hammed; Belhora, Fouad; Boughaleb, Yahia

    2016-06-01

    We deal with the thermal energy which is one of the ambient energy sources surely exploitable, but it has not been much interest as the mechanical energy. In this paper, our aim is to use thermal energy and show that it's an important source for producing the electrical energy through pyroelectric effect which is the property of some dielectric materials to show a spontaneous electrical polarization versus temperature. In this context, we present a concept to harvest a thermal energy using infrared rays and pyroelectric effect. The pyroelectric material used in this work can generate an electrical voltage when it subjected to a temperature change which will be ensured by the use of infrared lamp. Our experimental results show that the electrical voltage, current and harvested power increased significantly when increasing the area of the pyroelectric element. The experimental results show also that with this simple concept we harvested a heavy amount value of power which will certainly be useful in an extensive range of applications, including sensors and infrared detection. These results shed light on the thermoelectric energy conversion by Ceramic lead zirconate titanate (PZT) buzzer having the pyroelectric property.

  20. Characterization of a Polymer-Based MEMS Pyroelectric Infrared Detector

    DTIC Science & Technology

    2007-03-01

    The value, K, in Equation (8) is generic to all thermal detectors. This value, depending on the type of thermal detector, varies due to the ... the current generated due to a ramp in temperature. The main rationale for this biasing is to align the polar axis perpendicular to the face of ...PVA_CB-based imaging system . Due to the

  1. History of infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2012-09-01

    This paper overviews the history of infrared detector materials starting with Herschel's experiment with thermometer on February 11th, 1800. Infrared detectors are in general used to detect, image, and measure patterns of the thermal heat radiation which all objects emit. At the beginning, their development was connected with thermal detectors, such as thermocouples and bolometers, which are still used today and which are generally sensitive to all infrared wavelengths and operate at room temperature. The second kind of detectors, called the photon detectors, was mainly developed during the 20th Century to improve sensitivity and response time. These detectors have been extensively developed since the 1940's. Lead sulphide (PbS) was the first practical IR detector with sensitivity to infrared wavelengths up to ˜3 μm. After World War II infrared detector technology development was and continues to be primarily driven by military applications. Discovery of variable band gap HgCdTe ternary alloy by Lawson and co-workers in 1959 opened a new area in IR detector technology and has provided an unprecedented degree of freedom in infrared detector design. Many of these advances were transferred to IR astronomy from Departments of Defence research. Later on civilian applications of infrared technology are frequently called "dual-use technology applications." One should point out the growing utilisation of IR technologies in the civilian sphere based on the use of new materials and technologies, as well as the noticeable price decrease in these high cost technologies. In the last four decades different types of detectors are combined with electronic readouts to make detector focal plane arrays (FPAs). Development in FPA technology has revolutionized infrared imaging. Progress in integrated circuit design and fabrication techniques has resulted in continued rapid growth in the size and performance of these solid state arrays.

  2. Tracking and recognition of multiple human targets moving in a wireless pyroelectric infrared sensor network.

    PubMed

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-04-22

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%.

  3. Tracking and Recognition of Multiple Human Targets Moving in a Wireless Pyroelectric Infrared Sensor Network

    PubMed Central

    Xiong, Ji; Li, Fangmin; Zhao, Ning; Jiang, Na

    2014-01-01

    With characteristics of low-cost and easy deployment, the distributed wireless pyroelectric infrared sensor network has attracted extensive interest, which aims to make it an alternate infrared video sensor in thermal biometric applications for tracking and identifying human targets. In these applications, effectively processing signals collected from sensors and extracting the features of different human targets has become crucial. This paper proposes the application of empirical mode decomposition and the Hilbert-Huang transform to extract features of moving human targets both in the time domain and the frequency domain. Moreover, the support vector machine is selected as the classifier. The experimental results demonstrate that by using this method the identification rates of multiple moving human targets are around 90%. PMID:24759117

  4. Enhanced thermal and pyroelectric properties in 0-3 TGS:PVDF composites doped with graphene for infrared application

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Wang, Minqiang; Li, Le; Yang, Zhi; Cao, Minghui; Cheng, Z.-Y.

    Pyroelectric composites of triglycine sulfate (TGS)-polyvinylidene difluoride (PVDF) doped with graphene are studied. It is found that the graphene can effectively improve the polling efficiency and thermal property of the composites so that the infrared detective performance can be significantly improved. For example, by adding about 0.83 wt.% of graphene, the infrared detective property can be improved by more than 30%. It is also found that the size of the graphene plays a critical role on the property improvement. For example, the small-sized graphene prepared by ultrasonic exfoliation (UE) method is more effective than the big-sized graphene prepared by electrochemical exfoliation (EE) method.

  5. Accounting for the various contributions to pyroelectricity in lead zirconate titanate thin films

    NASA Astrophysics Data System (ADS)

    Hanrahan, B.; Espinal, Y.; Neville, C.; Rudy, R.; Rivas, M.; Smith, A.; Kesim, M. T.; Alpay, S. P.

    2018-03-01

    An understanding of the pyroelectric coefficient and particularly its relationship with the applied electric field is critical to predicting the device performance for infrared imaging, energy harvesting, and solid-state cooling devices. In this work, we compare direct measurements of the pyroelectric effect under pulsed heating to the indirect extraction of the pyroelectric coefficient from adiabatic hysteresis loops and predictions from Landau-Devonshire theory for PbZr0.52Ti0.48O3 (PZT 52/48) on platinized silicon substrates. The differences between these measurements are explained through a series of careful measurements that quantify the magnitude and direction of the secondary and field-induced pyroelectric effects. The indirect measurement is shown to be up to 25% of the direct measurement at high fields, while the direct measurements and theoretical predictions converge at high fields as the film approaches a mono-domain state. These measurements highlight the importance of directly measuring the pyroelectric response in thin films, where non-intrinsic effects can be a significant proportion of the total observed pyroelectricity. Material and operating conditions are also discussed which could simultaneously maximize all contributions to pyroelectricity.

  6. Pyroelectric IR sensor arrays for fall detection in the older population

    NASA Astrophysics Data System (ADS)

    Sixsmith, A.; Johnson, N.; Whatmore, R.

    2005-09-01

    Uncooled pyroelectric sensor arrays have been studied over many years for their uses in thermal imaging applications. These arrays will only detect changes in IR flux and so systems based upon them are very good at detecting movements of people in the scene without sensing the background, if they are used in staring mode. Relatively-low element count arrays (16 x 16) can be used for a variety of people sensing applications, including people counting (for safety applications), queue monitoring etc. With appropriate signal processing such systems can be also be used for the detection of particular events such as a person falling over. There is a considerable need for automatic fall detection amongst older people, but there are important limitations to some of the current and emerging technologies available for this. Simple sensors, such as 1 or 2 element pyroelectric infra-red sensors provide crude data that is difficult to interpret; the use of devices worn on the person, such as wrist communicator and motion detectors have potential, but are reliant on the person being able and willing to wear the device; video cameras may be seen as intrusive and require considerable human resources to monitor activity while machine-interpretation of camera images is complex and may be difficult in this application area. The use of a pyroelectric thermal array sensor was seen to have a number of potential benefits. The sensor is wall-mounted and does not require the user to wear a device. It enables detailed analysis of a subject's motion to be achieved locally, within the detector, using only a modest processor. This is possible due to the relative ease with which data from the sensor can be interpreted relative to the data generated by alternative sensors such as video devices. In addition to the cost-effectiveness of this solution, it was felt that the lack of detail in the low-level data, together with the elimination of the need to transmit data outside the detector

  7. Pyroelectricity of water ice.

    PubMed

    Wang, Hanfu; Bell, Richard C; Iedema, Martin J; Schenter, Gregory K; Wu, Kai; Cowin, James P

    2008-05-22

    Water ice usually is thought to have zero pyroelectricity by symmetry. However, biasing it with ions breaks the symmetry because of the induced partial dipole alignment. This unmasks a large pyroelectricity. Ions were soft-landed upon 1 mum films of water ice at temperatures greater than 160 K. When cooled below 140-150 K, the dipole alignment locks in. Work function measurements of these films then show high and reversible pyroelectric activity from 30 to 150 K. For an initial approximately 10 V induced by the deposited ions at 160 K, the observed bias below 150 K varies approximately as 10 Vx(T/150 K)2. This implies that water has pyroelectric coefficients as large as that of many commercial pyroelectrics, such as lead zirconate titanate (PZT). The pyroelectricity of water ice, not previously reported, is in reasonable agreement with that predicted using harmonic analysis of a model system of SPC ice. The pyroelectricity is observed in crystalline and compact amorphous ice, deuterated or not. This implies that for water ice between 0 and 150 K (such as astrophysical ices), temperature changes can induce strong electric fields (approximately 10 MV/m) that can influence their chemistry, ion trajectories, or binding.

  8. Improved Ambient Pressure Pyroelectric Ion Source

    NASA Technical Reports Server (NTRS)

    Beegle, Luther W.; Kim, Hugh I.; Kanik, Isik; Ryu, Ernest K.; Beckett, Brett

    2011-01-01

    The detection of volatile vapors of unknown species in a complex field environment is required in many different applications. Mass spectroscopic techniques require subsystems including an ionization unit and sample transport mechanism. All of these subsystems must have low mass, small volume, low power, and be rugged. A volatile molecular detector, an ambient pressure pyroelectric ion source (APPIS) that met these requirements, was recently reported by Caltech researchers to be used in in situ environments.

  9. UV scale calibration transfer from an improved pyroelectric detector standard to field UV-A meters and 365 nm excitation sources

    NASA Astrophysics Data System (ADS)

    Eppeldauer, G. P.; Podobedov, V. B.; Cooksey, C. C.

    2017-05-01

    Calibration of the emitted radiation from UV sources peaking at 365 nm, is necessary to perform the ASTM required 1 mW/cm2 minimum irradiance in certain military material (ships, airplanes etc) tests. These UV "black lights" are applied for crack-recognition using fluorescent liquid penetrant inspection. At present, these nondestructive tests are performed using Hg-lamps. Lack of a proper standard and the different spectral responsivities of the available UV meters cause significant measurement errors even if the same UV-365 source is measured. A pyroelectric radiometer standard with spectrally flat (constant) response in the UV-VIS range has been developed to solve the problem. The response curve of this standard determined from spectral reflectance measurement, is converted into spectral irradiance responsivity with <0.5% (k=2) uncertainty as a result of using an absolute tie point from a Si-trap detector traceable to the primary standard cryogenic radiometer. The flat pyroelectric radiometer standard can be used to perform uniform integrated irradiance measurements from all kinds of UV sources (with different peaks and distributions) without using any source standard. Using this broadband calibration method, yearly spectral calibrations for the reference UV (LED) sources and irradiance meters is not needed. Field UV sources and meters can be calibrated against the pyroelectric radiometer standard for broadband (integrated) irradiance and integrated responsivity. Using the broadband measurement procedure, the UV measurements give uniform results with significantly decreased uncertainties.

  10. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  11. A Strip Cell in Pyroelectric Devices

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2016-01-01

    The pyroelectric effect affords the opportunity to convert temporal temperature fluctuations into usable electrical energy in order to develop abundantly available waste heat. A strip pyroelectric cell, used to enhance temperature variation rates by lateral temperature gradients and to reduce cell capacitance to further promote the induced voltage, is described as a means of improving pyroelectric energy transformation. A precision dicing saw was successfully applied in fabricating the pyroelectric cell with a strip form. The strip pyroelectric cell with a high-narrow cross section is able to greatly absorb thermal energy via the side walls of the strips, thereby inducing lateral temperature gradients and increasing temperature variation rates in a thicker pyroelectric cell. Both simulation and experimentation show that the strip pyroelectric cell improves the electrical outputs of pyroelectric cells and enhances the efficiency of pyroelectric harvesters. The strip-type pyroelectric cell has a larger temperature variation when compared to the trenched electrode and the original type, by about 1.9 and 2.4 times, respectively. The measured electrical output of the strip type demonstrates a conspicuous increase in stored energy as compared to the trenched electrode and the original type, by of about 15.6 and 19.8 times, respectively. PMID:26999134

  12. Introduction to lead salt infrared detectors

    NASA Astrophysics Data System (ADS)

    Kondas, David A.

    1993-02-01

    This technical report establishes the background necessary to understand how lead sulfide (PbS) and lead selenide (PbSe) infrared detectors operate. Both detectors, which are members of the lead salt family of infrared detectors, use the photoconductive effect to detect energy residing within the infrared region of the electromagnetic spectrum. PbS detectors are useful for detecting energies in the 1 to 3 micrometer region, while PbSe detectors can detect energies in the 1 to 7 micrometer region. They are essentially polycrystalline thin films which are fabricated by chemical deposition techniques in either single element or multi-element array configurations. The significance of the electronic structure of these crystalline films and the effects of temperature on their operation and performance are discussed. The history of the development of lead salt detectors from the early years before World War I to the more recent developments is detailed. In addition, an overview of a typical infrared system is also presented.

  13. MEMS based pyroelectric thermal energy harvester

    DOEpatents

    Hunter, Scott R; Datskos, Panagiotis G

    2013-08-27

    A pyroelectric thermal energy harvesting apparatus for generating an electric current includes a cantilevered layered pyroelectric capacitor extending between a first surface and a second surface, where the first surface includes a temperature difference from the second surface. The layered pyroelectric capacitor includes a conductive, bimetal top electrode layer, an intermediate pyroelectric dielectric layer and a conductive bottom electrode layer. In addition, a pair of proof masses is affixed at a distal end of the layered pyroelectric capacitor to face the first surface and the second surface, wherein the proof masses oscillate between the first surface and the second surface such that a pyroelectric current is generated in the pyroelectric capacitor due to temperature cycling when the proof masses alternately contact the first surface and the second surface.

  14. Proceedings of the Second Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R. (Compiler)

    1986-01-01

    The workshop focused on infrared detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers are organized into the following categories: discrete infrared detectors and readout electronics; advanced bolometers; intrinsic integrated infrared arrays; and extrinsic integrated infrared arrays. Status reports on the Space Infrared Telescope Facility (SIRTF) and Infrared Space Observatory (ISO) programs are also included.

  15. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2015-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  16. Single-Band and Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor); Soibel, Alexander (Inventor); Nguyen, Jean (Inventor); Khoshakhlagh, Arezou (Inventor)

    2017-01-01

    Bias-switchable dual-band infrared detectors and methods of manufacturing such detectors are provided. The infrared detectors are based on a back-to-back heterojunction diode design, where the detector structure consists of, sequentially, a top contact layer, a unipolar hole barrier layer, an absorber layer, a unipolar electron barrier, a second absorber, a second unipolar hole barrier, and a bottom contact layer. In addition, by substantially reducing the width of one of the absorber layers, a single-band infrared detector can also be formed.

  17. Proceedings of the Third Infrared Detector Technology Workshop

    NASA Technical Reports Server (NTRS)

    Mccreight, Craig R. (Compiler)

    1989-01-01

    This volume consists of 37 papers which summarize results presented at the Third Infrared Detector Technology Workshop, held February 7-9, 1989, at Ames Research Center. The workshop focused on infrared (IR) detector, detector array, and cryogenic electronic technologies relevant to low-background space astronomy. Papers on discrete IR detectors, cryogenic readouts, extrinsic and intrinsic IR arrays, and recent results from ground-based observations with integrated arrays were given. Recent developments in the second-generation Hubble Space Telescope (HST) infrared spectrometer and in detectors and arrays for the European Space Agency's Infrared Space Observatory (ISO) are also included, as are status reports on the Space Infrared Telescope Facility (SIRTF) and the Stratospheric Observatory for Infrared Astronomy (SOFIA) projects.

  18. A novel electron tunneling infrared detector

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Waltman, S. B.; Reynolds, J. K.; Kaiser, W. J.

    1990-01-01

    The pneumatic infrared detector, originally developed by Golay in the late 1940s, uses the thermal expansion of one cm(exp 3) of xenon at room temperature to detect the heat deposited by infrared radiation. This detector was limited by thermal fluctuations within a 10 Hz bandwidth, but suffered from long thermal time constants and a fragile structure. Nevertheless, it represents the most sensitive room temperature detector currently available in the long wavelength infrared (LWIR). Fabrication of this type of detector on smaller scales has been limited by the lack of a suitably sensitive transducer. Researchers designed a detector based on this principle, but which is constructed entirely from micromachined silicon, and uses a vacuum tunneling transducer to detect the expansion of the trapped gas. Because this detector is fabricated using micromachining techniques, miniaturization and integration into one and two-dimensional arrays is feasible. The extreme sensitivity of vacuum tunneling to changes in electrode separation will allow a prototype of this detector to operate in the limit of thermal fluctuations over a 10 kHz bandwidth. A calculation of the predicted response and noise of the prototype is presented with the general formalism of thermal detectors. At present, most of the components of the prototype have been fabricated and tested independently. In particular, a characterization of the micromachined electron tunneling transducer has been carried out. The measured noise in the tunnel current is within a decade of the limit imposed by shot noise, and well below the requirements for the operation of an infrared detector with the predicted sensitivity. Assembly and characterization of the prototype infrared detector will be carried out promptly.

  19. Complementary Barrier Infrared Detector (CBIRD) with Double Tunnel Junction Contact and Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y; Soibel, Alexander; Khoshakhlagh, Arezou; Keo, Sam A.; Nguyen, Jean; Hoglund, Linda; Mumolo, Jason M.; Liu, John K.; Rafol, Sir B.; Hill, Cory J.; hide

    2012-01-01

    The InAs/GaSb type-II superlattice based complementary barrier infrared detector (CBIRD) has already demonstrated very good performance in long-wavelength infrared (LWIR) detection. In this work, we describe results on a modified CBIRD device that incorporates a double tunnel junction contact designed for robust device and focal plane array processing. The new device also exhibited reduced turn-on voltage. We also report results on the quantum dot barrier infrared detector (QD-BIRD). By incorporating self-assembled InSb quantum dots into the InAsSb absorber of the standard nBn detector structure, the QD-BIRD extend the detector cutoff wavelength from approximately 4.2 micrometers to 6 micrometers, allowing the coverage of the mid-wavelength infrared (MWIR) transmission window. The device has been observed to show infrared response at 225 K.

  20. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates

    NASA Technical Reports Server (NTRS)

    Simpson, Joycely O. (Inventor); St.Clair, Terry L. (Inventor)

    1999-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared. This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers. acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors, in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches, adjustable fresnel lenses, speakers, tactile sensors. weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 1000 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrate; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  1. Sofradir latest developments for infrared space detectors

    NASA Astrophysics Data System (ADS)

    Chorier, Philippe; Delannoy, Anne

    2011-06-01

    Sofradir is one of the leading companies that develop and produce infrared detectors. Space applications have become a significant activity and Sofradir relies now on 20 years of experience in development and production of MCT infrared detectors of 2nd and 3rd generation for space applications. Thanks to its capabilities and experience, Sofradir is now able to offer high reliability infrared detectors for space applications. These detectors cover various kinds of applications like hyperspectral observation, earth observations for meteorological or scientific purpose and science experiments. In this paper, we present a review of latest Sofradir's development for infrared space applications. A presentation of Sofradir infrared detectors answering hyperspectral needs from visible up to VLWIR waveband will be made. In addition a particular emphasis will be placed on the different programs currently running, with a presentation of the associated results as they relate to performances and qualifications for space use.

  2. Barrier infrared detector research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.; Khoshakhlagh, Arezou; Soibel, Alexander; Nguyen, Jean; Höglund, Linda; Rafol, B., , Sir; Hill, Cory J.; Gunapala, Sarath D.

    2012-10-01

    The barrier infrared detector device architecture offers the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. The versatility of the antimonide material system, with the availability of three different types of band offsets for flexibility in device design, provides the ideal setting for implementing barrier infrared detectors. We describe the progress made at the NASA Jet Propulsion Laboratory in recent years in Barrier infrared detector research that resulted in high-performance quantum structure infrared detectors, including the type-II superlattice complementary barrier infrared detector (CBIRD), and the high operating quantum dot barrier infrared detector (HOT QD-BIRD).

  3. Pyroelectricity in Polycrystalline Ferroelectrics

    NASA Astrophysics Data System (ADS)

    Jiménez, R.; Jiménez, B.

    The first reference to pyroelectric effect is by Theophrastus in 314 BC, who noted that tourmaline becomes charged because it attracted bits of straw and ash when heated. Tourmaline's properties were reintroduced in Europe in 1707 by Johann George Schmidt, who also noted the attractive properties of the mineral when heated. Pyroelectricity was first described by Louis Lemery in 1717. In 1747, Linnaeus first related the phenomenon to electricity, although this was not proven until 1756 by Franz Ulrich Thodor Aepinus. In 1824, Sir David Brewster gave the effect the name it has today. William Thomson in 1878 and Voight in 1897 helped develop a theory for the processes behind pyroelectricity. Pierre Curie and his brother, Jacques Curie, studied pyroelectricity in the 1880s, leading to their discovery of some of the mechanisms behind piezoelectricity.

  4. NASA AMES infrared detector assemblies

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Silicon: Gallium infrared detector assemblies were designed, fabricated, and tested using techniques representative of those employed for hybrid arrays to determine the suitability of this candidate technology for infrared astronomical detector array applications. Both the single channel assembly and the assembly using a 32 channel CMOS multiplexer are considered. The detector material was certified to have a boron background of less than 10 to the 13th power atoms/sq cm counter doped with phosphorus. The gallium concentration is 2 x 10 to the 16th power atoms/cu cm.

  5. Unipolar Barrier Dual-Band Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Soibel, Alexander (Inventor); Khoshakhlagh, Arezou (Inventor); Gunapala, Sarath (Inventor)

    2017-01-01

    Dual-band barrier infrared detectors having structures configured to reduce spectral crosstalk between spectral bands and/or enhance quantum efficiency, and methods of their manufacture are provided. In particular, dual-band device structures are provided for constructing high-performance barrier infrared detectors having reduced crosstalk and/or enhance quantum efficiency using novel multi-segmented absorber regions. The novel absorber regions may comprise both p-type and n-type absorber sections. Utilizing such multi-segmented absorbers it is possible to construct any suitable barrier infrared detector having reduced crosstalk, including npBPN, nBPN, pBPN, npBN, npBP, pBN and nBP structures. The pBPN and pBN detector structures have high quantum efficiency and suppresses dark current, but has a smaller etch depth than conventional detectors and does not require a thick bottom contact layer.

  6. Uncooled infrared photon detector and multicolor infrared detection using microoptomechanical sensors

    DOEpatents

    Datskos, Panagiotis G.; Rajic, Solobodan; Datskou, Irene C.

    1999-01-01

    Systems and methods for infrared detection are described. An optomechanical photon detector includes a semiconductor material and is based on measurement of a photoinduced lattice strain. A multicolor infrared sensor includes a stack of frequency specific optomechanical detectors. The stack can include one, or more, of the optomechanical photon detectors that function based on the measurement of photoinduced lattice strain. The systems and methods provide advantages in that rapid, sensitive multicolor infrared imaging can be performed without the need for a cooling subsystem.

  7. All-fiber pyroelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Mandal, Dipankar

    2018-04-01

    An all-fiber pyroelectric nanogenerator (PyNG) is fabricated where both the active pyroelectric component and the electrodes were composed of fiber. The pyroelectric component was made with randomly organized electrospun PVDF nano-fibers possessing ferroelectric β- and γ-phases. The PyNG possess higher level of sensitivity which can detect very low level of temperature fluctuation, as, low as, 2 K. In addition, the thermal energy harvesting ability of the PyNG under several temperature variations and cycling frequencies paves the way for next generation thermal sensor and self-powered flexible micro-electronics.

  8. Recent developments in materials and detectors for the infrared; Proceedings of the Meeting, Cannes, France, November 25, 26, 1985

    NASA Technical Reports Server (NTRS)

    Morten, F. D. (Editor); Seeley, John S. (Editor)

    1986-01-01

    The present conference on advancements in IR-sensitive materials and detector technologies employing them gives attention to thermal detectors, focal plane array processing detectors, novel detector designs, general properties of IR optics materials, and preparation methods for such materials. Specific topics encompass the fabrication of InSb MIS structures prepared by photochemical vapor deposition, IR heterodyne detectors employing cadmium mercury telluride, low microphony pyroelectric arrays, IR detection based on minority carrier extrusion, longwave reststrahl in IR crystals, and molecular beam techniques for optical thin film fabrication.

  9. P-Compensated and P-Doped Superlattice Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Khoshakhlagh, Arezou (Inventor); Ting, David Z. (Inventor); Gunapala, Sarath D. (Inventor)

    2017-01-01

    Barrier infrared detectors configured to operate in the long-wave (LW) infrared regime are provided. The barrier infrared detector systems may be configured as pin, pbp, barrier and double heterostructrure infrared detectors incorporating optimized p-doped absorbers capable of taking advantage of high mobility (electron) minority carriers. The absorber may be a p-doped Ga-free InAs/InAsSb material. The p-doping may be accomplished by optimizing the Be doping levels used in the absorber material. The barrier infrared detectors may incorporate individual superlattice layers having narrower periodicity and optimization of Sb composition to achieve cutoff wavelengths of.about.10.mu.m.

  10. Detection of long wavelength infrared at moderate temperatures

    NASA Technical Reports Server (NTRS)

    Tredwell, T. J.

    1977-01-01

    Technical approaches for the advanced development of 8-12 micrometer detectors operating at elevated temperatures were defined. The theoretical limits to performance of 8-12 micrometer quantum detectors (photoconductive and photovoltaic) and thermal detectors (pyroelectrics, bolometers etc). An analytic model of signal and noise in both quantum detectors and pyroelectric detectors was developed and candidate materials for both detector types were identified and examined. The present status of both quantum and thermal detectors was assessed as well as the parameters limiting operating temperature and detectivity. The areas of research and development likely to lead to detector performance near the theoretical limit are identified.

  11. Photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Lu, S. S.-M.; Moriarty, J. A.; Crouch, R. K.; Miller, W. E.

    1978-01-01

    A new class of room-temperature infrared detectors has been developed through use of metal-insulator-semiconductor (MIS) or metal-insulator-semiconductor-insulator-metal (MISIM) slabs. The detectors, which have been fabricated from Si, Ge and GaAs, rely for operation on the electrical capacitance variations induced by modulated incident radiation. The peak detectivity for a 1000-A Si MISIM detector is comparable to that of a conventional Si detector functioning in the photovoltaic mode. Optimization of the photocapacitive-mode detection sensitivity is discussed.

  12. Ferroelectric ceramics in a pyroelectric accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shchagin, A. V., E-mail: shchagin@kipt.kharkov.ua; Belgorod State University, Belgorod 308015; Miroshnik, V. S.

    2015-12-07

    The applicability of polarized ferroelectric ceramics as a pyroelectric in a pyroelectric accelerator is shown by experiments. The spectra of X-ray radiation of energy up to tens of keV, generated by accelerated electrons, have been measured on heating and cooling of the ceramics in vacuum. It is suggested that curved layers of polarized ferroelectric ceramics be used as elements of ceramic pyroelectric accelerators. Besides, nanotubes and nanowires manufactured from ferroelectric ceramics are proposed for the use in nanometer-scale ceramic pyroelectric nanoaccelerators for future applications in nanotechnologies.

  13. Study on Pyroelectric Harvesters with Various Geometry

    PubMed Central

    Siao, An-Shen; Chao, Ching-Kong; Hsiao, Chun-Ching

    2015-01-01

    Pyroelectric harvesters convert time-dependent temperature variations into electric current. The appropriate geometry of the pyroelectric cells, coupled with the optimal period of temperature fluctuations, is key to driving the optimal load resistance, which enhances the performance of pyroelectric harvesters. The induced charge increases when the thickness of the pyroelectric cells decreases. Moreover, the induced charge is extremely reduced for the thinner pyroelectric cell when not used for the optimal period. The maximum harvested power is achieved when a 100 μm-thick PZT (Lead zirconate titanate) cell is used to drive the optimal load resistance of about 40 MΩ. Moreover, the harvested power is greatly reduced when the working resistance diverges even slightly from the optimal load resistance. The stored voltage generated from the 75 μm-thick PZT cell is less than that from the 400 μm-thick PZT cell for a period longer than 64 s. Although the thinner PZT cell is advantageous in that it enhances the efficiency of the pyroelectric harvester, the much thinner 75 μm-thick PZT cell and the divergence from the optimal period further diminish the performance of the pyroelectric cell. Therefore, the designers of pyroelectric harvesters need to consider the coupling effect between the geometry of the pyroelectric cells and the optimal period of temperature fluctuations to drive the optimal load resistance. PMID:26270666

  14. Resonant infrared detector with substantially unit quantum efficiency

    NASA Technical Reports Server (NTRS)

    Farhoomand, Jam (Inventor); Mcmurray, Robert E., Jr. (Inventor)

    1994-01-01

    A resonant infrared detector includes an infrared-active layer which has first and second parallel faces and which absorbs radiation of a given wavelength. The detector also includes a first tuned reflective layer, disposed opposite the first face of the infrared-active layer, which reflects a specific portion of the radiation incident thereon and allows a specific portion of the incident radiation at the given wavelength to reach the infrared-active layer. A second reflective layer, disposed opposite the second face of the infrared-active layer, reflects back into the infrared-active layer substantially all of the radiation at the given wavelength which passes through the infrared-active layer. The reflective layers have the effect of increasing the quantum efficiency of the infrared detector relative to the quantum efficiency of the infrared-active layer alone.

  15. Integrated detector array technology for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, c. R.; Goebel, J. H.; Mckelvey, M. E.; Stafford, P. S.; Lee, J. H.

    1984-01-01

    The status of laboratory and telescope tests of integrated infrared detector array technology for astronomical applications is described. The devices tested represent a number of extrinsic and intrinsic detector materials and various multiplexer designs. Infrared arrays have now been used in successful astronomical applications. These have shown that device sensitivities can be comparable to those of discrete detector systems and excellent astronomical imagery can be produced.

  16. Stacked Metal Silicide/Silicon Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1988-01-01

    Selective doping of silicon in proposed metal silicide/silicon Schottky-barrier infrared photodetector increases maximum detectable wavelength. Stacking layers to form multiple Schottky barriers increases quantum efficiency of detector. Detectors of new type enhance capabilities of far-infrared imaging arrays. Grows by molecular-beam epitaxy on silicon waferscontaining very-large-scale integrated circuits. Imaging arrays of detectors made in monolithic units with image-preprocessing circuitry.

  17. Predictive modeling of infrared detectors and material systems

    NASA Astrophysics Data System (ADS)

    Pinkie, Benjamin

    Detectors sensitive to thermal and reflected infrared radiation are widely used for night-vision, communications, thermography, and object tracking among other military, industrial, and commercial applications. System requirements for the next generation of ultra-high-performance infrared detectors call for increased functionality such as large formats (> 4K HD) with wide field-of-view, multispectral sensitivity, and on-chip processing. Due to the low yield of infrared material processing, the development of these next-generation technologies has become prohibitively costly and time consuming. In this work, it will be shown that physics-based numerical models can be applied to predictively simulate infrared detector arrays of current technological interest. The models can be used to a priori estimate detector characteristics, intelligently design detector architectures, and assist in the analysis and interpretation of existing systems. This dissertation develops a multi-scale simulation model which evaluates the physics of infrared systems from the atomic (material properties and electronic structure) to systems level (modulation transfer function, dense array effects). The framework is used to determine the electronic structure of several infrared materials, optimize the design of a two-color back-to-back HgCdTe photodiode, investigate a predicted failure mechanism for next-generation arrays, and predict the systems-level measurables of a number of detector architectures.

  18. Pyroelectric Energy Harvesting: Model and Experiments

    DTIC Science & Technology

    2016-05-01

    consisting of a current source for the pyroelectric current, a dielectric capacitor for the adiabatic charging and discharging, and optionally a resistor to...polarization) in a piezoelectric material. To extract work from the pyroelectric effect, the material acts as the dielectric in a capacitor that is...amplifier was chosen for the setup. The pyroelectric element is commonly modeled as a dielectric capacitor and a current source in parallel, as seen in

  19. Experiments to Demonstrate Piezoelectric and Pyroelectric Effects

    ERIC Educational Resources Information Center

    Erhart, Jirí

    2013-01-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature…

  20. Germanium blocked impurity band far infrared detectors

    NASA Astrophysics Data System (ADS)

    Rossington, Carolyn Sally

    1988-04-01

    The infrared portion of the electromagnetic spectrum has been of interest to scientist since the eighteenth century when Sir William Herschel discovered the infrared as he measured temperatures in the sun's spectrum and found that there was energy beyond the red. In the late nineteenth century, Thomas Edison established himself as the first infrared astronomer to look beyond the solar system when he observed the star Arcturus in the infrared. Significant advances in infrared technology and physics, long since Edison's time, have resulted in many scientific developments, such as the Infrared Astronomy Satellite (IRAS) which was launched in 1983, semiconductor infrared detectors for materials characterization, military equipment such as night-vision goggles and infrared surveillance equipment. It is now planned that cooled semiconductor infrared detectors will play a major role in the Star Wars nuclear defense scheme proposed by the Reagan administration.

  1. Pyroelectricity in globular protein lysozyme films

    NASA Astrophysics Data System (ADS)

    Stapleton, A.; Noor, M. R.; Haq, E. U.; Silien, C.; Soulimane, T.; Tofail, S. A. M.

    2018-03-01

    Pyroelectricity is the ability of certain non-centrosymmetric materials to generate an electric charge in response to a change in temperature and finds use in a range of applications from burglar alarms to thermal imaging. Some biological materials also exhibit pyroelectricity but the examples of the effect are limited to fibrous proteins, polypeptides, and tissues and organs of animals and plants. Here, we report pyroelectricity in polycrystalline aggregate films of lysozyme, a globular protein.

  2. Probing infrared detectors through energy-absorption interferometry

    NASA Astrophysics Data System (ADS)

    Moinard, Dan; Withington, Stafford; Thomas, Christopher N.

    2017-08-01

    We describe an interferometric technique capable of fully characterizing the optical response of few-mode and multi-mode detectors using only power measurements, and its implementation at 1550 nm wavelength. EnergyAbsorption Interferometry (EAI) is an experimental procedure where the system under test is excited with two coherent, phase-locked sources. As the relative phase between the sources is varied, a fringe is observed in the detector output. Iterating over source positions, the fringes' complex visibilities allow the two-point detector response function to be retrieved: this correlation function corresponds to the state of coherence to which the detector is maximally sensitive. This detector response function can then be decomposed into a set of natural modes, in which the detector is incoherently sensitive to power. EAI therefore allows the reconstruction of the individual degrees of freedom through which the detector can absorb energy, including their relative sensitivities and full spatial forms. Coupling mechanisms into absorbing structures and their underlying solidstate phenomena can thus be studied, with direct applications in improving current infrared detector technology. EAI has previously been demonstrated for millimeter wavelength. Here, we outline the theoretical basis of EAI, and present a room-temperature 1550 nm wavelength infrared experiment we have constructed. Finally, we discuss how this experimental system will allow us to study optical coupling into fiber-based systems and near-infrared detectors.

  3. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...

  4. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882... Infrared (NIR) Brain Hematoma Detector. (a) Identification. A Near Infrared (NIR) Brain Hematoma Detector... evaluate suspected brain hematomas. (b) Classification. Class II (special controls). The special controls...

  5. Next decade in infrared detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2017-10-01

    Fundamental and technological issues associated with the development and exploitation of the most advanced infrared technologies is discussed. In these classes of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys, type II superlattices (T2SLs), barrier detectors, quantum wells, extrinsic detectors, and uncooled thermal bolometers. The sophisticated physics associated with the antimonide-based bandgap engineering will give a new impact and interest in development of infrared detector structures. Important advantage of T2SLs is the high quality, high uniformity and stable nature of the material. In general, III-V semiconductors are more robust than their II-VI counterparts due to stronger, less ionic chemical bonding. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability, scalability, producibility, and affordability - the so-called "ibility" advantages. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. The microbolometer detectors are now produced in larger volumes than all other IR array technologies together. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VOx) or amorphous silicon (a-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement.

  6. Tunable quantum well infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    A novel infrared detector (20, 20', 20), is provided, which is characterized by photon-assisted resonant tunneling between adjacent quantum wells (22a, 22b) separated by barrier layers (28) in an intrinsic semiconductor layer (24) formed on an n.sup.+ substrate (26), wherein the resonance is electrically tunable over a wide band of wavelengths in the near to long infrared region. An n.sup.+ contacting layer (34) is formed over the intrinsic layer and the substrate is n.sup.+ doped to provide contact to the quantum wells. The detector permits fabrication of arrays (30) (one-dimensional and two-dimensional) for use in imaging and spectroscopy applications.

  7. Growth and characterization of crystals for room temperature I.R. detectors and second harmonic generation devices

    NASA Technical Reports Server (NTRS)

    Lal, R. B.

    1995-01-01

    One of the major objectives of this program was to modify the triglycine sulfate (TGS) crystals with suitable dopants and variants to achieve better pyroelectric properties and improved infrared detectivities (D(sup *)), and higher Curie transition temperature compared to undoped TGS crystals. Towards these objectives, many promising dopants, both inorganic and organic, were investigated in the last few years. These dopants gave significant improvement in the D(sup *) value of the infrared detectors fabricated from the grown crystals with no significant increase in the Curie temperature (49 C). The IR detectors were fabricated at EDO/Barnes Engineering Division, Shelton, CT. In the last one year many TGS crystals doped with urea were grown using the low temperature solution crystal growth facility. It is found that doping with urea, the normalized growth yield increased significantly compared to pure TGS crystals and there is an improvement in the pyroelectric and dielectric constant values of doped crystals. This gave a significant increase in the materials figure of merits. The Vicker's hardness of 10 wt percent urea doped crystals is found to be about three times higher in the (010) direction compared to undoped crystals. This report describes in detail the results of urea doped TGS crystals.

  8. Human Movement Detection and Idengification Using Pyroelectric Infrared Sensors

    PubMed Central

    Yun, Jaeseok; Lee, Sang-Shin

    2014-01-01

    Pyroelectric infrared (PIR) sensors are widely used as a presence trigger, but the analog output of PIR sensors depends on several other aspects, including the distance of the body from the PIR sensor, the direction and speed of movement, the body shape and gait. In this paper, we present an empirical study of human movement detection and idengification using a set of PIR sensors. We have developed a data collection module having two pairs of PIR sensors orthogonally aligned and modified Fresnel lenses. We have placed three PIR-based modules in a hallway for monitoring people; one module on the ceiling; two modules on opposite walls facing each other. We have collected a data set from eight subjects when walking in three different conditions: two directions (back and forth), three distance intervals (close to one wall sensor, in the middle, close to the other wall sensor) and three speed levels (slow, moderate, fast). We have used two types of feature sets: a raw data set and a reduced feature set composed of amplitude and time to peaks; and passage duration extracted from each PIR sensor. We have performed classification analysis with well-known machine learning algorithms, including instance-based learning and support vector machine. Our findings show that with the raw data set captured from a single PIR sensor of each of the three modules, we could achieve more than 92% accuracy in classifying the direction and speed of movement, the distance interval and idengifying subjects. We could also achieve more than 94% accuracy in classifying the direction, speed and distance and idengifying subjects using the reduced feature set extracted from two pairs of PIR sensors of each of the three modules. PMID:24803195

  9. Multi-spectral black meta-infrared detectors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Krishna, Sanjay

    2016-09-01

    There is an increased emphasis on obtaining imaging systems with on-demand spectro-polarimetric information at the pixel level. Meta-infrared detectors in which infrared detectors are combined with metamaterials are a promising way to realize this. The infrared region is appealing due to the low metallic loss, large penetration depth of the localized field and the larger feature sizes compared to the visible region. I will discuss approaches to realize multispectral detectors including our recent work on double metal meta-material design combined with Type II superlattices that have demonstrated enhanced quantum efficiency (collaboration with Padilla group at Duke University).

  10. Infrared Detector Activities at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Refaat, T. F.; Sulima, O. V.; Amzajerdian, F.

    2008-01-01

    Infrared detector development and characterization at NASA Langley Research Center will be reviewed. These detectors were intended for ground, airborne, and space borne remote sensing applications. Discussion will be focused on recently developed single-element infrared detector and future development of near-infrared focal plane arrays (FPA). The FPA will be applied to next generation space-based instruments. These activities are based on phototransistor and avalanche photodiode technologies, which offer high internal gain and relatively low noise-equivalent-power. These novel devices will improve the sensitivity of active remote sensing instruments while eliminating the need for a high power laser transmitter.

  11. Mid-Infrared Tunable Resonant Cavity Enhanced Detectors

    PubMed Central

    Quack, Niels; Blunier, Stefan; Dual, Jurg; Felder, Ferdinand; Arnold, Martin; Zogg, Hans

    2008-01-01

    Mid-infrared detectors that are sensitive only in a tunable narrow spectral band are presented. They are based on the Resonant Cavity Enhanced Detector (RCED) principle and employing a thin active region using IV-VI narrow gap semiconductor layers. A Fabry-Pérot cavity is formed by two mirrors. The active layer is grown onto one mirror, while the second mirror can be displaced. This changes the cavity length thus shifting the resonances where the detector is sensitive. Using electrostatically actuated MEMS micromirrors, a very compact tunable detector system has been fabricated. Mirror movements of more than 3 μm at 30V are obtained. With these mirrors, detectors with a wavelength tuning range of about 0.7 μm have been realized. Single detectors can be used in mid-infrared micro spectrometers, while a detector arrangement in an array makes it possible to realize Adaptive Focal Plane Arrays (AFPA). PMID:27873824

  12. Mechanisms of Pyroelectricity in Three- and Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Liu, Jian; Pantelides, Sokrates T.

    2018-05-01

    Pyroelectricity is a very promising phenomenon in three- and two-dimensional materials, but first-principles calculations have not so far been used to elucidate the underlying mechanisms. Here we report density-functional theory (DFT) calculations based on the Born-Szigeti theory of pyroelectricity, by combining fundamental thermodynamics and the modern theory of polarization. We find satisfactory agreement with experimental data in the case of bulk benchmark materials, showing that the so-called electron-phonon renormalization, whose contribution has been traditionally viewed as negligible, is important. We predict out-of-plane pyroelectricity in the recently synthesized Janus MoSSe monolayer and in-plane pyroelectricity in the group-IV monochalcogenide GeS monolayer. It is notable that the so-called secondary pyroelectricity is found to be dominant in GeS monolayer. The present work opens a theoretical route to study the pyroelectric effect using DFT and provides a valuable tool in the search for new candidates for pyroelectric applications.

  13. Pyroelectric Applications of the VDF-TrFE Copolymer

    NASA Technical Reports Server (NTRS)

    Simonne, J. J.; Bauer, Ph.; Audaire, L.; Bauer, F.

    1995-01-01

    VDF/TrFe pyroelectric sensors have now definitely reached the level of a product. Based on a bidimensional staring array, it can be considered as a whole system with a monolithic technology processed on a silicon substrate provided with the integrated read out circuit. The paper will describe the main procedure dealing with the elaboration of a 32 x 32 focal plane array developed, in the context of the PROMETHEUS PROCHIP European Program (EUREKA), as a passive infrared obstacle detection applied to automotive. Additional experimental data suggest that this microsystem could operate in space environment.

  14. Micromachined Electron-Tunneling Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Kenny, Thomas W.; Kaiser, William J.; Waltman, Stephen B.

    1993-01-01

    Pneumatic/thermal infrared detectors based partly on Golay-cell concept, but smaller and less fragile. Include containers filled with air or other gas trapped behind diaphragms. Infrared radiation heats sensors, causing gas to expand. Resulting deflections of diaphragms measured by displacement sensors based on principle of electron-tunneling transducers of scanning tunneling microscopes. Exceed sensitivity of all other miniature, uncooled infrared sensors presently available. Expected to include low consumption of power, broadband sensitivity, room-temperature operation, and invulnerability to ionizing radiation.

  15. Pyroelectric response of lead zirconate titanate thin films on silicon: Effect of thermal stresses

    NASA Astrophysics Data System (ADS)

    Kesim, M. T.; Zhang, J.; Trolier-McKinstry, S.; Mantese, J. V.; Whatmore, R. W.; Alpay, S. P.

    2013-11-01

    Ferroelectric lead zirconate titanate [Pb(ZrxTi1-xO)3, (PZT x:1-x)] has received considerable interest for applications related to uncooled infrared devices due to its large pyroelectric figures of merit near room temperature, and the fact that such devices are inherently ac coupled, allowing for simplified image post processing. For ferroelectric films made by industry-standard deposition techniques, stresses develop in the PZT layer upon cooling from the processing/growth temperature due to thermal mismatch between the film and the substrate. In this study, we use a non-linear thermodynamic model to investigate the pyroelectric properties of polycrystalline PZT thin films for five different compositions (PZT 40:60, PZT 30:70, PZT 20:80, PZT 10:90, PZT 0:100) on silicon as a function of processing temperature (25-800 °C). It is shown that the in-plane thermal stresses in PZT thin films alter the out-of-plane polarization and the ferroelectric phase transformation temperature, with profound effect on the pyroelectric properties. PZT 30:70 is found to have the largest pyroelectric coefficient (0.042 μC cm-2 °C-1, comparable to bulk values) at a growth temperature of 550 °C; typical to what is currently used for many deposition processes. Our results indicate that it is possible to optimize the pyroelectric response of PZT thin films by adjusting the Ti composition and the processing temperature, thereby, enabling the tailoring of material properties for optimization relative to a specific deposition process.

  16. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging

    PubMed Central

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P.; Zolliker, Peter

    2016-01-01

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8–14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed. PMID:26861341

  17. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.

    PubMed

    Hack, Erwin; Valzania, Lorenzo; Gäumann, Gregory; Shalaby, Mostafa; Hauri, Christoph P; Zolliker, Peter

    2016-02-06

    In terahertz (THz) materials science, imaging by scanning prevails when low power THz sources are used. However, the application of array detectors operating with high power THz sources is increasingly reported. We compare the imaging properties of four different array detectors that are able to record THz radiation directly. Two micro-bolometer arrays are designed for infrared imaging in the 8-14 μm wavelength range, but are based on different absorber materials (i) vanadium oxide; (ii) amorphous silicon; (iii) a micro-bolometer array optimized for recording THz radiation based on silicon nitride; and (iv) a pyroelectric array detector for THz beam profile measurements. THz wavelengths of 96.5 μm, 118.8 μm, and 393.6 μm from a powerful far infrared laser were used to assess the technical performance in terms of signal to noise ratio, detector response and detectivity. The usefulness of the detectors for beam profiling and digital holography is assessed. Finally, the potential and limitation for real-time digital holography are discussed.

  18. Infrared detectors for Earth observation

    NASA Astrophysics Data System (ADS)

    Barnes, K.; Davis, R. P.; Knowles, P.; Shorrocks, N.

    2016-05-01

    IASI (Infrared Atmospheric Sounding Interferometer), developed by CNES and launched since 2006 on the Metop satellites, is established as a major source of data for atmospheric science and weather prediction. The next generation - IASI NG - is a French national contribution to the Eumetsat Polar System Second Generation on board of the Metop second generation satellites and is under development by Airbus Defence and Space for CNES. The mission aim is to achieve twice the performance of the original IASI instrument in terms of sensitivity and spectral resolution. In turn, this places very demanding requirements on the infrared detectors for the new instrument. Selex ES in Southampton has been selected for the development of the infrared detector set for the IASI-NG instruments. The wide spectral range, 3.6 to 15.5 microns, is covered in four bands, each served by a dedicated detector design, with a common 4 x 4 array format of 1.3 mm square macropixels. Three of the bands up to 8.7 microns employ photovoltaic MCT (mercury cadmium telluride) technology and the very long wave band employs photoconductive MCT, in common with the approach taken between Airbus and Selex ES for the SEVIRI instrument on Second Generation Meteosat. For the photovoltaic detectors, the MCT crystal growth of heterojunction photodiodes is by the MOVPE technique (metal organic vapour phase epitaxy). Novel approaches have been taken to hardening the photovoltaic macropixels against localised crystal defects, and integrating transimpedance amplifiers for each macropixel into a full-custom silicon read out chip, which incorporates radiation hard design.

  19. High Operating Temperature Midwave Quantum Dot Barrier Infrared Detector (QD-BIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Hill, Cory J.; Keo, Sam A.; Mumolo, Jason M.; Gunapala, Sarath D.

    2012-01-01

    The nBn or XBn barrier infrared detector has the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. High performance detectors and focal plane arrays (FPAs) based on InAsSb absorber lattice matched to GaSb substrate, with a matching AlAsSb unipolar electron barrier, have been demonstrated. The band gap of lattice-matched InAsSb yields a detector cutoff wavelength of approximately 4.2 ??m when operating at 150K. We report results on extending the cutoff wavelength of midwave barrier infrared detectors by incorporating self-assembled InSb quantum dots into the active area of the detector. Using this approach, we were able to extend the detector cutoff wavelength to 6 ?m, allowing the coverage of the full midwave infrared (MWIR) transmission window. The quantum dot barrier infrared detector (QD-BIRD) shows infrared response at temperatures up to 225 K.

  20. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Claire, Terry L. (Inventor)

    2002-01-01

    A thermally stable, piezoelectric and pyroelectric polymeric substrate was prepared, This thermally stable, piezoelectric and pyroelectric polymeric substrate may be used to prepare electromechanical transducers, thermomechanical transducers, accelerometers, acoustic sensors, infrared sensors, pressure sensors, vibration sensors, impact sensors. in-situ temperature sensors, in-situ stress/strain sensors, micro actuators, switches. adjustable fresnel lenses, speakers, tactile sensors, weather sensors, micro positioners, ultrasonic devices, power generators, tunable reflectors, microphones, and hydrophones. The process for preparing these polymeric substrates includes: providing a polymeric substrate having a softening temperature greater than 100 C; depositing a metal electrode material onto the polymer film; attaching a plurality of electrical leads to the metal electrode coated polymeric substrates; heating the metal electrode coated polymeric substrate in a low dielectric medium; applying a voltage to the heated metal electrode coated polymeric substrate to induce polarization; and cooling the polarized metal electrode coated polymeric electrode while maintaining a constant voltage.

  1. Pyroelectric conversion in space: A conceptual design study

    NASA Technical Reports Server (NTRS)

    Olsen, R. B.

    1983-01-01

    Pyroelectric conversion is potentially a very lightweight means of providing electrical power generation in space. Two conceptualized systems approaches for the direct conversion of heat (from sunlight) into electrical energy using the pyroelectric effect of a new class of polar polymers were evaluated. Both of the approaches involved large area thin sheets of plastic which are thermally cycled by radiative input and output of thermal energy. The systems studied are expected to eventually achieve efficiencies of the order of 8% and may deliver as much as one half kilowatt per kilogram. In addition to potentially very high specific power, the pyroelectric conversion approaches outlined appear to offer low cost per watt in the form of an easily deployed, flexible, strong, electrically ""self-healing'', and high voltage sheet. This study assessed several potential problems such as plasma interactions and radiation degradation and suggests approaches to overcome them. The fundamental technological issues for space pyroelectric conversion are: (1) demonstration of the conversion cycle with the proposed class of polymers, (2) achievement of improved dielectric strength of the material, (3) demonstration of acceptable plasma power losses for low altitude, and (4) establishment of reasonable lifetime for the pyroelectric material in the space environment. Recommendations include an experimental demonstration of the pyroelectric conversion cycle followed by studies to improve the dielectric strength of the polymer and basic studies to discover additional pyroelectric materials.

  2. Light-induced pyroelectric effect as an effective approach for ultrafast ultraviolet nanosensing

    NASA Astrophysics Data System (ADS)

    Wang, Zhaona; Yu, Ruomeng; Pan, Caofeng; Li, Zhaoling; Yang, Jin; Yi, Fang; Wang, Zhong Lin

    2015-09-01

    Zinc oxide is potentially a useful material for ultraviolet detectors; however, a relatively long response time hinders practical implementation. Here by designing and fabricating a self-powered ZnO/perovskite-heterostructured ultraviolet photodetector, the pyroelectric effect, induced in wurtzite ZnO nanowires on ultraviolet illumination, has been utilized as an effective approach for high-performance photon sensing. The response time is improved from 5.4 s to 53 μs at the rising edge, and 8.9 s to 63 μs at the falling edge, with an enhancement of five orders in magnitudes. The specific detectivity and the responsivity are both enhanced by 322%. This work provides a novel design to achieve ultrafast ultraviolet sensing at room temperature via light-self-induced pyroelectric effect. The newly designed ultrafast self-powered ultraviolet nanosensors may find promising applications in ultrafast optics, nonlinear optics, optothermal detections, computational memories and biocompatible optoelectronic probes.

  3. Experiments to demonstrate piezoelectric and pyroelectric effects

    NASA Astrophysics Data System (ADS)

    Erhart, Jiří

    2013-07-01

    Piezoelectric and pyroelectric materials are used in many current applications. The purpose of this paper is to explain the basic properties of pyroelectric and piezoelectric effects and demonstrate them in simple experiments. Pyroelectricity is presented on lead zirconium titanate (PZT) ceramics as an electric charge generated by the temperature change. The direct piezoelectric effect is demonstrated by the electric charge generated from the bending of the piezoelectric ceramic membrane or from the gas igniter. The converse piezoelectric effect is presented in the experiments by the deflection of the bending piezoelectric element (piezoelectric bimorph).

  4. Far-Infrared Blocked Impurity Band Detector Development

    NASA Technical Reports Server (NTRS)

    Hogue, H. H.; Guptill, M. T.; Monson, J. C.; Stewart, J. W.; Huffman, J. E.; Mlynczak, M. G.; Abedin, M. N.

    2007-01-01

    DRS Sensors & Targeting Systems, supported by detector materials supplier Lawrence Semiconductor Research Laboratory, is developing far-infrared detectors jointly with NASA Langley under the Far-IR Detector Technology Advancement Partnership (FIDTAP). The detectors are intended for spectral characterization of the Earth's energy budget from space. During the first year of this effort we have designed, fabricated, and evaluated pilot Blocked Impurity Band (BIB) detectors in both silicon and germanium, utilizing pre-existing customized detector materials and photolithographic masks. A second-year effort has prepared improved silicon materials, fabricated custom photolithographic masks for detector process, and begun detector processing. We report the characterization results from the pilot detectors and other progress.

  5. Complementary barrier infrared detector (CBIRD)

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Bandara, Sumith V. (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2013-01-01

    An infrared detector having a hole barrier region adjacent to one side of an absorber region, an electron barrier region adjacent to the other side of the absorber region, and a semiconductor adjacent to the electron barrier.

  6. Long wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Vasquez, Richard P. (Inventor)

    1993-01-01

    Long wavelength infrared detection is achieved by a detector made with layers of quantum well material bounded on each side by barrier material to form paired quantum wells, each quantum well having a single energy level. The width and depth of the paired quantum wells, and the spacing therebetween, are selected to split the single energy level with an upper energy level near the top of the energy wells. The spacing is selected for splitting the single energy level into two energy levels with a difference between levels sufficiently small for detection of infrared radiation of a desired wavelength.

  7. Miniaturized multi channel infrared optical gas sensor system

    NASA Astrophysics Data System (ADS)

    Wöllenstein, Jürgen; Eberhardt, Andre; Rademacher, Sven; Schmitt, Katrin

    2011-06-01

    Infrared spectroscopy uses the characteristic absorption of the molecules in the mid infrared and allows the determination of the gases and their concentration. Especially by the absorption at longer wavelengths between 8 μm and 12 μm, the so called "fingerprint" region, the molecules can be measured with highest selectivity. We present an infrared optical filter photometer for the analytical determination of trace gases in the air. The challenge in developing the filter photometer was the construction of a multi-channel system using a novel filter wheel concept - which acts as a chopper too- in order to measure simultaneously four gases: carbon monoxide, carbon dioxide, methane and ammonia. The system consists of a broadband infrared emitter, a long path cell with 1.7m optical path length, a filter wheel and analogue and digital signal processing. Multi channel filter photometers normally need one filter and one detector per target gas. There are small detection units with one, two or more detectors with integrated filters available on the market. One filter is normally used as reference at a wavelength without any cross-sensitivities to possible interfering gases (e.g. at 3.95 μm is an "atmospheric window" - a small spectral band without absorbing gases in the atmosphere). The advantage of a filter-wheel set-up is that a single IR-detector can be used, which reduces the signal drift enormously. Pyroelectric and thermopile detectors are often integrated in these kinds of spectrometers. For both detector types a modulation of the light is required and can be done - without an additional chopper - with the filter wheel.

  8. Challenges of small-pixel infrared detectors: a review.

    PubMed

    Rogalski, A; Martyniuk, P; Kopytko, M

    2016-04-01

    In the last two decades, several new concepts for improving the performance of infrared detectors have been proposed. These new concepts particularly address the drive towards the so-called high operating temperature focal plane arrays (FPAs), aiming to increase detector operating temperatures, and as a consequence reduce the cost of infrared systems. In imaging systems with the above megapixel formats, pixel dimension plays a crucial role in determining critical system attributes such as system size, weight and power consumption (SWaP). The advent of smaller pixels has also resulted in the superior spatial and temperature resolution of these systems. Optimum pixel dimensions are limited by diffraction effects from the aperture, and are in turn wavelength-dependent. In this paper, the key challenges in realizing optimum pixel dimensions in FPA design including dark current, pixel hybridization, pixel delineation, and unit cell readout capacity are outlined to achieve a sufficiently adequate modulation transfer function for the ultra-small pitches involved. Both photon and thermal detectors have been considered. Concerning infrared photon detectors, the trade-offs between two types of competing technology-HgCdTe material systems and III-V materials (mainly barrier detectors)-have been investigated.

  9. A pyroelectric thermal imaging system for use in medical diagnosis.

    PubMed

    Black, C M; Clark, R P; Darton, K; Goff, M R; Norman, T D; Spikes, H A

    1990-07-01

    The value of infra-red thermography in a number of pathologies, notably rheumatology and vascular diseases, is becoming well established. However, the high cost of thermal scanners and the associated image processing computers has been a limitation to the widespread availability of this technique to the clinical community. This paper describes a relatively inexpensive thermographic system based on a pyroelectric vidicon scanner and a microcomputer. Software has been written with particular reference to the use of thermography in rheumatoid arthritis and vasospastic conditions such as Raynaud's phenomenon.

  10. Field induced gap infrared detector

    NASA Technical Reports Server (NTRS)

    Elliott, C. Thomas (Inventor)

    1990-01-01

    A tunable infrared detector which employs a vanishing band gap semimetal material provided with an induced band gap by a magnetic field to allow intrinsic semiconductor type infrared detection capabilities is disclosed. The semimetal material may thus operate as a semiconductor type detector with a wavelength sensitivity corresponding to the induced band gap in a preferred embodiment of a diode structure. Preferred semimetal materials include Hg(1-x)Cd(x)Te, x is less than 0.15, HgCdSe, BiSb, alpha-Sn, HgMgTe, HgMnTe, HgZnTe, HgMnSe, HgMgSe, and HgZnSe. The magnetic field induces a band gap in the semimetal material proportional to the strength of the magnetic field allowing tunable detection cutoff wavelengths. For an applied magnetic field from 5 to 10 tesla, the wavelength detection cutoff will be in the range of 20 to 50 micrometers for Hg(1-x)Cd(x)Te alloys with x about 0.15. A similar approach may also be employed to generate infrared energy in a desired band gap and then operating the structure in a light emitting diode or semiconductor laser type of configuration.

  11. Radiation response issues for infrared detectors

    NASA Technical Reports Server (NTRS)

    Kalma, Arne H.

    1990-01-01

    Researchers describe the most important radiation response issues for infrared detectors. In general, the two key degradation mechanisms in infrared detectors are the noise produced by exposure to a flux of ionizing particles (e.g.; trapped electronics and protons, debris gammas and electrons, radioactive decay of neutron-activated materials) and permanent damage produced by exposure to total dose. Total-dose-induced damage is most often the result of charge trapping in insulators or at interfaces. Exposure to short pulses of ionization (e.g.; prompt x rays or gammas, delayed gammas) will cause detector upset. However, this upset is not important to a sensor unless the recovery time is too long. A few detector technologies are vulnerable to neutron-induced displacement damage, but fortunately most are not. Researchers compare the responses of the new technologies with those of the mainstream technologies of PV HgCdTe and IBC Si:As. One important reason for this comparison is to note where some of the newer technologies have the potential to provide significantly improved radiation hardness compared with that of the mainstream technologies, and thus to provide greater motivation for the pursuit of these technologies.

