Science.gov

Sample records for pyrolysed nanoporous structure

  1. Effect of pretreatment on biomass residue structure and the application of pyrolysed and composted biomass residues in soilless culture.

    PubMed

    Suo, Linna; Sun, Xiangyang; Jiang, Weijie

    2013-01-01

    The changes in the structural characteristics of biomass residues during pyrolysis and composting were investigated. The biomass residues particles were prepared by pyrolysing at temperatures ranging from 350 to 400. For soilless production of the ornamental plant Anthurium andraeanum, pure sphagnum peat moss (P) has traditionally been used as the growing medium. This use of P must be reduced, however, because P is an expensive and nonrenewable resource. The current study investigated the use of biomass residues as substitutes for P in A. andraeanum production. Plants were grown for 15 months in 10 soilless media that contained different proportions of pyrolysed corn cobs (PC), composted corn cobs (C), pyrolysed garden wastes (PG), and P. Although the media altered the plant nutrient content, A. andraeanum growth, development, and yield were similar with media consisting of 50% P+50% PC, 50% P+35% PC+15% PG, and 100% P. This finding indicates that, when pyrolysed, organic wastes, which are otherwise an environmental problem, can be used to reduce the requirement for peat in the soilless culture of A. andraeanum. PMID:23704995

  2. Effect of Pretreatment on Biomass Residue Structure and the Application of Pyrolysed and Composted Biomass Residues in Soilless Culture

    PubMed Central

    Suo, Linna; Sun, Xiangyang; Jiang, Weijie

    2013-01-01

    The changes in the structural characteristics of biomass residues during pyrolysis and composting were investigated. The biomass residues particles were prepared by pyrolysing at temperatures ranging from 350 to 400. For soilless production of the ornamental plant Anthurium andraeanum, pure sphagnum peat moss (P) has traditionally been used as the growing medium. This use of P must be reduced, however, because P is an expensive and nonrenewable resource. The current study investigated the use of biomass residues as substitutes for P in A. andraeanum production. Plants were grown for 15 months in 10 soilless media that contained different proportions of pyrolysed corn cobs (PC), composted corn cobs (C), pyrolysed garden wastes (PG), and P. Although the media altered the plant nutrient content, A. andraeanum growth, development, and yield were similar with media consisting of 50% P+50% PC, 50% P+35% PC+15% PG, and 100% P. This finding indicates that, when pyrolysed, organic wastes, which are otherwise an environmental problem, can be used to reduce the requirement for peat in the soilless culture of A. andraeanum. PMID:23704995

  3. Nanopore sequencing detects structural variants in cancer

    PubMed Central

    Norris, Alexis L.; Workman, Rachael E.; Fan, Yunfan; Eshleman, James R.; Timp, Winston

    2016-01-01

    ABSTRACT Despite advances in sequencing, structural variants (SVs) remain difficult to reliably detect due to the short read length (<300 bp) of 2nd generation sequencing. Not only do the reads (or paired-end reads) need to straddle a breakpoint, but repetitive elements often lead to ambiguities in the alignment of short reads. We propose to use the long-reads (up to 20 kb) possible with 3rd generation sequencing, specifically nanopore sequencing on the MinION. Nanopore sequencing relies on a similar concept to a Coulter counter, reading the DNA sequence from the change in electrical current resulting from a DNA strand being forced through a nanometer-sized pore embedded in a membrane. Though nanopore sequencing currently has a relatively high mismatch rate that precludes base substitution and small frameshift mutation detection, its accuracy is sufficient for SV detection because of its long reads. In fact, long reads in some cases may improve SV detection efficiency. We have tested nanopore sequencing to detect a series of well-characterized SVs, including large deletions, inversions, and translocations that inactivate the CDKN2A/p16 and SMAD4/DPC4 tumor suppressor genes in pancreatic cancer. Using PCR amplicon mixes, we have demonstrated that nanopore sequencing can detect large deletions, translocations and inversions at dilutions as low as 1:100, with as few as 500 reads per sample. Given the speed, small footprint, and low capital cost, nanopore sequencing could become the ideal tool for the low-level detection of cancer-associated SVs needed for molecular relapse, early detection, or therapeutic monitoring. PMID:26787508

  4. Block copolymer structures in nano-pores

    NASA Astrophysics Data System (ADS)

    Pinna, Marco; Guo, Xiaohu; Zvelindovsky, Andrei

    2010-03-01

    We present results of coarse-grained computer modelling of block copolymer systems in cylindrical and spherical nanopores on Cell Dynamics Simulation. We study both cylindrical and spherical pores and systematically investigate structures formed by lamellar, cylinders and spherical block copolymer systems for various pore radii and affinity of block copolymer blocks to the pore walls. The obtained structures include: standing lamellae and cylinders, ``onions,'' cylinder ``knitting balls,'' ``golf-ball,'' layered spherical, ``virus''-like and mixed morphologies with T-junctions and U-type defects [1]. Kinetics of the structure formation and the differences with planar films are discussed. Our simulations suggest that novel porous nano-containers can be formed by confining block copolymers in pores of different geometries [1,2]. [4pt] [1] M. Pinna, X. Guo, A.V. Zvelindovsky, Polymer 49, 2797 (2008).[0pt] [2] M. Pinna, X. Guo, A.V. Zvelindovsky, J. Chem. Phys. 131, 214902 (2009).

  5. Characterisation of pore structures in nanoporous materials for advanced bionanotechnology.

    PubMed

    Heo, K; Yoon, J; Jin, K S; Jin, S; Ree, M

    2006-08-01

    Porous materials are potential candidates for applications in various fields, such as bionanotechnology, gas separation, catalysts and micro-electronics. In particular, their applications in bionanotechnology include biosensors, biomedical implants and microdevices, biosupporters, bio-encapsules, biomolecule separations and biomedical therapy. All these bionanotechnology applications utilise the shape, size and size distribution of pores in porous materials. Therefore the controlled creation of pores with desired shape, size and size distribution is most important in the development of nanoporous materials. Accordingly, the accurate evaluation of pore structure is necessary in the development of nanoporous materials and their applications. This article reviews recent developments in analytical techniques to characterise the pore structures of nanoporous materials.

  6. Probing Water Structures in Nanopores via Tunneling

    NASA Astrophysics Data System (ADS)

    Boynton, Paul; di Ventra, Massimiliano

    2012-02-01

    We study the effects of volumetric constraints on the structure and electronic transport properties of distilled water in a synthetic nanopore. Combining classical molecular dynamics simulations with the Landauer approach to scattering theory as originally done in the context of DNA sequencing [1], we develop a relationship between the electronic current and the structure the water assumes in the confining pore-electrode system. Prior research in the field shows a tendency for the tunneling current through water to fluctuate due to local cavities in the water's structure. We show a shift in the tunneling current's dependence on pore diameter at the transition from exclusion of water to a monolayer. Furthermore, we argue that the current with respect to pore diameter does not follow a simple exponential curve at this transition as one would expect from tunneling. This research develops our understanding of water as a complex medium and describes fundamental physics of aqueous solutions. [4pt] [1] J. Lagerqvist, M. Zwolak, and M. Di Ventra, Fast DNA sequencing via transverse electronic transport, Nano Lett. 6, 779 (2006).

  7. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release.

  8. Nanoporous structures on ZnO thin films

    NASA Astrophysics Data System (ADS)

    Gür, Emre; Kılıç, Bayram; Coşkun, C.; Tüzemen, S.; Bayrakçeken, Fatma

    2010-01-01

    Porous structures were formed on ZnO thin films which were grown by an electrochemical deposition (ECD) method. The growth processes were carried out in a solution of dimethylsulfoxide (DMSO) zinc perchlorate, Zn(ClO 4) 2, at 120 ∘C on indium tin oxide (ITO) substrates. Optical and structural characterizations of electrochemically grown ZnO thin films have shown that the films possess high (0002) c-axis orientation, high nucleation, high intensity and low FWHM of UV emission at the band edge region and a sharp UV absorption edge. Nanoporous structures were formed via self-assembled monolayers (SAMs) of hexanethiol (C 6SH) and dodecanethiol (C 12SH). Scanning electron microscope (SEM) measurements showed that while a nanoporous structure (pore radius 20 nm) is formed on the ZnO thin films by hexanathiol solution, a macroporous structure (pore radius 360 nm) is formed by dodecanethiol solution. No significant variation is observed in X-ray diffraction (XRD) measurements on the ZnO thin films after pore formation. However, photoluminescence (PL) measurements showed that green emission is observed as the dominant emission for the macroporous structures, while no variation is observed for the thin film nanoporous ZnO sample.

  9. Exposure to laser radiation for creation of metal materials nanoporous structures

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2013-06-01

    Exposure to laser radiation for creation of nanoporous structures in the Cu-Zn alloy was investigated. It was established that exposure to laser pulse-periodic radiation with pulse repetition rate up to 5000 Hz makes it possible to form a nanoporous structure in the near-surface layer. The conditions of increase of area depth of such structures formation up to 40-45 μm were ascertained. The temperature and speed conditions which provide predominant channel-type nanopores formation with width of about 100 nm forming a nanoporous net were determined. This patented technology is a perspective for production of catalysts and microfiltration membranes.

  10. Bacteria repelling on highly-ordered alumina-nanopore structures

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Zhou, Yan; Cirillo, Jeffrey D.; Polycarpou, Andreas A.; Liang, Hong

    2015-04-01

    Bacteria introduce diseases and infections to humans by their adherence to biomaterials, such as implants and surgical tools. Cell desorption is an effective step to reduce such damage. Here, we report mechanisms of bacteria desorption. An alumina nanopore structure (ANS) with pore size of 35 nm, 55 nm, 70 nm, and 80 nm was used as substrate to grow Escherichia coli (E. coli) cells. A bacteria repelling experimental method was developed to quantitatively evaluate the area percentage of adherent bacterial cells that represent the nature of cell adhesion as well as desorption. Results showed that there were two crucial parameters: contact angle and contact area that affect the adhesion/desorption. The cells were found to be more easily repelled when the contact angle increased. The area percentage of adherent bacterial cells decreased with the decrease in the contact area of a cell on ANS. This means that cell accessibility on ANS depends on the contact area. This research reveals the effectiveness of the nanopored structures in repelling cells.

  11. Probing Water Structures in Nanopores Using Tunneling Currents

    NASA Astrophysics Data System (ADS)

    Boynton, P.; Di Ventra, M.

    2013-11-01

    We study the effect of volumetric constraints on the structure and electronic transport properties of distilled water in a nanopore with embedded electrodes. Combining classical molecular dynamics simulations with quantum scattering theory, we show that the structural motifs water exhibits inside the pore can be probed directly by tunneling. In particular, we show that the current does not follow a simple exponential curve at a critical pore diameter of about 8 Å, rather it is larger than the one expected from simple tunneling through a barrier. This is due to a structural transition from bulklike to “nanodroplet” water domains. Our results can be tested with present experimental capabilities to develop our understanding of water as a complex medium at nanometer length scales.

  12. Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures

    PubMed Central

    Bhattacharya, Jaydeep; Kisner, Alexandre; Offenhäusser, Andreas

    2011-01-01

    Summary Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to transfer the brittle nanoporous material. We demonstrate this technique by using the same microfluidic system for membrane fabrication and subsequent liposome fusion onto the nanoporous support structure. The resulting bilayer formation is monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers. PMID:21977420

  13. Microfluidic anodization of aluminum films for the fabrication of nanoporous lipid bilayer support structures.

    PubMed

    Bhattacharya, Jaydeep; Kisner, Alexandre; Offenhäusser, Andreas; Wolfrum, Bernhard

    2011-01-01

    Solid state nanoporous membranes show great potential as support structures for biointerfaces. In this paper, we present a technique for fabricating nanoporous alumina membranes under constant-flow conditions in a microfluidic environment. This approach allows the direct integration of the fabrication process into a microfluidic setup for performing biological experiments without the need to transfer the brittle nanoporous material. We demonstrate this technique by using the same microfluidic system for membrane fabrication and subsequent liposome fusion onto the nanoporous support structure. The resulting bilayer formation is monitored by impedance spectroscopy across the nanoporous alumina membrane in real-time. Our approach offers a simple and efficient methodology to investigate the activity of transmembrane proteins or ion diffusion across membrane bilayers.

  14. Ultrasensitive food toxin biosensor using frequency based signals of silicon oxide nanoporous structure

    NASA Astrophysics Data System (ADS)

    Ghosh, H.; RoyChaudhuri, C.

    2013-06-01

    We report an electrochemically fabricated silicon oxide nanoporous structure for ultrasensitive detection of AfB1 in food by shift in peak frequency corresponding to maximum sensitivity. It has been observed that the impedance sensitivity changes from 19% to 40% (which is only twice) where as the peak frequency shifts from 500 Hz to 50 kHz, for a change in concentration from 1 fg/ml to 1 pg/ml. This has been attributed to the combined effect of the significant pore narrowing with increasing AfB1 concentration and the opposing nature of impedance change within the nanopores and the conducting substrate immediately below the nanoporous layer.

  15. Advanced structural analysis of nanoporous materials by thermal response measurements.

    PubMed

    Oschatz, Martin; Leistner, Matthias; Nickel, Winfried; Kaskel, Stefan

    2015-04-01

    Thermal response measurements based on optical adsorption calorimetry are presented as a versatile tool for the time-saving and profound characterization of the pore structure of porous carbon-based materials. This technique measures the time-resolved temperature change of an adsorbent during adsorption of a test gas. Six carbide and carbon materials with well-defined nanopore architecture including micro- and/or mesopores are characterized by thermal response measurements based on n-butane and carbon dioxide as the test gases. With this tool, the pore systems of the model materials can be clearly distinguished and accurately analyzed. The obtained calorimetric data are correlated with the adsorption/desorption isotherms of the materials. The pore structures can be estimated from a single experiment due to different adsorption enthalpies/temperature increases in micro- and mesopores. Adsorption/desorption cycling of n-butane at 298 K/1 bar with increasing desorption time allows to determine the pore structure of the materials in more detail due to different equilibration times. Adsorption of the organic test gas at selected relative pressures reveals specific contributions of particular pore systems to the increase of the temperature of the samples and different adsorption mechanisms. The use of carbon dioxide as the test gas at 298 K/1 bar provides detailed insights into the ultramicropore structure of the materials because under these conditions the adsorption of this test gas is very sensitive to the presence of pores smaller than 0.7 nm. PMID:25773383

  16. DNA origami nanopores.

    PubMed

    Bell, Nicholas A W; Engst, Christian R; Ablay, Marc; Divitini, Giorgio; Ducati, Caterina; Liedl, Tim; Keyser, Ulrich F

    2012-01-11

    We demonstrate the assembly of functional hybrid nanopores for single molecule sensing by inserting DNA origami structures into solid-state nanopores. In our experiments, single artificial nanopores based on DNA origami are repeatedly inserted in and ejected from solid-state nanopores with diameters around 15 nm. We show that these hybrid nanopores can be employed for the detection of λ-DNA molecules. Our approach paves the way for future development of adaptable single-molecule nanopore sensors based on the combination of solid-state nanopores and DNA self-assembly.

  17. Obtaining structural information of small proteins using solid-state nanopores and high-bandwidth measurements

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, David; Lanci, Christopher; Saven, Jeffery; Drndic, Marija

    2015-03-01

    The use of biological nanopores sensors to characterize proteins has proved a fruitful field of study. Solid-state nanopores hold several advantages over their biological counterparts, including the ability to tune pore diameter and their robustness to external conditions. Despite these advantages, the use of solid-state nanopores for protein analysis has proved difficult due to rapid translocation times of proteins and poor signal-to-noise of small peptides. Recently, improvements in high-bandwidth acquisition and in signal-to-noise have made the study of small peptides using solid-state nanopores feasible. Here we report on the detection and characterization of peptides as small as 33 amino-acids in length using sub-10 nm thin silicon nitride nanopores, giving high signal levels, combined with high-bandwidth electronics. In addition we show differentiation between monomers and dimer forms of the GCN-4 p1 leucine zipper, a coil-coil structure, and compare this with the unstructured 33-mer. The differentiation between these two forms demonstrates the possibility of extracting useful structural information from short peptide structures using modern solid-state nanopore systems.

  18. Structure and dynamics of water confined in silica nanopores

    NASA Astrophysics Data System (ADS)

    Milischuk, Anatoli A.; Ladanyi, Branka M.

    2011-11-01

    We report the results of molecular simulation of water in silica nanopores at full hydration and room temperature. The model systems are approximately cylindrical pores in amorphous silica, with diameters ranging from 20 to 40 Å. The filled pores are prepared using grand canonical Monte Carlo simulation and molecular dynamics simulation is used to calculate the water structure and dynamics. We found that water forms two distinct molecular layers at the interface and exhibits uniform, but somewhat lower than bulk liquid, density in the core region. The hydrogen bond density profile follows similar trends, with lower than bulk density in the core and enhancements at the interface, due to hydrogen bonds between water and surface non-bridging oxygens and OH groups. Our studies of water dynamics included translational mean squared displacements, orientational time correlations, survival probabilities in interfacial shells, and hydrogen bond population relaxation. We found that the radial-axial anisotropy in translational motion largely follows the predictions of a model of free diffusion in a cylinder. However, both translational and rotational water mobilities are strongly dependent on the proximity to the interface, with pronounced slowdown in layers near the interface. Within these layers, the effects of interface curvature are relatively modest, with only a small increase in mobility in going from the 20 to 40 Å diameter pore. Hydrogen bond population relaxation is nearly bulk-like in the core, but considerably slower in the interfacial region.

  19. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties.

    PubMed

    Ramírez, Patricio; Apel, Pavel Yu; Cervera, Javier; Mafé, Salvador

    2008-08-01

    We present a complete theoretical study of the relationship between the structure (tip shape and dimensions) and function (selectivity and rectification) of asymmetric nanopores on the basis of previous experimental studies. The theoretical model uses a continuum approach based on the Nernst-Planck equations. According to our results, the nanopore transport properties, such as current-voltage (I-V) characteristics, conductance, rectification ratio, and selectivity, are dictated mainly by the shape of the pore tip (we have distinguished bullet-like, conical, trumpet-like, and hybrid shapes) and the concentration of pore surface charges. As a consequence, the nanopore performance in practical applications will depend not only on the base and tip openings but also on the pore shape. In particular, we show that the pore opening dimensions estimated from the pore conductance can be very different, depending on the pore shape assumed. The results obtained can also be of practical relevance for the design of nanopores, nanopipettes, and nanoelectrodes, where the electrical interactions between the charges attached to the nanostructure and the mobile charges confined in the reduced volume of the inside solution dictate the device performance in practical applications. Because single tracks are the elementary building blocks for nanoporous membranes, the understanding and control of their individual properties should also be crucial in protein separation, water desalination, and bio-molecule detection using arrays of identical nanopores.

  20. Engineered/tailored nanoporous gold structures for infrared plasmonics

    NASA Astrophysics Data System (ADS)

    Garoli, Denis; Calandrini, Eugenio; Cattarin, Sandro; Barison, Simona; Zilio, Pierfrancesco; Bozzola, Angelo; Toma, Andrea; De Angelis, Francesco

    2015-08-01

    Nanoporous gold is a very promising and novel material platform for mid-infrared and THz plasmonics. Nanoporous gold can be formed by dealloying of Au-Ag alloys, previously grown by means of Ag-Au co-sputtering. The optical response is completely determined by the nanostructural film features, that depends on the initial alloy composition and on the preparation procedure. The behavior of the material in mid-infrared and its peculiar morphology with a very high surface/volume ratio can be applied for nanostructure fabrication, such for example nanoantennas. Here we report the design and fabrication of nanoporous antennas engineered to support resonances in the 1500-1700 cm-1 range where them can be exploited, for example, in the detection of protein conformational states. This novel paradigm points toward the development of a new class of efficient and high-selective biosensors.

  1. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media

    NASA Astrophysics Data System (ADS)

    Huber, Patrick

    2015-03-01

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  2. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media.

    PubMed

    Huber, Patrick

    2015-03-18

    Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

  3. Structural modification of nanoporous carbon with single wall carbon nanotube

    NASA Astrophysics Data System (ADS)

    Yi, Bo

    A novel CC nanocomposite was synthesized by pyrolysis of well dispersed individual functionalized SWNTs in a thermosetting resin, poly(furfuryl alcohol) (PFA). Strong interaction between SWNT and nanoporous carbon derived from PFA (PFA-NPC) was obtained with this strategy and the integrity of SWNTs was maintained after heat treatment. Usually, it is challenging to separate SWNT bundles and disperse them in preparation of composites. 50 wt% SWNT/NPC composites prepared with solution blending showed mass transfer rate of ˜140% higher than the original NPC. The improvement was not significant due to poor dispersion and the bundle structure of SWNTs. Functionalization of SWNTs successfully separated the SWNT bundles and solved the problems of dispersion. In this process, the SWNTs were first functionalized with sulfonic acid groups (SA-SWNT) on sidewall. Then they were converted to PFA-grafted SWNT (PFA-SWNT) by in situ polymerization of furfuryl alcohol (FA). NPC/SWNT nanocomposite was generated by pyrolysis of PFA-SWNT at 600°C. The structural transformation of NPC/SWNT at high temperature was studied by heating it at temperatures from 1200 to 2000°C in vacuum and characterized with HRTEM and Raman spectra. It was found that NPC and SWNT coalesce upon heat treatment and NPC tended to graphitize along the axis of neighboring nanotubes at temperature higher than 1400°C. Complete graphitization of NPC and SWNTs was obtained at 2000°C, when the NPC transformed to graphitic nanoribbons (GNRs) and SWNT or DWNT collapsed within the confines of the GNR. The mass transfer rate in 0.05 wt% SWNT/NPC nanocomposite was ˜2 times higher than that in the pure NPC. Similar improvement required SWNT concentration of ˜60 wt% in the SWNT/NPC composites prepared by solution blending. SWNT/NPC nanocomposite fibers prepared from 0.1 wt% SA-SWNT/FA had ˜13% increase of Young's modulus over the pure NPC fibers when they were pyrolyzed at 400 -- 1600ºC. The augment was slightly

  4. Fabrication of complete titania nanoporous structures via electrochemical anodization of Ti.

    PubMed

    Ali, Ghafar; Chen, Chong; Yoo, Seung Hwa; Kum, Jong Min; Cho, Sung Oh

    2011-01-01

    We present a novel method to fabricate complete and highly oriented anodic titanium oxide (ATO) nano-porous structures with uniform and parallel nanochannels. ATO nano-porous structures are fabricated by anodizing a Ti-foil in two different organic viscous electrolytes at room temperature using a two-step anodizing method. TiO2 nanotubes covered with a few nanometer thin nano-porous layer is produced when the first and the second anodization are carried out in the same electrolyte. However, a complete titania nano-porous (TNP) structures are obtained when the second anodization is conducted in a viscous electrolyte when compared to the first one. TNP structure was attributed to the suppression of F-rich layer dissolution between the cell boundaries in the viscous electrolyte. The structural morphologies were examined by field emission scanning electron microscope. The average pore diameter is approximately 70 nm, while the average inter-pore distance is approximately 130 nm. These TNP structures are useful to fabricate other nanostructure materials and nanodevices. PMID:21711844

  5. The influence of aluminum grain size on alumina nanoporous structure

    SciTech Connect

    Feil, A. F.; Costa, M. V. da; Amaral, L.; Teixeira, S. R.; Migowski, P.; Dupont, J.; Machado, G.; Peripolli, S. B.

    2010-01-15

    An approach to control the interpore distances and nanopore diameters of 150-nm-thick thin aluminum films is reported here. The Al thin films were grown by sputtering on p-type silicon substrate and anodized with a conventional anodization process in a phosphoric acid solution. It was found that interpore distance and pore diameter are related to the aluminum grain size and can be controlled by annealing. The grain contours limit the sizes of alumina cells. This mechanism is valid for grain sizes supporting only one alumina cell and consequently only one pore.

  6. Utilisation of GaN and InGaN/GaN with nanoporous structures for water splitting

    SciTech Connect

    Benton, J.; Bai, J.; Wang, T.

    2014-12-01

    We report a cost-effective approach to the fabrication of GaN based nanoporous structure for applications in renewable hydrogen production. Photoelectrochemical etching in a KOH solution has been employed to fabricate both GaN and InGaN/GaN nanoporous structures with pore sizes ranging from 25 to 60 nm, obtained by controlling both etchant concentration and applied voltage. Compared to as-grown planar devices the nanoporous structures have exhibited a significant increase of photocurrent with a factor of up to four times. An incident photon conversion efficiency of up to 46% around the band edge of GaN has been achieved.

  7. Enhancement of the mutagenicity of amino acid pyrolysates by phthalate esters.

    PubMed

    Sato, T; Nagase, H; Sato, K; Niikawa, M; Kito, H

    1994-01-01

    The ability of phthalic acid, phthalic acid anhydride, and various phthalate esters to enhance the mutagenicity of many amino acid pyrolysates was observed with the Ames test (Salmonella typhimurium TA98), but not the SOS Chromotest. Phthalate enhancement of the mutagenicity of 4-nitroquinoline-1-oxide, 2-nitrofluorene, and benzo[a]pyrene was not observed with either test. The mutagenicity-enhancing ability may be related to the induction of enzymes such as P450IIB, that metabolize amino acid pyrolysates. By quantitative structure activity relationship (QSAR) analysis, a good correlation was observed between the mutagenicity-enhancing activity of phthalates and their octanol-water partition coefficients. PMID:7851345

  8. Quantitative Analysis of the Nanopore Translocation Dynamics of Simple Structured Polynucleotides

    PubMed Central

    Schink, Severin; Renner, Stephan; Alim, Karen; Arnaut, Vera; Simmel, Friedrich C.; Gerland, Ulrich

    2012-01-01

    Nanopore translocation experiments are increasingly applied to probe the secondary structures of RNA and DNA molecules. Here, we report two vital steps toward establishing nanopore translocation as a tool for the systematic and quantitative analysis of polynucleotide folding: 1), Using α-hemolysin pores and a diverse set of different DNA hairpins, we demonstrate that backward nanopore force spectroscopy is particularly well suited for quantitative analysis. In contrast to forward translocation from the vestibule side of the pore, backward translocation times do not appear to be significantly affected by pore-DNA interactions. 2), We develop and verify experimentally a versatile mesoscopic theoretical framework for the quantitative analysis of translocation experiments with structured polynucleotides. The underlying model is based on sequence-dependent free energy landscapes constructed using the known thermodynamic parameters for polynucleotide basepairing. This approach limits the adjustable parameters to a small set of sequence-independent parameters. After parameter calibration, the theoretical model predicts the translocation dynamics of new sequences. These predictions can be leveraged to generate a baseline expectation even for more complicated structures where the assumptions underlying the one-dimensional free energy landscape may no longer be satisfied. Taken together, backward translocation through α-hemolysin pores combined with mesoscopic theoretical modeling is a promising approach for label-free single-molecule analysis of DNA and RNA folding. PMID:22225801

  9. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    NASA Astrophysics Data System (ADS)

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-01

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound.

  10. MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island.

    PubMed

    Ashton, Philip M; Nair, Satheesh; Dallman, Tim; Rubino, Salvatore; Rabsch, Wolfgang; Mwaigwisya, Solomon; Wain, John; O'Grady, Justin

    2015-03-01

    Short-read, high-throughput sequencing technology cannot identify the chromosomal position of repetitive insertion sequences that typically flank horizontally acquired genes such as bacterial virulence genes and antibiotic resistance genes. The MinION nanopore sequencer can produce long sequencing reads on a device similar in size to a USB memory stick. Here we apply a MinION sequencer to resolve the structure and chromosomal insertion site of a composite antibiotic resistance island in Salmonella Typhi Haplotype 58. Nanopore sequencing data from a single 18-h run was used to create a scaffold for an assembly generated from short-read Illumina data. Our results demonstrate the potential of the MinION device in clinical laboratories to fully characterize the epidemic spread of bacterial pathogens. PMID:25485618

  11. Designing robust alumina nanowires-on-nanopores structures: superhydrophobic surfaces with slippery or sticky water adhesion.

    PubMed

    Peng, Shan; Tian, Dong; Miao, Xinrui; Yang, Xiaojun; Deng, Wenli

    2013-11-01

    Hierarchical alumina surfaces with different morphologies were fabricated by a simple one-step anodization method. These alumina films were fabricated by a new raw material: silica gel plate (aluminum foil with a low purity of 97.17%). The modulation of anodizing time enabled the formation of nanowires-on-nanopores hybrid nanostructures having controllable nanowires topographies through a self-assembly process. The resultant structures were demonstrated to be able to achieve superhydrophobicity without any hydrophobic coating layer. More interestingly, it is found that the as-prepared superhydrophobic alumina surfaces exhibited high contrast water adhesion. Hierarchical alumina film with nanowire bunches-on-nanopores (WBOP) morphology presents extremely slippery property which can obtain a sliding angle (SA) as low as 1°, nanowire pyramids-on-nanopores (WPOP) structure shows strongly sticky water adhesion with the adhesive ability to support 15 μL inverted water droplet at most. The obtained superhydrophobic alumina surfaces show remarkable mechanical durability even treated by crimping or pressing without impact on the water-repellent performance. Moreover, the created surfaces also show excellent resistivity to ice water, boiling water, high temperature, organic solvent and oil contamination, which could expand their usefulness and efficacy in harsh conditions.

  12. Structural Engineering of Nanoporous Anodic Alumina Photonic Crystals by Sawtooth-like Pulse Anodization.

    PubMed

    Law, Cheryl Suwen; Santos, Abel; Nemati, Mahdieh; Losic, Dusan

    2016-06-01

    This study presents a sawtooth-like pulse anodization approach aiming to create a new type of photonic crystal structure based on nanoporous anodic alumina. This nanofabrication approach enables the engineering of the effective medium of nanoporous anodic alumina in a sawtooth-like manner with precision. The manipulation of various anodization parameters such as anodization period, anodization amplitude, number of anodization pulses, ramp ratio and pore widening time allows a precise control and fine-tuning of the optical properties (i.e., characteristic transmission peaks and interferometric colors) exhibited by nanoporous anodic alumina photonic crystals (NAA-PCs). The effect of these anodization parameters on the photonic properties of NAA-PCs is systematically evaluated for the establishment of a fabrication methodology toward NAA-PCs with tunable optical properties. The effective medium of the resulting NAA-PCs is demonstrated to be optimal for the development of optical sensing platforms in combination with reflectometric interference spectroscopy (RIfS). This application is demonstrated by monitoring in real-time the formation of monolayers of thiol molecules (11-mercaptoundecanoic acid) on the surface of gold-coated NAA-PCs. The obtained results reveal that the adsorption mechanism between thiol molecules and gold-coated NAA-PCs follows a Langmuir isotherm model, indicating a monolayer sorption mechanism.

  13. Correlation of the structure and applications of dealloyed nanoporous metals in catalysis and energy conversion/storage.

    PubMed

    Qiu, H-J; Xu, Hai-Tao; Liu, Li; Wang, Yu

    2015-01-14

    Nanoporous metals produced by dealloying have shown great promise in many areas such as catalysis/electrocatalysis, energy conversion/storage, sensing/biosensing, actuation, and surface-enhanced Raman scattering. Particularly, nanoscale metal ligaments with high electronic conductivity, tunable size and rich surface chemistry make nanoporous metals very promising as catalysts/electrocatalysts for energy conversion applications such as fuel cells and also as versatile three-dimensional substrates for energy-storage in supercapacitors and lithium ion batteries. In this review, we focus on the recent developments of dealloyed nanoporous metals in both catalysis/electrocatalysis and energy storage. In particular, based on the state-of-the-art electron microscopy characterization, we explain the atomic origin of the high catalytic activity of nanoporous gold. We also highlight the recent advances in rationally designing nanoporous metal-based composites and hierarchical structures for enhanced energy storage. Finally, we conclude with some outlook and perspectives with respect to future research on dealloyed nanoporous metals in catalysis- and energy-related applications.

  14. Structured nanoporous surfaces from hybrid block copolymer micelle films with metal ions

    NASA Astrophysics Data System (ADS)

    Kim, Minsoo P.; Kim, Hyeong Jun; Kim, Bumjoon J.; Yi, Gi-Ra

    2015-03-01

    We present a novel method for producing structured nanoporous thin films using block copolymer (BCP) micelles loaded with metallic ions. The BCP micellar thin films containing gold (Au) ions were prepared by spin-coating poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle solutions in which Au precursors (AuCl4-) were selectively loaded onto the P4VP core. When the micellar films were exposed to cetyltrimethylammonium bromide (CTAB) solutions, the Au precursors were selectively extracted from the P4VP domains due to their strong electrostatic interaction with CTAB, leading to the formation of pores in the micelles. Consequently, regularly patterned nanoporous surfaces were formed. By controlling the molecular weight (Mn) of PS-b-P4VP and the amount of Au precursors (λ) that were loaded in the P4VP domains, the pore size and depth could be tuned precisely. In particular, when a sufficient amount of Au precursors was loaded (λ ≥ 0.3), the porous surface nanostructure was well developed. In addition, the pore size and depth of the nanostructure increased as the λ value increased. For instance, when the λ value increased from 0.3 to 1.0, the pore size increased from 22.8 nm to 28.8 nm, and the pore depth increased from 2.1 nm to 3.2 nm. Interestingly, the transition from the nonporous structures to the porous structures in the micellar film could be reversibly controlled by adding and removing the Au precursors in the film. Moreover, our method for the preparation of nanoporous films can be extended to micellar film by incorporating other metal ions such as silver (Ag) and iron (Fe).

  15. Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis.

    PubMed

    Xu, Caixia; Liu, Yunqing; Wang, Jinping; Geng, Haoran; Qiu, Huajun

    2011-12-01

    We describe a general strategy to fabricate a new type of nanoporous core/shell structured bimetallic nanocomposites with controllable metal components. Nanoporous copper (NPC) obtained by dealloying Cu/Al alloy is used as both reducing agent and three-dimensional substrate. Electron microscope and X-ray diffraction characterizations demonstrated that a simply galvanic-replacement reaction with H(2)PtCl(6) aqueous solution can easily generate nanoporous core/shell structure with a thin Pt/Cu alloy shell and Cu (or Pt/Cu alloy) core. The morphology and crystal structure evolution of the nanocomposites are studied and discussed in detail. The as-prepared bimetallic PtCu nanocomposites show greatly enhanced catalytic activity and stability toward methanol electro-oxidation as compared with commercial Pt/C catalyst. This facile in situ preparation strategy is also suitable for large-scale production of this novel and inexpensive catalyst. PMID:22034948

  16. Probing the pore wall structure of nanoporous carbons using adsorption.

    PubMed

    Nguyen, Thanh X; Bhatia, Suresh K

    2004-04-27

    Hitherto, adsorption has been traditionally used to study only the porous structure in disordered materials, while the structure of the solid phase skeleton has been probed by crystallographic methods such as X-ray diffraction. Here we show that for carbons density functional theory, suitably adapted to consider heterogeneity of the pore walls, can be reliably used to probe features of the solid structure hitherto accessibly only approximately even by crystallographic methods. We investigate a range of carbons and determine pore wall thickness distributions using argon adsorption, with results corroborated by X-ray diffraction.