  12. Recent progress in infrared detector technologies

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2011-05-01

    In the paper, fundamental and technological issues associated with the development and exploitation of the most advanced infrared detector technologies are discussed. In this class of detectors both photon and thermal detectors are considered. Special attention is directed to HgCdTe ternary alloys on silicon, type-II superlattices, uncooled thermal bolometers, and novel uncooled micromechanical cantilever detectors. Despite serious competition from alternative technologies and slower progress than expected, HgCdTe is unlikely to be seriously challenged for high-performance applications, applications requiring multispectral capability and fast response. However, the nonuniformity is a serious problem in the case of LWIR and VLWIR HgCdTe detectors. In this context, it is predicted that type-II superlattice system seems to be an alternative to HgCdTe in long wavelength spectral region. In well established uncooled imaging, microbolometer arrays are clearly the most used technology. Present state-of-the-art microbolometers are based on polycrystalline or amorphous materials, typically vanadium oxide (VO x) or amorphous silicon (α-Si), with only modest temperature sensitivity and noise properties. Basic efforts today are mainly focused on pixel reduction and performance enhancement. Attractive alternatives consist of low-resistance α-SiGe monocrystalline SiGe quantum wells or quantum dots. In spite of successful commercialization of uncooled microbolometers, the infrared community is still searching for a platform for thermal imagers that combine affordability, convenience of operation, and excellent performance. Recent advances in MEMS systems have lead to the development of uncooled IR detectors operating as micromechanical thermal detectors. Between them the most important are biomaterial microcantilevers.

  13. Dielectric constant tunability at microwave frequencies and pyroelectric behavior of lead-free submicrometer-structured (Bi0.5Na0.5)1-xBaxTiO3 ferroelectric ceramics.

    PubMed

    Martínez, Félix L; Hinojosa, Juan; Doménech, Ginés; Fernández-Luque, Francisco J; Zapata, Juan; Ruiz, Ramon; Pardo, Lorena

    2013-08-01

    In this article, we show that the dielectric constant of lead-free ferroelectric ceramics based on the solid solution (1-x)(Bi(0.5)Na(0.5))TiO(3)-xBaTiO(3), with compositions at or near the morphotropic phase boundary (MPB), can be tuned by a local applied electric field. Two compositions have been studied, one at the MPB, with x = 0.06 (BNBT6), and another one nearer the BNT side of the phase diagram, with x = 0.04 (BNBT4). The tunability of the dielectric constant is measured at microwave frequencies between 100 MHz and 3 GHz by a nonresonant method and simultaneously applying a dc electric field. As expected, the tunability is higher for the composition at the MPB (BNBT6), reaching a maximum value of 60% for an electric field of 900 V/cm, compared with the composition below this boundary (BNBT4), which saturates at 40% for an electric field of 640 V/cm. The high tunability in both cases is attributed to the fine grain and high density of the samples, which have a submicrometer homogeneous grain structure with grain size of the order of a few hundred nanometers. Such properties make these ceramics attractive for microwave tunable devices. Finally, we have tested these ceramics for their application as infrared pyroelectric detectors and we have found that the pyroelectric figure of merit is comparable to traditional lead-containing pyroelectrics.

  14. Infrared Detector System with Controlled Thermal Conductance

    NASA Technical Reports Server (NTRS)

    Cunningham, Thomas J. (Inventor)

    2000-01-01

    A thermal infrared detector system includes a heat sink, a support member, a connection support member connecting the support member to the heat sink and including a heater unit is reviewed. An infrared detector element is mounted on the support member and a temperature signal representative of the infrared energy contacting the support member can then be derived by comparing the temperature of the support member and the heat sink. The temperature signal from a support member and a temperature signal from the connection support member can then be used to drive a heater unit mounted on the connection support member to thereby control the thermal conductance of the support member. Thus, the thermal conductance can be controlled so that it can be actively increased or decreased as desired.

  15. Pyroelectricity of silicon-doped hafnium oxide thin films

    NASA Astrophysics Data System (ADS)

    Jachalke, Sven; Schenk, Tony; Park, Min Hyuk; Schroeder, Uwe; Mikolajick, Thomas; Stöcker, Hartmut; Mehner, Erik; Meyer, Dirk C.

    2018-04-01

    Ferroelectricity in hafnium oxide thin films is known to be induced by various doping elements and in solid-solution with zirconia. While a wealth of studies is focused on their basic ferroelectric properties and memory applications, thorough studies of the related pyroelectric properties and their application potential are only rarely found. This work investigates the impact of Si doping on the phase composition and ferro- as well as pyroelectric properties of thin film capacitors. Dynamic hysteresis measurements and the field-free Sharp-Garn method were used to correlate the reported orthorhombic phase fractions with the remanent polarization and pyroelectric coefficient. Maximum values of 8.21 µC cm-2 and -46.2 µC K-1 m-2 for remanent polarization and pyroelectric coefficient were found for a Si content of 2.0 at%, respectively. Moreover, temperature-dependent measurements reveal nearly constant values for the pyroelectric coefficient and remanent polarization over the temperature range of 0 ° C to 170 ° C , which make the material a promising candidate for IR sensor and energy conversion applications beyond the commonly discussed use in memory applications.

  16. The Electronic Structure and Secondary Pyroelectric Properties of Lithium Tetraborate

    PubMed Central

    Adamiv, Volodymyr.T.; Burak, Yaroslav.V.; Wooten, David. J.; McClory, John; Petrosky, James; Ketsman, Ihor; Xiao, Jie; Losovyj, Yaroslav B.; Dowben, Peter A.

    2010-01-01

    We review the pyroelectric properties and electronic structure of Li2B4O7(110) and Li2B4O7(100) surfaces. There is evidence for a pyroelectric current along the [110] direction of stoichiometric Li2B4O7 so that the pyroelectric coefficient is nonzero but roughly 103 smaller than along the [001] direction of spontaneous polarization. Abrupt decreases in the pyroelectric coefficient along the [110] direction can be correlated with anomalies in the elastic stiffness C33D contributing to the concept that the pyroelectric coefficient is not simply a vector but has qualities of a tensor, as expected. The time dependent surface photovoltaic charging suggests that surface charging is dependent on crystal orientation and doping, as well as temperature. PMID:28883341

  17. Modulate chopper technique used in pyroelectric uncooled focal plane array thermal imager

    NASA Astrophysics Data System (ADS)

    He, Yuqing; Jin, Weiqi; Liu, Guangrong; Gao, Zhiyun; Wang, Xia; Wang, Lingxue

    2002-09-01

    Pyroelectric uncooled focal plane array (FPA) thermal imager has the advantages of low cost, small size, high responsibility and can work under room temperature, so it has great progress in recent years. As a matched technique, the modulate chopper has become one of the key techniques in uncooled FPA thermal imaging system. Now the Archimedes spiral cord chopper technique is mostly used. When it works, the chopper pushing scans the detector's pixel array, thus makes the pixels being exposed continuously. This paper simulates the shape of this kind of chopper, analyses the exposure time of the detector's every pixel, and also analyses the whole detector pixels' exposure sequence. From the analysis we can get the results: the parameter of Archimedes spiral cord, the detector's thermal time constant, the detector's geometrical dimension, the relative position of the detector to the chopper's spiral cord are the system's important parameters, they will affect the chopper's exposure efficiency and uniformity. We should design the chopper's relevant parameter according to the practical request to achieve the chopper's appropriate structure.

  18. Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared Detector Samples

    DTIC Science & Technology

    2015-11-13

    P Wijewarnasuriya at the Army Research Lab to understand the bandd offsets of HgCdTe infrared detector structures. Especially when a sample is not...Final Report: Equipment for Topographical Preparation and Analysis of Various Semiconductor Infrared Detector Samples Report Title A used calibrated...structures i. G15-38 and G15-38 Quantum Dot ---------------------------- 16 Infrared Detector Samples ii. GSU13-MPD-GB1 Heterostructure

  19. New infrared detectors and solar cells

    NASA Technical Reports Server (NTRS)

    Sher, A.

    1979-01-01

    The inventions and published papers related to the project are listed. The research with thin films of LaF3 deposited on GaAs substrates is reported along with improvements in photocapacitative MIS infrared detectors.

  20. Quantum Well and Quantum Dot Modeling for Advanced Infrared Detectors and Focal Plane Arrays

    NASA Technical Reports Server (NTRS)

    Ting, David; Gunapala, S. D.; Bandara, S. V.; Hill, C. J.

    2006-01-01

    This viewgraph presentation reviews the modeling of Quantum Well Infrared Detectors (QWIP) and Quantum Dot Infrared Detectors (QDIP) in the development of Focal Plane Arrays (FPA). The QWIP Detector being developed is a dual band detector. It is capable of running on two bands Long-Wave Infrared (LWIR) and Medium Wavelength Infrared (MWIR). The same large-format dual-band FPA technology can be applied to Quantum Dot Infrared Photodetector (QDIP) with no modification, once QDIP exceeds QWIP in single device performance. Details of the devices are reviewed.

  1. Superlattice Barrier Infrared Detector Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Rafol, Sir B.; Nguyen, Jean; Hoglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.

    2011-01-01

    We report recent efforts in achieving state-of-the-art performance in type-II superlattice based infrared photodetectors using the barrier infrared detector architecture. We used photoluminescence measurements for evaluating detector material and studied the influence of the material quality on the intensity of the photoluminescence. We performed direct noise measurements of the superlattice detectors and demonstrated that while intrinsic 1/f noise is absent in superlattice heterodiode, side-wall leakage current can become a source of strong frequency-dependent noise. We developed an effective dry etching process for these complex antimonide-based superlattices that enabled us to fabricate single pixel devices as well as large format focal plane arrays. We describe the demonstration of a 1024x1024 pixel long-wavelength infrared focal plane array based the complementary barrier infrared detector (CBIRD) design. An 11.5 micron cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 ?m cutoff focal plane array are also presented.

  2. Development of an ultra-compact mid-infrared attenuated total reflectance spectrophotometer

    NASA Astrophysics Data System (ADS)

    Kim, Dong Soo; Lee, Tae-Ro; Yoon, Gilwon

    2014-07-01

    Mid-infrared spectroscopy has been an important tool widely used for qualitative analysis in various fields. However, portable or personal use is size and cost prohibitive for either Fourier transform infrared or attenuated total reflectance (ATR) spectrophotometers. In this study, we developed an ultra-compact ATR spectrophotometer whose frequency band was 5.5-11.0 μm. We used miniature components, such as a light source fabricated by semiconductor technology, a linear variable filter, and a pyro-electric array detector. There were no moving parts. Optimal design based on two light sources, a zippered configuration of the array detector and ATR optics could produce absorption spectra that might be used for qualitative analysis. A microprocessor synchronized the pulsed light sources and detector, and all the signals were processed digitally. The size was 13.5×8.5×3.5 cm3 and the weight was 300 grams. Due to its low cost, our spectrophotometer can replace many online monitoring devices. Another application could be for a u-healthcare system installed in the bathroom or attached to a smartphone for monitoring substances in body fluids.

  3. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Boer, K. W.; Hadley, H. C.; Robertson, J. B.

    1972-01-01

    New and highly sensitive method of detecting infrared irradiation makes possible solid state infrared detector which is more sensitive near room temperature than usual photoconductive low band gap semiconductor devices. Reconfiguration of high field domains in cadmium sulphide crystals provides basis for discovery.

  4. Si and GaAs photocapacitive MIS infrared detectors

    NASA Technical Reports Server (NTRS)

    Sher, A.; Tsuo, Y. H.; Moriarty, J. A.; Miller, W. E.; Crouch, R. K.

    1980-01-01

    Improvement of the previously reported photocapacitive MIS infrared detectors has led to the development of exceptional room-temperature devices. Unoptimized peak detectivities on the order of 10 to the 13th cm sq rt Hz/W, a value which exceeds the best obtainable from existing solid-state detectors, have now been consistently obtained in Si and GaAs devices using high-capacitance LaF3 or composite LaF3/native-oxide insulating layers. The measured spectral response of representative samples is presented and discussed in detail together with a simple theory which accounts for the observed behavior. The response of an ideal MIS photocapacitor is also contrasted with that of both a conventional photoconductor and a p-i-n photodiode, and reasons for the superior performance of the MIS detectors are given. Finally, fundamental studies on the electrical, optical, and noise characteristics of the MIS structures are analyzed and discussed in the context of infrared-detector applications.

  5. Temperature field analysis for PZT pyroelectric cells for thermal energy harvesting.

    PubMed

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate.

  6. Temperature Field Analysis for PZT Pyroelectric Cells for Thermal Energy Harvesting

    PubMed Central

    Hsiao, Chun-Ching; Ciou, Jing-Chih; Siao, An-Shen; Lee, Chi-Yuan

    2011-01-01

    This paper proposes the idea of etching PZT to improve the temperature variation rate of a thicker PZT sheet in order to enhance the energy conversion efficiency when used as pyroelectric cells. A partially covered electrode was proven to display a higher output response than a fully covered electrode did. A mesh top electrode monitored the temperature variation rate and the electrode area. The mesh electrode width affected the distribution of the temperature variation rate in a thinner pyroelectric material. However, a pyroelectric cell with a thicker pyroelectric material was beneficial in generating electricity pyroelectrically. The PZT sheet was further etched to produce deeper cavities and a smaller electrode width to induce lateral temperature gradients on the sidewalls of cavities under homogeneous heat irradiation, enhancing the temperature variation rate. PMID:22346652

  7. The development of infrared detectors and mechanisms for use in future infrared space missions

    NASA Technical Reports Server (NTRS)

    Houck, James R.

    1995-01-01

    The environment above earth's atmosphere offers significant advantages in sensitivity and wavelength coverage in infrared astronomy over ground-based observatories. In support of future infrared space missions, technology development efforts were undertaken to develop detectors sensitive to radiation between 2.5 micron and 200 micron. Additionally, work was undertaken to develop mechanisms supporting the imaging and spectroscopy requirements of infrared space missions. Arsenic-doped-Silicon and Antimony-doped-Silicon Blocked Impurity Band detectors, responsive to radiation between 4 micron and 45 micron, were produced in 128x128 picture element arrays with the low noise, high sensitivity performance needed for space environments. Technology development continued on Gallium-doped-Germanium detectors (for use between 80 micron and 200 micron), but were hampered by contamination during manufacture. Antimony-doped-Indium detectors (for use between 2.5 micron and 5 micron) were developed in a 256x256 pixel format with high responsive quantum efficiency and low dark current. Work began on adapting an existing cryogenic mechanism design for space-based missions; then was redirected towards an all-fixed optical design to improve reliability and lower projected mission costs.

  8. High-frequency thermal-electrical cycles for pyroelectric energy conversion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhatia, Bikram; Damodaran, Anoop R.; Cho, Hanna

    2014-11-21

    We report thermal to electrical energy conversion from a 150 nm thick BaTiO{sub 3} film using pyroelectric cycles at 1 kHz. A microfabricated platform enables temperature and electric field control with temporal resolution near 1 μs. The rapid electric field changes as high as 11 × 10{sup 5 }kV/cm-s, and temperature change rates as high as 6 × 10{sup 5 }K/s allow exploration of pyroelectric cycles in a previously unexplored operating regime. We investigated the effect of phase difference between electric field and temperature cycles, and electric field and temperature change rates on the electrical energy generated from thermal-electrical cycles based on the pyroelectric Ericsson cycle. Complete thermodynamic cyclesmore » are possible up to the highest cycle rates tested here, and the energy density varies significantly with phase shifts between temperature and electric field waveforms. This work could facilitate the design and operation of pyroelectric cycles at high cycle rates, and aid in the design of new pyroelectric systems.« less

  9. Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

    PubMed Central

    Hsiao, Chun-Ching; Siao, An-Shen

    2013-01-01

    Large amounts of low-grade heat are emitted by various industries and exhausted into the environment. This heat energy can be used as a free source for pyroelectric power generation. A three-dimensional pattern helps to improve the temperature variation rates in pyroelectric elements by means of lateral temperature gradients induced on the sidewalls of the responsive elements. A novel method using sandblast etching is successfully applied in fabricating the complex pattern of a vortex-like electrode. Both experiment and simulation show that the proposed design of the vortex-like electrode improved the electrical output of the pyroelectric cells and enhanced the efficiency of pyroelectric harvesting converters. A three-dimensional finite element model is generated by commercial software for solving the transient temperature fields and exploring the temperature variation rate in the PZT pyroelectric cells with various designs. The vortex-like type has a larger temperature variation rate than the fully covered type, by about 53.9%.The measured electrical output of the vortex-like electrode exhibits an obvious increase in the generated charge and the measured current, as compared to the fully covered electrode, by of about 47.1% and 53.1%, respectively. PMID:24025557

  10. Photoacoustic-based detector for infrared laser spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scholz, L.; Palzer, S., E-mail: stefan.palzer@imtek.uni-freiburg.de

    In this contribution, we present an alternative detector technology for use in direct absorption spectroscopy setups. Instead of a semiconductor based detector, we use the photoacoustic effect to gauge the light intensity. To this end, the target gas species is hermetically sealed under excess pressure inside a miniature cell along with a MEMS microphone. Optical access to the cell is provided by a quartz window. The approach is particularly suitable for tunable diode laser spectroscopy in the mid-infrared range, where numerous molecules exhibit large absorption cross sections. Moreover, a frequency standard is integrated into the method since the number densitymore » and pressure inside the cell are constant. We demonstrate that the information extracted by our method is at least equivalent to that achieved using a semiconductor-based photon detector. As exemplary and highly relevant target gas, we have performed direct spectroscopy of methane at the R3-line of the 2v{sub 3} band at 6046.95 cm{sup −1} using both detector technologies in parallel. The results may be transferred to other infrared-active transitions without loss of generality.« less

  11. Heated Surface Temperatures Measured by Infrared Detector in a Cascade Environment

    NASA Technical Reports Server (NTRS)

    Boyle, Robert J.

    2002-01-01

    Investigators have used infrared devices to accurately measure heated surface temperatures. Several of these applications have been for turbine heat transfer studies involving film cooling and surface roughness, typically, these measurements use an infrared camera positioned externally to the test section. In cascade studies, where several blades are used to ensure periodic flow, adjacent blades block the externally positioned camera's views of the test blade. To obtain a more complete mapping of the surface temperatures, researchers at the NASA Glenn Research Center fabricated a probe with an infrared detector to sense the blade temperatures. The probe size was kept small to minimize the flow disturbance. By traversing and rotating the probe, using the same approach as for total pressure surveys, one can find the blade surface temperatures. Probe mounted infrared detectors are appropriate for measuring surface temperatures where an externally positioned infrared camera is unable to completely view the test object. This probe consists of a 8-mm gallium arsenide (GaAs) lens mounted in front of a mercury-cadmium-zinc-tellurium (HgCdZnTe) detector. This type of photovoltaic detector was chosen because of its high sensitivity to temperature when the detector is uncooled. The particular application is for relatively low surface temperatures, typically ambient to 100 C. This requires a detector sensitive at long wavelengths. The detector is a commercial product enclosed in a 9-mm-diameter package. The GaAs lens material was chosen because of its glass-like hardness and its good long-wavelength transmission characteristics. When assembled, the 6.4-mm probe stem is held in the traversing actuator. Since the entire probe is above the measurement plane, the flow field disturbance in the measurement plane is minimized. This particular probe body is somewhat wider than necessary, because it was designed to have replaceable detectors and lenses. The signal for the detector is

  12. Ultra-thin enhanced-absorption long-wave infrared detectors

    NASA Astrophysics Data System (ADS)

    Wang, Shaohua; Yoon, Narae; Kamboj, Abhilasha; Petluru, Priyanka; Zheng, Wanhua; Wasserman, Daniel

    2018-02-01

    We propose an architecture for enhanced absorption in ultra-thin strained layer superlattice detectors utilizing a hybrid optical cavity design. Our detector architecture utilizes a designer-metal doped semiconductor ground plane beneath the ultra-subwavelength thickness long-wavelength infrared absorber material, upon which we pattern metallic antenna structures. We demonstrate the potential for near 50% detector absorption in absorber layers with thicknesses of approximately λ0/50, using realistic material parameters. We investigate detector absorption as a function of wavelength and incidence angle, as well as detector geometry. The proposed device architecture offers the potential for high efficiency detectors with minimal growth costs and relaxed design parameters.

  13. Infrared Detectors Overview in the Short Wave Infrared to Far Infrared for CLARREO Mission

    NASA Technical Reports Server (NTRS)

    Abedin, M. N.; Mlynczak, Martin G.; Refaat, Tamer F.

    2010-01-01

    There exists a considerable interest in the broadband detectors for CLARREO Mission, which can be used to detect CO2, O3, H2O, CH4, and other gases. Detection of these species is critical for understanding the Earth?s atmosphere, atmospheric chemistry, and systemic force driving climatic changes. Discussions are focused on current and the most recent detectors developed in SWIR-to-Far infrared range for CLARREO space-based instrument to measure the above-mentioned species. These detector components will make instruments designed for these critical detections more efficient while reducing complexity and associated electronics and weight. We will review the on-going detector technology efforts in the SWIR to Far-IR regions at different organizations in this study.

  14. High performance infrared fast cooled detectors for missile applications

    NASA Astrophysics Data System (ADS)

    Reibel, Yann; Espuno, Laurent; Taalat, Rachid; Sultan, Ahmad; Cassaigne, Pierre; Matallah, Noura

    2016-05-01

    SOFRADIR was selected in the late 90's for the production of 320×256 MW detectors for major European missile programs. This experience has established our company as a key player in the field of missile programs. SOFRADIR has since developed a vast portfolio of lightweight, compact and high performance JT-based solutions for missiles. ALTAN is a 384x288 Mid Wave infrared detector with 15μm pixel pitch, and is offered in a miniature ultra-fast Joule- Thomson cooled Dewar. Since Sofradir offers both Indium Antimonide (InSb) and Mercury Cadmium Telluride technologies (MCT), we are able to deliver the detectors best suited to customers' needs. In this paper we are discussing different figures of merit for very compact and innovative JT-cooled detectors and are highlighting the challenges for infrared detection technologies.

  15. Competitive technologies of third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-03-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well IR photoconductors (QWIPs) are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. However, the metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm.

  16. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratory test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  17. Detector arrays for low-background space infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Mckelvey, M. E.; Goebel, J. H.; Anderson, G. M.; Lee, J. H.

    1986-01-01

    The status of development and characterization tests of integrated infrared detector array technology for astronomy applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, with hybrid silicon multiplexers. Laboratary test results and successful astronomy imagery have established the usefulness of integrated arrays in low-background astronomy applications.

  18. Pyroelectric Ceramics as Temperature Sensors for Energy System Applications

    NASA Astrophysics Data System (ADS)

    Silva, Jorge Luis

    Temperature is continuously monitored in energy systems to ensure safe operation temperatures, increase efficiency and avoid high emissions. Most of energy systems operate at high temperature and harsh environments to achieve higher efficiencies, therefore temperature sensing devices that can operate under these conditions are highly desired. The interest has increased in temperature sensors capable to operate and in harsh environments and temperature sensors capable to transmit thermal information wirelessly. One of the solutions for developing harsh environment sensors is to use ceramic materials, especially functional ceramics such as pyroelectrics. Pyroelectric ceramics could be used to develop active sensors for both temperature and pressure due to their capabilities in coupling energy among mechanical, thermal, and electrical domains. In this study, two different pyroelectric materials were used to develop two different temperature sensors systems. First, a high temperature sensor was developed using a lithium niobate (LiNbO3) pyroelectric ceramic. With its Curie temperature of 1210 °C, lithium niobate is capable to maintain its pyroelectric properties at high temperature making it ideal for temperature sensing at high temperature applications. Lithium niobate has been studied previously in the attempt to use its pyroelectric current as the sensing mechanism to measure temperatures up to 500 °C. Pyroelectric coefficient of lithium niobate is a function of temperature as reported in a previous study, therefore a dynamic technique is utilized to measure the pyroelectric coefficient of the lithium niobate used in this study. The pyroelectric coefficient was successfully measured up to 500 °C with coefficients ranging from -8.5 x 10 -5 C/m2 °C at room temperature to -23.70 x 10 -5 C/m2 °C at 500 °C. The lithium niobate sensor was then tested at higher temperatures: 220 °C, 280 °C, 410 °C and 500 °C with 4.31 %, 2.1 %, 0.4 % and 0.6 % deviation

  19. Neutron interrogation systems using pyroelectric crystals and methods of preparation thereof

    DOEpatents

    Tang, Vincent; Meyer, Glenn A.; Falabella, Steven; Guethlein, Gary; Rusnak, Brian; Sampayan, Stephen; Spadaccini, Christopher M.; Wang, Li-Fang; Harris, John; Morse, Jeff

    2017-08-01

    According to one embodiment, an apparatus includes a pyroelectric crystal, a deuterated or tritiated target, an ion source, and a common support coupled to the pyroelectric crystal, the deuterated or tritiated target, and the ion source. In another embodiment, a method includes producing a voltage of negative polarity on a surface of a deuterated or tritiated target in response to a temperature change of a pyroelectric crystal, pulsing a deuterium ion source to produce a deuterium ion beam, accelerating the deuterium ion beam to the deuterated or tritiated target to produce a neutron beam, and directing the ion beam onto the deuterated or tritiated target to make neutrons using a voltage of the pyroelectric crystal and/or an HGI surrounding the pyroelectric crystal. The directionality of the neutron beam is controlled by changing the accelerating voltage of the system. Other apparatuses and methods are presented as well.

  20. Pyroelectricity as a possible mechanism for cell membrane permeabilization.

    PubMed

    García-Sánchez, Tomás; Muscat, Adeline; Leray, Isabelle; Mir, Lluis M

    2018-02-01

    The effects of pyroelectricity on cell membrane permeability had never been explored. Pyroelectricity consists in the generation of an electric field in the surface of some materials when a change in temperature is produced. In the present study, tourmaline microparticles, which are known to display pyroelectrical properties, were subjected to different changes in temperature upon exposure to cells in order to induce an electric field at their surface. Then, the changes in the permeability of the cell membrane to a cytotoxic agent (bleomycin) were assessed by a cloning efficacy test. An increase in the permeability of the cell membrane was only detected when tourmaline was subjected to a change in temperature. This suggests that the apparition of an induced pyroelectrical electric field on the material could actually be involved in the observed enhancement of the cell membrane permeability as a result of cell electropermeabilization. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Prototyping of MWIR MEMS-based optical filter combined with HgCdTe detector

    NASA Astrophysics Data System (ADS)

    Kozak, Dmitry A.; Fernandez, Bautista; Velicu, Silviu; Kubby, Joel

    2010-02-01

    In the past decades, there have been several attempts to create a tunable optical detector with operation in the infrared. The drive for creating such a filter is its wide range of applications, from passive night vision to biological and chemical sensors. Such a device would combine a tunable optical filter with a wide-range detector. In this work, we propose using a Fabry-Perot interferometer centered in the mid-wave infrared (MWIR) spectrum with an HgCdTe detector. Using a MEMS-based interferometer with an integrated Bragg stack will allow in-plane operation over a wide range. Because such devices have a tendency to warp, creating less-than-perfect optical surfaces, the Fabry-Perot interferometer is prototyped using the SOI-MUMPS process to ensure desirable operation. The mechanical design is aimed at optimal optical flatness of the moving membranes and a low operating voltage. The prototype is tested for these requirements. An HgCdTe detector provides greater performance than a pyroelectic detector used in some previous work, allowing for lower noise, greater detection speed and higher sensitivity. Both a custom HgCdTe detector and commercially available pyroelectric detector are tested with commercial optical filter. In previous work, monolithic integration of HgCdTe detectors with optical filters proved to be problematic. Part of this work investigates the best approach to combining these two components, either monolithically in HgCdTe or using a hybrid packaging approach where a silicon MEMS Fabry-Perot filter is bonded at low temperature to a HgCdTe detector.

  2. Infrared diagnosis using liquid crystal detectors

    NASA Technical Reports Server (NTRS)

    Hugenschmidt, M.; Vollrath, K.

    1986-01-01

    The possible uses of pulsed carbon dioxide lasers for analysis of plasmas and flows need appropriate infrared image converters. Emphasis was placed on liquid crystal detectors and their operational modes. Performance characterstics and selection criteria, such as high sensitivity, short reaction time, and high spatial resolution are discussed.

  3. A Novel Compact Pyroelectric X-Ray and Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yaron Danon

    2007-08-31

    This research was focused on the utilization of pyroelectric crystals for generation of radiation. When in constant temperature pyroelectric crystals are spontaneously polarized. The polarization causes internal charges to accumulate near the crystal faces and masking charges from the environment are attracted to the crystal faces and neutralize the charge. When a pyroelectric crystal is heated or cooled it becomes depolarized and the surface charges become available. If the heating or cooling is done on a crystal in vacuum where no masking charges are available, the crystal becomes a charged capacitor and because of its small capacitance large potential developsmore » across the faces of the crystal.« less

  4. Integrated infrared detector arrays for low-background applications

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Goebel, J. H.

    1982-01-01

    Advanced infrared detector and detector array technology is being developed and characterized for future NASA space astronomy applications. Si:Bi charge-injection-device arrays have been obtained, and low-background sensitivities comparable to that of good discrete detectors have been measured. Intrinsic arrays are being assessed, and laboratory and telescope data have been collected on a monolithic InSb CCD array. For wavelengths longer than 30 microns, improved Ge:Ga detectors have been produced, and steps have been taken to prove the feasibility of an integrated extrinsic germanium array. Other integrated arrays and cryogenic components are also under investigation.

  5. Competitive technologies for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2006-05-01

    Hitherto, two families of multielement infrared (IR) detectors are used for principal military and civilian infrared applications; one is used for scanning systems (first generation) and the other is used for staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolor functionality and other on-chip functions. In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  6. Infrared detectors and test technology of cryogenic camera

    NASA Astrophysics Data System (ADS)

    Yang, Xiaole; Liu, Xingxin; Xing, Mailing; Ling, Long

    2016-10-01

    Cryogenic camera which is widely used in deep space detection cools down optical system and support structure by cryogenic refrigeration technology, thereby improving the sensitivity. Discussing the characteristics and design points of infrared detector combined with camera's characteristics. At the same time, cryogenic background test systems of chip and detector assembly are established. Chip test system is based on variable cryogenic and multilayer Dewar, and assembly test system is based on target and background simulator in the thermal vacuum environment. The core of test is to establish cryogenic background. Non-uniformity, ratio of dead pixels and noise of test result are given finally. The establishment of test system supports for the design and calculation of infrared systems.

  7. HgCdTe barrier infrared detectors

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Rogalski, A.

    2016-05-01

    In the last decade, new strategies to achieve high-operating temperature (HOT) detectors have been proposed, including barrier structures such as nBn devices, unipolar barrier photodiodes, and multistage (cascade) infrared detectors. The ability to tune the positions of the conduction and valence band edges independently in a broken-gap type-II superlattices is especially helpful in the design of unipolar barriers. This idea has been also implemented in HgCdTe ternary material system. However, the implementation of this detector structure in HgCdTe material system is not straightforward due to the existence of a valence band discontinuity (barrier) at the absorber-barrier interface. In this paper we present status of HgCdTe barrier detectors with emphasis on technological progress in fabrication of MOCVD-grown HgCdTe barrier detectors achieved recently at the Institute of Applied Physics, Military University of Technology. Their performance is comparable with state-of-the-art of HgCdTe photodiodes. From the perspective of device fabrication their important technological advantage results from less stringent surface passivation requirements and tolerance to threading dislocations.

  8. Development of a Bolometer Detector System for the NIST High Accuracy Infrared Spectrophotometer

    PubMed Central

    Zong, Y.; Datla, R. U.

    1998-01-01

    A bolometer detector system was developed for the high accuracy infrared spectrophotometer at the National Institute of Standards and Technology to provide maximum sensitivity, spatial uniformity, and linearity of response covering the entire infrared spectral range. The spatial response variation was measured to be within 0.1 %. The linearity of the detector output was measured over three decades of input power. After applying a simple correction procedure, the detector output was found to deviate less than 0.2 % from linear behavior over this range. The noise equivalent power (NEP) of the bolometer system was 6 × 10−12 W/Hz at the frequency of 80 Hz. The detector output 3 dB roll-off frequency was 200 Hz. The detector output was stable to within ± 0.05 % over a 15 min period. These results demonstrate that the bolometer detector system will serve as an excellent detector for the high accuracy infrared spectrophotometer. PMID:28009364

  9. The suppression of charged-particle-induced noise in infrared detectors

    NASA Technical Reports Server (NTRS)

    Houck, J. R.; Briotta, D. A., Jr.

    1982-01-01

    A d.c.-coupled transimpedance amplifier/pulse suppression circuit designed to remove charged-particle-induced noise from infrared detectors is described. Noise spikes produced by single particle events are large and have short rise times, and can degrade the performance of an infrared detector in moderate radiation environments. The use of the suppression circuit improves the signal-to-noise ratio by a factor of 1.6:1, which corresponds to a reduction in required observing time by a factor of about 2.6.

  10. Detectors for the James Webb Space Telescope near-infrared spectrograph

    NASA Astrophysics Data System (ADS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Giorgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.; Brambora, Clifford; Connelly, Joe; Derro, Rebecca; DiPirro, Michael J.; Doria-Warner, Christina; Ericsson, Aprille; Glazer, Stuart D.; Greene, Charles; Hall, Donald N.; Jacobson, Shane; Jakobsen, Peter; Johnson, Eric; Johnson, Scott D.; Krebs, Carolyn; Krebs, Danny J.; Lambros, Scott D.; Likins, Blake; Manthripragada, Sridhar; Martineau, Robert J.; Morse, Ernie C.; Moseley, Samuel H.; Mott, D. Brent; Muench, Theo; Park, Hongwoo; Parker, Susan; Polidan, Elizabeth J.; Rashford, Robert; Shakoorzadeh, Kamdin; Sharma, Rajeev; Strada, Paolo; Waczynski, Augustyn; Wen, Yiting; Wong, Selmer; Yagelowich, John; Zuray, Monica

    2004-10-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope"s primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted λco ~ 5 μm Rockwell HAWAII-2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  11. Detectors for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Figer, Donald F.; Regan, Michael W.; Boeker, Torsten; Garnett, James; Hill, Robert J.; Bagnasco, Georgio; Balleza, Jesus; Barney, Richard; Bergeron, Louis E.

    2004-01-01

    The Near-Infrared Spectrograph (NIRSpec) is the James Webb Space Telescope's primary near-infrared spectrograph. NASA is providing the NIRSpec detector subsystem, which consists of the focal plane array, focal plane electronics, cable harnesses, and software. The focal plane array comprises two closely-butted lambda (sub co) approximately 5 micrometer Rockwell HAWAII- 2RG sensor chip assemblies. After briefly describing the NIRSpec instrument, we summarize some of the driving requirements for the detector subsystem, discuss the baseline architecture (and alternatives), and presents some recent detector test results including a description of a newly identified noise component that we have found in some archival JWST test data. We dub this new noise component, which appears to be similar to classical two-state popcorn noise in many aspects, "popcorn mesa noise." We close with the current status of the detector subsystem development effort.

  12. Infra-red detector and method of making and using same

    DOEpatents

    Craig, Richard A [Richland, WA; Griffin, Jeffrey W [Kennewick, WA

    2007-02-20

    A low-cost infra-red detector is disclosed including a method of making and using the same. The detector employs a substrate, a filtering layer, a converting layer, and a diverter to be responsive to wavelengths up to about 1600 nm. The detector is useful for a variety of applications including spectroscopy, imaging, and defect detection.

  13. Nonlinearity and pixel shifting effects in HXRG infrared detectors

    NASA Astrophysics Data System (ADS)

    Plazas, A. A.; Shapiro, C.; Smith, R.; Rhodes, J.; Huff, E.

    2017-04-01

    We study the nonlinearity (NL) in the conversion from charge to voltage in infrared detectors (HXRG) for use in precision astronomy. We present laboratory measurements of the NL function of a H2RG detector and discuss the accuracy to which it would need to be calibrated in future space missions to perform cosmological measurements through the weak gravitational lensing technique. In addition, we present an analysis of archival data from the infrared H1RG detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides evidence consistent with the existence of a sensor effect analogous to the ``brighter-fatter'' effect found in Charge-Coupled Devices. We propose a model in which this effect could be understood as shifts in the effective pixel boundaries, and discuss prospects of laboratory measurements to fully characterize this effect.

  14. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, G. R.; Gordon, N. T.; Hall, D. J.; Ashby, M. K.; Little, J. C.; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, M. T.; Ashley, T.

    2004-01-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source’ of IR radiation for gas sensing; radiation shielding for, and non-uniformity correction of, high sensitivity staring infrared detectors; and dynamic infrared scene projection. Similarly, infrared (IR) detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We present results on negative luminescence in the mid- and long-IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1 cm×1 cm. We also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high-performance imaging is anticipated from systems which require no mechanical cooling.

  15. Low-background detector arrays for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.; Estrada, J. A.; Goebel, J. H.; Mckelvey, M. E.; Mckibbin, D. D.; Mcmurray, R. E., Jr.; Weber, T. T.

    1989-01-01

    The status of a program which develops and characterizes integrated infrared (IR) detector array technology for space astronomical applications is described. The devices under development include intrinsic, extrinsic silicon, and extrinsic germanium detectors, coupled to silicon readout electronics. Low-background laboratory test results include measurements of responsivity, noise, dark current, temporal response, and the effects of gamma-radiation. In addition, successful astronomical imagery has been obtained on some arrays from this program. These two aspects of the development combine to demonstrate the strong potential for integrated array technology for IR space astronomy.

  16. JWST Near-Infrared Detectors: Latest Test Results

    NASA Technical Reports Server (NTRS)

    Smith, Erin C.; Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Chiao, Meng; Clemons, Brian L.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; hide

    2009-01-01

    The James Webb Space Telescope, an infrared-optimized space telescope being developed by NASA for launch in 2013, will utilize cutting-edge detector technology in its investigation of fundamental questions in astrophysics. JWST's near infrared spectrograph, NIRSpec utilizes two 2048 x 2048 HdCdTe arrays with Sidecar ASIC readout electronics developed by Teledyne to provide spectral coverage from 0.6 microns to 5 microns. We present recent test and calibration results for the NIRSpec flight arrays as well as data processing routines for noise reduction and cosmic ray rejection.

  17. Spectrum Tunable Quantum Dot-In-A-Well Infrared Detector Arrays for Thermal Imaging

    DTIC Science & Technology

    2008-09-01

    Spectrum tunable quantum dot-in-a- well infrared detector arrays for thermal imaging Jonathan R. Andrews1, Sergio R. Restaino1, Scott W. Teare2...Materials at the University of New Mexico has been investigating quantum dot and quantum well detectors for thermal infrared imaging applications...SEP 2008 2. REPORT TYPE 3. DATES COVERED 00-00-2008 to 00-00-2008 4. TITLE AND SUBTITLE Spectrum tunable quantum dot-in-a- well infrared

  18. Thermophysics modeling of an infrared detector cryochamber for transient operational scenario

    NASA Astrophysics Data System (ADS)

    Singhal, Mayank; Singhal, Gaurav; Verma, Avinash C.; Kumar, Sushil; Singh, Manmohan

    2016-05-01

    An infrared detector (IR) is essentially a transducer capable of converting radiant energy in the infrared regime into a measurable form. The benefit of infrared radiation is that it facilitates viewing objects in dark or through obscured conditions by detecting the infrared energy emitted by them. One of the most significant applications of IR detector systems is for target acquisition and tracking of projectile systems. IR detectors also find widespread applications in the industry and commercial market. The performance of infrared detector is sensitive to temperatures and performs best when cooled to cryogenic temperatures in the range of nearly 120 K. However, the necessity to operate in such cryogenic regimes increases the complexity in the application of IR detectors. This entails a need for detailed thermophysics analysis to be able to determine the actual cooling load specific to the application and also due to its interaction with the environment. This will enable design of most appropriate cooling methodologies suitable for specific scenarios. The focus of the present work is to develop a robust thermo-physical numerical methodology for predicting IR cryochamber behavior under transient conditions, which is the most critical scenario, taking into account all relevant heat loads including radiation in its original form. The advantage of the developed code against existing commercial software (COMSOL, ANSYS, etc.), is that it is capable of handling gas conduction together with radiation terms effectively, employing a ubiquitous software such as MATLAB. Also, it requires much smaller computational resources and is significantly less time intensive. It provides physically correct results enabling thermal characterization of cryochamber geometry in conjunction with appropriate cooling methodology. The code has been subsequently validated experimentally as the observed cooling characteristics are found to be in close agreement with the results predicted using

  19. High Operating Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Hill, Cory J. (Inventor); Seibel, Alexander (Inventor); Bandara, Sumith Y. (Inventor); Gunapala, Sarath D. (Inventor)

    2015-01-01

    A barrier infrared detector with absorber materials having selectable cutoff wavelengths and its method of manufacture is described. A GaInAsSb absorber layer may be grown on a GaSb substrate layer formed by mixing GaSb and InAsSb by an absorber mixing ratio. A GaAlAsSb barrier layer may then be grown on the barrier layer formed by mixing GaSb and AlSbAs by a barrier mixing ratio. The absorber mixing ratio may be selected to adjust a band gap of the absorber layer and thereby determine a cutoff wavelength for the barrier infrared detector. The absorber mixing ratio may vary along an absorber layer growth direction. Various contact layer architectures may be used. In addition, a top contact layer may be isolated into an array of elements electrically isolated as individual functional detectors that may be used in a detector array, imaging array, or focal plane array.

  20. Heterojunction-Internal-Photoemission Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph

    1991-01-01

    New type of photodetector adds options for design of imaging devices. Heterojunction-internal-photoemission (HIP) infrared photodetectors proposed for incorporation into planar arrays in imaging devices required to function well at wavelengths from 8 to 17 micrometers and at temperatures above 65 K. Photoexcited electrons cross energy barrier at heterojunction and swept toward collection layer. Array of such detectors made by etching mesa structures. HIP layers stacked to increase quantum efficiency. Also built into integrated circuits including silicon multiplexer/readout circuits.

  1. The pyroelectric behavior of lead free ferroelectric ceramics in thermally stimulated depolarization current measurements

    NASA Astrophysics Data System (ADS)

    González-Abreu, Y.; Peláiz-Barranco, A.; Garcia-Wong, A. C.; Guerra, J. D. S.

    2012-06-01

    The present paper shows a detailed analysis on the thermally stimulated processes in barium modified SrBi2Nb2O9 ferroelectric bi-layered perovskite, which is one of the most promising candidates for non-volatile random access memory applications because of its excellent fatigue-resistant properties. A numerical method is used to separate the real pyroelectric current from the other thermally stimulated processes. A discharge due to the space-charge injected during the poling process, the pyroelectric response, and a conductive process are discussed in a wide temperature range from ferroelectric to paraelectric phase. The pyroelectric response is separated from the other components to evaluate the polarization behavior and some pyroelectric parameters. The remanent polarization, the pyroelectric coefficient, and the merit figure are evaluated, which show good results.

  2. Materials processing threshold report. 1: Semiconductor crystals for infrared detectors

    NASA Technical Reports Server (NTRS)

    Sager, E. V.; Thompson, T. R.; Nagler, R. G.

    1980-01-01

    An extensive search was performed of the open literature pertaining to infrared detectors to determine what constitutes a good detector and in what way performance is limited by specific material properties. Interviews were conducted with a number of experts in the field to assess their perceptions of the state of the art and of the utility of zero-gravity processing. Based on this information base and on a review of NASA programs in crystal growth and infrared sensors, NASA program goals were reassessed and suggestions are presented as to possible joint and divergent efforts between NASA and DOD.

  3. Pyroelectric property of SrTiO3/Si ferroelectric-semiconductor heterojunctions near room temperature

    NASA Astrophysics Data System (ADS)

    Bai, Gang; Wu, Dongmei; Xie, Qiyun; Guo, Yanyan; Li, Wei; Deng, Licheng; Liu, Zhiguo

    2015-12-01

    A nonlinear thermodynamic formalism is developed to calculate the pyroelectric property of epitaxial single domain SrTiO3/Si heterojunctions by taking into account the thermal expansion misfit strain at different temperatures. It has been demonstrated that the crucial role was played by the contribution associated with the structure order parameter arising from the rotations of oxygen octahedral on pyroelectricity. A dramatic decrease in the pyroelectric coefficient due to the strong coupling between the polarization and the structure order parameter is found at ferroelectric TF1-TF2 phase transition. At the same time, the thermal expansion mismatch between film and substrate is also found to provide an additional weak decrease of pyroelectricity. The analytic relationship of the out-of-plane pyroelectric coefficient and dielectric constant of ferroelectric phases by considering the thermal expansion of thin films and substrates has been determined for the first time. Our research provides another avenue for the investigation of the pyroelectric effects of ferroic thin films, especially, such as antiferroelectric and multiferroic materials having two or more order parameters.

  4. Monolithically Integrated Mid-Infrared Quantum Cascade Laser and Detector

    PubMed Central

    Schwarz, Benedikt; Reininger, Peter; Detz, Hermann; Zederbauer, Tobias; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried

    2013-01-01

    We demonstrate the monolithic integration of a mid-infrared laser and detector utilizing a bi-functional quantum cascade active region. When biased, this active region provides optical gain, while it can be used as a detector at zero bias. With our novel approach we can measure the light intensity of the laser on the same chip without the need of external lenses or detectors. Based on a bound-to-continuum design, the bi-functional active region has an inherent broad electro-luminescence spectrum of 200 cm−1, which indicate sits use for single mode laser arrays. We have measured a peak signal of 191.5 mV at theon-chip detector, without any amplification. The room-temperature pulsed emission with an averaged power consumption of 4 mW and the high-speed detection makes these devices ideal for low-power sensors. The combination of the on-chip detection functionality, the broad emission spectrum and the low average power consumption indicates the potential of our bi-functional quantum cascade structures to build a mid-infrared lab-on-a-chip based on quantum cascade laser technology. PMID:23389348

  5. The Single Aperture Far-Infrared (SAFIR) Observatory and its Cryogenic Detector Needs

    NASA Technical Reports Server (NTRS)

    Benford, Dominic J.; Moseley, S. H.

    2003-01-01

    The development of a large, far-infrared telescope in space has taken on a new urgency with breakthroughs in detector technology and recognition of the fundamental importance of the far-infrared spectral region to questions ranging from cosmology to our own Solar System. The Single Aperture Far-InfraRed (SAFIR) Observatory is l0m-class far-infrared observatory that would begin development later in this decade to meet these needs. SAFIR's science goals are driven by the fact that youngest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust that emits strongly in the far-infrared, 20 microns - 1mm. Its operating temperature (4 K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited performance down to at least the atmospheric cutoff at 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of SIRTF. In order to achieve this, large arrays of detectors with NEPs ranging from a few to a hundred zeptowatts/sqrt(Hz) are needed. Very low temperature superconducting transition edge sensors and far-infrared "photon counting" detectors are critical technologies requiring development for the SAFIR mission.

  6. SAT's infrared equipment using second-generation detectors

    NASA Astrophysics Data System (ADS)

    Siriex, Michel B.

    1995-09-01

    In 1982 SAT proposed for the first time a second generation detector in the design of FLIRs for the TRIGAT program, since then different types of IR equipment have been developed on the basis of this technology: (1) An infra-red seeker for the MICA missile. (2) Three types of IRST: VAMPIR MB for naval applications, SIRENE for the Army and OSF for the Rafale aircraft. (3) Three thermal imagers: Condor 1 for the mast mounted sight equipping the long range anti tank system, Tiger installed on the sight of the medium range antitank system, and Condor 2 for the pilot sight of the TRIGAT French-German helicopter. Infra-red detectors are MCT IR-CCD focal plane arrays developed by SOFRADIR with the objective of the best standardization possible in spite of different configurations and specifications for each program. In this paper, we intend to present the main features of this technology for these programs and the advantages obtained by comparison with the first generation in terms of performance. Industrialization of these products is starting now, and a specific effort has been made to standardize the components, especially the driving and read out electronics. A set of ASICs has been developed to make compact detection modules including a detector in his dewar, a cooling machine, and a proximity electronic.

  7. Design philosophy of the Jet Propulsion Laboratory infrared detector test facility

    NASA Technical Reports Server (NTRS)

    Burns, R.; Blessinger, M. A.

    1983-01-01

    To support the development of advanced infrared remote sensing instrumentation using line and area arrays, a test facility has been developed to characterize the detectors. The necessary performance characteristics of the facility were defined by considering current and projected requirements for detector testing. The completed facility provides the desired level of detector testing capability as well as providing ease of human interaction.

  8. Si:Bi switched photoconducttor infrared detector array

    NASA Technical Reports Server (NTRS)

    Eakin, C. E.

    1983-01-01

    A multiplexed infrared detector array is described. The small demonstration prototype consisted of two cryogenically cooled, bismuth doped silicon, extrinsic photoconductor pixels multiplexed onto a single output channel using an on focal plane switch integration sampling technique. Noise levels of the order of 400 to 600 rms electrons per sample were demonstrated for this chip and wire hybrid version.

  9. Infrared negative luminescent devices and higher operating temperature detectors

    NASA Astrophysics Data System (ADS)

    Nash, Geoff R.; Gordon, Neil T.; Hall, David J.; Little, J. Chris; Masterton, G.; Hails, J. E.; Giess, J.; Haworth, L.; Emeny, Martin T.; Ashley, Tim

    2004-02-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a ‘source" of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very higher performance imaging is anticipated from systems which require no mechanical cooling.

  10. Infrared Negative Luminescent Devices and Higher Operating Temperature Detectors

    NASA Astrophysics Data System (ADS)

    Ashley, Tim

    2003-03-01

    Infrared LEDs and negative luminescent devices, where less light is emitted than in equilibrium, have been attracting an increasing amount of interest recently. They have a variety of applications, including as a source' of IR radiation for gas sensing; radiation shielding for and non-uniformity correction of high sensitivity starring infrared detectors; and dynamic infrared scene projection. Similarly, IR detectors are used in arrays for thermal imaging and, discretely, in applications such as gas sensing. Multi-layer heterostructure epitaxy enables the growth of both types of device using designs in which the electronic processes can be precisely controlled and techniques such as carrier exclusion and extraction can be implemented. This enables detectors to be made which offer good performance at higher than normal operating temperatures, and efficient negative luminescent devices to be made which simulate a range of effective temperatures whilst operating uncooled. In both cases, however, additional performance benefits can be achieved by integrating optical concentrators around the diodes to reduce the volume of semiconductor material, and so minimise the thermally activated generation-recombination processes which compete with radiative mechanisms. The integrated concentrators are in the form of Winston cones, which can be formed using an iterative dry etch process involving methane/hydrogen and oxygen. We will present results on negative luminescence in the mid and long IR wavebands, from devices made from indium antimonide and mercury cadmium telluride, where the aim is sizes greater than 1cm x 1cm. We will also discuss progress on, and the potential for, operating temperature and/or sensitivity improvement of detectors, where very high performance imaging is anticipated from systems which require no mechanical cooling.

  11. Pyroelectric response in crystalline hafnium zirconium oxide (Hf 1- x Zr x O 2 ) thin films

    DOE PAGES

    Smith, S. W.; Kitahara, A. R.; Rodriguez, M. A.; ...

    2017-02-13

    Pyroelectric coefficients were measured for 20 nm thick crystalline hafnium zirconium oxide (Hf 1-xZr xO 2) thin films across a composition range of 0 ≤ x ≤ 1. Pyroelectric currents were collected near room temperature under zero applied bias and a sinusoidal oscillating temperature profile to separate the influence of non-pyroelectric currents. The pyroelectric coefficient was observed to correlate with zirconium content, increased orthorhombic/tetragonal phase content, and maximum polarization response. The largest measured absolute value was 48 μCm -2K -1 for a composition with x = 0.64, while no pyroelectric response was measured for compositions which displayed no remanent polarizationmore » (x = 0, 0.91, 1).« less

  12. Bibliography of Soviet Laser Developments, Number 60, July - August 1982.

    DTIC Science & Technology

    1983-07-15

    KLDVAD, 7/82, 10417) 155. Sagitov, S.l. (1). Mirrors for the ultraviolet and infrared regions of the spectrum. Tr 1, 118-164. 7. Detectors 156. Andryukhina...23 5. Beam Splitter9.......................................24 6. Mirrors..............................................24 7. Detectors ...E.D., K.S. Kyabilin, and 0.1. Fedyanin (1). Absolute sensitivity of pyroelectric detectors . Fizicheskiy institut AN SSSR. Preprint, no. 23.7, 1982

  13. Material considerations for third generation infrared photon detectors

    NASA Astrophysics Data System (ADS)

    Rogalski, A.

    2007-04-01

    In the paper, issues associated with the development and exploitation of materials used in fabrication of third generation infrared photon detectors are discussed. In this class of detectors two main competitors, HgCdTe photodiodes and quantum well photoconductors are considered. The performance figures of merit of state-of-the-art HgCdTe and QWIP focal plane arrays (FPAs) are similar because the main limitations come from the readout circuits. The metallurgical issues of the epitaxial layers such as uniformity and number of defected elements are the serious problems in the case of long wavelength infrared (LWIR) and very LWIR (VLWIR) HgCdTe FPAs. It is predicted that superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an alternative to HgCdTe with good spatial uniformity and an ability to span cutoff wavelength from 3 to 25 μm. In this context the material properties of type II superlattices are considered more in detail.

  14. Performance overview of the Euclid infrared focal plane detector subsystems

    NASA Astrophysics Data System (ADS)

    Waczynski, A.; Barbier, R.; Cagiano, S.; Chen, J.; Cheung, S.; Cho, H.; Cillis, A.; Clémens, J.-C.; Dawson, O.; Delo, G.; Farris, M.; Feizi, A.; Foltz, R.; Hickey, M.; Holmes, W.; Hwang, T.; Israelsson, U.; Jhabvala, M.; Kahle, D.; Kan, Em.; Kan, Er.; Loose, M.; Lotkin, G.; Miko, L.; Nguyen, L.; Piquette, E.; Powers, T.; Pravdo, S.; Runkle, A.; Seiffert, M.; Strada, P.; Tucker, C.; Turck, K.; Wang, F.; Weber, C.; Williams, J.

    2016-07-01

    In support of the European space agency (ESA) Euclid mission, NASA is responsible for the evaluation of the H2RG mercury cadmium telluride (MCT) detectors and electronics assemblies fabricated by Teledyne imaging systems. The detector evaluation is performed in the detector characterization laboratory (DCL) at the NASA Goddard space flight center (GSFC) in close collaboration with engineers and scientists from the jet propulsion laboratory (JPL) and the Euclid project. The Euclid near infrared spectrometer and imaging photometer (NISP) will perform large area optical and spectroscopic sky surveys in the 0.9-2.02 μm infrared (IR) region. The NISP instrument will contain sixteen detector arrays each coupled to a Teledyne SIDECAR application specific integrated circuit (ASIC). The focal plane will operate at 100K and the SIDECAR ASIC will be in close proximity operating at a slightly higher temperature of 137K. This paper will describe the test configuration, performance tests and results of the latest engineering run, also known as pilot run 3 (PR3), consisting of four H2RG detectors operating simultaneously. Performance data will be presented on; noise, spectral quantum efficiency, dark current, persistence, pixel yield, pixel to pixel uniformity, linearity, inter pixel crosstalk, full well and dynamic range, power dissipation, thermal response and unit cell input sensitivity.

  15. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W.

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg1/3Nb2/3)O3-0.32PbTiO3. Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m-2 K-1) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm-3, 526 W cm-3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  16. Pyroelectric energy conversion with large energy and power density in relaxor ferroelectric thin films.

    PubMed

    Pandya, Shishir; Wilbur, Joshua; Kim, Jieun; Gao, Ran; Dasgupta, Arvind; Dames, Chris; Martin, Lane W

    2018-05-01

    The need for efficient energy utilization is driving research into ways to harvest ubiquitous waste heat. Here, we explore pyroelectric energy conversion from low-grade thermal sources that exploits strong field- and temperature-induced polarization susceptibilities in the relaxor ferroelectric 0.68Pb(Mg 1/3 Nb 2/3 )O 3 -0.32PbTiO 3 . Electric-field-driven enhancement of the pyroelectric response (as large as -550 μC m -2  K -1 ) and suppression of the dielectric response (by 72%) yield substantial figures of merit for pyroelectric energy conversion. Field- and temperature-dependent pyroelectric measurements highlight the role of polarization rotation and field-induced polarization in mediating these effects. Solid-state, thin-film devices that convert low-grade heat into electrical energy are demonstrated using pyroelectric Ericsson cycles, and optimized to yield maximum energy density, power density and efficiency of 1.06 J cm -3 , 526 W cm -3 and 19% of Carnot, respectively; the highest values reported to date and equivalent to the performance of a thermoelectric with an effective ZT ≈ 1.16 for a temperature change of 10 K. Our findings suggest that pyroelectric devices may be competitive with thermoelectric devices for low-grade thermal harvesting.

  17. Direct Measurement of Pyroelectric and Electrocaloric Effects in Thin Films

    NASA Astrophysics Data System (ADS)

    Pandya, Shishir; Wilbur, Joshua D.; Bhatia, Bikram; Damodaran, Anoop R.; Monachon, Christian; Dasgupta, Arvind; King, William P.; Dames, Chris; Martin, Lane W.

    2017-03-01

    An understanding of polarization-heat interactions in pyroelectric and electrocaloric thin-film materials requires that the electrothermal response is reliably characterized. While most work, particularly in electrocalorics, has relied on indirect measurement protocols, here we report a direct technique for measuring both pyroelectric and electrocaloric effects in epitaxial ferroelectric thin films. We demonstrate an electrothermal test platform where localized high-frequency (approximately 1 kHz) periodic heating and highly sensitive thin-film resistance thermometry allow the direct measurement of pyrocurrents (<10 pA ) and electrocaloric temperature changes (<2 mK ) using the "2-omega" and an adapted "3-omega" technique, respectively. Frequency-domain, phase-sensitive detection permits the extraction of the pyrocurrent from the total current, which is often convoluted by thermally-stimulated currents. The wide-frequency-range measurements employed in this study further show the effect of secondary contributions to pyroelectricity due to the mechanical constraints of the substrate. Similarly, measurement of the electrocaloric effect on the same device in the frequency domain (at approximately 100 kHz) allows for the decoupling of Joule heating from the electrocaloric effect. Using one-dimensional, analytical heat-transport models, the transient temperature profile of the heterostructure is characterized to extract pyroelectric and electrocaloric coefficients.

  18. Status of LWIR HgCdTe infrared detector technology

    NASA Technical Reports Server (NTRS)

    Reine, M. B.

    1990-01-01

    The performance requirements that today's advanced Long Wavelength Infrared (LWIR) focal plane arrays place on the HgCdTe photovoltaic detector array are summarized. The theoretical performance limits for intrinsic LWIR HgCdTe detectors are reviewed as functions of cutoff wavelength and operating temperature. The status of LWIR HgCdTe photovoltaic detectors is reviewed and compared to the focal plane array (FPA) requirements and to the theoretical limits. Emphasis is placed on recent data for two-layer HgCdTe PLE heterojunction photodiodes grown at Loral with cutoff wavelengths ranging between 10 and 19 microns at temperatures of 70 to 80 K. Development trends in LWIR HgCdTe detector technology are outlined, and conclusions are drawn about the ability for photovoltaic HgCdTe detector arrays to satisfy a wide variety of advanced FPA array applications.

  19. Kinetic inductance detectors for far-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Aguirre, James; Stevenson, Thomas

    2016-07-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many of the luminous galaxies present during the period of peak star formation (between redshifts 1 and 3) were heavily enshrouded in dust, which makes observing their properties difficult at optical wavelengths. However, many spectral lines exist at far-infrared wavelengths that serve as tracers of star formation during that period, in particular fine structure lines of nitrogen, carbon, and oxygen, as well as the carbon monoxide molecule. Using an observation technique known as intensity mapping, it would be possible to observe the total line intensity for a given redshift range even without detecting individual sources. Here, we describe a detector system suitable for a balloonborne spectroscopic intensity mapping experiment at far-infrared wavelengths. The experiment requires an "integralfield" type spectrograph, with modest spectral resolution (R 100) for each of a number of spatial pixels spanning several octaves in wavelength. The detector system uses lumped-element kinetic inductance detectors (LEKIDs), which have the potential to achieve the high sensitivity, low noise, and high multiplexing factor required for this experiment. We detail the design requirements and considerations, and the fabrication process for a prototype LEKID array of 1600 pixels. The pixel design is driven by the need for high responsivity, which requires a small physical volume for the LEKID inductor. In order to minimize two-level system noise, the resonators include large-area interdigitated capacitors. High quality factor resonances are required for a large frequency multiplexing factor. Detectors were fabricated using both trilayer TiN/Ti/TiN recipes and thin-film Al, and are operated at base temperatures near 250 mK.

  20. Method and Characterization of Pyroelectric Coefficients for Determining Material Figures of Merit for Infrared (IR) Detectors

    DTIC Science & Technology

    2013-12-01

    and the signal is read as a photocurrent or at a photovoltaic p-n junction. These detectors can provide high-sensitivity and fast refresh rates and...Alternative methods can be used to modulate the sample temperature directly; for example, by using modern Peltier devices and thermoelectric ...commercially-available hardware. The setup consist of three main components: (1) A temperature regulated thermoelectric stage; (2) A high-sensitivity

  1. INAS hole-immobilized doping superlattice long-wave-infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1992-01-01

    An approach to long-wave-infrared (LWIR) technology is discussed. The approach is based on molecular beam epitaxy (MBE) growth of hole immobilized doping superlattices in narrow band gap 3-5 semiconductors, specifically, InAs and InSb. Such superlattices are incorporated into detector structures suitable for focal plane arrays. An LWIR detector that has high detectivity performance to wavelengths of about 16 microns at operating temperatures of 65K, where long-duration space refrigeration is plausible, is presented.

  2. Chemical imaging of cotton fibers using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    In this presentation, the chemical imaging of cotton fibers with an infrared microscope and a Focal-Plane Array (FPA) detector will be discussed. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In addition, FPA detectors allow for simultaneous spe...

  3. Innovative mid-infrared detector concepts

    NASA Astrophysics Data System (ADS)

    Höfling, Sven; Pfenning, Andreas; Weih, Robert; Ratajczak, Albert; Hartmann, Fabian; Knebl, Georg; Kamp, Martin; Worschech, Lukas

    2016-09-01

    Gas sensing is a key technology with applications in various industrial, medical and environmental areas. Optical detection mechanisms allow for a highly selective, contactless and fast detection. For this purpose, rotational-vibrational absorption bands within the mid infrared (MIR) spectral region are exploited and probed with appropriate light sources. During the past years, the development of novel laser concepts such as interband cascade lasers (ICLs) and quantum cascade lasers (QCLs) has driven a continuous optimization of MIR laser sources. On the other hand side, there has been relatively little progress on detectors in this wavelength range. Here, we study two novel and promising GaSb-based detector concepts: Interband cascade detectors (ICD) and resonant tunneling diode (RTD) photodetectors. ICDs are a promising approach towards highly sensitive room temperature detection of MIR radiation. They make use of the cascading scheme that is enabled by the broken gap alignment of the two binaries GaSb and InAs. The interband transition in GaSb/InAs-superlattices (SL) allows for normal incidence detection. The cut-off wavelength, which determines the low energy detection limit, can be engineered via the SL period. RTD photodetectors act as low noise and high speed amplifiers of small optically generated electrical signals. In contrast to avalanche photodiodes, where the gain originates from multiplication due to impact ionization, in RTD photodetectors a large tunneling current is modulated via Coulomb interaction by the presence of photogenerated minority charge carriers. For both detector concepts, first devices operational at room temperature have been realized.

  4. Stacked silicide/silicon mid- to long-wavelength infrared detector

    NASA Technical Reports Server (NTRS)

    Maserjian, Joseph (Inventor)

    1990-01-01

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  5. Stacked silicide/silicon mid- to long-wavelength infrared detector

    DOEpatents

    Maserjian, Joseph

    1990-03-13

    The use of stacked Schottky barriers (16) with epitaxially grown thin silicides (10) combined with selective doping (22) of the barriers provides high quantum efficiency infrared detectors (30) at longer wavelengths that is compatible with existing silicon VLSI technology.

  6. Infrared detector development for the IASI instrument

    NASA Astrophysics Data System (ADS)

    Royer, Michel; Fleury, Joel; Lorans, Dominique; Pelier, Alain

    1997-10-01

    IASI is an infrared atmospheric sounding interferometer devoted to the operational meteorology and to atmospheric studies and is to be installed on board the ESA/EUMETSAT Polar Platform METOP to be launched in 2002. The required operating lifetime is 5 years. SAGEM/SAT has been developing the cold acquisition unit since 1991. The B-phase study was dedicated to the manufacture of the critical components, among which the IR detectors, optics, cold links and packaging. They concern the 3 types of detectors (InSb, HgCdTe-photovoltaic, HgCdTe- photoconductive) and the assembly technologies. The quantum detectors operate in the IR spectrum, so they are cooled at 100 K. The large spectrum (3.4 to 15.5 micrometer) is divided into 3 spectral bands. After manufacturing of these components, a program of test has been conducted and is reported for the evaluation of the technologies. It shows how the detector focal planes can sustain the space environmental conditions of an operational mission. It comprises two main files of test, mechanical evaluation and electrical evaluation. The detector environment has also been considered with aging and radiation tests, performed successfully. The B- phase is now achieved and all these development and testing activities are here reported.

  7. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    PubMed

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. A solar infrared photometer for space flight application

    NASA Technical Reports Server (NTRS)

    Kostiuk, Theodor; Deming, Drake

    1991-01-01

    A photometer concept which is capable of nearly simultaneous measurements of solar radiation from 1.6 to 200 microns in seven wavelength bands is described. This range of wavelengths can probe the solar photosphere from below the level of unit optical depth in the visible to the temperature minimum, about 500 km above it. An instrument package including a 20-cm Gregorian telescope and a filter wheel photometer utilizing noncryogenic pyroelectric infrared detectors is described. Approaches to the rejection of the visible solar spectrum in the instrument, the availability of optical and mechanical components, and the expected instrumental sensitivity are discussed. For wavelengths below 35 microns, the projected instrumental sensitivity is found to be adequate to detect the intensity signature of solar p-mode oscillations during 5 min of integration. For longer wavelengths, clear detection is expected through Fourier analysis of modest data sets.

  9. Functional Cementitious Composites for Pyroelectric Applications

    NASA Astrophysics Data System (ADS)

    Srikanth, K. S.; Patel, Satyanarayan; Vaish, Rahul

    2018-04-01

    We have synthesized Ba0.85Ca0.15Zr0.10Ti0.88Sn0.02O3 (BCZT-Sn)-cement composites. They were prepared as BCZT-Sn to cement ratios of 90-10% and 85-15% by weight. The larger fraction of BCZT-Sn ceramic was used to minimize the losses in the composites. The open circuit voltage was found to be 0.75 V, 0.56 V and 0.4 V for pure, 10% and 15% cement composites, respectively. The voltage and current were also measured across resistances of 1 and 3 MΩ, and the obtained voltages were lower for composites compared to pure BCZT-Sn. Nonetheless, they remain promising candidates over traditional pyroelectric materials for device applications owing to their advantages, such as (1) these composites can be made without any sintering process and (2) they can be made in any shape and size. We also studied relative permittivity, which influences performance of pyroelectric devices.

  10. Pyroelectric effect in tryglicyne sulphate single crystals - Differential measurement method

    NASA Astrophysics Data System (ADS)

    Trybus, M.

    2018-06-01

    A simple mathematical model of the pyroelectric phenomenon was used to explain the electric response of the TGS (triglycine sulphate) samples in the linear heating process in ferroelectric and paraelectric phases. Experimental verification of mathematical model was realized. TGS single crystals were grown and four electrode samples were fabricated. Differential measurements of the pyroelectric response of two different regions of the samples were performed and the results were compared with data obtained from the model. Experimental results are in good agreement with model calculations.

  11. Access control violation prevention by low-cost infrared detection

    NASA Astrophysics Data System (ADS)

    Rimmer, Andrew N.

    2004-09-01

    A low cost 16x16 un-cooled pyroelectric detector array, allied with advanced tracking and detection algorithms, has enabled the development of a universal detector with a wide range of applications in people monitoring and homeland security. Violation of access control systems, whether controlled by proximity card, biometrics, swipe card or similar, may occur by 'tailgating' or 'piggybacking' where an 'approved' entrant with a valid entry card is accompanied by a closely spaced 'non-approved' entrant. The violation may be under duress, where the accompanying person is attempting to enter a secure facility by force or threat. Alternatively, the violation may be benign where staff members collude either through habit or lassitude, either with each other or with third parties, without considering the security consequences. Examples of the latter could include schools, hospitals or maternity homes. The 16x16 pyroelectric array is integrated into a detector or imaging system which incorporates data processing, target extraction and decision making algorithms. The algorithms apply interpolation to the array output, allowing a higher level of resolution than might otherwise be expected from such a low resolution array. The pyroelectric detection principle means that the detection will work in variable light conditions and even in complete darkness, if required. The algorithms can monitor the shape, form, temperature and number of persons in the scene and utilise this information to determine whether a violation has occurred or not. As people are seen as 'hot blobs' and are not individually recognisable, civil liberties are not infringed in the detection process. The output from the detector is a simple alarm signal which may act as input to the access control system as an alert or to trigger CCTV image display and storage. The applications for a tailgate detector can be demonstrated across many medium security applications where there are no physical means to prevent this

  12. n-B-pi-p Superlattice Infrared Detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Bandara, Sumith V.; Hill, Cory J.; Gunapala, Sarath D.

    2011-01-01

    A specially designed barrier (B) is inserted at the n-pi junction [where most GR (generation-recombination) processes take place] in the standard n-pi-p structure to substantially reduce generation-recombination dark currents. The resulting n-Bpi- p structure also has reduced tunneling dark currents, thereby solving some of the limitations to which current type II strained layer superlattice infrared detectors are prone. This innovation is compatible with common read-out integrated circuits (ROICs).

  13. 2D Array of Far-infrared Thermal Detectors: Noise Measurements and Processing Issues

    NASA Technical Reports Server (NTRS)

    Lakew, B.; Aslam, S.; Stevenson, T.

    2008-01-01

    A magnesium diboride (MgB2) detector 2D array for use in future space-based spectrometers is being developed at GSFC. Expected pixel sensitivities and comparison to current state-of-the-art infrared (IR) detectors will be discussed.

  14. A strategy for high specific power pyroelectric energy harvesting from a fluid source

    NASA Astrophysics Data System (ADS)

    Maheux, E.; Hrebtov, M. Yu.; Sukhorukov, G.; Kozyulin, N. N.; Bobrov, M. S.; Dobroselsky, K. G.; Chikishev, L. M.; Dulin, V. M.; Yudin, P. V.

    2017-12-01

    Conversion of waste heat into usable electricity is now one of the important strategies for saving natural resources and minimizing impact on the environment. In contrast to Seebeck devices, utilizing a temperature gradient, pyroelectric scavengers use temporal temperature oscillations. Here, optimal strategies for pyroelectric energy harvesting are theoretically investigated from the point of view of non-stationary heat exchange for the application-relevant case of harvesting with a pyroelectric lamella from a fluid heat source. It is shown that for a fixed lamella thickness by choosing appropriate phase shift between the temperature oscillations and the voltage on the pyroelectric lamella, one can effectively operate at high frequencies and achieve a two to three-fold increase in specific power with respect to the classical Olsen cycle. A further increase in specific power is achieved by thinning down the lamella. For devices with a thickness down to a few hundreds of nanometers, specific power linearly increases with the inverse thickness. Further scaling down of the device is hampered with the heat exchange in the boundary layer. Our simulations for a representative pyroelectric Pb(Zr0,5Ti0,5)O3 predict harvestable powers of the order of kW/kg for a device with a thickness in the range from 100 nm to 1 μm, operating at hundreds of Hz.

  15. Multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1995-01-01

    A multiwavelength focal plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y<1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  16. Section 1: Interfacial reactions and grain growth in ferroelectric SrBi{sub 2}Ta{sub 2}O (SBT) thin films on Si substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickerson, B.D.; Zhang, X.; Desu, S.B.

    1997-04-01

    Much of the cost of traditional infrared cameras based on narrow-bandgap photoelectric semiconductors comes from the cryogenic cooling systems required to achieve high detectivity. Detectivity is inversely proportional to noise. Generation-recombination noise in photoelectric detectors increases roughly exponentially with temperature, but thermal noise in photoelectric detectors increases only linearly with temperature. Therefore `thermal detectors perform far better at room temperature than 8-14 {mu}m photon detectors.` Although potentially more affordable, uncooled pyroelectric cameras are less sensitive than cryogenic photoelectric cameras. One way to improve the sensitivity to cost ratio is to deposit ferroelectric pixels with good electrical properties directly on mass-produced,more » image-processing chips. `Good` properties include a strong temperature dependence of the remanent polarization, P{sub r}, or the relative dielectric constant, {epsilon}{sub r}, for sensitive operation in pyroelectric or dielectric mode, respectively, below or above the Curie temperature, which is 320 C for SBT. When incident infrared radiation is chopped, small oscillations in pixel temperature produce pyroelectric or dielectric alternating currents. The sensitivity of ferroelectric thermal detectors depends strongly on pixel microstructure, since P{sub r} and {epsilon}{sub r} increase with grain size during annealing. To manufacture SBT pixels on Si chips, acceptable SBT grain growth must be achieved at the lowest possible oxygen annealing temperature, to avoid damaging the Si chip below. Therefore current technical progress describes how grain size, reaction layer thickness, and electrical properties develop during the annealing of SBT pixels deposited on Si.« less

  17. Charge distribution and response time for a modulation-doped extrinsic infrared detector

    NASA Technical Reports Server (NTRS)

    Hadek, Victor

    1987-01-01

    The electric charge distribution and response time of a modulation-doped extrinsic infrared detector are determined. First, it is demonstrated theoretically that the photoconductive layer is effectively depleted of ionized majority-impurity charges so that scattering is small and mobility is high for photogenerated carriers. Then, using parameters appropriate to an actual detector, the predicted response time is 10 to the -8th to about 10 to the -9th s, which is much faster than comparable conventional detectors. Thus, the modulation-doped detector design would be valuable for heterodyne applications.

  18. Two-color detector: Mercury-cadmium-telluride as a terahertz and infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sizov, F.; Zabudsky, V.; Petryakov, V.

    2015-02-23

    In this paper, issues associated with the development of infrared (IR) and terahertz (THz) radiation detectors based on HgCdTe are discussed. Two-color un-cooled and cooled to 78 K narrow-gap mercury-cadmium-telluride semiconductor thin layers with antennas were considered both as sub-THz (sub-THz) direct detection bolometers and 3–10 μm IR photoconductors. The noise equivalent power (NEP) for one of the detectors studied at ν ≈ 140 GHz reaches NEP{sub 300 K} ≈ 4.5 × 10{sup −10} W/Hz{sup 1/2} and NEP{sub 78 K} ≈ 5 × 10{sup −9} W/Hz{sup 1/2}. The same detector used as an IR photoconductor showed the responsivity at temperatures T = 78 K and 300 K with signal-to-noisemore » ratio S/N ≈ 750 and 50, respectively, under illumination by using IR monochromator and globar as a thermal source.« less

  19. Thermopile Detector Arrays for Space Science Applications

    NASA Technical Reports Server (NTRS)

    Foote, M. C.; Kenyon, M.; Krueger, T. R.; McCann, T. A.; Chacon, R.; Jones, E. W.; Dickie, M. R.; Schofield, J. T.; McCleese, D. J.; Gaalema, S.

    2004-01-01

    Thermopile detectors are widely used in uncooled applications where small numbers of detectors are required, particularly in low-cost commercial applications or applications requiring accurate radiometry. Arrays of thermopile detectors, however, have not been developed to the extent of uncooled bolometer and pyroelectric/ferroelectric arrays. Efforts at JPL seek to remedy this deficiency by developing high performance thin-film thermopile detectors in both linear and two-dimensional formats. The linear thermopile arrays are produced by bulk micromachining and wire bonded to separate CMOS readout electronic chips. Such arrays are currently being fabricated for the Mars Climate Sounder instrument, scheduled for launch in 2005. Progress is also described towards realizing a two-dimensional thermopile array built over CMOS readout circuitry in the substrate.

  20. High field CdS detector for infrared radiation

    NASA Technical Reports Server (NTRS)

    Tyagi, R. C.; Robertson, J. B.; Boer, K. W.; Hadley, H. C., Jr. (Inventor)

    1974-01-01

    An infrared radiation detector including a cadmium sulfide platelet having a cathode formed on one of its ends and an anode formed on its other end is presented. The platelet is suitably doped such that stationary high-field domains are formed adjacent the cathode when based in the negative differential conductivity region. A negative potential is applied to the cathode such that a high-field domain is formed adjacent to the cathode. A potential measuring probe is located between the cathode and the anode at the edge of the high-field domain and means are provided for measuring the potential at the probe whereby this measurement is indicative of the infrared radiation striking the platelet.

  1. SAPHIRA detector for infrared wavefront sensing

    NASA Astrophysics Data System (ADS)

    Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.

    2014-08-01

    fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].

  2. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    DOE PAGES

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G; ...

    2014-11-01

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less

  3. Pyroelectric Energy Scavenging Techniques for Self-Powered Nuclear Reactor Wireless Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunter, Scott Robert; Lavrik, Nickolay V; Datskos, Panos G

    Recent advances in technologies for harvesting waste thermal energy from ambient environments present an opportunity to implement truly wireless sensor nodes in nuclear power plants. These sensors could continue to operate during extended station blackouts and during periods when operation of the plant s internal power distribution system has been disrupted. The energy required to power the wireless sensors must be generated using energy harvesting techniques from locally available energy sources, and the energy consumption within the sensor circuitry must therefore be low to minimize power and hence the size requirements of the energy harvester. Harvesting electrical energy from thermalmore » energy sources can be achieved using pyroelectric or thermoelectric conversion techniques. Recent modeling and experimental studies have shown that pyroelectric techniques can be cost competitive with thermoelectrics in self powered wireless sensor applications and, using new temperature cycling techniques, has the potential to be several times as efficient as thermoelectrics under comparable operating conditions. The development of a new thermal energy harvester concept, based on temperature cycled pyroelectric thermal-to-electrical energy conversion, is outlined. This paper outlines the modeling of cantilever and pyroelectric structures and single element devices that demonstrate the potential of this technology for the development of high efficiency thermal-to-electrical energy conversion devices.« less

  4. Assessment study of infrared detector arrays for low-background astronomical research

    NASA Technical Reports Server (NTRS)

    Ando, K. J.

    1978-01-01

    The current state-of-the-art of infrared detector arrays employing charge coupled devices (CCD) or charge injection devices (CID) readout are assessed. The applicability, limitations and potentials of such arrays under the low-background astronomical observing conditions of interest for SIRFT (Shuttle Infrared Telescope Facility) are determined. The following are reviewed: (1) monolithic extrinsic arrays; (2) monolithic intrinsic arrays; (3) charge injection devices; and (4) hybrid arrays.

  5. Development of an ultrahigh-performance infrared detector platform for advanced spectroscopic sensing systems

    NASA Astrophysics Data System (ADS)

    Jain, Manish; Wicks, Gary; Marshall, Andrew; Craig, Adam; Golding, Terry; Hossain, Khalid; McEwan, Ken; Howle, Chris

    2014-05-01

    Laser-based stand-off sensing of threat agents (e.g. explosives, toxic industrial chemicals or chemical warfare agents), by detection of distinct infrared spectral absorption signature of these materials, has made significant advances recently. This is due in part to the availability of infrared and terahertz laser sources with significantly improved power and tunability. However, there is a pressing need for a versatile, high performance infrared sensor that can complement and enhance the recent advances achieved in laser technology. This work presents new, high performance infrared detectors based on III-V barrier diodes. Unipolar barrier diodes, such as the nBn, have been very successful in the MWIR using InAs(Sb)-based materials, and in the MWIR and LWIR using type-II InAsSb/InAs superlattice-based materials. This work addresses the extension of the barrier diode architecture into the SWIR region, using GaSb-based and InAs-based materials. The program has resulted in detectors with unmatched performance in the 2-3 μm spectral range. Temperature dependent characterization has shown dark currents to be diffusion limited and equal to, or within a factor of 5, of the Rule 07 expression for Auger-limited HgCdTe detectors. Furthermore, D* values are superior to those of existing detectors in the 2-3 μm band. Of particular significance to spectroscopic sensing systems is the ability to have near-background limited performance at operation temperatures compatible with robust and reliable solid state thermoelectric coolers.

  6. Detector Arrays for the James Webb Space Telescope Near-Infrared Spectrograph

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Alexander, David; Brambora, Clifford K.; Derro, Rebecca; Engler, Chuck; Fox, Ori; Garrison, Matthew B.; Henegar, Greg; Hill, robert J.; Johnson, Thomas; hide

    2007-01-01

    The James Webb Space Telescope's (JWST) Near Infrared Spectrograph (NIRSpec) incorporates two 5 micron cutoff (lambda(sub co) = 5 microns) 2048x2048 pixel Teledyne HgCdTe HAWAII-2RG sensor chip assemblies. These detector arrays, and the two Teledyne SIDECAR application specific integrated circuits that control them, are operated in space at T approx. 37 K. In this article, we provide a brief introduction to NIRSpec, its detector subsystem (DS), detector readout in the space radiation environment, and present a snapshot of the developmental status of the NIRSpec DS as integration and testing of the engineering test unit begins.

  7. Method of improving BeO as a thermoluminescent detector

    DOEpatents

    Gammage, Richard B.; Thorngate, John H.; Christian, Danny J.

    1980-01-01

    Measurements of radiation exposure below 1 mR are possible with a BeO ceramic thermoluminescent detector (TLD) by treating the TL signal in a manner that discriminates against an interferring pyroelectric incandescence (PI). This is accomplished by differentiating the signals electronically to cause the composite signal to cross the baseline. A zero-crossing detector then senses and clips the negative-going portion of the signal. The resultant signal is integrated, producing a result wherein the true TL signal is substantially greater than the PI signal.

  8. High-Operating-Temperature Barrier Infrared Detector with Tailorable Cutoff Wavelength

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Hill, Cory, J.; Soibel, Alexander; Bandara, Sumith V.; Gunapala, Sarath D.

    2011-01-01

    A mid-wavelength infrared (MWIR) barrier photodetector is capable of operating at higher temperature than the prevailing MWIR detectors based on InSb. The standard high-operating-temperature barrier infrared detector (HOT-BIRD) is made with an InAsSb infrared absorber that is lattice-matched to a GaSb substrate, and has a cutoff wavelength of approximately 4 microns. To increase the versatility and utility of the HOT-BIRD, it is implemented with IR absorber materials with customizable cutoff wavelengths. The HOT-BIRD can be built with the quaternary alloy GaInAsSb as the absorber, GaAlSbAs as the barrier, on a lattice-matching GaSb substrate. The cutoff wavelength of the GaInAsSb can be tailored by adjusting the alloy composition. To build a HOT-BIRD requires a matching pair of absorber and barrier materials with the following properties: (1) their valence band edges must be approximately the same to allow unimpeded hole flow, while their conduction band edges should have a large difference to form an electron barrier; and (2) the absorber and the barrier must be respectively lattice-matched and closely lattice-matched to the substrate to ensure high material quality and low defect density. To make a HOT-BIRD with cutoff wavelength shorter than 4 microns, a GaInAsSb quaternary alloy was used as the absorber, and a matching GaAlSbAs quaternary alloy as the barrier. By changing the alloy composition, the band gap of the quaternary alloy absorber can be continuously adjusted with cutoff wavelength ranging from 4 microns down to the short wavelength infrared (SWIR). By carefully choosing the alloy composition of the barrier, a HOT-BIRD structure can be formed. With this method, a HOT-BIRD can be made with continuously tailorable cutoff wavelengths from 4 microns down to the SWIR. The HOT-BIRD detector technology is suitable for making very-large-format MWIR/SWIR focal plane arrays that can be operated by passive cooling from low Earth orbit. High-operating temperature

  9. Gerard Kuiper and the Infrared Detector

    NASA Astrophysics Data System (ADS)

    Sears, Derek

    2013-10-01

    The life and contributions of Gerard Kuiper have been documented by Dale Cruikshank in his National Academy of Sciences biography. I will argue that particularly important in this eventful life was Kuiper's war time experiences. Kuiper's wartime role evolved as the war unfolded, but towards the end he was charged by the US military with reporting German progress with war-related technologies and the activities of scientists under Nazi control. He interviewed a great many scientists, including his own PhD mentor (Ejnar Hertzsprung), and when Kuiper was the only person available, he interviewed concentration-camp victims. He carried briefing sheets that identified the technologies being sought by the allies and the major fraction of these involved infrared equipment. He sent back to the USA boxes of documents, and large amounts of equipment, and he stressed to the military his interest in these for his own research. It seems very likely that in this way an effective PbS infrared detector, so critical to Kuiper's career and the future of planetary science, came to the USA and to Robert Cashman's laboratory at Northwestern University. As the war was winding down, Cashman and Kuiper worked together to develop a practical infrared spectrometer for astronomical use. Within months, Kuiper discovered the C02 atmospheres on Mars and Venus.

  10. Design of InAs/GaSb superlattice infrared barrier detectors

    NASA Astrophysics Data System (ADS)

    Delmas, M.; Rossignol, R.; Rodriguez, J. B.; Christol, P.

    2017-04-01

    Design of InAs/GaSb type-II superlattice (T2SL) infrared barrier detectors is theoretically investigated. Each part of the barrier structures is studied in order to achieve optimal device operation at 150 K and 77 K, in the midwave and longwave infrared domain, respectively. Whatever the spectral domain, nBp structure with a p-type absorbing zone and an n-type contact layer is found to be the most favourable detector architecture allowing a reduction of the dark-current associated with generation-recombination processes. The nBp structures are then compared to pin photodiodes. The MWIR nBp detector with 5 μm cut-off wavelength can operate up to 120 K, resulting in an improvement of 20 K on the operating temperature compared to the pin device. The dark-current density of the LWIR nBp device at 77 K is expected to be as low as 3.5 × 10-4 A/cm2 at 50 mV reverse bias, more than one decade lower than the usual T2SL photodiode. This result, for a device having cut-off wavelength at 12 μm, is at the state of the art compared to the well-known MCT 'rule 07'.

  11. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    PubMed

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  12. Spectral filtering using active metasurfaces compatible with narrow bandgap III-V infrared detectors

    DOE PAGES

    Wolf, Omri; Campione, Salvatore; Kim, Jin; ...

    2016-01-01

    Narrow-bandgap semiconductors such as alloys of InAsAlSb and their heterostructures are considered promising candidates for next generation infrared photodetectors and devices. The prospect of actively tuning the spectral responsivity of these detectors at the pixel level is very appealing. In principle, this could be achieved with a tunable metasurface fabricated monolithically on the detector pixel. Here, we present first steps towards that goal using a complementary metasurface strongly coupled to an epsilon-near-zero (ENZ) mode operating in the long-wave region of the infrared spectrum. We fabricate such a coupled system using the same epitaxial layers used for infrared pixels in amore » focal plane array and demonstrate the existence of ENZ modes in high mobility layers of InAsSb. We confirm that the coupling strength between the ENZ mode and the metasurface depends on the ENZ layer thickness and demonstrate a transmission modulation on the order of 25%. Lastly, we further show numerically the expected tunable spectral behavior of such coupled system under reverse and forward bias, which could be used in future electrically tunable detectors.« less

  13. Laboratory Measurement of the Brighter-fatter Effect in an H2RG Infrared Detector

    NASA Astrophysics Data System (ADS)

    Plazas, A. A.; Shapiro, C.; Smith, R.; Huff, E.; Rhodes, J.

    2018-06-01

    The “brighter-fatter” (BF) effect is a phenomenon—originally discovered in charge coupled devices—in which the size of the detector point-spread function (PSF) increases with brightness. We present, for the first time, laboratory measurements demonstrating the existence of the effect in a Hawaii-2RG HgCdTe near-infrared (NIR) detector. We use JPL’s Precision Projector Laboratory, a facility for emulating astronomical observations with UV/VIS/NIR detectors, to project about 17,000 point sources onto the detector to stimulate the effect. After calibrating the detector for nonlinearity with flat-fields, we find evidence that charge is nonlinearly shifted from bright pixels to neighboring pixels during exposures of point sources, consistent with the existence of a BF-type effect. NASAs Wide Field Infrared Survey Telescope (WFIRST) will use similar detectors to measure weak gravitational lensing from the shapes of hundreds of million of galaxies in the NIR. The WFIRST PSF size must be calibrated to ≈0.1% to avoid biased inferences of dark matter and dark energy parameters; therefore further study and calibration of the BF effect in realistic images will be crucial.

  14. MTF measurement and analysis of linear array HgCdTe infrared detectors

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Lin, Chun; Chen, Honglei; Sun, Changhong; Lin, Jiamu; Wang, Xi

    2018-01-01

    The slanted-edge technique is the main method for measurement detectors MTF, however this method is commonly used on planar array detectors. In this paper the authors present a modified slanted-edge method to measure the MTF of linear array HgCdTe detectors. Crosstalk is one of the major factors that degrade the MTF value of such an infrared detector. This paper presents an ion implantation guard-ring structure which was designed to effectively absorb photo-carriers that may laterally defuse between adjacent pixels thereby suppressing crosstalk. Measurement and analysis of the MTF of the linear array detectors with and without a guard-ring were carried out. The experimental results indicated that the ion implantation guard-ring structure effectively suppresses crosstalk and increases MTF value.

  15. A new generation of small pixel pitch/SWaP cooled infrared detectors

    NASA Astrophysics Data System (ADS)

    Espuno, L.; Pacaud, O.; Reibel, Y.; Rubaldo, L.; Kerlain, A.; Péré-Laperne, N.; Dariel, A.; Roumegoux, J.; Brunner, A.; Kessler, A.; Gravrand, O.; Castelein, P.

    2015-10-01

    Following clear technological trends, the cooled IR detectors market is now in demand for smaller, more efficient and higher performance products. This demand pushes products developments towards constant innovations on detectors, read-out circuits, proximity electronics boards, and coolers. Sofradir was first to show a 10μm focal plane array (FPA) at DSS 2012, and announced the DAPHNIS 10μm product line back in 2014. This pixel pitch is a key enabler for infrared detectors with increased resolution. Sofradir recently achieved outstanding products demonstrations at this pixel pitch, which clearly demonstrate the benefits of adopting 10μm pixel pitch focal plane array-based detectors. Both HD and XGA Daphnis 10μm products also benefit from a global video datapath efficiency improvement by transitioning to digital video interfaces. Moreover, innovative smart pixels functionalities drastically increase product versatility. In addition to this strong push towards a higher pixels density, Sofradir acknowledges the need for smaller and lower power cooled infrared detector. Together with straightforward system interfaces and better overall performances, latest technological advances on SWAP-C (Size, Weight, Power and Cost) Sofradir products enable the advent of a new generation of high performance portable and agile systems (handheld thermal imagers, unmanned aerial vehicles, light gimbals etc...). This paper focuses on those features and performances that can make an actual difference in the field.

  16. 21 CFR 882.1935 - Near Infrared (NIR) Brain Hematoma Detector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Near Infrared (NIR) Brain Hematoma Detector. 882.1935 Section 882.1935 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... and the clinical training needed for the safe use of this device; (3) Appropriate analysis/testing...

  17. Detector location selection based on VIP analysis in near-infrared detection of dural hematoma.

    PubMed

    Sun, Qiuming; Zhang, Yanjun; Ma, Jun; Tian, Feng; Wang, Huiquan; Liu, Dongyuan

    2018-03-01

    Detection of dural hematoma based on multi-channel near-infrared differential absorbance has the advantages of rapid and non-invasive detection. The location and number of detectors around the light source are critical for reducing the pathological characteristics of the prediction model on dural hematoma degree. Therefore, rational selection of detector numbers and their distances from the light source is very important. In this paper, a detector position screening method based on Variable Importance in the Projection (VIP) analysis is proposed. A preliminary modeling based on Partial Least Squares method (PLS) for the prediction of dural position μ a was established using light absorbance information from 30 detectors located 2.0-5.0 cm from the light source with a 0.1 cm interval. The mean relative error (MRE) of the dural position μ a prediction model was 4.08%. After VIP analysis, the number of detectors was reduced from 30 to 4 and the MRE of the dural position μ a prediction was reduced from 4.08% to 2.06% after the reduction in detector numbers. The prediction model after VIP detector screening still showed good prediction of the epidural position μ a . This study provided a new approach and important reference on the selection of detector location in near-infrared dural hematoma detection.

  18. Numerical Device Modeling, Analysis, and Optimization of Extended-SWIR HgCdTe Infrared Detectors

    NASA Astrophysics Data System (ADS)

    Schuster, J.; DeWames, R. E.; DeCuir, E. A.; Bellotti, E.; Dhar, N.; Wijewarnasuriya, P. S.

    2016-09-01

    Imaging in the extended short-wavelength infrared (eSWIR) spectral band (1.7-3.0 μm) for astronomy applications is an area of significant interest. However, these applications require infrared detectors with extremely low dark current (less than 0.01 electrons per pixel per second for certain applications). In these detectors, sources of dark current that may limit the overall system performance are fundamental and/or defect-related mechanisms. Non-optimized growth/device processing may present material point defects within the HgCdTe bandgap leading to Shockley-Read-Hall dominated dark current. While realizing contributions to the dark current from only fundamental mechanisms should be the goal for attaining optimal device performance, it may not be readily feasible with current technology and/or resources. In this regard, the U.S. Army Research Laboratory performed physics-based, two- and three-dimensional numerical modeling of HgCdTe photovoltaic infrared detectors designed for operation in the eSWIR spectral band. The underlying impetus for this capability and study originates with a desire to reach fundamental performance limits via intelligent device design.

  19. Infrared response measurements on radiation-damaged Si/Li/ detectors.

    NASA Technical Reports Server (NTRS)

    Sher, A. H.; Liu, Y. M.; Keery, W. J.

    1972-01-01

    The improved infrared response (IRR) technique has been used to qualitatively compare radiation effects on Si(Li) detectors with energy levels reported for silicon in the literature. Measurements have been made on five commercial silicon detectors and one fabricated in-house, both before and after irradiation with fast neutrons, 1.9-MeV protons, and 1.6-MeV electrons. Effects dependent upon the extent of radiation damage have been observed. It seems likely that the photo-EMF, or photo-voltage, effect is the basic mechanism for the observation of IRR in p-i-n diodes with a wide i-region. Experimental characteristics of the IRR measurement are in agreement with those of the photovoltage effect.

  20. A miniaturized 4 K platform for superconducting infrared photon counting detectors

    NASA Astrophysics Data System (ADS)

    Gemmell, Nathan R.; Hills, Matthew; Bradshaw, Tom; Rawlings, Tom; Green, Ben; Heath, Robert M.; Tsimvrakidis, Konstantinos; Dobrovolskiy, Sergiy; Zwiller, Val; Dorenbos, Sander N.; Crook, Martin; Hadfield, Robert H.

    2017-11-01

    We report on a miniaturized platform for superconducting infrared photon counting detectors. We have implemented a fibre-coupled superconducting nanowire single photon detector in a Stirling/Joule-Thomson platform with a base temperature of 4.2 K. We have verified a cooling power of 4 mW at 4.7 K. We report 20% system detection efficiency at 1310 nm wavelength at a dark count rate of 1 kHz. We have carried out compelling application demonstrations in single photon depth metrology and singlet oxygen luminescence detection.

  1. Infrared receivers for low background astronomy: Incoherent detectors and coherent devices from one micrometer to one millimeter

    NASA Technical Reports Server (NTRS)

    Boggess, N. W.; Greenberg, L. T.; Hauser, M. G.; Houck, J. R.; Low, F. J.; Mccreight, C. R.; Rank, D. M.; Richards, P. L.; Weiss, R.

    1979-01-01

    The status of incoherent detectors and coherent receivers over the infrared wavelength range from one micrometer to one millimeter is described. General principles of infrared receivers are included, and photon detectors, bolometers, coherent receivers, and important supporting technologies are discussed, with emphasis on their suitability for low background astronomical applications. Broad recommendations are presented and specific opportunities are identified for development of improved devices.

  2. Integrated infrared detector arrays for low-background astronomy

    NASA Technical Reports Server (NTRS)

    Mccreight, C. R.

    1979-01-01

    Existing integrated infrared detector array technology is being evaluated under low-background conditions to determine its applicability in orbiting astronomical applications where extended integration times and photometric accuracy are of interest. Preliminary performance results of a 1 x 20 elements InSb CCD array under simulated astronomical conditions are presented. Using the findings of these tests, improved linear- and area-array technology will be developed for use in NASA programs such as the Shuttle Infrared Telescope Facility. For wavelengths less than 30 microns, extrinsic silicon and intrinsic arrays with CCD readout will be evaluated and improved as required, while multiplexed arrays of Ge:Ga for wavelengths in the range 30 to 120 microns will be developed as fundamental understanding of this material improves. Future efforts will include development of improved drive and readout circuitry, and consideration of alternate multiplexing schemes.

  3. Pyroelectric effect and lattice thermal conductivity of InN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Hansdah, Gopal; Sahoo, Bijay Kumar

    2018-06-01

    The built-in-polarization (BIP) of InN/GaN heterostructures enhances Debye temperature, phonon mean free path and thermal conductivity of the heterostructure at room temperature. The variation of thermal conductivities (kp: including polarization mechanism and k: without polarization mechanism) with temperature predicts the existence of a transition temperature (Tp) between primary and secondary pyroelectric effect. Below Tp, kp is lower than k; while above Tp, kp is significantly contributed from BIP mechanism due to thermal expansion. A thermodynamic theory has been proposed to explain the result. The room temperature thermal conductivity of InN/GaN heterostructure with and without polarization is respectively 32 and 48 W m-1 K-1. The temperature Tp and room temperature pyroelectric coefficient of InN has been predicted as 120 K and -8.425 μC m-2 K-1, respectively which are in line with prior literature studies. This study suggests that thermal conductivity measurement in InN/GaN heterostructures can help to understand the role of phonons in pyroelectricity.

  4. Enhanced pyroelectric and piezoelectric properties of PZT with aligned porosity for energy harvesting applications.

    PubMed

    Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao; Zhang, Dou; Bowen, Chris R

    2017-04-14

    This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and pyroelectric materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and pyroelectric properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and pyroelectric harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and pyroelectric harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm -3 , which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm -3 . The results are beneficial for the design and manufacture of high performance porous pyroelectric and piezoelectric materials in devices for energy harvesting and sensor applications.

  5. JWST Near-Infrared Detector Degradation: Finding the Problem, Fixing the Problem, and Moving Forward

    NASA Technical Reports Server (NTRS)

    Rauscher, Bernard J.; Stahle, Carl; Hill, Bob; Greenhouse, Matt; Beletic, James; Babu, Sachidananda; Blake, Peter; Cleveland, Keith; Cofie, Emmanuel; Eegholm, Bente; hide

    2012-01-01

    The James Webb Space Telescope (JWST) is the successor to the Hubble Space Telescope. JWST will be an infrared optimized telescope, with an approximately 6.5 m diameter primary mirror, that is located at the Sun-Earth L2 Lagrange point. Three of JWST's four science instruments use Teledyne HgCdTe HAWAII-2RG (H2RG) near infrared detector arrays. During 2010, the JWST Project noticed that a few of its 5 micron cutoff H2RG detectors were degrading during room temperature storage, and NASA chartered a "Detector Degradation Failure Review Board" (DD-FRB) to investigate. The DD-FRB determined that the root cause was a design flaw that allowed indium to interdiffuse with the gold contacts and migrate into the HgCdTe detector layer. Fortunately, Teledyne already had an improved design that eliminated this degradation mechanism. During early 2012, the improved H2RG design was qualified for flight and JWST began making additional H2RGs. In this article we present the two public DD-FRB "Executiye Summaries" that: (1) determined the root cause of the detector degradation and (2) defined tests to determine whether the existing detectors are qualified for flight. We supplement these with a brief introduction to H2RG detector arrays, and a discussion of how the JWST Project is using cryogenic storage to retard the degradation rate of the existing flight spare H2RGs.

  6. An instrumentation amplifier based readout circuit for a dual element microbolometer infrared detector

    NASA Astrophysics Data System (ADS)

    de Waal, D. J.; Schoeman, J.

    2014-06-01

    The infrared band is widely used in many applications to solve problems stretching over very diverse fields, ranging from medical applications like inflammation detection to military, security and safety applications employing thermal imaging in low light conditions. At the heart of these optoelectrical systems lies a sensor used to detect incident infrared radiation, and in the case of this work our focus is on uncooled microbolometers as thermal detectors. Microbolometer based thermal detectors are limited in sensitivity by various parameters, including the detector layout and design, operating temperature, air pressure and biasing that causes self heating. Traditional microbolometers use the entire membrane surface for a single detector material. This work presents the design of a readout circuit amplifier where a dual detector element microbolometer is used, rather than the traditional single element. The concept to be investigated is based on the principle that both elements will be stimulated with a similar incoming IR signal and experience the same resistive change, thus creating a common mode signal. However, such a common mode signal will be rejected by a differential amplifier, thus one element is placed within a negative resistance converter to create a differential mode signal that is twice the magnitude of the comparable single mode signal of traditional detector designs. An instrumentation amplifier is used for the final stage of the readout amplifier circuit, as it allows for very high common mode rejection with proper trimming of the Wheatstone bridge to compensate for manufacturing tolerance. It was found that by implementing the above, improved sensitivity can be achieved.

  7. Visible and infrared linear detector arrays for the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)

    NASA Technical Reports Server (NTRS)

    Bailey, Gary C.

    1987-01-01

    The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument uses four separate focal plane assemblies consisting of line array detectors that are multiplexed to a common J-FET preamp using a FET switch multiplexing (MUX) technique. A 32-element silicon line array covers the spectral range from 0.41 to 0.70 microns. Three additional 64-element indium antimonide (InSb) line arrays cover the spectral range from 0.68 to 2.45 microns. The spectral sampling interval per detector element is nominally 9.8 nm, giving a total of 224 spectral channels. All focal planes operate at liquid nitrogen temperature and are housed in separate dewars. Electrical performance characteristics include a read noise of less than 1000 e(-) in all channels, response and dark nonuniformity of 5 percent peak to peak, and quantum efficiency of greater than 60 percent.

  8. Pyroelectric Crystal Accelerator In The Department Of Physics And Nuclear Engineering At West Point

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gillich, Don; Kovanen, Andrew; Anderson, Tom

    The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. The NSERC has created an experimental pyroelectric crystal accelerator program to enhance undergraduate education at USMA in the Department of Physics and Nuclear Engineering. This program provides cadets with hands-on experience in designing their own experiments using an inexpensive tabletop accelerator. This device uses pyroelectric crystals to ionize and accelerate gas ions to energies of {approx}100 keV. Within the next year, cadets and faculty atmore » USMA will use this device to create neutrons through the deuterium-deuterium (D-D) fusion process, effectively creating a compact, portable neutron generator. The double crystal pyroelectric accelerator will also be used by students to investigate neutron, x-ray, and ion spectroscopy.« less

  9. Radiation hard blocked tunneling band {GaAs}/{AlGaAs} superlattice long wavelength infrared detectors

    NASA Astrophysics Data System (ADS)

    Wu, C. S.; Wen, C. P.; Reiner, P.; Tu, C. W.; Hou, H. Q.

    1996-09-01

    We have developed a novel multiple quantum well (MQW) long wavelength infrared (LWIR) detector which can operate in a photovoltaic detection mode with an intrinsic event discrimination (IED) capability. The detector was constructed using the {GaAs}/{AlGaAs} MQW technology to form a blocked tunneling band superlattice structure with a 10.2 micron wavelength and 2.2 micron bandwidth. The detector exhibited Schottky junction and photovoltaic detection characteristics with extremely low dark current and low noise as a result of a built-in tunneling current blocking layer structure. In order to enhance quantum efficiency, a built-in electric field was created by grading the doping concentration of each quantum well in the MQW region. The peak responsivity of the detector was 0.4 amps/W with a measured detectivity of 6.0 × 10 11 Jones. The external quantum efficiency was measured to be 4.4%. The detector demonstrated an excellent intrinsic event discrimination capability due to the presence of a p-type GaAs hole collector layer, which was grown on top of the n-type electron emitter region of the MQW detector. The best results show that an infrared signal which is as much as 100 times smaller than coincident nuclear radiation induced current can be distinguished and extracted from the noise signal. With this hole collector structure, our detector also demonstrated two-color detection.

  10. A Novel Solid State Non-Dispersive Infrared CO2 Gas Sensor Compatible with Wireless and Portable Deployment

    PubMed Central

    Gibson, Desmond; MacGregor, Calum

    2013-01-01

    This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with “fit and forget” wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing. PMID:23760090

  11. A novel solid state non-dispersive infrared CO2 gas sensor compatible with wireless and portable deployment.

    PubMed

    Gibson, Desmond; MacGregor, Calum

    2013-05-29

    This paper describes development of a novel mid-infrared light emitting diode (LED) and photodiode (PD) light source/detector combination and use within a non-dispersive infrared (NDIR) carbon dioxide gas sensor. The LED/PD based NDIR sensor provides fast stabilisation time (time required to turn on the sensor from cold, warm up, take and report a measurement, and power down again ≈1 second), longevity (>15 years), low power consumption and low cost. Described performance is compatible with "fit and forget" wireless deployed sensors in applications such as indoor air quality monitoring/control & energy conservation in buildings, transport systems, horticultural greenhouses and portable deployment for safety, industrial and medical applications. Fast stabilisation time, low intrinsic power consumption and cycled operation offer typical energy consumption per measurement of mJ's, providing extended operation using battery and/or energy harvesting strategies (measurement interval of ≈ 2 minutes provides >10 years operation from one AA battery). Specific performance data is provided in relation to measurement accuracy and noise, temperature performance, cross sensitivity, measurement range (two pathlength variants are described covering ambient through to 100% gas concentration), comparison with NDIR utilizing thermal source/pyroelectric light source/detector combination and compatibility with energy harvesting. Semiconductor based LED/PD processing together with injection moulded reflective optics and simple assembly provide a route to low cost high volume manufacturing.

  12. A new test facility for the E-ELT infrared detector program

    NASA Astrophysics Data System (ADS)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  13. Study of the growth and pyroelectric properties of TGS crystals doped with aniline-family dipolar molecules

    NASA Astrophysics Data System (ADS)

    Zhang, Kecong; Song, Jiancheng; Wang, Min; Fang, Changshui; Lu, Mengkai

    1987-04-01

    TGS crystals doped with aniline-family dipolar molecules (aniline, 2-aminobenzoic acid, 3-aminobenzoic acid, 3-aminobenzene-sulphonic acid, 4-aminobenzenesulphonic acid and 4-nitroraniline) have been grown by the slow-cooling solution method. The influence of these dopants on the growth habits, crystal morphology pyroelectric properties, and structure parameters of TGS crystals has been systematically investigated. The effects of the domain structure of the seed crystal on the pyroelectric properties of the doped crystals have been studied. It is found that the spontaneous polarization (P), pyroelectric coefficient (lambda), and internal bias field of the doped crystals are slightly higher than those of the pure TGS, and the larger the dipole moment of the dopant molecule, the higher the P and lambda of the doped TGS crystal.

  14. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials.

    PubMed

    Martin-Olmos, Cristina; Stieg, Adam Z; Gimzewski, James K

    2012-06-15

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  15. Electrostatic force microscopy as a broadly applicable method for characterizing pyroelectric materials

    NASA Astrophysics Data System (ADS)

    Martin-Olmos, Cristina; Stieg, Adam Z.; Gimzewski, James K.

    2012-06-01

    A general method based on the combination of electrostatic force microscopy with thermal cycling of the substrate holder is presented for direct, nanoscale characterization of the pyroelectric effect in a range of materials and sample configurations using commercial atomic force microscope systems. To provide an example of its broad applicability, the technique was applied to the examination of natural tourmaline gemstones. The method was validated using thermal cycles similar to those experienced in ambient conditions, where the induced pyroelectric response produced localized electrostatic surface charges whose magnitude demonstrated a correlation with the iron content and heat dissipation of each gemstone variety. In addition, the surface charge was shown to persist even at thermal equilibrium. This behavior is attributed to constant, stochastic cooling of the gemstone surface through turbulent contact with the surrounding air and indicates a potential utility for energy harvesting in applications including environmental sensors and personal electronics. In contrast to previously reported methods, ours has a capacity to carry out such precise nanoscale measurements with little or no restriction on the sample of interest, and represents a powerful new tool for the characterization of pyroelectric materials and devices.

  16. Piezoelectric and pyroelectric properties of DL-alanine and L-lysine amino-acid polymer nanofibres

    NASA Astrophysics Data System (ADS)

    de Matos Gomes, Etelvina; Viseu, Teresa; Belsley, Michael; Almeida, Bernardo; Costa, Maria Margarida R.; Rodrigues, Vitor H.; Isakov, Dmitry

    2018-04-01

    The piezoelectric and pyroelectric properties of electrospun polyethylene oxide nanofibres embedded with polar amino acids DL-alanine and L-lysine hemihydrate are reported. A high pyroelectric coefficient of 150 μC m‑2 K‑1 was measured for L-lysine hemihydrate and piezoelectric current densities up to 7 μA m‑2 were obtained for the nanofibres. The study reveals a potential for polymer amino-acid nanofibres to be used as biocompatible energy harvesters for autonomous circuit applications like in implantable electronics.

  17. Modeling of a honeycomb-shaped pyroelectric energy harvester for human body heat harvesting

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Jo, Sung-Eun; Ahn, Hye-Rin; Kim, Yong-Jun

    2015-06-01

    Pyroelectric conversion can be used for thermal energy harvesting in lieu of thermoelectric conversion. In the case of human body energy harvesting, the general pyroelectric energy harvester (PEH) cannot be applied because the weak body heat can hardly penetrate the protecting layer to reach the pyroelectric material. This paper presents the realization of a honeycomb-shaped PEH (H-PEH) and a modeling method of the electrode and hole areas. The fabricated H-PEH successfully generated electrical energy using human body heat. The H-PEH with a 1:1.5 electrode-and-hole area ratio showed the best performance. To verify the human energy harvesting, we evaluated the characteristics of conventional PEH and H-PEH when body heat was used as a heat source. The maximum power of the H-PEH was 0.06 and 0.16 μW at wind velocities of 2 and 4 m s-1, respectively. These output power values of the H-PEH were 200 and 224% larger than those of the PEH, respectively, according to the wind velocity.

  18. Non-invasive characterization and quality assurance of silicon micro-strip detectors using pulsed infrared laser

    NASA Astrophysics Data System (ADS)

    Ghosh, P.

    2016-01-01

    The Compressed Baryonic Matter (CBM) experiment at FAIR is composed of 8 tracking stations consisting of roughly 1300 double sided silicon micro-strip detectors of 3 different dimensions. For the quality assurance of prototype micro-strip detectors a non-invasive detector charaterization is developed. The test system is using a pulsed infrared laser for charge injection and characterization, called Laser Test System (LTS). The system is aimed to develop a set of characterization procedures which are non-invasive (non-destructive) in nature and could be used for quality assurances of several silicon micro-strip detectors in an efficient, reliable and reproducible way. The procedures developed (as reported here) uses the LTS to scan sensors with a pulsed infra-red laser driven by step motor to determine the charge sharing in-between strips and to measure qualitative uniformity of the sensor response over the whole active area. The prototype detector modules which are tested with the LTS so far have 1024 strips with a pitch of 58 μm on each side. They are read-out using a self-triggering prototype read-out electronic ASIC called n-XYTER. The LTS is designed to measure sensor response in an automatized procedure at several thousand positions across the sensor with focused infra-red laser light (spot size ≈ 12 μm, wavelength = 1060 nm). The pulse with a duration of ≈ 10 ns and power ≈ 5 mW of the laser pulse is selected such, that the absorption of the laser light in the 300 μm thick silicon sensor produces ≈ 24000 electrons, which is similar to the charge created by minimum ionizing particles (MIP) in these sensors. The laser scans different prototype sensors and various non-invasive techniques to determine characteristics of the detector modules for the quality assurance is reported.

  19. Note: Development of target changeable palm-top pyroelectric x-ray tube

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imashuku, Susumu; Kawai, Jun

    2012-01-15

    A target changeable palm-top size x-ray tube was realized using pyroelectric crystal and detachable vacuum flanges. The target metals can be exchanged easily by attaching them on the brass stage with carbon tape. When silver and titanium palates (area: 10 mm{sup 2}) were used as targets, silver L{alpha} and titanium K lines were clearly observed by bombarding electrons on the targets for 90 s. The intensities were the same or higher than those of previously reported pyroelectric x-ray tubes. Chromium, iron, nickel, copper, and zinc K lines in the x-ray tube (stainless steel and brass) disappeared by replacing the brassmore » stage and the stainless steel vacuum flange with a carbon stage and a glass tube, respectively.« less

  20. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE PAGES

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac; ...

    2017-05-18

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  1. Designing graphene absorption in a multispectral plasmon-enhanced infrared detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldflam, Michael D.; Fei, Zhe; Ruiz, Isaac

    Here, we have examined graphene absorption in a range of graphene-based infrared devices that combine either monolayer or bilayer graphene with three different gate dielectrics. Electromagnetic simulations show that the optical absorption in graphene in these devices, an important factor in a functional graphene-based detector, is strongly dielectric-dependent. Our simulations reveal that plasmonic excitation in graphene can significantly influence the percentage of light absorbed in the entire device, as well as the graphene layer itself, with graphene absorption exceeding 25% in regions where plasmonic excitation occurs. Notably, the dielectric environment of graphene has a dramatic influence on the strength andmore » wavelength range over which the plasmons can be excited, making dielectric choice paramount to final detector tunability and sensitivity.« less

  2. Non-contact local temperature measurement inside an object using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-04-01

    Local temperature measurement in deep areas of objects is an important technique in biomedical measurement. We have investigated a non-contact method for measuring temperature inside an object using a point detector for infrared (IR) light. An IR point detector with a pinhole was constructed and the radiant IR light emitted from the local interior of the object is photodetected only at the position of pinhole located in imaging relation. We measured the thermal structure of the filament inside the miniature bulb using the IR point detector, and investigated the temperature dependence at approximately human body temperature using a glass plate positioned in front of the heat source.

  3. Pyroelectric response mechanism of barium strontium titanate ceramics in dielectric bolometer mode: The underlying essence of the enhancing effect of direct current bias field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Chaoliang; Cao, Sheng; Yan, Shiguang

    Pyroelectric response mechanism of Ba{sub 0.70}Sr{sub 0.30}TiO{sub 3} ceramics under dielectric bolometer (DB) mode was investigated by dielectric and pyroelectric properties measurement. The variations of total, intrinsic, and induced pyroelectric coefficients (p{sub tot}, p{sub int}, p{sub ind}) with temperatures and bias fields were analyzed. p{sub int} plays the dominant role to p{sub tot} through most of the temperature range and p{sub ind} will be slightly higher than p{sub int} above T{sub 0}. The essence of the enhancing effect of DC bias field on pyroelectric coefficient can be attributed to the high value of p{sub int}. This mechanism is useful formore » the pyroelectric materials (DB mode) applications.« less

  4. Innovative Long Wavelength Infrared Detector Workshop Proceedings

    NASA Technical Reports Server (NTRS)

    Grunthaner, Frank J.

    1990-01-01

    The focus of the workshop was on innovative long wavelength (lambda less than 17 microns) infrared (LWIR) detectors with the potential of meeting future NASA and DoD long-duration space application needs. Requirements are for focal plane arrays which operate near 65K using active refrigeration with mission lifetimes of five to ten years. The workshop addressed innovative concepts, new material systems, novel device physics, and current progress in relation to benchmark technology. It also provided a forum for discussion of performance characterization, producibility, reliability, and fundamental limitations of device physics. It covered the status of the incumbent HgCdTe technology, which shows encouraging progress towards LWIR arrays, and provided a snapshot of research and development in several new contender technologies.

  5. Mid-Infrared Spectroscopic Method for the Identification and Quantification of Dissolved Oil Components in Marine Environments.

    PubMed

    Stach, Robert; Pejcic, Bobby; Crooke, Emma; Myers, Matthew; Mizaikoff, Boris

    2015-12-15

    The use of mid-infrared sensors based on conventional spectroscopic equipment for oil spill monitoring and fingerprinting in aqueous systems has to date been mainly confined to laboratory environments. This paper presents a portable-based mid-infrared attenuated total reflectance (MIR-ATR) sensor system that was used to quantify a number of environmentally relevant hydrocarbon contaminants in marine water. The sensor comprises a polymer-coated diamond waveguide in combination with a room-temperature operated pyroelectric detector, and the analytical performance was optimized by evaluating the influence of polymer composition, polymer film thickness, and solution flow rate on the sensor response. Uncertainties regarding the analytical performance and instrument specifications for dissolved oil detection were investigated using real-world seawater matrices. The reliability of the sensor was tested by exposition to known volumes of different oils; crude oil and diesel samples were equilibrated with seawater and then analyzed using the developed MIR-ATR sensor system. For validation, gas chromatographic measurements were performed revealing that the MIR-ATR sensor is a promising on-site monitoring tool for determining the concentration of a range of dissolved oil components in seawater at ppb to ppm levels.

  6. The theory and design of piezoelectric/pyroelectric polymer film sensors for biomedical engineering applications.

    PubMed

    Brown, L F

    1989-01-01

    The unique properties of piezoelectric/pyroelectric polymers offer many new opportunities for biomedical engineering sensor applications. Since their discovery nearly 20 years ago, the polymer films have been used for many novel switching and sensor applications. Despite the prodigious exposure from many recent publications describing piezo film applications, methods of sensor fabrication and circuit interfacing still elude most engineers. This paper is presented as a tutorial guide to applying piezo polymers to biomedical engineering applications. A review of the fundamentals of piezoelectricity/pyroelectricity in piezo polymers is first presented. Their material properties are contrasted with piezoelectric ceramic materials. Some advantages and disadvantages of the films for biomedical sensors are discussed. Specific details on the fabrication of piezo film sensors are presented. Methods are described for forming, cutting, and mounting film sensors, and making lead connections. A brief discussion of equivalent circuit models for the design and simulation of piezoelectric/pyroelectric sensors is included, as well as common circuit interface techniques. Finally, several sources are recommended for further information on a variety of biomedical sensor applications.

  7. Unipolar infrared detectors based on InGaAs/InAsSb ternary superlattices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ariyawansa, Gamini, E-mail: gamini.ariyawansa.2@us.af.mil; Reyner, Charles J.; Duran, Joshua M.

    2016-07-11

    Growth and characteristics of mid-wave infrared (MWIR) InGaAs/InAsSb strained layer superlattice (SLS) detectors are reported. InGaAs/InAsSb SLSs, identified as ternary SLSs, not only provide an extra degree of freedom for superlattice strain compensation but also show enhanced absorption properties compared to InAs/InAsSb SLSs. Utilizing In{sub 1-y}Ga{sub y}As/InAs{sub 0.65}Sb{sub 0.35} ternary SLSs (y = 0, 5, 10, and 20%) designed to have the same bandgap, a set of four unipolar detectors are investigated. These demonstrate an enhancement in the detector quantum efficiency due to the increased absorption coefficient. The detectors exhibit dark current performance within a factor of 10 of Rule 07 atmore » temperatures above 120 K, and external quantum efficiencies in the 15%–25% range. This work demonstrates ternary SLSs are a potential absorber material for future high performance MWIR detectors.« less

  8. Status of HgCdTe Barrier Infrared Detectors Grown by MOCVD in Military University of Technology

    NASA Astrophysics Data System (ADS)

    Kopytko, M.; Jóźwikowski, K.; Martyniuk, P.; Gawron, W.; Madejczyk, P.; Kowalewski, A.; Markowska, O.; Rogalski, A.; Rutkowski, J.