  17. Geochemical significance of alkylbenzene distributions in flash pyrolysates of kerogens, coals, and asphaltenes

    NASA Astrophysics Data System (ADS)

    Hartgers, Walter A.; Damsté, Jaap S. Sinninghe; de Leeuw, Jan W.

    1994-04-01

    The distribution of C 0-C 5 alkylbenzenes in flash pyrolysates of forty-seven immature kerogens and coals from different geographical locations and of different ages were studied using gas chromatography (GC) in combination with mass spectrometry (MS) in order to decipher the origin of aromatic moieties in macromolecular matter. All possible structural isomers of the alkylated benzenes were determined, and, in some cases, absolute yields were calculated. Sulphur-rich (Type II-S) kerogens yield higher absolute amounts of alkylbenzenes in comparison to Type I, II, and III kerogens. The variations in internal distribution patterns of C 2-C 4 alkylbenzenes were analyzed using multivariate analysis techniques (principal component analysis; PCA). Major variations in alkylbenzene distributions were due to an increased abundance of specific alkylbenzenes, which are related to specific precursor moieties in the macromolecular structure assuming that they are mainly formed via β-cleavage. Alkylbenzenes possessing "linear" carbon skeletons are enhanced in flash pyrolysates of Guttenberg and Estonian Kukersite kerogens (Type I) and are proposed to be derived from linear precursors which have undergone cyclization/aromatization. Relatively high amounts of 1,2,3,4- and 1,2,3,5-tetramethylbenzenes were found in flash pyrolysates of Womble and Duvernay kerogens (Type II) which are likely to be derived from macromolecularly bound diaromatic carotenoids. The relatively high abundance of 1,2,3-trimethylbenzene and 1,3-/1,4-dimethylbenzene in pyrolysates of Monterey kerogens (Type II-S) is proposed to be indicative of the presence of bound nonaromatic carotenoids (e.g., β,β-carotene) which have undergone aromatization and/or loss of methyl groups upon diagenesis. 1-methyl-4-isopropylbenzene, which appears in relatively high amounts in flash pyrolysates of Walcott Chuar kerogen (Type II) and Catalan coals (Type III), is thought to be derived from a heteroatom-bound precursor. These

  18. Nanoporous Anodic Alumina Platforms: Engineered Surface Chemistry and Structure for Optical Sensing Applications

    PubMed Central

    Kumeria, Tushar; Santos, Abel; Losic, Dusan

    2014-01-01

    Electrochemical anodization of pure aluminum enables the growth of highly ordered nanoporous anodic alumina (NAA) structures. This has made NAA one of the most popular nanomaterials with applications including molecular separation, catalysis, photonics, optoelectronics, sensing, drug delivery, and template synthesis. Over the past decades, the ability to engineer the structure and surface chemistry of NAA and its optical properties has led to the establishment of distinctive photonic structures that can be explored for developing low-cost, portable, rapid-response and highly sensitive sensing devices in combination with surface plasmon resonance (SPR) and reflective interference spectroscopy (RIfS) techniques. This review article highlights the recent advances on fabrication, surface modification and structural engineering of NAA and its application and performance as a platform for SPR- and RIfS-based sensing and biosensing devices. PMID:25004150

  19. Omnidirectional excitation of sidewall gap-plasmons in a hybrid gold-nanoparticle/aluminum-nanopore structure

    NASA Astrophysics Data System (ADS)

    Lumdee, Chatdanai; Kik, Pieter G.

    2016-06-01

    The gap-plasmon resonance of a gold nanoparticle inside a nanopore in an aluminum film is investigated in polarization dependent single particle microscopy and spectroscopy. Scattering and transmission measurements reveal that gap-plasmons of this structure can be excited and observed under normal incidence excitation and collection, in contrast to the more common particle-on-a-mirror structure. Correlation of numerical simulations with optical spectroscopy suggests that a local electric field enhancement factor in excess of 50 is achieved under normal incidence excitation, with a hot-spot located near the top surface of the structure. It is shown that the strong field enhancement from this sidewall gap-plasmon mode can be efficiently excited over a broad angular range. The presented plasmonic structure lends itself to implementation in low-cost, chemically stable, easily addressable biochemical sensor arrays providing large optical field enhancement factors.

  20. Multiple Approaches to Characterizing Nano-Pore Structure of Barnett Shale

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Gao, Z.; Ewing, R. P.; Dultz, S.; Kaufmann, J.; Hamamoto, S.; Webber, B.; Ding, M.

    2013-12-01

    Microscopic characteristics of porous media - pore shape, pore-size distribution, and pore connectivity - control fluid flow and mass transport. This presentation discusses various approaches to investigating nano-pore structure of Barnett shale, with its implications in gas production behavior. The innovative approaches include imbibition, tracer diffusion, edge-accessible porosity, porosimetry (mercury intrusion porosimetry, nitrogen and water vapor sorption isotherms, and nuclear magnetic resonance cyroporometry), and imaging (Wood's metal impregnation followed with laser ablation-inductively coupled plasma-mass spectrometry, focused ion beam/scanning electron microscopy, and small angle neutron scattering). Results show that the shale pores are predominantly in the nm size range, with measured median pore-throat diameters about 5 nm. But small pore size is not the major contributor to low gas recovery; rather, the low mass diffusivity appears to be caused by low pore connectivity of Barnett shale. Chemical diffusion in sparsely-connected pore spaces is not well described by classical Fickian behavior; anomalous behavior is suggested by percolation theory, and confirmed by results of imbibition and diffusion tests. Our evolving complementary approaches, with their several advantages and disadvantages, provide a rich toolbox for tackling the nano-pore structure characteristics of shales and other natural rocks.

  1. Formation of nanoporous structures in metallic materials by pulse-periodic laser treatment

    NASA Astrophysics Data System (ADS)

    Murzin, Serguei P.

    2015-09-01

    A method of the formation of nanoporous structures in metallic materials by pulse-periodic laser treatment was developed. In this study, the multicomponent aluminum-iron brass was considered and the nanoporous structure across the entire cross section of the material with a thickness of 50 μm was formed. The method was implemented using a CO2 laser processing unit. The pulse-periodic laser treatment of the Cu-Zn-Al-Fe alloy with pulse frequency of 5 Hz has led to the formation of nanosized cavities due to accumulation of internal stresses during cyclic heating and cooling at high speeds. It was determined that the pores of a channel type with average widths of 80-100 nm are formed in the central region of the heat-affected zone during laser action with thermocycling. When implementing the chosen conditions of the pulse-periodic laser processing, the localness in depth and area of the physical processes occurring in the heat-affected zone is ensured, while maintaining the original properties of the material and the absence of significant deformations in the rest of the volume. This patented process is perspective for the production not only catalysts for chemical reactions, but for ultrafiltration and microfiltration membranes as well.

  2. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure

    PubMed Central

    Goto, Yusuke; Haga, Takanobu; Yanagi, Itaru; Yokoi, Takahide; Takeda, Ken-ichi

    2015-01-01

    DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead. This nanostructure was simply prepared by dip coating in which a substrate with a nanopore was immersed in a silica bead solution and then dried in an oven. As compared with conventional approaches, our novel method is less laborious, simpler to perform and more effective in reducing ssDNA translocation speed. PMID:26559466

  3. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure

    NASA Astrophysics Data System (ADS)

    Goto, Yusuke; Haga, Takanobu; Yanagi, Itaru; Yokoi, Takahide; Takeda, Ken-Ichi

    2015-11-01

    DNA sequencing with a solid-state nanopore requires a reduction of the translocation speeds of single-stranded DNA (ssDNA) over 10 μs/base. In this study, we report that a nanometre-sized bead structure constructed around a nanopore can reduce the moving speed of ssDNA to 270 μs/base by adjusting the diameter of the bead and its surface chemical group. This decelerating effect originates from the strong interaction between ssDNA and the chemical group on the surface of the bead. This nanostructure was simply prepared by dip coating in which a substrate with a nanopore was immersed in a silica bead solution and then dried in an oven. As compared with conventional approaches, our novel method is less laborious, simpler to perform and more effective in reducing ssDNA translocation speed.

  4. Photonic stop bands in quasi-random nanoporous anodic alumina structures

    NASA Astrophysics Data System (ADS)

    Maksymov, Ivan; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2012-10-01

    The existence of photonic stop bands in the self-assembled arrangement of pores in porous anodic alumina structures is investigated by means of rigorous 2D finite-difference time-domain calculations. Self-assembled porous anodic alumina shows a random distribution of domains, each of them with a very definite triangular pattern, constituting a quasi-random structure. The observed stop bands are similar to those of photonic quasicrystals or random structures. As the pores of nanoporous anodic alumina can be infiltrated with noble metals, nonlinear or active media, it makes this material very attractive and cost-effective for applications including inhibition of spontaneous emission, random lasing, LEDs and biosensors.

  5. Structural evolution of nanoporous ultra-low k dielectrics under voltage stress

    NASA Astrophysics Data System (ADS)

    Raja, Archana; Shaw, Thomas; Grill, Alfred; Laibowitz, Robert; Heinz, Tony

    2013-03-01

    High speed interconnects in advanced integrated circuits require ultra-low-k dielectrics. Reduction of the dielectric constant is achieved via incorporation of nanopores in structures containing silicon, carbon, oxygen and hydrogen (SiCOH). We study nanoporous SiCOH films of k=2.5 and thicknesses of 40 - 400 nm. Leakage currents develop in the films under long-term voltage stress, eventually leading to breakdown and chip failure. Previous work* has shown the build-up of trap states as dielectric breakdown progresses. Using FTIR spectroscopy we have tracked the reorganization of the bonds in the SiCOH networks induced by voltage stress. Our results indicate that the cleavage of the Si-C and SiC-O bonds contribute toward increase in the density of bulk trapping states as breakdown is approached. AC conductance and capacitance measurements have also been carried out to describe interfacial and bulk traps and mechanisms. Comparison of breakdown properties of films with differing carbon content will also be presented to further delineate the role of carbon. *Atkin, J.M.; Shaw, T.M.; Liniger, E.; Laibowitz, R.B.; Heinz, T.F. Reliability Physics Symposium (IRPS), 2012 IEEE International Supported by the Semiconductor Research Corporation

  6. Preparation of resveratrol-loaded nanoporous silica materials with different structures

    SciTech Connect

    Popova, Margarita; Szegedi, Agnes; Mavrodinova, Vesselina; Novak Tušar, Natasa; Mihály, Judith; Klébert, Szilvia; Benbassat, Niko; Yoncheva, Krassimira

    2014-11-15

    Solid, nanoporous silica-based spherical mesoporous MCM-41 and KIL-2 with interparticle mesoporosity as well as nanosized zeolite BEA materials differing in morphology and pore size distribution, were used as carriers for the preparation of resveratrol-loaded delivery systems. Two preparation methods have been applied: (i) loading by mixing of resveratrol and mesoporous carrier in solid state and (ii) deposition in ethanol solution. The parent and the resveratrol loaded carriers were characterized by XRD, TEM, N2 physisorption, thermal analysis, and FT-IR spectroscopy. The influence of the support structure on the adsorption capacity and the release kinetics of this poorly soluble compound were investigated. Our results indicated that the chosen nanoporous silica supports are suitable for stabilization of trans-resveratrol and reveal controlled release and ability to protect the supported compound against degradation regardless of loading method. The solid-state dry mixing appears very effective for preparation of drug formulations composed of poorly soluble compound. - Graphical abstract: trans-Resveratrol was stabilized in the pores of BEA zeolite, MCM-41and KIL2 mesoporous silicas. - Highlights: • BEA, KIL-2 and MCM-41 materials were used as carriers for resveratrol loading. • Resveratrol encapsulation in ethanol solution and solid state procedure were applied. • The solid-state preparation appears very effective for stabilization of trans-resveratrol.

  7. Structural tuning of photoluminescence in nanoporous anodic alumina by hard anodization in oxalic and malonic acids

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Alba, Maria; Rahman, Mahbubur M.; Formentín, Pilar; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluis F.

    2012-04-01

    We report on an exhaustive and systematic study about the photoluminescent properties of nanoporous anodic alumina membranes fabricated by the one-step anodization process under hard conditions in oxalic and malonic acids. This optical property is analysed as a function of several parameters (i.e. hard anodization voltage, pore diameter, membrane thickness, annealing temperature and acid electrolyte). This analysis makes it possible to tune the photoluminescent behaviour at will simply by modifying the structural characteristics of these membranes. This structural tuning ability is of special interest in such fields as optoelectronics, in which an accurate design of the basic nanostructures (e.g. microcavities, resonators, filters, supports, etc.) yields the control over their optical properties and, thus, upon the performance of the nanodevices derived from them (biosensors, interferometers, selective filters, etc.)

  8. Observing Changes in the Structure and Oligomerization State of a Helical Protein Dimer Using Solid-State Nanopores.

    PubMed

    Niedzwiecki, David J; Lanci, Christopher J; Shemer, Gabriel; Cheng, Phillip S; Saven, Jeffery G; Drndić, Marija

    2015-09-22

    Protein analysis using solid-state nanopores is challenging due to limitations in bandwidth and signal-to-noise ratio. Recent improvements of those two aspects have made feasible the study of small peptides using solid-state nanopores, which have an advantage over biological counterparts in tunability of the pore diameter. Here, we report on the detection and characterization of peptides as small as 33 amino acids. Silicon nitride nanopores with thicknesses less than 10 nm are used to provide signal-to-noise (S/N) levels up to S/N ∼ 10 at 100 kHz. We demonstrate differentiation of monomer and dimer forms of the GCN4-p1 leucine zipper, a coiled-coil structure well studied in molecular biology, and compare with the unstructured 33-residue monomer. GCN4-p1 is sequence segment associated with homodimerization of the transcription factor General Control Nonderepressible 4 (GCN4), which is involved in the control of amino acid synthesis in yeast. The differentiation between two oligomeric forms demonstrates the capabilities of improved solid-state nanopore platforms to extract structural information involving short peptide structures.

  9. Optically Transparent Wood from a Nanoporous Cellulosic Template: Combining Functional and Structural Performance.

    PubMed

    Li, Yuanyuan; Fu, Qiliang; Yu, Shun; Yan, Min; Berglund, Lars

    2016-04-11

    Optically transparent wood (TW) with transmittance as high as 85% and haze of 71% was obtained using a delignified nanoporous wood template. The template was prepared by removing the light-absorbing lignin component, creating nanoporosity in the wood cell wall. Transparent wood was prepared by successful impregnation of lumen and the nanoscale cellulose fiber network in the cell wall with refractive-index-matched prepolymerized methyl methacrylate (MMA). During the process, the hierarchical wood structure was preserved. Optical properties of TW are tunable by changing the cellulose volume fraction. The synergy between wood and PMMA was observed for mechanical properties. Lightweight and strong transparent wood is a potential candidate for lightweight low-cost, light-transmitting buildings and transparent solar cell windows.

  10. Transition-Metal Doped Ceria Microspheres with Nanoporous Structures for CO Oxidation

    PubMed Central

    Zhou, Lin; Li, Xiaoxiao; Yao, Ze; Chen, Zhuwen; Hong, Mei; Zhu, Rongshu; Liang, Yongye; Zhao, Jing

    2016-01-01

    Catalytic oxidation of carbon monoxide (CO) is of great importance in many different fields of industry. Until now it still remains challenging to use non-noble metal based catalysts to oxidize CO at low temperature. Herein, we report a new class of nanoporous, uniform, and transition metal-doped cerium (IV) oxide (ceria, CeO2) microsphere for CO oxidation catalysis. The porous and uniform microsphere is generated by sacrificed polymer template. Transition-metals, like Cu, Co, Ni, Mn and Fe, were doped into CeO2 microspheres. The combination of hierarchical structure and metal doping afford superior catalytic activities of the doped ceria microspheres, which could pave a new way to advanced non-precious metal based catalysts for CO oxidation. PMID:27030159

  11. A FIB-nanotomography method for accurate 3D reconstruction of open nanoporous structures.

    PubMed

    Mangipudi, K R; Radisch, V; Holzer, L; Volkert, C A

    2016-04-01

    We present an automated focused ion beam nanotomography method for nanoporous microstructures with open porosity, and apply it to reconstruct nanoporous gold (np-Au) structures with ligament sizes on the order of a few tens of nanometers. This method uses serial sectioning of a well-defined wedge-shaped geometry to determine the thickness of individual slices from the changes in the sample width in successive cross-sectional images. The pore space of a selected region of the np-Au is infiltrated with ion-beam-deposited Pt composite before serial sectioning. The cross-sectional images are binarized and stacked according to the individual slice thicknesses, and then processed using standard reconstruction methods. For the image conditions and sample geometry used here, we are able to determine the thickness of individual slices with an accuracy much smaller than a pixel. The accuracy of the new method based on actual slice thickness is assessed by comparing it with (i) a reconstruction using the same cross-sectional images but assuming a constant slice thickness, and (ii) a reconstruction using traditional FIB-tomography method employing constant slice thickness. The morphology and topology of the structures are characterized using ligament and pore size distributions, interface shape distribution functions, interface normal distributions, and genus. The results suggest that the morphology and topology of the final reconstructions are significantly influenced when a constant slice thickness is assumed. The study reveals grain-to-grain variations in the morphology and topology of np-Au. PMID:26906523

  12. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    SciTech Connect

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.

  13. Design and fabrication of a 3D-structured gold film with nanopores for local electric field enhancement in the pore.

    PubMed

    Grant-Jacob, James A; Oo, Swe Zin; Carpignano, Francesca; Boden, Stuart A; Brocklesby, William S; Charlton, Martin D B; Melvin, Tracy

    2016-02-12

    Three-dimensionally structured gold membrane films with nanopores of defined, periodic geometries are designed and fabricated to provide the spatially localised enhancement of electric fields by manipulation of the plasmons inside nanopores. Square nanopores of different size and orientation relative to the pyramid are considered for films in aqueous and air environments, which allow for control of the position of electric fields within the structure. Designs suitable for use with 780 nm light were created. Here, periodic pyramidal cavities produced by potassium hydroxide etching to the {111} planes of (100) silicon substrates are used as templates for creating a periodic, pyramidal structured, free-standing thin gold film. Consistent with the findings from the theoretical studies, a nano-sized hole of 50 nm square was milled through the gold film at a specific location in the cavity to provide electric field control which can subsequently used for enhancement of fluorescence or Raman scattering of molecules in the nanopore.

  14. Single Protein Structural Analysis with a Solid-state Nanopore Sensor

    NASA Astrophysics Data System (ADS)

    Li, Jiali; Golovchenko, Jene; McNabb, David

    2005-03-01

    We report on the use of solid-state nanopore sensors to detect single polypeptides. These solid-state nanopores are fabricated in thin membranes of silicon nitride by ion beam sculpting...[1]. When an electrically biased nanopore is exposed to denatured proteins in ionic solution, discrete transient electronic signals: current blockages are observed. We demonstrate examples of such transient electronic signals for Bovine Serum Albumin (BSA) and human placental laminin M proteins in Guanidine hydrochloride solution, which suggest that these polypeptides are individually translocating through the nanopore during the detecting process. The amplitude of the current blockages is proportional to the bias voltage. No transient current blockages are observed when proteins are not present in the solution. To probe protein-folding state, pH and temperature dependence experiments are performed. The results demonstrate a solid-state nanopore sensor can be used to detect and analyze single polypeptide chains. Similarities and differences with signals obtained from double stranded DNA in a solid-state nanopore and single stranded DNA in a biological nanopore are discussed. [.1] Li, J., D. Stein, C. McMullan, D. Branton, M.J. Aziz, and J.A. Golovchenko, Ion-beam sculpting at nanometre length scales. Nature, 2001. 412(12 July): p. 166-169.

  15. Voltage-Gated Hydrophobic Nanopores

    SciTech Connect

    Lavrik, Nickolay V

    2011-01-01

    Hydrophobicity is a fundamental property that is responsible for numerous physical and biophysical aspects of molecular interactions in water. Peculiar behavior is expected for water in the vicinity of hydrophobic structures, such as nanopores. Indeed, hydrophobic nanopores can be found in two distinct states, dry and wet, even though the latter is thermodynamically unstable. Transitions between these two states are kinetically hindered in long pores but can be much faster in shorter pores. As it is demonstrated for the first time in this paper, these transitions can be induced by applying a voltage across a membrane with a single hydrophobic nanopore. Such voltage-induced gating in single nanopores can be realized in a reversible manner through electrowetting of inner walls of the nanopores. The resulting I-V curves of such artificial hydrophobic nanopores mimic biological voltage-gated channels.

  16. Fabrication of a high-density nano-porous structure on polyimide by using ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Won; Jeong, Myung Yung; Lee, Sang-Mae; Shin, Bo Sung

    2016-03-01

    A new approach for fabricating a high-density nano-porous structure on polyimide (PI) by using a 355-nm UV laser is presented here. When PI was irradiated by using a laser, debris that had electrical conductivity was generated. Accordingly, that debris caused electrical defects in the field of electronics. Thus, many researchers have tried to focus on a clean processing without debris. However, this study focused on forming a high density of debris so as to fabricate a nano-porous structure consisting of nanofibers on the PI film. A PI film with closed pores and open pores was successfully formed by using a chemical blowing agent (azodicarbonamide, CBA) in an oven. Samples were precured at 130 °C and cured at 205 °C in sequence so that the closed pores might not coalesce in the film. When the laser irradiated the PI film with closed pores, nanofibers were generated because polyimide was not completely decomposed by photochemical ablation. Our results indicated that a film with micro-closed pores, in conjunction with a 355-nm pulsed laser, can facilitate the fabrication of a high-density nano-porous structure.

  17. Microfluidic synthesis of monodisperse nanoporous oxide particles and control of hierarchical pore structure.

    PubMed

    Carroll, Nick J; Crowder, Peter F; Pylypenko, Svitlana; Patterson, Wendy; Ratnaweera, Dilru R; Perahia, Dvora; Atanassov, Plamen; Petsev, Dimiter N

    2013-05-01

    Particles with hierarchical porosity can be formed by templating silica microparticles with a specially designed surfactant micelle/oil nanoemulsion mixture. The nanoemulsion oil droplet and micellar dimensions determine the pore size distribution: one set of pores with diameters of tens of nanometers coexisting with a second subset of pores with diameters of single nanometers. Further practical utility of these nanoporous particles requires precise tailoring of the hierarchical pore structure. In this synthesis study, the particle nanostructure is tuned by adjusting the oil, water, and surfactant mixture composition for the controlled design of nanoemulsion-templated features. We also demonstrate control of the size distribution and surface area of the smaller micelle-templated pores as a consequence of altering the hydrophobic chain length of the molecular surfactant template. Moreover, a microfluidic system is designed to process the low interfacial system for fabrication of monodisperse porous particles. The ability to direct the assembly of template nanoemulsion and micelle structures creates new opportunities to engineer hierarchically porous particles for utility as electrocatalysts for fuel cells, chromatography separations, drug delivery vehicles, and other applications. PMID:23387998

  18. Impedance spectroscopy of highly ordered nano-porous electrodes based on Au-AAO (anodic aluminum oxide) structure.

    PubMed

    Ahn, Jaehwan; Cho, Sungbo; Min, Junhong

    2013-11-01

    Electrochemical measurements using the microelectrodes are increasingly utilized for the label-free detection of the small amount of biological materials such as DNA, protein, and cells. However, the interfacial electrode impedance increases and may hinder the detection of weak signals as the size of electrode decreases. To enhance the measurement sensitivity while reducing the electrode size, in this study, microelectrodes employing a nanoporous structure were fabricated and characterized by using electrical impedance spectroscopy. We made the highly ordered honeycomb nanoporous structure of Anodic Aluminum Oxide (AAO) by electrochemical anodizing and formed Au layer on the surface of AAO (Au/AAO) by electroless Au plating method. The electrical characteristics of the fabricated Au/AAO electrodes were evaluated by using de Levie's model derived for the pore electrodes. As a result, the interfacial electrode impedance of the fabricated Au/AAO electrodes was 2-3 order lower than the value of the planar electrodes at frequencies below 1 kHz. It implies this nanoporous electrode could be directly applied to label free detection of biomaterials.

  19. Structure of Nanoporous Biocarbon for Hydrogen Storage as Determined by Small Angle X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Wood, Mikael; Burress, J.; Pobst, J.; Carter, S.; Pfeifer, P.; Wexler, C.; Shah, P.; Suppes, G.

    2008-03-01

    As a member of the Alliance for Collaborative Research in Alternative Fuel Technology (ALL-CRAFT) our research group studies the properties of nanoporous biocarbon, produced from waste corn cob, with the goal of achieving the Department of Energy's gravimetric and volumetric standards for both hydrogen and methane gas storage. Small Angle X-Ray Scattering (SAXS) is a valuable tool in our investigation of the geometry of the pore space in our carbon samples. In this talk, we will compare the experimental SAXS data with theoretical results for various pore geometries to determine which pore models are consistent with experiment. Using data from nitrogen adsorption isotherms, along with SAXS, yields significant structural information about the pore space. This analysis should allow us to fully optimize our production process and to achieve the DOE's target storage capacities. This work supported by: 1. National Science Foundation (PFI-0438469) 2. U.S. Department of Education (P200A040038) 3. U.S. Department of Energy (DE-AC02-06CH11357) 4. University of Missouri (RB-06-040) 5. U.S. Department of Defense (N00164-07-P-1306) 6. U.S. Department of Energy (DE-FG02-07ER46411)

  20. Thermal Investigations of Periodically Nanoporous Si Films -- The Impact of Structure Sizes and Pore-Edge Amorphization

    NASA Astrophysics Data System (ADS)

    Xu, Dongchao; Zhao, Hongbo; Hao, Qing

    In recent years, nanoporous Si films have been intensively studied as promising thermoelectric materials, which mainly benefits from their dramatically reduced lattice thermal conductivity kL and bulk-like electrical properties.1,2 Despite many encouraging results, challenges still exist in the theoretical explanation of the observed low kL.3 Existing studies mainly attribute the low kL to 1) phonon bandstructure modification by coherent phonon processes in a periodic structure (phononic effects), and/or 2) pore-edge defects. In this work, temperature-dependent kL is measured for nanoporous Si films with different pore sizes and spacing to compare with model predictions. For systematic studies, two fabrication techniques are used to drill the nanopores: 1) reactive ion etching, and 2) a focus ion beam to introduce more pore-edge defects. The results from this work will provide guidance for phonon engineering in general materials with periodic interfaces or boundaries. References: 1. Tang et al., Nano Letters 10, 4279-4283 (2010). 2. Yu et al., Nature Nanotechnology 5, 718-721 (2010). 3. Cahill et al., Applied Physics Reviews 1, 011305/1-45 (2014) Nanoscale thermal transport. II. 2003-2012.

  1. Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores

    DOE PAGESBeta

    Greathouse, Jeffery A.; Hart, David; Bowers, Geoffrey M.; Kirkpatrick, R. James; Cygan, Randall Timothy

    2015-07-20

    In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay–water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water andmore » ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. Additionally, a comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but ~1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. Thus, the presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.« less

  2. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤0.6 nm along the length of the molecule. PMID:23836648

  3. Molecule-hugging graphene nanopores.

    PubMed

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A; Branton, Daniel

    2013-07-23

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule's outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤ 0.6 nm along the length of the molecule. PMID:23836648

  4. Mechanical testing of pyrolysed poly-furfuryl alcohol nanofibres

    NASA Astrophysics Data System (ADS)

    Samuel, B. A.; Haque, M. A.; Yi, Bo; Rajagopalan, R.; Foley, H. C.

    2007-03-01

    We present experimental results on the characterization of the mechanical properties of pyrolysed poly-furfuryl alcohol (PFA) nanofibres. Specifically, Young's modulus and the fracture strain of the nanofibres were measured by performing uni-axial tensile experiments on individual nanofibres in situ in a scanning electron microscope (SEM) using a microfabricated tensile testing device. The nanofibres tested varied in diameter from 150 to 300 nm. Young's modulus is observed to be within the 1.3-2 GPa range.

  5. Development of nanoporous structure in carbons by chemical activation with zinc chloride.

    PubMed

    Rajbhandari, Rinita; Shrestha, Lok Kumar; Pokharel, Bhadra Prasad; Pradhananga, Raja Ram

    2013-04-01

    Series of activated carbons (ACs) have been prepared from Lapsi (Choerospondias axillaris) seed powder (LSP) by chemical activation with zinc chloride (ZnCI2) and the effects of ZnCl2 impregnation ratio, carbonization time, and precursor sources on the structure and properties of ACs have been systematically investigated. Carbonization was carried out at 400 degrees C and the ratio of LSP and ZnCI2 was varied from LSP:ZnCl2 = 1:0.25 (AC-0.25), 1:0.50 (AC-0.50) 1:1 (AC-1), 1:2 (AC-2), and 1:4 (AC-4). The ACs were characterized by Fourier transform-infrared (FTIR) spectroscopy, Raman scattering, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Surface properties (effective surface areas, pore volumes, and pore size distributions) were studied by nitrogen adsorption-desorption measurements. The electrochemical and vapor sensing properties were investigated by cyclic voltammetry, and quartz crystal microbalance (QCM) method, respectively. All the ACs are amorphous materials containing oxygenated surface functional groups and having nanoporous (microporous and mesoporous) structures. We found that surface properties depend on the LSP:ZnCI2 ratio, carbonization time, and also on the precursor type. The effective surface area increased significantly with increasing LSP:ZnCI2 ratio from 1:0.25 to 1:0.5 and then remain apparently constant. However, total pore volume increased continuously with ZnCI2 ratio. Increase in the carbonization time above 4 h decreased both the surface area and pore volume. ACs prepared from bamboo and coconut shell showed better surface properties compared to AC prepared from sugarcane; surface area and pore volume of the former systems are nearly double of the later system. AC derived from LSP (AC-4) showed excellent electrochemical performance giving specific capacitance value of 328 F/g in 1 M H2SO4 solution demonstrating the potential use of this material for supercapacitor electrodes. Our

  6. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  7. Structure and photoluminescent properties of a ZnS/Si nanoheterostructure based on a silicon nanoporous pillar array

    NASA Astrophysics Data System (ADS)

    Xu, Hai Jun; Li, Xin Jian

    2009-07-01

    A silicon nanoporous pillar array (Si-NPA) is a silicon hierarchical structure with regularly patterned surface morphology. Through a heterogeneous reaction process, the nanocrystallites of zinc sulfide (nc-ZnS) were grown onto the Si-NPA and a uniquely patterned core/shell nanoheterostructure array (ZnS/Si-NPA) was obtained. The pillars of the ZnS/Si-NPA were constructed by an outermost shell of a nc-ZnS membrane, an innermost core of a nanoporous silicon pillar and an interface with nc-ZnS embedded into an amorphous SiO2 matrix. The photoluminescence (PL) spectrum of the ZnS/Si-NPA showed that in addition to the two blue PL bands peaked at ~412 and ~491 nm observed in the Si-NPA, a green PL band at ~537 nm was observed in the ZnS/Si-NPA when it was excited by 300 nm ultraviolet light. Based on these experimental results, the two blue PL bands of the ZnS/Si-NPA came from a Si-NPA substrate, while the green PL band was attributed to the emission from the surface states of sulfur vacancies of nc-ZnS. The broad PL from blue to red in the visible region realized in the ZnS/Si-NPA might be applied in solid-state lighting devices with white light emission.

  8. Silver nanowires electrodeposited into nanoporous templates: Study of the influence of sizes on crystallinity and structural properties

    NASA Astrophysics Data System (ADS)

    Dalchiele, E. A.; Marotti, R. E.; Cortes, A.; Riveros, G.; Gómez, H.; Martínez, L.; Romero, R.; Leinen, D.; Martin, F.; Ramos-Barrado, J. R.

    2007-03-01

    In this work, results on the study of the influence of silver nanowire dimensions on the crystallinity and structural properties are presented. Silver nanowire arrays with high aspect ratios were prepared in the hollow structures of nanoporous templates using potentiostatic electrodeposition. Two types of material were employed as a template: commercial porous anodic aluminum oxide (with a mean pore diameter of 180 nm) and track-etched polycarbonate membranes (with a mean pore diameter of 15, 30 and 80 nm). Characterization of the silver nanowires has been done by EDS, XRD, TEM and electron diffraction. The degree of preferred crystallographic orientation (along the (1 1 1), (2 0 0) or (2 2 0) crystallographic planes) and the crystallite size of the silver nanowires as a function of template pore diameter are given and discussed.

  9. Stabilization of graphene nanopore

    PubMed Central

    Lee, Jaekwang; Yang, Zhiqing; Zhou, Wu; Pennycook, Stephen J.; Pantelides, Sokrates T.; Chisholm, Matthew F.

    2014-01-01

    Graphene is an ultrathin, impervious membrane. The controlled introduction of nanoscale pores in graphene would lead to applications that involve water purification, chemical separation, and DNA sequencing. However, graphene nanopores are unstable against filling by carbon adatoms. Here, using aberration-corrected scanning transmission electron microscopy and density-functional calculations, we report that Si atoms stabilize graphene nanopores by bridging the dangling bonds around the perimeter of the hole. Si‐passivated pores remain intact even under intense electron beam irradiation, and they were observed several months after the sample fabrication, demonstrating that these structures are intrinsically robust and stable against carbon filling. Theoretical calculations reveal the underlying mechanism for this stabilization effect: Si atoms bond strongly to the graphene edge, and their preference for tetrahedral coordination forces C adatoms to form dendrites sticking out of the graphene plane, instead of filling the nanopore. Our results provide a novel way to develop stable nanopores, which is a major step toward reliable graphene-based molecular translocation devices. PMID:24821802

  10. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material

    NASA Astrophysics Data System (ADS)

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-09-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving.