    2016-09-01

    In this paper we present the status of HgCdTe barrier detectors with an emphasis on technological progress in metalorganic chemical vapor deposition (MOCVD) growth achieved recently at the Institute of Applied Physics, Military University of Technology. It is shown that MOCVD technology is an excellent tool for HgCdTe barrier architecture growth with a wide range of composition, donor /acceptor doping, and without post-grown annealing. The device concept of a specific barrier bandgap architecture integrated with Auger-suppression is as a good solution for high-operating temperature infrared detectors. Analyzed devices show a high performance comparable with the state-of-the-art of HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07" and detectivities of non-immersed detectors are close to the value marked for HgCdTe photodiodes. Experimental data of long-wavelength infrared detector structures were confirmed by numerical simulations obtained by a commercially available software APSYS platform. A detailed analysis applied to explain dark current plots was made, taking into account Shockley-Read-Hall, Auger, and tunneling currents.

  9. Physics and Applications of Unipolar Barriers in Infrared (IR) Detectors

    DTIC Science & Technology

    2016-08-23

    SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV-PS-TR-2016-0120 12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for...DISTRIBUTION LIST DTIC/OCP 8725 John J. Kingman Rd, Suite 0944 Ft Belvoir, VA 22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official... AFRL -RV-PS- TR-2016-0120 AFRL -RV-PS- TR-2016-0120 PHYSICS AND APPLICATIONS OF UNIPOLAR BARRIERS IN INFRARED (IR) DETECTORS Gary Wicks University

  10. Graphene Ink Laminate Structures on Poly(vinylidene difluoride) (PVDF) for Pyroelectric Thermal Energy Harvesting and Waste Heat Recovery.

    PubMed

    Zabek, Daniel; Seunarine, Kris; Spacie, Chris; Bowen, Chris

    2017-03-15

    Thermal energy can be effectively converted into electricity using pyroelectrics, which act as small scale power generator and energy harvesters providing nanowatts to milliwatts of electrical power. In this paper, a novel pyroelectric harvester based on free-standing poly(vinylidene difluoride) (PVDF) was manufactured that exploits the high thermal radiation absorbance of a screen printed graphene ink electrode structure to facilitate the conversion of the available thermal radiation energy into electrical energy. The use of interconnected graphene nanoplatelets (GNPs) as an electrode enable high thermal radiation absorbance and high electrical conductivity along with the ease of deposition using a screen print technique. For the asymmetric structure, the pyroelectric open-circuit voltage and closed-circuit current were measured, and the harvested electrical energy was stored in an external capacitor. For the graphene ink/PVDF/aluminum system the closed circuit pyroelectric current improves by 7.5 times, the open circuit voltage by 3.4 times, and the harvested energy by 25 times compared to a standard aluminum/PVDF/aluminum system electrode design, with a peak energy density of 1.13 μJ/cm 3 . For the pyroelectric device employed in this work, a complete manufacturing process and device characterization of these structures are reported along with the thermal conductivity of the graphene ink. The material combination presented here provides a new approach for delivering smart materials and structures, wireless technologies, and Internet of Things (IoT) devices.

  11. Using a CO2 laser for PIR-detector spoofing

    NASA Astrophysics Data System (ADS)

    Schleijpen, Ric H. M. A.; van Putten, Frank J. M.

    2016-10-01

    This paper presents experimental work on the use of a CO2 laser for triggering of PIR sensors. Pyro-electric InfraRed sensors are often used as motion detectors for detection of moving persons or objects that are warmer than their environment. Apart from uses in the civilian domain, also applications in improvised weapons have been encountered. In such applications the PIR sensor triggers a weapon, when moving persons or vehicles are detected. A CO2 laser can be used to project a moving heat spot in front of the PIR, generating the same triggering effect as a real moving object. The goal of the research was to provide a basis for assessing the feasibility of the use of a CO2 laser as a countermeasure against PIR sensors. After a general introduction of the PIR sensing principle a theoretical and experimental analysis of the required power levels will be presented. Based on this quantitative analysis, a set up for indoor experiments to trigger the PIR devices remotely with a CO2 laser was prepared. Finally some selected results of the experiments will be presented. Implications for the use as a countermeasure will be discussed.

  12. Method of fabricating multiwavelength infrared focal plane array detector

    NASA Technical Reports Server (NTRS)

    Forrest, Stephen R. (Inventor); Olsen, Gregory H. (Inventor); Kim, Dong-Su (Inventor); Lange, Michael J. (Inventor)

    1996-01-01

    A multiwavelength local plane array infrared detector is included on a common substrate having formed on its top face a plurality of In.sub.x Ga.sub.1-x As (x.ltoreq.0.53) absorption layers, between each pair of which a plurality of InAs.sub.y P.sub.1-y (y.ltoreq.1) buffer layers are formed having substantially increasing lattice parameters, respectively, relative to said substrate, for preventing lattice mismatch dislocations from propagating through successive ones of the absorption layers of decreasing bandgap relative to said substrate, whereby a plurality of detectors for detecting different wavelengths of light for a given pixel are provided by removing material above given areas of successive ones of the absorption layers, which areas are doped to form a pn junction with the surrounding unexposed portions of associated absorption layers, respectively, with metal contacts being formed on a portion of each of the exposed areas, and on the bottom of the substrate for facilitating electrical connections thereto.

  13. Examination of cotton fibers and common contaminants using an infrared microscope and a focal-plane array detector

    USDA-ARS?s Scientific Manuscript database

    The chemical imaging of cotton fibers and common contaminants in fibers is presented. Chemical imaging was performed with an infrared microscope equipped with a Focal-Plane Array (FPA) detector. Infrared spectroscopy can provide us with information on the structure and quality of cotton fibers. In a...

  14. Thermally Stable, Piezoelectric and Pyroelectric Polymeric Substrates and Method Relating Thereto

    NASA Technical Reports Server (NTRS)

    Simpson, Joycelyn O. (Inventor); St.Clair, Terry L. (Inventor)

    1995-01-01

    Production of an electric voltage in response to mechanical excitation (piezoelectricity) or thermal excitation (pyroelectricity) requires a material to have a preferred dipole orientation in its structure. This preferred orientation or polarization occurs naturally in some crystals such as quartz and can be induced into some ceramic and polymeric materials by application of strong electric or mechanical fields. For some materials, a combination of mechanical and electrical orientation is necessary to completely polarize the material. The only commercially available piezoelectric polymer is poly(vinylidene fluoride) (PVF2). However, this polymer has material and process limitations which prohibit its use in numerous device applications where thermal stability is a requirement. By the present invention, thermally stable, piezoelectric and pyroelectric polymeric substrates were prepared from polymers having a softening temperature greater than 1000C. A metal electrode material is deposited onto the polymer substrate and several electrical leads are attached to it. The polymer substrate is heated in a low dielectric medium to enhance molecular mobility of the polymer chains. A voltage is then applied to the polymer substrate inducing polarization. The voltage is then maintained while the polymer substrate is cooled 'freezing in' the molecular orientation. The novelty of the invention resides in the process of preparing the piezoelectric and pyroelectric polymeric substrate. The nonobviousness of the invention is found in heating the polymeric substrate in a low dielectric medium while applying a voltage.

  15. Superconducting nanowire single-photon detector on dielectric optical films for visible and near infrared wavelengths

    NASA Astrophysics Data System (ADS)

    You, Lixing; Li, Hao; Zhang, Weijun; Yang, Xiaoyan; Zhang, Lu; Chen, Sijing; Zhou, Hui; Wang, Zhen; Xie, Xiaoming

    2017-08-01

    The detection efficiency (DE) of superconducting nanowire single-photon detectors (SNSPDs) at 1550 nm has been significantly improved in the past decades as a result of evolution of the optical structure, the materials, and the fabrication process. We discuss the general optical design for a high-efficiency SNSPD based on dielectric optical films that can detect wavelengths from visible to near infrared regions. This structure shows close-to-unity absorption and good insensitivity to the fine wavelength and the incident angle. We demonstrate an SNSPD specifically fabricated for the detection of 1064 nm wavelength with a maximal system DE of 87.4% ± 3.7%. The DEs of the SNSPDs for visible and near infrared wavelengths are also summarized and compared with those of semiconducting detectors.

  16. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    PubMed

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  17. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    NASA Astrophysics Data System (ADS)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  18. Enhanced infrared detectors using resonant structures combined with thin type-II superlattice absorbers

    DOE PAGES

    Goldflam, Michael D.; Kadlec, Emil Andrew; Olson, Ben V.; ...

    2016-12-22

    Here we examined the spectral responsivity of a 1.77μm thick type-II superlattice based long-wave infrared detector in combination with metallic nanoantennas. Coupling between the Fabry-Pérot cavity formed by the semiconductor layer and the resonant nanoantennas on its surface enables spectral selectivity, while also increasing peak quantum efficiency to over 50%. Electromagnetic simulations reveal that this high responsivity is a direct result of field-enhancement in the absorber layer, enabling significant absorption in spite of the absorber’s subwavelength thickness. Notably, thinning of the absorbing material could ultimately yield lower photodetector noise through a reduction in dark current while improving photocarrier collection efficiency.more » The temperature- and incident-angle-independent spectral response observed in these devices allows for operation over a wide range of temperatures and optical systems. This detector paradigm demonstrates potential benefits to device performance with applications throughout the infrared.« less

  19. Integrated infrared and visible image sensors

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Pain, Bedabrata (Inventor)

    2000-01-01

    Semiconductor imaging devices integrating an array of visible detectors and another array of infrared detectors into a single module to simultaneously detect both the visible and infrared radiation of an input image. The visible detectors and the infrared detectors may be formed either on two separate substrates or on the same substrate by interleaving visible and infrared detectors.

  20. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2017-12-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  1. Noncontact localized internal infrared radiation measurement using an infrared point detector

    NASA Astrophysics Data System (ADS)

    Hisaka, Masaki

    2018-06-01

    The techniques for temperature measurement within the human body are important for clinical applications. A method for noncontact local infrared (IR) radiation measurements was investigated deep within an object to simulate how the core human body temperature can be obtained. To isolate the IR light emitted from a specific area within the object from the external noise, the radiating IR light was detected using an IR point detector, which comprises a pinhole and a thermopile positioned at an imaging relation with the region of interest within the object. The structure of the helical filament radiating IR light inside a light bulb was thermally imaged by scanning the bulb in two dimensions. Moreover, this approach was used to effectively measure IR light in the range of human body temperature using a glass plate placed in front of the heat source, mimicking the ocular fundus.

  2. Critical Current Statistics of a Graphene-Based Josephson Junction Infrared Single Photon Detector

    NASA Astrophysics Data System (ADS)

    Walsh, Evan D.; Lee, Gil-Ho; Efetov, Dmitri K.; Heuck, Mikkel; Crossno, Jesse; Taniguchi, Takashi; Watanabe, Kenji; Ohki, Thomas A.; Kim, Philip; Englund, Dirk; Fong, Kin Chung

    Graphene is a promising material for single photon detection due to its broadband absorption and exceptionally low specific heat. We present a photon detector using a graphene sheet as the weak link in a Josephson junction (JJ) to form a threshold detector for single infrared photons. Calculations show that such a device could experience temperature changes of a few hundred percent leading to sub-Hz dark count rates and internal efficiencies approaching unity. We have fabricated the graphene-based JJ (gJJ) detector and measure switching events that are consistent with single photon detection under illumination by an attenuated laser. We study the physical mechanism for these events through the critical current behavior of the gJJ as a function of incident photon flux.

  3. Detector-level spectral characterization of the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite long-wave infrared bands M15 and M16.

    PubMed

    Padula, Francis; Cao, Changyong

    2015-06-01

    The Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor data record (SDR) product achieved validated maturity status in March 2014 after roughly two years of on-orbit characterization (S-NPP spacecraft launched on 28 October 2011). During post-launch analysis the VIIRS Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the daytime SST data. Daytime SST retrievals use the two VIIRS long-wave infrared bands: M15 (10.7 μm) and M16 (11.8 μm). To assess possible root causes due to detector-level spectral response function (SRF) effects, a study was conducted to compare the radiometric response of the detector-level and operational-band averaged SRFs of VIIRS bands M15 and M16. The study used simulated hyperspectral blackbody radiance data and clear-sky ocean hyperspectral radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in detector-level SRFs and that if users require optimal radiometric performance, detector-level processing is recommended for both SDR and EDR products. Future work should investigate potential SDR product improvements through detector-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.

  4. Preparation and Characterization of BaTiO3-PbZrTiO3 Coating for Pyroelectric Energy Harvesting

    NASA Astrophysics Data System (ADS)

    Raghavendra, R. M.; Praneeth, K. P. S. S.; Dutta, Soma

    2017-01-01

    Harvesting energy from waste heat is a promising field of research as there are significant energy recovery opportunities from various waste thermal energy sources. The present study reports pyroelectric energy harvesting using thick film prepared from a (x)BaTiO3-(1 - x)PbZr0.52Ti0.48O3 (BT-PZT) solid solution. The developed BT-PZT system is engineered to tune the ferro to paraelectric phase transition temperature of it in-between the phase transition temperature of BaTiO3 (393 K) and PbZrTiO3 (573 K) with higher pyroelectric figure-of-merit (FOM). The temperature-dependent dielectric behavior of the material has revealed the ferro- to paraelectric phase transition at 427 K with a maximum dielectric constant of 755. The room-temperature (298 K) pyroelectric coefficient (Pi) of the material was obtained as 738.63 μC/m2K which has yielded a significantly high FOM of 1745.8 J m-3 K-2. The enhancement in pyroelectric property is attributed to the morphotopic phase transition between tetragonal and rhombohedral PZT phases in the BT-PZT system. The developed BT-PZT system is capable of generating a power output of 1.3 mW/m2 near the Curie temperature with a constant rate (0.11 K/s) of heating. A signal conditioning circuit has been developed to rectify the time-varying current and voltage signals obtained from the harvester during heating cycles. The output voltage generated by the pyroelectric harvester has been stored in a capacitor for powering wearable electronics.

  5. Fast and broadband detector for laser radiation

    NASA Astrophysics Data System (ADS)

    Scorticati, Davide; Crapella, Giacomo; Pellegrino, Sergio

    2018-02-01

    We developed a fast detector (patent pending) based on the Laser Induced Transverse Voltage (LITV) effect. The advantage of detectors using the LITV effect over pyroelectric sensors and photodiodes for laser radiation measurements is the combination of an overall fast response time, broadband spectral acceptance, high saturation threshold to direct laser irradiation and the possibility to measure pulsed as well as cw-laser sources. The detector is capable of measuring the energy of single laser pulses with repetition frequencies up to the MHz range, adding the possibility to also measure the output power of cw-lasers. Moreover, the thermal nature of the sensor enables the capability to work in a broadband spectrum, from UV to THz as well as the possibility of operating in a broad-range (10-3-102 W/cm2 ) of incident average optical power densities of the laser radiation, without the need of adopting optical filters nor other precautions.

  6. Surface Conduction in III-V Semiconductor Infrared Detector Materials

    NASA Astrophysics Data System (ADS)

    Sidor, Daniel Evan

    III-V semiconductors are increasingly used to produce high performance infrared photodetectors; however a significant challenge inherent to working with these materials is presented by unintended electrical conduction pathways that form along their surfaces. Resulting leakage currents contribute to system noise and are ineffectively mitigated by device cooling, and therefore limit ultimate performance. When the mechanism of surface conduction is understood, the unipolar barrier device architecture offers a potential solution. III-V bulk unipolar barrier detectors that effectively suppress surface leakage have approached the performance of the best II-VI pn-based structures. This thesis begins with a review of empirically determined Schottky barrier heights and uses this information to present a simple model of semiconductor surface conductivity. The model is validated through measurements of degenerate n-type surface conductivity on InAs pn junctions, and non-degenerate surface conductivity on GaSb pn junctions. It is then extended, along with design principles inspired by the InAs-based nBn detector, to create a flat-band pn-based unipolar barrier detector possessing a conductive surface but free of detrimental surface leakage current. Consideration is then given to the relative success of these and related bulk detectors in suppressing surface leakage when compared to analogous superlattice-based designs, and general limitations of unipolar barriers in suppressing surface leakage are proposed. Finally, refinements to the molecular beam epitaxy crystal growth techniques used to produce InAs-based unipolar barrier heterostructure devices are discussed. Improvements leading to III-V device performance well within an order of magnitude of the state-of-the-art are demonstrated.

  7. Fundamental Limits on the Imaging and Polarisation Properties of Far-Infrared Detectors

    NASA Technical Reports Server (NTRS)

    Thomas, Christopher N.; Withington, Stafford; Chuss, David T.; Wollack, Edward J.; Moseley, S. Harvey

    2009-01-01

    Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behaviour precisely. We have studied the intensity and polarisation response of free-space bolometers, and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns, and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behaviour. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behaviour. The ability to model easily the intensity, polarisation, and straylight characteristics of electrically-small detectors will be of great value when designing high-performance polarimetric imaging arrays.

  8. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil.

    PubMed

    Rauscher, Markus S; Tremmel, Anton J; Schardt, Michael; Koch, Alexander W

    2017-02-18

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit.

  9. Non-Dispersive Infrared Sensor for Online Condition Monitoring of Gearbox Oil

    PubMed Central

    Rauscher, Markus S.; Tremmel, Anton J.; Schardt, Michael; Koch, Alexander W.

    2017-01-01

    The condition of lubricating oil used in automotive and industrial gearboxes must be controlled in order to guarantee optimum performance and prevent damage to machinery parts. In normal practice, this is done by regular oil change intervals and routine laboratory analysis, both of which involve considerable operating costs. In this paper, we present a compact and robust optical sensor that can be installed in the lubrication circuit to provide quasi-continuous information about the condition of the oil. The measuring principle is based on non-dispersive infrared spectroscopy. The implemented sensor setup consists of an optical measurement cell, two thin-film infrared emitters, and two four-channel pyroelectric detectors equipped with optical bandpass filters. We present a method based on multivariate partial least squares regression to select appropriate optical bandpass filters for monitoring the oxidation, water content, and acid number of the oil. We perform a ray tracing analysis to analyze and correct the influence of the light path in the optical setup on the optical parameters of the bandpass filters. The measurement values acquired with the sensor for three different gearbox oil types show high correlation with laboratory reference data for the oxidation, water content, and acid number. The presented sensor can thus be a useful supplementary tool for the online condition monitoring of lubricants when integrated into a gearbox oil circuit. PMID:28218701

  10. Free-space-coupled superconducting nanowire single-photon detectors for infrared optical communications.

    PubMed

    Bellei, Francesco; Cartwright, Alyssa P; McCaughan, Adam N; Dane, Andrew E; Najafi, Faraz; Zhao, Qingyuan; Berggren, Karl K

    2016-02-22

    This paper describes the construction of a cryostat and an optical system with a free-space coupling efficiency of 56.5% ± 3.4% to a superconducting nanowire single-photon detector (SNSPD) for infrared quantum communication and spectrum analysis. A 1K pot decreases the base temperature to T = 1.7 K from the 2.9 K reached by the cold head cooled by a pulse-tube cryocooler. The minimum spot size coupled to the detector chip was 6.6 ± 0.11 µm starting from a fiber source at wavelength, λ = 1.55 µm. We demonstrated photon counting on a detector with an 8 × 7.3 µm2 area. We measured a dark count rate of 95 ± 3.35 kcps and a system detection efficiency of 1.64% ± 0.13%. We explain the key steps that are required to improve further the coupling efficiency.

  11. Dichroic filters to protect milliwatt far-infrared detectors from megawatt ECRH radiation.

    PubMed

    Bertschinger, G; Endres, C P; Lewen, F; Oosterbeek, J W

    2008-10-01

    Dichroic filters have been used to shield effectively the far infrared (FIR) detectors at the interferometer/polarimeter on TEXTOR. The filters consist of metal foils with regular holes, the hole diameter, the mutual spacing and the thickness of the foils are chosen to transmit radiation at the design frequency with transmission >90%. The attenuation at the low frequency end of the bandpass filter is about 30 dB per octave, the high frequency transmission is between 20% and 40%. The filters have been used to block the stray radiation from the megawatt microwave heating beam to the detectors of the FIR interferometer, operating with power on the detector in the milliwatt range. If required, the low frequency attenuation can be still enhanced, without compromising the transmission in the passband. The FIR interferometer used for plasma density and position control is no longer disturbed by electromagnetic waves used for plasma heating.

  12. Detector with internal gain for short-wave infrared ranging applications

    NASA Astrophysics Data System (ADS)