  11. Influence of Nanopore Shapes on Thermal Conductivity of Two-Dimensional Nanoporous Material.

    PubMed

    Huang, Cong-Liang; Huang, Zun; Lin, Zi-Zhen; Feng, Yan-Hui; Zhang, Xin-Xin; Wang, Ge

    2016-12-01

    The influence of nanopore shapes on the electronic thermal conductivity (ETC) was studied in this paper. It turns out that with same porosity, the ETC will be quite different for different nanopore shapes, caused by the different channel width for different nanopore shapes. With same channel width, the influence of different nanopore shapes can be approximately omitted if the nanopore is small enough (smaller than 0.5 times EMFP in this paper). The ETC anisotropy was discovered for triangle nanopores at a large porosity with a large nanopore size, while there is a similar ETC for small pore size. It confirmed that the structure difference for small pore size may not be seen by electrons in their moving. PMID:27671017

  12. Color-tunable emission of quantum dots via strong exciton-plasmon coupling in nanoporous gold structure at room temperature.

    PubMed

    Zhao, X; Chen, L; Chen, J; Shi, W; Liu, F

    2016-09-01

    We experimentally demonstrate the color-tunable emission of CdTe quantum dots (QDs) enabled by strongly coupling the QDs to the nanoporous gold (NPG) structure at room temperature. By manipulating the concentrations of the QDs or the excitation flux of the laser, the coupling strength between the excitons in QDs and the plasmons in NPG is controlled, resulting in a large Rabi splitting at the magnitude of hundreds of meV and a photoluminescence (PL) tuning distinguishable by the naked eye. In addition, such large PL tuning is enabled not only for the strong coupling occurring on resonance but also off resonance. We believe that our study offers a new approach towards designing and fabricating novel opto-electronic devices where dynamical and large spectral tuning of QD PL emission is desired. PMID:27607629

  13. Optimized nanoporous materials.

    SciTech Connect

    Braun, Paul V.; Langham, Mary Elizabeth; Jacobs, Benjamin W.; Ong, Markus D.; Narayan, Roger J.; Pierson, Bonnie E.; Gittard, Shaun D.; Robinson, David B.; Ham, Sung-Kyoung; Chae, Weon-Sik; Gough, Dara V.; Wu, Chung-An Max; Ha, Cindy M.; Tran, Kim L.

    2009-09-01

    Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.

  14. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  15. Guest tunable structure and spin crossover properties in a nanoporous coordination framework material.

    SciTech Connect

    Neville, S. M.; Halder, G. J.; Chapman, K. W.; Duriska, M. B.; Moubaraki, B.; Murray, K. S.; Kepert, C. J.

    2009-08-11

    The electronic switching properties of the nanoporous spin crossover framework [Fe(NCS){sub 2}(bpbd){sub 2}] {center_dot} x(guest), SCOF-2, can be rationally manipulated via sorption of a range of molecular guests (acetone, ethanol, methanol, propanol, 1-acetonitrile) into the 1-D channels of this material. Pronounced changes to the spin crossover properties are related directly to the steric and electronic influence of the individual guests: the degree of lattice cooperativity, as reflected in the abruptness of the transition and presence of hysteresis, is strongly influenced by the presence of cooperative host-guest interactions, and the temperature of the transition varies with guest polarity through a proposed electrostatic interaction.

  16. Atomic observation of catalysis-induced nanopore coarsening of nanoporous gold.

    PubMed

    Fujita, Takeshi; Tokunaga, Tomoharu; Zhang, Ling; Li, Dongwei; Chen, Luyang; Arai, Shigeo; Yamamoto, Yuta; Hirata, Akihiko; Tanaka, Nobuo; Ding, Yi; Chen, Mingwei

    2014-03-12

    Dealloyed nanoporous metals have attracted much attention because of their excellent catalytic activities toward various chemical reactions. Nevertheless, coarsening mechanisms in these catalysts have not been experimentally studied. Here, we report in situ atomic-scale observations of the structural evolution of nanoporous gold during catalytic CO oxidation. The catalysis-induced nanopore coarsening is associated with the rapid diffusion of gold atoms at chemically active surface steps and the surface segregation of residual Ag atoms, both of which are stimulated by the chemical reaction. Our observations provide the first direct evidence that planar defects hinder nanopore coarsening, suggesting a new strategy for developing structurally stable and highly active heterogeneous catalysts.

  17. A nanoporous gold membrane for sensing applications

    PubMed Central

    Oo, Swe Zin; Silva, Gloria; Carpignano, Francesca; Noual, Adnane; Pechstedt, Katrin; Mateos, Luis; Grant-Jacob, James A.; Brocklesby, Bill; Horak, Peter; Charlton, Martin; Boden, Stuart A.; Melvin, Tracy

    2016-01-01

    Design and fabrication of three-dimensionally structured, gold membranes containing hexagonally close-packed microcavities with nanopores in the base, are described. Our aim is to create a nanoporous structure with localized enhancement of the fluorescence or Raman scattering at, and in the nanopore when excited with light of approximately 600 nm, with a view to provide sensitive detection of biomolecules. A range of geometries of the nanopore integrated into hexagonally close-packed assemblies of gold micro-cavities was first evaluated theoretically. The optimal size and shape of the nanopore in a single microcavity were then considered to provide the highest localized plasmon enhancement (of fluorescence or Raman scattering) at the very center of the nanopore for a bioanalyte traversing through. The optimized design was established to be a 1200 nm diameter cavity of 600 nm depth with a 50 nm square nanopore with rounded corners in the base. A gold 3D-structured membrane containing these sized microcavities with the integrated nanopore was successfully fabricated and ‘proof of concept’ Raman scattering experiments are described. PMID:26973809

  18. Scaling laws of nanoporous gold under uniaxial compression: Effects of structural disorder on the solid fraction, elastic Poisson's ratio, Young's modulus and yield strength

    NASA Astrophysics Data System (ADS)

    Roschning, B.; Huber, N.

    2016-07-01

    In this work the relationship between the structural disorder and the macroscopic mechanical behavior of nanoporous gold under uniaxial compression was investigated, using the finite element method. A recently proposed model based on a microstructure consisting of four-coordinated spherical nodes interconnected by cylindrical struts, whose node positions are randomly displaced from the lattice points of a diamond cubic lattice, was extended. This was done by including the increased density as result of the introduced structural disorder. Scaling equations for the elastic Poisson's ratio, the Young's modulus and the yield strength were determined as functions of the structural disorder and the solid fraction. The extended model was applied to identify the elastic-plastic behavior of the solid phase of nanoporous gold. It was found, that the elastic Poisson's ratio provides a robust basis for the calibration of the structural disorder. Based on this approach, a systematic study of the size effect on the yield strength was performed and the results were compared to experimental data provided in literature. An excellent agreement with recently published results for polymer infiltrated samples of nanoporous gold with varying ligament size was found.

  19. Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Sulka, Grzegorz D.; Ciepiela, Eryk; Jaskuła, Marian

    2014-02-01

    Anodic porous alumina layers were fabricated by a two-step self-organized anodization in 0.3 M oxalic acid under various anodizing potentials ranging from 30 to 60 V at two different temperatures (10 and 17 ∘C). The effect of anodizing conditions on structural features and pore arrangement of AAO was investigated in detail by using the dedicated executable publication combined with ImageJ software. With increasing anodizing potential, a linear increase of the average pore diameter, interpore distance, wall thickness and barrier layer thickness, as well as a decrease of the pore density, were observed. In addition, the higher pore diameter and porosity values were obtained for samples anodized at the elevated temperature, independently of the anodizing potential. A degree of pore order was investigated on the basis of Delaunay triangulations (defect maps) and calculation of pair distribution or angle distribution functions (PDF or ADF), respectively. All methods confirmed that in order to obtain nanoporous alumina with the best, hexagonal pore arrangement, the potential of 40 V should be applied during anodization. It was confirmed that the dedicated executable publication can be used to a fast and complex analysis of nanopore arrangement and structural features of nanoporous oxide layers.

  20. Nanopore-CMOS Interfaces for DNA Sequencing.

    PubMed

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  1. Nanopore-CMOS Interfaces for DNA Sequencing

    PubMed Central

    Magierowski, Sebastian; Huang, Yiyun; Wang, Chengjie; Ghafar-Zadeh, Ebrahim

    2016-01-01

    DNA sequencers based on nanopore sensors present an opportunity for a significant break from the template-based incumbents of the last forty years. Key advantages ushered by nanopore technology include a simplified chemistry and the ability to interface to CMOS technology. The latter opportunity offers substantial promise for improvement in sequencing speed, size and cost. This paper reviews existing and emerging means of interfacing nanopores to CMOS technology with an emphasis on massively-arrayed structures. It presents this in the context of incumbent DNA sequencing techniques, reviews and quantifies nanopore characteristics and models and presents CMOS circuit methods for the amplification of low-current nanopore signals in such interfaces. PMID:27509529

  2. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  3. Dynamical scaling properties of nanoporous undoped and Sb-doped SnO2 supported thin films during tri- and bidimensional structure coarsening

    NASA Astrophysics Data System (ADS)

    Santilli, C. V.; Rizzato, A. P.; Pulcinelli, S. H.; Craievich, A. F.

    2007-05-01

    The coarsening of the nanoporous structure developed in undoped and 3% Sb-doped SnO2 sol-gel dip-coated films deposited on a mica substrate was studied by time-resolved small-angle x-ray scattering (SAXS) during in situ isothermal treatments at 450 and 650°C . The time dependence of the structure function derived from the experimental SAXS data is in reasonable agreement with the predictions of the statistical theory of dynamical scaling, thus suggesting that the coarsening process in the studied nanoporous structures exhibits dynamical self-similar properties. The kinetic exponents of the power time dependence of the characteristic scaling length of undoped SnO2 and 3% Sb-doped SnO2 films are similar (α≈0.09) , this value being invariant with respect to the firing temperature. In the case of undoped SnO2 films, another kinetic exponent, α' , corresponding to the maximum of the structure function was determined to be approximately equal to three times the value of the exponent α , as expected for the random tridimensional coarsening process in the dynamical scaling regime. Instead, for 3% Sb-doped SnO2 films fired at 650°C , we have determined that α'≈2α , thus suggesting a bidimensional coarsening of the porous structure. The analyses of the dynamical scaling functions and their asymptotic behavior at high q ( q being the modulus of the scattering vector) provided additional evidence for the two-dimensional features of the pore structure of 3% Sb-doped SnO2 films. The presented experimental results support the hypotheses of the validity of the dynamic scaling concept to describe the coarsening process in anisotropic nanoporous systems.

  4. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  5. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  6. Alkylpyrroles in a kerogen pyrolysate: Evidence for abundant tetrapyrrole pigments

    SciTech Connect

    Sinninghe Damste, J.S.; De Leeuw, J.W. ); Eglinton, T.I. Woods Hole Oceanographic Institution, MA )

    1992-04-01

    C{sub 1}-C{sub 6} alkylated pyrroles were identified as major constituents of the flash pyrolysate of a kerogen from the Miocene Monterey Formation (California, USA) using gas chromatography with an N-selective detector and gas chromatography-mass spectrometry. The major alkylpyrroles identified are 2,3,4-trimethylpyrrole; 3-ethyl-4-methylpyrrole; 2,3-dimethyl-4-ethylpyrrole; 2,4-dimethyl-3-ethylpyrrole; and 3-ethyl-2,4,5-trimethylpyrrole. The alkyl substitution patterns of the alkylpyrroles strongly suggest an origin from tetrapyrrole pigments. Evidence for this hypothesis was provided by flash pyrolysis of the tetrapyrrole pigments chlorophyll-a, protoporphyrin-IX dimethyl ester, and bilirubin, which yielded alkylpyrroles with a similar isomer distribution. Quantitative pyrolysis using a polymer internal standard of both the kerogen and the tetrapyrrole pigments revealed that ca. 5% of the kerogen consists of macromolecularly bound tetrapyrrole pigments or that this fraction contains ca. 5% insoluble tetrapyrrole salts. These results show that in specific cases tetrapyrrole pigments can contribute significantly to the sedimentary organic matter.

  7. Struvite pyrolysate recycling combined with dry pyrolysis for ammonium removal from wastewater.

    PubMed

    Yu, Rongtai; Geng, Jinju; Ren, Hongqiang; Wang, Yanru; Xu, Ke

    2013-03-01

    The dry pyrolysis of magnesium ammonium phosphate (MAP) with NaOH powder for ammonium release was investigated, as well as the utility of MAP pyrolysate recycling. The identities of the MAP pyrolysate and its derivatives were experimentally validated. The results showed that the pyrolysate was amorphous magnesium hydrogen phosphate (MgHPO4) and magnesium pyrophosphate (Mg2P2O7). The best molar ratio of sodium hydroxide (NaOH) powder to ammonium was 1:1, at 110°C for 3h. The optimum pH for pyrolysate recycling was 9.5. The ammonia removal ratio could be maintained above 80% with MAP pyrolysate recycling. Seed crystal inoculation increased the rate of MAP crystallization by 20.86%, as well as the MAP grain size (2.08nm with seeding versus 1.72nm without). MAP particle size with NaOH treatment decreased: d(0.5)=19.34μm versus d(0.5)=30.35μm for direct pyrolysis. The results demonstrated that crystal growth was controlled by adding NaOH during MAP pyrolysis. PMID:23395767

  8. Transformation of self-assembly of a TTF derivative at the 1-phenyloctane/HOPG interface studied by STM-from a nanoporous network to a linear structure.

    PubMed

    Xu, Jing; Xiao, Xunwen; Deng, Ke; Zeng, Qingdao

    2016-01-21

    The self-assembly of a tetrathiafulvalene (TTF) derivative (EDTTF) and a 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) heterobilayer nanostructure at the 1-phenyloctane/HOPG interface under ambient conditions has been studied by scanning tunneling microscopy (STM). EDTTF and TCDB could co-assemble into a brand new hexagonal network with one of the largest nano-cavities. Finally, the nanoporous network would transform into a more stable linear structure. Density functional theory (DFT) calculations have been performed to reveal the formation mechanism.

  9. Watching Single Proteins Using Engineered Nanopores

    PubMed Central

    Movileanu, Liviu

    2014-01-01

    Recent studies in the area of single-molecule detection of proteins with nanopores show a great promise in fundamental science, bionanotechnology and proteomics. In this mini-review, I discuss a comprehensive array of examinations of protein detection and characterization using protein and solid-state nanopores. These investigations demonstrate the power of the single-molecule nanopore measurements to reveal a broad range of functional, structural, biochemical and biophysical features of proteins, such as their backbone flexibility, enzymatic activity, binding affinity as well as their concentration, size and folding state. Engineered nanopores in organic materials and in inorganic membranes coupled with surface modification and protein engineering might provide a new generation of sensing devices for molecular biomedical diagnosis. PMID:24370252

  10. Transformation of self-assembly of a TTF derivative at the 1-phenyloctane/HOPG interface studied by STM--from a nanoporous network to a linear structure

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Xiao, Xunwen; Deng, Ke; Zeng, Qingdao

    2016-01-01

    The self-assembly of a tetrathiafulvalene (TTF) derivative (EDTTF) and a 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) heterobilayer nanostructure at the 1-phenyloctane/HOPG interface under ambient conditions has been studied by scanning tunneling microscopy (STM). EDTTF and TCDB could co-assemble into a brand new hexagonal network with one of the largest nano-cavities. Finally, the nanoporous network would transform into a more stable linear structure. Density functional theory (DFT) calculations have been performed to reveal the formation mechanism.The self-assembly of a tetrathiafulvalene (TTF) derivative (EDTTF) and a 1,3,5-tris(10-carboxydecyloxy)-benzene (TCDB) heterobilayer nanostructure at the 1-phenyloctane/HOPG interface under ambient conditions has been studied by scanning tunneling microscopy (STM). EDTTF and TCDB could co-assemble into a brand new hexagonal network with one of the largest nano-cavities. Finally, the nanoporous network would transform into a more stable linear structure. Density functional theory (DFT) calculations have been performed to reveal the formation mechanism. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07345f

  11. Structural and optical characterization of fresh water diatoms (Cyclotella sp.): nature's nanoporous silica manufacturing plant

    NASA Astrophysics Data System (ADS)

    Mazumder, Nirmal; Gogoi, Ankur; Buragohain, Alak K.; Ahmed, Gazi A.; Choudhury, Amarjyoti

    2014-02-01

    Siliceous frustules were extracted from a representative fresh water diatom species (Cyclotella sp.) by treating with aqueous hydrochloric (HCl) acid. The structural characterizations of cleaned frustules were examined by scanning electron microscope (SEM). The microscopy images showed that the diatoms have a regular circular shape and are of almost equal size (average length is 9μm and average width is 3 μm). From energy dispersive X -ray spectroscopy (SEM-EDS) spot analysis it was confirmed that the frustules isolated from diatoms are composed mainly of silicon in the form of amorphous silica (SiO2). The bond information of chemical substances of diatom frustules was carried out at ambient temperature by means of Fourier Transform Infrared (FTIR) Spectroscopy. FTIR spectrum as recorded in transmittance mode showed the characteristic peaks for diatom biosilica, including for Si-O-Si stretching vibration at 1057 and 776 cm-1. Photoluminescence (PL) measurements of diatom frustules were performed at room temperature and it was observed that they emitted strong blue PL centered at 440nm when excited with ultraviolet (UV) radiation.

  12. Designing a hydrophobic barrier within biomimetic nanopores.

    PubMed

    Trick, Jemma L; Wallace, E Jayne; Bayley, Hagan; Sansom, Mark S P

    2014-11-25

    Nanopores in membranes have a range of potential applications. Biomimetic design of nanopores aims to mimic key functions of biological pores within a stable template structure. Molecular dynamics simulations have been used to test whether a simple β-barrel protein nanopore can be modified to incorporate a hydrophobic barrier to permeation. Simulations have been used to evaluate functional properties of such nanopores, using water flux as a proxy for ionic conductance. The behavior of these model pores has been characterized as a function of pore size and of the hydrophobicity of the amino acid side chains lining the narrow central constriction of the pore. Potential of mean force calculations have been used to calculate free energy landscapes for water and for ion permeation in selected models. These studies demonstrate that a hydrophobic barrier can indeed be designed into a β-barrel protein nanopore, and that the height of the barrier can be adjusted by modifying the number of consecutive rings of hydrophobic side chains. A hydrophobic barrier prevents both water and ion permeation even though the pore is sterically unoccluded. These results both provide insights into the nature of hydrophobic gating in biological pores and channels, and furthermore demonstrate that simple design features may be computationally transplanted into β-barrel membrane proteins to generate functionally complex nanopores.

  13. CONDENSED MATTER: STRUCTURE, THERMAL AND MECHANICAL PROPERTIES: Nanoporous AlN particle production from a solid-state metathesis reaction

    NASA Astrophysics Data System (ADS)

    Yan, Guo-Jun; Chen, Guang-De; Wu, Ye-Long

    2009-07-01

    This paper reports that nanoporous AlN particles are synthesized from solid-state metathesis reactions using AlCl3 and Mg3N2 as reactants. The samples are characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), selected area electron diffraction, high-resolution transmission electron microscopy (HRTEM), ultraviolet-visible (UV-vis) absorption spectroscopy and Raman spectroscopy. The results show that samples with walls 10 nm in thickness and pores between 10 nm and 100 nm in diameter were produced successfully from these reactions, and their band gap and vibration modes agree with those of AlN bulk crystal.

  14. Nanoporous polymer electrolyte

    DOEpatents

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  15. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  16. New polyimide-polyoxometalate nanocomposite materials with nanoporous structure and ultra-low dielectric constant, formed in supercritical carbon dioxide

    NASA Astrophysics Data System (ADS)

    Keshtov, Mukhamed; Said-Galiev, Ernest; Kochurov, Vitaliy; Khokhlov, Alexei

    2012-07-01

    Vinyltrimethoxysilane interaction with K8(SiW11O39) obtained polyoxometalate (Bu4N)4[SiW11O39{(CH2 = CH-Si)2O}](SiW11-CH = CH2). Synthesized two new fluorinated aromatic polyimide in two stages with a dielectric constant (k) in the range 2.70-2.75. On the basis of poly(amic acids) and a mixture of thermal imidization polyoxometalate obtained polyimide/polyoxometalate composite film. It was found that with increasing polyoxometalate in a mixture of 0 to 20 wt% the dielectric constant decreases from 2,75 to 1,70. Nanoporous materials with ultra-low dielectric constant in the range 1.31-1.64 in combination with high thermal (T10% = 536-570°C in N2) and mechanical characteristics using supercritical carbon dioxide have been developed on the basis of the obtained polyimide/polyoxometalate composite films.

  17. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    PubMed

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered.

  18. Water behaviour in nanoporous aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel

    2010-07-21

    This paper briefly reviews results of molecular dynamics simulation studies of water confined in nanoporous aluminosilicates. The behaviour of confined molecules is shown to be influenced by the nature of the host structure, and the size and the topology of the voids. For some of the systems discussed the ambiguity in results of different modelling studies call for the use of extended potential and structural models. Thus, the use of polarizable force fields was shown to be necessary to take into account the variation of the molecular dipole of confined molecules in different environments. PMID:21399287

  19. Water behaviour in nanoporous aluminosilicates.

    PubMed

    Smirnov, Konstantin S; Bougeard, Daniel

    2010-07-21

    This paper briefly reviews results of molecular dynamics simulation studies of water confined in nanoporous aluminosilicates. The behaviour of confined molecules is shown to be influenced by the nature of the host structure, and the size and the topology of the voids. For some of the systems discussed the ambiguity in results of different modelling studies call for the use of extended potential and structural models. Thus, the use of polarizable force fields was shown to be necessary to take into account the variation of the molecular dipole of confined molecules in different environments.

  20. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study.

    PubMed

    Garcia-Fandiño, Rebeca; Piñeiro, Ángel; Trick, Jemma L; Sansom, Mark S P

    2016-03-22

    A macromolecular nanopore inserted into a membrane may perturb the dynamic organization of the surrounding lipid bilayer. To better understand the nature of such perturbations, we have undertaken a systematic molecular dynamics simulation study of lipid bilayer structure and dynamics around three different classes of nanopore: a carbon nanotube, three related cyclic peptide nanotubes differing in the nature of their external surfaces, and a model of a β-barrel nanopore protein. Periodic spatial distributions of several lipid properties as a function of distance from the nanopore were observed. This was especially clear for the carbon nanotube system, for which the density of lipids, the bilayer thickness, the projection of lipid head-to-tail vectors onto the membrane plane, and lipid lateral diffusion coefficients exhibited undulatory behavior as a function of the distance from the surface of the channel. Overall, the differences in lipid behavior as a function of the nanopore structure reveal local adaptation of the bilayer structure and dynamics to different embedded nanopore structures. Both the local structure and dynamic behavior of lipids around membrane-embedded nanopores are sensitive to the geometry and nature of the outer surface of the macromolecule/molecular assembly forming the pore.

  1. Entropic cages for trapping DNA near a nanopore.

    PubMed

    Liu, Xu; Mihovilovic Skanata, Mirna; Stein, Derek

    2015-01-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules. PMID:25648853

  2. Entropic cages for trapping DNA near a nanopore

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Skanata, Mirna Mihovilovic; Stein, Derek

    2015-02-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules.

  3. Chemical reaction equilibrium in nanoporous materials: NO dimerization reaction in carbon slit nanopores.

    PubMed

    Lísal, Martin; Brennan, John K; Smith, William R

    2006-02-14

    We present a molecular-level simulation study of the effects of confinement on chemical reaction equilibrium in nanoporous materials. We use the reaction ensemble Monte Carlo (RxMC) method to investigate the effects of temperature, nanopore size, bulk pressure, and capillary condensation on the nitric oxide dimerization reaction in a model carbon slit nanopore in equilibrium with a bulk reservoir. In addition to the RxMC simulations, we also utilize the molecular-dynamics method to determine self-diffusion coefficients for confined nonreactive mixtures of nitric oxide monomers and dimers at compositions obtained from the RxMC simulations. We analyze the effects of the temperature, nanopore width, bulk pressure, and capillary condensation on the reaction equilibrium with respect to the reaction conversion, fluid structure, and self-diffusion coefficients. We show that the influence of the temperature, nanopore size, and capillary condensation on the confined reaction equilibrium is quite dramatic while the effect of the bulk pressure on the reaction equilibrium in the carbon slit nanopore is only moderate. This work is an extension of previous work by Turner et al. [J. Chem. Phys. 114, 1851 (2001)] on the confined reactive nitric oxide system.

  4. Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals

    NASA Astrophysics Data System (ADS)

    Lu, Shan-Tan; Kaplan, Isaac R.

    1992-07-01

    Data are presented on the distribution of diterpanes, triterpanes, steranes, and aromatic hydrocarbons in the natural bitumens extracted from unheated coals identified as Rocky Mountain coal (RMC), Australian Gippsland Latrobe Eocene coal (GEC), Australian Gippsland Latrobe Cretaceous coal (GCC), and Texas Wilcox lignite (WL), as well as from pyrolysates obtained from heating of these coals. It was found that pentacyclic triterpanes are dominant in GEC, GCC, and WL, whereas diterpanes strongly predominate in the bitumen of RMC, indicating that resin is a more important constituent of RMC than of the other coals and that it releases the diterpenoids at an early stage of diagenesis. It was also found that the composition of diterpanes is different among these coals and that the distributions of sterane and triterpane in the natural bitumen of coals are very different from those of pyrolysates.

  5. Diterpanes, triterpanes, steranes, and aromatic hydrocarbons in natural bitumens and pyrolysates from different humic coals

    NASA Technical Reports Server (NTRS)

    Lu, Shan-Tan; Kaplan, Isaac R.

    1992-01-01

    Data are presented on the distribution of diterpanes, triterpanes, steranes, and aromatic hydrocarbons in the natural bitumens extracted from unheated coals identified as Rocky Mountain coal (RMC), Australian Gippsland Latrobe Eocene coal (GEC), Australian Gippsland Latrobe Cretaceous coal (GCC), and Texas Wilcox lignite (WL), as well as from pyrolysates obtained from heating of these coals. It was found that pentacyclic triterpanes are dominant in GEC, GCC, and WL, whereas diterpanes strongly predominate in the bitumen of RMC, indicating that resin is a more important constituent of RMC than of the other coals and that it releases the diterpenoids at an early stage of diagenesis. It was also found that the composition of diterpanes is different among these coals and that the distributions of sterane and triterpane in the natural bitumen of coals are very different from those of pyrolysates.

  6. Levoglucosan and other cellulose markers in pyrolysates of Miocene lignites: geochemical and environmental implications

    SciTech Connect

    Daniele Fabbri; Leszek Marynowski; Monika J. Fabianska; Michal Zaton; Bernd R.T. Simoneit

    2008-04-15

    Using the pyrolysis-gas chromatography-mass spectrometry and off-line pyrolysis/silylation methods for lignites from three Miocene brown coal basins of Poland resulted in the characterization of many organic compounds, including dominant cellulose degradation products such as levoglucosan, 1,6-anhydro-{beta}-D-glucofuranose, and 1,4:3,6-dianhydroglucopyranose. Levoglucosan is a general source-specific tracer for wood smoke in the atmosphere and recent sediments. The presence of unusually high levels of this compound in brown coal pyrolysates suggests that a portion of this compound concentration in some airsheds may originate from lignite combustion. On the other hand, nonglucose anhydrosaccharides, in particular, mannosan and galactosan, typical of hemicellulose, are not detected in those lignite pyrolysates investigated. This indicates that mannosan and galactosan are better specific tracers for combustion of contemporary biomass in those regions where the utilization of brown coals containing fossilized cellulose is important. 7 refs., 2 figs., 3 tabs.

  7. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction

    PubMed Central

    Goto, Yusuke; Yanagi, Itaru; Matsui, Kazuma; Yokoi, Takahide; Takeda, Ken-ichi

    2016-01-01

    The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a controlled dielectric breakdown (CDB) process into our system. DNA translocation experiments revealed that single nanopores were created by the CDB process without sacrificing performance in reducing DNA movement speed by up to 10 μs/base or reducing noise up to 600 pArms at 1 MHz. Our platform provides the essential components for proceeding to the next step in the process of DNA sequencing. PMID:27499264

  8. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction

    NASA Astrophysics Data System (ADS)

    Goto, Yusuke; Yanagi, Itaru; Matsui, Kazuma; Yokoi, Takahide; Takeda, Ken-Ichi

    2016-08-01

    The practical use of solid-state nanopores for DNA sequencing requires easy fabrication of the nanopores, reduction of the DNA movement speed and reduction of the ionic current noise. Here, we report an integrated nanopore platform with a nanobead structure that decelerates DNA movement and an insulating polyimide layer that reduces noise. To enable rapid nanopore fabrication, we introduced a controlled dielectric breakdown (CDB) process into our system. DNA translocation experiments revealed that single nanopores were created by the CDB process without sacrificing performance in reducing DNA movement speed by up to 10 μs/base or reducing noise up to 600 pArms at 1 MHz. Our platform provides the essential components for proceeding to the next step in the process of DNA sequencing.

  9. Ethanol fermentation of acid-hydrolyzed cellulosic pyrolysate with Saccharomyces cerevisiae.

    PubMed

    Yu, Zhisheng; Zhang, Hongxun

    2003-10-01

    The acid hydrolysis of cellulosic pyrolysate to glucose and its fermentation to ethanol were investigated. The maximum glucose yield (17.4%) was obtained by the hydrolysis with 0.2 mol sulfuric acid per liter pyrolysate using autoclaving at 121 degrees C for 20 min. The fermentation by Saccharomyces cerevisiae of a hydrolysate medium containing 31.6 g/l glucose gave 14.2 g/l ethanol in 24 h, whereas the fermentation of the medium containing 31.6 g/l pure glucose gave 13.7 g/l ethanol in 18 h. The results showed that the acid-hydrolyzed pyrolysate could be used for ethanol production. Different nitrogen sources were evaluated and the best ethanol concentration (15.1 g/l) was achieved by single urea. S. cerevisiae (R) was obtained by adaptation of S. cerevisiae to the hydrolysate medium for 12 times, and 40.2 g/l ethanol was produced by S. cerevisiae (R) in the fermentation with the hydrolysate medium containing 95.8 g/l glucose, which was about 47% increase in ethanol production compared to its parent strain.

  10. Fabrication and Characterization of Electrodeposited Nanoporous Alloys

    NASA Astrophysics Data System (ADS)

    Koboski, Kyla; Graber, Nathan; Nelsen, Evan; Hampton, Jennifer

    2012-02-01

    Nanoporous Ni and NiFe thin films were created by electrodeposition of NiCu and NiFeCu followed by electrochemical dealloying to remove the Cu component. The structure and composition of the resulting materials, before and after the dealloying step, was characterized using scanning electron microscopy and energy dispersive spectroscopy. The electrochemical double-layer capacitance was measured to estimate the active surface area. The catalytic behavior of these complex nanoporous materials was investigated using hydrogen evolution as a model reaction.

  11. Thermal Conductivity in Nanoporous Gold Films during Electron-Phonon Nonequilibrium

    DOE PAGESBeta

    Hopkins, Patrick E.; Norris, Pamela M.; Phinney, Leslie M.; Policastro, Steven A.; Kelly, Robert G.

    2008-01-01

    The reduction of nanodevices has given recent attention to nanoporous materials due to their structure and geometry. However, the thermophysical properties of these materials are relatively unknown. In this article, an expression for thermal conductivity of nanoporous structures is derived based on the assumption that the finite size of the ligaments leads to electron-ligament wall scattering. This expression is then used to analyze the thermal conductivity of nanoporous structures in the event of electron-phonon nonequilibrium.

  12. Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Jong Hun; Kim, Ki Jae; Lee, Sang-Young

    2012-10-01

    A facile approach to the fabrication of nanoporous structure-tuned nonwoven composite separators is demonstrated for application in high-safety/high-rate lithium-ion batteries. This strategy is based on the construction of silica (SiO2) colloidal particle-assisted nanoporous structure in a poly(ethylene terephthalate) (PET) nonwoven substrate. The nanoparticle arrangement arising from evaporation-induced self-assembly of SiO2 colloidal particles allows the evolution of the unusual nanoporous structure, i.e. well-connected interstitial voids formed between close-packed SiO2 particles adhered by styrene-butadiene rubber (SBR) binders. Meanwhile, the PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The aforementioned structural novelty of the nonwoven composite separator plays a key role in providing the separator with advantageous characteristics (specifically, good electrolyte wettability, high ionic conductivity, and benign compatibility with electrodes), which leads to the better cell performance than a commercialized polyethylene (PE) separator.

  13. Advances in nanopore sequencing technology.

    PubMed

    Yang, Yongqiang; Liu, Ruoyu; Xie, Haiqiang; Hui, Yanting; Jiao, Rengang; Gong, Yu; Zhang, Yiyu

    2013-07-01

    Much tremendous break through have been obtained in recent years for nanopore sequencing to achieve the goal of $1000 genome. As a method of single molecule sequencing, nanopore sequencing can discriminate the individual molecules of the target DNA strand rapidly due to the current blockages by translocating the nucleotides through a nano-scale pore. Both the protein-pores and solid-state nanopore channels which called single nanopore sequencing have been studied widely for the application of nanopore sequencing technology. This review will give a detail representation to protein nanopore and solid-state nanopore sequencing. For protein nanopore sequencing technology, we will introduce different nanopore types, device assembly and some challenges still exist at present. We will focus on more research fields for solid-state nanopore sequencing in terms of materials, device assembly, fabricated methods, translocation process and some specific challenges. The review also covers some of the technical advances in the union nanopore sequencing, which include nanopore sequencing combine with exonuclease, hybridization, synthesis and design polymer.

  14. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  15. Electrochemistry at Edge of Single Graphene Layer in a Nanopore

    PubMed Central

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-01-01

    We study the electrochemistry of single layer graphene edges using a nanopore-based structure consisting of stacked graphene and Al2O3 dielectric layers. Nanopores, with diameters ranging from 5 to 20 nm, are formed by an electron beam sculpting process on the stacked layers. This leads to unique edge structure which, along with the atomically thin nature of the embedded graphene electrode, demonstrates electrochemical current densities as high as 1.2 × 104 A/cm2. The graphene edge embedded structure offers a unique capability to study the electrochemical exchange at an individual graphene edge, isolated from the basal plane electrochemical activity. We also report ionic current modulation in the nanopore by biasing the embedded graphene terminal with respect to the electrodes in the fluid. The high electrochemical specific current density for a graphene nanopore-based device can have many applications in sensitive chemical and biological sensing, and energy storage devices. PMID:23249127

  16. a Simple Method to Prepare Nanoporous Sn:Pb Composite Metal Foam

    NASA Astrophysics Data System (ADS)

    Zandi, Majid; Amirhoseiny, Maryam; Mosayyebi, Abolghasem

    2015-03-01

    A novel and simple approach for preparing nanoporous binder free Sn:Pb composite metal foam has been demonstrated. The anodized metallic composite block was functionalized and also found a nanoporous structure. A scanning electron microscopy (SEM) result shows that the nanoflake-like arrangement has synthesized. The X-ray diffraction (XRD) results confirm the nanoporous structure of the Sn/Pb foam after etching with 6 M NaOH. The prepared Sn:Pb metal foam is able to be used as a super capacitors electrode to offer large areal capacitance with regards to the synergic integration of Sn and Pb metals and the unique nanoporous structure.

  17. Film Growth on Nanoporous Substrate

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James; Zhao, Chenwei; Xu, J. M.; Valles, James

    Self-ordered nanoporous anodic aluminum oxide (AAO) provides an easy way to fabricate nano structured material, such as nano wires and nano particles. We employ AAO as substrates and focus on the thermally evaporated film growth on the surface of the substrate. With various materials deposited onto the substrate, we find the films show different structures, e,g. ordered array of nano particles for Lead and nanohoneycomb structure for Silver. We relate the differing behaviors to the difference of surface energy and diffusion constant. To verify this, the effect of substrate temperature on the film growth has been explored and the structure of the film has been successfully changed through the process. We are grateful for the support of NSF Grants No. DMR-1307290.

  18. Monitoring Protein Adsorption with Solid-state Nanopores

    PubMed Central

    Niedzwiecki, David J.; Movileanu, Liviu

    2011-01-01

    Solid-state nanopores have been used to perform measurements at the single-molecule level to examine the local structure and flexibility of nucleic acids 1-6, the unfolding of proteins 7, and binding affinity of different ligands 8. By coupling these nanopores to the resistive-pulse technique 9-12, such measurements can be done under a wide variety of conditions and without the need for labeling 3. In the resistive-pulse technique, an ionic salt solution is introduced on both sides of the nanopore. Therefore, ions are driven from one side of the chamber to the other by an applied transmembrane potential, resulting in a steady current. The partitioning of an analyte into the nanopore causes a well-defined deflection in this current, which can be analyzed to extract single-molecule information. Using this technique, the adsorption of single proteins to the nanopore walls can be monitored under a wide range of conditions 13. Protein adsorption is growing in importance, because as microfluidic devices shrink in size, the interaction of these systems with single proteins becomes a concern. This protocol describes a rapid assay for protein binding to nitride films, which can readily be extended to other thin films amenable to nanopore drilling, or to functionalized nitride surfaces. A variety of proteins may be explored under a wide range of solutions and denaturing conditions. Additionally, this protocol may be used to explore more basic problems using nanopore spectroscopy. PMID:22157952

  19. Electrochemical detection of single molecules using abiotic nanopores having electrically tunable dimensions

    DOEpatents

    Sansinena, Jose-Maria; Redondo, Antonio; Olazabal, Virginia; Hoffbauer, Mark A.; Akhadov, Elshan A.

    2009-12-29

    A barrier structure for use in an electrochemical stochastic membrane sensor for single molecule detection. The sensor is based upon inorganic nanopores having electrically tunable dimensions. The inorganic nanopores are formed from inorganic materials and an electrically conductive polymer. Methods of making the barrier structure and sensing single molecules using the barrier structure are also described.

  20. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    DOE PAGESBeta

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed tomore » explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.« less

  1. Nanoporous PdZr surface alloy as highly active non-platinum electrocatalyst toward oxygen reduction reaction with unique structure stability and methanol-tolerance

    NASA Astrophysics Data System (ADS)

    Duan, Huimei; Xu, Caixia

    2016-06-01

    Nanoporous (NP) PdZr alloy with controllable bimetallic ratio is successfully fabricated by a simple dealloying method. By leaching out the more reactive Al from PdZrAl precursor alloy, NP-PdZr alloy with smaller ligament size was generated, characterized by the nanoscaled interconnected network skeleton and hollow channels extending in all three dimensions. Upon voltammetric scan in acid solution, the dissolution of surface Zr atoms generates the highly active Pd-Zr surface alloy with a nearly pure Pd surface and Pd-Zr alloy core. The NP-Pd80Zr20 surface alloy exhibits markedly enhanced specific and mass activities as well as higher catalytic stability toward oxygen reduction reaction (ORR) compared with NP-Pd and the state-of-the-art Pt/C catalysts. In addition, the NP-Pd80Zr20 surface alloy shows a better selectivity for ORR than methanol in the 0.1 M HClO4 and 0.1 M methanol mixed solution. X-ray photoelectron spectroscopy and density functional theory calculations both demonstrate that the weakened Pd-O bond and improved ORR performances in turn depend on the downshifted d-band center of Pd due to the alloying Pd with Zr (20 at.%). The as-made NP-PdZr alloy holds prospective applications as a cathode electrocatalyst in fuel-cell-related technologies with the advantages of superior overall ORR performances, unique structure stability, and easy preparation.

  2. Substrate effect on nanoporous structure of silica wires by channel-confined self-assembly of block-copolymer and sol-gel precursors

    SciTech Connect

    Hu, Michael Z.; Lai, Peng

    2015-09-22

    Nanoporous silica wires of various wire diameters were developed by space-confined molecular self-assembly of triblock copolymer ethylene/propylene/ethylene (P123) and silica alkoxide precursor (tetraethylorthosilicate, TEOS). Two distinctive hard-templating substrates, anodized aluminum oxide (AAO) and track-etched polycarbonate (EPC), with channel diameters in the range between 10 nm and 200 nm were employed for space-confinement of soft molecular self-assembly driven by the block-copolymer microphase separation. It was observed in the scanning and transmission electron microscope (STEM) studies that the substrate geometry and material characteristics had pronounced effects on the structure and morphology of the silica nanowires. A substrate wall effect was proposed to explain the ordering and orientation of the intra-wire mesostructure. Circular and spiral nanostructures were found only in wires formed in AAO substrate, not in EPC. Pore-size differences and distinctive wall morphologies of the nanowires relating to the substrates were discussed. It was shown that the material and channel wall characteristics of different substrates play key roles in the ordering and morphology of the intra-wire nanostructures.

  3. Diffusion-controlled detection of trinitrotoluene: interior nanoporous structure and low highest occupied molecular orbital level of building blocks enhance selectivity and sensitivity.

    PubMed

    Che, Yanke; Gross, Dustin E; Huang, Helin; Yang, Dongjiang; Yang, Xiaomei; Discekici, Emre; Xue, Zheng; Zhao, Huijun; Moore, Jeffrey S; Zang, Ling

    2012-03-14

    Development of simple, cost-effective, and sensitive fluorescence-based sensors for explosives implies broad applications in homeland security, military operations, and environmental and industrial safety control. However, the reported fluorescence sensory materials (e.g., polymers) usually respond to a class of analytes (e.g., nitroaromatics), rather than a single specific target. Hence, the selective detection of trace amounts of trinitrotoluene (TNT) still remains a big challenge for fluorescence-based sensors. Here we report the selective detection of TNT vapor using the nanoporous fibers fabricated by self-assembly of carbazole-based macrocyclic molecules. The nanoporosity allows for time-dependent diffusion of TNT molecules inside the material, resulting in further fluorescence quenching of the material after removal from the TNT vapor source. Under the same testing conditions, other common nitroaromatic explosives and oxidizing reagents did not demonstrate this postexposure fluorescence quenching; rather, a recovery of fluorescence was observed. The postexposure fluorescence quenching as well as the sensitivity is further enhanced by lowering the highest occupied molecular orbital (HOMO) level of the nanofiber building blocks. This in turn reduces the affinity for oxygen, thus allocating more interaction sites for TNT. Our results present a simple and novel way to achieve detection selectivity for TNT by creating nanoporosity and tuning molecular electronic structure, which when combined may be applied to other fluorescence sensor materials for selective detection of vapor analytes.

  4. Mutagenic activity of pyrolysates of cyanocobalamin and some other water-soluble vitamins in the model system with the Salmonella/mammalian microsomes.

    PubMed

    Demura, R; Tsukada, S; Kotani, N; Tateoka, Y; Narimatsu, S; Yamamoto, I

    1990-05-01

    Pyrolysates of cyanocobalamin, thiamine hydrochloride, riboflavin, pyridoxine hydrochloride, and ascorbic acid were tested for mutagenicity in the histidine-requiring mutants Salmonella typhimurium TA98 and TA100. Each vitamin was sealed in a glass tube and heated at 100-600 degrees C in a muffle furnace. Methanol-chloroform extracts of the pyrolysate of each vitamin tested did not show any mutagenicity in either TA98 or TA100 without rat liver 9000 x g supernatant fraction (S9) added. In the presence of S9, the B-group vitamins (cyanocobalamin, thiamine hydrochloride, riboflavin, and pyridoxine hydrochloride) were all mutagenic in TA98 and TA100, with the highest activity among the vitamins tested found in the pyrolysate of cyanocobalamin. The pyrolysate of 0.25 mumole cyanocobalamin produced 3200 revertants, while the pyrolysates of 0.25 mumole thiamine hydrochloride and riboflavin produced only 910 revertants, and the pyrolysate of pyridoxine hydrochloride did not show any mutagenicity at that amount. The mutagenicity was generally more active to TA98 than to TA100, indicating that frameshift-type mutagens were contained in the pyrolysates. The pyrolysate of ascorbic acid did not show any mutagenic activity in either TA98 or TA100 under the present experimental conditions. PMID:2186270

  5. Relative toxicity testing of spacecraft materials. 1: Spacecraft materials. [lethality of pyrolysates

    NASA Technical Reports Server (NTRS)

    Lawrence, W. H.

    1980-01-01

    In chamber thermodegradation procedures were used to access the lethality to rats of the pyrolysis/combustion products of three foams, an adhesive backed metallic tape and RTV silicone rubber adhesive sealant used in spacecraft construction. The role of carbon monoxide in the overall pyrolysate toxicity was also investigated. Post exposure observation of the rats, histological evaluation of selected organs, carbon monoxide concentration in the chamber atmosphere during exposure and the percent carboxyhemoglobin in the animals expiring in the chamber are discussed. Thermogravimetric analysis and dosage response results are given. The lethal effect of the RTV silicon appears to be due to physical obstruction of the respiratory system by particulate matter from pyrolysis.

  6. Synthesis of nanoporous nickel thin films from various precursors

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Balk, T. John

    2014-09-01

    Multiple approaches to fabricate nanoporous nickel (np-Ni) thin films from NiCu, NiAl, NiFe and NiMg precursors are presented. Deposition of precursor films, dealloying and characterization of the nanoporous films by electron microscopy are discussed. All precursor alloys can yield np-Ni. However, dealloying of NiMg precursor films yields the most consistent, open-porosity structure with a ligament size of 7 nm, comparable to that of Raney nickel.

  7. Recent advances in nanopore sequencing

    PubMed Central

    Maitra, Raj D.; Kim, Jungsuk; Dunbar, William B.

    2013-01-01

    The prospect of nanopores as a next-generation sequencing (NGS) platform has been a topic of growing interest and considerable government-sponsored research for more than a decade. Oxford Nanopore Technologies recently announced the first commercial nanopore sequencing devices, to be made available by the end of 2012, while other companies (Life, Roche, IBM) are also pursuing nanopore sequencing approaches. In this paper, the state of the art in nanopore sequencing is reviewed, focusing on the most recent contributions that have or promise to have NGS commercial potential. We consider also the scalability of the circuitry to support multichannel arrays of nanopores in future sequencing devices, which is critical to commercial viability. PMID:23138639

  8. Conversion of microwave pyrolysed ASR's char using high temperature agents.

    PubMed

    Donaj, Pawel; Blasiak, Wlodzimierz; Yang, Weihong; Forsgren, Christer

    2011-01-15

    Pyrolysis enables to recover metals and organic feedstock from waste conglomerates such as: automotive shredder residue (ASR). ASR as well as its pyrolysis solid products, is a morphologically and chemically varied mixture, containing mineral materials, including hazardous heavy metals. The aim of the work is to generate fundamental knowledge on the conversion of the organic residues of the solid products after ASR's microwave pyrolysis, treated at various temperatures and with two different types of gasifying agent: pure steam or 3% (v/v) of oxygen. The research is conducted using a lab-scale, plug-flow gasifier, with an integrated scale for analysing mass loss changes over time of experiment, serving as macro TG at 950, 850 and 760 °C. The reaction rate of char decomposition was investigated, based on carbon conversion during gasification and pyrolysis stage. It was found in both fractions that char conversion rate decreases with the rise of external gas temperature, regardless of the gasifying agent. No significant differences between the reaction rates undergoing with steam and oxygen for char decomposition has been observed. This abnormal char behaviour might have been caused by the inhibiting effects of ash, especially alkali metals on char activity or due to deformation of char structure during microwave heating. PMID:20940079

  9. Hydrogen Bubbles and Formation of Nanoporous Silicon during Electrochemical Etching

    SciTech Connect

    Saraf, Laxmikant V.; Baer, Donald R.; Wang, Zheming; Young, James S.; Engelhard, Mark H.; Thevuthasan, Suntharampillai

    2005-06-01

    Many nanoporous Si structures, including those formed by common electrochemical etching procedures, produce a uniformly etch nanoporous surface. If the electrochemical etch rate is slowed down, details of the etch process can be explored and process parameters may be varied to test hypotheses and obtain controlled nanoporous and defect structures. For example, after electrochemical etching of a heavily n-doped (R = 0.05-0.5 ? -cm) <100> silicon at a current density of 10 mA/cm? in buffer oxide etch (BOE) electrolyte solution defect craters, containing textured nanopores, were observed to occur in ring shaped patterns of rings. The defect craters apparently originate at the hydrogen-BOE bubble interface, which forms during hydrogen evolution in the reaction. The slower hydrogen evolution due to low current density allows sufficient bubble residence time so that a high defect density appears at the bubble edges where local reaction rates are highest. Current carrying Si-OH species are most likely responsible for the widening in the craters. Reducing the defect/doping density in silicon lowers the defect concentration and thereby the density of nanopores. Measurements of photoluminescence lifetime and intensity show a distinct feature when the low density of nanopores formed at ring edges are isolated from each other. Overall features observed in photoluminescence (PL), X-ray photoelectron spectroscopy (XPS) intensity strongly emphasize the role of surface oxide that influences these properties.

  10. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices

    SciTech Connect

    King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.

    2009-01-02

    This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanopores using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.

  11. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  12. Current oscillations in nanopores

    NASA Astrophysics Data System (ADS)

    Hyland, Brittany

    We develop a simple phenomenological model to describe current oscillations in single, conically shaped nanopores. The model utilizes aspects of reaction rate theory, electrochemical oscillators, and nonlinear dynamical systems. Time series of experimental data were analyzed and compared to time series simulated using the model equations. There is good qualitative agreement between experiment and simulation, though the model needs to be improved in order to obtain better quantitative agreement.

  13. Quantized ionic conductance in nanopores

    SciTech Connect

    Zwolak, Michael; Lagerqvist, Johan; Di Ventra, Massimilliano

    2009-01-01

    Ionic transport in nanopores is a fundamentally and technologically important problem in view of its ubiquitous occurrence in biological processes and its impact on DNA sequencing applications. Using microscopic calculations, we show that ion transport may exhibit strong non-liDearities as a function of the pore radius reminiscent of the conductance quantization steps as a function of the transverse cross section of quantum point contacts. In the present case, however, conductance steps originate from the break up of the hydration layers that form around ions in aqueous solution. Once in the pore, the water molecules form wavelike structures due to multiple scattering at the surface of the pore walls and interference with the radial waves around the ion. We discuss these effects as well as the conditions under which the step-like features in the ionic conductance should be experimentally observable.

  14. Impedance nanopore biosensor: influence of pore dimensions on biosensing performance.

    PubMed

    Kant, Krishna; Yu, Jingxian; Priest, Craig; Shapter, Joe G; Losic, Dusan

    2014-03-01

    Knowledge about electrochemical and electrical properties of nanopore structures and the influence of pore dimensions on these properties is important for the development of nanopore biosensing devices. The aim of this study was to explore the influence of nanopore dimensions (diameter and length) on biosensing performance using non-faradic electrochemical impedance spectroscopy (EIS). Nanoporous alumina membranes (NPAMs) prepared by self-ordered electrochemical anodization of aluminium were used as model nanopore sensing platforms. NPAMs with different pore diameters (25-65 nm) and lengths (4-18 μm) were prepared and the internal pore surface chemistry was modified by covalently attaching streptavidin and biotin. The performance of this antibody nanopore biosensing platform was evaluated using various concentrations of biotin as a model analyte. EIS measurements of pore resistivity and conductivity were carried out for pores with different diameters and lengths. The results showed that smaller pore dimensions of 25 nm and pore lengths up to 10 μm provide better biosensing performance.

  15. Single-molecule sensing electrode embedded in-plane nanopore

    PubMed Central

    Tsutsui, Makusu; Rahong, Sakon; Iizumi, Yoko; Okazaki, Toshiya; Taniguchi, Masateru; Kawai, Tomoji

    2011-01-01

    Electrode-embedded nanopore is considered as a promising device structure for label-free single-molecule sequencing, the principle of which is based on nucleotide identification via transverse electron tunnelling current flowing through a DNA translocating through the pore. Yet, fabrication of a molecular-scale electrode-nanopore detector has been a formidable task that requires atomic-level alignment of a few nanometer sized pore and an electrode gap. Here, we report single-molecule detection using a nucleotide-sized sensing electrode embedded in-plane nanopore. We developed a self-alignment technique to form a nanopore-nanoelectrode solid-state device consisting of a sub-nanometer scale electrode gap in a 15 nm-sized SiO2 pore. We demonstrate single-molecule counting of nucleotide-sized metal-encapsulated fullerenes in a liquid using the electrode-integrated nanopore sensor. We also performed electrical identification of nucleobases in a DNA oligomer, thereby suggesting the potential use of this synthetic electrode-in-nanopore as a platform for electrical DNA sequencing. PMID:22355565

  16. The evolution of nanopore sequencing

    PubMed Central

    Wang, Yue; Yang, Qiuping; Wang, Zhimin

    2014-01-01

    The “$1000 Genome” project has been drawing increasing attention since its launch a decade ago. Nanopore sequencing, the third-generation, is believed to be one of the most promising sequencing technologies to reach four gold standards set for the “$1000 Genome” while the second-generation sequencing technologies are bringing about a revolution in life sciences, particularly in genome sequencing-based personalized medicine. Both of protein and solid-state nanopores have been extensively investigated for a series of issues, from detection of ionic current blockage to field-effect-transistor (FET) sensors. A newly released protein nanopore sequencer has shown encouraging potential that nanopore sequencing will ultimately fulfill the gold standards. In this review, we address advances, challenges, and possible solutions of nanopore sequencing according to these standards. PMID:25610451

  17. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications.

  18. A new technique to pyrolyse biomass in a microwave system: effect of stirrer speed.

    PubMed

    Abubakar, Zubairu; Salema, Arshad Adam; Ani, Farid Nasir

    2013-01-01

    A new technique to pyrolyse biomass in microwave (MW) system is presented in this paper to solve the problem of bio-oil deposition. Pyrolysis of oil palm shell (OPS) biomass was conducted in 800 W and 2.45 GHz frequency MW system using an activated carbon as a MW absorber. The temperature profile, product yield and the properties of the products were found to depend on the stirrer speed and MW absorber percentage. The highest bio-oil yield of 28 wt.% was obtained at 25% MW absorber and 50 rpm stirrer speed. Bio-char showed highest calorific value of the 29.5 MJ/kg at 50% MW absorber and 100 rpm stirrer speed. Bio-oil from this study was rich in phenol with highest detected as 85 area% from the GC-MS results. Thus, OPS bio-oil can become potential alternative to petroleum-based chemicals in various phenolic based applications. PMID:23211483

  19. Lipid accumulation from pinewood pyrolysates by Rhodosporidium diobovatum and Chlorella vulgaris for biodiesel production.

    PubMed

    Luque, Luis; Orr, Valerie C A; Chen, Sean; Westerhof, Roel; Oudenhoven, Stijn; Rossum, Guus van; Kersten, Sascha; Berruti, Franco; Rehmann, Lars

    2016-08-01

    This study evaluated the suitability of pinewood pyrolysates as a carbon source for lipid production and cultivation of the oleaginous yeast Rhodosporidium diobovatum and the microalgae Chlorella vulgaris. Thermal decomposition of pinewood and fractional condensation were used to obtain an oil rich in levoglucosan which was upgraded to glucose by acid hydrolysis. Blending of pyrolytic sugars with pure glucose in both nitrogen rich and nitrogen limited conditions was studied for R. diobovatum, and under nitrogen limited conditions for C. vulgaris. Glucose consumption rate decreased with increasing proportions of pyrolytic sugars increasing cultivation time. While R. diobovatum was capable of growth in 100% (v/v) pyrolytic sugars, C. vulgaris growth declined rapidly in blends greater than 20% (v/v) until no growth was detected in blends >40%. Finally, the effects of pyrolysis sugars on lipid composition was evaluated and biodiesel fuel properties were estimated based on the lipid profiles. PMID:27208736

  20. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel. PMID:27066350

  1. Study on small molecular organic compounds pyrolysed from rubber seed oil and its sodium soap.

    PubMed

    Fernando, T L D; Prashantha, M A B; Amarasinghe, A D U S

    2016-01-01

    Rubber seed oil (RSO) and its sodium soap were pyrolysed in a batch reactor to obtain low molar mass organic substances. The pyrolitic oil of RSO was redistilled and the distillates were characterized by GC-MS and FTIR. Density, acid value, saponification value and ester values were also measured according to the ASTM standard methods. A similar analysis was done for samples taken out at different time intervals from the reaction mixture. Industrially important low molar mass alkanes, alkenes, aromatics, cyclic compounds and carboxylic acids were identified in the pyrolysis process of rubber seed oil. However, pyrolysis of the sodium soap of rubber seed oil gave a mixture of hydrocarbons in the range of C14-C17 and hence it has more applications as a fuel.

  2. Formation of nanoporous aerogels from wheat starch.

    PubMed

    Ubeyitogullari, Ali; Ciftci, Ozan N

    2016-08-20

    Biodegradable nanoporous aerogels were obtained from wheat starch using a simple and green method based on supercritical carbon dioxide (SC-CO2) drying. Effects of processing parameters (temperature, wheat starch concentration and mixing rate during gelatinization; temperature, pressure, and flow rate of CO2, during SC-CO2 drying) on the aerogel formation were investigated, and optimized for the highest surface area and smallest pore size of the aerogels. At the optimized conditions, wheat starch aerogels had surface areas between 52.6-59.7m(2)/g and densities ranging between 0.05-0.29g/cm(3). The average pore size of the starch aerogels was 20nm. Starch aerogels were stable up to 280°C. Due to high surface area and nanoporous structure, wheat starch aerogels are promising carrier systems for bioactives and drugs in food and pharmaceutical industries. PMID:27178916

  3. Nanoporous polystyrene fibers for oil spill cleanup.

    PubMed

    Lin, Jinyou; Shang, Yanwei; Ding, Bin; Yang, Jianmao; Yu, Jianyong; Al-Deyab, Salem S

    2012-02-01

    The development of oil sorbents with high sorption capacity, low cost, scalable fabrication, and high selectivity is of great significance for water environmental protection, especially for oil spillage on seawater. In this work, we report nanoporous polystyrene (PS) fibers prepared via a one-step electrospinning process used as oil sorbents for oil spill cleanup. The oleophilic-hydrophobic PS oil sorbent with highly porous structures shows a motor oil sorption capacity of 113.87 g/g, approximately 3-4 times that of natural sorbents and nonwoven polypropylene fibrous mats. Additionally, the sorbents also exhibit a relatively high sorption capacity for edible oils, such as bean oil (111.80 g/g) and sunflower seed oil (96.89 g/g). The oil sorption mechanism of the PS sorbent and the sorption kinetics were investigated. Our nanoporous material has great potential for use in wastewater treatment, oil accident remediation and environmental protection.

  4. Solvated calcium ions in charged silica nanopores

    NASA Astrophysics Data System (ADS)

    Bonnaud, Patrick A.; Coasne, Benoît; Pellenq, Roland J.-M.

    2012-08-01

    Hydroxyl surface density in porous silica drops down to nearly zero when the pH of the confined aqueous solution is greater than 10.5. To study such extreme conditions, we developed a model of slit silica nanopores where all the hydrogen atoms of the hydroxylated surface are removed and the negative charge of the resulting oxygen dangling bonds is compensated by Ca2+ counterions. We employed grand canonical Monte Carlo and molecular dynamics simulations to address how the Ca2+ counterions affect the thermodynamics, structure, and dynamics of confined water. While most of the Ca2+ counterions arrange themselves according to the so-called "Stern layer," no diffuse layer is observed. The presence of Ca2+ counterions affects the pore filling for strong confinement where the surface effects are large. At full loading, no significant changes are observed in the layering of the first two adsorbed water layers compared to nanopores with fully hydroxylated surfaces. However, the water structure and water orientational ordering with respect to the surface is much more disturbed. Due to the super hydrophilicity of the Ca2+-silica nanopores, water dynamics is slowed down and vicinal water molecules stick to the pore surface over longer times than in the case of hydroxylated silica surfaces. These findings, which suggest the breakdown of the linear Poisson-Boltzmann theory, provide important information about the properties of nanoconfined electrolytes upon extreme conditions where the surface charge and ion concentration are large.

  5. Influence of Structural Heterogeneity on Diffusion of CH4 and CO2 in Silicon Carbide-Derived Nanoporous Carbon

    PubMed Central

    2015-01-01

    We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using molecular dynamics simulation, based on a maximum in the variation of self-diffusivity with loading. A comparison of the MD simulation results with self-diffusivities from quasi-elastic neutron scattering (QENS) measurements and, with macroscopic uptake-based low-density transport coefficients, reveals the existence of internal barriers not captured in MD simulation and QENS experiments. Nevertheless, the simulation and macroscopic uptake-based diffusion coefficients agree within a factor of 2–3, indicating that our HRMC model structure captures most of the important energy barriers affecting the transport of CH4 in the nanostructure of SiC-DC. PMID:24932319

  6. Fluid Behavior and Fluid-Solid Interactions in Nanoporous Media

    NASA Astrophysics Data System (ADS)

    Xu, H.

    2015-12-01

    Although shale oil/gas production in the US has increased exponentially, the low energy recovery is a daunting problem needed to be solved for its sustainability and continued growth, especially in light of the recent oil/gas price decline. This is apparently related to the small porosity (a few to a few hundred nm) and low permeability (10-16-10-20 m2) of tight shale formations. The fundamental question lies in the anomalous behavior of fluids in nanopores due to confinement effects, which, however, remains poorly understood. In this study, we combined experimental characterization and observations, particularly using small-angle neutron scattering (SANS), with pore-scale modeling using lattice Boltzmann method (LBM), to examine the fluid behavior and fluid-solid interactions in nanopores at reservoir conditions. Experimentally, we characterized the compositions and microstructures of a shale sample from Wolfcamp, Texas, using a variety of analytical techniques. Our analyses reveal that the shale sample is made of organic-matter (OM)-lean and OM-rich layers that exhibit different chemical and mineral compositions, and microstructural characteristics. Using the hydrostatic pressure system and gas-mixing setup we developed, in-situ SANS measurements were conducted at pressures up to 20 kpsi on shale samples imbibed with water or water-methane solutions. The obtained results indicate that capillary effect plays a significant role in fluid-nanopore interactions and the associated changes in nanopore structures vary with pore size and pressure. Computationally, we performed LBM modeling to simulate the flow behavior of methane in kerogen nanoporous structure. The correction factor, which is the ratio of apparent permeability to intrinsic permeability, was calculated. Our results show that the correction factor is always greater than one (non-continuum/non-Darcy effects) and increases with decreasing nanopore size, intrinsic permeability and pressure. Hence, the

  7. Nanoporous Pirani sensor based on anodic aluminum oxide

    NASA Astrophysics Data System (ADS)

    Jeon, Gwang-Jae; Kim, Woo Young; Shim, Hyun Bin; Lee, Hee Chul

    2016-09-01

    A nanoporous Pirani sensor based on anodic aluminum oxide (AAO) is proposed, and the quantitative relationship between the performance of the sensor and the porosity of the AAO membrane is characterized with a theoretical model. The proposed Pirani sensor is composed of a metallic resistor on a suspended nanoporous membrane, which simultaneously serves as the sensing area and the supporting structure. The AAO membrane has numerous vertically-tufted nanopores, resulting in a lower measurable pressure limit due to both the increased effective sensing area and the decreased effective thermal loss through the supporting structure. Additionally, the suspended AAO membrane structure, with its outer periphery anchored to the substrate, known as a closed-type design, is demonstrated using nanopores of AAO as an etch hole without a bulk micromachining process used on the substrate. In a CMOS-compatible process, a 200 μm × 200 μm nanoporous Pirani sensor with porosity of 25% was capable of measuring the pressure from 0.1 mTorr to 760 Torr. With adjustment of the porosity of the AAO, the measurable range could be extended toward lower pressures of more than one decade compared to a non-porous membrane with an identical footprint.

  8. Protein conducting nanopores

    NASA Astrophysics Data System (ADS)

    Harsman, Anke; Krüger, Vivien; Bartsch, Philipp; Honigmann, Alf; Schmidt, Oliver; Rao, Sanjana; Meisinger, Christof; Wagner, Richard

    2010-11-01

    About 50% of the cellular proteins have to be transported into or across cellular membranes. This transport is an essential step in the protein biosynthesis. In eukaryotic cells secretory proteins are transported into the endoplasmic reticulum before they are transported in vesicles to the plasma membrane. Almost all proteins of the endosymbiotic organelles chloroplasts and mitochondria are synthesized on cytosolic ribosomes and posttranslationally imported. Genetic, biochemical and biophysical approaches led to rather detailed knowledge on the composition of the translocon-complexes which catalyze the membrane transport of the preproteins. Comprehensive concepts on the targeting and membrane transport of polypeptides emerged, however little detail on the molecular nature and mechanisms of the protein translocation channels comprising nanopores has been achieved. In this paper we will highlight recent developments of the diverse protein translocation systems and focus particularly on the common biophysical properties and functions of the protein conducting nanopores. We also provide a first analysis of the interaction between the genuine protein conducting nanopore Tom40SC as well as a mutant Tom40SC (\\mathrm {S}_{54} \\to E ) containing an additional negative charge at the channel vestibule and one of its native substrates, CoxIV, a mitochondrial targeting peptide. The polypeptide induced a voltage-dependent increase in the frequency of channel closure of Tom40SC corresponding to a voltage-dependent association rate, which was even more pronounced for the Tom40SC S54E mutant. The corresponding dwelltime reflecting association/transport of the peptide could be determined with \\bar {t}_{\\mathrm {off}} \\cong 1.1 ms for the wildtype, whereas the mutant Tom40SC S54E displayed a biphasic dwelltime distribution (\\bar {t}_{\\mathrm {off}}^1 \\cong 0.4 ms \\bar {t}_{\\mathrm {off}}^2 \\cong 4.6 ms).

  9. Synthesis and electronic structure of low-density monoliths of nanoporous nanocrystalline anatase TiO2

    SciTech Connect

    Kucheyev, S O; Baumann, T F; Wang, Y M; van Buuren, T; Satcher, J H

    2004-08-13

    Monolithic nanocrystalline anatase titania aerogels are synthesized by the epoxide sol-gel method followed by thermal annealing at 550 C. These aerogels are formed by {approx}10-20 nm size anatase nanoparticles which are randomly oriented and interconnected into an open-cell solid network. Aerogel monoliths have an apparent density of {approx}6% and a surface area of {approx} 100 m{sup 2} g{sup -1}. High-resolution transmission electron microscopy and soft x-ray absorption near-edge structure spectroscopy reveal good crystallinity of the anatase nanoparticles forming the aerogel skeleton.

  10. Nanofluidic Device with Embedded Nanopore

    NASA Astrophysics Data System (ADS)

    Zhang, Yuning; Reisner, Walter

    2014-03-01

    Nanofluidic based devices are robust methods for biomolecular sensing and single DNA manipulation. Nanopore-based DNA sensing has attractive features that make it a leading candidate as a single-molecule DNA sequencing technology. Nanochannel based extension of DNA, combined with enzymatic or denaturation-based barcoding schemes, is already a powerful approach for genome analysis. We believe that there is revolutionary potential in devices that combine nanochannels with nanpore detectors. In particular, due to the fast translocation of a DNA molecule through a standard nanopore configuration, there is an unfavorable trade-off between signal and sequence resolution. With a combined nanochannel-nanopore device, based on embedding a nanopore inside a nanochannel, we can in principle gain independent control over both DNA translocation speed and sensing signal, solving the key draw-back of the standard nanopore configuration. We demonstrate that we can detect - using fluorescent microscopy - successful translocation of DNA from the nanochannel out through the nanopore, a possible method to 'select' a given barcode for further analysis. We also show that in equilibrium DNA will not escape through an embedded sub-persistence length nanopore until a certain voltage bias is added.

  11. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    SciTech Connect

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B; Presser, Volker; Mcdonough, John; Gogotsi, Yury G.

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well as to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.