    Fathipour, Vala; Mohseni, Hooman

    2017-09-01

    Abstarct.Highly sensitive photon <span class="hlt">detectors</span> are regarded as the key enabling elements in many applications. Due to the low photon energy at the short-wave <span class="hlt">infrared</span> (SWIR), photon detection and imaging at this band are very challenging. As such, many efforts in photon <span class="hlt">detector</span> research are directed toward improving the performance of the photon <span class="hlt">detectors</span> operating in this wavelength range. To solve these problems, we have developed an electron-injection (EI) technique. The significance of this detection mechanism is that it can provide both high efficiency and high sensitivity at room temperature, a condition that is very difficult to achieve in conventional SWIR <span class="hlt">detectors</span>. An EI <span class="hlt">detector</span> offers an overall system-level sensitivity enhancement due to a feedback stabilized internal avalanche-free gain. Devices exhibit an excess noise of unity, operate in linear mode, require bias voltage of a few volts, and have a cutoff wavelength of 1700 nm. We review the material system, operating principle, and development of EI <span class="hlt">detectors</span>. The shortcomings of the first-generation devices were addressed in the second-generation <span class="hlt">detectors</span>. Measurement on second-generation devices showed a high-speed response of ˜6 ns rise time, low jitter of less than 20 ps, high amplification of more than 2000 (at optical power levels larger than a few nW), unity excess noise factor, and low leakage current (amplified dark current ˜10 nA at a bias voltage of -3 V and at room temperature. These characteristics make EI <span class="hlt">detectors</span> a good candidate for high-resolution flash light detection and ranging (LiDAR) applications with millimeter scale depth resolution at longer ranges compared with conventional p-i-n diodes. Based on our experimentally measured device characteristics, we compare the performance of the EI <span class="hlt">detector</span> with commercially available linear mode InGaAs avalanche photodiode (APD) as well as a p-i-n diode using a theoretical model. Flash LiDAR images obtained by our model show that</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050232858&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmetal%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050232858&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dmetal%2Bdetector"><span>Characterization of Dual-Band <span class="hlt">Infrared</span> <span class="hlt">Detectors</span> for Application to Remote Sensing</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Abedin, M. Nurul; Refaat, Tamer F.; Xiao, Yegao; Bhat, Ishwara</p> <p>2005-01-01</p> <p>NASA Langley Research Center (LaRC), in partnership with the Rensselaer Polytechnic Institute (RPI), developed photovoltaic <span class="hlt">infrared</span> (IR) <span class="hlt">detectors</span> suitable at two different wavelengths using Sb-based material systems. Using lattice-matched InGaAsSb grown on GaSb substrates, dual wavelength <span class="hlt">detectors</span> operating at 1.7 and 2.5 micron wavelengths can be realized. P-N junction diodes are fabricated on both GaSb and InGaAsSb materials. The photodiode on GaSb detects wavelengths at 1.7 micron and the InGaAsSb <span class="hlt">detector</span> detects wavelengths at 2.2 micron or longer depending on the composition. The films for these devices are grown by metal-organic vapor phase epitaxy (MOVPE). The cross section of the independently accessed back-to-back photodiode dual band <span class="hlt">detector</span> consists of a p-type substrate on which n-on-p GaInAsSb junction is grown, followed by a p-on-n GaSb junction. There are three ohmic contacts in this structure, one to the p-GaSb top layer, one to the n-GaSb/n-GaInAsSb layer and one to the p-type GaSb substrate. The common terminal is the contact to the n-GaSb/n-GaInAsSb layer. The contact to the n-GaSb/p-GaInAsSb region of the photodiode in the dual band is electrically connected and is accessed at the edge of the photodiode. NASA LaRC acquired the fabricated dual band <span class="hlt">detector</span> from RPI and characterized the <span class="hlt">detector</span> at its <span class="hlt">Detector</span> Characterization Laboratory. Characterization results, such as responsivity, noise, quantum efficiency, and detectivity will be presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10563E..12K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10563E..12K"><span>Advances in SELEX ES <span class="hlt">infrared</span> <span class="hlt">detectors</span> for space and astronomy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Knowles, P.; Hipwood, L.; Baker, I.; Weller, H.</p> <p>2017-11-01</p> <p>Selex ES produces a wide range of <span class="hlt">infrared</span> <span class="hlt">detectors</span> from mercury cadmium telluride (MCT) and triglycine sulfate (TGS), and has supplied both materials into space programmes spanning a period of over 40 years. Current development activities that underpin potential future space missions include large format arrays for near- and short-wave <span class="hlt">infrared</span> (NIR and SWIR) incorporating radiation-hard designs and suppression of glow. Improved heterostructures are aimed at the reduction of dark currents and avalanche photodiodes (APDs), and parallel studies have been undertaken for low-stress MCT array mounts. Much of this development work has been supported by ESA, UK Space, and ESO, and some has been performed in collaboration with the UK Astronomy Technology Centre and E2V. This paper focuses on MCT heterostructure developments and novel design elements in silicon read-out chips (ROICs). The 2048 x 2048 element, 17um pitch ROIC for ESA's SWIR array development forms the basis for the largest cooled <span class="hlt">infrared</span> <span class="hlt">detector</span> manufactured in Europe. Selex ES MCT is grown by metal organic vapour phase epitaxy (MOVPE), currently on 75mm diameter GaAs substrates. The MCT die size of the SWIR array is 35mm square and only a single array can be printed on the 75mm diameter wafer, utilising only 28% of the wafer area. The situation for 100mm substrates is little better, allowing only 2 arrays and 31% utilisation. However, low cost GaAs substrates are readily available in 150mm diameter and the MCT growth is scalable to this size, offering the real possibility of 6 arrays per wafer with 42% utilisation. A similar 2k x 2k ROIC is the goal of ESA's NIR programme, which is currently in phase 2 with a 1k x 1k demonstrator, and a smaller 320 x 256 ROIC (SAPHIRA) has been designed for ESO for the adaptive optics application in the VLT Gravity instrument. All 3 chips have low noise source-follower architecture and are enabled for MCT APD arrays, which have been demonstrated by ESO to be capable of</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920039425&hterms=boron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dboron','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920039425&hterms=boron&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dboron"><span>Elemental boron-doped p(+)-SiGe layers grown by molecular beam epitaxy for <span class="hlt">infrared</span> <span class="hlt">detector</span> applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lin, T. L.; George, T.; Jones, E. W.; Ksendzov, A.; Huberman, M. L.</p> <p>1992-01-01</p> <p>SiGe/Si heterojunction internal photoemission (HIP) <span class="hlt">detectors</span> have been fabricated utilizing molecular beam epitaxy of p(+)-SiGe layers on p(-)-Si substrates. Elemental boron from a high-temperature effusion cell was used as the dopant source during MBE growth, and high doping concentrations have been achieved. Strong <span class="hlt">infrared</span> absorption, mainly by free-carrier absorption, was observed for the degenerately doped SiGe layers. The use of elemental boron as the dopant source allows a low MBE growth temperature, resulting in improved crystalline quality and smooth surface morphology of the Si(0.7)Ge(0.3) layers. Nearly ideal thermionic emission dark current characteristics have been obtained. Photoresponse of the HIP <span class="hlt">detectors</span> in the long-wavelength <span class="hlt">infrared</span> regime has been demonstrated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900000086&hterms=field+infrared&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNear%2Bfield%2Binfrared','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900000086&hterms=field+infrared&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNear%2Bfield%2Binfrared"><span>Field-Induced-Gap <span class="hlt">Infrared</span> <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Elliott, C. Thomas</p> <p>1990-01-01</p> <p>Semimetals become semiconductors under applied magnetic fields. New <span class="hlt">detectors</span> require less cooling equipment because they operate at temperatures higher than liquid-helium temperatures required by extrinsic-semiconductor <span class="hlt">detectors</span>. Magnetic fields for <span class="hlt">detectors</span> provided by electromagnets based on recently-discovered high-transition-temperature superconducting materials. <span class="hlt">Detector</span> material has to be semiconductor, in which photon absorbed by exciting electron/hole pair across gap Eg of forbidden energies between valence and conduction energy bands. Magnetic- and compositional-tuning effects combined to obtain two-absorber <span class="hlt">detector</span> having narrow passband. By variation of applied magnetic field, passband swept through spectrum of interest.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1364265-roto-flexoelectric-coupling-impact-phase-diagrams-pyroelectricity-thin-srtio-films','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1364265-roto-flexoelectric-coupling-impact-phase-diagrams-pyroelectricity-thin-srtio-films"><span>Roto-flexoelectric coupling impact on the phase diagrams and <span class="hlt">pyroelectricity</span> of thin SrTiO 3 films</span></a></p> <p><a target="_blank" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Morozovska, Anna N.; Eliseev, Eugene A.; Bravina, Svetlana L.; ...</p> <p>2012-09-20</p> <p>The influence of the flexoelectric and rotostriction coupling on the phase diagrams of ferroelastic-quantum paraelectric SrTiO 3 films was studied using Landau-Ginzburg-Devonshire (LGD) theory. We calculated the phase diagrams in coordinates temperature - film thickness for different epitaxial misfit strains. Tensile misfit strains stimulate appearance of the spontaneous out-of-plane structural order parameter (displacement vector of an appropriate oxygen atom from its cubic position) in the structural phase. For compressive misfit strains are stimulated because of the spontaneous in-plane structural order parameter. Furthermore, gradients of the structural order parameter components, which inevitably exist in the vicinity of film surfaces due tomore » the termination and symmetry breaking, induce improper polarization and <span class="hlt">pyroelectric</span> response via the flexoelectric and rotostriction coupling mechanism. Flexoelectric and rotostriction coupling results in the roto-flexoelectric field that is antisymmetric inside the film, small in the central part of the film, where the gradients of the structural parameter are small, and maximal near the surfaces, where the gradients of the structural parameter are highest. The field induces improper polarization and <span class="hlt">pyroelectric</span> response. Penetration depths of the improper phases (both polar and structural) can reach several nm from the film surfaces. An improper <span class="hlt">pyroelectric</span> response of thin films is high enough to be registered with planar-type electrode configurations by conventional <span class="hlt">pyroelectric</span> methods.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1986IJIMW...7...65W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1986IJIMW...7...65W"><span>Research and applications of <span class="hlt">infrared</span> thermal imaging systems suitable for developing countries</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weili, Zhang; Danyu, Cai</p> <p>1986-01-01</p> <p>It is a common situation in most developing countries that the utilization ratio of the sources of energy is low, the reliability service of equipment is poor, the cost of installation maintenance is high, the loss due to conflagration is heavy, and so on. Therefore, they are in urgent need of using <span class="hlt">infrared</span> thermal imaging technique to improve their energy saving, equipment diagnosis as well as fire searching. But the <span class="hlt">infrared</span> thermal imaging systems in the world market so far are not suitable for their use. This paper summarizes the research on two dimensional real time <span class="hlt">infrared</span> thermal imaging systems on the basis of electron beam scanning and <span class="hlt">pyroelectric</span> detection, as well as their applications in industry in China.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21513463-preliminary-results-from-pyroelectric-crystal-accelerator','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21513463-preliminary-results-from-pyroelectric-crystal-accelerator"><span>Preliminary Results from <span class="hlt">Pyroelectric</span> Crystal Accelerator</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Anderson, Tom; Edwards, Ronald; Bright, Kevin</p> <p></p> <p>The Nuclear Science and Engineering Research Center (NSERC), a Defense Threat Reduction Agency (DTRA) office located at the United States Military Academy (USMA), sponsors and manages cadet and faculty research in support of DTRA objectives. Cadets in the Department of Physics and Nuclear Engineering at USMA are using <span class="hlt">pyroelectric</span> crystals to ionize and accelerate residual gas trapped inside a vacuum system. A system using two lithium tantalate crystals with associated diagnostics was designed and is now operational. X-ray energies of approximately 150 keV have been achieved. Future work will focus on developing a portable neutron generator using the D-D nuclearmore » fusion process.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090011184','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090011184"><span>nBn <span class="hlt">Infrared</span> <span class="hlt">Detector</span> Containing Graded Absorption Layer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gunapala, Sarath D.; Ting, David Z.; Hill, Cory J.; Bandara, Sumith V.</p> <p>2009-01-01</p> <p>It has been proposed to modify the basic structure of an nBn <span class="hlt">infrared</span> photodetector so that a plain electron-donor- type (n-type) semiconductor contact layer would be replaced by a graded n-type III V alloy semiconductor layer (i.e., ternary or quarternary) with appropriate doping gradient. The abbreviation nBn refers to one aspect of the unmodified basic device structure: There is an electron-barrier ("B" ) layer between two n-type ("n" ) layers, as shown in the upper part of the figure. One of the n-type layers is the aforementioned photon-absorption layer; the other n-type layer, denoted the contact layer, collects the photocurrent. The basic unmodified device structure utilizes minority-charge-carrier conduction, such that, for reasons too complex to explain within the space available for this article, the dark current at a given temperature can be orders of magnitude lower (and, consequently, signal-to-noise ratios can be greater) than in <span class="hlt">infrared</span> <span class="hlt">detectors</span> of other types. Thus, to obtain a given level of performance, less cooling (and, consequently, less cooling equipment and less cooling power) is needed. [In principle, one could obtain the same advantages by means of a structure that would be called pBp because it would include a barrier layer between two electron-acceptor- type (p-type) layers.] The proposed modifications could make it practical to utilize nBn photodetectors in conjunction with readily available, compact thermoelectric coolers in diverse <span class="hlt">infrared</span>- imaging applications that could include planetary exploration, industrial quality control, monitoring pollution, firefighting, law enforcement, and medical diagnosis.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591455-analytical-modeling-numerical-simulation-short-wave-infrared-electron-injection-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591455-analytical-modeling-numerical-simulation-short-wave-infrared-electron-injection-detectors"><span>Analytical modeling and numerical simulation of the short-wave <span class="hlt">infrared</span> electron-injection <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Movassaghi, Yashar; Fathipour, Morteza; Fathipour, Vala</p> <p>2016-03-21</p> <p>This paper describes comprehensive analytical and simulation models for the design and optimization of the electron-injection based <span class="hlt">detectors</span>. The electron-injection <span class="hlt">detectors</span> evaluated here operate in the short-wave <span class="hlt">infrared</span> range and utilize a type-II band alignment in InP/GaAsSb/InGaAs material system. The unique geometry of <span class="hlt">detectors</span> along with an inherent negative-feedback mechanism in the device allows for achieving high internal avalanche-free amplifications without any excess noise. Physics-based closed-form analytical models are derived for the <span class="hlt">detector</span> rise time and dark current. Our optical gain model takes into account the drop in the optical gain at high optical power levels. Furthermore, numerical simulation studiesmore » of the electrical characteristics of the device show good agreement with our analytical models as well experimental data. Performance comparison between devices with different injector sizes shows that enhancement in the gain and speed is anticipated by reducing the injector size. Sensitivity analysis for the key <span class="hlt">detector</span> parameters shows the relative importance of each parameter. The results of this study may provide useful information and guidelines for development of future electron-injection based <span class="hlt">detectors</span> as well as other heterojunction photodetectors.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SuScT..23l5008L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SuScT..23l5008L"><span>Rugged superconducting <span class="hlt">detector</span> for monitoring <span class="hlt">infrared</span> energy sources in harsh environments</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laviano, F.; Gerbaldo, R.; Ghigo, G.; Gozzelino, L.; Minetti, B.; Rovelli, A.; Mezzetti, E.</p> <p>2010-12-01</p> <p>Broadband electromagnetic characterization of hot plasmas, such as in nuclear fusion reactors and related experiments, requires detecting systems that must withstand high flux of particles and electromagnetic radiations. We propose a rugged layout of a high temperature superconducting <span class="hlt">detector</span> aimed at 3 THz collective Thomson scattering (CTS) spectroscopy in hot fusion plasma. The YBa2Cu3O7 - x superconducting film is patterned by standard photolithography and the sensing area of the device is created by means of high-energy heavy ion irradiation, in order to modify the crystal structure both of the superconducting film and of the substrate. This method diminishes process costs and resulting device fragility due to membrane or air-bridge structures that are commonly needed for MIR and FIR radiation detection. Moreover the sensing area of the device is wired by the same superconducting material and thus excellent mechanical strength is exhibited by the whole device, due to the oxide substrate. Continuous wave operation of prototype devices is demonstrated at liquid nitrogen temperature, for selected <span class="hlt">infrared</span> spectra of broadband thermal energy sources. Several solutions, which exploit the advantages coming from the robustness of this layout in terms of intrinsic radiation hardness of the superconducting material and of the needed optical components, are analysed with reference to applications of <span class="hlt">infrared</span> electromagnetic <span class="hlt">detectors</span> in a tokamak machine environment.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29401855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29401855"><span>Thermal noise in mid-<span class="hlt">infrared</span> broadband upconversion <span class="hlt">detectors</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barh, Ajanta; Tidemand-Lichtenberg, Peter; Pedersen, Christian</p> <p>2018-02-05</p> <p>Low noise detection with state-of-the-art mid-<span class="hlt">infrared</span> (MIR) <span class="hlt">detectors</span> (e.g., PbS, PbSe, InSb, HgCdTe) is a primary challenge owing to the intrinsic thermal background radiation of the low bandgap <span class="hlt">detector</span> material itself. However, researchers have employed frequency upconversion based <span class="hlt">detectors</span> (UCD), operable at room temperature, as a promising alternative to traditional direct detection schemes. UCD allows for the use of a low noise silicon-CCD/camera to improve the SNR. Using UCD, the noise contributions from the nonlinear material itself should be evaluated in order to estimate the limits of the noise-equivalent power of an UCD system. In this article, we rigorously analyze the optical power generated by frequency upconversion of the intrinsic black-body radiation in the nonlinear material itself due to the crystals residual emissivity, i.e. absorption. The thermal radiation is particularly prominent at the optical absorption edge of the nonlinear material even at room temperature. We consider a conventional periodically poled lithium niobate (PPLN) based MIR-UCD for the investigation. The UCD is designed to cover a broad spectral range, overlapping with the entire absorption edge of the PPLN (3.5 - 5 µm). Finally, an upconverted thermal radiation power of ~30 pW at room temperature (~30°C) and a maximum of ~70 pW at 120°C of the PPLN crystal are measured for a CW mixing beam of power ~60 W, supporting a good quantitative agreement with the theory. The analysis can easily be extended to other popular nonlinear conversion processes including OPO, DFG, and SHG.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011SPIE.8012E..3IM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011SPIE.8012E..3IM"><span>Compact dewar and electronics for large-format <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Manissadjian, A.; Magli, S.; Mallet, E.; Cassaigne, P.</p> <p>2011-06-01</p> <p><span class="hlt">Infrared</span> systems cameras trend is to require higher performance (thanks to higher resolution) and in parallel higher compactness for easier integration in systems. The latest developments at SOFRADIR / France on HgCdTe (Mercury Cadmium Telluride / MCT) cooled IR staring <span class="hlt">detectors</span> do show constant improvements regarding <span class="hlt">detector</span> performances and compactness, by reducing the pixel pitch and optimizing their encapsulation. Among the latest introduced <span class="hlt">detectors</span>, the 15μm pixel pitch JUPITER HD-TV format (1280×1024) has to deal with challenging specifications regarding dewar compactness, low power consumption and reliability. Initially introduced four years ago in a large dewar with a more than 2kg split Stirling cooler compressor, it is now available in a new versatile compact dewar that is vacuum-maintenance-free over typical 18 years mission profiles, and that can be integrated with the different available Stirling coolers: K548 microcooler for light solution (less than 0.7 kg), K549 or LSF9548 for split cooler and/or higher reliability solution. The IDDCAs are also required with simplified electrical interface enabling to shorten the system development time and to standardize the electronic boards definition with smaller volumes. Sofradir is therefore introducing MEGALINK, the new compact Command & Control Electronics compatible with most of the Sofradir IDDCAs. MEGALINK provides all necessary input biases and clocks to the FPAs, and digitizes and multiplexes the video outputs to provide a 14 bit output signal through a cameralink interface, in a surface smaller than a business card.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020054211&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Derickson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020054211&hterms=erickson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Derickson"><span>Specification and Design of the SBRC-190: A Cryogenic Multiplexer for Far <span class="hlt">Infrared</span> Photoconductor <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Erickson, E. F.; Young, E. T.; Wolf, J.; Asbrock, J. F.; Lum, N.; DeVincenzi, D. (Technical Monitor)</p> <p>2002-01-01</p> <p>Arrays of far-<span class="hlt">infrared</span> photoconductor <span class="hlt">detectors</span> operate at a few degrees Kelvin and require electronic amplifiers in close proximity. For the electronics, a cryogenic multiplexer is ideal to avoid the large number of wires associated with individual amplifiers for each pixel, and to avoid adverse effects of thermal and radiative heat loads from the circuitry. For low background applications, the 32 channel CRC 696 CMOS device was previously developed for SIRTF, the cryogenic Space <span class="hlt">Infrared</span> Telescope Facility. For higher background applications, we have developed a similar circuit, featuring several modifications: (a) an AC coupled, capacitive feedback transimpedence unit cell, to minimize input offset effects, thereby enabling low <span class="hlt">detector</span> biases, (b) selectable feedback capacitors to enable operation over a wide range of backgrounds, and (c) clamp and sample & hold output circuits to improve sampling efficiency, which is a concern at the high readout rates required. We describe the requirements for and design of the new device.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21673767','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21673767"><span>Optical response of laser-doped silicon carbide for an uncooled midwave <span class="hlt">infrared</span> <span class="hlt">detector</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lim, Geunsik; Manzur, Tariq; Kar, Aravinda</p> <p>2011-06-10</p> <p>An uncooled mid-wave <span class="hlt">infrared</span> (MWIR) <span class="hlt">detector</span> is developed by doping an n-type 4H-SiC with Ga using a laser doping technique. 4H-SiC is one of the polytypes of crystalline silicon carbide and a wide bandgap semiconductor. The dopant creates an energy level of 0.30  eV, which was confirmed by optical spectroscopy of the doped sample. This energy level corresponds to the MWIR wavelength of 4.21  μm. The detection mechanism is based on the photoexcitation of electrons by the photons of this wavelength absorbed in the semiconductor. This process modifies the electron density, which changes the refractive index, and, therefore, the reflectance of the semiconductor is also changed. The change in the reflectance, which is the optical response of the <span class="hlt">detector</span>, can be measured remotely with a laser beam, such as a He-Ne laser. This capability of measuring the <span class="hlt">detector</span> response remotely makes it a wireless <span class="hlt">detector</span>. The variation of refractive index was calculated as a function of absorbed irradiance based on the reflectance data for the as-received and doped samples. A distinct change was observed for the refractive index of the doped sample, indicating that the <span class="hlt">detector</span> is suitable for applications at the 4.21  μm wavelength.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015IJT....36..819P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015IJT....36..819P"><span>Spontaneous Polarization in Bio-organic Materials Studied by Scanning <span class="hlt">Pyroelectric</span> Microscopy (SPEM) and Second Harmonic Generation Microscopy (SHGM)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Putzeys, T.; Wübbenhorst, M.; van der Veen, M. A.</p> <p>2015-06-01</p> <p>Bio-organic materials such as bones, teeth, and tendon generally show nonlinear optical (Masters and So in Handbook of Biomedical Nonlinear Optical Microscopy, 2008), pyro- and piezoelectric (Fukada and Yasuda in J Phys Soc Jpn 12:1158, 1957) properties, implying a permanent polarization, the presence of which can be rationalized by describing the growth of the sample and the creation of a polar axis according to Markov's theory of stochastic processes (Hulliger in Biophys J 84:3501, 2003; Batagiannis et al. in Curr Opin Solid State Mater Sci 17:107, 2010). Two proven, versatile techniques for probing spontaneous polarization distributions in solids are scanning <span class="hlt">pyroelectric</span> microscopy (SPEM) and second harmonic generation microscopy (SHGM). The combination of <span class="hlt">pyroelectric</span> scanning with SHG-microscopy in a single experimental setup leading to complementary <span class="hlt">pyroelectric</span> and nonlinear optical data is demonstrated, providing us with a more complete image of the polarization in organic materials. Crystals consisting of a known polar and hyperpolarizable material, CNS (4-chloro-4-nitrostilbene) are used as a reference sample, to verify the functionality of the setup, with both SPEM and SHGM images revealing the same polarization domain information. In contrast, feline and human nails exhibit a <span class="hlt">pyroelectric</span> response, but a second harmonic response is absent for both keratin containing materials, implying that there may be symmetry-allowed SHG, but with very inefficient second harmonophores. This new approach to polarity detection provides additional information on the polar and hyperpolar nature in a variety of (bio) materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18238676','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18238676"><span>Piezoelectric and <span class="hlt">pyroelectric</span> properties of PZT/P(VDF-TrFE) composites with constituent phases poled in parallel or antiparallel directions.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ng, K L; Chan, H L; Choy, C L</p> <p>2000-01-01</p> <p>Composites of lead zirconate titanate (PZT) powder dispersed in a vinylidene fluoride-trifluoroethylene copolymer [P(VDF-TrFE)] matrix have been prepared by compression molding. Three groups of polarized samples have been prepared by poling: only the ceramic phase, the ceramic and polymer phases in parallel directions, and the two phases in antiparallel directions. The measured permittivities of the unpoled composites are consistent with the predictions of the Bruggeman model. The changes in the <span class="hlt">pyroelectric</span> and piezoelectric coefficients of the poled composites with increasing ceramic volume fraction can be described by modified linear mixture rules. When the ceramic and copolymer phases are poled in the same direction, their <span class="hlt">pyroelectric</span> activities reinforce while their piezoelectric activities partially cancel. However, when the ceramic and copolymer phases are poled in opposite directions, their piezoelectric activities reinforce while their <span class="hlt">pyroelectric</span> activities partially cancel.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22591683-hole-effective-masses-subband-splitting-type-ii-superlattice-infrared-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22591683-hole-effective-masses-subband-splitting-type-ii-superlattice-infrared-detectors"><span>Hole effective masses and subband splitting in type-II superlattice <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Ting, David Z., E-mail: David.Z.Ting@jpl.nasa.gov; Soibel, Alexander; Gunapala, Sarath D.</p> <p></p> <p>We explore band structure effects to help determine the suitability of n-type type-II superlattice (T2SL) absorbers for <span class="hlt">infrared</span> <span class="hlt">detectors</span>. It is often assumed that the exceedingly large growth-direction band-edge curvature hole effective mass in n-type long wavelength <span class="hlt">infrared</span> (LWIR) T2SL would lead to low hole mobility and therefore low <span class="hlt">detector</span> collection quantum efficiency. We computed the thermally averaged conductivity effective mass and show that the LWIR T2SL hole conductivity effective mass along the growth direction can be orders of magnitude smaller than the corresponding band-edge effective mass. LWIR InAs/GaSb T2SL can have significantly smaller growth-direction hole conductivity effective mass thanmore » its InAs/InAsSb counterpart. For the InAs/InAsSb T2SL, higher Sb fraction is more favorable for hole transport. Achieving long hole diffusion length becomes progressively more difficult for the InAs/InAsSb T2SL as the cutoff wavelength increases, since its growth-direction hole conductivity effective mass increases significantly with decreasing band gap. However, this is mitigated by the fact that the splitting between the top valence subbands also increases with the cutoff wavelength, leading to reduced inter-subband scattering and increased relaxation time.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016InPhT..78...72L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016InPhT..78...72L"><span>Electronic transport in a long wavelength <span class="hlt">infrared</span> quantum cascade <span class="hlt">detector</span> under dark condition</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.; Zhou, X. H.; Lin, T.; Li, N.; Zhu, Z. Q.; Liu, F. Q.</p> <p>2016-09-01</p> <p>We present a joint experimental and theoretical investigation on a long wavelength <span class="hlt">infrared</span> quantum cascade <span class="hlt">detector</span> to reveal its dark current paths. The temperature dependence of the dark current is measured. It is shown that there are two different transport mechanisms, namely resonant tunneling at low temperatures and thermal excitation at higher temperature, dominate the carrier flow, respectively. Moreover, the experimental intersubband transition energies obtained by the magneto-transport measurements matches the theoretical predictions well. With the aid of the calculated band structures, we can explain the observed oscillation phenomena of the dark current under the magnetic field very well. The obtained results provide insight into the transport properties of quantum cascade <span class="hlt">detectors</span> thus providing a useful tool for device optimization.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5087380','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5087380"><span><span class="hlt">Infrared</span> LED Enhanced Spectroscopic CdZnTe <span class="hlt">Detector</span> Working under High Fluxes of X-rays</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Pekárek, Jakub; Dědič, Václav; Franc, Jan; Belas, Eduard; Rejhon, Martin; Moravec, Pavel; Touš, Jan; Voltr, Josef</p> <p>2016-01-01</p> <p>This paper describes an application of <span class="hlt">infrared</span> light-induced de-polarization applied on a polarized CdZnTe <span class="hlt">detector</span> working under high radiation fluxes. We newly demonstrate the influence of a high flux of X-rays and simultaneous 1200-nm LED illumination on the spectroscopic properties of a CdZnTe <span class="hlt">detector</span>. CdZnTe <span class="hlt">detectors</span> operating under high radiation fluxes usually suffer from the polarization effect, which occurs due to a screening of the internal electric field by a positive space charge caused by photogenerated holes trapped at a deep level. Polarization results in the degradation of <span class="hlt">detector</span> charge collection efficiency. We studied the spectroscopic behavior of CdZnTe under various X-ray fluxes ranging between 5×105 and 8×106 photons per mm2 per second. It was observed that polarization occurs at an X-ray flux higher than 3×106 mm−2·s−1. Using simultaneous illumination of the <span class="hlt">detector</span> by a de-polarizing LED at 1200 nm, it was possible to recover X-ray spectra originally deformed by the polarization effect. PMID:27690024</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22531454-influence-infrared-stimulation-spectroscopy-characteristics-co-planar-grid-cdznte-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22531454-influence-infrared-stimulation-spectroscopy-characteristics-co-planar-grid-cdznte-detectors"><span>Influence of <span class="hlt">infrared</span> stimulation on spectroscopy characteristics of co-planar grid CdZnTe <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Fjodorov, V.; Ivanov, V.; Loutchanski, A.</p> <p></p> <p>It was previously found that illumination with monochromatic <span class="hlt">infrared</span> (IR) light with wavelengths close to the absorption edge of the CdZnTe exert significant positive influence on the spectrometric characteristics of quasi-hemispherical CdZnTe <span class="hlt">detectors</span> at room temperature. In this paper, preliminary results of IR stimulation on the spectrometric characteristics of coplanar-grid CdZnTe <span class="hlt">detectors</span> as well as results of further studies of planar and quasi-hemispherical <span class="hlt">detectors</span> are presented. Coplanar-grid <span class="hlt">detectors</span> of 10 mm x 10 mm x 10 mm from Redlen Technologies and commercial available IR LEDs with different wavelengths of 800-1000 nm were used in the experiments. Influence of intensity andmore » direction of IR illumination on the <span class="hlt">detector</span>'s characteristics was studied. Analysis of signals shapes from the preamplifiers outputs at registration of alpha particles showed that IR illumination leads to a change in the shapes of these signals. This may indicate changes in electric fields distributions. An improvement in energy resolution at gamma-energy of 662 keV was observed with quasi-hemispherical and co-planar <span class="hlt">detectors</span> at the certain levels of IR illumination intensity. The most noticeable effect of IR stimulation was observed with quasi-hemispherical <span class="hlt">detectors</span>. It is due with optimization of charge collection conditions in the quasi-hemispherical <span class="hlt">detectors</span> under IT stimulation. (authors)« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ApSS..427...29T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ApSS..427...29T"><span>Effect of Li doping on the electric and <span class="hlt">pyroelectric</span> properties of ZnO thin films</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trinca, L. M.; Galca, A. C.; Boni, A. G.; Botea, M.; Pintilie, L.</p> <p>2018-01-01</p> <p>Un-doped ZnO (UDZO) and Li-doped ZnO (LZO) polycrystalline thin films were grown on platinized silicon by pulsed laser deposition (PLD). The electrical properties were investigated on as-grown and annealed UDZO and LZO films with capacitor configuration, using top and bottom platinum electrodes. In the case of the as-grown films it was found that the introduction of Li increases the resistivity of ZnO and induces butterfly shape in the C-V characteristic, suggesting ferroelectric-like behavior in LZO films. The properties of LZO samples does not significantly changes after thermal annealing while the properties of UDZO samples show significant changes upon annealing, manifested in a butterfly shape of the C-V characteristic and resistive-like switching. However, the butterfly shape disappears if long delay time is used in the C-V measurement, the characteristic remaining non-linear. <span class="hlt">Pyroelectric</span> signal could be measured only on annealed films. Comparing the UDZO results with those obtained in the case of Li:ZnO, it was found that the <span class="hlt">pyroelectric</span> properties are considerably enhanced by Li doping, leading to <span class="hlt">pyroelectric</span> signal with about one order of magnitude larger at low modulation frequencies than for un-doped samples. Although the results of this study hint towards a ferroelectric-like behavior of Li doped ZnO, the presence of real ferroelectricity in this material remains controversial.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1028849','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1028849"><span>Analysis and Control of Carrier Transport in Unipolar Barrier Mid-<span class="hlt">Infrared</span> (IR) <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-01-03</p> <p>Laboratory AFRL /RVSW Space Vehicles Directorate 3550 Aberdeen Ave., SE 11. SPONSOR/MONITOR’S REPORT Kirtland AFB, NM 87117-5776 NUMBER(S) AFRL -RV...22060-6218 1 cy AFRL /RVIL Kirtland AFB, NM 87117-5776 2 cys Official Record Copy AFRL /RVSW/David Cardimona 1 cy... AFRL -RV-PS- AFRL -RV-PS- TR-2016-0152 TR-2016-0152 ANALYSIS AND CONTROL OF CARRIER TRANSPORT IN UNIPOLAR BARRIER MID- <span class="hlt">INFRARED</span> (IR) <span class="hlt">DETECTORS</span> Gary W</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006InPhT..48...39R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006InPhT..48...39R"><span>InAs/GaInSb superlattices as a promising material system for third generation <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogalski, A.; Martyniuk, P.</p> <p>2006-04-01</p> <p>Hitherto, two families of multielement <span class="hlt">detectors</span> have been used for <span class="hlt">infrared</span> applications: scanning systems (first generation) and staring systems (second generation). Third generation systems are being developed nowadays. In the common understanding, third generation IR systems provide enhanced capabilities like larger number of pixels, higher frame rates, better thermal resolution as well as multicolour functionality and other on-chip functions. In the class of third generation <span class="hlt">infrared</span> photon <span class="hlt">detectors</span>, two main competitors, HgCdTe photodiodes and AlGaAs/GaAs quantum well <span class="hlt">infrared</span> photoconductors (QWIPs) are considered. However, in the long wavelength <span class="hlt">infrared</span> (LWIR) region, the HgCdTe material fail to give the requirements of large format two-dimensional (2-D) arrays due to metallurgical problems of the epitaxial layers such as uniformity and number of defective elements. A superlattice based InAs/GaInSb system grown on GaSb substrate seems to be an attractive alternative to HgCdTe with good spatial uniformity and an ability to span cut-off wavelength from 3 to 25 μm. The recently published results have indicated that high performance middle wavelength <span class="hlt">infrared</span> (MWIR) InAs/GaInSb superlattice focal plane arrays can be fabricated. Also LWIR photodiodes with the R0A values exceeding 100 Ωcm 2 even with a cut-off wavelength of 14 μm can be achieved. Based on these very promising results it is obvious now that the antimonide superlattice technology is competing with HgCdTe dual colour technology with the potential advantage of standard III-V technology to be more competitive in costs and as a consequence series production pricing.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9819E..1EK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9819E..1EK"><span>Progress in MOCVD growth of HgCdTe epilayers for HOT <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kebłowski, A.; Gawron, W.; Martyniuk, P.; Stepień, D.; Kolwas, K.; Piotrowski, J.; Madejczyk, P.; Kopytko, M.; Piotrowski, A.; Rogalski, A.</p> <p>2016-05-01</p> <p>In this paper we present progress in MOCVD growth of (100) HgCdTe epilayers achieved recently at the Institute of Applied Physics, Military University of Technology and Vigo System S.A. It is shown that MOCVD technology is an excellent tool in fabrication of different HgCdTe <span class="hlt">detector</span> structures with a wide range of composition, donor/acceptor doping and without post grown annealing. Particular progress has been achieved in the growth of (100) HgCdTe epilayers for long wavelength <span class="hlt">infrared</span> photoconductors operated in HOT conditions. The (100) HgCdTe photoconductor optimized for 13-μm attain detectivity equal to 6.5x109 Jones and therefore outperform its (111) counterpart. The paper also presents technological progress in fabrication of MOCVD-grown (111) HgCdTe barrier <span class="hlt">detectors</span>. The barrier device performance is comparable with state-of-the-art of HgCdTe photodiodes. The detectivity of HgCdTe <span class="hlt">detectors</span> is close to the value marked HgCdTe photodiodes. Dark current densities are close to the values given by "Rule 07".</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.110z3502L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.110z3502L"><span>Resonant and resistive dual-mode uncooled <span class="hlt">infrared</span> <span class="hlt">detectors</span> toward expanded dynamic range and high linearity</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Xin; Liang, Ji; Zhang, Hongxiang; Yang, Xing; Zhang, Hao; Pang, Wei; Zhang, Menglun</p> <p>2017-06-01</p> <p>This paper reports an uncooled <span class="hlt">infrared</span> (IR) <span class="hlt">detector</span> based on a micromachined piezoelectric resonator operating in resonant and resistive dual-modes. The two sensing modes achieved IR responsivities of 2.5 Hz/nW and 900 μdB/nW, respectively. Compared with the single mode operation, the dual-mode measurement improves the limit of detection by two orders of magnitude and meanwhile maintains high linearity and responsivity in a higher IR intensity range. A combination of the two sensing modes compensates for its own shortcomings and provides a much larger dynamic range, and thus, a wider application field of the proposed <span class="hlt">detector</span> is realized.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1001792','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1001792"><span><span class="hlt">Infra-red</span> signature neutron <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Bell, Zane William [Oak Ridge, TN; Boatner, Lynn Allen [Oak Ridge, TN</p> <p>2009-10-13</p> <p>A method of detecting an activator, the method including impinging with an activator a receptor material that includes a photoluminescent material that generates <span class="hlt">infrared</span> radiation and generation a by-product of a nuclear reaction due to the activator impinging the receptor material. The method further includes generating light from the by-product via the Cherenkov effect, wherein the light activates the photoluminescent material so as to generate the <span class="hlt">infrared</span> radiation. Identifying a characteristic of the activator based on the <span class="hlt">infrared</span> radiation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28113365','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28113365"><span>Characterisation and Modelling of Meshed Electrodes on Free Standing Polyvilylidene Difluoride (PVDF) Films for Enhanced <span class="hlt">Pyroelectric</span> Energy Harvesting.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zabek, Daniel; Taylor, John; Bowen, Chris</p> <p>2016-09-05</p> <p>Flexible <span class="hlt">pyroelectric</span> energy generators provide unique features for harvesting temperature fluctuations which can be effectively enhanced using meshed electrodes that improve thermal conduction, convection and radiation into the <span class="hlt">pyroelectric</span>. In this paper, thermal radiation energy is continuously harvested with <span class="hlt">pyroelectric</span> free standing Polyvilylidene Difluoride (PVDF) films over a large number of heat heat cycles using a novel micro-sized symmetrical patterned meshed electrode. It is shown that, for the meshed electrode geometries considered in this work, the polarisation-field (P-E), current-field (I-E) characteristics and device capacitance are unaffected since the fringing fields were generally small; this is verified using numerical simulations and comparison with experimental measurements. The use of meshed electrodes has been shown to significantly improve both the open circuit voltage (16 V to 59 V) and closed-circuit current (9 nA to 32 nA). The <span class="hlt">pyroelectric</span> alternating current (AC) is rectified for direct current (DC) storage and 30% reduction in capacitor charging time is achieved by using the optimum meshed electrodes. The use of meshed electrodes on ferroelectric materials provides an innovative route to improve their performance in applications such as wearable devices, novel flexible sensors and large scale <span class="hlt">pyroelectric</span> energy harvesters.hese instructions give you guidelines for preparing papers for IEEE Transactions and Journals. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further at IEEE. Paper titles should be written in uppercase and lowercase letters, not all uppercase. Avoid writing long formulas with subscripts in the title; short formulas that identify the elements are fine (e.g., "Nd-Fe-B"). Do not write "(Invited)" in the title. Full names of authors are preferred in the author field, but are not</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InPhT..90..110H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InPhT..90..110H"><span>ICP etching for InAs-based InAs/GaAsSb superlattice long wavelength <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Min; Chen, Jianxin; Xu, Jiajia; Wang, Fangfang; Xu, Zhicheng; He, Li</p> <p>2018-05-01</p> <p>In this work, we study and report the dry etching processes for InAs-based InAs/GaAsSb strain-free superlattice long wavelength <span class="hlt">infrared</span> (LWIR) <span class="hlt">detectors</span>. The proper etching parameters were first obtained through the parametric studies of Inductively Coupled Plasma (ICP) etching of both InAs and GaSb bulk materials in Cl2/N2 plasmas. Then an InAs-based InAs/GaAsSb superlattice LWIR <span class="hlt">detector</span> with PπN structure was fabricated by using the optimized etching parameters. At 80 K, the <span class="hlt">detector</span> exhibits a 100% cut-off wavelength of 12 μm and a responsivity of 1.5 A/W. Moreover, the dark current density of the device under a bias of -200 mV reaches 5.5 × 10-4 A/cm2, and the R0A is 15 Ω cm2. Our results pave the way towards InAs-based superlattice LWIR <span class="hlt">detectors</span> with better performances.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017InPhT..84...94C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017InPhT..84...94C"><span>Resonant <span class="hlt">detectors</span> and focal plane arrays for <span class="hlt">infrared</span> detection</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Choi, K. K.; Allen, S. C.; Sun, J. G.; DeCuir, E. A.</p> <p>2017-08-01</p> <p>We are developing resonator-QWIPs for narrowband and broadband long wavelength <span class="hlt">infrared</span> detection. <span class="hlt">Detector</span> pixels with 25 μm and 30 μm pitches were hybridized to fanout circuits and readout integrated electronics for radiometric measurements. With a low to moderate doping of 0.2-0.5 × 1018 cm-3 and a thin active layer thickness of 0.6-1.3 μm, we achieved a quantum efficiency between 25 and 37% and a conversion efficiency between of 15 and 20%. The temperature at which photocurrent equals dark current is about 65 K under F/2 optics for a cutoff wavelength up to 11 μm. The NEΔT of the FPAs is estimated to be 20 mK at 2 ms integration time and 60 K operating temperature. This good performance confirms the advantages of the resonator-QWIP approach.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9974E..0HP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9974E..0HP"><span>Extended short wavelength <span class="hlt">infrared</span> HgCdTe <span class="hlt">detectors</span> on silicon substrates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Park, J. H.; Hansel, D.; Mukhortova, A.; Chang, Y.; Kodama, R.; Zhao, J.; Velicu, S.; Aqariden, F.</p> <p>2016-09-01</p> <p>We report high-quality n-type extended short wavelength <span class="hlt">infrared</span> (eSWIR) HgCdTe (cutoff wavelength 2.59 μm at 77 K) layers grown on three-inch diameter CdTe/Si substrates by molecular beam epitaxy (MBE). This material is used to fabricate test diodes and arrays with a planar device architecture using arsenic implantation to achieve p-type doping. We use different variations of a test structure with a guarded design to compensate for the lateral leakage current of traditional test diodes. These test diodes with guarded arrays characterize the electrical performance of the active 640 × 512 format, 15 μm pitch <span class="hlt">detector</span> array.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001SPIE.4369..467R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001SPIE.4369..467R"><span>Second-generation <span class="hlt">detector</span> work in Israel</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rosenfeld, David</p> <p>2001-10-01</p> <p>A tremendous developmental effort in the field of <span class="hlt">infrared</span> <span class="hlt">detectors</span> during the last decade in Israel has resulted in a variety of InSb and HgCdTe <span class="hlt">infrared</span> <span class="hlt">detectors</span>. Additional and significant R&D effort associated with other IR components, have also been done in Israel, in order to integrate the <span class="hlt">detectors</span> into advanced <span class="hlt">Detector</span>-Dewar-Cooler assemblies (DDCs). This R&D effort included notable activities in the field of materials, signal processors, dewars and cryocoolers. These activities are presented together with the status of <span class="hlt">infrared</span> <span class="hlt">detector</span> work in Israel. Several two-dimensional InSb staring <span class="hlt">detectors</span> and DDCs are demonstrated. This includes two versions of the classical 256 X 256 <span class="hlt">detectors</span> and DDCs, improved 640 X 480 InSb <span class="hlt">detectors</span> and DDC, and a 2000- element <span class="hlt">detector</span> with high TDI level. SADA II type HgCdTe <span class="hlt">detectors</span> are also presented. Considerations regarding the course of future <span class="hlt">detector</span> work are also described. The classical DDC requirement list which traditionally included demands for high D*, low NETD and high resolution is widened to include cost related issues such as higher reliability, lower maintenance, smaller volume, lower power consumption and higher operation temperature.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22606224-development-application-inasp-inp-quantum-well-infrared-detector','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22606224-development-application-inasp-inp-quantum-well-infrared-detector"><span>Development and application of InAsP/InP quantum well <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Geetanjali,, E-mail: geetanjali@rrcat.gov.in; Porwal, S.; Kumar, R.</p> <p>2016-05-23</p> <p>InAs{sub x}P{sub 1-x}/InP quantum wells grown using metal organic vapor phase epitaxy are investigated for <span class="hlt">infrared</span> <span class="hlt">detector</span> applications. The structural parameters of the QWs are evaluated from high resolution x-ray diffraction. The electronic transition energies measured from surface photo voltage and photoconductivity confirms that these QWs can be used for fabricating IR <span class="hlt">detectors</span> in the wide wavelength range, i.e. 0.9–1.46 µm by inter-band transitions and 7–18 µm by inter-sub-band transitions. Subsequently the functionality of one such fabricated InAs{sub x}P{sub 1-x}/InPQW <span class="hlt">detector</span> is verified by measuring the photoluminescence of suitable semiconductor quantum well structure. At the request of all authors of the paper,more » and with the agreement of the Proceedings Editor, an updated version of this article was published on 24 June 2016. The original version supplied to AIP Publishing contained an error in the Figures 1 and 2 where the right side of the images were cutoff. The error has been corrected in the updated and re-published article.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900012016','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900012016"><span>Stressed <span class="hlt">detector</span> arrays for airborne astronomy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stacey, G. J.; Beeman, J. W.; Haller, E. E.; Geis, N.; Poglitsch, A.; Rumitz, M.</p> <p>1989-01-01</p> <p>The development of stressed Ge:Ga <span class="hlt">detector</span> arrays for far-<span class="hlt">infrared</span> astronomy from the Kuiper Airborne Observatory (KAO) is discussed. Researchers successfully constructed and used a three channel <span class="hlt">detector</span> array on five flights from the KAO, and have conducted laboratory tests of a two-dimensional, 25 elements (5x5) <span class="hlt">detector</span> array. Each element of the three element array performs as well as the researchers' best single channel <span class="hlt">detector</span>, as do the tested elements of the 25 channel system. Some of the exciting new science possible with far-<span class="hlt">infrared</span> <span class="hlt">detector</span> arrays is also discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19820008045','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19820008045"><span><span class="hlt">Infrared</span> fiber optic focal plane dispersers</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Goebel, J. H.</p> <p>1981-01-01</p> <p>Far <span class="hlt">infrared</span> transmissive fiber optics as a component in the design of integrated far <span class="hlt">infrared</span> focal plane array utilization is discussed. A tightly packed bundle of fibers is placed at the focal plane, where an array of <span class="hlt">infrared</span> <span class="hlt">detectors</span> would normally reside, and then fanned out in two or three dimensions to individual <span class="hlt">detectors</span>. Subsequently, the <span class="hlt">detectors</span> are multiplexed by cryogenic electronics for relay of the data. A second possible application is frequency up-conversion (v sub 1 + v sub 2 = v sub 3), which takes advantage of the nonlinear optical index of refraction of certain <span class="hlt">infrared</span> transmissive materials in fiber form. Again, a fiber bundle is utilized as above, but now a laser of frequency v sub 1 is mixed with the incoming radiation of frequency v sub 1 within the nonlinear fiber material. The sum, v sub 2 is then detected by near <span class="hlt">infrared</span> or visible <span class="hlt">detectors</span> which are more sensitive than those available at v sub 2. Due to the geometrical size limitations of <span class="hlt">detectors</span> such as photomultipliers, the focal plane dispersal technique is advantageous for imaging up-conversion.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3658749','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3658749"><span>THz QCL-Based Cryogen-Free Spectrometer for in Situ Trace Gas Sensing</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E.; Ritchie, David A.; Vitiello, Miriam Serena; De Natale, Paolo</p> <p>2013-01-01</p> <p>We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-<span class="hlt">infrared</span>. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span>, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-<span class="hlt">infrared</span> spectral range. PMID:23478601</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23478601','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23478601"><span>THz QCL-based cryogen-free spectrometer for in situ trace gas sensing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Consolino, Luigi; Bartalini, Saverio; Beere, Harvey E; Ritchie, David A; Vitiello, Miriam Serena; De Natale, Paolo</p> <p>2013-03-11</p> <p>We report on a set of high-sensitivity terahertz spectroscopy experiments making use of QCLs to detect rotational molecular transitions in the far-<span class="hlt">infrared</span>. We demonstrate that using a compact and transportable cryogen-free setup, based on a quantum cascade laser in a closed-cycle Stirling cryostat, and <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span>, a considerable improvement in sensitivity can be obtained by implementing a wavelength modulation spectroscopy technique. Indeed, we show that the sensitivity of methanol vapour detection can be improved by a factor ≈ 4 with respect to standard direct absorption approaches, offering perspectives for high sensitivity detection of a number of chemical compounds across the far-<span class="hlt">infrared</span> spectral range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010125','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010125"><span>Symmetric Absorber-Coupled Far-<span class="hlt">Infrared</span> Microwave Kinetic Inductance <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>U-yen, Kongpop (Inventor); Wollack, Edward J. (Inventor); Brown, Ari D. (Inventor); Stevenson, Thomas R. (Inventor); Patel, Amil A. (Inventor)</p> <p>2016-01-01</p> <p>The present invention relates to a symmetric absorber-coupled far-<span class="hlt">infrared</span> microwave kinetic inductance <span class="hlt">detector</span> including: a membrane having an absorber disposed thereon in a symmetric cross bar pattern; and a microstrip including a plurality of conductor microstrip lines disposed along all edges of the membrane, and separated from a ground plane by the membrane. The conducting microstrip lines are made from niobium, and the pattern is made from a superconducting material with a transition temperature below niobium, including one of aluminum, titanium nitride, or molybdenum nitride. The pattern is disposed on both a top and a bottom of the membrane, and creates a parallel-plate coupled transmission line on the membrane that acts as a half-wavelength resonator at readout frequencies. The parallel-plate coupled transmission line and the conductor microstrip lines form a stepped impedance resonator. The pattern provides identical power absorption for both horizontal and vertical polarization signals.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/7369193-infrared-tracker-portable-missile-launcher','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/7369193-infrared-tracker-portable-missile-launcher"><span><span class="hlt">Infrared</span> tracker for a portable missile launcher</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Carlson, J.J.</p> <p>1993-07-13</p> <p>An <span class="hlt">infrared</span> beam tracker is described for arrangement to a housing that is unitary with a portable missile launcher, comprising: a rotating beam splitter positioned to intercept the <span class="hlt">infrared</span> beam passing a first portion of the beam through the beam splitter along a first direction and reflecting the remaining portion along a different direction; a first <span class="hlt">infrared</span> <span class="hlt">detector</span> for receiving the beam reflected portion from the beam splitter and produce electric signals responsive thereto; a second <span class="hlt">infrared</span> <span class="hlt">detector</span> for receiving the beam portion that passes through the beam splitter and providing electric signals responsive thereto; and means interconnected to themore » first and second <span class="hlt">infrared</span> <span class="hlt">detectors</span> and responsive to the electric signals generated by said <span class="hlt">detectors</span> for determining errors in missile flight direction and communicating course correction information to the missile.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6835E..15L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6835E..15L"><span>Technology for low-cost PIR security sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Liddiard, Kevin C.</p> <p>2008-03-01</p> <p>Current passive <span class="hlt">infrared</span> (PIR) security sensors employing <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span> are simple, cheap and reliable, but have several deficiencies. These sensors, developed two decades ago, are essentially short-range moving-target hotspot <span class="hlt">detectors</span>. They cannot detect slow temperature changes, and thus are unable to respond to radiation stimuli indicating potential danger such as overheating electrical appliances and developing fires. They have a poor optical resolution and limited ability to recognize detected targets. Modern uncooled thermal <span class="hlt">infrared</span> technology has vastly superior performance but as yet is too costly to challenge the PIR security sensor market. In this paper microbolometer technology will be discussed which can provide enhanced performance at acceptable cost. In addition to security sensing the technology has numerous applications in the military, industrial and domestic markets where target range is short and low cost is paramount.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19406698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19406698"><span>Nonlinear <span class="hlt">pyroelectric</span> energy harvesting from relaxor single crystals.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Khodayari, Akram; Pruvost, Sebastien; Sebald, Gael; Guyomar, Daniel; Mohammadi, Saber</p> <p>2009-04-01</p> <p>Energy harvesting from temperature variations in a Pb(Zn(1/3)Nb(2/3))(0.955)Ti(0.045)O(3) single crystal was studied and evaluated using the Ericsson thermodynamic cycle. The efficiency of this cycle related to Carnot cycle is 100 times higher than direct <span class="hlt">pyroelectric</span> energy harvesting, and it can be as high as 5.5% for a 10 degrees C temperature variation and 2 kV/mm electric field. The amount of harvested energy for a 60 degrees C temperature variation and 2 kV/mm electric field is 242.7 mJ x cm(-3). The influence of ferroelectric phase transitions on the energy harvesting performance is discussed and illustrated with experimental results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/20971847-ferroelectriclike-pyroelectric-behavior-cacu-sub-ti-sub-sub-ceramics','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/20971847-ferroelectriclike-pyroelectric-behavior-cacu-sub-ti-sub-sub-ceramics"><span>Ferroelectriclike and <span class="hlt">pyroelectric</span> behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Shri Prakash, B.; Varma, K. B. R.</p> <p>2007-02-19</p> <p>A ferroelectriclike hysteresis loop was obtained at room temperature for CaCu{sub 3}Ti{sub 4}O{sub 12} (CCTO) ceramic. The remnant polarization and coercive field for 1100 deg. C/5 h sintered CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics were 0.063 {mu}C/cm{sup 2} and 195 V/cm, respectively. Remnant polarization increased while the coercive field decreased with increase in sintering temperature/duration, implying that these were microstructural dependent. The observation of the hysteresis loop for CCTO ceramic was corroborated by its <span class="hlt">pyroelectric</span> behavior, and the <span class="hlt">pyroelectric</span> current at room temperature was -0.0028 nA. These findings were attributed to the presence of mixed-valent Ti ions, apart from off centermore » displacement of Ti ions in TiO{sub 6} octahedra.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8353E..1KM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8353E..1KM"><span>Parylene supported 20um*20um uncooled thermoelectric <span class="hlt">infrared</span> <span class="hlt">detector</span> with high fill factor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Modarres-Zadeh, Mohammad J.; Carpenter, Zachary S.; Rockley, Mark G.; Abdolvand, Reza</p> <p>2012-06-01</p> <p>Presented is a novel design for an uncooled surface-micromachined thermoelectric (TE) <span class="hlt">infrared</span> (IR) <span class="hlt">detector</span>. The <span class="hlt">detector</span> features a P-doped polysilicon/Nichrome (Cr20-Ni80) thermocouple, which is embedded into a thin layer of Parylene-N to provide structural support. The low thermal conductivity (~0.1W/m.K), chemical resistance, and ease of deposition/patterning of Parylene-N make it an excellent choice of material for use in MEMS thermal <span class="hlt">detectors</span>. This <span class="hlt">detector</span> also features an umbrella-like IR absorber composed of a three layer stack of NiCr/SiN/NiCr to optimize IR absorption. The total device area is 20 um * 20 um per pixel with an absorber area of ~19 um * 19 um resulting in a fill factor of 90%. At room temperature, a DC responsivity of ~170V/W with a rise time of less than 8 ms is measured from the fabricated devices in vacuum when viewing a 500K blackbody without any concentrating optics. The dominant source of noise in thermoelectric IR <span class="hlt">detectors</span> is typically Johnson noise when the <span class="hlt">detectors</span> are operating in an open circuit condition. The fabricated <span class="hlt">detectors</span> have resistances about 85KOhm which results in Johnson noise of about 38nV/Hz^0.5. The D* is calculated to be 9 * 106 cm*Hz0.5/ W. Preliminary finite element analysis indicates that the thermal conduction from the hot junction to the substrate through the TE wires is dominant ( GTE >> Gparylene) considering the fabricated dimensions of the parylene film and the TE wires. Thus, by further reducing the size of the TE wires, GTE can be decreased and hence, responsivity can be improved while the parylene film sustains the structural integrity of the cell.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28362760','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28362760"><span>Direct mapping and characterization of dry etch damage-induced PN junction for long-wavelength HgCdTe <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Yantao; Hu, Weida; Ye, Zhenhua; Chen, Yiyu; Chen, Xiaoshuang; Lu, Wei</p> <p>2017-04-01</p> <p>Mercury cadmium telluride is the standard material to fabricate high-performance <span class="hlt">infrared</span> focal plane array (FPA) <span class="hlt">detectors</span>. However, etch-induced damage is a serious obstacle for realizing highly uniform and damage-free FPA <span class="hlt">detectors</span>. In this Letter, the high signal-to-noise ratio and high spatial resolution scanning photocurrent microscopy (SPCM) is used to characterize the dry etch-induced inversion layer of vacancy-doped p-type Hg<sub>1-x</sub>Cd<sub>x</sub>Te (x=0.22) material under different etching temperatures. It is found that the peak-to-peak magnitude of the SPCM profile decreases with a decrease in etching temperature, showing direct proof of controlling dry etch-induced type conversion. Our work paves the way toward seeking optimal etching processes in large-scale <span class="hlt">infrared</span> FPAs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011ApPhL..98l3703L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011ApPhL..98l3703L"><span><span class="hlt">Pyroelectric</span>, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lang, S. B.; Tofail, S. A. M.; Gandhi, A. A.; Gregor, M.; Wolf-Brandstetter, C.; Kost, J.; Bauer, S.; Krause, M.</p> <p>2011-03-01</p> <p>Hydroxyapatite (HA) is the major component of bone and is used in artificial form in many biomedical applications. It was once believed to have a centrosymmetric crystal structure. In theoretical and experimental studies published in 2005, it was shown to have a monoclinic P21 structure. In the work reported here, 500 nm films of HA were spin-coated on silicon wafers. The materials were not poled. They had a nonuniform polarization distribution and exhibited <span class="hlt">pyroelectricity</span>, piezoelectricity, and photoeffects. Structures of this type may have a number of technological applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940000617&hterms=electromechanical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Delectromechanical','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940000617&hterms=electromechanical&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Delectromechanical"><span>Improved Electromechanical <span class="hlt">Infrared</span> Sensor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kenny, Thomas W.; Kaiser, William J.</p> <p>1994-01-01</p> <p>Proposed electromechanical <span class="hlt">infrared</span> <span class="hlt">detector</span> improved version of device described in "Micromachined Electron-Tunneling <span class="hlt">Infrared</span> <span class="hlt">Detectors</span>" (NPO-18413). Fabrication easier, and undesired sensitivity to acceleration reduced. In devices, diaphragms and other components made of micromachined silicon, and displacements of diaphragms measured by electron tunneling displacement transducer {see "Micromachined Tunneling Accelerometer" (NPO-18513)}. Improved version offers enhanced frequency response and less spurious response to acceleration.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015NIMPA.779..124K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015NIMPA.779..124K"><span>Demonstration of a non-contact x-ray source using an inductively heated <span class="hlt">pyroelectric</span> accelerator</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klopfer, Michael; Satchouk, Vladimir; Cao, Anh; Wolowiec, Thomas; Alivov, Yahya; Molloi, Sabee</p> <p>2015-04-01</p> <p>X-ray emission from <span class="hlt">pyroelectric</span> sources can be produced through non-contact thermal cycling using induction heating. In this study, we demonstrated a proof of concept non-contact x-ray source powered via induction heating. An induction heater operating at 62.5 kHz provided a total of 6.5 W of delivered peak thermal power with 140 V DC of driving voltage. The heat was applied to a ferrous substrate mechanically coupled to a cubic 1 cm3 Lithium Niobate (LiNbO3) <span class="hlt">pyroelectric</span> crystal maintained in a 3-12 mTorr vacuum. The maximum temperature reached was 175 °C in 86 s of heating. The cooling cycle began immediately after heating and was provided by passive radiative cooling. The total combined cycle time was 250 s. x-ray photons were produced and analyzed in both heating and cooling phases. Maximum photon energies of 59 keV and 55 keV were observed during heating and cooling, respectively. Non-contact devices such as this, may find applications in cancer therapy (brachytherapy), non-destructive testing, medical imaging, and physics education fields.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22311356-photocurrent-spectrum-study-quantum-dot-single-photon-detector-based-resonant-tunneling-effect-near-infrared-response','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22311356-photocurrent-spectrum-study-quantum-dot-single-photon-detector-based-resonant-tunneling-effect-near-infrared-response"><span>Photocurrent spectrum study of a quantum dot single-photon <span class="hlt">detector</span> based on resonant tunneling effect with near-<span class="hlt">infrared</span> response</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Weng, Q. C.; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241; An, Z. H., E-mail: anzhenghua@fudan.edu.cn, E-mail: luwei@mail.sitp.ac.cn</p> <p></p> <p>We present the photocurrent spectrum study of a quantum dot (QD) single-photon <span class="hlt">detector</span> using a reset technique which eliminates the QD's “memory effect.” By applying a proper reset frequency and keeping the <span class="hlt">detector</span> in linear-response region, the <span class="hlt">detector</span>'s responses to different monochromatic light are resolved which reflects different detection efficiencies. We find the reset photocurrent tails up to 1.3 μm wavelength and near-<span class="hlt">infrared</span> (∼1100 nm) single-photon sensitivity is demonstrated due to interband transition of electrons in QDs, indicating the device a promising candidate both in quantum information applications and highly sensitive imaging applications operating in relative high temperatures (>80 K).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016DPS....4842925D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016DPS....4842925D"><span>Measuring Io's Lava Eruption Temperatures with a Novel <span class="hlt">Infrared</span> <span class="hlt">Detector</span> and Digital Readout Circuit</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davies, Ashley; Gunapala, Sarath; Rafol, B., Sir; Soibel, Alexander; Ting, David Z.</p> <p>2016-10-01</p> <p>One method of determining lava eruption temperature of Io's dominant silicate lavas is by measuring radiant flux at two or more wavelengths and fitting a black-body thermal emission function. Only certain styles of volcanic activity are suitable, those where thermal emission is from a restricted range of surface temperatures close to eruption temperature. Such processes include [1] large lava fountains; [2] fountaining in lava lakes; and [3] lava tube skylights. Problems that must be overcome are (1) the cooling of the lava between data acquisitions at different wavelengths; (2) the unknown magnitude of thermal emission, which often led to <span class="hlt">detector</span> saturation; and (3) thermal emission changing on a shorter timescale than the observation integration time. We can overcome these problems by using the HOT-BIRD <span class="hlt">detector</span> [4] and an advanced digital readout circuit [5]. We have created an instrument model that allows different instrument parameters (including mirror diameter, number of signal splits, exposure duration, filter band pass, and optics transmissivity) to be tested so as to determine eruption detectability. We find that a short-wavelength <span class="hlt">infrared</span> instrument on an Io flyby mission can achieve simultaneity of observations by splitting the incoming signal for all relevant eruption processes and obtain data fast enough to remove uncertainties in accurate determination of the highest lava surface temperatures exposed. Observations at 1 and 1.5 μm are sufficient to do this. Lava temperature determinations are also possible with a visible wavelength <span class="hlt">detector</span> [3] so long as data at different wavelengths are obtained simultaneously and integration time is very short. This is especially important for examining the thermal emission from lava tube skylights [3] due to rapidly-changing viewing geometry during close flybys. References: [1] Davies et al., 2001, JGR, 106, 33079-33104. [2] Davies et al., 2011, GRL, 38, L21308. [3] Davies et al., 2016, Icarus, in press. [4</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10177E..12A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10177E..12A"><span>Growth and characterization of In1-xGaxAs/InAs0.65Sb0.35 strained layer superlattice <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ariyawansa, G.; Duran, J. M.; Reyner, C. J.; Steenbergen, E. H.; Yoon, N.; Wasserman, D.; Scheihing, J. E.</p> <p>2017-02-01</p> <p>Type-II strained layer superlattices (SLS) are an active research topic in the <span class="hlt">infrared</span> <span class="hlt">detector</span> community and applications for SLS <span class="hlt">detectors</span> continue to grow. SLS <span class="hlt">detector</span> technology has already reached the commercial market due to improvements in material quality, device design, and device fabrication. Despite this progress, the optimal superlattice design has not been established, and at various times has been believed to be InAs/GaSb, InAs/InGaSb, or InAs/InAsSb. Building on these, we investigate the properties of a new mid-wave <span class="hlt">infrared</span> SLS material: InGaAs/InAsSb SLS. The ternary InGaAs/InAsSb SLS has three main advantages over other SLS designs: greater support for strain compensation, enhanced absorption due to increased electron-hole wavefunction overlap, and improved vertical hole mobility due to reduced hole effective mass. Here, we compare three ternary SLSs, with approximately the same bandgap (0.240 eV at 150 K), comprised of Ga fractions of 5%, 10%, and 20% to a reference sample with 0% Ga. Enhanced absorption is both theoretically predicted and experimentally realized. Furthermore, the characteristics of ternary SLS <span class="hlt">infrared</span> <span class="hlt">detectors</span> based on an nBn architecture are reported and exhibit nearly state-of-the-art dark current performance with minimal growth optimization. We report standard material and device characterization information, including dark current and external quantum efficiency, and provide further analysis that indicates improved quantum efficiency and vertical hole mobility. Finally, a 320×256 focal plane array built based on the In0.8Ga0.2As/InAs0.65Sb0.35 SLS design is demonstrated with promising performance.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT........49V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT........49V"><span>Characterization of HgCdTe and Related Materials For Third Generation <span class="hlt">Infrared</span> <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vaghayenegar, Majid</p> <p></p> <p>Hg1-xCdxTe (MCT) has historically been the primary material used for <span class="hlt">infrared</span> <span class="hlt">detectors</span>. Recently, alternative substrates for MCT growth such as Si, as well as alternative <span class="hlt">infrared</span> materials such as Hg1-xCdxSe, have been explored. This dissertation involves characterization of Hg-based <span class="hlt">infrared</span> materials for third generation <span class="hlt">infrared</span> <span class="hlt">detectors</span> using a wide range of transmission electron microscopy (TEM) techniques. A microstructural study on HgCdTe/CdTe heterostructures grown by MBE on Si (211) substrates showed a thin ZnTe layer grown between CdTe and Si to mediate the large lattice mismatch of 19.5%. Observations showed large dislocation densities at the CdTe/ZnTe/Si (211) interfaces, which dropped off rapidly away from the interface. Growth of a thin HgTe buffer layer between HgCdTe and CdTe layers seemed to improve the HgCdTe layer quality by blocking some defects. A second study investigated the correlation of etch pits and dislocations in as-grown and thermal-cycle-annealed (TCA) HgCdTe (211) films. For as-grown samples, pits with triangular and fish-eye shapes were associated with Frank partial and perfect dislocations, respectively. Skew pits were determined to have a more complex nature. TCA reduced the etch-pit density by 72%. Although TCA processing eliminated the fish-eye pits, dislocations reappeared in shorter segments in the TCA samples. Large pits were observed in both as-grown and TCA samples, but the nature of any defects associated with these pits in the as-grown samples is unclear. Microstructural studies of HgCdSe revealed large dislocation density at ZnTe/Si(211) interfaces, which dropped off markedly with ZnTe thickness. Atomic-resolution STEM images showed that the large lattice mismatch at the ZnTe/Si interface was accommodated through {111}-type stacking faults. A detailed analysis showed that the stacking faults were inclined at angles of 19.5 and 90 degrees at both ZnTe/Si and HgCdSe/ZnTe interfaces. These stacking faults were associated</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPRv...4c1304R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPRv...4c1304R"><span>InAs/GaSb type-II superlattice <span class="hlt">infrared</span> <span class="hlt">detectors</span>: Future prospect</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rogalski, A.; Martyniuk, P.; Kopytko, M.</p> <p>2017-09-01</p> <p>Investigations of antimonide-based materials began at about the same time as HgCdTe ternary alloys—in the 1950s, and the apparent rapid success of their technology, especially low-dimensional solids, depends on the previous five decades of III-V materials and device research. However, the sophisticated physics associated with the antimonide-based bandgap engineering concept started at the beginning of 1990s gave a new impact and interest in development of <span class="hlt">infrared</span> <span class="hlt">detector</span> structures within academic and national laboratories. The development of InAs/GaSb type-II superlattices (T2SLs) results from two primary motivations: the perceived challenges of reproducibly fabricating high-operability HgCdTe focal plane arrays (FPAs) at reasonable cost and the theoretical predictions of lower Auger recombination for type T2SL <span class="hlt">detectors</span> compared with HgCdTe. Second motivation—lower Auger recombination should be translated into a fundamental advantage for T2SL over HgCdTe in terms of lower dark current and/or higher operating temperature, provided other parameters such as Shockley-Read-Hall (SRH) lifetime are equal. InAs/GaSb T2SL photodetectors offer similar performance to HgCdTe at an equivalent cut-off wavelength, but with a sizeable penalty in operating temperature, due to the inherent difference in SRH lifetimes. It is predicted that since the future <span class="hlt">infrared</span> (IR) systems will be based on the room temperature operation of depletion-current limited arrays with pixel densities that are fully consistent with background- and diffraction-limited performance due to the system optics, the material system with long SRH lifetime will be required. Since T2SLs are very much resisted in attempts to improve its SRH lifetime, currently the only material that meets this requirement is HgCdTe. Due to less ionic chemical bonding, III-V semiconductors are more robust than their II-VI counterparts. As a result, III-V-based FPAs excel in operability, spatial uniformity, temporal stability</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA149239','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA149239"><span>Applications of Piezoelectric and <span class="hlt">Pyroelectric</span> Thin Films: Opportunities for Langmuir-Blodgett Technology.