  12. Molecular Sensing by Nanoporous Crystalline Polymers

    PubMed Central

    Pilla, Pierluigi; Cusano, Andrea; Cutolo, Antonello; Giordano, Michele; Mensitieri, Giuseppe; Rizzo, Paola; Sanguigno, Luigi; Venditto, Vincenzo; Guerra, Gaetano

    2009-01-01

    Chemical sensors are generally based on the integration of suitable sensitive layers and transducing mechanisms. Although inorganic porous materials can be effective, there is significant interest in the use of polymeric materials because of their easy fabrication process, lower costs and mechanical flexibility. However, porous polymeric absorbents are generally amorphous and hence present poor molecular selectivity and undesired changes of mechanical properties as a consequence of large analyte uptake. In this contribution the structure, properties and some possible applications of sensing polymeric films based on nanoporous crystalline phases, which exhibit all identical nanopores, will be reviewed. The main advantages of crystalline nanoporous polymeric materials with respect to their amorphous counterparts are, besides a higher selectivity, the ability to maintain their physical state as well as geometry, even after large guest uptake (up to 10–15 wt%), and the possibility to control guest diffusivity by controlling the orientation of the host polymeric crystalline phase. The final section of the review also describes the ability of suitable polymeric films to act as chirality sensors, i.e., to sense and memorize the presence of non-racemic volatile organic compounds. PMID:22303150

  13. Water adsorption in ion-bearing nanopores.

    PubMed

    Lakatos, G; Patey, G N

    2007-01-14

    Grand canonical Monte Carlo simulations are used to examine the adsorption of water into cylindrical nanopores containing single ions. The isotherms for water adsorbing into nanopores with radii of 0.44, 0.54, 0.64, and 0.74 nm and containing Na+, K+, Ca2+, Cl-, or F- at 298 K are computed. In all cases the nanopores are found to fill at reservoir chemical potentials below the chemical potential of saturated water vapor at 298 K. The threshold chemical potential is found to be sensitive to both the size of the channel and the ion species, with the anion-bearing pores filling at lower chemical potentials. Additionally, the filling threshold chemical potential is found to decrease as the radius of the pores is decreased. Pores with K+ and Cl- are compared, and the Cl- pores are found to exhibit higher water densities in the filled states and a more energetically favorable water structure while yielding lower per particle entropies. Sample simulation configurations are also examined and indicate that at low chemical potentials, the adsorbed water forms a cluster around the ion. Finally, the influence of the choice of water model on the adsorption isotherms is examined. PMID:17228962

  14. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    PubMed

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  15. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (˜0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  16. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0–600 s). Silicon nanopores within a 50–400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  17. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    PubMed

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices. PMID:27181294

  18. Localized functionalization of single nanopores

    SciTech Connect

    Nilsson, J; Lee, J I; Ratto, T V; Letant, S E

    2005-09-12

    We demonstrate the localization of chemical functionality at the entrance of single nanopores for the first time by using the controlled growth of an oxide ring. Nanopores were fabricated by Focused Ion Beam machining on silicon platforms, locally derivatized by ion beam assisted oxide deposition, and further functionalized with DNA probes via silane chemistry. Ionic current recorded through single nanopores at various stages of the fabrication process demonstrated that the apertures can be locally functionalized with DNA probes. Future applications for this functional platform include the selective detection of biological organisms and molecules by ionic current blockade measurements.

  19. Ionic Coulomb Blockade in Nanopores

    PubMed Central

    Krems, Matt; Di Ventra, Massimiliano

    2014-01-01

    Understanding the dynamics of ions in nanopores is essential for applications ranging from single-molecule detection to DNA sequencing. We show both analytically and by means of molecular dynamics simulations that under specific conditions ion-ion interactions in nanopores lead to the phenomenon of ionic Coulomb blockade, namely the build-up of ions inside a nanopore with specific capacitance impeding the flow of additional ions due to Coulomb repulsion. This is the counterpart of electronic Coulomb blockade observed in mesoscopic systems. We discuss the analogies and differences with the electronic case as well as experimental situations in which this phenomenon could be detected. PMID:23307655

  20. Nanopore and nanoparticle catalysts.

    PubMed

    Thomas, J M; Raja, R

    2001-01-01

    The design, atomic characterization, performance, and relevance to clean technology of two distinct categories of new nanocatalysts are described and interpreted. Exceptional molecular selectivity and high activity are exhibited by these catalysts. The first category consists of extended, crystallographically ordered inorganic solids possessing nanopores (apertures, cages, and channels), the diameters of which fall in the range of about 0.4 to about 1.5 nm, and the second of discrete bimetallic nanoparticles of diameter 1 to 2 nm, distributed more or less uniformly along the inner walls of mesoporous (ca. 3 to 10 nm diameter) silica supports. Using the principles and practices of solid-state and organometallic chemistry and advanced physico-chemical techniques for in situ and ex situ characterization, a variety of powerful new catalysts has been evolved. Apart from those that, inter alia, simulate the behavior of enzymes in their specificity, shape selectivity, regio-selectivity, and ability to function under ambient conditions, many of these new nanocatalysts are also viable as agents for effecting commercially significant processes in a clean, benign, solvent-free, single-step fashion. In particular, a bifunctional, molecular sieve nanopore catalyst is described that converts cyclohexanone in air and ammonia to its oxime and caprolactam, and a bimetallic nanoparticle catalyst that selectively converts cyclic polyenes into desirable intermediates. Nanocatalysts in the first category are especially effective in facilitating highly selective oxidations in air, and those in the second are well suited to effecting rapid and selective hydrogenations of a range of organic compounds.

  1. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  2. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  3. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  4. Enhanced potassium selectivity in a bioinspired solid nanopore.

    PubMed

    Picaud, Fabien; Kraszewski, Sebastian; Ramseyer, Christophe; Balme, Sébastien; Déjardin, Philippe; Janot, Jean Marc; Henn, François

    2013-12-01

    Biological ion channels present unique ionic properties. They can be highly permeable to ions, while selecting only one type of ions, without external energy supply. An important research field has been developed to transfer these properties to solid state nanoporous membranes in order to develop artificial biomimetic nanofilters. One of the promising ways to develop biomimetic structures is based on the direct insertion of the gramicidin A, i.e. an ionic channel, inside a nanopore. Experiments have recently proved the feasibility of such a hybrid membrane with very interesting results regarding the ionic selectivity. Here, we propose to interpret these experiments using theoretical molecular dynamic simulations which allow us to analyze more profoundly the structures of the proteins confined inside the nanopore and the relation between their conformation and the observed ionic properties.

  5. Lensless imaging of nanoporous glass with soft X-rays

    DOE PAGESBeta

    Turner, Joshua J.; Nelson, Johanna; Huang, Xiaojing; Steinbrener, Jan; Jacobsen, Chris

    2013-06-01

    Coherent soft X-ray diffraction has been used to image nanoporous glass structure in two dimensions using different methods. The merit of the reconstructions was judged using a new method of Fourier phase correlation with a final, refined image. The porous structure was found to have a much larger average size then previously believed.

  6. Fabrication of faceted nanopores in magnesium

    SciTech Connect

    Wu, Shujing; Cao, Fan; Zheng, He; Sheng, Huaping; Liu, Chun; Liu, Yu; Zhao, Dongshan; Wang, Jianbo

    2013-12-09

    In this paper, using high resolution transmission electron microscopy, we showed the fabrication of faceted nanopores with various shapes in magnesium by focused electron beam (e-beam). The characteristics of nanopore shapes and the crystallographic planes corresponding to the edges of the nanopores were discussed in detail. Interestingly, by manipulating the e-beam (e.g., irradiation direction and duration), the nanopore shape and size could be effectively controlled along different directions. Our results provide important insight into the nanopore patterning in metallic materials and are of fundamental importance concerning the relevant applications, such as nanopore-based sensor, etc.

  7. Fabrication of high reflectivity nanoporous distributed Bragg reflectors by controlled electrochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min; Kang, Jin-Ho; Lee, June Key; Ryu, Sang-Wan

    2016-07-01

    The nanoporous medium is a valuable feature of optical devices because of its variable optical refractive index with porosity. One important application is in a GaN-based vertical cavity surface emitting laser having a distributed Bragg reflector (DBR) composed of alternating nanoporous and bulk GaNs. However, optimization of the fabrication process for high reflectivity DBRs having wellcontrolled high reflection bands has not been studied yet. We used electrochemical etching to study the fabrication process of a nanoporous GaN DBR and analyzed the relationship between the morphology and optical reflectivity. Several electrolytes were examined for the formation of the optimized nanoporous structure. A highly reflective DBRs having reflectivity of ~100% were obtained over a wide wavelength range of 450-750 nm. Porosification of semiconductors into nanoporous layers could provide a high reflectivity DBR due to controlled index-contrast, which would be advantages for the construction of a high-Q optical cavity.

  8. Fabrication of high reflectivity nanoporous distributed Bragg reflectors by controlled electrochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min; Kang, Jin-Ho; Lee, June Key; Ryu, Sang-Wan

    2016-09-01

    The nanoporous medium is a valuable feature of optical devices because of its variable optical refractive index with porosity. One important application is in a GaN-based vertical cavity surface emitting laser having a distributed Bragg reflector (DBR) composed of alternating nanoporous and bulk GaNs. However, optimization of the fabrication process for high reflectivity DBRs having wellcontrolled high reflection bands has not been studied yet. We used electrochemical etching to study the fabrication process of a nanoporous GaN DBR and analyzed the relationship between the morphology and optical reflectivity. Several electrolytes were examined for the formation of the optimized nanoporous structure. A highly reflective DBRs having reflectivity of ~100% were obtained over a wide wavelength range of 450-750 nm. Porosification of semiconductors into nanoporous layers could provide a high reflectivity DBR due to controlled index-contrast, which would be advantages for the construction of a high-Q optical cavity.

  9. InGaN light-emitting diodes with embedded nanoporous GaN distributed Bragg reflectors

    NASA Astrophysics Data System (ADS)

    Shieh, Bing-Cheng; Jhang, Yuan-Chang; Huang, Kun-Pin; Huang, Wan-Chun; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2015-08-01

    InGaN-based light-emitting diodes (LEDs) with embedded conductive nanoporous GaN/undoped GaN (NP-GaN/u-GaN) distributed Bragg reflectors (DBRs) were demonstrated. Nanoporous GaN DBR structures were fabricated by pulsed 355 nm laser scribing and electrochemical etching processes. Heavily Si-doped n-type GaN:Si layers (n+-GaN) in an eight-period n+-GaN/u-GaN stack structure were transformed into a low-refractive-index, conductive nanoporous GaN structure. The measured center wavelength, peak reflectivity, and bandwidth of the nanoporous GaN DBR structure were 417 nm, 96.7%, and 34 nm, respectively. Resonance cavity modes of the photoluminescence spectra were observed in the treated LED structure with the nanoporous DBR structure.

  10. Single molecule transistor based nanopore for the detection of nicotine

    SciTech Connect

    Ray, S. J.

    2014-12-28

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  11. Characterization of hydrophobic nanoporous particle liquids for energy absorption

    NASA Astrophysics Data System (ADS)

    Hsu, Yi; Liu, Yingtao

    2016-04-01

    Recently, the development of hydrophobic nanoporous technologies has drawn increased attention, especially for the applications of energy absorption and impact protection. Although significant amount of research has been conducted to synthesis and characterize materials to protect structures from impact damage, the tradition methods focused on converting kinetic energy to other forms, such as heat and cell buckling. Due to their high energy absorption efficiency, hydrophobic nanoporous particle liquids (NPLs) are one of the most attractive impact mitigation materials. During impact, such particles directly trap liquid molecules inside the non-wetting surface of nanopores in the particles. The captured impact energy is simply stored temporarily and isolated from the original energy transmission path. In this paper we will investigate the energy absorption efficiency of combinations of silica nanoporous particles and with multiple liquids. Inorganic particles, such as nanoporous silica, are characterized using scanning electron microscopy. Small molecule promoters, such as methanol and ethanol, are introduced to the prepared NPLs. Their effects on the energy absorption efficiency are studied in this paper. NPLs are prepared by dispersing the studied materials in deionized water. Energy absorption efficiency of these liquids are experimentally characterized using an Instron mechanical testing frame and in-house develop stainless steel hydraulic cylinder system.

  12. Fabricating Nanodots using Lift-Off of a Nanopore Template

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Ramsey, Christopher R.; Bae, Youngsam; Choi, Daniel S.

    2008-01-01

    A process for fabricating a planar array of dots having characteristic dimensions of the order of several nanometers to several hundred nanometers involves the formation and use of a thin alumina nanopore template on a semiconductor substrate. The dot material is deposited in the nanopores, then the template is lifted off the substrate after the dots have been formed. This process is expected to be a basis for development of other, similar nanofabrication processes for relatively inexpensive mass production of nanometerscale optical, optoelectronic, electronic, and magnetic devices. Alumina nanopore templates are self-organized structures that result from anodization of aluminum under appropriate conditions. Alumina nanopore templates have been regarded as attractive for use in fabricating the devices mentioned above, but prior efforts to use alumina nanopore templates for this purpose have not been successful. One reason for the lack of success is that the aspect ratios (ratios between depth and diameter) of the pores have been too large: large aspect ratios can result in blockage of deposition and/or can prevent successful lift-off. The development of the present process was motivated partly by a requirement to reduce aspect ratios to values (of the order of 10) for which there is little or no blockage of deposition and attempts at lift-off are more likely to be successful. The fabrication process is outlined.

  13. Single molecule transistor based nanopore for the detection of nicotine

    NASA Astrophysics Data System (ADS)

    Ray, S. J.

    2014-12-01

    A nanopore based detection methodology was proposed and investigated for the detection of Nicotine. This technique uses a Single Molecular Transistor working as a nanopore operational in the Coulomb Blockade regime. When the Nicotine molecule is pulled through the nanopore area surrounded by the Source(S), Drain (D), and Gate electrodes, the charge stability diagram can detect the presence of the molecule and is unique for a specific molecular structure. Due to the weak coupling between the different electrodes which is set by the nanopore size, the molecular energy states stay almost unaffected by the electrostatic environment that can be realised from the charge stability diagram. Identification of different orientation and position of the Nicotine molecule within the nanopore area can be made from specific regions of overlap between different charge states on the stability diagram that could be used as an electronic fingerprint for detection. This method could be advantageous and useful to detect the presence of Nicotine in smoke which is usually performed using chemical chromatography techniques.

  14. Nanoporous materials for biomedical devices.

    SciTech Connect

    Adiga, S. P.; Curtiss, L. A.; Elam, J. W.; Pellin, M. J.; Shih, C.-C.; Shin, C.-M.; Lin, S.-J.; Su, Y.-Y.; Gittard, S. D.; Zhang, J.; Narayan, R. J.; National Yang-Ming Univ.; Taipei Medical Univ.; Univ. of North Carolina at Chapel Hill

    2008-01-01

    Nanoporous materials are currently being developed for use in implantable drug delivery systems, bioartificial organs, and other novel medical devices. Advances in nanofabrication have made it possible to precisely control the pore size, pore distribution, porosity, and chemical properties of pores in nanoporous materials. As a result, these materials are attractive for regulating and sensing transport at the molecular level. In this work, the use of nanoporous membranes for biomedical applications is reviewed. The basic concepts underlying membrane transport are presented in the context of design considerations for efficient size sorting. Desirable properties of nanoporous membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are also discussed. In addition, the use of surface modification techniques to improve the function of nanoporous membranes is reviewed. An intriguing possibility involves functionalizing nanoporous materials with smart polymers in order to modulate biomolecular transport in response to pH, temperature, ionic concentration, or other stimuli. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.

  15. Photoresistance Switching of Plasmonic Nanopores

    PubMed Central

    2015-01-01

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼1–2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification. PMID:25514824

  16. Single nanopore transport of synthetic and biological polyelectrolytes in three-dimensional hybrid microfluidic/nanofluidic devices

    DOE PAGESBeta

    King, Travis L.; Gatimu, Enid N.; Bohn, Paul W.

    2009-01-02

    This paper presents a study of electrokinetic transport in single nanopores integrated into vertically-stacked three-dimensional hybrid microfluidic/nanofluidic structures. In these devices single nanopores, created by focused ion beam (FIB) milling in thin polymer films, provide fluidic connection between two vertically separated, perpendicular microfluidic channels. Experiments address both systems in which the nanoporous membrane is composed of the same (homojunction) or different (heterojunction) polymer as the microfluidic channels. These devices are then used to study the electrokinetic transport properties of synthetic (i.e., polystyrene sulfonate and polyallylamine) and biological (i.e.,DNA) polyelectrolytes across these nanopores. Single nanopore transport of polyelectrolytes across these nanoporesmore » using both electrical current measurements and confocal microscopy. Both optical and electrical measurements indicate that electroosmotic transport is predominant over electrophoresis in single nanopores with d > 180 nm, consistent with results obtained under similar conditions for nanocapillary array membranes.« less

  17. Synthesis and characterization of responsive nanoporous materials

    NASA Astrophysics Data System (ADS)

    Abelow, Alexis Elizabeth

    This thesis describes the synthesis and properties of polymer or oligonucleotide-modified nanoporous membranes and nanopores which exhibit a response to external stimuli, synthesized with the intention of mimicking biological protein channels. The responsiveness of these systems arises as a function of the polymer or oligonucleotide modifier, which exhibit a change in conformation with exposure to temperature, pH, introduction of a small molecule, or electric potential. First, the transport of ions through supported silica colloidal films modified with poly(L-alanine) on platinum electrodes was studied using cyclic voltammetry. By monitoring the flux of a redox species through the polymer-modified colloidal film it is demonstrated that the polymer expands and contracts when the temperature was increased and decreased, respectively. We also observed an expansion and contraction as the pH was increased and decreased, respectively. Transport of a neutral dye molecule through free-standing silica colloidal films modified with poly(L-alanine) was also studied. As noted previously, the polymer expands and contracts as the pH is increased and decreased, respectively. Next, the transport was monitored through both silica colloidal film-modified Pt microelectrodes and Pt single nanopore electrodes as an oligonucleotide-based binder, or aptamer, was attached. The aptamer is responsive to a small molecule, cocaine where, in the absence of cocaine, only one "arm" of the aptamer is folded in on itself, leaving the rest of the chain partially unfolded, blocking the nanopores. However, when the cocaine molecule is introduced into solution, the aptamer folds completely in on itself, forming a three-armed structure with the small molecule encapsulated in the middle. This change in conformation is monitored by observing the change in transport of a redox species through the pores as cocaine is introduced into the system. We observed an increase rate of transport as the aptamer bound

  18. Transport behavior of water molecules through two-dimensional nanopores.

    PubMed

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  19. Transport behavior of water molecules through two-dimensional nanopores

    SciTech Connect

    Zhu, Chongqin; Li, Hui; Meng, Sheng

    2014-11-14

    Water transport through a two-dimensional nanoporous membrane has attracted increasing attention in recent years thanks to great demands in water purification and desalination applications. However, few studies have been reported on the microscopic mechanisms of water transport through structured nanopores, especially at the atomistic scale. Here we investigate the microstructure of water flow through two-dimensional model graphene membrane containing a variety of nanopores of different size by using molecular dynamics simulations. Our results clearly indicate that the continuum flow transits to discrete molecular flow patterns with decreasing pore sizes. While for pores with a diameter ≥15 Å water flux exhibits a linear dependence on the pore area, a nonlinear relationship between water flux and pore area has been identified for smaller pores. We attribute this deviation from linear behavior to the presence of discrete water flow, which is strongly influenced by the water-membrane interaction and hydrogen bonding between water molecules.

  20. Characterization of electroosmotic flow through nanoporous self-assembled arrays.

    PubMed

    Bell, Kevan; Gomes, Mikel; Nazemifard, Neda

    2015-08-01

    Characterization of EOF mobility for Tris and TBE buffer solutions is performed in nanoporous arrays using the fluorescent marker method to examine the magnitude of EOFs through nanopores with mean diameters close to electric double layer thickness (Debye length). Structures made from solid silica nanospheres with effective pore sizes from 104 nm down to 8 nm are produced within the microchannel using an evaporation self-assembly method. EOF results in nanoporous matrices show higher EOF mobilities for stronger electrolyte solutions, which are drastically different compared to microchannel EOF. The effects of scaling are also examined by comparing the EOF mobility for varying ratios of pore diameters to the Debye length, which shows a surprising consistency across all particle sizes examined. This work demonstrates various factors which must be considered when designing nanofluidic devices, and discusses the causes of these small scale effects. PMID:25964193

  1. Elastic properties of protein functionalized nanoporous polymer films

    DOE PAGESBeta

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that proteinmore » functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.« less

  2. Elastic Properties of Lysozyme Confined in Nanoporous Polymer Films

    NASA Astrophysics Data System (ADS)

    Wang, Haoyu; Akcora, Pinar

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. It is known that confined media provide a protective environment to the encapsulated proteins and prevent diffusion of the denaturant. In this study, different types of proteins (streptavidin, lysozyme and fibrinogen) were chemically attached into the nanopores of poly(methyl methacrylate) thin films. Heterogeneous flat surfaces with varying cylinder pore sizes (10-50 nm) were used to confine proteins of different sizes and shapes. Stiffness of protein functionalized nanopores was measured in nanoindentation experiments. Our results showed that streptavidin behaved more stiffly when pore dimension changed from micron to nanosize. Further, it was found that lysozyme confined within nanopores showed higher specific bioactivity than proteins on flat surfaces. These results on surface elasticity and protein activity may help in understanding protein interactions with surfaces of different topologies and chemistry.

  3. Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization

    NASA Astrophysics Data System (ADS)

    Park, Yang Jeong; Ha, Jun Mok; Ali, Ghafar; Kim, Hyun Jin; Addad, Yacine; Cho, Sung Oh

    2015-09-01

    We have presented a mechanism to explain why the resulting oxide morphology becomes a porous or a tubular nanostructure when a zircaloy is electrochemically anodized. A porous zirconium oxide nanostructure is always formed at an initial anodization stage, but the degree of interpore dissolution determines whether the final morphology is nanoporous or nanotubular. The interpore dissolution rate can be tuned by changing the anodization parameters such as anodization time and water content in an electrolyte. Consequently, porous or tubular oxide nanostructures can be selectively fabricated on a zircaloy surface by controlling the parameters. Based on this mechanism, zirconium oxide layers with completely nanoporous, completely nanotubular, and intermediate morphologies between a nanoporous and a nanotubular structure were controllably fabricated.

  4. Elastic properties of protein functionalized nanoporous polymer films

    SciTech Connect

    Charles T. Black; Wang, Haoyu; Akcora, Pinar

    2015-12-16

    Retaining the conformational structure and bioactivity of immobilized proteins is important for biosensor designs and drug delivery systems. Confined environments often lead to changes in conformation and functions of proteins. In this study, lysozyme is chemically tethered into nanopores of polystyrene thin films, and submicron pores in poly(methyl methacrylate) films are functionalized with streptavidin. Nanoindentation experiments show that stiffness of streptavidin increases with decreasing submicron pore sizes. Lysozymes in polystyrene nanopores are found to behave stiffer than the submicron pore sizes and still retain their specific bioactivity relative to the proteins on flat surfaces. Lastly, our results show that protein functionalized ordered nanoporous polystyrene/poly(methyl methacrylate) films present heterogeneous elasticity and can be used to study interactions between free proteins and designed surfaces.

  5. Diameter Controlled of Carbon Nanotubes Synthesized on Nanoporous Silicon Support

    NASA Astrophysics Data System (ADS)

    Asli, N. A.; Shamsudin, M. S.; Maryam, M.; Yusop, S. F. M.; Suriani, A. B.; Rusop, M.; Abdullah, S.

    2013-06-01

    Carbon nanotubes (CNTs) have been successfully synthesized on nanoporous silicon template (NPSiT) using botanical source, camphor oil. Diameter of CNTs synthesized was controlled by pore size of NPSiT prepared by photo-electrochemical anodization method. The diameter of CNTs grown on different NPSiT corresponded to the pore diameter of NPSiT. FESEM images showed self-organized bundles of fiber-like structures of CNTs with diameter of around 20nm which were successfully grown directly on nanoporous silicon while raman spectra obtained ratio of ID/IG at 0.67.

  6. Stabilization of ion concentration polarization using a heterogeneous nanoporous junction

    NASA Astrophysics Data System (ADS)

    Kim, Pilnam; Kim, Sung Jae; Han, Jongyoon; Suh, Kahp Y.

    2009-11-01

    We demonstrate a recycled ion -- flux through heterogeneous nanoporous junctions, which induce stable ion concentration polarization (ICP) with an electric field. The nanoporous junctions are based on integration of ionic hydrogels whose surfaces are negatively- and positively- charged for cationic selectivity and anionic selectivity, respectively. It is shown that a `heterojunction' structure with cationic selective hydrogels (CSH) and anionic selective hydrogels (ASH) can be matched up in a way to achieve continuous ion-flux operation for stable concentration gradient or ionic conductance. Furthermore, the combined junctions can be used to accumulate ions on a specific region of the device.

  7. Elastic characterization of nanoporous gold foams using laser based ultrasonics.

    PubMed

    Ahn, Phillip; Balogun, Oluwaseyi

    2014-03-01

    A resonance based laser ultrasonics technique is explored for the characterization of low density nanoporous gold foams. Laser generated zero group velocity (ZGV) lamb waves are measured in the foams using a Michelson interferometer. The amplitude spectra obtained from the processed time-domain data are analyzed using a theoretical model from which the foam Young's modulus and Poisson's ratio are obtained. The technique is non-contact and nondestructive, and the ZGV resonance modes are spatially localized, allowing for spatial mapping of the bulk sample properties. The technique may be suitable for process control monitoring and mechanical characterization of low density nanoporous structures.

  8. Applications of Nanoporous Materials in Agriculture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nanoporous materials possess organized pore distributions and increased surface areas. Advances in the systematic design of nanoporous materials enable incorporation of functionality for better sensitivity in detection methods, increased capacity of sorbents, and improved selectivity and yield in ca...

  9. Activated carbon from pyrolysed sugarcane bagasse: Silver nanoparticle modification and ecotoxicity assessment.

    PubMed

    Gonçalves, Suely Patrícia C; Strauss, Mathias; Delite, Fabrício S; Clemente, Zaira; Castro, Vera L; Martinez, Diego Stéfani T

    2016-09-15

    Activated carbon from pyrolysed sugarcane bagasse (ACPB) presented pore size ranges from 1.0 to 3.5nm, and surface area between 1200 and 1400m(2)g(-1) that is higher than commonly observed to commercial activated carbon. The ACPB material was successfully loaded with of silver nanoparticles with diameter around 35nm (0.81wt.%). X-ray photoelectron spectroscopy (XPS) analyses showed that the material surface contains metallic/Ag(0) (93.60wt.%) and ionic/Ag(+) states (6.40wt.%). The adsorption capacity of organic model molecules (i.e. methylene blue and phenol) was very efficient to ACPB and ACPB loaded with silver nanoparticles (ACPB-AgNP), indicating that the material modification with silver nanoparticles has not altered its adsorption capacity. ACPB-AgNP inhibited bacteria growth (Escherichia coli), it is a promising advantage for the use of these materials in wastewater treatment and water purification processes. However, ACPB-AgNP showed environmental risks, with toxic effect to the aquatic organism Hydra attenuata (i.e. LC50 value of 1.94mgL(-1)), and it suppressed root development of Lycopersicum esculentum plant (tomato). Finally, this work draw attention for the environmental implications of activated carbon materials modified with silver nanoparticles. PMID:27039274

  10. Long-chain carboxylic acids in pyrolysates of Green River kerogen

    NASA Technical Reports Server (NTRS)

    Kawamura, K.; Tannenbaum, E.; Huizinga, B. J.; Kaplan, I. R.

    1986-01-01

    Long-chain fatty acids (C10-C32), as well as C14-C21 isoprenoid acids (except for C18), have been identified in anhydrous and hydrous pyrolyses products of Green River kerogen (200-400 degrees C, 2-1000 hr). These kerogen-released fatty acids are characterized by a strong even/odd predominance (CPI: 4.8-10.2) with a maximum at C16 followed by lesser amounts of C18 and C22 acids. This distribution is different from that of unbound and bound geolipids extracted from Green River shale. The unbound fatty acids show a weak even/odd predominance (CPI: 1.64) with a maximum at C14, and bound fatty acids display an even/odd predominance (CPI: 2.8) with maxima at C18 and C30. These results suggest that fatty acids were incorporated into kerogen during sedimentation and early diagenesis and were protected from microbial and chemical changes over geological periods of time. Total quantities of fatty acids produced during heating of the kerogen ranged from 0.71 to 3.2 mg/g kerogen. Highest concentrations were obtained when kerogen was heated with water for 100 hr at 300 degrees C. Generally, their amounts did not decrease under hydrous conditions with increase in temperature or heating time, suggesting that significant decarboxylation did not occur under the pyrolysis conditions used, although hydrocarbons were extensively generated.

  11. An all-in-one nanopore battery array.

    PubMed

    Liu, Chanyuan; Gillette, Eleanor I; Chen, Xinyi; Pearse, Alexander J; Kozen, Alexander C; Schroeder, Marshall A; Gregorczyk, Keith E; Lee, Sang Bok; Rubloff, Gary W

    2014-12-01

    A single nanopore structure that embeds all components of an electrochemical storage device could bring about the ultimate miniaturization in energy storage. Self-alignment of electrodes within each nanopore may enable closer and more controlled spacing between electrodes than in state-of-art batteries. Such an 'all-in-one' nanopore battery array would also present an alternative to interdigitated electrode structures that employ complex three-dimensional geometries with greater spatial heterogeneity. Here, we report a battery composed of an array of nanobatteries connected in parallel, each composed of an anode, a cathode and a liquid electrolyte confined within the nanopores of anodic aluminium oxide, as an all-in-one nanosize device. Each nanoelectrode includes an outer Ru nanotube current collector and an inner nanotube of V₂O₅ storage material, forming a symmetric full nanopore storage cell with anode and cathode separated by an electrolyte region. The V₂O₅ is prelithiated at one end to serve as the anode, with pristine V₂O₅ at the other end serving as the cathode, forming a battery that is asymmetrically cycled between 0.2 V and 1.8 V. The capacity retention of this full cell (relative to 1 C values) is 95% at 5 C and 46% at 150 C, with a 1,000-cycle life. From a fundamental point of view, our all-in-one nanopore battery array unveils an electrochemical regime in which ion insertion and surface charge mechanisms for energy storage become indistinguishable, and offers a testbed for studying ion transport limits in dense nanostructured electrode arrays.

  12. Fabrication of the gating nanopore device

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Tsutsui, Makusu; Yokota, Kazumichi; Kawai, Tomoji

    2009-09-01

    We synthesized gating nanopores with embedded nanogap electrodes in a solid-state nanopore using an 11-step nanofabrication process. We were able to detect Au nanoparticles passing through a 30-nm-diameter gating nanopore via an electric current between nanoelectrodes. The electric current was proportional to the duration of translocation time. The gating nanopore is expected to be a next-generated nanosystem that can be applied to single-molecule sensors.

  13. Multiplexed ionic current sensing with glass nanopores.

    PubMed

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores. PMID:23563625

  14. Multiplexed ionic current sensing with glass nanopores.

    PubMed

    Bell, Nicholas A W; Thacker, Vivek V; Hernández-Ainsa, Silvia; Fuentes-Perez, Maria E; Moreno-Herrero, Fernando; Liedl, Tim; Keyser, Ulrich F

    2013-05-21

    We report a method for simultaneous ionic current measurements of single molecules across up to 16 solid state nanopore channels. Each device, costing less than $20, contains 16 glass nanopores made by laser assisted capillary pulling. We demonstrate simultaneous multichannel detection of double stranded DNA and trapping of DNA origami nanostructures to form hybrid nanopores.

  15. Modelling studies of water in crystalline nanoporous aluminosilicates.

    PubMed

    Bougeard, Daniel; Smirnov, Konstantin S

    2007-01-14

    The paper presents a review of molecular modelling studies of hydrated nanoporous aluminosilicates (zeolites and clays) performed during the last decade. A special emphasis is set on the calculation of the dynamical quantities and collective properties of the confined water. Some new results concerning the behaviour of water molecules in the siliceous silicalite and zeolite beta structures are presented.

  16. Enhanced boiling performance of a nanoporous copper surface by electrodeposition and heat treatment

    NASA Astrophysics Data System (ADS)

    Gao, Jiao; Lu, Long-Sheng; Sun, Jia-Wei; Liu, Xiao-Kang; Tang, Biao

    2016-07-01

    A nanoporous structure was fabricated on the surface of a copper block by electrodeposition and heat treatment compound technology. The influence of the heat treatment parameters on the binding force of a structure was analyzed, and a platform was set up to test the pool boiling heat transfer performance. By observing the SEM morphology, the effect of electrodeposition parameters on the formation of nanoporous structure was determined, and the heat transfer coefficient and wall superheat between different surfaces were compared. At the same time, by means of visualization, the bubble behavior of a smooth surface and a nanoporous surface under different heat fluxes was studied. The results show that the surface structure of nanoporous copper prepared by electrodeposition and heat treatment can improve the bonding strength by 77 %, decrease the wall superheat by 45 %, and increase the heat transfer coefficient by 80 %.

  17. Synthesis and Characterization of Bimodal Nanoporous Cu Foams: Working Towards Inertial Fusion Energy

    SciTech Connect

    Cervantes, O; Hayes, J R; Hamza, A

    2007-09-28

    For the National Ignition Facility, at the Lawrence Livermore National Laboratory, nanoporous structures play a crucial role in the development of targets for high energy density experiments. Here we present a new bottom-up synthesis technique termed filter-casting for the creation of bimodal macro/nanoporous Cu structures. Homogeneous nanoporous monoliths can be synthesized using Cu nanoparticles and bimodal porosities can be achieved using sacrificial polystyrene spheres as a template. Control over the structure and composition is critical for target manufacturing. The measured densities of the Cu foam range between 1070-3390 mg/cm{sup 3}. Filter-casting is a powerful new method for directly synthesizing large nanoporous monoliths with predetermined composition, pore size, and pore structure.

  18. Plasmonic nanopore-based platforms for single-molecule Raman scattering

    NASA Astrophysics Data System (ADS)

    Deng, Liang; Wang, Yixin; Liu, Chen; Hu, Dora Juan Juan; Shum, Perry Ping; Su, Lei

    2016-08-01

    We propose and demonstrate a novel plasmonic nanopore platform based on a bowtie-nanopore structure, for single-molecule sensing. In this nano-structure, nano-bowties are integrated with solid-state nanopores to provide localized surface plasmon resonances for signal enhancement. We design and optimize the nano-structure by tuning both the bowtie gap and the bowtie angle, and investigate their influences on field enhancement, thereby achieving single-molecule sensitivity. In addition, we study the field enhancement by introducing an engineered photonic nano-cavity. This further strengthens the electric enhancement. An overall Raman enhancement factor of 2×108 is achieved in our simulation. This is believed to be sufficient for single-molecule sensing. The proposed bowtie-nanopore structure can be multiplexed on a single substrate for simultaneous multi-channel detection, paving the way for demanding applications such as DNA sequencing.

  19. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  20. Graphene nanopores as negative differential resistance devices

    SciTech Connect

    Qiu, Wanzhi; Nguyen, Phuong Duc; Skafidas, Efstratios

    2015-02-07

    We present graphene nanopores as new negative differential resistance (NDR) devices, and study their quantum transport properties using non-equilibrium Green's function and the density functional tight binding method. The proposed device structure is created on intrinsic armchair-edged graphene nanoribbons with uniform widths, where the central scattering region has a nanopore in the interior, and the two ends of the nanoribbon act naturally as connecting electrodes. We show that nitrogen-passivated scattering regions generally result in pronounced NDR properties, while hydrogen-passivated ones do not. This NDR effect occurs at low bias voltages, below 1 V, and achieves extraordinarily high peak-to-valley current ratio, while still attaining very high peak current densities. In addition, very sharp current peaks in the μA range can occur in the I-V curves, and through varying structural dimensions of the proposed structure multiple NDR regions can be realized. These results suggest that the device has promising potential in applications such as high frequency oscillators, memory devices, and fast switches.

  1. Nanoporous microscale microbial incubators.

    PubMed

    Ge, Zhifei; Girguis, Peter R; Buie, Cullen R

    2016-02-01

    Reconstruction of phylogenetic trees based on 16S rRNA gene sequencing reveals abundant microbial diversity that has not been cultured in the laboratory. Many attribute this so-called 'great plate count anomaly' to traditional microbial cultivation techniques, which largely facilitate the growth of a single species. Yet, it is widely recognized that bacteria in nature exist in complex communities. One technique to increase the pool of cultivated bacterial species is to co-culture multiple species in a simulated natural environment. Here, we present nanoporous microscale microbial incubators (NMMI) that enable high-throughput screening and real-time observation of multi-species co-culture. The key innovation in NMMI is that they facilitate inter-species communication while maintaining physical isolation between species, which is ideal for genomic analysis. Co-culture of a quorum sensing pair demonstrates that the NMMI can be used to culture multiple species in chemical communication while monitoring the growth dynamics of individual species. PMID:26584739

  2. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  3. Pyrolyse du 1,2-dichloroéthane vers 500 circC

    NASA Astrophysics Data System (ADS)

    Salouhi, M.; Marquaire, P. M.; Côme, G. M.

    1999-05-01

    The pyrolysis of 1,2-dichloroethane (DCE) was studied at very low conversion (10-5-10-6) by means of a perfectly stirred reactor at 520 and 490 circC, at pressures of DCE between 6 and 17 Torr and space times between 1.3 and 7 s. According to the nature of the reactor walls (new or conditionned) and to the temperature, an induction period is, or is not observed. Experimental results are explained by an homogeneous long chain free radical mechanism, completed by heterogeneous termination reactions. Values of homogeneous and heterogeneous kinetic parameters are deduced from the experimental results. La pyrolyse du 1,2-dichloroéthane (DCE) a été étudiée à très faible conversion (10-5-10-6) à l'aide d'un réacteur continu parfaitement agité, à 520 et 490 circC, des pressions de DCE comprises entre 6 et 17 Torr, et des temps de passage compris entre 1,3 et 7 s. Selon la nature des parois du réacteur (neuves ou conditionnées) et la température, on observe ou non une période d'induction pour la réaction. Les résultats expérimentaux sont interprétés à l'aide d'un mécanisme radicalaire homogène en chaînes longues, complété par des réactions de terminaison hétérogènes. Des valeurs de paramètres cinétiques homogènes et hétérogènes sont déduites des données expérimentales.

  4. Intermolecular Hybridization Creating Nanopore Orbital in a Supramolecular Hydrocarbon Sheet.

    PubMed

    Zhang, Yi-Qi; Björk, Jonas; Barth, Johannes V; Klappenberger, Florian

    2016-07-13

    Molecular orbital engineering is a key ingredient for the design of organic devices. Intermolecular hybridization promises efficient charge carrier transport but usually requires dense packing for significant wave function overlap. Here we use scanning tunneling spectroscopy to spatially resolve the electronic structure of a surface-confined nanoporous supramolecular sheet of a prototypical hydrocarbon compound featuring terminal alkyne (-CCH) groups. Surprisingly, localized nanopore orbitals are observed, with their electron density centered in the cavities surrounded by the functional moieties. Density functional theory calculations reveal that these new electronic states originate from the intermolecular hybridization of six in-plane π-orbitals of the carbon-carbon triple bonds, exhibiting significant electronic splitting and an energy downshift of approximately 1 eV. Importantly, these nanopore states are distinct from previously reported interfacial states. We unravel the underlying connection between the formation of nanopore orbital and geometric arrangements of functional groups, thus demonstrating the generality of applying related orbital engineering concepts in various types of porous organic structures.

  5. Formation of self-organized nanoporous anodic oxide from metallic gallium.

    PubMed

    Pandey, Bipin; Thapa, Prem S; Higgins, Daniel A; Ito, Takashi

    2012-09-25

    This paper reports the formation of self-organized nanoporous gallium oxide by anodization of solid gallium metal. Because of its low melting point (ca. 30 °C), metallic gallium can be shaped into flexible structures, permitting the fabrication of nanoporous anodic oxide monoliths within confined spaces like the inside of a microchannel. Here, solid gallium films prepared on planar substrates were employed to investigate the effects of anodization voltage (1, 5, 10, 15 V) and H(2)SO(4) concentration (1, 2, 4, 6 M) on anodic oxide morphology. Self-organized nanopores aligned perpendicular to the film surface were obtained upon anodization of gallium films in ice-cooled 4 and 6 M aqueous H(2)SO(4) at 10 and 15 V. Nanopore formation could be recognized by an increase in anodic current after a current decrease reflecting barrier oxide formation. The average pore diameter was in the range of 18-40 nm with a narrow diameter distribution (relative standard deviation ca. 10-20%), and was larger at lower H(2)SO(4) concentration and higher applied voltage. The maximum thickness of nanoporous anodic oxide was ca. 2 μm. In addition, anodic formation of self-organized nanopores was demonstrated for a solid gallium monolith incorporated at the end of a glass capillary. Nanoporous anodic oxide monoliths formed from a fusible metal will lead to future development of unique devices for chemical sensing and catalysis.

  6. Water confinement in nanoporous silica materials

    SciTech Connect

    Renou, Richard; Szymczyk, Anthony; Ghoufi, Aziz

    2014-01-28

    The influence of the surface polarity of cylindrical silica nanopores and the presence of Na{sup +} ions as compensating charges on the structure and dynamics of confined water has been investigated by molecular dynamics simulations. A comparison between three different matrixes has been included: a protonated nanopore (PP, with SiOH groups), a deprotonated material (DP, with negatively charged surface groups), and a compensated-charge framework (CC, with sodium cations compensating the negative surface charge). The structure of water inside the different pores shows significant differences in terms of layer organization and hydrogen bonding network. Inside the CC pore the innermost layer is lost to be replaced by a quasi bulk phase. The electrostatic field generated by the DP pore is felt from the surface to the centre of pore leading to a strong orientation of water molecules even in the central part of the pore. Water dynamics inside both the PP and DP pores shows significant differences with respect to the CC pore in which the sub-diffusive regime of water is lost for a superdiffusive regime.

  7. Irradiation response and stability of nanoporous materials

    SciTech Connect

    Fu, Engang; Wang, Yongqiang; Serrano De Caro, Magdalena; Caro, Jose A.; Zepeda-Ruiz, L; Bringa, E.; Nastasi, Mike; Baldwin, Jon K.

    2012-08-28

    Nanoporous materials consist of a regular organic or inorganic framework supporting a regular, porous structure. Pores are by definition roughly in the nanometre range, that is between 0.2 nm and 100 nm. Nanoporous materials can be subdivided into 3 categories (IUPAC): (1) Microporous materials - 0.2-2 nm; (2) Mesoporous materials - 2-50 nm; and (3) Macroporous materials - 50-1000 nm. np-Au foams were successfully synthesized by de-alloying process. np-Au foams remain porous structure after Ne ion irradiation to 1 dpa. Stacking Fault Tetrahedra (SFTs) were observed in RT irradiated np-Au foams under the highest and intermediate fluxes, but not under the lowest flux. SFTs were not observed in LNT irradiated np-Au foams under all fluxes. The vacancy diffusivity in Au at RT is high enough so that the vacancies have enough time to agglomerate and then collapse to form SFTs. The high ion flux creates more damage per unit time; vacancies don't have enough time to diffuse or recombine. As a result, SFTs were formed at high ion fluxes.

  8. Structuring and electric conductivity of polymer composites pyrolysed at high temperatures

    NASA Astrophysics Data System (ADS)

    Aneli, J. N.; Natriashvili, T. M.; Zaikov, G. E.

    2014-05-01

    On the basis of mixes of phenolformaldehide and epoxy resins at presence of some silicon organic compounds and fiber glasses annealed in vacuum and hydrogen media the new conductive monolithic materials have been created. There were investigated the conductive, magnetic and some other properties of these materials. It is established experimentally that the obtained products are characterized by semiconducting properties, the level of conductivity of which are regulated by selection of technological conditions. The density and mobility of charge carriers increase at increasing of annealing temperature up to definite levels. The temperature dependence of the electrical conductivity and charge mobility describe by Mott formulas. It is established that at annealing free radicals and other paramagnetic centers are formed. Iit is proposed that charge transport between conducting clusters provides by mechanism of charge jumping with alternative longevity of the jump.

  9. Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols

    NASA Astrophysics Data System (ADS)

    Pérez-Mitta, Gonzalo; Burr, Loïc; Tuninetti, Jimena S.; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2016-01-01

    In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental conditions. The pH-dependent chemical equilibrium of the weak acidic and basic monomers facilitates the regulation of the ionic transport through the nanopore by adjusting the pH of the electrolyte solution. Our results demonstrate that functional amphipathic polymers are powerful building blocks for the surface modification of nanopores and might ultimately pave the way to a new means of integrating functional and/or responsive units within nanofluidic structures.In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental

  10. Multilevel description of the DNA molecule translocation in solid-state synthetic nanopores

    NASA Astrophysics Data System (ADS)

    Nosik, V. L.; Rudakova, E. B.

    2016-07-01

    Interest of researchers in micro- and nanofluidics of polymer solutions and, in particular, DNA ionic solutions is constantly increasing. The use of DNA translocation with a controlled velocity through solid-state nanopores and pulsed X-ray beams in new sequencing schemes opens up new possibilities for studying the structure of DNA and other biopolymers. The problems related to the description of DNA molecular motion in a limited volume of nanopore are considered.

  11. Antibacterial hemostatic dressings with nanoporous bioglass containing silver

    PubMed Central

    Hu, Gangfeng; Xiao, Luwei; Tong, Peijian; Bi, Dawei; Wang, Hui; Ma, Haitao; Zhu, Gang; Liu, Hui

    2012-01-01

    Nanoporous bioglass containing silver (n-BGS) was fabricated using the sol-gel method, with cetyltrimethyl ammonium bromide as template. The results showed that n-BGS with nanoporous structure had a surface area of 467 m2/g and a pore size of around 6 nm, and exhibited a significantly higher water absorption rate compared with BGS without nanopores. The n-BGS containing small amounts of silver (Ag) had a slight effect on its surface area. The n-BGS containing 0.02 wt% Ag, without cytotoxicity, had a good antibacterial effect on Escherichia coli, and its antibacterial rate reached 99% in 12 hours. The n-BGS’s clotting ability significantly decreased prothrombin time (PT) and activated partial thromboplastin time (APTT), indicating n-BGS with a higher surface area could significantly promote blood clotting (by decreasing clotting time) compared with BGS without nanopores. Effective hemostasis was achieved in skin injury models, and bleeding time was reduced. It is suggested that n-BGS could be a good dressing, with antibacterial and hemostatic properties, which might shorten wound bleeding time and control hemorrhage. PMID:22745538

  12. Probe DNA-Cisplatin Interaction with Solid-State Nanopores

    NASA Astrophysics Data System (ADS)

    Zhou, Zhi; Hu, Ying; Li, Wei; Xu, Zhi; Wang, Pengye; Bai, Xuedong; Shan, Xinyan; Lu, Xinghua; Nanopore Collaboration

    2014-03-01

    Understanding the mechanism of DNA-cisplatin interaction is essential for clinical application and novel drug design. As an emerging single-molecule technology, solid-state nanopore has been employed in biomolecule detection and probing DNA-molecule interactions. Herein, we reported a real-time monitoring of DNA-cisplatin interaction by employing solid-state SiN nanopores. The DNA-cisplatin interacting process is clearly classified into three stages by measuring the capture rate of DNA-cisplatin adducts. In the first stage, the negative charged DNA molecules were partially discharged due to the bonding of positive charged cisplatin and forming of mono-adducts. In the second stage, forming of DNA-cisplatin di-adducts with the adjacent bases results in DNA bending and softening. The capture rate increases since the softened bi-adducts experience a lower barrier to thread into the nanopores. In the third stage, complex structures, such as micro-loop, are formed and the DNA-cisplatin adducts are aggregated. The capture rate decreases to zero as the aggregated adduct grows to the size of the pore. The characteristic time of this stage was found to be linear with the diameter of the nanopore and this dynamic process can be described with a second-order reaction model. We are grateful to Laboratory of Microfabrication, Dr. Y. Yao, and Prof. R.C. Yu (Institute of Physics, Chinese Academy of Sciences) for technical assistance.

  13. High-density nanopore array for selective biomolecule transport.

    SciTech Connect

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  14. Ion transport in sub-5-nm graphene nanopores

    SciTech Connect

    Suk, Myung E.; Aluru, N. R.

    2014-02-28

    Graphene nanopore is a promising device for single molecule sensing, including DNA bases, as its single atom thickness provides high spatial resolution. To attain high sensitivity, the size of the molecule should be comparable to the pore diameter. However, when the pore diameter approaches the size of the molecule, ion properties and dynamics may deviate from the bulk values and continuum analysis may not be accurate. In this paper, we investigate the static and dynamic properties of ions with and without an external voltage drop in sub-5-nm graphene nanopores using molecular dynamics simulations. Ion concentration in graphene nanopores sharply drops from the bulk concentration when the pore radius is smaller than 0.9 nm. Ion mobility in the pore is also smaller than bulk ion mobility due to the layered liquid structure in the pore-axial direction. Our results show that a continuum analysis can be appropriate when the pore radius is larger than 0.9 nm if pore conductivity is properly defined. Since many applications of graphene nanopores, such as DNA and protein sensing, involve ion transport, the results presented here will be useful not only in understanding the behavior of ion transport but also in designing bio-molecular sensors.

  15. Restricted dynamics of molecular hydrogen confined in activated carbon nanopores

    SciTech Connect

    Contescu, Cristian I; Saha, Dipendu; Gallego, Nidia C; Mamontov, Eugene; Kolesnikov, Alexander I; Bhat, Vinay V

    2012-01-01

    Quasi-elastic neutron scattering was used for characterization of dynamics of molecular hydrogen confined in narrow nanopores of two activated carbon materials: PFAC (derived from polyfurfuryl alcohol) and UMC (ultramicroporous carbon). Fast, but incomplete ortho-para conversion was observed at 10 K, suggesting that scattering originates from the fraction of unconverted ortho isomer which is rotation-hindered because of confinement in nanopores. Hydrogen molecules entrapped in narrow nanopores (<7 ) were immobile below 22-25 K. Mobility increased rapidly with temperature above this threshold, which is 8 K higher than the melting point of bulk hydrogen. Diffusion obeyed fixed-jump length mechanism, indistinguishable between 2D and 3D processes. Thermal activation of diffusion was characterized between ~22 and 37 K, and structure-dependent differences were found between the two carbons. Activation energy of diffusion was higher than that of bulk solid hydrogen. Classical notions of liquid and solid do not longer apply for H2 confined in narrow nanopores.

  16. Hyper-dendritic nanoporous zinc foam anodes

    SciTech Connect

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrast to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.

  17. Hyper-dendritic nanoporous zinc foam anodes

    DOE PAGESBeta

    Chamoun, Mylad; Hertzberg, Benjamin J.; Gupta, Tanya; Davies, Daniel; Bhadra, Shoham; Van Tassell, Barry.; Erdonmez, Can; Steingart, Daniel A.

    2015-04-24

    The low cost, significant reducing potential, and relative safety of the zinc electrode is a common hope for a reductant in secondary batteries, but it is limited mainly to primary implementation due to shape change. In this work we exploit such shape change for the benefit of static electrodes through the electrodeposition of hyper-dendritic nanoporous zinc foam. Electrodeposition of zinc foam resulted in nanoparticles formed on secondary dendrites in a three-dimensional network with a particle size distribution of 54.1 - 96.0 nm. The nanoporous zinc foam contributed to highly oriented crystals, high surface area and more rapid kinetics in contrastmore » to conventional zinc in alkaline mediums. The anode material presented had a utilization of ~ 88% at full depth-of-discharge at various rates indicating a superb rate-capability. The rechargeability of Zn⁰/Zn²⁺ showed significant capacity retention over 100 cycles at a 40% depth-of-discharge to ensure that the dendritic core structure was imperforated. The dendritic architecture was densified upon charge-discharge cycling and presented superior performance compared to bulk zinc electrodes.« less

  18. Manipulation of Protein Translocation through Nanopores by Flow Field Control and Application to Nanopore Sensors.

    PubMed

    Hsu, Wei-Lun; Daiguji, Hirofumi

    2016-09-20

    The control of biomolecule translocation through nanopores is important in nanopore protein detection. Improvement in current nanopore molecule control is desired to enhance capture rates, extend translocation times, and ensure the effective detection of various proteins in the same solutions. We present a method that simultaneously resolves these issues through the use of a gate-modulated conical nanopore coupled with solutions of varying salt concentration. Simulation results show that the presence of an induced reverse electroosmotic flow (IREOF) results in inlet flows from the two ends of the nanopore centerline entering into the nanopore in opposite directions, which simultaneously elevates the capture rate and immobilizes the protein in the nanopore, thus enabling steady current blockage measurements for a range of proteins. In addition, it is shown that proteins with different size/charge ratios can be trapped by a gate modulation intensified flow field at a similar location in the nanopore in the same solution conditions.

  19. Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores.

    PubMed

    Zhao, Cuijiao; Wei, Xiaonan; Huang, Yawen; Ma, Jiajun; Cao, Ke; Chang, Guanjun; Yang, Junxiao

    2016-07-28

    Although general porous materials have a low dielectric constant, their uncontrollable opened porous structure results in high dielectric loss and poor barrier properties, thus limiting their application as interconnect dielectrics. In this study, polymeric nanoporous materials with well-controlled closed pores were prepared by incorporating polystyrene (PS) hollow nanoparticles into polyethylene (PE/HoPS). SEM images suggested a closed porous structure for PE/HoPS. In order to show the effect of the porous structure on dielectric properties, nanoporous materials with an opened or uncontrollable porous structure were prepared by etching SiO2/PE or PE/PS@SiO2 composites. PE/HoPSs composites showed an apparently lower dielectric constant and loss compared with the opened porous PE, demonstrating the advantages of a closed porous structure upon enhancing low-dielectric performance. The low dielectric performance of the PE/HoPS composites is linked with high water resistance owing to their closed porous characteristics. When incorporating 15.3 wt% HoPS (porosity: ∼6.9%), the dielectric constant reached 2.08. This value is lower than that calculated from the serial model. Our work revealed that the incorporation of HoPS not only reduces the porosity, but also alters the intrinsic properties of PE, as a result, leading to a greatly reduced dielectric constant. PMID:27363945

  20. Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores.

    PubMed

    Zhao, Cuijiao; Wei, Xiaonan; Huang, Yawen; Ma, Jiajun; Cao, Ke; Chang, Guanjun; Yang, Junxiao

    2016-07-28

    Although general porous materials have a low dielectric constant, their uncontrollable opened porous structure results in high dielectric loss and poor barrier properties, thus limiting their application as interconnect dielectrics. In this study, polymeric nanoporous materials with well-controlled closed pores were prepared by incorporating polystyrene (PS) hollow nanoparticles into polyethylene (PE/HoPS). SEM images suggested a closed porous structure for PE/HoPS. In order to show the effect of the porous structure on dielectric properties, nanoporous materials with an opened or uncontrollable porous structure were prepared by etching SiO2/PE or PE/PS@SiO2 composites. PE/HoPSs composites showed an apparently lower dielectric constant and loss compared with the opened porous PE, demonstrating the advantages of a closed porous structure upon enhancing low-dielectric performance. The low dielectric performance of the PE/HoPS composites is linked with high water resistance owing to their closed porous characteristics. When incorporating 15.3 wt% HoPS (porosity: ∼6.9%), the dielectric constant reached 2.08. This value is lower than that calculated from the serial model. Our work revealed that the incorporation of HoPS not only reduces the porosity, but also alters the intrinsic properties of PE, as a result, leading to a greatly reduced dielectric constant.

  1. Self-organized nanoporous materials for chemical separations and chemical sensing

    NASA Astrophysics Data System (ADS)

    Pandey, Bipin

    oxide is explored through potentiometric measurements. The nanoporous anodic and barrier layer gallium oxide structures showed slow potentiometric response only at acidic pH (≤ 4), in contrast to metallic gallium substrates that exhibited a positive potentiometric response to H+ over the pH range examined (3-10). The potentiometric response at acidic pH probably reflects some chemical processes between gallium oxide and HCl.

  2. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste.

    PubMed

    Cao, Jing-Pei; Xiao, Xian-Bin; Zhang, Shou-Yu; Zhao, Xiao-Yan; Sato, Kazuyoshi; Ogawa, Yukiko; Wei, Xian-Yong; Takarada, Takayuki

    2011-01-01

    Fast pyrolyses of sewage sludge (SS), pig compost (PC), and wood chip (WC) were investigated in an internally circulating fluidized-bed to evaluate bio-oil production. The pyrolyses were performed at 500 °C and the bio-oil yields from SS, PC, and WC were 45.2%, 44.4%, and 39.7% (dried and ash-free basis), respectively. The bio-oils were analyzed with an elemental analyzer, Karl-Fischer moisture titrator, bomb calorimeter, Fourier transformation infrared spectrometer, gel permeation chromatograph, and gas chromatography/mass spectrometry. The results show that the bio-oil from SS is rich in aliphatic and organonitrogen species, while the bio-oil from PC exhibits higher caloric value due to its higher carbon content and lower oxygen content in comparison with that from SS. The bio-oils from SS and PC have similar chemical composition of organonitrogen species. Most of the compounds detected in the bio-oil from WC are organooxygen species. Because of its high oxygen content, low H/C ratio, and caloric value, the bio-oil from WC is unfeasible for use as fuel feedstock, but possible for use as chemical feedstock. PMID:20943376

  3. Production and characterization of polypropylene composites filled with glass fibre recycled from pyrolysed waste printed circuit boards.

    PubMed

    Li, Shenyong; Sun, Shuiyu; Liang, Haifeng; Zhong, Sheng; Yang, Fan

    2014-01-01

    Waste printed circuit boards (WPCBs) are composed of nearly 70% non-metals, which are generally recycled as low-value filling materials or even directly dumped in landfills. In this study, polypropylene (PP) composites reinforced by recycled pure glass fibres (RGF) from pyrolysed WPCBs were successfully produced. The manufacturing process, mechanical properties and thermal behaviour of the composites were investigated. The results showed that the appropriate addition of RGF in the composites can significantly improve the mechanical properties and thermal behaviour. When the added content of RGF was 30%, the maximum increment of tensile strength, impact strength, flexural strength and flexural modulus of the glass fibre (GF)/PP composites are 25.93%, 41.38%, 31.16% and 68.42%, respectively, and the vicat softening temperature could rise by 4.6°C. Furthermore, leaching of the GF/PP composites was also investigated. The GF/PP composites exhibited high performance and non-toxicity, offering a promising method to recycle RGF from pyrolysed WPCBs with high-value applications. PMID:25176309

  4. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass.

    PubMed

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-12-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  5. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass

    NASA Astrophysics Data System (ADS)

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-05-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

  6. A Nanopore-Structured Nitrogen-Doped Biocarbon Electrocatalyst for Oxygen Reduction from Two-Step Carbonization of Lemna minor Biomass.

    PubMed

    Guo, Chaozhong; Li, Zhongbin; Niu, Lidan; Liao, Wenli; Sun, Lingtao; Wen, Bixia; Nie, Yunqing; Cheng, Jing; Chen, Changguo

    2016-12-01

    So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors. PMID:27225424

  7. Solid-liquid-vapor metal-catalyzed etching of lateral and vertical nanopores.

    PubMed

    Wallentin, Jesper; Deppert, Knut; Borgström, Magnus T

    2013-10-18

    Etching is an essential tool for the creation of nanostructures, where patterned metal structures can be used as masks. Here, we investigate HCl gas etching of InP substrates decorated with Au nanoparticles, and find that the etch rate is strongly increased at the Au-InP interfaces. The {111}A facets of the InP are preferentially etched. The metal nanoparticles follow in the etch direction, thereby creating nanopores. The size and position of the pores is controlled by the Au nanoparticles, and we measure nanopores as thin as 20 nm with an aspect ratio of 25:1. The direction of the nanopores is influenced by the temperature and the substrate orientation, which we use to demonstrate lateral, vertical and inclined nanopores. We explain the process by a solid-liquid-vapor model, in which the liquid metal particle catalyzes the dissolution of the solid InP. PMID:24060650

  8. Nanoporous carbon tunable resistor/transistor and methods of production thereof

    SciTech Connect

    Biener, Juergen; Baumann, Theodore F; Dasgupta, Subho; Hahn, Horst

    2014-04-22

    In one embodiment, a tunable resistor/transistor includes a porous material that is electrically coupled between a source electrode and a drain electrode, wherein the porous material acts as an active channel, an electrolyte solution saturating the active channel, the electrolyte solution being adapted for altering an electrical resistance of the active channel based on an applied electrochemical potential, wherein the active channel comprises nanoporous carbon arranged in a three-dimensional structure. In another embodiment, a method for forming the tunable resistor/transistor includes forming a source electrode, forming a drain electrode, and forming a monolithic nanoporous carbon material that acts as an active channel and selectively couples the source electrode to the drain electrode electrically. In any embodiment, the electrolyte solution saturating the nanoporous carbon active channel is adapted for altering an electrical resistance of the nanoporous carbon active channel based on an applied electrochemical potential.

  9. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery

    PubMed Central

    Guo, Xianwei; Han, Jiuhui; Liu, Pan; Chen, Luyang; Ito, Yoshikazu; Jian, Zelang; Jin, Tienan; Hirata, Akihiko; Li, Fujun; Fujita, Takeshi; Asao, Naoki; Zhou, Haoshen; Chen, Mingwei

    2016-01-01

    High-energy-density rechargeable Li-O2 batteries are one of few candidates that can meet the demands of electric drive vehicles and other high-energy applications because of the ultra-high theoretical specific energy. However, the practical realization of the high rechargeable capacity is usually limited by the conflicted requirements for porous cathodes in high porosity to store the solid reaction products Li2O2 and large accessible surface area for easy formation and decomposition of Li2O2. Here we designed a hierarchical and bicontinuous nanoporous structure by introducing secondary nanopores into the ligaments of coarsened nanoporous gold by two-step dealloying. The hierarchical and bicontinuous nanoporous gold cathode provides high porosity, large accessible surface area and sufficient mass transport path for high capacity and long cycling lifetime of Li-O2 batteries. PMID:27640902

  10. Hierarchical nanoporosity enhanced reversible capacity of bicontinuous nanoporous metal based Li-O2 battery.

    PubMed

    Guo, Xianwei; Han, Jiuhui; Liu, Pan; Chen, Luyang; Ito, Yoshikazu; Jian, Zelang; Jin, Tienan; Hirata, Akihiko; Li, Fujun; Fujita, Takeshi; Asao, Naoki; Zhou, Haoshen; Chen, Mingwei

    2016-01-01

    High-energy-density rechargeable Li-O2 batteries are one of few candidates that can meet the demands of electric drive vehicles and other high-energy applications because of the ultra-high theoretical specific energy. However, the practical realization of the high rechargeable capacity is usually limited by the conflicted requirements for porous cathodes in high porosity to store the solid reaction products Li2O2 and large accessible surface area for easy formation and decomposition of Li2O2. Here we designed a hierarchical and bicontinuous nanoporous structure by introducing secondary nanopores into the ligaments of coarsened nanoporous gold by two-step dealloying. The hierarchical and bicontinuous nanoporous gold cathode provides high porosity, large accessible surface area and sufficient mass transport path for high capacity and long cycling lifetime of Li-O2 batteries. PMID:27640902

  11. Nanoporous materials as new engineered catalysts for the synthesis of green fuels.

    PubMed

    Fechete, Ioana; Vedrine, Jacques C

    2015-01-01

    This review summarizes the importance of nanoporous materials and their fascinating structural properties with respect to the catalytic and photocatalytic reduction of CO2 to methane, toward achieving a sustainable energy supply. The importance of catalysis as a bridge step for advanced energy systems and the associated environmental issues are stressed. A deep understanding of the fundamentals of these nanoporous solids is necessary to improve the design and efficiency of CO2 methanation. The role of the support dominates the design in terms of developing an efficient methanation catalyst, specifically with respect to ensuring enhanced metal dispersion and a long catalyst lifetime. Nanoporous materials provide the best supports for Ni, Ru, Rh, Co, Fe particles because they can prevent sintering and deactivation through coking, which otherwise blocks the metal surface as carbon accumulates. This review concludes with the major challenges facing the CO2 methanation by nanoporous materials for fuel applications. PMID:25838169

  12. The Effects of Geometry and Stability of Solid-state Nanopores on Detecting Single DNA molecules

    PubMed Central

    Rollings, Ryan; Graef, Edward; Walsh, Nathan; Nandivada, Santoshi; Benamara, Mourad

    2014-01-01

    In this work we use a combination of 3D-TEM tomography, energy filtered TEM, single molecule DNA translocation experiments, and numerical modeling to show a more precise relationship between nanopore shape and ionic conductance and show that changes in geometry while in solution can account for most deviations between predicted and measured conductance. We compare the structural stability of Ion Beam Sculpted (IBS), IBS-annealed, and TEM drilled nanopores. We demonstrate that annealing can significantly improve the stability of IBS made pores. Furthermore, the methods developed in this work can be used to predict pore conductance and current drop amplitudes of DNA translocation events for a wide variety of pore geometries. We discuss that chemical dissolution is one mechanism of the geometry change for SiNx nanopores and show that small modification in fabrication procedure can significantly increase the stability of IBS nanopores. PMID:25556317

  13. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets

    PubMed Central

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q. Jason

    2016-01-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation. PMID:27352851

  14. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets

    NASA Astrophysics Data System (ADS)

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q. Jason

    2016-06-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation.

  15. Propylene/propane permeation properties of ethyl cellulose (EC) mixed matrix membranes fabricated by incorporation of nanoporous graphene nanosheets.

    PubMed

    Yuan, Bingbing; Sun, Haixiang; Wang, Tao; Xu, Yanyan; Li, Peng; Kong, Ying; Niu, Q Jason

    2016-01-01

    Nanopore containing graphene nanosheets were synthesized by graphene oxide and a reducing agent using a facile hydrothermal treatment in sodium hydroxide media. The as-prepared nanoporous graphene was incorporated into ethyl cellulose (EC) to prepare the mixed matrix membranes (MMMs) for C3H6/C3H8 separation. Transmission electron microscopy (TEM) photograph and X-ray photoelectron spectroscopy (XPS) analysis of nanoporous graphene nanosheets indicated that the structure of nano-pore was irregular and the oxygen-containing groups in the surface were limited. More importantly, the as-prepared MMMs presented better separation performance than that of pristine EC membrane due to simultaneous enhancement of C3H6 permeability and ideal selectivity. The ideal selectivity of the MMMs with 1.125 wt‰ nanoporous graphene content for C3H6/C3H8 increased from 3.45 to 10.42 and the permeability of C3H6 increased from 57.9 Barrer to 89.95 Barrer as compared with the pristine membrane. The presumed facilitated mechanism was that the high specific surface area of nanoporous graphene in polymer matrix increased the length of the tortuous pathway formed by nanopores for the gas diffusion as compared with the pristine graphene nanosheets, and generated a rigidified interface between the EC chains and fillers, thus enhanced the diffusivity selectivity. Therefore, it is expected that nanoporous graphene would be effective material for the C3H6/C3H8 separation. PMID:27352851

  16. Enzyme Reactions in Nanoporous, Picoliter Volume Containers

    SciTech Connect

    Siuti, Piro; Retterer, Scott T; Choi, Chang Kyoung; Doktycz, Mitchel John

    2012-01-01

    Advancements in nanoscale fabrication allow creation of small volume reaction containers that can facilitate the screening and characterization of enzymes. A porous, ~19 pL volume vessel has been used in this work to carry out enzyme reactions under varying substrate concentrations. Glucose oxidase and horseradish peroxidase can be contained in these structures and diffusively fed with a solution containing glucose and the fluorogenic substrate Amplex Red through the engineered nanoscale pore structure. Fluorescent microscopy was used to monitor the reaction, which was carried out under microfluidic control. Kinetic characteristics of the enzyme were evaluated and compared with results from conventional scale reactions. These picoliter, nanoporous containers can facilitate quick determination of enzyme kinetics in microfluidic systems without the requirement of surface tethering and can be used for applications in drug discovery, clinical diagnostics and high-throughput screening.

  17. Nanopore Sequencing: Electrical Measurements of the Code of Life.

    PubMed

    Timp, Winston; Mirsaidov, Utkur M; Wang, Deqiang; Comer, Jeff; Aksimentiev, Aleksei; Timp, Gregory

    2010-05-01

    Sequencing a single molecule of deoxyribonucleic acid (DNA) using a nanopore is a revolutionary concept because it combines the potential for long read lengths (>5 kbp) with high speed (1 bp/10 ns), while obviating the need for costly amplification procedures due to the exquisite single molecule sensitivity. The prospects for implementing this concept seem bright. The cost savings from the removal of required reagents, coupled with the speed of nanopore sequencing places the $1000 genome within grasp. However, challenges remain: high fidelity reads demand stringent control over both the molecular configuration in the pore and the translocation kinetics. The molecular configuration determines how the ions passing through the pore come into contact with the nucleotides, while the translocation kinetics affect the time interval in which the same nucleotides are held in the constriction as the data is acquired. Proteins like α-hemolysin and its mutants offer exquisitely precise self-assembled nanopores and have demonstrated the facility for discriminating individual nucleotides, but it is currently difficult to design protein structure ab initio, which frustrates tailoring a pore for sequencing genomic DNA. Nanopores in solid-state membranes have been proposed as an alternative because of the flexibility in fabrication and ease of integration into a sequencing platform. Preliminary results have shown that with careful control of the dimensions of the pore and the shape of the electric field, control of DNA translocation through the pore is possible. Furthermore, discrimination between different base pairs of DNA may be feasible. Thus, a nanopore promises inexpensive, reliable, high-throughput sequencing, which could thrust genomic science into personal medicine.