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1984-12-31</p> <p>LII IH"L 5 B 1.4 1111.6 MICROCOPY RESOLUTION TEST CHART SECURITY CLASSIFICATION OF THIS PAGE (MS’ien Dare Itere d) RED DSTUC ONS REPORT ...DOCUMENTATION PAGE BEFORE COMPLETIG FORM R NUMER . GOVT ACCESSION NO 5. RECIPIENT’S CATALOG iUMBER • TR-09 4. TITLE ( nd Subttle) S. TYPE OF REPORT A PERIOD...COVERELs Applications of Piezoelectric and <span class="hlt">Pyroelectric</span> Technical Report -Interim Thin Films: Opportunities for Langmuir-Blodgett Technology 6. PERFORMING</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/18357026','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/18357026"><span>Sensitivity of an imaging space <span class="hlt">infrared</span> interferometer.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Nakajima, T; Matsuhara, H</p> <p>2001-02-01</p> <p>We study the sensitivities of space <span class="hlt">infrared</span> interferometers. We formulate the signal-to-noise ratios of <span class="hlt">infrared</span> images obtained by aperture synthesis in the presence of source shot noise, background shot noise, and <span class="hlt">detector</span> read noise. We consider the case in which n beams are combined pairwise at n(n-1)/2 <span class="hlt">detectors</span> and the case in which all the n beams are combined at a single <span class="hlt">detector</span>. We apply the results to future missions, Terrestrial Planet Finder and Darwin. We also discuss the potential of a far-<span class="hlt">infrared</span> interferometer for a deep galaxy survey.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5737326','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5737326"><span>Nonlocal Response in <span class="hlt">Infrared</span> <span class="hlt">Detector</span> with Semiconducting Carbon Nanotubes and Graphdiyne</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zheng, Zhe; Fang, Hehai; Liu, Dan; Tan, Zhenjun; Gao, Xin; Hu, Weida; Peng, Hailin; Tong, Lianming</p> <p>2017-01-01</p> <p>Abstract Semiconducting single‐walled carbon nanotubes (s‐SWNTs) are regarded as an important candidate for <span class="hlt">infrared</span> (IR) optical detection due to their excellent intrinsic properties. However, the strong binding energy of excitons in s‐SWNTs seriously impedes the development of s‐SWNTs IR photodetector. This Communication reports an IR photodetector with highly pure s‐SWNTs and γ‐graphdiyne. The heterojunctions between the two materials can efficiently separate the photogenerated excitons. In comparison to device fabricated only with s‐SWNTs, this IR <span class="hlt">detector</span> shows a uniform response in the whole channel of the device. The response time is demonstrated to be below 1 ms. The optimal responsivity and detectivity approximately reach 0.4 mA W−1 and 5 × 106 cmHz1/2 W−1, respectively. PMID:29270354</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22391926-temperature-sensitive-junction-transformations-mid-wavelength-hgcdte-photovoltaic-infrared-detector-arrays-laser-beam-induced-current-microscope','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22391926-temperature-sensitive-junction-transformations-mid-wavelength-hgcdte-photovoltaic-infrared-detector-arrays-laser-beam-induced-current-microscope"><span>Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays by laser beam induced current microscope</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Qiu, Weicheng; National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn</p> <p>2014-11-10</p> <p>In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixedmore » conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/865963','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/865963"><span>Multi-channel <span class="hlt">infrared</span> thermometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ulrickson, Michael A.</p> <p>1986-01-01</p> <p>A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an <span class="hlt">infrared</span> <span class="hlt">detector</span> array having a plurality of <span class="hlt">detectors</span>; and a light pipe array positioned between the imaging optics and the <span class="hlt">detector</span> array for sampling, transmitting, and distributing the image over the <span class="hlt">detector</span> surfaces. The light pipe array includes one light pipe for each <span class="hlt">detector</span> in the <span class="hlt">detector</span> array.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26923080','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26923080"><span>Flexible Pb(Zr0.52Ti0.48)O3 Films for a Hybrid Piezoelectric-<span class="hlt">Pyroelectric</span> Nanogenerator under Harsh Environments.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ko, Young Joon; Kim, Dong Yeong; Won, Sung Sik; Ahn, Chang Won; Kim, Ill Won; Kingon, Angus I; Kim, Seung-Hyun; Ko, Jae-Hyeon; Jung, Jong Hoon</p> <p>2016-03-01</p> <p>In spite of extremely high piezoelectric and <span class="hlt">pyroelectric</span> coefficients, there are few reports on flexible ferroelectric perovskite film based nanogenerators (NGs). Here, we report the successful growth of a flexible Pb(Zr0.52Ti0.48)O3 (PZT) film and its application to hybrid piezoelectric-<span class="hlt">pyroelectric</span> NG. A highly flexible Ni-Cr metal foil substrate with a conductive LaNiO3 bottom electrode enables the growth of flexible PZT film having high piezoelectric (140 pC/N) and <span class="hlt">pyroelectric</span> (50 nC/cm(2)K) coefficients at room temperature. The flexible PZT-based NG effectively scavenges mechanical vibration and thermal fluctuation from sources ranging from the human body to the surroundings such as wind. Furthermore, it stably generates electric current even at elevated temperatures of 100 °C, relative humidity of 70%, and pH of 13 by virtue of its high Curie temperature and strong resistance for water and base. As proof of power generation under harsh environments, we demonstrate the generation of extremely high current at the exhaust pipe of a car, where hot CO and CO2 gases are rapidly expelled to air. This work expands the application of flexible PZT film-based NG for the scavenging mechanical vibration and thermal fluctuation energies even at extreme conditions.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160009779','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160009779"><span><span class="hlt">Detector</span> Control and Data Acquisition for the Wide-Field <span class="hlt">Infrared</span> Survey Telescope (WFIRST) with a Custom ASIC</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Brian S.; Loose, Markus; Alkire, Greg; Joshi, Atul; Kelly, Daniel; Siskind, Eric; Rossetti, Dino; Mah, Jonathan; Cheng, Edward; Miko, Laddawan; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20160009779'); toggleEditAbsImage('author_20160009779_show'); toggleEditAbsImage('author_20160009779_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20160009779_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20160009779_hide"></p> <p>2016-01-01</p> <p>The Wide-Field <span class="hlt">Infrared</span> Survey Telescope (WFIRST) will have the largest near-IR focal plane ever flown by NASA, a total of 18 4K x 4K devices. The project has adopted a system-level approach to <span class="hlt">detector</span> control and data acquisition where 1) control and processing intelligence is pushed into components closer to the <span class="hlt">detector</span> to maximize signal integrity, 2) functions are performed at the highest allowable temperatures, and 3) the electronics are designed to ensure that the intrinsic <span class="hlt">detector</span> noise is the limiting factor for system performance. For WFIRST, the <span class="hlt">detector</span> arrays operate at 90 to 100 K, the <span class="hlt">detector</span> control and data acquisition functions are performed by a custom ASIC at 150 to 180 K, and the main data processing electronics are at the ambient temperature of the spacecraft, notionally approx.300 K. The new ASIC is the main interface between the cryogenic <span class="hlt">detectors</span> and the warm instrument electronics. Its single-chip design provides basic clocking for most types of hybrid <span class="hlt">detectors</span> with CMOS ROICs. It includes a flexible but simple-to-program sequencer, with the option of microprocessor control for more elaborate readout schemes that may be data-dependent. All analog biases, digital clocks, and analog-to-digital conversion functions are incorporated and are connected to the nearby <span class="hlt">detectors</span> with a short cable that can provide thermal isolation. The interface to the warm electronics is simple and robust through multiple LVDS channels. It also includes features that support parallel operation of multiple ASICs to control <span class="hlt">detectors</span> that may have more capability or requirements than can be supported by a single chip.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA451351','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA451351"><span>Characterization and Analysis of a Multicolor Quantum Well <span class="hlt">Infrared</span> Photodetector</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-06-01</p> <p>and characterization of performance of a newly designed, multicolor quantum well <span class="hlt">infrared</span> photodetector ( QWIP ). Specifically, it focuses on a <span class="hlt">detector</span>...quantum well <span class="hlt">infrared</span> <span class="hlt">detectors</span> makes them suitable for use in the field. 15. NUMBER OF PAGES 67 14. SUBJECT TERMS Quantum Well, QWIP , Three...characterization of performance of a newly designed, multicolor quantum well <span class="hlt">infrared</span> photodetector ( QWIP ). Specifically, it focuses on a <span class="hlt">detector</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/5313998','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/5313998"><span>Multi-channel <span class="hlt">infrared</span> thermometer</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Ulrickson, M.A.</p> <p></p> <p>A device for measuring the two-dimensional temperature profile of a surface comprises imaging optics for generating an image of the light radiating from the surface; an <span class="hlt">infrared</span> <span class="hlt">detector</span> array having a plurality of <span class="hlt">detectors</span>; and optical means positioned between the imaging optics and the <span class="hlt">detector</span> array for sampling, transmitting, and distributing the image over the <span class="hlt">detector</span> surfaces. The optical means may be a light pipe array having one light pipe for each <span class="hlt">detector</span> in the <span class="hlt">detector</span> array.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018InPhT..89..194B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018InPhT..89..194B"><span>A novel, highly efficient cavity backshort design for far-<span class="hlt">infrared</span> TES <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bracken, C.; de Lange, G.; Audley, M. D.; Trappe, N.; Murphy, J. A.; Gradziel, M.; Vreeling, W.-J.; Watson, D.</p> <p>2018-03-01</p> <p>In this paper we present a new cavity backshort design for TES (transition edge sensor) <span class="hlt">detectors</span> which will provide increased coupling of the incoming astronomical signal to the <span class="hlt">detectors</span>. The increased coupling results from the improved geometry of the cavities, where the geometry is a consequence of the proposed chemical etching manufacturing technique. Using a number of modelling techniques, predicted results of the performance of the cavities for frequencies of 4.3-10 THz are presented and compared to more standard cavity designs. Excellent optical efficiency is demonstrated, with improved response flatness across the band. In order to verify the simulated results, a scaled model cavity was built for testing at the lower W-band frequencies (75-100 GHz) with a VNA system. Further testing of the scale model at THz frequencies was carried out using a globar and bolometer via an FTS measurement set-up. The experimental results are presented, and compared to the simulations. Although there is relatively poor comparison between simulation and measurement at some frequencies, the discrepancies are explained by means of higher-mode excitation in the measured cavity which are not accounted for in the single-mode simulations. To verify this assumption, a better behaved cylindrical cavity is simulated and measured, where excellent agreement is demonstrated in those results. It can be concluded that both the simulations and the supporting measurements give confidence that this novel cavity design will indeed provide much-improved optical coupling for TES <span class="hlt">detectors</span> in the far-<span class="hlt">infrared</span>/THz band.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9451E..0LS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9451E..0LS"><span>InAs/Ga(In)Sb type-II superlattices short/middle dual color <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shi, Yanli; Hu, Rui; Deng, Gongrong; He, Wenjing; Feng, Jiangmin; Fang, Mingguo; Li, Xue; Deng, Jun</p> <p>2015-06-01</p> <p>Short wavelength and middle wavelength dual color <span class="hlt">infrared</span> <span class="hlt">detector</span> were designed and prepared with InAs/Ga(In)Sb type-II superlattices materials. The Crosslight software was used to calculate the relation between wavelength and material parameter such as thickness of InAs, GaSb, then energy strucutre of 100 periods 8ML/8ML InAs/GaSb and the absorption wavelength was calculated. After fixing InAs/GaSb thickness parameter, devices with nBn and pin structure were designed and prepared to compare performance of these two structures. Comparison results showed both structure devices were available for high temperature operation which black detectivity under 200K were 7.9×108cmHz1/2/W for nBn and 1.9×109cmHz1/2/W for pin respectively. Considering the simultaneous readout requirement for further FPAs application the NIP/PIN InAs/GaSb dual-color structure was grown by MBE method. Both two mesas and one mesa devices structure were designed and prepared to appreciate the short/middle dual color devices. Cl2-based ICP etching combined with phosphoric acid based chemicals were utilized to form mesas, silicon dioxide was deposited via PECVD as passivation layer. Ti/Au was used as metallization. Once the devices were finished, the electro-optical performance was measured. Measurement results showed that optical spectrum response with peak wavelength of 2.7μm and 4.3μm under 77K temperature was gained, the test results agree well with calculated results. Peak detectivity was measured as 2.08×1011cmHz1/2/W and 6.2×1010cmHz1/2/W for short and middle wavelength <span class="hlt">infrared</span> <span class="hlt">detector</span> respectively. Study results disclosed that InAs/Ga(In)Sb type-II SLs is available for both short and middle wavelength <span class="hlt">infrared</span> detecting with good performance by simply altering the thickness of InAs layer and GaSb layer.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/989003','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/989003"><span>Doped carbon nanostructure field emitter arrays for <span class="hlt">infrared</span> imaging</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Korsah, Kofi [Knoxville, TN; Baylor, Larry R [Farragut, TN; Caughman, John B [Oak Ridge, TN; Kisner, Roger A [Knoxville, TN; Rack, Philip D [Knoxville, TN; Ivanov, Ilia N [Knoxville, TN</p> <p>2009-10-27</p> <p>An <span class="hlt">infrared</span> imaging device and method for making <span class="hlt">infrared</span> <span class="hlt">detector(s</span>) having at least one anode, at least one cathode with a substrate electrically connected to a plurality of doped carbon nanostructures; and bias circuitry for applying an electric field between the anode and the cathode such that when <span class="hlt">infrared</span> photons are adsorbed by the nanostructures the emitted field current is modulated. The <span class="hlt">detectors</span> can be doped with cesium to lower the work function.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012SPIE.8447E..0QF','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012SPIE.8447E..0QF"><span>Advances in <span class="hlt">detector</span> technologies for visible and <span class="hlt">infrared</span> wavefront sensing</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feautrier, Philippe; Gach, Jean-Luc; Downing, Mark; Jorden, Paul; Kolb, Johann; Rothman, Johan; Fusco, Thierry; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Destefanis, Gérard; Lhermet, Nicolas; Pacaud, Olivier; Vuillermet, Michel; Kerlain, Alexandre; Hubin, Norbert; Reyes, Javier; Kasper, Markus; Ivert, Olaf; Suske, Wolfgang; Walker, Andrew; Skegg, Michael; Derelle, Sophie; Deschamps, Joel; Robert, Clélia; Vedrenne, Nicolas; Chazalet, Frédéric; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Preis, Olivier</p> <p>2012-07-01</p> <p> <span class="hlt">detector</span> with a readout noise of 3 e (goal 1e) at 700 Hz frame rate. The LGSD is a scaling of the NGSD with 1760x1680 pixels and 3 e readout noise (goal 1e) at 700 Hz (goal 1000 Hz) frame rate. New technologies will be developed for that purpose: advanced CMOS pixel architecture, CMOS back thinned and back illuminated device for very high QE, full digital outputs with signal digital conversion on chip. In addition, the CMOS technology is extremely robust in a telescope environment. Both <span class="hlt">detectors</span> will be used on the European ELT but also interest potentially all giant telescopes under development. Additional developments also started for wavefront sensing in the <span class="hlt">infrared</span> based on a new technological breakthrough using ultra low noise Avalanche Photodiode (APD) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter will offer a 320x240 8 outputs 30 microns IR array, sensitive from 0.4 to 3.2 microns, with 2 e readout noise at 1500 Hz frame rate. The high QE response is almost flat over this wavelength range. Advanced packaging with miniature cryostat using liquid nitrogen free pulse tube cryocoolers is currently developed for this programme in order to allow use on this <span class="hlt">detector</span> in any type of environment. First results of this project are detailed here. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the <span class="hlt">detector</span> manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC). Funding is: Opticon FP6 and FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI and the French FUI (DGCIS).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10697E..03W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10697E..03W"><span>The design of high precision temperature control system for InGaAs short-wave <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, Zheng-yun; Hu, Yadong; Ni, Chen; Huang, Lin; Zhang, Aiwen; Sun, Xiao-bing; Hong, Jin</p> <p>2018-02-01</p> <p>The InGaAs Short-wave <span class="hlt">infrared</span> <span class="hlt">detector</span> is a temperature-sensitive device. Accurate temperature control can effectively reduce the background signal and improve detection accuracy, detection sensitivity, and the SNR of the detection system. Firstly, the relationship between temperature and detection background, NEP is analyzed, the principle of TEC and formula between cooling power, cooling current and hot-cold interface temperature difference are introduced. Then, the high precision constant current drive circuit based on triode voltage control current, and an incremental algorithm model based on deviation tracking compensation and PID control are proposed, which effectively suppresses the temperature overshoot, overcomes the temperature inertia, and has strong robustness. Finally, the <span class="hlt">detector</span> and temperature control system are tested. Results show that: the lower of <span class="hlt">detector</span> temperature, the smaller the temperature fluctuation, the higher the detection accuracy and the detection sensitivity. The temperature control system achieves the high temperature control with the temperature control rate is 7 8°C/min and the temperature fluctuation is better than +/-0. 04°C.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26836674','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26836674"><span>Modeling of high-precision wavefront sensing with new generation of CMT avalanche photodiode <span class="hlt">infrared</span> <span class="hlt">detectors</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gousset, Silvère; Petit, Cyril; Michau, Vincent; Fusco, Thierry; Robert, Clelia</p> <p>2015-12-01</p> <p>Near-<span class="hlt">infrared</span> wavefront sensing allows for the enhancement of sky coverage with adaptive optics. The recently developed HgCdTe avalanche photodiode arrays are promising due to their very low <span class="hlt">detector</span> noise, but still present an imperfect cosmetic that may directly impact real-time wavefront measurements for adaptive optics and thus degrade performance in astronomical applications. We propose here a model of a Shack-Hartmann wavefront measurement in the presence of residual fixed pattern noise and defective pixels. To adjust our models, a fine characterization of such an HgCdTe array, the RAPID sensor, is proposed. The impact of the cosmetic defects on the Shack-Hartmann measurement is assessed through numerical simulations. This study provides both a new insight on the applicability of cadmium mercury telluride (CMT) avalanche photodiodes <span class="hlt">detectors</span> for astronomical applications and criteria to specify the cosmetic qualities of future arrays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111e1102N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111e1102N"><span>Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nolde, J. A.; Jackson, E. M.; Bennett, M. F.; Affouda, C. A.; Cleveland, E. R.; Canedy, C. L.; Vurgaftman, I.; Jernigan, G. G.; Meyer, J. R.; Aifer, E. H.</p> <p>2017-07-01</p> <p>Longwave <span class="hlt">infrared</span> <span class="hlt">detectors</span> using p-type absorbers composed of InAs-rich type-II superlattices (T2SLs) nearly always suffer from high surface currents due to carrier inversion on the etched sidewalls. Here, we demonstrate reticulated shallow etch mesa isolation (RSEMI): a structural method of reducing surface currents in longwave single-band and midwave/longwave dual-band <span class="hlt">detectors</span> with p-type T2SL absorbers. By introducing a lateral shoulder to increase the separation between the n+ cathode and the inverted absorber surface, a substantial barrier to surface electron flow is formed. We demonstrate experimentally that the RSEMI process results in lower surface current, lower net dark current, much weaker dependence of the current on bias, and higher uniformity compared to mesas processed with a single deep etch. For the structure used, a shoulder width of 2 μm is sufficient to block surface currents.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA201702','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA201702"><span>Application of Quantum 1/F Noise Theory to Hg(1-x)Cd(x)Te <span class="hlt">Infrared</span> <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1988-06-25</p> <p>Hooge parameter. 2. 1 / f Noise of the Recombination Current Generated in the Depletion Region The quantum I...Correction of the Hooge Parameter for Umklaop 1 / f Noise ", Ph,,’sia 1412, 145-147 (1906). 13. P.H. Handel: "Bolts from the Blue"("Has the Mystery of...Continue on revrerse s de if tecseear and Identify by block nutber) <span class="hlt">Infrared</span> <span class="hlt">Detectors</span>, Quantum 1 / f Noise , HgCdTe, Electronic Noise 2CL A8SRACT</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22402448-short-wave-infrared-barriode-detectors-using-ingaassb-absorption-material-lattice-matched-gasb','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22402448-short-wave-infrared-barriode-detectors-using-ingaassb-absorption-material-lattice-matched-gasb"><span>Short-wave <span class="hlt">infrared</span> barriode <span class="hlt">detectors</span> using InGaAsSb absorption material lattice matched to GaSb</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Craig, A. P.; Percy, B.; Marshall, A. R. J.</p> <p>2015-05-18</p> <p>Short-wave <span class="hlt">infrared</span> barriode <span class="hlt">detectors</span> were grown by molecular beam epitaxy. An absorption layer composition of In{sub 0.28}Ga{sub 0.72}As{sub 0.25}Sb{sub 0.75} allowed for lattice matching to GaSb and cut-off wavelengths of 2.9 μm at 250 K and 3.0 μm at room temperature. Arrhenius plots of the dark current density showed diffusion limited dark currents approaching those expected for optimized HgCdTe-based <span class="hlt">detectors</span>. Specific detectivity figures of around 7×10{sup 10} Jones and 1×10{sup 10} Jones were calculated, for 240 K and room temperature, respectively. Significantly, these devices could support focal plane arrays working at higher operating temperatures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7467E..0RG','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7467E..0RG"><span>III-V <span class="hlt">infrared</span> research at the Jet Propulsion Laboratory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.</p> <p>2009-08-01</p> <p>Jet Propulsion Laboratory is actively developing the III-V based <span class="hlt">infrared</span> <span class="hlt">detector</span> and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well <span class="hlt">Infrared</span> Photodetectors (QWIPs), Superlattice <span class="hlt">detectors</span>, and Quantum Dot <span class="hlt">Infrared</span> Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice <span class="hlt">infrared</span> <span class="hlt">detectors</span> at the Jet Propulsion Laboratory.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1175564','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1175564"><span>Compensated <span class="hlt">infrared</span> absorption sensor for carbon dioxide and other <span class="hlt">infrared</span> absorbing gases</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Owen, Thomas E.</p> <p>2005-11-29</p> <p>A gas sensor, whose chamber uses filters and choppers in either a semicircular geometry or annular geometry, and incorporates separate <span class="hlt">infrared</span> radiation filters and optical choppers. This configuration facilitates the use of a single <span class="hlt">infrared</span> radiation source and a single <span class="hlt">detector</span> for <span class="hlt">infrared</span> measurements at two wavelengths, such that measurement errors may be compensated.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1042640','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1042640"><span>Nanotubes, nanorods and nanowires having piezoelectric and/or <span class="hlt">pyroelectric</span> properties and devices manufactured therefrom</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Russell, Thomas P [Amherst, MA; Lutkenhaus, Jodie [Wethersfield, CT</p> <p>2012-05-15</p> <p>Disclosed herein is a device comprising a pair of electrodes; and a nanotube, a nanorod and/or a nanowire; the nanotube, nanorod and/or nanowire comprising a piezoelectric and/or <span class="hlt">pyroelectric</span> polymeric composition; the pair of electrodes being in electrical communication with opposing surfaces of the nanotube, nanorod and/or a nanowire; the pair of electrodes being perpendicular to a longitudinal axis of the nanotube, nanorod and/or a nanowire.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850013449','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850013449"><span>Monolithic short wave <span class="hlt">infrared</span> (SWIR) <span class="hlt">detector</span> array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>1983-01-01</p> <p>A monolithic self-scanned linear <span class="hlt">detector</span> array was developed for remote sensing in the 1.1- 2.4-micron spectral region. A high-density IRCCD test chip was fabricated to verify new design approaches required for the <span class="hlt">detector</span> array. The driving factors in the Schottky barrier IRCCD (Pdsub2Si) process development are the attainment of <span class="hlt">detector</span> yield, uniformity, adequate quantum efficiency, and lowest possible dark current consistent with radiometric accuracy. A dual-band module was designed that consists of two linear <span class="hlt">detector</span> arrays. The sensor architecture places the floating diffusion output structure in the middle of the chip, away from the butt edges. A focal plane package was conceptualized and includes a polycrystalline silicon substrate carrying a two-layer, thick-film interconnecting conductor pattern and five epoxy-mounted modules. A polycrystalline silicon cover encloses the modules and bond wires, and serves as a radiation and EMI shield, thermal conductor, and contamination seal.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100024046','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100024046"><span>Fabrication of an Absorber-Coupled MKID <span class="hlt">Detector</span> and Readout for Sub-Millimeter and Far-<span class="hlt">Infrared</span> Astronomy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Ari-David; Hsieh, Wen-Ting; Moseley, S. Harvey; Stevenson, Thomas R.; U-yen, Kongpop; Wollack, Edward J.</p> <p>2010-01-01</p> <p>We have fabricated absorber-coupled microwave kinetic inductance <span class="hlt">detector</span> (MKID) arrays for sub-millimeter and far-<span class="hlt">infrared</span> astronomy. Each <span class="hlt">detector</span> array is comprised of lambda/2 stepped impedance resonators, a 1.5 micrometer thick silicon membrane, and 380 micrometer thick silicon walls. The resonators consist of parallel plate aluminum transmission lines coupled to low impedance Nb microstrip traces of variable length, which set the resonant frequency of each resonator. This allows for multiplexed microwave readout and, consequently, good spatial discrimination between pixels in the array. The Al transmission lines simultaneously act to absorb optical power and are designed to have a surface impedance and filling fraction so as to match the impedance of free space. Our novel fabrication techniques demonstrate high fabrication yield of MKID arrays on large single crystal membranes and sub-micron front-to-back alignment of the microstrip circuit.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28052049','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28052049"><span>Thermoelectric-<span class="hlt">pyroelectric</span> hybrid energy generation from thermopower waves in core-shell structured carbon nanotube-PZT nanocomposites.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yeo, Taehan; Hwang, Hayoung; Shin, Dongjoon; Seo, Byungseok; Choi, Wonjoon</p> <p>2017-02-10</p> <p>There is an urgent need to develop a suitable energy source owing to the rapid development of various innovative devices using micro-nanotechnology. The thermopower wave (TW), which produces a high specific power during the combustion of solid fuel inside micro-nanostructure materials, is a unique energy source for unusual platforms that cannot use conventional energy sources. Here, we report on the significant enhancement of hybrid energy generation of <span class="hlt">pyroelectrics</span> and thermoelectrics from TWs in carbon nanotube (CNT)-PZT (lead zirconate titanate, P(Z 0.5 -T 0.5 )) composites for the first time. Conventional TWs use only charge carrier transport driven by the temperature gradient along the core materials to produce voltage. In this study, a core-shell structure of CNTs-PZTs was prepared to utilize both the temperature gradient along the core material (thermoelectrics) and the dynamic change in the temperature of the shell structure (<span class="hlt">pyroelectrics</span>) induced by TWs. The dual mechanism of energy generation in CNT-PZT composites amplified the average peak and duration of the voltage up to 403 mV and 612 ms, respectively, by a factor of 2 and 60 times those for the composites without a PZT layer. Furthermore, dynamic voltage measurements and structural analysis in repetitive TWs confirmed that CNT-PZT composites maintain the original performance in multiple TWs, which improves the reusability of materials. The advanced TWs obtained by the application of a PZT layer as a <span class="hlt">pyroelectric</span> material contributes to the extension of the usable energy portion as well as the development of TW-based operating devices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120013608','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120013608"><span>MgB2-Based Bolometer Array for Far <span class="hlt">Infra-Red</span> Thermal Imaging and Fourier Transform Spectroscopy Applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Lakew, B.; Aslam, S.; Brasunas, J.</p> <p>2012-01-01</p> <p>The mid-superconducting critical temperature (T(sub c) approximately 39 K) of the simple binary, intermetallic MgB, [1] makes it a very good candidate for the development of the next generation of electrooptical devices (e.g. [2]). In particular, recent advances in thin film deposition teclmiques to attain higb quality polycrystalline thin film MgB, deposited on SiN-Si substrates, with T(sub c) approximately 38K [3] coupled with the low voltage noise performance of the film [4] makes it higbly desirable for the development of moderately cooled bolometer arrays for integration into future space-bourne far <span class="hlt">infra-red</span> (FIR) spectrometers and thermal mappers for studying the outer planets, their icy moons and other moons of interest in the 17-250 micrometer spectral wavelength range. Presently, commercially available <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span> operating at 300 K have specific detectivity, D(*), around 7 x 10(exp 8) to 2 x 10(exp 9) centimeters square root of Hz/W. However, a MgB2 thin film based bolometer using a low-stress (less than 140 MPa) SiN membrane isolated from the substrate by a small thermal conductive link, operating at 38 K, promises to have two orders of magnitude higher specific detectivity [5][6].</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9752E..1EW','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9752E..1EW"><span>MEMS-based IR-sources</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Weise, Sebastian; Steinbach, Bastian; Biermann, Steffen</p> <p>2016-03-01</p> <p>The series JSIR350 sources are MEMS based <span class="hlt">infrared</span> emitters. These IR sources are characterized by a high radiation output. Thus, they are excellent for NDIR gas analysis and are ideally suited for using with our <span class="hlt">pyro-electric</span> or thermopile <span class="hlt">detectors</span>. The MEMS chips used in Micro-Hybrid's <span class="hlt">infrared</span> emitters consist of nano-amorphous carbon (NAC). The MEMS chips are produced in the USA. All Micro-Hybrid Emitter are designed and specified to operate up to 850°C. The improvements we have made in the source's packaging enable us to provide IR sources with the best performance on the market. This new technology enables us to seal the housings of <span class="hlt">infrared</span> radiation sources with soldered <span class="hlt">infrared</span> filters or windows and thus cause the parts to be impenetrable to gases. Micro-Hybrid provide various ways of adapting our MEMS based <span class="hlt">infrared</span> emitter JSIR350 to customer specifications, like specific burn-in parameters/characteristic, different industrial standard housings, producible with customized cap, reflector or pin-out.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JEMat.tmp.2741S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JEMat.tmp.2741S"><span>Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 Ceramics for <span class="hlt">Pyroelectric</span> Applications</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sharma, Moolchand; Singh, V. P.; Singh, Shatrughan; Azad, Puneet; Ilahi, Bouraoui; Madhar, Niyaz Ahamad</p> <p>2018-05-01</p> <p>Porous Ba0.85Ca0.15Zr0.1Ti0.9O3 (BCZT) ferroelectric ceramics were fabricated using a solid-state reaction consisting of BCZT and poly(methyl methacrylate)(PMMA) (2%, 4%, 8% and 10% by wt.%) as a pore former. By increasing the PMMA content from 0% to 10%, porosity increased from 8% to 29%. It was found that the dielectric constant (ɛ r ) decreased and the dielectric loss (tanδ) increased with increasing porosity. At 29% porosity, ɛ r of the BCZT was found to decrease more, from 3481 to 1117 at 5 kHz and at room temperature. The dielectric constant and volume-specific heat capacity decreased with the increase in porosity which ultimately improved the <span class="hlt">pyroelectric</span> figure-of-merits (FOMs). Further, the <span class="hlt">pyroelectric</span> FOMs were estimated and found to be improved at optimum porosity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JAP...123a4102P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JAP...123a4102P"><span>Investigations on the defect dipole induced <span class="hlt">pyroelectric</span> current in multiferroic GdMnO3 system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pal, A.; Dhana Sekhar, C.; Venimadhav, A.; Prellier, W.; Murugavel, P.</p> <p>2018-01-01</p> <p><span class="hlt">Pyroelectric</span> current measurements on the orthorhombic GdMnO3 polycrystalline sample are done to explore the intrinsic and extrinsic contributions. The measurements reveal poling temperature dependent pyrocurrent peaks at 20, 50 and 108 K. The pyrocurrent at 20 K and at 108 K are attributed to ferroelectric transition induced by the incommensurate spiral magnetic ordering of Mn spins and the release of trapped charges from the localized states, respectively. A detailed analysis on the broad pyrocurrent signal at 50 K suggests that it could be attributed to the thermally stimulated depolarization current effect due to the relaxation of defect dipoles induced by negatively charged Mn3+ ions and excess holes localized at Mn4+ sites. Importantly, the effect of the electric field due to the defect dipoles on the ferroelectric state is highlighted. The temperature dependent dielectric measurements under the magnetic field brought out the correlation between <span class="hlt">pyroelectric</span> and dielectric properties. The influence of poling temperature dependent extrinsic effects on pyrocurrent suggests the choice of poling temperature on the study of polarization and the resultant multiferroicity in a spin-driven ferroelectric rare earth manganite system.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005086','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005086"><span>Intersubband absorption in Si(1-x)Ge(x/Si superlattices for long wavelength <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rajakarunanayake, Yasantha; Mcgill, Tom C.</p> <p>1990-01-01</p> <p>Researchers calculated the absorption strengths for intersubband transitions in n-type Si(1-x)Ge(x)/Si superlattices. These transitions can be used for the detection of long-wavelength <span class="hlt">infrared</span> radiation. A significant advantage in Si(1-x)Ge(x)/Si supperlattice <span class="hlt">detectors</span> is the ability to detect normally incident light; in Ga(1-x)Al(x)As/GaAs superlattices, intersubband absorption is possible only if the incident light contains a polarization component in the growth direction of the superlattice. Researchers present detailed calculation of absorption coefficients, and peak absorption wavelengths for (100), (111) and (110) Si(1-x)Ge(x)/Si superlattices. Peak absorption strengths of about 2000 to 6000 cm(exp -1) were obtained for typical sheet doping concentrations (approx. equals 10(exp 12)cm(exp -2)). Absorption comparable to that in Ga(1-x)Al(x)As/GaAs superlattice <span class="hlt">detectors</span>, compatibility with existing Si technology, and the ability to detect normally incident light make these devices promising for future applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.7064E..04G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.7064E..04G"><span>Interferometric characterization of <span class="hlt">pyroelectrically</span> activated micro-arrays of liquid lenses in lithium niobate crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Grilli, S.; Miccio, L.; Vespini, V.; Ferraro, P.</p> <p>2008-08-01</p> <p>In recent years a wide variety of liquid based optical elements have been conceived, designed and fabricated even for commercial products like digital cameras. The impressive development of microfluidic systems in conjunction with optics has led to the creation of a completely new field of investigation named optofludics. Among other things, the optofluidic area deals with the investigation and the realization of liquid micro-lenses. Different methods and configurations have been proposed in literature to achieve liquid variable micro-lenses. This paper reports about the possibility to achieve lensing effect by a relatively easy to accomplish technique based on an open microfluidic system consisting of a tiny amount of appropriate liquid manipulated by the <span class="hlt">pyroelectric</span> effect onto a periodically poled LiNbO3 substrate. Basically, an electrowetting process is performed to actuate the liquid film by using the surface charges generated <span class="hlt">pyroelectrically</span> under temperature variation. The configuration is electrode-less compared to standard electrowetting systems, thus improving the device flexibility and easiness of fabrication. The curvature of the liquid lenses has been characterized by interferometric techniques based on the evaluation of the phase map through digital holography. The results showing the evolution of the lens curvature with the temperature variation will be presented and discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19890048364&hterms=arsenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Darsenic','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19890048364&hterms=arsenic&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Darsenic"><span>Blocked impurity band hybrid <span class="hlt">infrared</span> focal plane arrays for astronomy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Reynolds, D. B.; Seib, D. H.; Stetson, S. B.; Herter, T.; Rowlands, N.</p> <p>1989-01-01</p> <p>High-performance <span class="hlt">infrared</span> hybrid focal plane arrays using 10- x 50-element Si:As blocked-impurity-band (BIB) <span class="hlt">detectors</span> (cutoff wavelength = 28 microns) and matching switched MOSFET multiplexers have been developed and characterized for space astronomy. Use of impurity-band-conduction technology provides <span class="hlt">detectors</span> which are nuclear-radiation-hard and free of the many anomalies associated with conventional silicon photoconductive <span class="hlt">detectors</span>. Emphasis in the present work is on recent advances in <span class="hlt">detector</span> material quality which have led to significantly improved <span class="hlt">detector</span> and hybrid characteristics. Results demonstrating increased quantum efficiency (particularly at short-wavelength <span class="hlt">infrared</span>), obtained by varying the BIB <span class="hlt">detector</span> properties (<span class="hlt">infrared</span> active layer thickness and arsenic doping profile), are summarized. Measured read noise and dark current for different temperatures are reported. The hybrid array performance achieved demonstrates that BIB <span class="hlt">detectors</span> are well suited for use in astronomical instrumentation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA267172','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA267172"><span>Sensor Modelling for the ’Cyclops’ Focal Plane <span class="hlt">Detector</span> Array Based Technology Demonstrator</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1992-12-01</p> <p><span class="hlt">Detector</span> Array IFOV Instantaneous field of view IRFPDA <span class="hlt">Infrared</span> Focal Plane <span class="hlt">Detector</span> Array LWIR Long-Wave <span class="hlt">Infrared</span> 0 MCT Mercury Cadmium Telluride MTF...scale focal plane <span class="hlt">detector</span> array (FPDA). The sensor system operates in the long-wave <span class="hlt">infrared</span> ( LWIR ) spectral region. The <span class="hlt">detector</span> array consists of...charge transfer inefficiencies in the readout circuitry. The performance of the HgCdTe FPDA based sensor is limited by the nonuniformity of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459055','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5459055"><span>Wavelength- or Polarization-Selective Thermal <span class="hlt">Infrared</span> <span class="hlt">Detectors</span> for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Ogawa, Shinpei; Kimata, Masafumi</p> <p>2017-01-01</p> <p>Wavelength- or polarization-selective thermal <span class="hlt">infrared</span> (IR) <span class="hlt">detectors</span> are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel <span class="hlt">detectors</span>, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR <span class="hlt">detectors</span> simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs—periodic crystals, metal-insulator-metal and mushroom-type PMAs—to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR <span class="hlt">detectors</span> with wavelength or polarization selectivity will provide great benefits for a wide range of applications. PMID:28772855</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28772855','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28772855"><span>Wavelength- or Polarization-Selective Thermal <span class="hlt">Infrared</span> <span class="hlt">Detectors</span> for Multi-Color or Polarimetric Imaging Using Plasmonics and Metamaterials.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ogawa, Shinpei; Kimata, Masafumi</p> <p>2017-05-04</p> <p>Wavelength- or polarization-selective thermal <span class="hlt">infrared</span> (IR) <span class="hlt">detectors</span> are promising for various novel applications such as fire detection, gas analysis, multi-color imaging, multi-channel <span class="hlt">detectors</span>, recognition of artificial objects in a natural environment, and facial recognition. However, these functions require additional filters or polarizers, which leads to high cost and technical difficulties related to integration of many different pixels in an array format. Plasmonic metamaterial absorbers (PMAs) can impart wavelength or polarization selectivity to conventional thermal IR <span class="hlt">detectors</span> simply by controlling the surface geometry of the absorbers to produce surface plasmon resonances at designed wavelengths or polarizations. This enables integration of many different pixels in an array format without any filters or polarizers. We review our recent advances in wavelength- and polarization-selective thermal IR sensors using PMAs for multi-color or polarimetric imaging. The absorption mechanism defined by the surface structures is discussed for three types of PMAs-periodic crystals, metal-insulator-metal and mushroom-type PMAs-to demonstrate appropriate applications. Our wavelength- or polarization-selective uncooled IR sensors using various PMAs and multi-color image sensors are then described. Finally, high-performance mushroom-type PMAs are investigated. These advanced functional thermal IR <span class="hlt">detectors</span> with wavelength or polarization selectivity will provide great benefits for a wide range of applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADD019352','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADD019352"><span><span class="hlt">Infrared</span> Fiber Imager</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1999-05-12</p> <p>to an <span class="hlt">infrared</span> television camera AVTO TVS-2100. The <span class="hlt">detector</span> in the camera was an InSb crystal having sensitivity in the wavelength region between 3.0...Serial Number: Navy Case: 79,823 camera AVTO TVS-2100, with a <span class="hlt">detector</span> of the In Sb crystal, having peak sensitivity in the wavelength region between</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22596887-optical-characteristics-type-gaas-based-semiconductors-towards-applications-photoemission-infrared-detectors','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22596887-optical-characteristics-type-gaas-based-semiconductors-towards-applications-photoemission-infrared-detectors"><span>Optical characteristics of p-type GaAs-based semiconductors towards applications in photoemission <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lao, Y. F.; Perera, A. G. U., E-mail: uperera@gsu.edu; Center for Nano-Optics</p> <p>2016-03-14</p> <p>Free-carrier effects in a p-type semiconductor including the intra-valence-band and inter-valence-band optical transitions are primarily responsible for its optical characteristics in <span class="hlt">infrared</span>. Attention has been paid to the inter-valence-band transitions for the development of internal photoemission (IPE) mid-wave <span class="hlt">infrared</span> (MWIR) photodetectors. The hole transition from the heavy-hole (HH) band to the spin-orbit split-off (SO) band has demonstrated potential applications for 3–5 μm detection without the need of cooling. However, the forbidden SO-HH transition at the Γ point (corresponding to a transition energy Δ{sub 0}, which is the split-off gap between the HH and SO bands) creates a sharp drop around 3.6 μmmore » in the spectral response of p-type GaAs/AlGaAs <span class="hlt">detectors</span>. Here, we report a study on the optical characteristics of p-type GaAs-based semiconductors, including compressively strained InGaAs and GaAsSb, and a dilute magnetic semiconductor, GaMnAs. A model-independent fitting algorithm was used to derive the dielectric function from experimental reflection and transmission spectra. Results show that distinct absorption dip at Δ{sub 0} is observable in p-type InGaAs and GaAsSb, while GaMnAs displays enhanced absorption without degradation around Δ{sub 0}. This implies the promise of using GaMnAs to develop MWIR IPE <span class="hlt">detectors</span>. Discussions on the optical characteristics correlating with the valence-band structure and free-hole effects are presented.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA568787','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA568787"><span>MSM-Metal Semiconductor Metal Photo-<span class="hlt">detector</span> Using Black Silicon Germanium (SiGe) for Extended Wavelength Near <span class="hlt">Infrared</span> Detection</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>MSM) photodectors fabricated using black silicon-germanium on silicon substrate (Si1–xGex//Si) for I-V, optical response, external quantum ...material for Si for many applications in low-power and high-speed semiconductor device technologies (4, 5). It is a promising material for quantum well ...MSM-Metal Semiconductor Metal Photo-<span class="hlt">detector</span> Using Black Silicon Germanium (SiGe) for Extended Wavelength Near <span class="hlt">Infrared</span> Detection by Fred</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9219E..0CP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9219E..0CP"><span>Preliminary study of the Suomi NPP VIIRS <span class="hlt">detector</span>-level spectral response function effects for the long-wave <span class="hlt">infrared</span> bands M15 and M16</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Padula, Francis; Cao, Changyong</p> <p>2014-09-01</p> <p>The Suomi NPP Visible <span class="hlt">Infrared</span> Imaging Radiometer Suite (VIIRS) Sea Surface Temperature (SST) Environmental Data Record (EDR) team observed an anomalous striping pattern in the SST data. To assess possible causes due to the <span class="hlt">detector</span>-level Spectral Response Functions (SRFs), a study was conducted to compare the radiometric response of the <span class="hlt">detector</span>-level and operation band averaged SRFs of VIIRS bands M15 & M16 using simulated blackbody radiance data and clear-sky ocean radiances under different atmospheric conditions. It was concluded that the SST product is likely impacted by small differences in <span class="hlt">detector</span>-level SRFs, and that if users require optimal system performance <span class="hlt">detector</span>-level processing is recommended. Future work will investigate potential SDR product improvements through <span class="hlt">detector</span>-level processing in support of the generation of Suomi NPP VIIRS climate quality SDRs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003CRPhy...4.1083T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003CRPhy...4.1083T"><span>La détection infrarouge avec les plans focaux non refroidis : état de l'artUncooled focal plane <span class="hlt">infrared</span> <span class="hlt">detectors</span>: the state of the art</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tissot, Jean-Luc</p> <p>2003-12-01</p> <p>The emergence of uncooled <span class="hlt">detectors</span> has opened new opportunities for IR detection for both military and commercial applications. Development of such devices involves a lot of trade-offs between the different parameters that define the technological stack. These trade-offs explain the number of different architectures that are under worldwide development. The key factor is to find a high sensitivity and low noise thermometer material compatible with silicon technology in order to achieve high thermal isolation in the smallest area as possible. Ferroelectric thermometer based hybrid technology and electrical resistive thermometer based (microbolometer) technology are under development. LETI and ULIS have chosen from the very beginning to develop first a monolithic microbolometer technology fully compatible with commercially available CMOS technology and secondly amorphous silicon based thermometer. This silicon approach has the greatest potential for reducing <span class="hlt">infrared</span> <span class="hlt">detector</span> manufacturing cost. After the development of the technology, the transfer to industrial facilities has been performed in a short period of time and the production is now ramping up with ULIS team in new facilities. LETI and ULIS are now working to facilitate the IRFPA integration into equipment in order to address a very large market. Achievement of this goal needs the development of smart sensors with on-chip advanced functions and the decrease of manufacturing cost of IRFPA by decreasing the pixel pitch and simplifying the vacuum package. We present in this paper the technology developed by CEA/LETI and its improvement for being able to designs 384×288 and 160×120 arrays with a pitch of 35 μm. Thermographic application needs high stability <span class="hlt">infrared</span> <span class="hlt">detector</span> with a precise determination of the amount of absorbed <span class="hlt">infrared</span> flux. Hence, <span class="hlt">infrared</span> <span class="hlt">detector</span> with internal temperature stabilized shield has been developed and characterized. These results will be presented. To cite this article: J</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850017482','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850017482"><span>Performance of charge-injection-device <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays at low and moderate backgrounds</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mckelvey, M. E.; Mccreight, C. R.; Goebel, J. H.; Reeves, A. A.</p> <p>1985-01-01</p> <p>Three 2 x 64 element charge injection device <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays were tested at low and moderate background to evaluate their usefulness for space based astronomical observations. Testing was conducted both in the laboratory and in ground based telescope observations. The devices showed an average readout noise level below 200 equivalent electrons, a peak responsivity of 4 A/W, and a noise equivalent power of 3x10 sq root of W/Hz. Array well capacity was measured to be significantly smaller than predicted. The measured sensitivity, which compares well with that of nonintegrating discrete extrinsic silicon photoconductors, shows these arrays to be useful for certain astronomical observations. However, the measured readout efficiency and frequency response represent serious limitations in low background applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA560373','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA560373"><span>A Surface Plasmon Enhanced <span class="hlt">Infrared</span> Photodetector Based on InAs Quantum Dots</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2010-01-01</p> <p>mance of QD <span class="hlt">infrared</span> <span class="hlt">detector</span> to a level that is compatible to the widely used, conventional MCT <span class="hlt">infrared</span> <span class="hlt">detector</span> . Acknowledgment. S.Y.L. gratefully...amenable to large scale fabrication and, more importantly, does not degrade the noise current characteristics of the photodetector. We believe that this...demonstration would bring the performance of QD-based <span class="hlt">infrared</span> <span class="hlt">detectors</span> to a level suitable for emerging surveillance and medical diagnostic</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA587264','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA587264"><span>Plasmonic Enhanced <span class="hlt">Infrared</span> Detection with a Dynamic Hyper-Spectral Tuning</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-09-19</p> <p>performance operation and use expensive optics for sensing color information in the <span class="hlt">infrared</span>. The integration of metallic arrays with these <span class="hlt">detectors</span> is...technology while significantly improving performance. surface plasmons, <span class="hlt">infrared</span> <span class="hlt">detectors</span> , quantum dots, multi-spectral sensing Unclassified...Research Laboratory (AFRL), Albuquerque NM, for theoretical and strategic support and University of New Mexico, NM for growth of the <span class="hlt">detector</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/870798','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/870798"><span>Passive <span class="hlt">infrared</span> bullet detection and tracking</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Karr, Thomas J.</p> <p>1997-01-01</p> <p>An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive <span class="hlt">infrared</span> <span class="hlt">detector</span>. A passive <span class="hlt">infrared</span> <span class="hlt">detector</span> is focused onto a region in which a projectile is expected to be located. Successive images of <span class="hlt">infrared</span> radiation in the region are recorded. Background <span class="hlt">infrared</span> radiation present in the region is suppressed such that second successive images of <span class="hlt">infrared</span> radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of <span class="hlt">infrared</span> radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/426633','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/biblio/426633"><span>Passive <span class="hlt">infrared</span> bullet detection and tracking</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Karr, T.J.</p> <p>1997-01-21</p> <p>An apparatus and method for passively detecting a projectile such as, for example, a bullet using a passive <span class="hlt">infrared</span> <span class="hlt">detector</span>. A passive <span class="hlt">infrared</span> <span class="hlt">detector</span> is focused onto a region in which a projectile is expected to be located. Successive images of <span class="hlt">infrared</span> radiation in the region are recorded. Background <span class="hlt">infrared</span> radiation present in the region is suppressed such that second successive images of <span class="hlt">infrared</span> radiation generated by the projectile as the projectile passes through the region are produced. A projectile path calculator determines the path and other aspects of the projectile by using the second successive images of <span class="hlt">infrared</span> radiation generated by the projectile. The present invention, in certain embodiments, also determines the origin of the path of the projectile and takes a photograph of the area surrounding the origin and/or fires at least one projectile at the area surrounding the origin of the path of the projectile. 9 figs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015JPhCS.660a2047A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015JPhCS.660a2047A"><span>Electrical performances of <span class="hlt">pyroelectric</span> bimetallic strip heat engines describing a Stirling cycle</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arnaud, A.; Boughaleb, J.; Monfray, S.; Boeuf, F.; Cugat, O.; Skotnicki, T.</p> <p>2015-12-01</p> <p>This paper deals with the analytical modeling of <span class="hlt">pyroelectric</span> bimetallic strip heat engines. These devices are designed to exploit the snap-through of a thermo-mechanically bistable membrane to transform a part of the heat flowing through the membrane into mechanical energy and to convert it into electric energy by means of a piezoelectric layer deposited on the surface of the bistable membrane. In this paper, we describe the properties of these heat engines in the case when they complete a Stirling cycle, and we evaluate the performances (available energy, Carnot efficiency...) of these harvesters at the macro- and micro-scale.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040027566&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcomparative','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040027566&hterms=comparative&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dcomparative"><span>Comparative NIR <span class="hlt">Detector</span> Characterization for NGST</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greenhouse, Matthew (Technical Monitor); Figer, Donald</p> <p>2004-01-01</p> <p>List of publications for final perfomance report are: <span class="hlt">Detectors</span> for the JWST Near-<span class="hlt">Infrared</span> Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, SPIE <span class="hlt">Detectors</span> for the JWST Near-<span class="hlt">Infrared</span> Spectrometer Rauscher, B.J., Strada, P., Regan, M.W., Figer, D.F., Jakobsen, P., Moseley, H.S., & Boeker, T. 2004, AAS, 203, 124.07 Independent Testing of JWST <span class="hlt">Detector</span> Prototypes Figer, D.F., Rauscher, B. J., Regan, M. W., Morse, E., Balleza, J., Bergeron, L., & Stockman, H. S. 2003 , SPIE, 5 167 The Independent <span class="hlt">Detector</span> Testing Laboratory and the NGST <span class="hlt">Detector</span> Program Figer, D.F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,981 Intra-Pixel Sensitivity in NIR <span class="hlt">Detectors</span> for NGST Sharma, U., Figer, D.F., Sivaramakrishnan, A., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Rauscher, B. J., Reeves, T., Regan, M. W., Stockman, H. S. 2003, SPIE, 4850,1001 NIRCAM Image Simulations for NGST Wavefiont SensinglPS A. Sivaramakrishnan, D. Figer, H. Bushouse, H. S. Stockman (STScI),C. Ohara , D. Redding (JPL), M. Im (IPAC), & J. Offenberg (Raytheon) 2003, SPIE, 4850,388 Ultra-Low Background Operation of Near-<span class="hlt">Infrared</span> <span class="hlt">Detectors</span> for NGS Rauscher, B. J., Figer, D. F., Agronin, M., Balleza, J., Barkhouser, R., Bergeron, L., Greene, G. R., McCandliss, S. R., Reeves, T., Regan, M. W., Sharma, U., Stockman, H. S. 2003, SPIE, 4850,962 The Independent <span class="hlt">Detector</span> Testing Laboratory and the JWST <span class="hlt">Detector</span> Program Figer, D.F. et a1.2003, AAS201, #131.05</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9026E..0JH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9026E..0JH"><span>Real-time human versus animal classification using <span class="hlt">pyro-electric</span> sensor array and Hidden Markov Model</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hossen, Jakir; Jacobs, Eddie L.; Chari, Srikant</p> <p>2014-03-01</p> <p>In this paper, we propose a real-time human versus animal classification technique using a <span class="hlt">pyro-electric</span> sensor array and Hidden Markov Model. The technique starts with the variational energy functional level set segmentation technique to separate the object from background. After segmentation, we convert the segmented object to a signal by considering column-wise pixel values and then finding the wavelet coefficients of the signal. HMMs are trained to statistically model the wavelet features of individuals through an expectation-maximization learning process. Human versus animal classifications are made by evaluating a set of new wavelet feature data against the trained HMMs using the maximum-likelihood criterion. Human and animal data acquired-using a <span class="hlt">pyro-electric</span> sensor in different terrains are used for performance evaluation of the algorithms. Failures of the computationally effective SURF feature based approach that we develop in our previous research are because of distorted images produced when the object runs very fast or if the temperature difference between target and background is not sufficient to accurately profile the object. We show that wavelet based HMMs work well for handling some of the distorted profiles in the data set. Further, HMM achieves improved classification rate over the SURF algorithm with almost the same computational time.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10177E..2CK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10177E..2CK"><span>Novel high-resolution VGA QWIP <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kataria, H.; Asplund, C.; Lindberg, A.; Smuk, S.; Alverbro, J.; Evans, D.; Sehlin, S.; Becanovic, S.; Tinghag, P.; Höglund, L.; Sjöström, F.; Costard, E.</p> <p>2017-02-01</p> <p>Continuing with its legacy of producing high performance <span class="hlt">infrared</span> <span class="hlt">detectors</span>, IRnova introduces its high resolution LWIR IDDCA (Integrated <span class="hlt">Detector</span> Dewar Cooler assembly) based on QWIP (quantum well <span class="hlt">infrared</span> photodetector) technology. The Focal Plane Array (FPA) has 640×512 pixels, with small (15μm) pixel pitch, and is based on the FLIRIndigo ISC0403 Readout Integrated Circuit (ROIC). The QWIP epitaxial structures are grown by metal-organic vapor phase epitaxy (MOVPE) at IRnova. <span class="hlt">Detector</span> stability and response uniformity inherent to III/V based material will be demonstrated in terms of high performing <span class="hlt">detectors</span>. Results showing low NETD at high frame rate will be presented. This makes it one of the first 15μm pitch QWIP based LWIR IDDCA commercially available on the market. High operability and stability of our other QWIP based products will also be shared.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080005013','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080005013"><span>Focal plane <span class="hlt">infrared</span> readout circuit with automatic background suppression</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pain, Bedabrata (Inventor); Yang, Guang (Inventor); Sun, Chao (Inventor); Shaw, Timothy J. (Inventor); Wrigley, Chris J. (Inventor)</p> <p>2002-01-01</p> <p>A circuit for reading out a signal from an <span class="hlt">infrared</span> <span class="hlt">detector</span> includes a current-mode background-signal subtracting circuit having a current memory which can be enabled to sample and store a dark level signal from the <span class="hlt">infrared</span> <span class="hlt">detector</span> during a calibration phase. The signal stored by the current memory is subtracted from a signal received from the <span class="hlt">infrared</span> <span class="hlt">detector</span> during an imaging phase. The circuit also includes a buffered direct injection input circuit and a differential voltage readout section. By performing most of the background signal estimation and subtraction in a current mode, a low gain can be provided by the buffered direct injection input circuit to keep the gain of the background signal relatively small, while a higher gain is provided by the differential voltage readout circuit. An array of such readout circuits can be used in an imager having an array of <span class="hlt">infrared</span> <span class="hlt">detectors</span>. The readout circuits can provide a high effective handling capacity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA494311','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA494311"><span>Exploratory Corrugated <span class="hlt">Infrared</span> Hot-Electron Transistor Arrays</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2009-02-01</p> <p>quantum well <span class="hlt">infrared</span> photodetector ( QWIP ) structure. This improvement is consistent with the hot-electron distributions created by the thermal and...the designed value. This higher barrier height can be attributed to the finite p-type doping density in the material. 15. SUBJECT TERMS QWIP ...<span class="hlt">infrared</span> photodetector ( QWIP ) sensor in a small exploratory array format, which is capable of suppressing the <span class="hlt">detector</span> dark current. The new <span class="hlt">detector</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012Metro..49..368Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012Metro..49..368Z"><span>Systematic evaluation of a secondary method for measuring diagnostic-level medical ultrasound transducer output power based on a large-area <span class="hlt">pyroelectric</span> sensor</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zeqiri, B.; Žauhar, G.; Rajagopal, S.; Pounder, A.</p> <p>2012-06-01</p> <p>A systematic study of the application of a novel <span class="hlt">pyroelectric</span> technique to the measurement of diagnostic-level medical ultrasound output power is described. The method exploits the <span class="hlt">pyroelectric</span> properties of a 0.028 mm thick membrane of polyvinylidene fluoride (PVDF), backed by an acoustic absorber whose ultrasonic absorption coefficient approaches 1000 dB cm-1 at 3 MHz. When exposed to an ultrasonic field, absorption of ultrasound adjacent to the PVDF-absorber interface results in heating and the generation of a <span class="hlt">pyroelectric</span> output voltage across gold electrodes deposited on the membrane. For a sensor large enough to intercept the whole of the acoustic beam, the output voltage can be calibrated for the measurement of acoustic output power. A number of key performance properties of the method have been investigated. The technique is very sensitive, with a power to voltage conversion factor of typically 0.23 V W-1. The frequency response of a particular embodiment of the sensor in which acoustic power reflected at the absorber-PVDF interface is subsequently returned to the <span class="hlt">pyroelectric</span> membrane to be absorbed, has been evaluated over the frequency range 1.5 MHz to 10 MHz. This has shown the frequency response to be flat to within ±4%, above 2.5 MHz. Below this frequency, the sensitivity falls by 20% at 1.5 MHz. Linearity of the technique has been demonstrated to within ±1.6% for applied acoustic power levels from 1 mW up to 120 mW. A number of other studies targeted at assessing the achievable measurement uncertainties are presented. These involve: the effects of soaking, the influence of the angle of incidence of the acoustic beam, measurement repeatability and sensitivity to transducer positioning. Additionally, over the range 20 °C to 30 °C, the rate of change in sensitivity with ambient temperature has been shown to be +0.5% °C-1. Implications of the work for the development of a sensitive, traceable, portable, secondary method of ultrasound output power</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22486293-proton-radiation-effect-performance-inas-gasb-complementary-barrier-infrared-detector','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22486293-proton-radiation-effect-performance-inas-gasb-complementary-barrier-infrared-detector"><span>Proton radiation effect on performance of InAs/GaSb complementary barrier <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Soibel, Alexander; Rafol, Sir B.; Khoshakhlagh, Arezou</p> <p></p> <p>In this work, we investigated the effect of proton irradiation on the performance of long wavelength <span class="hlt">infrared</span> InAs/GaSb photodiodes (λ{sub c} = 10.2 μm), based on the complementary barrier <span class="hlt">infrared</span> <span class="hlt">detector</span> design. We found that irradiation with 68 MeV protons causes a significant increase of the dark current from j{sub d} = 5 × 10{sup −5} A/cm{sup 2} to j{sub d} = 6 × 10{sup −3} A/cm{sup 2}, at V{sub b} = 0.1 V, T = 80 K and fluence 19.2 × 10{sup 11 }H{sup +}/cm{sup 2}. Analysis of the dark current as a function of temperature and bias showed that the dominant contributor to the dark current in these devices changes from diffusion current to tunneling current after proton irradiation.more » This change in the dark current mechanism can be attributed to the onset of surface leakage current, generated by trap-assisted tunneling processes in proton displacement damage areas located near the device sidewalls.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840005336','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840005336"><span><span class="hlt">Detectors</span> for optical communications: A review</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Katz, J.</p> <p>1983-01-01</p> <p><span class="hlt">Detectors</span> for optical communications in the visible and near <span class="hlt">infrared</span> regions of the spectrum are reviewed. The three generic types of <span class="hlt">detectors</span> described are: photomultipliers, photodiodes and avalanche photodiodes. Most of the information is applicable to other optical communications systems.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9148E..18F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9148E..18F"><span>Revolutionary visible and <span class="hlt">infrared</span> sensor <span class="hlt">detectors</span> for the most advanced astronomical AO systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Feautrier, Philippe; Gach, Jean-Luc; Guieu, Sylvain; Downing, Mark; Jorden, Paul; Rothman, Johan; de Borniol, Eric D.; Balard, Philippe; Stadler, Eric; Guillaume, Christian; Boutolleau, David; Coussement, Jérome; Kolb, Johann; Hubin, Norbert; Derelle, Sophie; Robert, Clélia; Tanchon, Julien; Trollier, Thierry; Ravex, Alain; Zins, Gérard; Kern, Pierre; Moulin, Thibaut; Rochat, Sylvain; Delpoulbé, Alain; Lebouqun, Jean-Baptiste</p> <p>2014-07-01</p> <p> cooled device without liquid nitrogen in very demanding environmental conditions. A successful test of this device was performed on sky on the PIONIER 4 telescopes beam combiner on the VLTi at ESOParanal in June 2014. First Light Imaging, which will commercialize a camera system using also APD <span class="hlt">infrared</span> arrays in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the <span class="hlt">detector</span> manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, GTC, First Light Imaging). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013IJT....34.2136N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013IJT....34.2136N"><span>Investigating Thermal Parameters of PVDF Sensor in the Front <span class="hlt">Pyroelectric</span> Configuration</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Noroozi, Monir; Zakaria, Azmi; Husin, Mohd Shahril; Moksin, Mohd Maarof; Wahab, Zaidan Abd</p> <p>2013-11-01</p> <p>A metalized PVDF <span class="hlt">pyroelectric</span> (PE) sensor was used as an optically opaque sensor and in a thermally thick regime for both sensor and sample, instead of a very thick sensor in the conventional front PE configuration. From the frequency dependence measurements, the normalized amplitude and phase signal were independently analyzed to obtain the thermal effusivity of the sensor. The differential normalized amplitude measured with water as a substrate was analyzed to determine the sensor thermal diffusivity. The PVDF thermal diffusivity and thermal effusivity agree with literature values. Then, from the known thermal parameters of the sensor, the thermal effusivity of a standard liquid sample, glycerol, and other liquids were obtained by the similar procedure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19970018417&hterms=astronomy+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dastronomy%2Bspace','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19970018417&hterms=astronomy+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dastronomy%2Bspace"><span>Bolometric <span class="hlt">detector</span> systems for IR and mm-wave space astronomy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Church, S. E.; Lange, A. E.; Mauskopf, P. D.; Hristov, V.; Bock, J. J.; DelCastillo, H. M.; Beeman, J.; Ade, P. A. R.; Griffin, M. J.</p> <p>1996-01-01</p> <p>Recent developments in bolometric <span class="hlt">detector</span> systems for millimeter and submillimeter wave space astronomy are described. Current technologies meet all the requirements for the high frequency instrument onboard the cosmic background radiation anisotropy satellite/satellite for the measurement of background anisotropies (COBRAS/SAMBA) platform. It is considered that the technologies that are currently being developed will significantly reduce the effective time constant and/or the cooling requirements of bolometric <span class="hlt">detectors</span>. These technologies lend themselves to the fabrication of the large format arrays required for the Far <span class="hlt">Infrared</span> and Submillimeter Space Telescope (FIRST). The scientific goals and <span class="hlt">detector</span> requirements of the COBRAS/SAMBA platform that will use <span class="hlt">infrared</span> bolometers are reviewed and the baseline <span class="hlt">detector</span> system is described, including the feed optics, the <span class="hlt">infrared</span> filters, the cold amplifiers and the warm readout electronics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA625367','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA625367"><span>Effect of Defects on III-V MWIR nBn <span class="hlt">Detector</span> Performance</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-08-01</p> <p>SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS (ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 <span class="hlt">infrared</span> <span class="hlt">detectors</span> ...rather than diffusion based processes. Keywords: <span class="hlt">infrared</span> <span class="hlt">detectors</span> , MWIR, nBn, photodiode, defects, irradiation, lattice mismatch, dark current...currents will increase noise in the <span class="hlt">detector</span> , it is important to understand the impact elevated defect concentrations will have on barrier architecture</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA616873','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA616873"><span>Barrier Engineered Quantum Dot <span class="hlt">Infrared</span> Photodetectors</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2015-06-01</p> <p>dual-color <span class="hlt">detectors</span> using InAs/GaSb strained layer superlattices ." In Lester Eastman Conference on High Performance Devices (LEC), 2012, pp. 1-4. IEEE...Gautam, S. S. Krishna, E. P. Smith, S. Johnson, and S. Krishna. "Dual-band pBp <span class="hlt">detectors</span> based on InAs/GaSb strained layer superlattices ." <span class="hlt">Infrared</span> ...AFRL-RV-PS- AFRL-RV-PS- TR-2015-0111 TR-2015-0111 BARRIER ENGINEERED QUANTUM DOT <span class="hlt">INFRARED</span> PHOTODETECTORS Sanjay Krishna Center for High Technology</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870000462&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmetal%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870000462&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmetal%2Bdetector"><span>High-Rydberg Xenon Submillimeter-Wave <span class="hlt">Detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chutjian, Ara</p> <p>1987-01-01</p> <p>Proposed <span class="hlt">detector</span> for <span class="hlt">infrared</span> and submillimeter-wavelength radiation uses excited xenon atoms as Rydberg sensors instead of customary beams of sodium, potassium, or cesium. Chemically inert xenon easily stored in pressurized containers, whereas beams of dangerously reactive alkali metals must be generated in cumbersome, unreliable ovens. Xenon-based <span class="hlt">detector</span> potential for <span class="hlt">infrared</span> astronomy and for Earth-orbiter detection of terrestrial radiation sources. Xenon atoms excited to high energy states in two stages. Doubly excited atoms sensitive to photons in submillimeter wavelength range, further excited by these photons, then ionized and counted.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NatAs...2...90E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NatAs...2...90E"><span>Single photon detection of 1.5 THz radiation with the quantum capacitance <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Echternach, P. M.; Pepper, B. J.; Reck, T.; Bradford, C. M.</p> <p>2018-01-01</p> <p>Far-<span class="hlt">infrared</span> spectroscopy can reveal secrets of galaxy evolution and heavy-element enrichment throughout cosmic time, prompting astronomers worldwide to design cryogenic space telescopes for far-<span class="hlt">infrared</span> spectroscopy. The most challenging aspect is a far-<span class="hlt">infrared</span> <span class="hlt">detector</span> that is both exquisitely sensitive (limited by the zodiacal-light noise in a narrow wavelength band, λ/Δλ 1,000) and array-able to tens of thousands of pixels. We present the quantum capacitance <span class="hlt">detector</span>, a superconducting device adapted from quantum computing applications in which photon-produced free electrons in a superconductor tunnel into a small capacitive island embedded in a resonant circuit. The quantum capacitance <span class="hlt">detector</span> has an optically measured noise equivalent power below 10-20 W Hz-1/2 at 1.5 THz, making it the most sensitive far-<span class="hlt">infrared</span> <span class="hlt">detector</span> ever demonstrated. We further demonstrate individual far-<span class="hlt">infrared</span> photon counting, confirming the excellent sensitivity and suitability for cryogenic space astrophysics.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA188935','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA188935"><span>HP-41CX Programs for HgCdTe <span class="hlt">Detectors</span> and IR Systems.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1987-10-01</p> <p>FIELD GROUP SUB-GROUP IPocket Computer HgCdTe PhotoSensor Programs <span class="hlt">Detectors</span> Analysis I I l-IP-41 <span class="hlt">Infrared</span> IR Systems __________ 19 ABSTRACT (Continue... HgCdTe <span class="hlt">detectors</span> , focal planes, and <span class="hlt">infrared</span> systems. They have been written to run in a basic HP-41CV or HP-41CX with no card reader or additional ROMs...Programs have been written for the HP-41CX which aid in the analysis of HgCdTe <span class="hlt">detectors</span> , focal r planes, and <span class="hlt">infrared</span> systems. They have been installed as a</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018JLTP..tmp...89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018JLTP..tmp...89B"><span>Fabrication of Ultrasensitive TES Bolometric <span class="hlt">Detectors</span> for HIRMES</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; Wollack, Edward</p> <p>2018-04-01</p> <p>The high-resolution mid-<span class="hlt">infrared</span> spectrometer (HIRMES) is a high resolving power (R 100,000) instrument operating in the 25-122 μm spectral range and will fly on board the Stratospheric Observatory for Far-<span class="hlt">Infrared</span> Astronomy in 2019. Central to HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8 × 16 <span class="hlt">detector</span> high-resolution array and a 64 × 16 <span class="hlt">detector</span> low-resolution array. Both types of <span class="hlt">detectors</span> consist of Mo/Au TES fabricated on leg-isolated Si membranes. Whereas the high-resolution <span class="hlt">detectors</span>, with a noise equivalent power (NEP) 1.5 × 10-18 W/rt (Hz), are fabricated on 0.45 μm Si substrates, the low-resolution <span class="hlt">detectors</span>, with NEP 1.0 × 10-17 W/rt (Hz), are fabricated on 1.40 μm Si. Here, we discuss the similarities and differences in the fabrication methodologies used to realize the two types of <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1984SPIE..493..298T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1984SPIE..493..298T"><span>Multispectral Linear Array <span class="hlt">detector</span> technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tower, J. R.; McCarthy, B. M.; Pellon, L. E.; Strong, R. T.; Elabd, H.