  18. Nanoporous Ag prepared from the melt-spun Cu-Ag alloys

    NASA Astrophysics Data System (ADS)

    Li, Guijing; Song, Xiaoping; Sun, Zhanbo; Yang, Shengchun; Ding, Bingjun; Yang, Sen; Yang, Zhimao; Wang, Fei

    2011-07-01

    Nanoporous Ag ribbons with different morphology and porosity were achieved by the electrochemical corrosion of the melt-spun Cu-Ag alloys. The Cu-rich phase in the alloys was removed, resulting in the formation of the nanopores distributed across the whole ribbon. It is found that the structures, morphology and porosity of the nanoporous Ag ribbons were dependent on the microstructures of the parent alloys. The most of ligaments presented a rod-like shape due to the formation of pseudoeutectic microstructure in the melt-spun Cu 55Ag 45 and Cu 70Ag 30 alloys. For nanoporous Ag prepared from Cu 85Ag 15 alloys, the ligaments were camber-like because of the appearance of the divorced microstructures. Especially, a novel bamboo-grove-like structure could be observed at the cross-section of the nanoporous Ag ribbons. The experiment reveals that nanoporous Ag ribbons exhibited excellent enhancement of surface-enhanced Raman scattering (SERS) effect, but a slight difference existed due to the discrepancy of their morphology.

  19. Threading DNA through nanopores for biosensing applications.

    PubMed

    Fyta, Maria

    2015-07-15

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. PMID:26061408

  20. Threading DNA through nanopores for biosensing applications.

    PubMed

    Fyta, Maria

    2015-07-15

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  1. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  2. Oscillation of Capacitance inside Nanopores

    SciTech Connect

    Jiang, De-en; Jin, Zhehui; Wu, Jianzhong

    2011-10-26

    Porous carbons of high surface area are promising as cost-effective electrode materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agrees well with the experiment when the pore size is less than twice the ionic diameter. Confirmation of the entire oscillatory spectrum invites future experiments with a precise control of the pore size from micro- to mesoscales.

  3. Oscillation of Capacitance inside Nanopores

    SciTech Connect

    Jiang, Deen; Wu, Jianzhong; Jin, Zhehui

    2011-01-01

    materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agreeswell with the experiment when the pore size is less than twice the ionic diameter.Confirmation of the entire oscillatory spectruminvites future experiments with a precise control of the pore size from micro- to mesoscales.

  4. Heat treatment effect on crystal structure and design of highly sensitive room temperature CO2 gas sensors using anodic Bi2O3 nanoporous formed in a citric acid electrolyte

    NASA Astrophysics Data System (ADS)

    Ahila, M.; Dhanalakshmi, J.; Celina Selvakumari, J.; Pathinettam Padiyan, D.

    2016-10-01

    The effect of annealing temperature on the crystal structure of anodic bismuth trioxide (ABO) layers prepared via anodization in a citric acid-based electrolyte was studied. The samples were annealed in air at temperatures ranging from 200 °C to 600 °C. Characterization of nanoporous ABO layers was carried out through x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), UV–visible (UV–Vis) diffuse reflectance spectroscopy and photoluminescence (PL). Effects of heat treatment on crystallinity, morphology and gas-sensing properties were investigated in detail. The XRD measurements showed that a gradual phase change from beta to gamma occurs with an increase in annealing temperature. The beta to gamma transformation occurred between 500 and 600 °C. The changes in the average crystallite sizes of beta and gamma occurring during heat treatment of the ABO layers are correlated with the mechanism of gamma-phase nucleation. During the growth of the gamma phase, the grain size gets enlarged with a reduction in the total area of grain boundary. The pores’ formation and the pore diameter of both anodized and annealed samples were found to be in the range of 50 to 150 nm. The band gap of the ABO layer crystallines was determined using the diffuse reflectance technique according to the Kubelka–Munk theory. Results showed that the band gap of the ABO layer decreased from 4.09 to 2.42 eV when the particle size decreased from 58 to 24 nm. The CO2 sensing properties of the ABO were investigated at room temperature for 0–100 ppm concentration. The variations in the electrical resistances were measured with the exposure of CO2 as a function of time. The maximum value of the response magnitude of 77% was obtained for 100 ppm of CO2. These experimental results show that the ABO layer of nanoporous is a promising material for CO2 sensors at room temperature.

  5. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  6. Nanoscale volcanoes: accretion of matter at ion-sculpted nanopores.

    PubMed

    Mitsui, Toshiyuki; Stein, Derek; Kim, Young-Rok; Hoogerheide, David; Golovchenko, J A

    2006-01-27

    We demonstrate the formation of nanoscale volcano-like structures induced by ion-beam irradiation of nanoscale pores in freestanding silicon nitride membranes. Accreted matter is delivered to the volcanoes from micrometer distances along the surface. Volcano formation accompanies nanopore shrinking and depends on geometrical factors and the presence of a conducting layer on the membrane's back surface. We argue that surface electric fields play an important role in accounting for the experimental observations.

  7. Solid-state Nanopore for Detecting Individual Biopolymers

    PubMed Central

    Li, Jiali; Golovchenko, Jene A.

    2011-01-01

    Solid-state nanopores have been fabricated and used to characterize single DNA and protein molecules. Here we describe the details on how these nanopores were fabricated and characterized, the nanopore sensing system setup, and the protocols of using these nanopores to characterize DNA and protein molecules. PMID:19488695

  8. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  9. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example

    NASA Astrophysics Data System (ADS)

    Martín, Jaime; Martín-González, Marisol

    2012-08-01

    Large area silicon nitride (SiNx) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the ``precursor film'' method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiNx nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiNx nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiNx nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces.

  10. Sponge-like nanoporous single crystals of gold

    NASA Astrophysics Data System (ADS)

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  11. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    DOE PAGESBeta

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalystmore » is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.« less

  12. Piezoelectric and dielectric properties of nanoporous polyvinylidence fluoride (PVDF) films

    NASA Astrophysics Data System (ADS)

    Zhao, Ping; Wang, Shifa; Kadlec, Alec

    2016-04-01

    A nanoporous polyvinylidene Fluoride (PVDF) thin film was developed for applications in energy harvesting, medical surgeries, and industrial robotics. This sponge-like nanoporous PVDF structure dramatically enhanced the piezoelectric effect because it yielded considerably large deformation under a small force. A casting-etching method was adopted to make films, which is effective to control the porosity, flexibility, and thickness of the film. The films with various Zinc Oxide (ZnO) mass fractions ranging from 10 to 50% were fabricated to investigate the porosity effect. The piezoelectric coefficient d33 as well as dielectric constant and loss of the films were characterized. The results were analyzed and the optimal design of the film with the right amount of ZnO nanoparticles was determined.

  13. Nanoporous artificial proboscis for probing minute amount of liquids

    NASA Astrophysics Data System (ADS)

    Tsai, Chen-Chih; Mikes, Petr; Andrukh, Taras; White, Edgar; Monaenkova, Daria; Burtovyy, Oleksandr; Burtovyy, Ruslan; Rubin, Binyamin; Lukas, David; Luzinov, Igor; Owens, Jeffery R.; Kornev, Konstantin G.

    2011-11-01

    We describe a method of fabrication of nanoporous flexible probes which work as artificial proboscises. The challenge of making probes with fast absorption rates and good retention capacity was addressed theoretically and experimentally. This work shows that the probe should possess two levels of pore hierarchy: nanopores are needed to enhance the capillary action and micrometer pores are required to speed up fluid transport. The model of controlled fluid absorption was verified in experiments. We also demonstrated that the artificial proboscises can be remotely controlled by electric or magnetic fields. Using an artificial proboscis, one can approach a drop of hazardous liquid, absorb it and safely deliver it to an analytical device. With these materials, the paradigm of a stationary microfluidic platform can be shifted to the flexible structures that would allow one to pack multiple microfluidic sensors into a single fiber.

  14. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-01-01

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner. PMID:26554856

  15. Quantum capacitance modifies interionic interactions in semiconducting nanopores

    NASA Astrophysics Data System (ADS)

    Lee, Alpha A.; Vella, Dominic; Goriely, Alain

    2016-02-01

    Nanopores made with low-dimensional semiconducting materials, such as carbon nanotubes and graphene slit pores, are used in supercapacitors. For modelling purposes, it is often assumed that such pores screen ion-ion interactions like metallic pores, i.e. that screening leads to an exponential decay of the interaction potential with ion separation. By introducing a quantum capacitance that accounts for the density of states in the material, we show that ion-ion interactions in carbon nanotubes and graphene slit pores actually decay algebraically with ion separation. This result suggests a new avenue of capacitance optimization based on tuning the electronic structure of a pore: a marked enhancement in capacitance might be achieved by developing nanopores made with metallic materials or bulk semimetallic materials.

  16. Water and Molecular Transport across Nanopores in Monolayer Graphene Membranes

    NASA Astrophysics Data System (ADS)

    Jang, Doojoon; O'Hern, Sean; Kidambi, Piran; Boutilier, Michael; Song, Yi; Idrobo, Juan-Carlos; Kong, Jing; Laoui, Tahar; Karnik, Rohit

    2015-11-01

    Graphene's atomic thickness and high tensile strength allow it to outstand as backbone material for next-generation high flux separation membrane. Molecular dynamics simulations predicted that a single-layer graphene membrane could exhibit high permeability and selectivity for water over ions/molecules, qualifying as novel water desalination membranes. However, experimental investigation of water and molecular transport across graphene nanopores had remained barely explored due to the presence of intrinsic defects and tears in graphene. We introduce two-step methods to seal leakage across centimeter scale single-layer graphene membranes create sub-nanometer pores using ion irradiation and oxidative etching. Pore creation parameters were varied to explore the effects of created pore structures on water and molecular transport driven by forward osmosis. The results demonstrate the potential of nanoporous graphene as a reliable platform for high flux nanofiltration membranes.

  17. Oxygen Reduction at Very Low Overpotential on Nanoporous Ag Catalysts

    SciTech Connect

    Zhou, Yang; Lu, Qi; Zhuang, Zhongbin; Hutchings, Gregory S.; Kattel, Shyam; Yan, Yushan; Chen, Jingguang G.; Xiao, John Q.; Jiao, Feng

    2015-05-07

    Here we report a monolithic nanoporous Ag (np-Ag) material, synthesized using the dealloying method, as high-performance catalysts for ORR in alkaline media. As shown in Scheme 1, when there is insufficient potential input, the O2 molecules are more likely to rebound off from a planar electrode surface (i.e. bulk polycrystalline metal, films made from nanoparticles or nanowires) before they could be reduced. In contrast, they are more likely to be trapped inside the monolithic nanoporous structure, contacting with catalytic surface for multiple time, which greatly enhances the chance for them to be fully reduced. As a result, the np-Ag catalyst is able to achieve an equivalent or better ORR performance than the state-of the-art Pt/C catalyst at low overpotentials, which is most desired in electrochemical energy applications for maximizing efficiency.

  18. Sponge-like nanoporous single crystals of gold.

    PubMed

    Khristosov, Maria Koifman; Bloch, Leonid; Burghammer, Manfred; Kauffmann, Yaron; Katsman, Alex; Pokroy, Boaz

    2015-11-10

    Single crystals in nature often demonstrate fascinating intricate porous morphologies rather than classical faceted surfaces. We attempt to grow such crystals, drawing inspiration from biogenic porous single crystals. Here we show that nanoporous single crystals of gold can be grown with no need for any elaborate fabrication steps. These crystals are found to grow following solidification of a eutectic composition melt that forms as a result of the dewetting of nanometric thin films. We also present a kinetic model that shows how this nano-porous single-crystalline structure can be obtained, and which allows the potential size of the porous single crystal to be predicted. Retaining their single-crystalline nature is due to the fact that the full crystallization process is faster than the average period between two subsequent nucleation events. Our findings clearly demonstrate that it is possible to form single-crystalline nano porous metal crystals in a controlled manner.

  19. Integration and characterization of SiN nanopores for single-molecule detection in liquid-core ARROW waveguides

    NASA Astrophysics Data System (ADS)

    Rudenko, M. I.; Yin, D.; Holmes, M.; Hawkins, A. R.; Schmidt, H.

    2007-02-01

    We demonstrate a method for integrating silicon nitride nanopores in liquid core Anti Resonant Reflecting Optical Waveguides (ARROW) for single molecule electrical detection and control. We use a two-step integration process when a micropore is fabricated first, paving the way for subsequent nanopore integration in the first silicon nitride layer of the ARROW structure. Nanopores with dimensions as small as 11 nm were fabricated using a Focused Ion Beam shrinking process commensurate with single particle gating of viruses, proteins, ribosomes and other biomolecules.

  20. Single-Molecule Study of Proteins by Biological Nanopore Sensors

    PubMed Central

    Wu, Dongmei; Bi, Sheng; Zhang, Liyu; Yang, Jun

    2014-01-01

    Nanopore technology has been developed for detecting properties of proteins through monitoring of ionic current modulations as protein passes via a nanosize pore. As a real-time, sensitive, selective and stable technology, biological nanopores are of widespread concern. Here, we introduce the background of nanopore researches in the area of α-hemolysin (α-HL) nanopores in protein conformation detections and protein–ligand interactions. Moreover, several original biological nanopores are also introduced with various features and functions. PMID:25268917

  1. Localization Transport in Granular and Nanoporous Carbon Systems.

    NASA Astrophysics Data System (ADS)

    Fung, Alex Weng Pui

    Porous carbon materials have long since been used in industry to make capacitors and adsorption agents because of their high specific surface area. Although their adsorption properties have been extensively studied, we have not seen the same vigor in the investigation of their physical properties, which are important not only for providing complementary characterization methods, but also for understanding the physics which underlies the manufacturing process and motivates intelligent design of these materials. The study of the new physics in these novel nanoporous materials also straddles the scientific forefronts of nanodimensional and disordered systems. In this thesis, we study the structural and electrical properties of two nanoporous carbons, namely activated carbon fibers and carbon aerogels. Specifically, we perform Raman scattering, x-ray diffraction, magnetic susceptibility, electrical transport and magnetotransport experiments. Results from other experiments reported in the literature or communicated to us by our collaborators, such as porosity and surface area measurements by adsorption methods, electron spin resonance, transmission electron microscopy, mechanical properties measurements and so on, are also frequently used in this thesis for additional characterization information. By correlating all the relevant results, we obtain the structure -property relationships in these nanoporous materials. This study shows that the transport properties of these porous materials can be used on one hand for sensitive characterization of complex materials, and on the other hand, for observing interesting and unusual physical phenomena. For example, as-prepared nanoporous carbon systems, exhibit in their low-temperature electrical conductivity a universal temperature dependence which is characteristic of a granular metallic system, despite their morphological differences. By studying further the magnetoresistance in these carbon materials, it is found that the

  2. Non-Faradaic Energy Storage by Room Temperature Ionic Liquids in Nanoporous Electrodes.

    PubMed

    Vatamanu, Jenel; Vatamanu, Mihaela; Bedrov, Dmitry

    2015-06-23

    The enhancement of non-Faradaic charge and energy density stored by ionic electrolytes in nanostructured electrodes is an intriguing issue of great practical importance for energy storage in electric double layer capacitors. On the basis of extensive molecular dynamics simulations of various carbon-based nanoporous electrodes and room temperature ionic liquid (RTIL) electrolytes, we identify atomistic mechanisms and correlations between electrode/electrolyte structures that lead to capacitance enhancement. In the symmetric electrode setup with nanopores having atomically smooth walls, most RTILs showed up to 50% capacitance increase compared to infinitely wide pore. Extensive simulations using asymmetric electrodes and pores with atomically rough surfaces demonstrated that tuning of electrode nanostructure could lead to further substantial capacitance enhancement. Therefore, the capacitance in nanoporous electrodes can be increased due to a combination of two effects: (i) the screening of ionic interactions by nanopore walls upon electrolyte nanoconfinement, and (ii) the optimization of nanopore structure (volume, surface roughness) to take into account the asymmetry between cation and anion chemical structures. PMID:26038979

  3. Nanoporous carbon for electrochemical capacitors.

    SciTech Connect

    Overmyer, Donald L.; Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-04-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  4. Nanoporous carbon for electrochemical capacitors.

    SciTech Connect

    Siegal, Michael P.; Bunker, Bruce Conrad; Limmer, Steven J.; Yelton, William Graham

    2010-05-01

    Nanoporous carbon (NPC) is a purely graphitic material with highly controlled densities ranging from less than 0.1 to 2.0 g/cm3, grown via pulsed-laser deposition. Decreasing the density of NPC increases the interplanar spacing between graphene-sheet fragments. This ability to tune the interplanar spacing makes NPC an ideal model system to study the behavior of carbon electrodes in electrochemical capacitors and batteries. We examine the capacitance of NPC films in alkaline and acidic electrolytes, and measure specific capacitances as high as 242 F/g.

  5. High Performance Optical Coatings Utilizing Tailored Refractive Index Nanoporous Thin Films

    NASA Astrophysics Data System (ADS)

    Poxson, David J.

    Refractive index is perhaps the most important quantity in optics. It is particularly relevant in the field of optical coatings, where the refractive index appears in virtually every optics equation as a figure of merit. Recently it has been demonstrated through control of the deposition angle during oblique-angle electron-beam deposition, nanoporous films of virtually any desired porosity may be accurately deposited. As the porosity of a nanoporous film directly relates to its effective refractive index, the refractive index value of a film may be tailored to any value between that of the bulk material and close to that of air. These two characteristics, namely; (i) tailored-refractive index and (ii) very low-refractive index values close to that of air, offer significant advantages in the design and optical performance in all optical coating applications. In this dissertation we explore optical coating applications whose performance can be greatly enhanced by utilization of a tailored- and low-refractive index nanoporous material system. One such important application is in the design and fabrication of broadband, omnidirectional antireflection (AR) coatings on solar cell devices. To harness the full spectrum of solar energy, Fresnel reflections at the surface of a photovoltaic cell must be reduced as much as possible over the relevant solar wavelength range and over a wide range of incident angles. However, the development of AR coatings embodying omni-directionality over a wide range of wavelengths is challenging. By utilizing the tailored- and low-refractive index properties of the nanoporous material system, in conjunction with a computational genetic algorithm and a predictive quantitative model for the porosity of such nanoporous films, truly optimized AR coatings can be designed and fabricated on solar cells. Here we show that these optimized AR structures demonstrate significant improvement to overall device efficiency. Traditionally, nanoporous films

  6. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair. PMID:26052107

  7. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material.

  8. Optimizing nanoporous materials for gas storage.

    PubMed

    Simon, Cory M; Kim, Jihan; Lin, Li-Chiang; Martin, Richard L; Haranczyk, Maciej; Smit, Berend

    2014-03-28

    In this work, we address the question of which thermodynamic factors determine the deliverable capacity of methane in nanoporous materials. The deliverable capacity is one of the key factors that determines the performance of a material for methane storage in automotive fuel tanks. To obtain insights into how the molecular characteristics of a material are related to the deliverable capacity, we developed several statistical thermodynamic models. The predictions of these models are compared with the classical thermodynamics approach of Bhatia and Myers [Bhatia and Myers, Langmuir, 2005, 22, 1688] and with the results of molecular simulations in which we screen the International Zeolite Association (IZA) structure database and a hypothetical zeolite database of over 100,000 structures. Both the simulations and our models do not support the rule of thumb that, for methane storage, one should aim for an optimal heat of adsorption of 18.8 kJ mol(-1). Instead, our models show that one can identify an optimal heat of adsorption, but that this optimal heat of adsorption depends on the structure of the material and can range from 8 to 23 kJ mol(-1). The different models we have developed are aimed to determine how this optimal heat of adsorption is related to the molecular structure of the material. PMID:24394864

  9. Nano-porous calcium phosphate balls.

    PubMed

    Kovach, Ildyko; Kosmella, Sabine; Prietzel, Claudia; Bagdahn, Christian; Koetz, Joachim

    2015-08-01

    By dropping a NaH2PO4·H2O precursor solution to a CaCl2 solution at 90°C under continuous stirring in presence of two biopolymers, i.e. gelatin (G) and chitosan (C), supramolecular calcium phosphate (CP) card house structures are formed. Light microscopic investigations in combination with scanning electron microscopy show that the GC-based flower-like structure is constructed from very thin CP platelets. Titration experiments indicate that H-bonding between both biopolymers is responsible for the synergistic effect in presence of both polymers. Gelatin-chitosan-water complexes play an important role with regard to supramolecular ordering. FTIR spectra in combination with powder X-ray diffraction show that after burning off all organic components (heating up >600°C) dicalcium and tricalcium phosphate crystallites are formed. From high resolution transmission electron microscopy (HR-TEM) it is obvious to conclude, that individual crystal platelets are dicalcium phosphates, which build up ball-like supramolecular structures. The results reveal that the GC guided crystal growth leads to nano-porous supramolecular structures, potentially attractive candidates for bone repair.

  10. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  11. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  12. Nanoporous ultra-high specific surface inorganic fibres

    NASA Astrophysics Data System (ADS)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  13. The breakage of nanopore in AAO template

    NASA Astrophysics Data System (ADS)

    Jia, X. R.; Wang, H.; Zhen, Y.

    2016-07-01

    In the present work, AAO template is fabricated in oxalic acid solution under a constant voltage by several steps. By the Bernoulli principle, the pressure on the wall of hole increases which lead to the breakage of nanopore as a result of the reducing effective migration rate of Al3+. The quantity of the breakage of nanopore rises with the increase of the concentration of Al3+. Further, nanopore is closed by oxide due to the decrease of effective migration rate of Al3+. Finally, a “nanoflower-like” shape can be observed in experiments.

  14. Anodization of nanoporous alumina on impurity-induced hemisphere curved surface of aluminum at room temperature

    NASA Astrophysics Data System (ADS)

    Chung, Chen-Kuei; Liao, Ming-Wei; Lee, Chun-Te; Chang, Hao-Chin

    2011-11-01

    Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications. PACS: 81.05.Rm; 81.07.-b; 82.45.Cc.

  15. Nanofluidic Pathways for Single Molecule Translocation and Sequencing -- Nanotubes and Nanopores

    NASA Astrophysics Data System (ADS)

    Song, Weisi

    Driven by the curiosity for the secret of life, the effort on sequencing of DNAs and other large biopolymers has never been respited. Advanced from recent sequencing techniques, nanotube and nanopore based sequencing has been attracting much attention. This thesis focuses on the study of first and crucial compartment of the third generation sequencing technique, the capture and translocation of biopolymers, and discuss the advantages and obstacles of two different nanofluidic pathways, nanotubes and nanopores for single molecule capturing and translocation. Carbon nanotubes with its constrained structure, the frictionless inner wall and strong electroosmotic flow, are promising materials for linearly threading DNA and other biopolymers for sequencing. Solid state nanopore on the other hand, is a robust chemical, thermal and mechanical stable nanofluidic device, which has a high capturing rate and, to some extent, good controllable threading ability for DNA and other biomolecules. These two different but similar nanofluidic pathways both provide a good preparation of analyte molecules for the sequencing purpose. In addition, more and more research interests have move onto peptide chains and protein sensing. For proteome is better and more direct indicators for human health, peptide chains and protein sensing have a much wider range of applications on bio-medicine, disease early diagnoses, and etc. A universal peptide chain nanopore sensing technique with universal chemical modification of peptides is discussed in this thesis as well, which unifies the nanopore capturing process for vast varieties of peptides. Obstacles of these nanofluidic pathways are also discussed. In the end of this thesis, a proposal of integration of solid state nanopore and fixed-gap recognition tunneling sequencing technique for a more accurate DNA and peptide readout is discussed, together with some early study work, which gives a new direction for nanopore based sequencing.

  16. Modelisation et simulation de pyrolyse de pneus usages dans des reacteurs de laboratoire et industriel

    NASA Astrophysics Data System (ADS)

    Lanteigne, Jean-Remi

    decomposition kinetics of pyrolysables. The simulation with data obtained in industrial operation showed the robustness of the model to predict with accuracy in transient regime, tires pyrolysis, with the help of model parameters obtained at laboratory scale, namely in regards of the trigger of production, the residence time of tires (dynamic production) and the amount of oil produced (cumulative yield). It is a novel way to model pyrolysis that could be extrapolated to new waste materials. The second objective of this doctoral research was to determine the evolution of specific tires specific heat during pyrolysis and the enthalpy of pyrolysis. The origin of this objective comes from a primary contradiction. With few exceptions, it is acknowledged that organic materials pyrolysis is globally an endothermic phenomenon. At the opposite, all experiments led with laboratory apparatuses such as DSC (Differential Scanning Calorimetry) showed exothermic peaks during dynamic experiments (constant heating rate). It has been confirmed by results obtained at the industrial scale, where no sign of exothermicity has been observed. The Hess Law has also confirmed these results, that globally, pyrolysis is indeed a completely endothermic process. An accurate energy balance is required to predict mass temperature during pyrolysis, this parameter being unbindable from kinetics. An advanced investigation of char first allowed demonstrating that specific heat of solids during pyrolysis decreases with increasing temperature until the weight loss peak is reached, around 400°C, and then starts increasing again. This observation, combined with the fact that the sample loses weight during pyrolysis is considered as the major cause of the apparition of an exothermic peak in laboratory scale experiments. That is, the control system of these apparatuses generates a bias and an unavoidable overheat of the samples producing this exothermic behavior. It would thus be an artifact. On the base of new data

  17. Ordering and defects in self-assembled monolayers on nanoporous gold

    NASA Astrophysics Data System (ADS)

    Patel, Dipna A.; Weller, Andrew M.; Chevalier, Robert B.; Karos, Constantine A.; Landis, Elizabeth C.

    2016-11-01

    Self-assembled monolayers are commonly used to tailor nanoporous structures for applications, and they also provide a model system for determining the effects of nanoscale structure on self-assembly. We have investigated the ordering and defects in alkanethiol self-assembled monolayers on nanoporous gold, a high surface area mesoporous material. Infrared reflection absorption spectroscopy was used to characterize the effects of alkyl chain length and nanoporous gold pore size on molecular layer ordering. Cyclic voltammetry was used to characterize the monolayer density and ordering, with ferrocenylalkylthiolates used to quantify and characterize defect sites. We find that dense and well-ordered molecular layers form quickly with low defect levels. However, we do not observe differences in molecular layer ordering or defects with changes in pore size.

  18. Amphiphilic Organic-Inorganic Hybrid Zeotype Aluminosilicate like a Nanoporous Crystallized Langmuir-Blodgett Film.

    PubMed

    Ikeda, Takuji; Hiyoshi, Norihito; Matsuura, Shun-ichi; Kodaira, Tetsuya; Nakaoka, Takuma; Irisa, Ami; Kawano, Miki; Yamamoto, Katsutoshi

    2015-06-26

    A new organic-inorganic hybrid zeotype compound with amphiphilic one-dimensional nanopore and aluminosilicate composition was developed. The framework structure is composed of double aluminosilicate layers and 12-ring nanopores; a hydrophilic layer pillared by Q(2) silicon atom species and a lipophilic layer pillared by phenylene groups are alternately stacked, and 12-ring nanopores perpendicularly penetrate the layers. The framework topology looks similar to that of an AFI-type zeolite but possesses a quasi-multidimensional pore structure consisting of a 12-ring channel and intersecting small pores equivalent to 8-rings. The hybrid material with alternately laminated lipophilic and hydrophilic nanospaces can be assumed as a crystallized Langmuir-Blodgett film. It demonstrates microporous adsorption for both hydrophilic and lipophilic adsorptives, and its outer surface tightly adsorbs lysozyme whose molecular size is much larger than its micropore opening. Our results suggest the possibility of designing porous adsorbent with high amphipathicity.

  19. Synthesis of Foam-Shaped Nanoporous Zeolite Material: A Simple Template-Based Method

    ERIC Educational Resources Information Center

    Saini, Vipin K.; Pires, Joao

    2012-01-01

    Nanoporous zeolite foam is an interesting crystalline material with an open-cell microcellular structure, similar to polyurethane foam (PUF). The aluminosilicate structure of this material has a large surface area, extended porosity, and mechanical strength. Owing to these properties, this material is suitable for industrial applications such as…

  20. Toxicological responses in SW mice exposed to inhaled pyrolysates of polymer/tobacco mixtures and blended tobacco.

    PubMed

    Werley, Michael S; Lee, K Monika; Lemus-Olalde, Ranulfo

    2009-12-01

    . There was a marked sensory irritation response that recovered slowly for some polymers. Sustained body weight depression, lesions of the respiratory epithelium of the nose, and morphological changes in pulmonary alveolar macrophages (PAM) were observed after exposure to some polymer/tobacco pyrolysates. These responses were increased compared to exposure to tobacco pyrolysate alone. No moribundity or mortality occurred during the study. The data suggest that polymeric inclusions pose a minimal additional toxicologic hazard in humans. PMID:19922405

  1. Toxicological responses in SW mice exposed to inhaled pyrolysates of polymer/tobacco mixtures and blended tobacco.

    PubMed

    Werley, Michael S; Lee, K Monika; Lemus-Olalde, Ranulfo

    2009-12-01

    . There was a marked sensory irritation response that recovered slowly for some polymers. Sustained body weight depression, lesions of the respiratory epithelium of the nose, and morphological changes in pulmonary alveolar macrophages (PAM) were observed after exposure to some polymer/tobacco pyrolysates. These responses were increased compared to exposure to tobacco pyrolysate alone. No moribundity or mortality occurred during the study. The data suggest that polymeric inclusions pose a minimal additional toxicologic hazard in humans.

  2. DNA sequencing by nanopores: advances and challenges

    NASA Astrophysics Data System (ADS)

    Agah, Shaghayegh; Zheng, Ming; Pasquali, Matteo; Kolomeisky, Anatoly B.

    2016-10-01

    Developing inexpensive and simple DNA sequencing methods capable of detecting entire genomes in short periods of time could revolutionize the world of medicine and technology. It will also lead to major advances in our understanding of fundamental biological processes. It has been shown that nanopores have the ability of single-molecule sensing of various biological molecules rapidly and at a low cost. This has stimulated significant experimental efforts in developing DNA sequencing techniques by utilizing biological and artificial nanopores. In this review, we discuss recent progress in the nanopore sequencing field with a focus on the nature of nanopores and on sensing mechanisms during the translocation. Current challenges and alternative methods are also discussed.

  3. Fabrication of nanopores for biomacromolecule detection.

    PubMed

    Yao, Zong-Ni; Wang, Kai-Ge; Jin, Ai-Zi; Li, Jun-Jie; Yang, Hai-Fang; Zhang, Yi-Guang; Gu, Chang-Zhi

    2010-11-01

    Nanopores embedded in a thin membrane with diameter below 10 nm are suitable for the biomacromolecule detection. For such purpose, in this study, we developed a technique of how to obtain small nanopores in silicon nitride films using a focused-ion-beam (FIB) system. By changing the process parameters, such as the beam current, the film thickness of the membrane and the ion beam exposure time, the diameter of the nanopore can be tuned. Under an optimized condition, high quality nanopores with diameter as low as 6 nm was fabricated on a 7 nm thick membrane. Our result suggests that FIB direct writing technique might be a suitable approach for biomacromolecule detector fabrication. PMID:21137919

  4. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  5. Effect of nano-silica spheres template on CO2 capture of exchange resin-based nanoporous carbons.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2013-01-01

    In this work, a nanoporous carbon-based adsorbent with a higher specific surface area was directly prepared from polystyrene-based cation exchange resin (PCER) by carbonization of a mixture of nano-silica spheres. The silica/PCER composites were carbonized at 1173 K with different silica/PCER ratios. The effects of nano-silica spheres content on the pore structures of nanoporous carbons were investigated by N2 full isotherms. The CO2 capture capacity was measured by CO2 isothermal adsorption at 298 K and 1 bar. From the results, it was found that the nano-silica spheres/PCER ratio had a major influence on the CO2 capture capacity and the textural properties of the prepared nanoporous carbons. The specific surface area and total pore volume, as well as the pore size of the nanoporous carbons increased with increasing silica/PCER ratio. PMID:23646745

  6. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  7. Theoretical models for electrochemical impedance spectroscopy and local ζ-potential of unfolded proteins in nanopores

    PubMed Central

    Vitarelli, Michael J.; Talaga, David S.

    2013-01-01

    Single solid-state nanopores find increasing use for electrical detection and/or manipulation of macromolecules. These applications exploit the changes in signals due to the geometry and electrical properties of the molecular species found within the nanopore. The sensitivity and resolution of such measurements are also influenced by the geometric and electrical properties of the nanopore. This paper continues the development of an analytical theory to predict the electrochemical impedance spectra of nanopores by including the influence of the presence of an unfolded protein using the variable topology finite Warburg impedance model previously published by the authors. The local excluded volume of, and charges present on, the segment of protein sampled by the nanopore are shown to influence the shape and peak frequency of the electrochemical impedance spectrum. An analytical theory is used to relate the capacitive response of the electrical double layer at the surface of the protein to both the charge density at the protein surface and the more commonly measured zeta potential. Illustrative examples show how the theory predicts that the varying sequential regions of surface charge density and excluded volume dictated by the protein primary structure may allow for an impedance-based approach to identifying unfolded proteins. PMID:24050368

  8. Electrodeposition and bipolar effects in metallized nanopores and their use in the detection of insulin.

    PubMed

    Rutkowska, Agnieszka; Freedman, Kevin; Skalkowska, Justyna; Kim, Min Jun; Edel, Joshua B; Albrecht, Tim

    2015-02-17

    Solid-state nanopore devices with integrated electrodes are an important class of single-molecule biosensors, with potential applications in DNA, RNA, and protein detection and sequence analysis. Here we investigate solid-state nanopore sensors with an embedded gold film, fabricated using semiconductor processing techniques and focused ion beam milling. We characterize their geometric structure in three dimensions on the basis of experimental conductance studies and modeling as well as transmission electron microscopy imaging and tomography. We used electrodeposition to further shrink the pores to effective diameters below 10 nm and demonstrate how bipolar electrochemical coupling across the membrane can lead to significant contributions to the overall pore current and discuss its implications for nanopore sensing. Finally, we use metallized nanopores modified with homocysteine for the detection of insulin. We show that adsorption of the protein to the chemically modified nanopores slows down the translocation process to tens of milliseconds, which is orders of magnitude slower than expected for conventional electrophoretic transport.

  9. Evaluation of a novel inhalation exposure system to determine acute respiratory responses to tobacco and polymer pyrolysate mixtures in Swiss-Webster mice.