</p> <p>1984-01-01</p> <p>The Multispectral Linear Array (MLA) program sponsored by NASA has the aim to extend space-based remote sensor capabilities. The technology development effort involves the realization of very large, all-solid-state, pushbroom focal planes. The pushbroom, staring focal planes will contain thousands of <span class="hlt">detectors</span> with the objective to provide two orders of magnitude improvement in <span class="hlt">detector</span> dwell time compared to present Landsat mechanically scanned systems. Attenton is given to visible and near-<span class="hlt">infrared</span> sensor development, the shortwave <span class="hlt">infrared</span> sensor, aspects of filter technology development, the packaging concept, and questions of system performance. First-sample, four-band interference filters have been fabricated successfully, and a hybrid packaging technology is being developed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A51B3043W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A51B3043W"><span>First Global Analysis of Saturation Artifacts in the VIIRS <span class="hlt">Infrared</span> Channels and the Effects of <span class="hlt">Detector</span> Aggregation</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, J.; Polivka, T. N.; Hyer, E. J.; Peterson, D. A.</p> <p>2014-12-01</p> <p>Unlike previous space-borne Earth-observing sensors, the Visible <span class="hlt">Infrared</span> Imaging Radiometer Suite (VIIRS) employs aggregation to reduce downlink bandwidth requirements and preserve spatial resolution across the swath. To examine the potentially deleterious impacts of aggregation when encountering <span class="hlt">detector</span> saturation, nearly four months of NOAA's Nightfire product were analyzed, which contains a subset of the hottest observed nighttime pixels. An empirical method for identifying saturation was devised. The 3.69 µm band (M12) was the most frequently-saturating band with 0.15% of the Nightfire pixels at or near the ~359 K hard saturation limit, with possible saturation also occurring in M14, M15, and M16. Artifacts consistent with <span class="hlt">detector</span> saturation were seen with M12 temperatures as low as 330 K in the scene center. This partial saturation and aggregation influence must be considered when using VIIRS radiances for quantitative characterization of hot emission sources such as fires and gas flaring.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002SPIE.4795...88T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002SPIE.4795...88T"><span>High-performance ferroelectric and magnetoresistive materials for next-generation thermal <span class="hlt">detector</span> arrays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Todd, Michael A.; Donohue, Paul P.; Watton, Rex; Williams, Dennis J.; Anthony, Carl J.; Blamire, Mark G.</p> <p>2002-12-01</p> <p>This paper discusses the potential thermal imaging performance achievable from thermal <span class="hlt">detector</span> arrays and concludes that the current generation of thin-film ferroelectric and resistance bolometer based <span class="hlt">detector</span> arrays are limited by the <span class="hlt">detector</span> materials used. It is proposed that the next generation of large uncooled focal plane arrays will need to look towards higher performance <span class="hlt">detector</span> materials - particularly if they aim to approach the fundamental performance limits and compete with cooled photon <span class="hlt">detector</span> arrays. Two examples of bolometer thin-film materials are described that achieve high performance from operating around phase transitions. The material Lead Scandium Tantalate (PST) has a paraelectric-to-ferroelectric phase transition around room temperature and is used with an applied field in the dielectric bolometer mode for thermal imaging. PST films grown by sputtering and liquid-source CVD have shown merit figures for thermal imaging a factor of 2 to 3 times higher than PZT-based <span class="hlt">pyroelectric</span> thin films. The material Lanthanum Calcium Manganite (LCMO) has a paramagnetic to ferromagnetic phase transition around -20oC. This paper describes recent measurements of TCR and 1/f noise in pulsed laser-deposited LCMO films on Neodymium Gallate substrates. These results show that LCMO not only has high TCR's - up to 30%/K - but also low 1/f excess noise, with bolometer merit figures at least an order of magnitude higher than Vanadium Oxide, making it ideal for the next generation of microbolometer arrays. These high performance properties come at the expense of processing complexities and novel device designs will need to be introduced to realize the potential of these materials in the next generation of thermal <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9951E..0FT','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9951E..0FT"><span>How to align a new <span class="hlt">detector</span> and micro shutter inside JWST's Near <span class="hlt">Infrared</span> Spectrograph (NIRSpec)</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>te Plate, Maurice; Rumler, Peter; Jensen, Peter; Eder, Robert; Ehrenwinkler, Ralf; Merkle, Frank; Roedel, Andreas; Speckmaier, Max; Johnson, Thomas E.; Mott, Brent; Snodgrass, Stephen; Gunn, Chris; Ward, Justin</p> <p>2016-09-01</p> <p>JWST will be the biggest space telescope ever built and it will lead to astounding scientific breakthroughs. The mission will be launched in October 2018 from Kourou, French Guyana by an ESA provided Ariane 5 rocket. NIRSpec, one of the four instruments on board of the mission, recently underwent a major upgrade. New <span class="hlt">infrared</span> <span class="hlt">detectors</span> were installed and the Micro Shutter Assembly (MSA) was replaced as well. The rework was necessary because both systems were found to be degrading beyond a level that could be accepted. The installation and "in situ" alignment of these new systems required special techniques and alignment jigs that will be described in this paper. Some first results will be presented as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19770004268','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19770004268"><span>Study of a Vuilleumier cycle cryogenic refrigerator for <span class="hlt">detector</span> cooling on the limb scanning <span class="hlt">infrared</span> radiometer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Russo, S. C.</p> <p>1976-01-01</p> <p>A program to detect and monitor the presence of trace constituents in the earth's atmosphere by using the Limb Scanning <span class="hlt">Infrared</span> Radiometer (LSIR) is reported. The LSIR, which makes radiometric measurements of the earth's limb radiance profile from a space platform, contains a <span class="hlt">detector</span> assembly that must be cooled to a temperature of 65 + or - 2 K. The feasibility of cooling the NASA-type <span class="hlt">detector</span> package with Vuilleumier (VM) cryogenic refrigerator was investigated to develop a preliminary conceptual design of a VM refrigerator that is compatible with a flight-type LSIR instrument. The scope of the LSIR program consists of analytical and design work to establish the size, weight, power consumption, interface requirements, and other important characteristics of a cryogenic cooler that would meet the requirements of the LSIR. The cryogenic cooling requirements under the conditions that NASA specified were defined. Following this, a parametric performance analysis was performed to define the interrelationships between refrigeration characteristics and mission requirements. This effort led to the selection of an optimum refrigerator design for the LSIR mission.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008JEMat..37.1465V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008JEMat..37.1465V"><span>LWIR HgCdTe <span class="hlt">Detectors</span> Grown on Ge Substrates</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vilela, M. F.; Lofgreen, D. D.; Smith, E. P. G.; Newton, M. D.; Venzor, G. M.; Peterson, J. M.; Franklin, J. J.; Reddy, M.; Thai, Y.; Patten, E. A.; Johnson, S. M.; Tidrow, M. Z.</p> <p>2008-09-01</p> <p>Long-wavelength <span class="hlt">infrared</span> (LWIR) HgCdTe p-on- n double-layer heterojunctions (DLHJs) for <span class="hlt">infrared</span> <span class="hlt">detector</span> applications have been grown on 100 mm Ge (112) substrates by molecular beam epitaxy (MBE). The objective of this current work was to grow our baseline p-on- n DLHJ <span class="hlt">detector</span> structure (used earlier on Si substrates) on 100 mm Ge substrates in the 10 μm to 11 μm LWIR spectral region, evaluate the material properties, and obtain some preliminary <span class="hlt">detector</span> performance data. Material characterization techniques included are X-ray rocking curves, etch pit density (EPD) measurements, compositional uniformity determined from Fourier-transform <span class="hlt">infrared</span> (FTIR) transmission, and doping concentrations determined from secondary-ion mass spectroscopy (SIMS). <span class="hlt">Detector</span> properties include resistance-area product (RoA), spectral response, and quantum efficiency. Results of LWIR HgCdTe <span class="hlt">detectors</span> and test structure arrays (TSA) fabricated on both Ge and silicon (Si) substrates are presented and compared. Material properties demonstrated include X-ray full-width of half-maximum (FWHM) as low as 77 arcsec, typical etch pit densities in mid 106 cm-2 and wavelength cutoff maximum/minimum variation <2% across the full wafer. <span class="hlt">Detector</span> characteristics were found to be nearly identical for HgCdTe grown on either Ge or Si substrates.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000OptEn..39.2624P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000OptEn..39.2624P"><span>Novel mid-<span class="hlt">infrared</span> silicon/germanium <span class="hlt">detector</span> concepts</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Presting, Hartmut; Konle, Johannes; Hepp, Markus; Kibbel, Horst; Thonke, Klaus; Sauer, Rolf; Corbin, Elizabeth A.; Jaros, Milan</p> <p>2000-10-01</p> <p>Highly p-doped silicon/silicon-germanium (Si/SiGe) quantum well (QW) structures are grown by molecular beam epitaxy on double-sided polished (100)Si substrates for mid-IR (3 to 5 micrometers and 8 to 12 micrometers ) detection. The samples are characterized by secondary ion mass spectroscopy, x-ray diffraction, and absorption measurements. Single mesa <span class="hlt">detectors</span> are fabricated as well as large-area focal plane arrays with 256 X 256 pixels using standard Si integrated processing techniques. The <span class="hlt">detectors</span>, based on heterointernal photo-emission (HIP) of photogenerated holes from a heavily p-doped (p++ approximately 5 X 1020 cm-3) SiGe QW into an undoped silicon layer, operate at 77 K. Various novel designs of the SiGe HIP's such as Ge- and B-grading, double- and multi-wells, are realized; in addition, thin doping setback layers between the highly doped well and the undoped Si layer are introduced. The temperature dependence of dark currents and photocurrents are measured up to 225 K. In general, we observe broad photoresponse curves with peak external quantum efficiencies, up to (eta) ext approximately 0.5% at 77 K and 4(mu) , detectivities up to 8 X 1011 cm(root)Hz/W are obtained. We demonstrate that by varying the thickness, Ge content, and doping level of the single- and the multi-QWs of SiGe HIP <span class="hlt">detectors</span>, the photoresponse peak and the cutoff of the spectrum can be tuned over a wide wavelength range. The epitaxial versatility of the Si/SiGe system enables a tailoring of the photoresponse spectrum which demonstrates the advantages of the SiGe system in comparison over commercially used silicide <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1131017','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1131017"><span>Two-color <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Klem, John F; Kim, Jin K</p> <p>2014-05-13</p> <p>A two-color <span class="hlt">detector</span> includes a first absorber layer. The first absorber layer exhibits a first valence band energy characterized by a first valence band energy function. A barrier layer adjoins the first absorber layer at a first interface. The barrier layer exhibits a second valence band energy characterized by a second valence band energy function. The barrier layer also adjoins a second absorber layer at a second interface. The second absorber layer exhibits a third valence band energy characterized by a third valence band energy function. The first and second valence band energy functions are substantially functionally or physically continuous at the first interface and the second and third valence band energy functions are substantially functionally or physically continuous at the second interface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1014393','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1014393"><span>Ferroelectric <span class="hlt">infrared</span> <span class="hlt">detector</span> and method</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Lashley, Jason Charles; Opeil, Cyril P.; Smith, James Lawrence</p> <p>2010-03-30</p> <p>An apparatus and method are provided for sensing <span class="hlt">infrared</span> radiation. The apparatus includes a sensor element that is positioned in a magnetic field during operation to ensure a .lamda. shaped relationship between specific heat and temperature adjacent the Curie temperature of the ferroelectric material comprising the sensor element. The apparatus is operated by inducing a magnetic field on the ferroelectric material to reduce surface charge on the element during its operation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800038115&hterms=MIS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3DMIS','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800038115&hterms=MIS&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DTitle%26N%3D0%26No%3D10%26Ntt%3DMIS"><span>Ge photocapacitive MIS <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Binari, S. C.; Miller, W. E.; Tsuo, Y. H.; Miller, W. E.</p> <p>1979-01-01</p> <p>An undoped Ge photocapacitive <span class="hlt">detector</span> is reported which has peak normalized detectivities at wavelengh 1.4 microns and chopping frequencies 13-1000 Hz of 9 x 10 to the 12th, 4 x 10 to the 9th cm Hz to the 1/2th/W operating respectively at temperatures 77, 195, and 295 K. The observed temperature, spectral, and frequency response of the signal and noise are explained in terms of the measured space charge and interface state properties of the device.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10607E..0EP','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10607E..0EP"><span>Analysis of periodically patterned metallic nanostructures for <span class="hlt">infrared</span> absorber</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peng, Sha; Yuan, Ying; Long, Huabao; Liu, Runhan; Wei, Dong; Zhang, Xinyu; Wang, Haiwei; Xie, Changsheng</p> <p>2018-02-01</p> <p>With rapid advancement of <span class="hlt">infrared</span> detecting technology in both military and civil domains, the photo-electronic performances of near-<span class="hlt">infrared</span> <span class="hlt">detectors</span> have been widely concerned. Currently, near-<span class="hlt">infrared</span> <span class="hlt">detectors</span> demonstrate some problems such as low sensitivity, low detectivity, and relatively small array scale. The current studies show that surface plasmons (SPs) stimulated over the surface of metallic nanostructures by incident light can be used to break the diffraction limit and thus concentrate light into sub-wavelength scale, so as to indicate a method to develop a new type of <span class="hlt">infrared</span> absorber or <span class="hlt">detector</span> with very large array. In this paper, we present the design and characterization of periodically patterned metallic nanostructures that combine nanometer thickness aluminum film with silicon wafer. Numerical computations show that there are some valleys caused by surface plasmons in the reflection spectrum in the <span class="hlt">infrared</span> region, and both red shift and blue shift of the reflection spectrum were observed through changing the nanostructural parameters such as angle α and diameters D. Moreover, the strong E-field intensity is located at the sharp corner of the nano-structures.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA445368','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA445368"><span>Diluted Magnetic Semiconductors for Magnetic Field Tunable <span class="hlt">Infrared</span> <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2005-06-30</p> <p>significantly improved performance and technological advances of quantum well <span class="hlt">infrared</span> photodetectors (QWIPs)14 and quantum cascade lasers (QCLs)15...NUMBER FA8655-04-1-3069 5b. GRANT NUMBER 4. TITLE AND SUBTITLE Magnetic Field Tunable Terahertz Quantum Well <span class="hlt">Infrared</span> Photodetector 5c...fabrication in II-VI materials, quantum well <span class="hlt">infrared</span> photodetector device design and magneto-optical characterisation are all well understood</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017A%26A...601A..89B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017A%26A...601A..89B"><span>A kilo-pixel imaging system for future space based far-<span class="hlt">infrared</span> observatories using microwave kinetic inductance <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Baselmans, J. J. A.; Bueno, J.; Yates, S. J. C.; Yurduseven, O.; Llombart, N.; Karatsu, K.; Baryshev, A. M.; Ferrari, L.; Endo, A.; Thoen, D. J.; de Visser, P. J.; Janssen, R. M. J.; Murugesan, V.; Driessen, E. F. C.; Coiffard, G.; Martin-Pintado, J.; Hargrave, P.; Griffin, M.</p> <p>2017-05-01</p> <p>Aims: Future astrophysics and cosmic microwave background space missions operating in the far-<span class="hlt">infrared</span> to millimetre part of the spectrum will require very large arrays of ultra-sensitive <span class="hlt">detectors</span> in combination with high multiplexing factors and efficient low-noise and low-power readout systems. We have developed a demonstrator system suitable for such applications. Methods: The system combines a 961 pixel imaging array based upon Microwave Kinetic Inductance <span class="hlt">Detectors</span> (MKIDs) with a readout system capable of reading out all pixels simultaneously with only one readout cable pair and a single cryogenic amplifier. We evaluate, in a representative environment, the system performance in terms of sensitivity, dynamic range, optical efficiency, cosmic ray rejection, pixel-pixel crosstalk and overall yield at an observation centre frequency of 850 GHz and 20% fractional bandwidth. Results: The overall system has an excellent sensitivity, with an average <span class="hlt">detector</span> sensitivity < NEPdet> =3×10-19 WHz measured using a thermal calibration source. At a loading power per pixel of 50 fW we demonstrate white, photon noise limited <span class="hlt">detector</span> noise down to 300 mHz. The dynamic range would allow the detection of 1 Jy bright sources within the field of view without tuning the readout of the <span class="hlt">detectors</span>. The expected dead time due to cosmic ray interactions, when operated in an L2 or a similar far-Earth orbit, is found to be <4%. Additionally, the achieved pixel yield is 83% and the crosstalk between the pixels is <-30 dB. Conclusions: This demonstrates that MKID technology can provide multiplexing ratios on the order of a 1000 with state-of-the-art single pixel performance, and that the technology is now mature enough to be considered for future space based observatories and experiments.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22596426-situ-calibration-foil-detector-infrared-imaging-video-bolometer-using-carbon-evaporation-technique','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22596426-situ-calibration-foil-detector-infrared-imaging-video-bolometer-using-carbon-evaporation-technique"><span>In situ calibration of the foil <span class="hlt">detector</span> for an <span class="hlt">infrared</span> imaging video bolometer using a carbon evaporation technique</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Mukai, K., E-mail: mukai.kiyofumi@LHD.nifs.ac.jp; Peterson, B. J.; SOKENDAI</p> <p></p> <p>The <span class="hlt">InfraRed</span> imaging Video Bolometer (IRVB) is a useful diagnostic for the multi-dimensional measurement of plasma radiation profiles. For the application of IRVB measurement to the neutron environment in fusion plasma devices such as the Large Helical Device (LHD), in situ calibration of the thermal characteristics of the foil <span class="hlt">detector</span> is required. Laser irradiation tests of sample foils show that the reproducibility and uniformity of the carbon coating for the foil were improved using a vacuum evaporation method. Also, the principle of the in situ calibration system was justified.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26368091','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26368091"><span>Low-frequency noise effect on terahertz tomography using thermal <span class="hlt">detectors</span>.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Guillet, J P; Recur, B; Balacey, H; Bou Sleiman, J; Darracq, F; Lewis, D; Mounaix, P</p> <p>2015-08-01</p> <p>In this paper, the impact of low-frequency noise on terahertz-computed tomography (THz-CT) is analyzed for several measurement configurations and <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span>. We acquire real noise data from a continuous millimeter-wave tomographic scanner in order to figure out its impact on reconstructed images. Second, noise characteristics are quantified according to two distinct acquisition methods by (i) extrapolating from experimental acquisitions a sinogram for different noise backgrounds and (ii) reconstructing the corresponding spatial distributions in a slice using a CT reconstruction algorithm. Then we describe the low-frequency noise fingerprint and its influence on reconstructed images. Thanks to the observations, we demonstrate that some experimental choices can dramatically affect the 3D rendering of reconstructions. Thus, we propose some experimental methodologies optimizing the resulting quality and accuracy of the 3D reconstructions, with respect to the low-frequency noise characteristics observed during acquisitions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014SPIE.9154E..1XJ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014SPIE.9154E..1XJ"><span>Characterization and optimization for <span class="hlt">detector</span> systems of IGRINS</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeong, Ueejeong; Chun, Moo-Young; Oh, Jae Sok; Park, Chan; Yuk, In-Soo; Oh, Heeyoung; Kim, Kang-Min; Ko, Kyeong Yeon; Pavel, Michael D.; Yu, Young Sam; Jaffe, Daniel T.</p> <p>2014-07-01</p> <p>IGRINS (Immersion GRating <span class="hlt">INfrared</span> Spectrometer) is a high resolution wide-band <span class="hlt">infrared</span> spectrograph developed by the Korea Astronomy and Space Science Institute (KASI) and the University of Texas at Austin (UT). This spectrograph has H-band and K-band science cameras and a slit viewing camera, all three of which use Teledyne's λc~2.5μm 2k×2k HgCdTe HAWAII-2RG CMOS <span class="hlt">detectors</span>. The two spectrograph cameras employ science grade <span class="hlt">detectors</span>, while the slit viewing camera includes an engineering grade <span class="hlt">detector</span>. Teledyne's cryogenic SIDECAR ASIC boards and JADE2 USB interface cards were installed to control those <span class="hlt">detectors</span>. We performed experiments to characterize and optimize the <span class="hlt">detector</span> systems in the IGRINS cryostat. We present measurements and optimization of noise, dark current, and referencelevel stability obtained under dark conditions. We also discuss well depth, linearity and conversion gain measurements obtained using an external light source.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5436493','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5436493"><span>Enhanced <span class="hlt">pyroelectric</span> and piezoelectric properties of PZT with aligned porosity for energy harvesting applications† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7ta00967d Click here for additional data file.</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhang, Yan; Xie, Mengying; Roscow, James; Bao, Yinxiang; Zhou, Kechao</p> <p>2017-01-01</p> <p>This paper demonstrates the significant benefits of exploiting highly aligned porosity in piezoelectric and <span class="hlt">pyroelectric</span> materials for improved energy harvesting performance. Porous lead zirconate (PZT) ceramics with aligned pore channels and varying fractions of porosity were manufactured in a water-based suspension using freeze-casting. The aligned porous PZT ceramics were characterized in detail for both piezoelectric and <span class="hlt">pyroelectric</span> properties and their energy harvesting performance figures of merit were assessed parallel and perpendicular to the freezing direction. As a result of the introduction of porosity into the ceramic microstructure, high piezoelectric and <span class="hlt">pyroelectric</span> harvesting figures of merits were achieved for porous freeze-cast PZT compared to dense PZT due to the reduced permittivity and volume specific heat capacity. Experimental results were compared to parallel and series analytical models with good agreement and the PZT with porosity aligned parallel to the freezing direction exhibited the highest piezoelectric and <span class="hlt">pyroelectric</span> harvesting response; this was a result of the enhanced interconnectivity of the ferroelectric material along the poling direction and reduced fraction of unpoled material that leads to a higher polarization. A complete thermal energy harvesting system, composed of a parallel-aligned PZT harvester element and an AC/DC converter, was successfully demonstrated by charging a storage capacitor. The maximum energy density generated by the 60 vol% porous parallel-connected PZT when subjected to thermal oscillations was 1653 μJ cm–3, which was 374% higher than that of the dense PZT with an energy density of 446 μJ cm–3. The results are beneficial for the design and manufacture of high performance porous <span class="hlt">pyroelectric</span> and piezoelectric materials in devices for energy harvesting and sensor applications. PMID:28580142</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009PhDT.......166P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009PhDT.......166P"><span>Uncooled <span class="hlt">infrared</span> photon detection concepts and devices</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Piyankarage, Viraj Vishwakantha Jayaweera</p> <p></p> <p>This work describes <span class="hlt">infrared</span> (IR) photon <span class="hlt">detector</span> techniques based on novel semiconductor device concepts and <span class="hlt">detector</span> designs. The aim of the investigation was to examine alternative IR detection concepts with a view to resolve some of the issues of existing IR <span class="hlt">detectors</span> such as operating temperature and response range. Systems were fabricated to demonstrate the following IR detection concepts and determine <span class="hlt">detector</span> parameters: (i) Near-<span class="hlt">infrared</span> (NIR) detection based on dye-sensitization of nanostructured semiconductors, (ii) Displacement currents in semiconductor quantum dots (QDs) embedded dielectric media, (iii) Split-off band transitions in GaAs/AlGaAs heterojunction interfacial workfunction internal photoemission (HEIWIP) <span class="hlt">detectors</span>. A far-<span class="hlt">infrared</span> <span class="hlt">detector</span> based on GaSb homojunction interfacial workfunction internal photoemission (HIWIP) structure is also discussed. Device concepts, <span class="hlt">detector</span> structures, and experimental results discussed in the text are summarized below. Dye-sensitized (DS) <span class="hlt">detector</span> structures consisting of n-TiO 2/Dye/p-CuSCN heterostructures with several IR-sensitive dyes showed response peaks at 808, 812, 858, 866, 876, and 1056 nm at room temperature. The peak specific-detectivity (D*) was 9.5x1010 cm Hz-1/2 W-1 at 812 nm at room temperature. Radiation induced carrier generation alters the electronic polarizability of QDs provided the quenching of excitation is suppressed by separation of the QDs. A device constructed to illustrate this concept by embedding PbS QDs in paraffin wax showed a peak D* of 3x108 cm Hz 1/2 W-1 at ˜540 nm at ambient temperature. A typical HEIWIP/HIWIP <span class="hlt">detector</span> structures consist of single (or multiple) period(s) of doped emitter(s) and undoped barrier(s) which are sandwiched between two highly doped contact layers. A p-GaAs/AlGaAs HEIWIP structure showed enhanced absorption in NIR range due to heavy/light-hole band to split-off band transitions and leading to the development of GaAs based uncooled sensors for IR</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007OERv...15..110V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007OERv...15..110V"><span>Polycrystalline lead selenide: the resurgence of an old <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vergara, G.; Montojo, M. T.; Torquemada, M. C.; Rodrigo, M. T.; Sánchez, F. J.; Gómez, L. J.; Almazán, R. M.; Verdú, M.; Rodríguez, P.; Villamayor, V.; Álvarez, M.; Diezhandino, J.; Plaza, J.; Catalán, I.</p> <p>2007-06-01</p> <p>The existing technology for uncooled MWIR photon <span class="hlt">detectors</span> based on polycrystalline lead salts is stigmatized for being a 50-year-old technology. It has been traditionally relegated to single-element <span class="hlt">detectors</span> and relatively small linear arrays due to the limitations imposed by its standard manufacture process based on a chemical bath deposition technique (CBD) developed more than 40 years ago. Recently, an innovative method for processing <span class="hlt">detectors</span>, based on a vapour phase deposition (VPD) technique, has allowed manufacturing the first 2D array of polycrystalline PbSe with good electro optical characteristics. The new method of processing PbSe is an all silicon technology and it is compatible with standard CMOS circuitry. In addition to its affordability, VPD PbSe constitutes a perfect candidate to fill the existing gap in the photonic and uncooled IR imaging <span class="hlt">detectors</span> sensitive to the MWIR photons. The perspectives opened are numerous and very important, converting the old PbSe <span class="hlt">detector</span> in a serious alternative to others uncooled technologies in the low cost IR detection market. The number of potential applications is huge, some of them with high commercial impact such as personal IR imagers, enhanced vision systems for automotive applications and other not less important in the security/defence domain such as sensors for active protection systems (APS) or low cost seekers. Despite the fact, unanimously accepted, that uncooled will dominate the majority of the future IR detection applications, today, thermal <span class="hlt">detectors</span> are the unique plausible alternative. There is plenty of room for photonic uncooled and complementary alternatives are needed. This work allocates polycrystalline PbSe in the current panorama of the uncooled IR <span class="hlt">detectors</span>, underlining its potentiality in two areas of interest, i.e., very low cost imaging IR <span class="hlt">detectors</span> and MWIR fast uncooled <span class="hlt">detectors</span> for security and defence applications. The new method of processing again converts PbSe into an</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018NJPh...20d3015P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018NJPh...20d3015P"><span>Measurement of <span class="hlt">infrared</span> optical constants with visible photons</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paterova, Anna; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry; Krivitsky, Leonid</p> <p>2018-04-01</p> <p>We demonstrate a new scheme for <span class="hlt">infrared</span> spectroscopy with visible light sources and <span class="hlt">detectors</span>. The technique relies on the nonlinear interference of correlated photons, produced via spontaneous parametric down conversion in a nonlinear crystal. Visible and <span class="hlt">infrared</span> photons are split into two paths and the <span class="hlt">infrared</span> photons interact with the sample under study. The photons are reflected back to the crystal, resembling a conventional Michelson interferometer. Interference of the visible photons is observed and it is dependent on the phases of all three interacting photons: pump, visible and <span class="hlt">infrared</span>. The transmission coefficient and the refractive index of the sample in the <span class="hlt">infrared</span> range can be inferred from the interference pattern of visible photons. The method does not require the use of potentially expensive and inefficient <span class="hlt">infrared</span> <span class="hlt">detectors</span> and sources, it can be applied to a broad variety of samples, and it does not require a priori knowledge of sample properties in the visible range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890016375','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890016375"><span>Narrow bandgap semiconducting silicides: Intrinsic <span class="hlt">infrared</span> <span class="hlt">detectors</span> on a silicon chip</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mahan, John E.</p> <p>1989-01-01</p> <p>Polycrystalline thin films of CrSi2, LaSi2, and ReSi2 were grown on silicon substrates. Normal incidence optical transmittance and reflectance measurements were made as a function of wavelength. It was demonstrated that LaSi2 is a metallic conductor, but that CrSi2 and ReSi2 are, in fact, narrow bandgap semiconductors. For CrSi2, the complex index of refraction was determined by computer analysis of the optical data. From the imaginary part, the optical absorption coefficient was determined as a function of photon energy. It was shown that CrSi2 possesses an indirect forbidden energy gap of slightly less than 0.31 eV, and yet it is a very strong absorber of light above the absorption edge. On the other hand, the ReSi2 films exhibit an absorption edge in the vicinity of 0.2 eV. Measurements of the thermal activation energy of resistivity for ReSi2 indicate a bandgap of 0.18 eV. It is concluded that the semiconducting silicides merit further investigation for development as new silicon-compatible <span class="hlt">infrared</span> <span class="hlt">detector</span> materials.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995SPIE.2552..804F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995SPIE.2552..804F"><span>History of <span class="hlt">infrared</span> optronics in France</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fouilloy, J. P.; Siriex, Michel B.</p> <p>1995-09-01</p> <p>In France, the real start of work on the applications of <span class="hlt">infrared</span> radiations occurred around 1947 - 1948. During many years, technological research was performed in the field of <span class="hlt">detectors</span>, optical material, modulation techniques, and a lot of measurements were made in order to acquire a better knowledge of the propagation medium and radiation of IR sources, namely those of jet engines. The birth of industrial <span class="hlt">infrared</span> activities in France started with the Franco-German missile guidance programs: Milan, HOT, Roland and the French air to air missile seeker programs: R530, MAGIC. At these early stages of IR technologies development, it was a great technical adventure for both the governmental agencies and industry to develop: <span class="hlt">detector</span> technology with PbS and InSb, <span class="hlt">detector</span> cooling for 3 - 5 micrometer wavelength range, optical material transparent in the <span class="hlt">infrared</span>, opto mechanical design, signal processing and related electronic technologies. Etablissement Jean Turck and SAT were the pioneers associated with Aerospatiale, Matra and under contracts from the French Ministry of Defence (DGA). In the 60s, the need arose to enhance night vision capability of equipment in service with the French Army. TRT was chosen by DGA to develop the first thermal imagers: LUTHER 1, 2, and 3 with an increasing number of <span class="hlt">detectors</span> and image frequency rate. This period was also the era in which the SAT <span class="hlt">detector</span> made rapid advance. After basic work done in the CNRS and with the support of DGA, SAT became the world leader of MCT photovoltaic <span class="hlt">detector</span> working in the 8 to 12 micron waveband. From 1979, TRT and SAT were given the responsibility for the joint development and production of the first generation French thermal imaging modular system so-called SMT. Now, THOMSON TTD Optronique takes over the opto-electronics activities of TRT. Laser based systems were also studied for military application using YAG type laser and CO2 laser: Laboratoire de Marcousis, CILAS, THOMSON CSF and SAT have</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170007434','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170007434"><span>Fabrication of Ultrasensitive Transition Edge Sensor Bolometric <span class="hlt">Detectors</span> for HIRMES</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Ari-David; Brekosky, Regis; Franz, David; Hsieh, Wen-Ting; Kutyrev, Alexander; Mikula, Vilem; Miller, Timothy; Moseley, S. Harvey; Oxborrow, Joseph; Rostem, Karwan; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170007434'); toggleEditAbsImage('author_20170007434_show'); toggleEditAbsImage('author_20170007434_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170007434_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170007434_hide"></p> <p>2017-01-01</p> <p>The high resolution mid-<span class="hlt">infrared</span> spectrometer (HIRMES) is a high resolving power (R approx. 100,000) instrument operating in the 25-122 micron spectral range and will fly on board the Stratospheric Observatory for Far-<span class="hlt">Infrared</span> Astronomy (SOFIA) in 2019. Central ot HIRMES are its two transition edge sensor (TES) bolometric cameras, an 8x16 <span class="hlt">detector</span> high resolution array and a 64x16 <span class="hlt">detector</span> low resolution array. Both types of <span class="hlt">detectors</span> consist of MoAu TES fabricated on leg-isolated Si membranes. Whereas the high resolution <span class="hlt">detectors</span>, with noise equivalent power (NEP) approx. 2 aW/square root of (Hz), are fabricated on 0.45 micron Si substrates, the low resolution <span class="hlt">detectors</span>, with NEP approx. 10 aW/square root of (Hz), are fabricated on 1.40 micron Si. Here we discuss the similarities and difference in the fabrication methodologies used to realize the two types of <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10404E..0KL','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10404E..0KL"><span>Frequency-selective surfaces for <span class="hlt">infrared</span> imaging</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lesmanne, Emeline; Boulard, François; Espiau Delamaestre, Roch; Bisotto, Sylvette; Badano, Giacomo</p> <p>2017-09-01</p> <p>Bayer filter arrays are commonly added to visible <span class="hlt">detectors</span> to achieve multicolor sensitivity. To extend this approach to the <span class="hlt">infrared</span> range, we present frequency selective surfaces that work in the mid-<span class="hlt">infrared</span> range (MWIR). They are easily integrated in the device fabrication process and are based on a simple operating principle. They consist of a thin metallic sheet perforated with apertures filled with a high-index dielectric material. Each aperture behaves as a separate resonator. Its size determines the transmission wavelength λ. Using an original approach based on the temporal coupled mode theory, we show that metallic loss is negligible in the <span class="hlt">infrared</span> range, as long as the filter bandwidth is large enough (typically <λ/10). We develop closed-form expressions for the radiative and dissipative loss rates and show that the transmission of the filter depends solely on their ratio. We present a prototype <span class="hlt">infrared</span> <span class="hlt">detector</span> functionalized with one such array of filters and characterize it by electro-optical measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9915E..0HK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9915E..0HK"><span>Random telegraph signal (RTS) noise and other anomalies in the near-<span class="hlt">infrared</span> <span class="hlt">detector</span> systems for the Euclid mission</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kohley, Ralf; Barbier, Rémi; Kubik, Bogna; Ferriol, Sylvain; Clemens, Jean-Claude; Ealet, Anne; Secroun, Aurélia; Conversi, Luca; Strada, Paolo</p> <p>2016-08-01</p> <p>Euclid is an ESA mission to map the geometry of the dark Universe with a planned launch date in 2020. Euclid is optimised for two primary cosmological probes, weak gravitational lensing and galaxy clustering. They are implemented through two science instruments on-board Euclid, a visible imager (VIS) and a near-<span class="hlt">infrared</span> spectro-photometer (NISP), which are being developed and built by the Euclid Consortium instrument development teams. The NISP instrument contains a large focal plane assembly of 16 Teledyne HgCdTe H2RG <span class="hlt">detectors</span> with 2.3μm cut-off wavelength and SIDECAR readout electronics. The performance of the <span class="hlt">detector</span> systems is critical to the science return of the mission and extended on-ground tests are being performed for characterisation and calibration purposes. Special attention is given also to effects even on the scale of individual pixels, which are difficult to model and calibrate, and to identify any possible impact on science performance. This paper discusses a variety of undesired pixel behaviour including the known effect of random telegraph signal (RTS) noise based on initial on-ground test results from demonstrator model <span class="hlt">detector</span> systems. Some stability aspects of the RTS pixel populations are addressed as well.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170005193&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231094','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170005193&hterms=1094&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231094"><span>HgCdTe Avalanche Photodiode <span class="hlt">Detectors</span> for Airborne and Spaceborne Lidar at <span class="hlt">Infrared</span> Wavelengths</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Sun, Xiaoli; Abshire, James B.; Beck, Jeffrey D.; Mitra, Pradip; Reiff, Kirk; Yang, Guangning</p> <p>2017-01-01</p> <p>We report results from characterizing the HgCdTe avalanche photodiode (APD) sensorchip assemblies (SCA) developed for lidar at <span class="hlt">infrared</span> wavelength using the high density vertically integrated photodiodes (HDVIP) technique. These devices demonstrated high quantum efficiency, typically greater than 90 between 0.8 micrometers and the cut-off wavelength, greater than 600 APD gain, near unity excess noise factor, 6-10 MHz electrical bandwidth and less than 0.5 fW/Hz(exp.1/2) noise equivalent power (NEP). The <span class="hlt">detectors</span> provide linear analog output with a dynamic range of 2-3 orders of magnitude at a fixed APD gain without averaging, and over 5 orders of magnitude by adjusting the APD and preamplifier gain settings. They have been successfully used in airborne CO2 and CH4 integrated path differential absorption (IPDA) lidar as a precursor for space lidar applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018OptEL..14..119D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018OptEL..14..119D"><span>CO and CO2 dual-gas detection based on mid-<span class="hlt">infrared</span> wideband absorption spectroscopy</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Ming; Zhong, Guo-qiang; Miao, Shu-zhuo; Zheng, Chuan-tao; Wang, Yi-ding</p> <p>2018-03-01</p> <p>A dual-gas sensor system is developed for CO and CO2 detection using a single broadband light source, <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span> and time-division multiplexing (TDM) technique. A stepper motor based rotating system and a single-reflection spherical optical mirror are designed and adopted for realizing and enhancing dual-gas detection. Detailed measurements under static detection mode (without rotation) and dynamic mode (with rotation) are performed to study the performance of the sensor system for the two gas samples. The detection period is 7.9 s in one round of detection by scanning the two <span class="hlt">detectors</span>. Based on an Allan deviation analysis, the 1σ detection limits under static operation are 3.0 parts per million (ppm) in volume and 2.6 ppm for CO and CO2, respectively, and those under dynamic operation are 9.4 ppm and 10.8 ppm for CO and CO2, respectively. The reported sensor has potential applications in various fields requiring CO and CO2 detection such as in the coal mine.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SSRv..142..233P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SSRv..142..233P"><span><span class="hlt">Infrared</span> Sky Surveys</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Price, Stephan D.</p> <p>2009-02-01</p> <p>A retrospective is given on <span class="hlt">infrared</span> sky surveys from Thomas Edison’s proposal in the late 1870s to IRAS, the first sensitive mid- to far-<span class="hlt">infrared</span> all-sky survey, and the mid-1990s experiments that filled in the IRAS deficiencies. The emerging technology for space-based surveys is highlighted, as is the prominent role the US Defense Department, particularly the Air Force, played in developing and applying <span class="hlt">detector</span> and cryogenic sensor advances to early mid-<span class="hlt">infrared</span> probe-rocket and satellite-based surveys. This technology was transitioned to the <span class="hlt">infrared</span> astronomical community in relatively short order and was essential to the success of IRAS, COBE and ISO. Mention is made of several of the little known early observational programs that were superseded by more successful efforts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007SPIE.6744E..13D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007SPIE.6744E..13D"><span>Development of a long wave <span class="hlt">infrared</span> <span class="hlt">detector</span> for SGLI instrument</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dariel, Aurélien; Chorier, P.; Reeb, N.; Terrier, B.; Vuillermet, M.; Tribolet, P.</p> <p>2007-10-01</p> <p>The Japanese Aerospace Exploration Agency (JAXA) will be conducting the Global Change Observation Mission (GCOM) for monitoring of global environmental change. SGLI (Second Generation Global Imager) is an optical sensor on board GCOM-C (Climate), that includes a Long Wave IR <span class="hlt">Detector</span> (LWIRD) sensitive up to about 13 μm. SGLI will provide high accuracy measurements of the atmosphere (aerosol, cloud ...), the cryosphere (glaciers, snow, sea ice ...), the biomass and the Earth temperature (sea and land). Sofradir is a major supplier of Space industry based on the use of a Space qualified MCT technology for <span class="hlt">detectors</span> from 0.8 to 15 μm. This mature and reproducible technology has been used for 15 years to produce thousands of LWIR <span class="hlt">detectors</span> with cut-off wavelengths between 9 and 12 μm. NEC Toshiba Space, prime contractor for the Second Generation Global Imager (SGLI), has selected SOFRADIR for its heritage in space projects and Mercury Cadmium Telluride (MCT) <span class="hlt">detectors</span> to develop the LWIR <span class="hlt">detector</span>. This <span class="hlt">detector</span> includes two detection circuits for detection at 10.8 μm and 12.0 μm, hybridized on a single CMOS readout circuit. Each detection circuit is made of 20x2 square pixels of 140 μm. In order to optimize the overall performance, each pixel is made of 5x5 square sub-pixels of 28 μm and the readout circuit enables sub-pixel deselection. The MCT material and the photovoltaic technology are adapted to maximize response for the requested bandwidths: cut-off wavelengths of the 2 detection circuits are 12.6 and 13.4 μm at 55K. This <span class="hlt">detector</span> is packaged into a sealed housing for full integration into a Dewar at 55K. This paper describes the main technical requirements, the design features of this <span class="hlt">detector</span>, including trade-offs regarding performance optimization, and presents preliminary electro-optical results.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA092041','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA092041"><span>Laser Transmissometer, Installation, Alignment and Instruction Manual.</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1978-07-01</p> <p><span class="hlt">detector</span> lens LI, which focuses the energy onto <span class="hlt">detector</span> Dl, a <span class="hlt">pyroelectric</span> long wavelength <span class="hlt">detector</span>. The S2 radiation is reflected by BS5 to lens L2 and...Instruction Manual for Series TWO-10 YAG-TWOTM Lasers (Serial 162 and Above) General Photonics Inc. Operating and Maintenance Manual Hughes Helion Neon</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22275558-improved-performance-hgcdte-infrared-detector-focal-plane-arrays-modulating-light-field-based-photonic-crystal-structure','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22275558-improved-performance-hgcdte-infrared-detector-focal-plane-arrays-modulating-light-field-based-photonic-crystal-structure"><span>Improved performance of HgCdTe <span class="hlt">infrared</span> <span class="hlt">detector</span> focal plane arrays by modulating light field based on photonic crystal structure</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Liang, Jian; Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Ye, Zhenhua</p> <p>2014-05-14</p> <p>An HgCdTe long-wavelength <span class="hlt">infrared</span> focal plane array photodetector is proposed by modulating light distributions based on the photonic crystal. It is shown that a promising prospect of improving performance is better light harvest and dark current limitation. To optimize the photon field distributions of the HgCdTe-based photonic crystal structure, a numerical method is built by combining the finite-element modeling and the finite-difference time-domain simulation. The optical and electrical characteristics of designed HgCdTe mid-wavelength and long-wavelength photon-trapping <span class="hlt">infrared</span> <span class="hlt">detector</span> focal plane arrays are obtained numerically. The results indicate that the photon crystal structure, which is entirely compatible with the large infraredmore » focal plane arrays, can significantly reduce the dark current without degrading the quantum efficiency compared to the regular mesa or planar structure.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE10154E..04L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE10154E..04L"><span>Analysis of stray radiation for <span class="hlt">infrared</span> optical system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Yang; Zhang, Tingcheng; Liao, Zhibo; Mu, Shengbo; Du, Jianxiang; Wang, Xiangdong</p> <p>2016-10-01</p> <p>Based on the theory of radiation energy transfer in the <span class="hlt">infrared</span> optical system, two methods for stray radiation analysis caused by interior thermal radiation in <span class="hlt">infrared</span> optical system are proposed, one of which is important sampling method technique using forward ray trace, another of which is integral computation method using reverse ray trace. The two methods are discussed in detail. A concrete <span class="hlt">infrared</span> optical system is provided. Light-tools is used to simulate the passage of radiation from the mirrors and mounts. Absolute values of internal irradiance on the <span class="hlt">detector</span> are received. The results shows that the main part of the energy on the <span class="hlt">detector</span> is due to the critical objects which were consistent with critical objects obtained by reverse ray trace, where mirror self-emission contribution is about 87.5% of the total energy. Corresponding to the results, the irradiance on the <span class="hlt">detector</span> calculated by the two methods are in good agreement. So the validity and rationality of the two methods are proved.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SPIE10623E..0KZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SPIE10623E..0KZ"><span>Detailed real-time <span class="hlt">infrared</span> radiation simulation applied to the sea surface</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Xuemin; Wu, Limin; Long, Liang; Zhang, Lisha</p> <p>2018-01-01</p> <p>In this paper, the <span class="hlt">infrared</span> radiation characteristics of sea background have been studied. First, MODTRAN4.0 was used to calculate the transmittance of mid-<span class="hlt">infrared</span> and far-<span class="hlt">infrared</span>, and the solar spectral irradiance, the atmospheric and sea surface radiation. Secondly, according to the JONSWAP sea spectrum model, the different sea conditions grid model based on gravity wave theory was generated. The spectral scattering of the sun and the atmospheric background radiation was studied. The total <span class="hlt">infrared</span> radiation of the sea surface was calculated. Finally, the <span class="hlt">infrared</span> radiation of a piece of sea surface was mapped to each pixel of the <span class="hlt">detector</span>, and the <span class="hlt">infrared</span> radiation is simulated. The conclusion is that solar radiance has a great influence on the <span class="hlt">infrared</span> radiance. When the <span class="hlt">detector</span> angle is close to the sun's height angle, there will be bright spots on the sea surface.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120015528','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120015528"><span>Fabrication of Compact Superconducting Lowpass Filters for Ultrasensitive <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Ari; Chervenak, James; Chuss, David; Mikula, Vilem; Ray, Christopher; Rostem, Karwan; U-Yen, Kongpop; Wassell, Edward; Wollack, Edward</p> <p>2012-01-01</p> <p>It is extremely important for current and future far-<span class="hlt">infrared</span> and sub-millimeter ultrasensitive <span class="hlt">detectors</span>, which include transition edge sensors (TES) and microwave kinetic inductance <span class="hlt">detectors</span>, to be adequately filtered from stray electromagnetic radiation in order to achieve their optimal performance. One means of filtering stray radiation is to block leakage associated with electrical connections in the <span class="hlt">detector</span> environment. Here we discuss a fabrication methodology for realizing non-dissipative planar filters imbedded in the wall of the <span class="hlt">detector</span> enclosure to limit wave propagation modes up to far-<span class="hlt">infrared</span> frequencies. Our methodology consists of fabricating a boxed stripline transmission line, in which a superconducting (Nb, Mo, or Al) transmission line is encased in a silicon dioxide dielectric insulator coated with a metallic shell. We report on achieved attenuation and return loss and find that it replicates the simulated data to a high degree.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19850017674','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19850017674"><span>Application of <span class="hlt">infrared</span> radiometers for airborne detection of clear air turbulence and low level wind shear, airborne <span class="hlt">infrared</span> low level wind shear detection test</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kuhn, P. M.</p> <p>1985-01-01</p> <p>The feasibility of <span class="hlt">infrared</span> optical techniques for the advance detection and avoidance of low level wind shear (LLWS) or low altitude wind shear hazardous to aircraft operations was investigated. A primary feasibility research effort was conducted with <span class="hlt">infrared</span> <span class="hlt">detectors</span> and instrumentation aboard the NASA Ames Research Center Learjet. The main field effort was flown on the NASA-Ames Dryden B57B aircraft. The original approach visualized a forward-looking, <span class="hlt">infrared</span> transmitting (KRS-5) window through which signals would reach the <span class="hlt">detector</span>. The present concept of a one inch diameter light pipe with a 45 deg angled mirror enables a much simpler installation virtually anywhere on the aircraft coupled with the possibility of horizontal scanning via rotation of the forward directed mirror. Present <span class="hlt">infrared</span> <span class="hlt">detectors</span> and filters would certainly permit ranging and horizontal scanning in a variety of methods. CRT display technology could provide a contoured picture with possible shear intensity levels from the <span class="hlt">infrared</span> detection system on the weather radar or a small adjunct display. This procedure shoud be further developed and pilot evaluated in a light aircraft such as a Cessna 207 or equivalent.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910000420&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmetal%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910000420&hterms=metal+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmetal%2Bdetector"><span>Hole-Impeded-Doping-Superlattice LWIR <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maserjian, Joseph</p> <p>1991-01-01</p> <p>Hole-Impeded-Doping-Superlattice (HIDS) InAs devices proposed for use as photoconductive or photovoltaic <span class="hlt">detectors</span> of radiation in long-wavelength <span class="hlt">infrared</span> (LWIR) range of 8 to 17 micrometers. Array of HIDS devices fabricated on substrates GaAs or Si. Radiation incident on black surface, metal contacts for picture elements serve as reactors, effectively doubling optical path and thereby increasing absorption of photons. Photoconductive <span class="hlt">detector</span> offers advantages of high gain and high impedance; photovoltaic <span class="hlt">detector</span> offers lower noise and better interface to multiplexer readouts.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005ExA....19...15S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005ExA....19...15S"><span>Instruments, <span class="hlt">Detectors</span> and the Future of Astronomy with Large Ground Based Telescopes</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Simons, Douglas A.; Amico, Paola; Baade, Dietrich; Barden, Sam; Campbell, Randall; Finger, Gert; Gilmore, Kirk; Gredel, Roland; Hickson, Paul; Howell, Steve; Hubin, Norbert; Kaufer, Andreas; Kohley, Ralf; MacQueen, Philip; Markelov, Sergej; Merrill, Mike; Miyazaki, Satoshi; Nakaya, Hidehiko; O'Donoghue, Darragh; Oliva, Tino; Richichi, Andrea; Salmon, Derrick; Schmidt, Ricardo; Su, Hongjun; Tulloch, Simon; García Vargas, Maria Luisa; Wagner, R. Mark; Wiecha, Olivier; Ye, Binxun</p> <p>2005-01-01</p> <p>Results of a survey of instrumentation and <span class="hlt">detector</span> systems, either currently deployed or planned for use at telescopes larger than 3.5 m, in ground based observatories world-wide, are presented. This survey revealed a number of instrumentation design trends at optical, near, and mid-<span class="hlt">infrared</span> wavelengths. Some of the most prominent trends include the development of vastly larger optical <span class="hlt">detector</span> systems (> 109 pixels) than anything built to date, and the frequent use of mosaics of near-<span class="hlt">infrared</span> <span class="hlt">detectors</span> - something that was quite rare only a decade ago in astronomy. Some future science applications for <span class="hlt">detectors</span> are then explored, in an attempt to build a bridge between current <span class="hlt">detectors</span> and what will be needed to support the research ambitions of astronomers in the future.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910023705','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910023705"><span><span class="hlt">Infrared</span> astronomy</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gillett, Frederick; Houck, James; Bally, John; Becklin, Eric; Brown, Robert Hamilton; Draine, Bruce; Frogel, Jay; Gatley, Ian; Gehrz, Robert; Hildebrand, Roger</p> <p>1991-01-01</p> <p>The decade of 1990's presents an opportunity to address fundamental astrophysical issues through observations at IR wavelengths made possible by technological and scientific advances during the last decade. The major elements of recommended program are: the Space <span class="hlt">Infrared</span> Telescope Facility (SIRTF), the Stratospheric Observatory For <span class="hlt">Infrared</span> Astronomy (SOFIA) and the IR Optimized 8-m Telescope (IRO), a <span class="hlt">detector</span> and instrumentation program, the SubMilliMeter Mission (SMMM), the 2 Microns All Sky Survey (2MASS), a sound infrastructure, and technology development programs. Also presented are: perspective, science opportunities, technical overview, project recommendations, future directions, and infrastructure.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7298E..31S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7298E..31S"><span>Mercury cadmium telluride <span class="hlt">infrared</span> <span class="hlt">detector</span> development in India: status and issues</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Singh, R. N.</p> <p>2009-05-01</p> <p>In the present paper, we describe the development of Long Wave <span class="hlt">Infrared</span> (8-12 μm) linear and 2-D IR FPA <span class="hlt">detectors</span> using HgCdTe for use in thermal imagers and IIR seekers. In this direction, Solid State Physics Laboratory(SSPL) (DRDO) tried to concentrate initially in the bulk growth and characterization of HgCdTe during the early eighties. Some efforts were then made to develop a LWIR photoconductive type MCT array in linear configuration with the IRFPA processed on bulk MCT crystals grown in the laboratory. Non availability of quality epilayers with the required specification followed by the denial of supply of CdTe, CdZnTe and even high purity Te by advanced countries, forced us to shift our efforts during early nineties towards development of 60 element PC IR <span class="hlt">detectors</span>. High performance linear PC arrays were developed. A novel horizontal casting procedure was evolved for growing high quality bulk material using solid state recrystallization technique. Efforts for ultra purification of Te to 7N purity with the help of a sister concern has made it possible to have this material indigenously. Having succeded in the technology for growing single crystalline CdZnTe with (111) orientation and LPE growth of HgCdTe epilayers on CdZnTe substrates an attempt was made to establish the fabrication of 2D short PV arrays showing significant IR response. Thus a detailed technological knowhow for passivation, metallization, ion implanted junction formation, etc. was generated. Parallel work on the development of a matching CCD Mux readout in silicon by Semiconductor Complex Limited was also completed which was tested first in stand-alone mode followed by integration with IRFPAs through indigenously-developed indium bumps. These devices were integrated into an indigenously fabricated glass dewar cooled by a self-developed JT minicooler. In recent years, the LPE (Liquid Phase Epitaxy) growth from Terich route has been standardized for producing epitaxial layers with high</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005092','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005092"><span>Small band gap superlattices as intrinsic long wavelength <span class="hlt">infrared</span> <span class="hlt">detector</span> materials</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Smith, Darryl L.; Mailhiot, C.</p> <p>1990-01-01</p> <p>Intrinsic long wavelength (lambda greater than or equal to 10 microns) <span class="hlt">infrared</span> (IR) <span class="hlt">detectors</span> are currently made from the alloy (Hg, Cd)Te. There is one parameter, the alloy composition, which can be varied to control the properties of this material. The parameter is chosen to set the band gap (cut-off wavelength). The (Hg, Cd)Te alloy has the zincblend crystal structure. Consequently, the electron and light-hole effective masses are essentially inversely proportional to the band gap. As a result, the electron and light-hole effective masses are very small (M sub(exp asterisk)/M sub o approx. M sub Ih/M sub o approx. less than 0.01) whereas the heavy-hole effective mass is ordinary size (M sub hh(exp asterisk)/M sub o approx. 0.4) for the alloy compositions required for intrinsic long wavelength IR detection. This combination of effective masses leads to rather easy tunneling and relatively large Auger transition rates. These are undesirable characteristics, which must be designed around, of an IR <span class="hlt">detector</span> material. They follow directly from the fact that (Hg, Cd)Te has the zincblend crystal structure and a small band gap. In small band gap superlattices, such as HgTe/CdTe, In(As, Sb)/InSb and InAs/(Ga,In)Sb, the band gap is determined by the superlattice layer thicknesses as well as by the alloy composition (for superlattices containing an alloy). The effective masses are not directly related to the band gap and can be separately varied. In addition, both strain and quantum confinement can be used to split the light-hole band away from the valence band maximum. These band structure engineering options can be used to reduce tunneling probabilities and Auger transition rates compared with a small band gap zincblend structure material. Researchers discuss the different band structure engineering options for the various classes of small band gap superlattices.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993mass.work..131W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993mass.work..131W"><span>Evolution of miniature <span class="hlt">detectors</span> and focal plane arrays for <span class="hlt">infrared</span> sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Watts, Louis A.</p> <p>1993-06-01</p> <p>Sensors that are sensitive in the <span class="hlt">infrared</span> spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro <span class="hlt">detector</span> FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940025277','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940025277"><span>Evolution of miniature <span class="hlt">detectors</span> and focal plane arrays for <span class="hlt">infrared</span> sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Watts, Louis A.</p> <p>1993-01-01</p> <p>Sensors that are sensitive in the <span class="hlt">infrared</span> spectral region have been under continuous development since the WW2 era. A quest for the military advantage of 'seeing in the dark' has pushed thermal imaging technology toward high spatial and temporal resolution for night vision equipment, fire control, search track, and seeker 'homing' guidance sensing devices. Similarly, scientific applications have pushed spectral resolution for chemical analysis, remote sensing of earth resources, and astronomical exploration applications. As a result of these developments, focal plane arrays (FPA) are now available with sufficient sensitivity for both high spatial and narrow bandwidth spectral resolution imaging over large fields of view. Such devices combined with emerging opto-electronic developments in integrated FPA data processing techniques can yield miniature sensors capable of imaging reflected sunlight in the near IR and emitted thermal energy in the Mid-wave (MWIR) and longwave (LWIR) IR spectral regions. Robotic space sensors equipped with advanced versions of these FPA's will provide high resolution 'pictures' of their surroundings, perform remote analysis of solid, liquid, and gas matter, or selectively look for 'signatures' of specific objects. Evolutionary trends and projections of future low power micro <span class="hlt">detector</span> FPA developments for day/night operation or use in adverse viewing conditions are presented in the following test.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015OptLE..74..103T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015OptLE..74..103T"><span>Three-gas detection system with IR optical sensor based on NDIR technology</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tan, Qiulin; Tang, Licheng; Yang, Mingliang; Xue, Chenyang; Zhang, Wendong; Liu, Jun; Xiong, Jijun</p> <p>2015-11-01</p> <p>In this paper, a three-gas detection system with a environmental parameter compensation method is proposed based on Non-dispersive <span class="hlt">infra-red</span> (NDIR) technique, which can be applied to detect multi-gas (methane, carbon dioxide and carbon monoxide). In this system, an IR source and four single-channel <span class="hlt">pyroelectric</span> sensors are integrated in the miniature optical gas chamber successfully. Inner wall of the chamber coated with Au film is designed as paraboloids. The <span class="hlt">infrared</span> light is reflected twice before reaching to <span class="hlt">detectors</span>, thus increasing optical path. Besides, a compensation method is presented to overcome the influence in variation of environment (ambient temperature, humidity and pressure), thus leading to improve the accuracy in gas detection. Experimental results demonstrated that detection ranges are 0-50,000 ppm for CH4, 0-44,500 ppm for CO, 0-48,000 ppm for CO2 and the accuracy is ±0.05%.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA495354','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA495354"><span>Type-II Superlattice for High Performance LWIR <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2008-05-15</p> <p>Superlattice for High Performance LWIR <span class="hlt">Detectors</span> 5. FUNDING NUMBERS F49620-03-1-0436 6. AUTHOR(S) M. Razeghi 7. PERFORMING ORGANIZATION NAME(S...298 (Rcv.2-89) Prescribed by ANSI Std. 239-18 298-102 Final Technical Report Type-II Superlattice for High Performance LWIR <span class="hlt">Detectors</span> Contract No...Short-period InAs/GaSb type-II superlattices for mid- <span class="hlt">infrared</span> <span class="hlt">detectors</span> . Physica E: Low- dimensional Systems and Nanostructures, 2006.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000ApOpt..39.5609D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000ApOpt..39.5609D"><span>Shot-Noise-Limited Dual-Beam <span class="hlt">Detector</span> for Atmospheric Trace-Gas Monitoring with Near-<span class="hlt">Infrared</span> Diode Lasers</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Durry, Georges; Pouchet, Ivan; Amarouche, Nadir; Danguy, Théodore; Megie, Gerard</p> <p>2000-10-01</p> <p>A dual-beam <span class="hlt">detector</span> is used to measure atmospheric trace species by differential absorption spectroscopy with commercial near-<span class="hlt">infrared</span> InGaAs laser diodes. It is implemented on the Spectrom tre Diodes Laser Accordables, a balloonborne tunable diode laser spectrometer devoted to the in situ monitoring of CH 4 and H 2 O. The dual-beam <span class="hlt">detector</span> is made of simple analogical subtractor circuits combined with InGaAs photodiodes. The detection strategy consists in taking the balanced analogical difference between the reference and the sample signals detected at the input and the output of an open optical multipass cell to apply the full dynamic range of the measurements (16 digits) to the weak molecular absorption information. The obtained sensitivity approaches the shot-noise limit. With a 56-m optical cell, the detection limit obtained when the spectra is recorded within 8 ms is 10 4 (expressed in absorbance units). The design and performances of both a simple substractor and an upgraded feedback substractor circuit are discussed with regard to atmospheric in situ CH 4 absorption spectra measured in the 1.653- m region. Mixing ratios are obtained from the absorption spectra by application of a nonlinear least-squares fit to the full molecular line shape in conjunction with in situ P and T measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20150005898&hterms=pixel+array+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpixel%2Barray%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20150005898&hterms=pixel+array+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dpixel%2Barray%2Bdetector"><span>High-Performance LWIR Superlattice <span class="hlt">Detectors</span> and FPA Based on CBIRD Design</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Soibel, Alexander; Nguyen, Jean; Rafol, Sir B.; Liao, Anna; Hoeglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Ting, David Z.-Y.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150005898'); toggleEditAbsImage('author_20150005898_show'); toggleEditAbsImage('author_20150005898_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150005898_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150005898_hide"></p> <p>2011-01-01</p> <p>We report our recent efforts on advancing of antimonide superlattice based <span class="hlt">infrared</span> photodetectors and demonstration of focal plane arrays based on a complementary barrier <span class="hlt">infrared</span> <span class="hlt">detector</span> (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel <span class="hlt">detector</span> without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength <span class="hlt">infrared</span> focal plane array utilizing CBIRD design. An 11.5 micrometer cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 micrometer cutoff focal plane array are also presented. These results advance state-of-the art of superlattice <span class="hlt">detectors</span> and demonstrated advantages of CBIRD architecture for realization of FPA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013EJPh...34S..49V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013EJPh...34S..49V"><span><span class="hlt">Infrared</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vollmer, M.</p> <p>2013-11-01</p> <p>'<span class="hlt">Infrared</span>' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of <span class="hlt">infrared</span> (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and <span class="hlt">detector</span> technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of <span class="hlt">detectors</span>, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of <span class="hlt">infrared</span> radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the <span class="hlt">infrared</span> spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far <span class="hlt">infrared</span> or thermal <span class="hlt">infrared</span>, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1404707','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1404707"><span>Topological insulator <span class="hlt">infrared</span> pseudo-bolometer with polarization sensitivity</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Sharma, Peter Anand</p> <p>2017-10-25</p> <p>Topological insulators can be utilized in a new type of <span class="hlt">infrared</span> photodetector that is intrinsically sensitive to the polarization of incident light and static magnetic fields. The <span class="hlt">detector</span> isolates single topological insulator surfaces and allows light collection and exposure to static magnetic fields. The wavelength range of interest is between 750 nm and about 100 microns. This <span class="hlt">detector</span> eliminates the need for external polarization selective optics. Polarization sensitive <span class="hlt">infrared</span> photodetectors are useful for optoelectronics applications, such as light detection in environments with low visibility in the visible wavelength regime.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/6359257-microcomputer-control-infrared-detector-arrays-used-direct-imaging-fabry-perot-spectroscopy','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/6359257-microcomputer-control-infrared-detector-arrays-used-direct-imaging-fabry-perot-spectroscopy"><span>Microcomputer control of <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays used in direct imaging and in Fabry-Perot spectroscopy</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Rossano, G.S.</p> <p>1989-02-01</p> <p>A microcomputer based data acquisition system has been developed for astronomical observing with two-dimensional <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays operating at high pixel rates. The system is based on a 16-bit 8086/8087 microcomputer operating at 10 MHz. Data rates of up to 560,000 pixels/sec from arrays of up to 4096 elements are supported using the microcomputer system alone. A hardware co-adder the authors are developing permits data accumulation at rates of up to 1.67 million pixels/sec in both staring and chopped data acquisition modes. The system has been used for direct imaging and for data acquisition in a Fabry-Perot Spectrometer developed bymore » NRL. The hardware is operated using interactive software which supports the several available modes of data acquisition, and permits data display and reduction during observing sessions.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013SPIE.8804E..02D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013SPIE.8804E..02D"><span>Functional near-<span class="hlt">infrared</span> spectroscopy at small source-<span class="hlt">detector</span> distance by means of high dynamic-range fast-gated SPAD acquisitions: first in-vivo measurements</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Di Sieno, L.; Contini, D.; Dalla Mora, A.; Torricelli, A.; Spinelli, L.; Cubeddu, R.; Tosi, A.; Boso, G.; Pifferi, A.</p> <p>2013-06-01</p> <p>In this article, we show experimental results of time-resolved optical spectroscopy performed with small distance between launching and detecting fibers. It was already demonstrated that depth discrimination is independent of source-<span class="hlt">detector</span> separation and that measurements at small source <span class="hlt">detector</span> distance provide better contrast and spatial resolution. The main disadvantage is represent by the huge increase in early photons (scarcely diffused by tissue) peak that can saturate the dynamic range of most <span class="hlt">detectors</span>, hiding information carried by late photons. Thanks to a fast-gated Single- Photon Avalanche Diode (SPAD) module, we are able to reject the peak of early photons and to obtain high-dynamic range acquisitions. We exploit fast-gated SPAD module to perform for the first time functional near-<span class="hlt">infrared</span> spectroscopy (fNIRS) at small source-<span class="hlt">detector</span> distance for in vivo measurements and we demonstrate the possibility to detect non-invasively the dynamics of oxygenated and deoxygenated haemoglobin occurring in the motor cortex during a motor task. We also show the improvement in terms of signal amplitude and Signal-to-Noise Ratio (SNR) obtained exploiting fast-gated SPAD performances with respect to "non-gated" measurements.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9689E..4KS','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9689E..4KS"><span>A portable cross-shape near-<span class="hlt">infrared</span> spectroscopic <span class="hlt">detector</span> for bone marrow lesions diagnosis</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Su, Yu; Li, Ting</p> <p>2016-02-01</p> <p>Bone marrow lesions (BMLs) is an incidence-increasing disease which seriously hazard to human health and possibly contribute to paralysis. Delayed treatment often occurred to BMLs patients due to its characteristics such as complex and diverse clinical manifestations, non-specific, easy to misdiagnosis and etc. The conventional diagnosis methods of BMLs mainly rely on bone marrow biopsy/aspiration, which are invasive, painful, high health risk, and discontinuous which disabled monitoring and during-surgery guidance. Thus we proposed to develop a noninvasive, real-time, continuous measurement, easy-operated device aimed at detecting bone marrow diseases. This device is based on near-<span class="hlt">infrared</span> spectroscopy and the probe is designed with a cross-shape to tightly and comfortably attach human spine. Space-resolved source-<span class="hlt">detector</span> placement and measurement algorithm are employed. Four selected wavelength were utilized here to extract BMLs-related component contents of oxy-, deoxy-hemoglobin, fat, scattering index corresponding to fibrosis. We carried out an ink experiment and one clinical measurement to verify the feasibility of our device. The potential of NIRS in BMLs clinics is revealed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19910005083','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19910005083"><span>Low dark current photovoltaic multiquantum well long wavelength <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wu, C. S.; Wen, Cheng P.; Sato, R. N.; Hu, M.</p> <p>1990-01-01</p> <p>The authors have, for the first time, demonstrated photovoltaic detection for an multiple quantum well (MQW) <span class="hlt">detector</span>. With a blocking layer, the MQW <span class="hlt">detector</span> exhibits Schottky I-V characteristics with extremely low dark current and excellent ideality factor. The dark current is 5 times 10(exp -14) A for an 100x100 square micron 10 micron <span class="hlt">detector</span> at 40 K, 8 to 9 orders of magnitude lower than that of a similar 10 micron MQW <span class="hlt">detector</span> without blocking layer. The ideality factor is about 1.01 to 1.05 at T = 40 to 80 K. The measured barrier height is consistent with the energy difference between first excited states and ground states, or the peak of spectral response. The authors also, for the first time, report the measured effective Richardson constant (A asterisk asterisk) for the GaAs/AlGaAs heterojunction using this blocking layer structure. The A asterisk asterisk is low approx. 2.3 A/sq cm/K(exp 2).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22590777-increasing-sensitivity-angle-view-mid-wave-infrared-detectors-integration-dielectric-microspheres','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22590777-increasing-sensitivity-angle-view-mid-wave-infrared-detectors-integration-dielectric-microspheres"><span>Increasing sensitivity and angle-of-view of mid-wave <span class="hlt">infrared</span> <span class="hlt">detectors</span> by integration with dielectric microspheres</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Allen, Kenneth W., E-mail: kenneth.allen@gtri.gatech.edu; Astratov, Vasily N., E-mail: astratov@uncc.edu; Air Force Research Laboratory, Sensors Directorate, Wright Patterson AFB, Ohio 45433</p> <p>2016-06-13</p> <p>We observed up to 100 times enhancement of sensitivity of mid-wave <span class="hlt">infrared</span> photodetectors in the 2–5 μm range by using photonic jets produced by sapphire, polystyrene, and soda-lime glass microspheres with diameters in the 90–300 μm range. By finite-difference time-domain (FDTD) method for modeling, we gain insight into the role of the microspheres refractive index, size, and alignment with respect to the <span class="hlt">detector</span> mesa. A combination of enhanced sensitivity with angle-of-view (AOV) up to 20° is demonstrated for individual photodetectors. It is proposed that integration with microspheres can be scaled up for large focal plane arrays, which should provide maximal light collectionmore » efficiencies with wide AOVs, a combination of properties highly attractive for imaging applications.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2001AAS...19914506M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2001AAS...19914506M"><span>A Thermal <span class="hlt">Infrared</span> Cloud Mapper</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mallama, A.; Degnan, J. J.</p> <p>2001-12-01</p> <p>A thermal <span class="hlt">infrared</span> imager for mapping the changing cloud cover over a ground based observing site has been developed. There are two main components to our instrument. One is a commercially made uncooled 10 micron thermal <span class="hlt">infrared</span> <span class="hlt">detector</span> that outputs a 120x120 pixel thermogram. The other is a convex electroplated reflector, which is situated beneath the <span class="hlt">detector</span> and in its field of view. The resulting image covers the sky from zenith down to about 10 degrees elevation. The self-reflection of the camera and supporting vanes is removed by interpolation. Atmospheric transparency is distinguished by the difference between the sky temperature and the ambient air temperature. Clear sky is indicated by pixels having a difference of about 20 degrees C or more. The qualitative results 'clear, haze and cloud' have proven to be very reliable during two years of development and testing. Quantitative information, such as the extinction coefficient, is also available though it is not exact. The uncertainty is probably due to variability of the lapse rate under different atmospheric conditions. Software has been written for PC/DOS and VME/LynxOS (similar to Linux) systems in the C programming language. Functionality includes serial communication with the <span class="hlt">detector</span>, analysis of the thermogram, mapping of cloud cover, data display, and file I/O. The main elements of cost in this system were for the thermal <span class="hlt">infrared</span> <span class="hlt">detector</span> and for the machining of an 18-inch diameter stainless steel mandrel. The latter is needed to produce an electroplated reflector. We have had good success with the gold and rhodium reflectors that have been generated. The reflectors themselves are relatively inexpensive now that the mandrel is available.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://eric.ed.gov/?q=TYPES+AND+OF+AND+RADAR&id=EJ406865','ERIC'); return false;" href="https://eric.ed.gov/?q=TYPES+AND+OF+AND+RADAR&id=EJ406865"><span>Choosing a Motion <span class="hlt">Detector</span>.</span></a></p> <p><a target="_blank" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Ballard, David M.</p> <p>1990-01-01</p> <p>Examines the characteristics of three types of motion <span class="hlt">detectors</span>: Doppler radar, <span class="hlt">infrared</span>, and ultrasonic wave, and how they are used on school buses to prevent students from being killed by their own school bus. Other safety devices cited are bus crossing arms and a camera monitor system. (MLF)</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1994ApPhL..64..294L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1994ApPhL..64..294L"><span>Reversible <span class="hlt">pyroelectric</span> and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.</p> <p>1994-01-01</p> <p>The <span class="hlt">pyroelectric</span> and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21633426','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21633426"><span>Continuous-wave terahertz digital holography by use of a <span class="hlt">pyroelectric</span> array camera.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi</p> <p>2011-06-01</p> <p>Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 <span class="hlt">pyroelectric</span> array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA596455','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA596455"><span>Quantum Dot <span class="hlt">Infrared</span> <span class="hlt">Detectors</span> and Sources</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2002-01-01</p> <p>MWIR and LWIR ranges. However, there are some drawbacks to this tech nology. First, there are diffic ulties in growing MGT, such as the requirement...for effus ion cell temperature feedbac k/control during growth for consistent material compo sition. Moreover, MCT exp eriences nonuniform dopan t 33... nonuniform dopant i ncorporation adverse ly affects the respons ivity of the QDIP, as in the MCT detecto r. As far as <span class="hlt">infrared</span> e mission is concerned</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880032785&hterms=leaf+spring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dleaf%2Bspring','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880032785&hterms=leaf+spring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dleaf%2Bspring"><span>Stressed photoconductive <span class="hlt">detector</span> for far-<span class="hlt">infrared</span> space applications</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wang, J.-Q.; Richards, P. L.; Beeman, J. W.; Haller, E. E.</p> <p>1987-01-01</p> <p>An optimized leaf-spring apparatus for applying uniaxial stress to a Ge:Ga far-IR photoconductor has been designed and tested. This design has significant advantages for space applications which require high quantum efficiency and stable operation over long periods of time. The important features include adequate spring deflection with relatively small overall size, torque-free stress, easy measurement of applied stress, and a <span class="hlt">detector</span> configuration with high responsivity. One-dimensional arrays of stressed photoconductors can be constructed using this design. A peak responsivity of 38 A/W is achieved in a <span class="hlt">detector</span> with a cutoff wavelength of 200 microns, which was operated at a temperature of 2.0 K and a bias voltage equal to one-half of the breakdown voltage.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140001435','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140001435"><span>Complementary Barrier <span class="hlt">Infrared</span> <span class="hlt">Detector</span> (CBIRD) Contact Methods</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ting, David Z.; Hill, Cory J.; Gunapala, Sarath D.</p> <p>2013-01-01</p> <p>The performance of the CBIRD <span class="hlt">detector</span> is enhanced by using new device contacting methods that have been developed. The <span class="hlt">detector</span> structure features a narrow gap adsorber sandwiched between a pair of complementary, unipolar barriers that are, in turn, surrounded by contact layers. In this innovation, the contact adjacent to the hole barrier is doped n-type, while the contact adjacent to the electron barrier is doped p-type. The contact layers can have wider bandgaps than the adsorber layer, so long as good electrical contacts are made to them. If good electrical contacts are made to either (or both) of the barriers, then one could contact the barrier(s) directly, obviating the need for additional contact layers. Both the left and right contacts can be doped either n-type or ptype. Having an n-type contact layer next to the electron barrier creates a second p-n junction (the first being the one between the hole barrier and the adsorber) over which applied bias could drop. This reduces the voltage drop over the adsorber, thereby reducing dark current generation in the adsorber region.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850000184&hterms=alines&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dalines','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850000184&hterms=alines&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dalines"><span>Lens-and-<span class="hlt">Detector</span> Array for Spectrometer</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Oberheuser, J.</p> <p>1985-01-01</p> <p>Supporting structure alines lenses and serves as light baffle. Lenses and <span class="hlt">infrared</span> <span class="hlt">detectors</span> mounted together in cavities in electroformed plate. Plate and cavities maintain optical alinement while serving as light baffle and aperture stop.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ApPhL.111q1102B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ApPhL.111q1102B"><span>Mid-<span class="hlt">infrared</span> two photon absorption sensitivity of commercial <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boiko, D. L.; Antonov, A. V.; Kuritsyn, D. I.; Yablonskiy, A. N.; Sergeev, S. M.; Orlova, E. E.; Vaks, V. V.</p> <p>2017-10-01</p> <p>We report on broad-band two-photon absorption (TPA) in several commercially available MIR inter-band bulk semiconductor photodetectors with the spectral cutoff in the range of 4.5-6 μm. The highest TPA responsivity of 2 × 10-5 A.mm2/W2 is measured for a nitrogen-cooled InSb photovoltaic <span class="hlt">detector</span>. Its performance as a two-photon <span class="hlt">detector</span> is validated by measuring the second-order interferometric autocorrelation function of a multimode quantum cascade laser emitting at the wavelength of 8 μm.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1046277','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1046277"><span>Dark Current Reduction of IR <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2017-10-19</p> <p>demonstrating a novel dark current reduction approach for dense <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays. This technique is based on the diffusion control junction (DCJ...fabricate and test <span class="hlt">detector</span> arrays with and without DCJs on the same wafer and demonstrate the effectiveness of the DCJ approach in reducing dark current...subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA117388','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA117388"><span>Method of Evaluating the Thermal Stability of the <span class="hlt">Pyroelectric</span> Properties of Polyvinylidene Fluoride Effects of Poling Temperature and Field</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1982-06-01</p> <p>Stability of th Technical Report No. 18 <span class="hlt">Pyroelectric</span> Properties of Po.iyvinylidene Fluoride Effects of Poling Temperature and Field 4’ p."ORING or6. RePORT... poled polyvinyylidene •=•- fluoride films has been meesured while the teMseratire was varied at a constant rate of ", 5 OC/min. fromn roan...influenced in a reproducible mLnner by the poling vari.- ables especiall the poliN teoperature. The measuremwnt is therefore (Cont.) DD , O൙ 1473</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900004443','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900004443"><span>The <span class="hlt">infrared</span> spectrograph during the SIRTF pre-definition phase</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Houck, James R.</p> <p>1988-01-01</p> <p>A test facility was set up to evaluate back-illuminated impurity band <span class="hlt">detectors</span> constructed for an <span class="hlt">infrared</span> spectrograph to be used on the Space <span class="hlt">Infrared</span> Telescope Facility (SIRTF). Equipment built to perform the tests on these arrays is described. Initial tests have been geared toward determining dark current and read noise for the array. Four prior progress reports are incorporated into this report. They describe the first efforts in the <span class="hlt">detector</span> development and testing effort; testing details and a new spectrograph concept; a discussion of resolution issues raised by the new design; management activities; a review of computer software and testing facility hardware; and a review of the preamplifier constructed as well as a revised schematic of the <span class="hlt">detector</span> evaluation facility.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6267E..1ID','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6267E..1ID"><span>AMICA (Antarctic Multiband <span class="hlt">Infrared</span> CAmera) project</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dolci, Mauro; Straniero, Oscar; Valentini, Gaetano; Di Rico, Gianluca; Ragni, Maurizio; Pelusi, Danilo; Di Varano, Igor; Giuliani, Croce; Di Cianno, Amico; Valentini, Angelo; Corcione, Leonardo; Bortoletto, Favio; D'Alessandro, Maurizio; Bonoli, Carlotta; Giro, Enrico; Fantinel, Daniela; Magrin, Demetrio; Zerbi, Filippo M.; Riva, Alberto; Molinari, Emilio; Conconi, Paolo; De Caprio, Vincenzo; Busso, Maurizio; Tosti, Gino; Nucciarelli, Giuliano; Roncella, Fabio; Abia, Carlos</p> <p>2006-06-01</p> <p>The Antarctic Plateau offers unique opportunities for ground-based <span class="hlt">Infrared</span> Astronomy. AMICA (Antarctic Multiband <span class="hlt">Infrared</span> CAmera) is an instrument designed to perform astronomical imaging from Dome-C in the near- (1 - 5 μm) and mid- (5 - 27 μm) <span class="hlt">infrared</span> wavelength regions. The camera consists of two channels, equipped with a Raytheon InSb 256 array <span class="hlt">detector</span> and a DRS MF-128 Si:As IBC array <span class="hlt">detector</span>, cryocooled at 35 and 7 K respectively. Cryogenic devices will move a filter wheel and a sliding mirror, used to feed alternatively the two <span class="hlt">detectors</span>. Fast control and readout, synchronized with the chopping secondary mirror of the telescope, will be required because of the large background expected at these wavelengths, especially beyond 10 μm. An environmental control system is needed to ensure the correct start-up, shut-down and housekeeping of the camera. The main technical challenge is represented by the extreme environmental conditions of Dome C (T about -90 °C, p around 640 mbar) and the need for a complete automatization of the overall system. AMICA will be mounted at the Nasmyth focus of the 80 cm IRAIT telescope and will perform survey-mode automatic observations of selected regions of the Southern sky. The first goal will be a direct estimate of the observational quality of this new highly promising site for <span class="hlt">Infrared</span> Astronomy. In addition, IRAIT, equipped with AMICA, is expected to provide a significant improvement in the knowledge of fundamental astrophysical processes, such as the late stages of stellar evolution (especially AGB and post-AGB stars) and the star formation.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20130000257&hterms=pixel+array+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpixel%2Barray%2Bdetector','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20130000257&hterms=pixel+array+detector&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dpixel%2Barray%2Bdetector"><span>High-Performance LWIR Superlattice <span class="hlt">Detectors</span> and FPA Based on CBIRD Design</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Soibel, Alexander; Nguyen, Jean; Khoshakhlagh, Arezou; Rafol, Sir B.; Hoeglund, Linda; Keo, Sam A.; Mumolo, Jason M.; Liu, John; Liao, Anna; Ting, David Z.-Y.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20130000257'); toggleEditAbsImage('author_20130000257_show'); toggleEditAbsImage('author_20130000257_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20130000257_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20130000257_hide"></p> <p>2012-01-01</p> <p>We report our recent efforts on advancing of antimonide superlattice based <span class="hlt">infrared</span> photodetectors and demonstration of Focal Plane Arrays (FPA) based on a complementary barrier <span class="hlt">infrared</span> <span class="hlt">detector</span> (CBIRD) design. By optimizing design and growth condition we succeeded to reduce the operational bias of CBIRD single pixel <span class="hlt">detector</span> without increase of dark current or degradation of quantum efficiency. We demonstrated a 1024x1024 pixel long-wavelength <span class="hlt">infrared</span> focal plane array utilizing CBIRD design. An 11.5 ?m cutoff FPA without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. In addition, we demonstrated 320x256 format FPA based on the n-CBIRD design. The resulting FPAs yielded noise equivalent differential temperature of 26 mK at operating temperature of 80 K, with 300 K background and cold-stop. These results advance state-of-the art of superlattice <span class="hlt">detectors</span> and demonstrated advantages of CBIRD architecture for realization of FPA.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970003026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970003026"><span><span class="hlt">Infrared</span> Speckle Interferometry with 2-D Arrays</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Harvey, P. M.; Balkum, S. L.; Monin, J. L.</p> <p>1994-01-01</p> <p>We describe results from a program of speckle interferometry with two-dimensional <span class="hlt">infrared</span> array <span class="hlt">detectors</span>. Analysis of observations of eta Carinae made with 58 x 62 InSb <span class="hlt">detector</span> are discussed. The data have been analyzed with both the Labeyrie autocorrelation, a deconvolution of shift-and-add data, and a phase restoration process. Development of a new camera based on a much lower noise HgCdTe <span class="hlt">detector</span> will lead to a significant improvement i limiting magnitude for IR speckle interferometry.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SPIE.9555E..03G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SPIE.9555E..03G"><span>Superlattice <span class="hlt">infrared</span> photodetector research at the Jet Propulsion Laboratory</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gunapala, S. D.; Ting, D. Z.; Rafol, S. B.; Soibel, A.; Khoshakhlagh, A.; Hill, C. J.; Höglund, L.; Keo, S. A.; Liu, J. K.; Mumolo, J. M.; Luong, E. M.; Fisher, A.</p> <p>2015-08-01</p> <p>III-V semiconductors offer a highly effective platform for the development of sophisticated heterostructure-based MWIR and LWIR <span class="hlt">detectors</span>, as exemplified by the high-performance double heterstructure (DH) nBn, XBn, and type- II superlattice <span class="hlt">infrared</span> <span class="hlt">detectors</span>. A key enabling design element is the unipolar barrier, which is used to implement the complementary barrier <span class="hlt">infra-red</span> <span class="hlt">detector</span> (CBIRD) design for increasing the collection efficiency of photogenerated carriers, and reducing dark current generation without impeding photocurrent flow. Heterostructure superlattice <span class="hlt">detectors</span> that make effective use of unipolar barriers have demonstrated strong reduction of generationrecombination (G-R) dark current due to Shockley-Read-Hall (SRH) processes. In the last several years we solely focused on the development of antimonide based IR <span class="hlt">detectors</span>. Recently, we demonstrated RoA values over 14,000 Ohm cm2 for a 9.9 μm cutoff device by incorporating electron-blocking and hole-blocking unipolar barriers. This device has shown 300K BLIP operation with f/2 optics at 87 K with blackbody * of 1.1x1011 cm Hz1/2/W.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/21068190-effect-amino-acid-doping-growth-ferroelectric-properties-triglycine-sulphate-single-crystals','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21068190-effect-amino-acid-doping-growth-ferroelectric-properties-triglycine-sulphate-single-crystals"><span>Effect of amino acid doping on the growth and ferroelectric properties of triglycine sulphate single crystals</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Raghavan, C.M.; Sankar, R.; Mohan Kumar, R.</p> <p>2008-02-05</p> <p>Effect of amino acids (L-leucine and isoleucine) doping on the growth aspects and ferroelectric properties of triglycine sulphate crystals has been studied. Pure and doped crystals were grown from aqueous solution by low temperature solution growth technique. The cell parameter values were found to significantly vary for doped crystals. Fourier transform <span class="hlt">infrared</span> analysis confirmed the presence of functional groups in the grown crystal. Morphology study reveals that amino acid doping induces faster growth rate along b-direction leading to a wide b-plane and hence suitable for <span class="hlt">pyroelectric</span> <span class="hlt">detector</span> applications. Ferroelectric domain structure has been studied by atomic force microscopy and hysteresismore » measurements reveal an increase of coercive field due to the formation of single domain pattern.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006SPIE.6343E..23C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006SPIE.6343E..23C"><span>Design, fabrication, and characterization of Fresnel lens array with spatial filtering for passive <span class="hlt">infrared</span> motion sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cirino, Giuseppe A.; Barcellos, Robson; Morato, Spero P.; Bereczki, Allan; Neto, Luiz G.</p> <p>2006-09-01</p> <p>A cubic-phase distribution is applied in the design, fabrication and characterization of inexpensive Fresnel lens arrays for passive <span class="hlt">infrared</span> motion sensors. The resulting lens array produces a point spread function (PSF) capable of distinguish the presence of humans from pets by the employment of the so-called wavefront coding method. The cubic phase distribution used in the design can also reduce the optical aberrations present in the system. This aberration control allows a high tolerance in the fabrication of the lenses and in the alignment errors of the sensor. In order to proof the principle, a lens was manufactured on amorphous hydrogenated carbon thin film, by well-known micro fabrication process steps. The optical results demonstrates that the optical power falling onto the <span class="hlt">detector</span> surface is attenuated for targets that present a mass that is horizontally distributed in space (e.g. pets) while the optical power is enhanced for targets that present a mass vertically distributed in space (e.g. humans). Then a mould on steel was fabricated by laser engraving, allowing large-scale production of the lens array in polymeric material. A polymeric lens was injected and its optical transmittance was characterized by Fourier Transform <span class="hlt">Infrared</span> Spectrometry technique, which has shown an adequate optical transmittance in the 8-14 μm wavelength range. Finally the performance of the sensor was measured in a climate-controlled test laboratory constructed for this purpose. The results show that the sensor operates normally with a human target, with a 12 meter detection zone and within an angle of 100 degrees. On the other hand, when a small pet runs through a total of 22 different trajectories no sensor trips are observed. The novelty of this work is the fact that the so-called pet immunity function was implemented in a purely optical filtering. As a result, this approach allows the reduction of some hardware parts as well as decreasing the software complexity, once the</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26466261','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26466261"><span>Low-noise mid-IR upconversion <span class="hlt">detector</span> for improved IR-degenerate four-wave mixing gas sensing.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Høgstedt, Lasse; Dam, Jeppe Seidelin; Sahlberg, Anna-Lena; Li, Zhongshan; Aldén, Marcus; Pedersen, Christian; Tidemand-Lichtenberg, Peter</p> <p>2014-09-15</p> <p>We compare a nonlinear upconversion <span class="hlt">detector</span> with a conventional cryogenic InSb <span class="hlt">detector</span> for the detection of coherent <span class="hlt">infrared</span> light showing near-shot-noise-limited performance in the upconversion system. The InSb <span class="hlt">detector</span> is limited by dark noise, which results in a 500 times lower signal-to-noise ratio. The two <span class="hlt">detectors</span> are compared for the detection of a coherent degenerate four-wave mixing (DFWM) signal in the mid-<span class="hlt">infrared</span>, and applied to measure trace-level acetylene in a gas flow at atmospheric pressure, probing its fundamental rovibrational transitions. In addition to lower noise, the upconversion system provides image information of the signal, thus adding new functionality compared to standard point detection methods. We further show that the upconversion <span class="hlt">detector</span> system can be implemented as a simple replacement of the cryogenic <span class="hlt">detector</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28406447','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28406447"><span>PVDF Sensor Stimulated by <span class="hlt">Infrared</span> Radiation for Temperature Monitoring in Microfluidic Devices.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Pullano, Salvatore A; Mahbub, Ifana; Islam, Syed K; Fiorillo, Antonino S</p> <p>2017-04-13</p> <p>This paper presents a ferroelectric polymer-based temperature sensor designed for microfluidic devices. The integration of the sensor into a system-on-a-chip platform facilitates quick monitoring of localized temperature of a biological fluid, avoiding errors in the evaluation of thermal evolution of the fluid during analysis. The contact temperature sensor is fabricated by combining a thin <span class="hlt">pyroelectric</span> film together with an <span class="hlt">infrared</span> source, which stimulates the active element located on the top of the microfluidic channel. An experimental setup was assembled to validate the analytical model and to characterize the response rate of the device. The evaluation procedure and the operating range of the temperature also make this device suitable for applications where the localized temperature monitoring of biological samples is necessary. Additionally, ease of integration with standard microfluidic devices makes the proposed sensor an attractive option for in situ analysis of biological fluids.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24666950','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24666950"><span>Near-<span class="hlt">infrared</span> spectral image analysis of pork marbling based on Gabor filter and wide line <span class="hlt">detector</span> techniques.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Huang, Hui; Liu, Li; Ngadi, Michael O; Gariépy, Claude; Prasher, Shiv O</p> <p>2014-01-01</p> <p>Marbling is an important quality attribute of pork. Detection of pork marbling usually involves subjective scoring, which raises the efficiency costs to the processor. In this study, the ability to predict pork marbling using near-<span class="hlt">infrared</span> (NIR) hyperspectral imaging (900-1700 nm) and the proper image processing techniques were studied. Near-<span class="hlt">infrared</span> images were collected from pork after marbling evaluation according to current standard chart from the National Pork Producers Council. Image analysis techniques-Gabor filter, wide line <span class="hlt">detector</span>, and spectral averaging-were applied to extract texture, line, and spectral features, respectively, from NIR images of pork. Samples were grouped into calibration and validation sets. Wavelength selection was performed on calibration set by stepwise regression procedure. Prediction models of pork marbling scores were built using multiple linear regressions based on derivatives of mean spectra and line features at key wavelengths. The results showed that the derivatives of both texture and spectral features produced good results, with correlation coefficients of validation of 0.90 and 0.86, respectively, using wavelengths of 961, 1186, and 1220 nm. The results revealed the great potential of the Gabor filter for analyzing NIR images of pork for the effective and efficient objective evaluation of pork marbling.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040037778&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040037778&hterms=Dark+web&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3DDark%2Bweb"><span>Independent Testing of JWST <span class="hlt">Detector</span> Prototypes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figer, D. F.; Rauscher, B. J.; Regan, M. W.; Balleza, J.; Bergeron, L.; Morse, E.; Stockman, H. S.</p> <p>2003-01-01</p> <p>The Independent <span class="hlt">Detector</span> Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (MU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-<span class="hlt">infrared</span> <span class="hlt">detectors</span> under a NASA Grant. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z approx. 10 - 20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance <span class="hlt">infrared</span> <span class="hlt">detectors</span> to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST <span class="hlt">detectors</span> developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6 - 5 approx. mum bandpass and in an ultra-low background (less than 0.01 e'/s/pixel) environment. We describe results from the JWST <span class="hlt">Detector</span> Characterization Project that is being performed in the IDTL. In this project, we are measuring first-order <span class="hlt">detector</span> parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040182251','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040182251"><span>Independent Testing of JWST <span class="hlt">Detector</span> Prototypes</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Figer, Donald F.; Rauscher, Bernie J.; Regan, Michael W.; Morse, Ernie; Balleza, Jesus; Bergeron, Louis; Stockman, H. S.</p> <p>2004-01-01</p> <p>The Independent <span class="hlt">Detector</span> Testing Laboratory (IDTL) is jointly operated by the Space Telescope Science Institute (STScI) and the Johns Hopkins University (JHU), and is assisting the James Webb Space Telescope (JWST) mission in choosing and operating the best near-<span class="hlt">infrared</span> <span class="hlt">detectors</span>. The JWST is the centerpiece of the NASA Office of Space Science theme, the Astronomical Search for Origins, and the highest priority astronomy project for the next decade, according to the National Academy of Science. JWST will need to have the sensitivity to see the first light in the Universe to determine how galaxies formed in the web of dark matter that existed when the Universe was in its infancy (z is approximately 10-20). To achieve this goal, the JWST Project must pursue an aggressive technology program and advance <span class="hlt">infrared</span> <span class="hlt">detectors</span> to performance levels beyond what is now possible. As part of this program, NASA has selected the IDTL to verify comparative performance between prototype JWST <span class="hlt">detectors</span> developed by Rockwell Scientific (HgCdTe) and Raytheon (InSb). The IDTL is charged with obtaining an independent assessment of the ability of these two competing technologies to achieve the demanding specifications of the JWST program within the 0.6-5 micron bandpass and in an ultra-low background (less than 0.01 e(-)/s/pixel) environment. We describe results from the JWST <span class="hlt">Detector</span> Characterization Project that is being performed in the LDTL. In this project, we are measuring first-order <span class="hlt">detector</span> parameters, i.e. dark current, read noise, QE, intra-pixel sensitivity, linearity, as functions of temperature, well size, and operational mode.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20080005008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20080005008"><span>Focal plane <span class="hlt">infrared</span> readout circuit</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pain, Bedabrata (Inventor)</p> <p>2002-01-01</p> <p>An <span class="hlt">infrared</span> imager, such as a spectrometer, includes multiple <span class="hlt">infrared</span> photodetectors and readout circuits for reading out signals from the photodetectors. Each readout circuit includes a buffered direct injection input circuit including a differential amplifier with active feedback provided through an injection transistor. The differential amplifier includes a pair of input transistors, a pair of cascode transistors and a current mirror load. Photocurrent from a photodetector can be injected onto an integration capacitor in the readout circuit with high injection efficiency at high speed. A high speed, low noise, wide dynamic range linear <span class="hlt">infrared</span> multiplexer array for reading out <span class="hlt">infrared</span> <span class="hlt">detectors</span> with large capacitances can be achieved even when short exposure times are used. The effect of image lag can be reduced.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900012012','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900012012"><span>Reduction and analysis techniques for <span class="hlt">infrared</span> imaging data</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mccaughrean, Mark</p> <p>1989-01-01</p> <p><span class="hlt">Infrared</span> <span class="hlt">detector</span> arrays are becoming increasingly available to the astronomy community, with a number of array cameras already in use at national observatories, and others under development at many institutions. As the <span class="hlt">detector</span> technology and imaging instruments grow more sophisticated, more attention is focussed on the business of turning raw data into scientifically significant information. Turning pictures into papers, or equivalently, astronomy into astrophysics, both accurately and efficiently, is discussed. Also discussed are some of the factors that can be considered at each of three major stages; acquisition, reduction, and analysis, concentrating in particular on several of the questions most relevant to the techniques currently applied to near <span class="hlt">infrared</span> imaging.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009SPIE.7468E..0TK','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009SPIE.7468E..0TK"><span>Active terahertz imaging with Ne indicator lamp <span class="hlt">detector</span> arrays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.</p> <p>2009-08-01</p> <p>The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the <span class="hlt">detector</span>. Bolometers and <span class="hlt">pyroelectric</span> <span class="hlt">detectors</span> can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law <span class="hlt">detectors</span>, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19840026637','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19840026637"><span>Conceptual design of a hybrid Ge:Ga <span class="hlt">detector</span> array</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parry, C. M.</p> <p>1984-01-01</p> <p>For potential applications in space <span class="hlt">infrared</span> astronomy missions such as the Space <span class="hlt">Infrared</span> Telescope Facility and the Large Deployable Reflector, integrated arrays of long-wavelength <span class="hlt">detectors</span> are desired. The results of a feasibility study which developed a design for applying integrated array techniques to a long-wavelength (gallium-doped germanium) material to achieve spectral coverage between 30 and 200 microns are presented. An approach which builds up a two-dimensional array by stacking linear <span class="hlt">detector</span> modules is presented. The spectral response of the Ge:Ga <span class="hlt">detectors</span> is extended to 200 microns by application of uniaxial stress to the stack of modules. The <span class="hlt">detectors</span> are assembled with 1 mm spacing between the elements. Multiplexed readout of each module is accomplished with integration sampling of a metal-oxide-semiconductor (MOS) switch chip. Aspects of the overall design, including the anticipated level of particle effects on the array in the space environment, a transparent electrode design for 200 microns response, estimates of optical crosstalk, and mechanical stress design calculations are included.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993SPIE.1954..181K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993SPIE.1954..181K"><span>Self-adaptive calibration for staring <span class="hlt">infrared</span> sensors</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kendall, William B.; Stocker, Alan D.</p> <p>1993-10-01</p> <p>This paper presents a new, self-adaptive technique for the correlation of non-uniformities (fixed-pattern noise) in high-density <span class="hlt">infrared</span> focal-plane <span class="hlt">detector</span> arrays. We have developed a new approach to non-uniformity correction in which we use multiple image frames of the scene itself, and take advantage of the aim-point wander caused by jitter, residual tracking errors, or deliberately induced motion. Such wander causes each <span class="hlt">detector</span> in the array to view multiple scene elements, and each scene element to be viewed by multiple <span class="hlt">detectors</span>. It is therefore possible to formulate (and solve) a set of simultaneous equations from which correction parameters can be computed for the <span class="hlt">detectors</span>. We have tested our approach with actual images collected by the ARPA-sponsored MUSIC <span class="hlt">infrared</span> sensor. For these tests we employed a 60-frame (0.75-second) sequence of terrain images for which an out-of-date calibration was deliberately used. The sensor was aimed at a point on the ground via an operator-assisted tracking system having a maximum aim point wander on the order of ten pixels. With these data, we were able to improve the calibration accuracy by a factor of approximately 100.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900012026','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900012026"><span>Status of the isophot <span class="hlt">detector</span> development</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wolf, J.; Lemke, D.; Burgdorf, M.; Groezinger, U.; Hajduk, CH.</p> <p>1989-01-01</p> <p>ISOPHOT is one of the four focal plane experiments of the European Space Agency's <span class="hlt">Infrared</span> Space Observatory (ISO). Scheduled for a 1993 launch, it will operate extrinsic silicon and germanium photoconductors at low temperature and low background during the longer than 18 month mission. These <span class="hlt">detectors</span> cover the wavelength range from 2.5 to 200 microns and are used as single elements and in arrays. A cryogenic preamplifier was developed to read out a total number of 223 <span class="hlt">detector</span> pixels.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1034324','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/1034324"><span><span class="hlt">Infrared</span> retina</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Krishna, Sanjay [Albuquerque, NM; Hayat, Majeed M [Albuquerque, NM; Tyo, J Scott [Tucson, AZ; Jang, Woo-Yong [Albuquerque, NM</p> <p>2011-12-06</p> <p>Exemplary embodiments provide an <span class="hlt">infrared</span> (IR) retinal system and method for making and using the IR retinal system. The IR retinal system can include adaptive sensor elements, whose properties including, e.g., spectral response, signal-to-noise ratio, polarization, or amplitude can be tailored at pixel level by changing the applied bias voltage across the <span class="hlt">detector</span>. "Color" imagery can be obtained from the IR retinal system by using a single focal plane array. The IR sensor elements can be spectrally, spatially and temporally adaptive using quantum-confined transitions in nanoscale quantum dots. The IR sensor elements can be used as building blocks of an <span class="hlt">infrared</span> retina, similar to cones of human retina, and can be designed to work in the long-wave <span class="hlt">infrared</span> portion of the electromagnetic spectrum ranging from about 8 .mu.m to about 12 .mu.m as well as the mid-wave portion ranging from about 3 .mu.m to about 5 .mu.m.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10250E..0KH','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10250E..0KH"><span>An efficient shutter-less non-uniformity correction method for <span class="hlt">infrared</span> focal plane arrays</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huang, Xiyan; Sui, Xiubao; Zhao, Yao</p> <p>2017-02-01</p> <p>The non-uniformity response in <span class="hlt">infrared</span> focal plane array (IRFPA) <span class="hlt">detectors</span> has a bad effect on images with fixed pattern noise. At present, it is common to use shutter to prevent from radiation of target and to update the parameters of non-uniformity correction in the <span class="hlt">infrared</span> imaging system. The use of shutter causes "freezing" image. And inevitably, there exists the problems of the instability and reliability of system, power consumption, and concealment of <span class="hlt">infrared</span> detection. In this paper, we present an efficient shutter-less non-uniformity correction (NUC) method for <span class="hlt">infrared</span> focal plane arrays. The <span class="hlt">infrared</span> imaging system can use the data gaining in thermostat to calculate the incident <span class="hlt">infrared</span> radiation by shell real-timely. And the primary output of <span class="hlt">detector</span> except the shell radiation can be corrected by the gain coefficient. This method has been tested in real <span class="hlt">infrared</span> imaging system, reaching high correction level, reducing fixed pattern noise, adapting wide temperature range.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013LTP....39..967M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013LTP....39..967M"><span>Spontaneous polarization and <span class="hlt">pyroelectric</span> effect in the improper ferroelectrics-ferroelastics Gd2(MoO4)3 and Tb2(MoO4)3 at low temperatures</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Matyjasik, S.; Shaldin, Yu. V.</p> <p>2013-11-01</p> <p>The experimental variations in the spontaneous polarization ΔPs(T) and <span class="hlt">pyroelectric</span> coefficient γs(T) for Gd2(MoO4)3 (GMO) and Tb2(MoO4)3 (TMO) at low temperatures reported here differ from those for intrinsic ferroelectrics. A fundamental difference is found in the repolarization behavior of samples of GMO and TMO at fixed temperatures of 300 and 4.2 K. While the single domain formation temperature essentially has no effect on the measurements for TMO, a fundamental difference is observed in the case of GMO: single domain formation in the latter at 4.2 K leads to an order of magnitude increase in ΔPs at T > 85 K and distinct anomalies are observed in γs(T), at one of which the <span class="hlt">pyroelectric</span> coefficient reaches a record peak of 3 × 10-4 C/(m2.K) at T = 25 K. At T = 200 K the <span class="hlt">pyroelectric</span> coefficients equal -1.45 and -1.8 in units of 10-6 C/(m2.K). Based on these results and taking published data on the rotational structural transformation in the (001) plane and symmetry considerations into account, we propose a crystal physical model for GMO-type improper ferroelectrics consisting of four mesotetrahedra, each of which is made up of three different types (a, b, c) of MoO4 coordination tetrahedra. The physical significance of the pseudodeviator coefficient Q12*, which initiates the phase transition at T > 433 K from one non-centrally symmetric phase (mm2) into another (4¯2m), is discussed in terms of this model.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20120016947','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20120016947"><span>Spectral Analysis of the Primary Flight Focal Plane Arrays for the Thermal <span class="hlt">Infrared</span> Sensor</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Montanaro, Matthew; Reuter, Dennis C.; Markham, Brian L.; Thome, Kurtis J.; Lunsford, Allen W.; Jhabvala, Murzy D.; Rohrbach, Scott O.; Gerace, Aaron D.</p> <p>2011-01-01</p> <p>Thermal <span class="hlt">Infrared</span> Sensor (TIRS) is a (1) New longwave <span class="hlt">infrared</span> (10 - 12 micron) sensor for the Landsat Data Continuity Mission, (2) 185 km ground swath; 100 meter pixel size on ground, (3) Pushbroom sensor configuration. Issue of Calibration are: (1) Single <span class="hlt">detector</span> -- only one calibration, (2) Multiple <span class="hlt">detectors</span> - unique calibration for each <span class="hlt">detector</span> -- leads to pixel-to-pixel artifacts. Objectives are: (1) Predict extent of residual striping when viewing a uniform blackbody target through various atmospheres, (2) Determine how different spectral shapes affect the derived surface temperature in a realistic synthetic scene.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7834E..0MR','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7834E..0MR"><span>MCT (HgCdTe) IR <span class="hlt">detectors</span>: latest developments in France</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Reibel, Yann; Rubaldo, Laurent; Vaz, Cedric; Tribolet, Philippe; Baier, Nicolas; Destefanis, Gérard</p> <p>2010-10-01</p> <p>This paper presents an overview of the very recent developments of the MCT <span class="hlt">infrared</span> <span class="hlt">detector</span> technology developed by CEA-LETI and Sofradir in France. New applications require high sensitivity, higher operating temperature and dual band <span class="hlt">detectors</span>. The standard n on p technology in production at Sofradir for 25 years is well mastered with an extremely robust and reliable process. Sofradir's interest in p on n technology opens the perspective of reducing dark current of diodes so <span class="hlt">detectors</span> could operate in lower flux or higher operating temperature. In parallel, MCT Avalanche Photo Diodes (APD) have demonstrated ideal performances for low flux and high speed application like laser gated imaging during the last few years. This technology also opens new prospects on next generation of imaging <span class="hlt">detectors</span> for compact, low flux and low power applications. Regarding 3rd Gen IR <span class="hlt">detectors</span>, the development of dual-band <span class="hlt">infrared</span> <span class="hlt">detectors</span> has been the core of intense research and technological improvements for the last ten years. New TV (640 x 512 pixels) format MWIR/LWIR <span class="hlt">detectors</span> on 20μm pixel pitch, made from Molecular Beam Epitaxy, has been developed with dedicated Read-Out Integrated Circuit (ROIC) for real simultaneous detection and maximum SNR. Technological and products achievements, as well as latest results and performances are presented outlining the availability of p/n, avalanche photodiodes and dual band technologies for new applications at system level.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24743159','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24743159"><span>Enhance the <span class="hlt">pyroelectricity</span> of polyvinylidene fluoride by graphene-oxide doping.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hu, Yuh-Chung; Hsu, Wei-Li; Wang, Yi-Ta; Ho, Cheng-Tao; Chang, Pei-Zen</p> <p>2014-04-16</p> <p>The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the <span class="hlt">pyro-electricity</span> of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JSSCh.190..180S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JSSCh.190..180S"><span>Enhancement in ferroelectric, <span class="hlt">pyroelectric</span> and photoluminescence properties in dye doped TGS crystals</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sinha, Nidhi; Goel, Neeti; Singh, B. K.; Gupta, M. K.; Kumar, Binay</p> <p>2012-06-01</p> <p>Pure and dye doped (0.1 and 0.2 mol%) Triglycine Sulfate (TGS) single crystals were grown by slow evaporation technique. A pyramidal coloring pattern, along with XRD and FT-IR studies confirmed the dye doping. Decrease in dielectric constant and increase in Curie temperature (Tc) were observed with increasing doping concentration. Low absorption cut off (231 nm) and high optical transparency (>90%) resulting in large band gap was observed in UV-VIS studies. In addition, strong hyper-luminescent emission bands at 350 and 375 nm were observed in which the relative intensity were found to be reversed as a result of doping. In P-E hysteresis loop studies, a higher curie temperature and an improved and more uniform figure of merit over a large region of the ferroelectric phase were observed. The improved dielectric, optical and ferroelectric/<span class="hlt">pyroelectric</span> properties make the dye doped TGS crystals better candidate for various opto- and piezo-electronics applications.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017MRE.....4h5603K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017MRE.....4h5603K"><span>Reduced graphene oxide film based highly responsive <span class="hlt">infrared</span> <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Khan, Mustaque A.; Nanda, Karuna K.; Krupanidhi, Saluru B.</p> <p>2017-08-01</p> <p>Due to the unique optical properties, graphene can effectively be used for the detection of <span class="hlt">infrared</span> light. In this regard, reduced graphene oxide (RGO) has drawn considerable attention in scientific society because of simplicity of preparation and tunable properties. Here, we report the synthesis of RGO by solvothermal reduction of graphene oxide (GO) in ethanol and the detection of <span class="hlt">infrared</span> light (1064 and 1550 nm) with metal—RGO—metal configuration. We have observed that photocurrent, responsivity as well as the external quantum efficiency increase with C/O ratio. The responsivity value in near-<span class="hlt">infrared</span> region can be as high as 1.34 A · W-1 and the external quantum efficiency is more than 100%. Response times of these devices are in the order of few seconds. Overall, the responsivity of our device is found to be better than many of the already reported values where graphene or reduced graphene oxide is the only active material. The high value of quantum efficiency is due to strong light absorption and the presence of mid-gap states band in RGOs.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29058793','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29058793"><span>Photovoltaic-<span class="hlt">Pyroelectric</span> Coupled Effect Induced Electricity for Self-Powered Photodetector System.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ma, Nan; Zhang, Kewei; Yang, Ya</p> <p>2017-12-01</p> <p>Ferroelectric materials have demonstrated novel photovoltaic effect to scavenge solar energy. However, most of the ferroelectric materials with wide bandgaps (2.7-4 eV) suffer from low power conversion efficiency of less than 0.5% due to absorbing only 8-20% of solar spectrum. Instead of harvesting solar energy, these ferroelectric materials can be well suited for photodetector applications, especially for sensing near-UV irradiations. Here, a ferroelectric BaTiO 3 film-based photodetector is demonstrated that can be operated without using any external power source and a fast sensing of 405 nm light illumination is enabled. As compared with photovoltaic effect, both the responsivity and the specific detectivity of the photodetector can be dramatically enhanced by larger than 260% due to the light-induced photovoltaic-<span class="hlt">pyroelectric</span> coupled effect. A self-powered photodetector array system can be utilized to achieve spatially resolved light intensity detection by recording the output voltage signals as a mapping figure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PASP..129j5003R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PASP..129j5003R"><span>Improved Reference Sampling and Subtraction: A Technique for Reducing the Read Noise of Near-<span class="hlt">infrared</span> <span class="hlt">Detector</span> Systems</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rauscher, Bernard J.; Arendt, Richard G.; Fixsen, D. J.; Greenhouse, Matthew A.; Lander, Matthew; Lindler, Don; Loose, Markus; Moseley, S. H.; Mott, D. Brent; Wen, Yiting; Wilson, Donna V.; Xenophontos, Christos</p> <p>2017-10-01</p> <p>Near-<span class="hlt">infrared</span> array <span class="hlt">detectors</span>, like the James Webb Space Telescope (JWST) NIRSpec’s Teledyne’s H2RGs, often provide reference pixels and a reference output. These are used to remove correlated noise. Improved reference sampling and subtraction (IRS2) is a statistical technique for using this reference information optimally in a least-squares sense. Compared with the traditional H2RG readout, IRS2 uses a different clocking pattern to interleave many more reference pixels into the data than is otherwise possible. Compared with standard reference correction techniques, IRS2 subtracts the reference pixels and reference output using a statistically optimized set of frequency-dependent weights. The benefits include somewhat lower noise variance and much less obvious correlated noise. NIRSpec’s IRS2 images are cosmetically clean, with less 1/f banding than in traditional data from the same system. This article describes the IRS2 clocking pattern and presents the equations needed to use IRS2 in systems other than NIRSpec. For NIRSpec, applying these equations is already an option in the calibration pipeline. As an aid to instrument builders, we provide our prototype IRS2 calibration software and sample JWST NIRSpec data. The same techniques are applicable to other <span class="hlt">detector</span> systems, including those based on Teledyne’s H4RG arrays. The H4RG’s interleaved reference pixel readout mode is effectively one IRS2 pattern.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA201652','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA201652"><span>Far <span class="hlt">Infrared</span> Imaging Spectrometer for Large Aperture <span class="hlt">Infrared</span> Telescope System</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1985-12-01</p> <p>resolution Fabry - Perot spectrometer (103 < Resolution < 104) for wavelengths from about 50 to 200 micrometer, employing extended field diffraction limited...photo- metry. The Naval Research Laboratory will provide a high resolution Far <span class="hlt">Infrared</span> Imaging Spectrometer (FIRIS) using Fabry - Perot techniques in...<span class="hlt">detectors</span> to provide spatial information. The Fabry - Perot uses electromagnetic coil displacement drivers with a lead screw drive to obtain parallel</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5440726','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5440726"><span>Mid-<span class="hlt">infrared</span> coincidence measurements on twin photons at room temperature</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Mancinelli, M.; Trenti, A.; Piccione, S.; Fontana, G.; Dam, J. S.; Tidemand-Lichtenberg, P.; Pedersen, C.; Pavesi, L.</p> <p>2017-01-01</p> <p>Quantum measurements using single-photon <span class="hlt">detectors</span> are opening interesting new perspectives in diverse fields such as remote sensing, quantum cryptography and quantum computing. A particularly demanding class of applications relies on the simultaneous detection of correlated single photons. In the visible and near <span class="hlt">infrared</span> wavelength ranges suitable single-photon <span class="hlt">detectors</span> do exist. However, low <span class="hlt">detector</span> quantum efficiency or excessive noise has hampered their mid-<span class="hlt">infrared</span> (MIR) counterpart. Fast and highly efficient single-photon <span class="hlt">detectors</span> are thus highly sought after for MIR applications. Here we pave the way to quantum measurements in the MIR by the demonstration of a room temperature coincidence measurement with non-degenerate twin photons at about 3.1 μm. The experiment is based on the spectral translation of MIR radiation into the visible region, by means of efficient up-converter modules. The up-converted pairs are then detected with low-noise silicon avalanche photodiodes without the need for cryogenic cooling. PMID:28504244</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040074289','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040074289"><span>The Case for Space-Borne Far-<span class="hlt">Infrared</span> Line Surveys</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bock, J. J.; Bradford, C. M.; Dragovan, M.; Earle, L.; Glenn, J.; Naylor, B.; Nguyen, H. T.; Zmuidzinas, J.</p> <p>2004-01-01</p> <p>The combination of sensitive direct <span class="hlt">detectors</span> and a cooled aperture promises orders of magnitude improvement in the sensitivity and survey time for far-<span class="hlt">infrared</span> and submillimeter spectroscopy compared to existing or planned capabilities. Continuing advances in direct <span class="hlt">detector</span> technology enable spectroscopy that approaches the background limit available only from space at these wavelengths. Because the spectral confusion limit is significantly lower than the more familiar spatial confusion limit encountered in imaging applications, spectroscopy can be carried out to comparable depth with a significantly smaller aperture. We are developing a novel waveguide-coupled grating spectrometer that disperses radiation into a wide instantaneous bandwidth with moderate resolution (R 1000) in a compact 2-dimensional format. A line survey instrument coupled to a modest cooled single aperture provides an attractive scientific application for spectroscopy with direct <span class="hlt">detectors</span>. Using a suite of waveguide spectrometers, we can obtain complete coverage over the entire far-<span class="hlt">infrared</span> and sub-millimeter. This concept requires no moving parts to modulate the optical signal. Such an instrument would be able to conduct a far-<span class="hlt">infrared</span> line survey 10 6 times faster than planned capabilities, assuming existing <span class="hlt">detector</span> technology. However, if historical improvements in bolometer sensitivity continue, so that photon-limited sensitivity is obtained, the integration time can be further reduced by 2 to 4 orders of magnitude, depending on wavelength. The line flux sensitivity would be comparable to ALMA, but at shorter wavelengths and with the continuous coverage needed to extract line fluxes for sources at unknown redshifts. For example, this capability would break the current spectroscopic bottleneck in the study of far-<span class="hlt">infrared</span> galaxies, the recently discovered, rapidly evolving objects abundant at cosmological distances.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA275140','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA275140"><span>Dual-Use Applications of <span class="hlt">Infrared</span> Sensitive Materials</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>1993-06-01</p> <p>only limit to MCT-based <span class="hlt">detectors</span>’ market potential is in price. Specialty systems for subsurface imaging (such as buried storage tanks, toxic wastes...and assessment of automotive paint damaged by rust or stone impacts. Since automotive paint is a multi-layered coating, it lends itself to subsurface ... imaging , as well as aerospace aluminum and epoxy composites. Another family of non-destructive evaluation techniques which could use <span class="hlt">infrared</span> <span class="hlt">detectors</span></p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015PhDT.......203G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015PhDT.......203G"><span>Characterization and development of an event-driven hybrid CMOS x-ray <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Griffith, Christopher</p> <p>2015-06-01</p> <p>Hybrid CMOS <span class="hlt">detectors</span> (HCD) have provided great benefit to the <span class="hlt">infrared</span> and optical fields of astronomy, and they are poised to do the same for X-ray astronomy. <span class="hlt">Infrared</span> HCDs have already flown on the Hubble Space Telescope and the Wide-Field <span class="hlt">Infrared</span> Survey Explorer (WISE) mission and are slated to fly on the James Webb Space Telescope (JWST). Hybrid CMOS X-ray <span class="hlt">detectors</span> offer low susceptibility to radiation damage, low power consumption, and fast readout time to avoid pile-up. The fast readout time is necessary for future high throughput X-ray missions. The Speedster-EXD X-ray HCD presented in this dissertation offers new in-pixel features and reduces known noise sources seen on previous generation HCDs. The Speedster-EXD <span class="hlt">detector</span> makes a great step forward in the development of these <span class="hlt">detectors</span> for future space missions. This dissertation begins with an overview of future X-ray space mission concepts and their <span class="hlt">detector</span> requirements. The background on the physics of semiconductor devices and an explanation of the detection of X-rays with these devices will be discussed followed by a discussion on CCDs and CMOS <span class="hlt">detectors</span>. Next, hybrid CMOS X-ray <span class="hlt">detectors</span> will be explained including their advantages and disadvantages. The Speedster-EXD <span class="hlt">detector</span> and its new features will be outlined including its ability to only read out pixels which contain X-ray events. Test stand design and construction for the Speedster-EXD <span class="hlt">detector</span> is outlined and the characterization of each parameter on two Speedster-EXD <span class="hlt">detectors</span> is detailed including read noise, dark current, interpixel capacitance crosstalk (IPC), and energy resolution. Gain variation is also characterized, and a Monte Carlo simulation of its impact on energy resolution is described. This analysis shows that its effect can be successfully nullified with proper calibration, which would be important for a flight mission. Appendix B contains a study of the extreme tidal disruption event, Swift J1644+57, to search for</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19960024414&hterms=water+sensor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwater%2Bsensor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19960024414&hterms=water+sensor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dwater%2Bsensor"><span>Barriers Keep Drops Of Water Out Of <span class="hlt">Infrared</span> Gas Sensors</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murray, Sean K.</p> <p>1996-01-01</p> <p><span class="hlt">Infrared</span>-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to <span class="hlt">infrared</span> <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010799','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010799"><span>Nimbus-6 and -7 Earth Radiation Budget (ERB) sensor details and component tests</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Soule, H. V.; Kyle, H. L.; Jacobowitz, H.; Hickey, J.</p> <p>1983-01-01</p> <p>Construction details and operating characteristics are described for the thermopile (used in the solar and fixed-Earth channels) and the <span class="hlt">pyroelectric</span> <span class="hlt">detector</span> (used in the Earth-scanning channels) carried on the Nimbus 6 and the Nimbus 7 satellites for gathering Earth radiation budget data. Properties of the black coating for the <span class="hlt">detectors</span>, and sensor testing and calibration are discussed.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008SPIE.6940E..2XZ','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008SPIE.6940E..2XZ"><span>Advanced ROICs design for cooled IR <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zécri, Michel; Maillart, Patrick; Sanson, Eric; Decaens, Gilbert; Lefoul, Xavier; Baud, Laurent</p> <p>2008-04-01</p> <p>The CMOS silicon focal plan array technologies hybridized with <span class="hlt">infrared</span> <span class="hlt">detectors</span> materials allow to cover a wide range of applications in the field of space, airborne and grounded-based imaging. Regarding other industries which are also using embedded systems, the requirements of such sensor assembly can be seen as very similar; high reliability, low weight, low power, radiation hardness for space applications and cost reduction. Comparing to CCDs technology, excepted the fact that CMOS fabrication uses standard commercial semiconductor foundry, the interest of this technology used in cooled IR sensors is its capability to operate in a wide range of temperature from 300K to cryogenic with a high density of integration and keeping at the same time good performances in term of frequency, noise and power consumption. The CMOS technology roadmap predict aggressive scaling down of device size, transistor threshold voltage, oxide and metal thicknesses to meet the growing demands for higher levels of integration and performance. At the same time <span class="hlt">infrared</span> <span class="hlt">detectors</span> manufacturing process is developing IR materials with a tunable cut-off wavelength capable to cover bandwidths from visible to 20μm. The requirements of third generation IR <span class="hlt">detectors</span> are driving to scaling down the pixel pitch, to develop IR materials with high uniformity on larger formats, to develop Avalanche Photo Diodes (APD) and dual band technologies. These needs in IR <span class="hlt">detectors</span> technologies developments associated to CMOS technology, used as a readout element, are offering new capabilities and new opportunities for cooled <span class="hlt">infrared</span> FPAs. The exponential increase of new functionalities on chip, like the active 2D and 3D imaging, the on chip analog to digital conversion, the signal processing on chip, the bicolor, the dual band and DTI (Double Time Integration) mode ...is aiming to enlarge the field of application for cooled IR FPAs challenging by the way the design activity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/biblio/22116971-application-pyroelectric-crystal-ionic-liquid-production-metal-compounds','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22116971-application-pyroelectric-crystal-ionic-liquid-production-metal-compounds"><span>Application of <span class="hlt">pyroelectric</span> crystal and ionic liquid to the production of metal compounds</span></a></p> <p><a target="_blank" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Imashuku, Susumu; Imanishi, Akira; Kawai, Jun</p> <p>2013-04-19</p> <p>Zinc fluoride (ZnF{sub 2}) was deposited on a silicon substrate by changing temperature of a <span class="hlt">pyroelectric</span> crystal of LiTaO{sub 3} on which ionic liquid (EMI-Tf{sub 2}N) containing zinc ions was dripped at 1 Pa. ZnF{sub 2} was also obtained by bombarding argon ions on EMI-Tf{sub 2}N containing zinc ions. From these results, it is concluded that EMI-Tf{sub 2}N containing zinc ions on the LiTaO{sub 3} crystal was evaporated on the silicon substrate by changing temperature of the LiTaO{sub 3} crystal in vacuum and that the evaporated EMI-Tf{sub 2}N containing metal zinc ions was decomposed to ZnF{sub 2} by the bombardmentmore » of electrons accelerated by the electric field between the LiTaO{sub 3} crystal and the silicon substrate.« less</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/874313','DOE-PATENT-XML'); return false;" href="https://www.osti.gov/servlets/purl/874313"><span>High speed <span class="hlt">infrared</span> radiation thermometer, system, and method</span></a></p> <p><a target="_blank" href="http://www.osti.gov/doepatents">DOEpatents</a></p> <p>Markham, James R.</p> <p>2002-01-01</p> <p>The high-speed radiation thermometer has an <span class="hlt">infrared</span> measurement wavelength band that is matched to the <span class="hlt">infrared</span> wavelength band of near-blackbody emittance of ceramic components and ceramic thermal barrier coatings used in turbine engines. It is comprised of a long wavelength <span class="hlt">infrared</span> <span class="hlt">detector</span>, a signal amplifier, an analog-to-digital converter, an optical system to collect radiation from the target, an optical filter, and an integral reference signal to maintain a calibrated response. A megahertz range electronic data acquisition system is connected to the radiation <span class="hlt">detector</span> to operate on raw data obtained. Because the thermometer operates optimally at 8 to 12 .mu.m, where emittance is near-blackbody for ceramics, interferences to measurements performed in turbine engines are minimized. The method and apparatus are optimized to enable mapping of surface temperatures on fast moving ceramic elements, and the thermometer can provide microsecond response, with inherent self-diagnostic and calibration-correction features.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990064122','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990064122"><span>Correlation Between Bulk Material Defects and Spectroscopic Response in Cadmium Zinc Telluride <span class="hlt">Detectors</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Parker, Bradford H.; Stahle, C. M.; Barthelmy, S. D.; Parsons, A. M.; Tueller, J.; VanSant, J. T.; Munoz, B. F.; Snodgrass, S. J.; Mullinix, R. E.</p> <p>1999-01-01</p> <p>One of the critical challenges for large area cadmium zinc telluride (CdZnTe) <span class="hlt">detector</span> arrays is obtaining material capable of uniform imaging and spectroscopic response. Two complementary nondestructive techniques for characterizing bulk CdZnTe have been developed to identify material with a uniform response. The first technique, <span class="hlt">infrared</span> transmission imaging, allows for rapid visualization of bulk defects. The second technique, x-ray spectral mapping, provides a map of the material spectroscopic response when it is configured as a planar <span class="hlt">detector</span>. The two techniques have been used to develop a correlation between bulk defect type and <span class="hlt">detector</span> performance. The correlation allows for the use of <span class="hlt">infrared</span> imaging to rapidly develop wafer mining maps. The mining of material free of detrimental defects has the potential to dramatically increase the yield and quality of large area CdZnTe <span class="hlt">detector</span> arrays.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/20040086078','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20040086078"><span>Design of a Far-<span class="hlt">Infrared</span> Spectrometer for Atmospheric Thermal Emission Measurements</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Johnson, David G.</p> <p>2004-01-01</p> <p>Global measurements of far <span class="hlt">infrared</span> emission from the upper troposphere are required to test models of cloud radiative forcing, water vapor continuum emission, and cooling rates. Spectra with adequate resolution can also be used for retrieving atmospheric temperature and humidity profiles, and yet there are few spectrally resolved measurements of outgoing longwave flux at wavelengths longer than 16 m. It has been difficult to make measurements in the far <span class="hlt">infrared</span> due to the need for liquid-helium cooled <span class="hlt">detectors</span> and large optics to achieve adequate sensitivity and bandwidth. We review design considerations for <span class="hlt">infrared</span> Fourier transform spectrometers, including the dependence of system performance on basic system parameters, and discuss the prospects for achieving useful sensitivity from a satellite platform with a lightweight spectrometer using uncooled <span class="hlt">detectors</span>.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930004242','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930004242"><span>Narrow bandgap semiconducting silicides: Intrinsic <span class="hlt">infrared</span> <span class="hlt">detectors</span> on a silicon chip</span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mahan, John E.</p> <p>1990-01-01</p> <p>Work done during the final report period is presented. The main technical objective was to achieve epitaxial growth on silicon of two semiconducting silicides, ReSi2 and CrSi2. ReSi2 thin films were grown on (001) silicon wafers by vacuum evaporation of rhenium onto hot substrates in ultrahigh vacuum. The preferred epitaxial relationship was found to be ReSi2(100)/Si(001) with ReSi2(010) parallel to Si(110). The lattice matching consists of a common unit mesh of 120 A(sup 2) area, and a mismatch of 1.8 percent. Transmission electron microscopy revealed the existence of rotation twins corresponding to two distinct but equivalent azimuthal orientations of the common unit mesh. MeV He(+) backscattering spectrometry revealed a minimum channeling yield of 2 percent for an approximately 1,500 A thick film grown at 650 C. Although the lateral dimension of the twins is on the order of 100 A, there is a very high degree of alignment between the ReSi2(100) and the Si(001) planes. Highly oriented films of CrSi2 were grown on (111) silicon substrates, with the matching crystallographic faces being CrSi2(001)/Si(111). The reflection high-energy electron diffraction (RHEED) patterns of the films consist of sharp streaks, symmetrically arranged. The predominant azimuthal orientation of the films was determined to be CrSi2(210) parallel to Si(110). This highly desirable heteroepitaxial relationship has been obtained previously by others; it may be described with a common unit mesh of 51 A(sup 2) and mismatch of 0.3 percent. RHEED also revealed the presence of limited film regions of a competing azimuthal orientation, CrSi2(110) parallel to Si(110). A channeling effect for MeV He(+) ions was not found for this material. Potential commercial applications of this research may be found in silicon-integrated <span class="hlt">infrared</span> <span class="hlt">detector</span> arrays. Optical characterizations showed that semiconducting ReSi2 is a strong absorber of <span class="hlt">infrared</span> radiation, with the adsorption constant increasing above 2 x</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25208580','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25208580"><span>High-polarization-discriminating <span class="hlt">infrared</span> detection using a single quantum well sandwiched in plasmonic micro-cavity.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei</p> <p>2014-09-11</p> <p>Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-<span class="hlt">detectors</span> are the trend for <span class="hlt">infrared</span> polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating <span class="hlt">detectors</span> are very much critical. Here we demonstrate the high <span class="hlt">infrared</span> light polarization resolving capabilities of a quantum well (QW) <span class="hlt">detector</span> in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The <span class="hlt">detector</span>'s extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave <span class="hlt">infrared</span> photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160703','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4160703"><span>High-Polarization-Discriminating <span class="hlt">Infrared</span> Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei</p> <p>2014-01-01</p> <p>Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-<span class="hlt">detectors</span> are the trend for <span class="hlt">infrared</span> polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating <span class="hlt">detectors</span> are very much critical. Here we demonstrate the high <span class="hlt">infrared</span> light polarization resolving capabilities of a quantum well (QW) <span class="hlt">detector</span> in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The <span class="hlt">detector</span>'s extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave <span class="hlt">infrared</span> photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JEMat..46.5386K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JEMat..46.5386K"><span>Development and Production of Array Barrier <span class="hlt">Detectors</span> at SCD</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Klipstein, P. C.; Avnon, E.; Benny, Y.; Berkowicz, E.; Cohen, Y.; Dobromislin, R.; Fraenkel, R.; Gershon, G.; Glozman, A.; Hojman, E.; Ilan, E.; Karni, Y.; Klin, O.; Kodriano, Y.; Krasovitsky, L.; Langof, L.; Lukomsky, I.; Nevo, I.; Nitzani, M.; Pivnik, I.; Rappaport, N.; Rosenberg, O.; Shtrichman, I.; Shkedy, L.; Snapi, N.; Talmor, R.; Tessler, R.; Weiss, E.; Tuito, A.</p> <p>2017-09-01</p> <p>XB n or XB p barrier <span class="hlt">detectors</span> exhibit diffusion-limited dark currents comparable with mercury cadmium telluride Rule-07 and high quantum efficiencies. In 2011, SemiConductor Devices (SCD) introduced "HOT Pelican D", a 640 × 512/15- μm pitch InAsSb/AlSbAs XB n mid-wave <span class="hlt">infrared</span> (MWIR) <span class="hlt">detector</span> with a 4.2- μm cut-off and an operating temperature of ˜150 K. Its low power (˜3 W), high pixel operability (>99.5%) and long mean time to failure make HOT Pelican D a highly reliable integrated <span class="hlt">detector</span>-cooler product with a low size, weight and power. More recently, "HOT Hercules" was launched with a 1280 × 1024/15- μm format and similar advantages. A 3-megapixel, 10- μm pitch version ("HOT Blackbird") is currently completing development. For long-wave <span class="hlt">infrared</span> applications, SCD's 640 × 512/15- μm pitch "Pelican-D LW" XB p type II superlattice (T2SL) <span class="hlt">detector</span> has a ˜9.3- μm cut-off wavelength. The <span class="hlt">detector</span> contains InAs/GaSb and InAs/AlSb T2SLs, and is fabricated into focal plane array (FPA) <span class="hlt">detectors</span> using standard production processes including hybridization to a digital silicon read-out integrated circuit (ROIC), glue underfill and substrate thinning. The ROIC has been designed so that the complete <span class="hlt">detector</span> closely follows the interfaces of SCD's MWIR Pelican-D <span class="hlt">detector</span> family. The Pelican-D LW FPA has a quantum efficiency of ˜50%, and operates at 77 K with a pixel operability of >99% and noise equivalent temperature difference of 13 mK at 30 Hz and F/2.7.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SPIE10458E..1ZM','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SPIE10458E..1ZM"><span>A DBN based anomaly targets <span class="hlt">detector</span> for HSI</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ma, Ning; Wang, Shaojun; Yu, Jinxiang; Peng, Yu</p> <p>2017-10-01</p> <p>Due to the assumption that Hyperspectral image (HSI) should conform to Gaussian distribution, traditional Mahalanobis distance-based anomaly targets <span class="hlt">detectors</span> perform poor because the assumption may not always hold. In order to solve those problems, a deep learning based <span class="hlt">detector</span>, Deep Belief Network(DBN) anomaly <span class="hlt">detector</span>(DBN-AD), was proposed to fit the unknown distribution of HSI by energy modeling, the reconstruction errors of this encode-decode processing are used for discriminating the anomaly targets. Experiments are implemented on real and synthesized HSI dataset which collection by Airborne Visible <span class="hlt">Infra-Red</span> Imaging Spectrometer (AVIRIS). Comparing to classic anomaly <span class="hlt">detector</span>, the proposed method shows better performance, it performs about 0.17 higher in Area Under ROC Curve (AUC) than that of Reed-Xiaoli <span class="hlt">detector</span>(RXD) and Kernel-RXD (K-RXD).</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4610493','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4610493"><span>Sea-Based <span class="hlt">Infrared</span> Scene Interpretation by Background Type Classification and Coastal Region Detection for Small Target Detection</span></a></p> <p><a target="_blank" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kim, Sungho</p> <p>2015-01-01</p> <p>Sea-based <span class="hlt">infrared</span> search and track (IRST) is important for homeland security by detecting missiles and asymmetric boats. This paper proposes a novel scheme to interpret various <span class="hlt">infrared</span> scenes by classifying the <span class="hlt">infrared</span> background types and detecting the coastal regions in omni-directional images. The background type or region-selective small <span class="hlt">infrared</span> target <span class="hlt">detector</span> should be deployed to maximize the detection rate and to minimize the number of false alarms. A spatial filter-based small target <span class="hlt">detector</span> is suitable for identifying stationary incoming targets in remote sea areas with sky only. Many false detections can occur if there is an image sector containing a coastal region, due to ground clutter and the difficulty in finding true targets using the same spatial filter-based <span class="hlt">detector</span>. A temporal filter-based <span class="hlt">detector</span> was used to handle these problems. Therefore, the scene type and coastal region information is critical to the success of IRST in real-world applications. In this paper, the <span class="hlt">infrared</span> scene type was determined using the relationships between the sensor line-of-sight (LOS) and a horizontal line in an image. The proposed coastal region <span class="hlt">detector</span> can be activated if the background type of the probing sector is determined to be a coastal region. Coastal regions can be detected by fusing the region map and curve map. The experimental results on real <span class="hlt">infrared</span> images highlight the feasibility of the proposed sea-based scene interpretation. In addition, the effects of the proposed scheme were analyzed further by applying region-adaptive small target detection. PMID:26404308</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA572340','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA572340"><span>Center for Research on <span class="hlt">Infrared</span> <span class="hlt">Detectors</span> (CENTROID)</span></a></p> <p><a target="_blank" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2006-09-30</p> <p>calculations to reevaluate the band-to-band Auger-1lifetime inn-type LWIR HgCdTe because the Auger-1lifetime can be measured in long-wavelength...<span class="hlt">infrared</span> ( LWIR ) HgCdTe. Our calculations of the electronic band structure are based on a fourteen-band bulk basis, including spin-orbit splitting. The...within better than a factor of two between theoretically and experimentally determined Auger rates for a wide variety of MWIR and LWIR superlattices</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26191896','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26191896"><span>Ensuring long-term stability of <span class="hlt">infrared</span> camera absolute calibration.</span></a></p> <p><a target="_blank" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kattnig, Alain; Thetas, Sophie; Primot, Jérôme</p> <p>2015-07-13</p> <p>Absolute calibration of cryogenic 3-5 µm and 8-10 µm <span class="hlt">infrared</span> cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of <span class="hlt">Infrared</span> Imaging. These defaults are often blamed on <span class="hlt">detectors</span> reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that <span class="hlt">detectors</span> are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of <span class="hlt">detectors</span>. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSEle.137..102K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSEle.137..102K"><span>Theoretical performance of mid wavelength HgCdTe(1 0 0) heterostructure <span class="hlt">infrared</span> <span class="hlt">detectors</span></span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kopytko, M.</p> <p>2017-11-01</p> <p>The paper presents a theoretical study of the p+BpnN+ design based on HgCdTe(1 0 0) layers, which significantly improves the performance of <span class="hlt">detectors</span> optimized for the mid-wave <span class="hlt">infrared</span> spectral range. p+BpnN+ design combines the concept of a high impedance photoconductor with double layer hetero-junction device. Zero valence band offset approximation throughout the p+Bpn heterostructure allows flow of only minority holes generated in the absorber, what in a combination with n-N+ exclusion junction provides the Auger suppression. Modeling shows that by applying a low doping active layer, it is possible to achieve an order of magnitude lower dark current densities than those determined by ;Rule 07;. A key to its success is a reduction of Shockley-Read-Hall centers associated with native defects, residual impurities and misfit dislocations. Reduction of metal site vacancies below 1012 cm-3 and dislocation density to 105 cm-2 allow to achieve a background limited performance at 250 K. If the background radiation can be reduced, operation with a three- or four-stage thermo-electric-cooler may be possible.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010SPIE.7660E..2QD','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010SPIE.7660E..2QD"><span>Development of a miniature coaxial pulse tube cryocooler for a space-borne <span class="hlt">infrared</span> <span class="hlt">detector</span> system</span></a></p> <p><a target="_blank" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dang, H. Z.; Wang, L. B.; Wu, Y. N.; Yang, K. X.; Shen, W. B.</p> <p>2010-04-01</p> <p>A single-stage miniature coaxial pulse tube cryocooler prototype is developed to provide reliable low-noise cooling for an <span class="hlt">infrared</span> <span class="hlt">detector</span> system to be equipped in the future space mission. The challenging work is the exacting requirement on its dimensions due to the given miniature Dewar. The limited dimensions result in the insufficiency of the phaseshifting ability of the system when inertance tubes alone are employed. A larger filling pressure of 3.5 Mpa and higher operating frequency up to 70 Hz are adopted to increase the energy density, which compensates for the decrease in working gas volume due to the miniature structure, and realize a fast cool down process. A 1.5 kg dual opposed linear compressor based on flexure bearing and moving magnet technology is used to realize light weight, high efficiency and low contamination. The design and optimization are based on the theoretical CFD model developed by the analyses of thermodynamic behaviors of gas parcels in the oscillating flow. This paper describes the design approach and trade-offs. The cooler performance and characteristics are presented.</p> </li> <li> <p><a target="_blank" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19800000363&hterms=methane+gas+used&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmethane%2Bgas%2Bused','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19800000363&hterms=methane+gas+used&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dmethane%2Bgas%2Bused"><span>Laser beam methane <span class="hlt">detector</span></span></a></p> <p><a target="_blank" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hinkley, E. D., Jr.</p> <p>1981-01-01</p> <p>Instrument uses <span class="hlt">infrared</span> absorption to determine methane concentration in liquid natural gas vapor. Two sensors measure intensity of 3.39 mm laser beam after it passes through gas; absorption is proportional to concentration of methane. Instrument is used in modeling spread of LNG clouds and as leak <span class="hlt">detector</span> on LNG carriers and installations. Unit includes wheels for mobility and is both vertically and horizontally operable.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <footer><a id="backToTop" href="#top"> </a><nav><a id="backToTop" href="#top"> </a><ul class="links"><a id="backToTop" href="#top"> </a><li><a id="backToTop" href="#top"></a><a href="/sitemap.html">Site Map</a></li> <li><a href="/members/index.html">Members Only</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://doe.responsibledisclosure.com/hc/en-us" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> <div class="small">Science.gov is maintained by the U.S. Department of Energy's <a href="https://www.osti.gov/" target="_blank">Office of Scientific and Technical Information</a>, in partnership with <a href="https://www.cendi.gov/" target="_blank">CENDI</a>.</div> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>