    PubMed

    Werley, Michael S; Lee, K Monica; Lemus, Ranulfo

    2009-07-01

    Modern cigarette production processes are highly automated and yield millions of cigarettes per day. The forming cigarette and its components contact many different materials in the production process, some of which may leave minute residues. The potential for small inclusions of non-cigarette materials such as wood, plastic, cardboard and other materials exists from the bulk handling and processing of tobacco, in spite of vigilant workers and numerous online systems designed to keep the tobacco stream clean. Currently, there are no published methods that describe an approach to evaluate the potential toxicological impact of these non-tobacco residues and inclusions on the biological activity from exposure to the complex mixture of tobacco smoke. There are, however, many methods which describe toxicological evaluation approaches for pure materials, particularly synthetic polymers. We used the Deutsche Institute fur Normung (DIN) 53-436 tube furnace and nose-only exposure chamber in combination to conduct pilot studies in Swiss-Webster mice in order to develop a standardized methodology for the evaluation of sensory irritation and other potentially useful biological endpoints for predicting any potential hazards. Sensory and/or pulmonary irritation was assessed based on respiratory function parameters using the ASTM E981-84 method described by Alarie (1966) in mice, exposed to test atmospheres of 100% tobacco pyrolysate or tobacco/polymer pyrolysate mixtures. Other biological evaluations included respiratory function parameters, clinical signs, body weights, bronchoalveolar lavage fluid analysis, carboxyhemoglobin, blood cyanide concentrations and histopathology of the respiratory tract. These pilot studies have demonstrated that such an approach can detect biological changes resulting from exposure to unique tobacco/polymer pyrolysates. Small differences were detected in the sensory irritation responses (respiratory function), activation state of pulmonary

  10. Fracture and fatigue of ultrathin nanoporous polymer films

    NASA Astrophysics Data System (ADS)

    Kearney, Andrew V.

    Nanoporous polymer layers are being considered for a range of emerging nanoscale applications, from low permittivity materials for interlayer dielectrics in microelectronics and anti-reflective coatings in optical technologies, to biosensors and size-selective membranes for biological applications. Polymer thin films have inherently low elastic modulus, strength and hardness, but exhibit fracture properties that are higher than those reported for glass, ceramic, and even some metal layers. However, constraint of a ductile polymer between two elastic layers is expected to affect the local plasticity ahead of a crack tip and its contribution to the film adhesion with films below a micron in thickness. Additionally, nanoporosity would be expected to have a deleterious effect on mechanical properties, producing materials and layers that are structurally weaker than fully dense versions they replace. Therefore, the integration of these nanoporous polymer layer at nanometer thicknesses would present significantly processing and mechanical reliability challenges. In this dissertation, surprising evidence is presented that nanoporous polymer films exhibit increasing fracture energy with increasing porosity. Such behavior is in stark contrast to a wide range of reported behavior for porous solids. A ductile nano-void growth and coalescence fracture mechanics-based model is presented to rationalize the increase in fracture toughness of the voided polymer film. The model is shown to explain the behavior in terms of a specific scaling of the size of the pores with pore volume fraction. It is demonstrated that the pore size must increase with close to a linear dependence on the volume fraction in order to increase rather than decrease the fracture energy. Independent characterization of the pore size as a function of volume fraction is shown to confirm predictions made by the model. The fracture behavior of these constrained polymer films are also examined with film thickness

  11. Ion selectivity of graphene nanopores

    PubMed Central

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl− anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K+/Cl− selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size. PMID:27102837

  12. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.

  13. Ion selectivity of graphene nanopores

    DOE PAGESBeta

    Rollings, Ryan C.; Kuan, Aaron T.; Golovchenko, Jene A.

    2016-04-22

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K+ cations over Cl- anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations.more » Furthermore, the observed K+/Cl- selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size.« less

  14. Ion selectivity of graphene nanopores.

    PubMed

    Rollings, Ryan C; Kuan, Aaron T; Golovchenko, Jene A

    2016-01-01

    As population growth continues to outpace development of water infrastructure in many countries, desalination (the removal of salts from seawater) at high energy efficiency will likely become a vital source of fresh water. Due to its atomic thinness combined with its mechanical strength, porous graphene may be particularly well-suited for electrodialysis desalination, in which ions are removed under an electric field via ion-selective pores. Here, we show that single graphene nanopores preferentially permit the passage of K(+) cations over Cl(-) anions with selectivity ratios of over 100 and conduct monovalent cations up to 5 times more rapidly than divalent cations. Surprisingly, the observed K(+)/Cl(-) selectivity persists in pores even as large as about 20 nm in diameter, suggesting that high throughput, highly selective graphene electrodialysis membranes can be fabricated without the need for subnanometer control over pore size. PMID:27102837

  15. Comparative induction of somatic eye-color mutations and sex-linked recessive lethals in Drosophila melanogaster by tryptophan pyrolysates.

    PubMed

    Fujikawa, K; Inagaki, E; Uchibori, M; Kondo, S

    1983-12-01

    The mutagenicities of the products of pyrolysis of tryptophan, Trp-P-1 and Trp-P-2, on Drosophila melanogaster were examined by measuring the effects of these compounds in inducing recessive lethals and somatic eye-color mutations. Since negative results have already been obtained by the standard procedure in males, Trp-P-1 and Trp-P-2 (0.75 to 6 mg/ml) in sucrose solution were given to females for assay of recessive lethal mutations in X-chromosomes. These compounds caused a marginal increase above the control level in the mutation frequency. For the assay of effects on somatic eye-color mutations, Trp-P-1 (200 and 400 ppm) and Trp-P-2 (400 and 800 ppm) were fed to male larvae of a tester strain carrying a genetically unstable marker set of z and w+ on the X-chromosome. These compounds caused dose-dependent increases above the control level in somatic eye-color mutations in adults. It is concluded that, under the conditions used, the somatic eye-color mutation system was more sensitive than the recessive lethal system to the mutagenic effects of tryptophan pyrolysates. PMID:6419091

  16. [Pyrolysates of novel latent fragrant compound 3,6-dimethyl-2,5-pyrazinedicarboxylic acid menthol ester].

    PubMed

    Lai, Miao; Zhao, Boya; Bao, Xiaorong; Zhao, Mingqin; Ji, Xiaoming; Fu, Peipei; Zhang, Yujie

    2015-01-01

    In order to develop a new tobacco flavor released at high-temperature, the novel latent fragrant compound 3,6-dimethyl-2,5-pyrazinedicarboxylic acid menthol ester (DPAME) was synthesized by esterification using 2,3,5,6-tetramethylpyrazine and menthol as raw materials. In air atmosphere, the pyrolysis behavior of DPAME was investigated using an on-line pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) method at three temperature levels of 300, 600 and 900 degrees C, separately. The pyrolysis products were directly introduced into GC-MS and were qualitatively and semi-quantitatively analyzed. The results showed that a variety of aroma compounds of aldehydes, 3-p-menthene and menthol were released and identified at 300 degrees C. While at 600 degrees C and 900 degrees C, flavor alkene class, the alkyl pyrazines, menthol and 3-p-menthene were generated. And the types and relative amounts of pyrazines were significantly increased, at these two temperatures. Combined the analytical results of DPAME pyrolysates and the results of sensory evaluation of the cigarette, the possible pyrolysis mechanism was preliminarily speculated. The Py-GC-MS technique for the study of the pyrolysis products of DPAME was convenient and rapid. The investigation provided a reliable theoretical foundation for the perfume reinforcement technology in tobacco products, contributing to the development of cigarette products with better aroma and taste. This method is an accurate and quick way to study the pyrolysis products of latent fragrant substance.

  17. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application.

  18. [Pyrolysates of novel latent fragrant compound 3,6-dimethyl-2,5-pyrazinedicarboxylic acid menthol ester].

    PubMed

    Lai, Miao; Zhao, Boya; Bao, Xiaorong; Zhao, Mingqin; Ji, Xiaoming; Fu, Peipei; Zhang, Yujie

    2015-01-01

    In order to develop a new tobacco flavor released at high-temperature, the novel latent fragrant compound 3,6-dimethyl-2,5-pyrazinedicarboxylic acid menthol ester (DPAME) was synthesized by esterification using 2,3,5,6-tetramethylpyrazine and menthol as raw materials. In air atmosphere, the pyrolysis behavior of DPAME was investigated using an on-line pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) method at three temperature levels of 300, 600 and 900 degrees C, separately. The pyrolysis products were directly introduced into GC-MS and were qualitatively and semi-quantitatively analyzed. The results showed that a variety of aroma compounds of aldehydes, 3-p-menthene and menthol were released and identified at 300 degrees C. While at 600 degrees C and 900 degrees C, flavor alkene class, the alkyl pyrazines, menthol and 3-p-menthene were generated. And the types and relative amounts of pyrazines were significantly increased, at these two temperatures. Combined the analytical results of DPAME pyrolysates and the results of sensory evaluation of the cigarette, the possible pyrolysis mechanism was preliminarily speculated. The Py-GC-MS technique for the study of the pyrolysis products of DPAME was convenient and rapid. The investigation provided a reliable theoretical foundation for the perfume reinforcement technology in tobacco products, contributing to the development of cigarette products with better aroma and taste. This method is an accurate and quick way to study the pyrolysis products of latent fragrant substance. PMID:25958667

  19. Intermediate pyrolysis of agro-industrial biomasses in bench-scale pyrolyser: Product yields and its characterization.

    PubMed

    Tinwala, Farha; Mohanty, Pravakar; Parmar, Snehal; Patel, Anant; Pant, Kamal K

    2015-01-01

    Pyrolysis of woody biomass, agro-residues and seed was carried out at 500 ± 10 °C in a fixed bed pyrolyser. Bio-oil yield was found varying from 20.5% to 47.5%, whereas the biochar and pyrolysis gas ranged from 27.5% to 40% and 24.5% to 40.5%, respectively. Pyrolysis gas was measured for flame temperature along with CO, CO2, H2, CH4 and other gases composition. HHV of biochar (29.4 MJ/kg) and pyrolitic gas (8.6 MJ/kg) of woody biomass was higher analogous to sub-bituminous coal and steam gasification based producer gas respectively, whereas HHV of bio-oil obtained from seed (25.6 MJ/kg) was significantly more than husks, shells and straws. TGA-DTG studies showed the husks as potential source for the pyrolysis. Bio-oils as a major by-product of intermediate pyrolysis have several applications like substitute of furnace oil, extraction of fine chemicals, whereas biochar as a soil amendment for enhancing soil fertility and gases for thermal application. PMID:25770670

  20. Evolution of the atomic order and valence state of rare-earth atoms and uranium in a new carbon-metal composite—diphthalocyanine pyrolysate C64H32N16 Me ( Me = Y, La, Ce, Eu, and U)

    NASA Astrophysics Data System (ADS)

    Sovestnov, A. E.; Kapustin, V. K.; Tikhonov, V. I.; Fomin, E. V.; Chernenkov, Yu. P.

    2014-08-01

    The structure of a metal-carbon composite formed by the pyrolysis of diphthalocyanine of some rare-earth elements (Y, La, Ce, Eu) and uranium in the temperature range T ann = 800-1700°C has been investigated for the first time by the methods of X-ray diffraction analysis and X-ray line shift. It has been shown that, in the general case, the studied pyrolysates consist of three phases. One phase corresponds to the structure of graphite. The second phase corresponds to nitrides, carbides, and oxides of basic metal elements with a crystallite size ranging from 5 to 100 nm. The third phase is amorphous or consisting of crystallites with a size of ˜1 nm. It has been found that all the basic elements (Y, La, Ce, Eu, U) and incorporated iodine atoms in the third phase are in a chemically bound state. The previously unobserved electronic configurations have been revealed for europium. The possibility of including not only atoms of elements forming diphthalocyanine but also other elements (for example, iodine) in the composite structure is of interest, in particular, for the creation of a thermally, chemically, and radiation resistant metal-carbon matrix for the radioactive waste storage.

  1. The Influence of Nanopore Dimensions on the Electrochemical Properties of Nanopore Arrays Studied by Impedance Spectroscopy

    PubMed Central

    Kant, Krishna; Priest, Craig; Shapter, Joe G.; Losic, Dusan

    2014-01-01

    The understanding of the electrochemical properties of nanopores is the key factor for better understanding their performance and applications for nanopore-based sensing devices. In this study, the influence of pore dimensions of nanoporous alumina (NPA) membranes prepared by an anodization process and their electrochemical properties as a sensing platform using impedance spectroscopy was explored. NPA with four different pore diameters (25 nm, 45 nm and 65 nm) and lengths (5 μm to 20 μm) was used and their electrochemical properties were explored using different concentration of electrolyte solution (NaCl) ranging from 1 to 100 μM. Our results show that the impedance and resistance of nanopores are influenced by the concentration and ion species of electrolytes, while the capacitance is independent of them. It was found that nanopore diameters also have a significant influence on impedance due to changes in the thickness of the double layer inside the pores. PMID:25393785

  2. Tunable Fabry-Pérot interferometer based on nanoporous anodic alumina for optical biosensing purposes

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Balderrama, Victor S.; Alba, María; Formentín, Pilar; Ferré-Borrull, Josep; Pallarès, Josep; Marsal, Lluís F.

    2012-07-01

    Here, we present a systematic study about the effect of the pore length and its diameter on the specular reflection in nanoporous anodic alumina. As we demonstrate, the specular reflection can be controlled at will by structural tuning (i.e., by designing the pore geometry). This makes it possible to produce a wide range of Fabry-Pérot interferometers based on nanoporous anodic alumina, which are envisaged for developing smart and accurate optical sensors in such research fields as biotechnology and medicine. Additionally, to systematize the responsiveness to external changes in optical sensors based on nanoporous anodic alumina, we put forward a barcode system based on the oscillations in the specular reflection.

  3. Engineering a Transmembrane Nanopore Ion Channel from a Membrane Breaker Peptide.

    PubMed

    Lella, Muralikrishna; Mahalakshmi, Radhakrishnan

    2016-07-01

    Re-engineering nature's molecules is an ideal strategy to obtain explicit functionality such as synthetic molecular machines, yet novel strategies for producing engineered molecular channels are few. Here we report a peptide engineering strategy through sequence reversal, which we applied on the first transmembrane peptide of the mycobacteriophage membranoporin protein holin. We have successfully redesigned the membrane rupture property of this peptide to form specific nanopore ion channels. We report the structural characterization and electrophysiology measurements of a library of 28-residue engineered membrane peptides, with remarkable ion channel behavior. We further identify that key residues at the peptide terminus, the central proline, charge distribution, and hydropathy index of the peptide together contribute to the channel properties that we measure. Our sequence reversal strategy for peptide engineering to successfully obtain nanopore channels can pave the way for better biobased design of controlled nanopores, using only natural amino acids. PMID:27257735

  4. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu].

  5. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors.

    PubMed

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n(+)-GaN) in the 12-period n(+)-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  6. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.

  7. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    PubMed Central

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-01-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface. PMID:27363290

  8. Electric field-controlled water permeation coupled to ion transport through a nanopore.

    PubMed

    Dzubiella, J; Allen, R J; Hansen, J-P

    2004-03-15

    We report molecular dynamics simulations of a generic hydrophobic nanopore connecting two reservoirs which are initially at different Na(+) concentrations, as in a biological cell. The nanopore is impermeable to water under equilibrium conditions, but the strong electric field caused by the ionic concentration gradient drives water molecules in. The density and structure of water in the pore are highly field dependent. In a typical simulation run, we observe a succession of cation passages through the pore, characterized by approximately bulk mobility. These ion passages reduce the electric field, until the pore empties of water and closes to further ion transport, thus providing a possible mechanism for biological ion channel gating.

  9. Electric field-controlled water permeation coupled to ion transport through a nanopore

    NASA Astrophysics Data System (ADS)

    Dzubiella, J.; Allen, R. J.; Hansen, J.-P.

    2004-03-01

    We report molecular dynamics simulations of a generic hydrophobic nanopore connecting two reservoirs which are initially at different Na+ concentrations, as in a biological cell. The nanopore is impermeable to water under equilibrium conditions, but the strong electric field caused by the ionic concentration gradient drives water molecules in. The density and structure of water in the pore are highly field dependent. In a typical simulation run, we observe a succession of cation passages through the pore, characterized by approximately bulk mobility. These ion passages reduce the electric field, until the pore empties of water and closes to further ion transport, thus providing a possible mechanism for biological ion channel gating.

  10. Anti-reflective nanoporous silicon for efficient hydrogen production

    DOEpatents

    Oh, Jihun; Branz, Howard M

    2014-05-20

    Exemplary embodiments are disclosed of anti-reflective nanoporous silicon for efficient hydrogen production by photoelectrolysis of water. A nanoporous black Si is disclosed as an efficient photocathode for H.sub.2 production from water splitting half-reaction.

  11. Fabrication of a three-dimensional nanoporous polymer film as a diffuser for microcavity OLEDs

    NASA Astrophysics Data System (ADS)

    Pyo, Beom; Cho, Ye Ram; Suh, Min Chul

    2015-09-01

    We used a nanoporous polymer film prepared by cellulose acetate butyrate with ~40% of optical haze value as a diffuser. It was fabricated by a simple spin-coating process during continuous water mist supply by a humidifier. The pores were created by the elastic bouncing mechanism (rather than the thermocapillary convection mechanism) of the supplied water droplets. The shapes and sizes of the caves formed near the polymer surface are randomly distributed, with a relatively narrow pore size distribution (300-500 nm). Specifically, we focused on controlling the surface morphology to give a three-dimensional (3D) multi-stacked nanocave structure because we had already learnt that two-dimensional nanoporous structures showed serious loss of luminance in the forward direction. Using this approach, we found that the 3D nanoporous polymer film can effectively reduce the viewing angle dependency of strong microcavity OLEDs without any considerable decrease in the total intensity of the out-coupled light. We applied this nanoporous polymer film to microcavity OLEDs to investigate the possibility of using it as a diffuser layer. The resulting nanoporous polymer film effectively reduced the viewing angle dependency of the microcavity OLEDs, although a pixel blurring phenomenon occurred. Despite its negative effects, such as the drop in efficiency in the forward direction and the pixel blurring, the introduction of a nanoporous polymer film as a scattering medium on the back side of the glass substrate eliminated the viewing angle dependency. Thus, this approach is a promising method to overcome the serious drawbacks of microcavity OLEDs.

  12. Nanoporous Au: an unsupported pure gold catalyst?

    SciTech Connect

    Wittstock, A; Neumann, B; Schaefer, A; Dumbuya, K; Kuebel, C; Biener, M; Zielasek, V; Steinrueck, H; Gottfried, M; Biener, J; Hamza, A; B?umer, M

    2008-09-04

    The unique properties of gold especially in low temperature CO oxidation have been ascribed to a combination of various effects. In particular, particle sizes below a few nm and specific particle-support interactions have been shown to play important roles. On the contrary, recent reports revealed that monolithic nanoporous gold (npAu) prepared by leaching a less noble metal, such as Ag, out of the corresponding alloy can also exhibit remarkably high catalytic activity for CO oxidation, even though no support is present. Therefore, it was claimed to be a pure and unsupported gold catalyst. We investigated npAu with respect to its morphology, surface composition and catalytic properties. In particular, we studied the reaction kinetics for low temperature CO oxidation in detail taking mass transport limitation due to the porous structure of the material into account. Our results reveal that Ag, even if removed almost completely from the bulk, segregates to the surface resulting in surface concentrations of up to 10 at%. Our data suggest that this Ag plays a significant role in activation of molecular oxygen. Therefore, npAu should be considered as a bimetallic catalyst rather than a pure Au catalyst.

  13. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications.

    PubMed

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  14. Diffusive Silicon Nanopore Membranes for Hemodialysis Applications

    PubMed Central

    Kim, Steven; Feinberg, Benjamin; Kant, Rishi; Chui, Benjamin; Goldman, Ken; Park, Jaehyun; Moses, Willieford; Blaha, Charles; Iqbal, Zohora; Chow, Clarence; Wright, Nathan; Fissell, William H.; Zydney, Andrew; Roy, Shuvo

    2016-01-01

    Hemodialysis using hollow-fiber membranes provides life-sustaining treatment for nearly 2 million patients worldwide with end stage renal disease (ESRD). However, patients on hemodialysis have worse long-term outcomes compared to kidney transplant or other chronic illnesses. Additionally, the underlying membrane technology of polymer hollow-fiber membranes has not fundamentally changed in over four decades. Therefore, we have proposed a fundamentally different approach using microelectromechanical systems (MEMS) fabrication techniques to create thin-flat sheets of silicon-based membranes for implantable or portable hemodialysis applications. The silicon nanopore membranes (SNM) have biomimetic slit-pore geometry and uniform pores size distribution that allow for exceptional permeability and selectivity. A quantitative diffusion model identified structural limits to diffusive solute transport and motivated a new microfabrication technique to create SNM with enhanced diffusive transport. We performed in vitro testing and extracorporeal testing in pigs on prototype membranes with an effective surface area of 2.52 cm2 and 2.02 cm2, respectively. The diffusive clearance was a two-fold improvement in with the new microfabrication technique and was consistent with our mathematical model. These results establish the feasibility of using SNM for hemodialysis applications with additional scale-up. PMID:27438878

  15. Stacked Graphene-Al2O3 Nanopore Sensors for Sensitive Detection of DNA and DNA-Protein Complexes

    PubMed Central

    Venkatesan, Bala Murali; Estrada, David; Banerjee, Shouvik; Jin, Xiaozhong; Dorgan, Vincent E.; Bae, Myung-Ho; Aluru, Narayana R.; Pop, Eric; Bashir, Rashid

    2012-01-01

    We report the development of a multilayered graphene-Al2O3 nanopore platform for the sensitive detection of DNA and DNA-protein complexes. Graphene-Al2O3 nanolaminate membranes are formed by sequentially depositing layers of graphene and Al2O3 with nanopores being formed in these membranes using an electron-beam sculpting process. The resulting nanopores are highly robust, exhibit low electrical noise (significantly lower than nanopores in pure graphene), are highly sensitive to electrolyte pH at low KCl concentrations (attributed to the high buffer capacity of Al2O3) and permit the electrical biasing of the embedded graphene electrode, thereby allowing for three terminal nanopore measurements. In proof-of-principle biomolecule sensing experiments, the folded and unfolded transport of single DNA molecules and RecA coated DNA complexes could be discerned with high temporal resolution. The process described here also enables nanopore integration with new graphene based structures, including nanoribbons and nanogaps, for single molecule DNA sequencing and medical diagnostic applications. PMID:22165962

  16. Preparation and electrochemical performances of nanoporous/cracked cobalt oxide layer for supercapacitors

    NASA Astrophysics Data System (ADS)

    Gobal, Fereydoon; Faraji, Masoud

    2014-12-01

    Nanoporous/cracked structures of cobalt oxide (Co3O4) electrodes were successfully fabricated by electroplating of zinc-cobalt onto previously formed TiO2 nanotubes by anodizing of titanium, leaching of zinc in a concentrated alkaline solution and followed by drying and annealing at 400 °C. The structure and morphology of the obtained Co3O4 electrodes were characterized by X-ray diffraction, EDX analysis and scanning electron microscopy. The results showed that the obtained Co3O4 electrodes were composed of the nanoporous/cracked structures with an average pore size of about 100 nm. The electrochemical capacitive behaviors of the nanoporous Co3O4 electrodes were investigated by cyclic voltammetry, galvanostatic charge-discharge studies and electrochemical impedance spectroscopy in 1 M NaOH solution. The electrochemical data demonstrated that the electrodes display good capacitive behavior with a specific capacitance of 430 F g-1 at a current density of 1.0 A g-1 and specific capacitance retention of ca. 80 % after 10 days of being used in electrochemical experiments, indicating to be promising electroactive materials for supercapacitors. Furthermore, in comparison with electrodes prepared by simple cathodic deposition of cobalt onto TiO2 nanotubes(without dealloying procedure), the impedance studies showed improved performances likely due to nanoporous/cracked structures of electrodes fabricated by dealloying of zinc, which provide fast ion and electron transfer routes and large reaction surface area with the ensued fast reaction kinetics.

  17. Bonding Low-density Nanoporous Metal Foams Using Sputtered Solder

    SciTech Connect

    Bono, M; Cervantes, O; Akaba, C; Hamza, A; Foreman, R; Teslich, N

    2007-08-21

    A method has been developed for bonding low-density nanoporous metal foam components to a substrate using solder that is sputtered onto the surfaces. Metal foams have unusual properties that make them excellent choices for many applications, and as technologies for processing these materials are evolving, their use in industry is increasing dramatically. Metal foams are lightweight and have advantageous dynamic properties, which make them excellent choices for many structural applications. They also provide good acoustic damping, low thermal conductivity, and excellent energy absorption characteristics. Therefore, these materials are commonly used in the automotive, aerospace, construction, and biomedical industries. The synthesis of nanoporous metal foams with a cell size of less then 1 {micro}m is an emerging technology that is expected to lead to widespread application of metal foams in microdevices, such as sensors and actuators. One of the challenges to manufacturing components from metal foams is that they can be difficult to attach to other structures without degrading their properties. For example, traditional liquid adhesives cannot be used because they are absorbed into foams. The problem of bonding or joining can be particularly difficult for small-scale devices made from nanoporous foam, due to the requirement for a thin bond layer. The current study addresses this problem and develops a method of soldering a nanoporous metal foam to a substrate with a bond thickness of less than 2 {micro}m. There are many applications that require micro-scale metal foams precisely bonded to substrates. This study was motivated by a physics experiment that used a laser to drive a shock wave through an aluminum foil and into a copper foam, in order to determine the speed of the shock in the copper foam. To avoid disturbing the shock, the interface between the copper foam and the aluminum substrate had to be as thin as possible. There are many other applications that

  18. Nanoporous Structures Similar to Those Reported from Squid Sucker Teeth are also Present in Egg Shells of a Terrestrial Flatworm (Platyhelminthes; Rhabditophora; Geoplanidae) from Hachijojima (Izu Islands, Japan).

    PubMed

    Meyer-Rochow, Victor Benno; Miinalainen, Ilkka

    2016-07-01

    Shells of the egg cocoon of a terrestrial planarian (Diversibipalium sp.) from Hachijojima were found to be composed of a lattice of parallel nanotubes of ca. 120 nm diameter oriented perpendicular to the shell's surface. The arrangement of the porous proteinaceous tubes closely resembles that has recently been reported from the sucker teeth of squid and to date is the only other example of this kind of structure. Although the array of nanotubes undoubtedly contributes to the stiffness of the shell and helps protecting the embryo, questions such as to how the planary worm produces the array of nanotubes and what exactly their chemical and physical properties are versus those of the squid sucker tooth still remain to be answered.

  19. Nanoporous Structures Similar to Those Reported from Squid Sucker Teeth are also Present in Egg Shells of a Terrestrial Flatworm (Platyhelminthes; Rhabditophora; Geoplanidae) from Hachijojima (Izu Islands, Japan).

    PubMed

    Meyer-Rochow, Victor Benno; Miinalainen, Ilkka

    2016-07-01

    Shells of the egg cocoon of a terrestrial planarian (Diversibipalium sp.) from Hachijojima were found to be composed of a lattice of parallel nanotubes of ca. 120 nm diameter oriented perpendicular to the shell's surface. The arrangement of the porous proteinaceous tubes closely resembles that has recently been reported from the sucker teeth of squid and to date is the only other example of this kind of structure. Although the array of nanotubes undoubtedly contributes to the stiffness of the shell and helps protecting the embryo, questions such as to how the planary worm produces the array of nanotubes and what exactly their chemical and physical properties are versus those of the squid sucker tooth still remain to be answered. PMID:27278842

  20. Nanoporous thermosetting membranes using reactive block polyme templates

    NASA Astrophysics Data System (ADS)

    Amendt, Mark A.

    Pressure driven membrane filtrations are a facile means of performing aqueous separations. The efficiency of these processes depends on the permeability and selectivity of a membrane, which is determined by its structure. This dissertation describes research investigating nanoporous thermosets templated by reactive block polymers as alternatives to current ultrafiltration membranes. The goal of the research was to develop materials with narrow pore size distributions and high void fractions for forming membranes with increased selectivity and permeability. The flux, filtration and fouling characteristics of membranes formed by selective removal of poly(lactide) from crosslinked films of dicyclopentadiene (DCPD) and the reactive block polymer poly(norbornenylethyl styrene- s-styrene)-b-poly(lactide) (PNS-PLA) were first explored. The results suggest that thin film composite membranes could achieve permeabilities and selectivities greater than current ultrafiltration membranes without excessive fouling characteristics. Additionally, hydrophilic and stimuli responsive membranes templated by reactive triblock terpolymers exhibited environmentally dependent fluxes demonstrating the ease of creating functionalized membranes using reactive triblock terpolymers. Further investigation into the compositional influences on the morphology of nanostructured PNS-PLA/PDCPD materials revealed that nanoporous bicontinuous structures form over a wide composition range and that different pore sizes are achievable by varying the PLA block size. Extension of reactive block polymer templating to vinyl crosslinking systems was demonstrated by crosslinking a poly(lactide)-b-poly(cyclooctene-s-norbornenylmethacrylate)- b-poly(lactide) reactive triblock copolymer with a variety of vinyl monomers. Although the soft nature of the poly(cyclooctene) prevented removal of polylactide due to collapse of the pores, nanoporous vinyl thermosets were realized by crosslinking a polylactide

  1. PREFACE New developments in nanopore research—from fundamentals to applications New developments in nanopore research—from fundamentals to applications

    NASA Astrophysics Data System (ADS)

    Albrecht, Tim; Edel, Joshua B.; Winterhalter, Mathias

    2010-11-01

    Biological and solid-state nanopores are an exciting field of research, which has seen a rapid development over the last 10 to 20 years. Activities in this area range from theoretical and experimental work on the underlying fundamental (bio)physics to applications in single-molecule biosensing. And while the prospect of DNA sequencing continues to be a major driving force, other applications with potentially similar impact begin to emerge, for example the detection of small molecules, proteins, protein/protein and protein/DNA complexes, and RNA to name just a few. It has also become apparent that both classes of nanopore devices have intrinsic advantages and disadvantages; hybrid structures combining the better of the two worlds would be a logical consequence and are beginning to appear in the literature. Many other highly innovative ideas and concepts continue to emerge and the number of nanopore-related publications has increased drastically over recent years. We found that more than 100 research groups worldwide are active in this area; several commercial settings are in the process of translating fundamental research into real-life applications. We therefore felt that now is the right time to showcase these new developments in a special issue: to inspire researchers active in the field, to liberate inherent synergies, and not least, to demonstrate to the outside world the current state-of-the-art and future opportunities. The title 'New developments in nanopore research—from fundamentals to applications' in some way reflects these ambitions and, even though not everyone invited was able to contribute, we were able to assemble 34 high-quality research papers from all over the world. We would like to acknowledge and thank all the contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the

  2. Preparation of nanoporous titania spherical nanoparticles

    NASA Astrophysics Data System (ADS)

    Shiba, Kota; Sato, Soh; Matsushita, Takayuki; Ogawa, Makoto

    2013-03-01

    Preparation of nanoporous titania particles from well-defined titania-octadecylamine (titania-ODA) hybrid spherical particles with 450 nm in size, which were prepared by the method reported previously (Chem. Commun., 2009, pp. 6851-6853 [39]; RSC Adv., 2012, vol. 2, pp. 1343-1349 [40]), was studied. ODA was removed by solvent extraction with acidic ethanol to obtain nanoporous titania particles and subsequent calcination led to the formation of nanoporous titania particles with the nanopore size ranging from 2 to 4 nm depending on the calcination temperature. The as-synthesized titania was amorphous and was transformed into anatase (at around 300 °C) and rutile (at around 600 °C) by the heat treatment. The phase transition behavior was discussed in comparison with that of as-synthesized titania-ODA particles without ODA removal. Spherical particles of titania-ODA hybrids with 70 nm in size were also transformed into nanoporous titania particles composed of anatase crystallites by the washing and calcination at 500 °C for 1 h.

  3. Nanopore fabrication by controlled dielectric breakdown.

    PubMed

    Kwok, Harold; Briggs, Kyle; Tabard-Cossa, Vincent

    2014-01-01

    Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies.

  4. Synthesis of self-detached nanoporous titanium-based metal oxide

    SciTech Connect

    Hu, F.; Wen, Y.; Chan, K.C.; Yue, T.M.; Zhou, Y.Z.; Zhu, S.L.; Yang, X.J.

    2015-09-15

    In this study, self-detached nanoporous titanium-based metal oxide was synthesized for the first time by ultrafast anodization in a fluoride-free electrolyte containing 10% HNO{sub 3}. The nanoporous oxide has through-holes with diameters ranging from 10 to 60 nm. The as-formed oxides are amorphous, and were transformed to crystalline structures by annealing. The performance of a dye sensitized solar cell using nanoporpous Ti–10Zr oxide (TZ10) was further studied. It was found that the TZ10 film could increase both the short-circuit current and the open-circuit photovoltage of the solar cell. The overall efficiency of the solar cell was 6.99%, an increase of 20.7% as compared to that using a pure TiO{sub 2} (P25) film. - Graphical abstract: The nanoporous Ti–xZr(x=10, 30) oxide layers are fabricated by anodizing in a dilute nitric acid solvent. The power conversion efficiency of the DSSC by a covering of a Ti–10Zr thin film is increased by 20.7%, with an η of 7.69% , a short circuit current of 12.4 mA/cm{sup 2}, a open circuit voltage of 0.833 V, and a fill factor of 0.679. - Highlights: • Self-detached nanoporous titanium-based metal (TiZr) oxide was synthesized. • The TiZr oxides have through-hole nanopores with diameters ranging from 10 to 60 nm. • The nanoporous Ti–10Zr oxide can improve the power conversion efficiency of a DSSC.

  5. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls. PMID:26511073

  6. Dynamics of Ice/Water Confined in Nanoporous Alumina.

    PubMed

    Suzuki, Yasuhito; Steinhart, Martin; Graf, Robert; Butt, Hans-Jürgen; Floudas, George

    2015-11-19

    Dielectric (DS), IR spectroscopy, and (1)H MAS NMR are employed in the study of ice/water confined in nanoporous alumina with pore diameters ranging from 400 nm down to 25 nm. Within nanoporous alumina there is a transformation from heterogeneous nucleation of hexagonal ice in the larger pores to homogeneous nucleation of cubic ice in the smaller pores. DS and IR show excellent agreement in the temperature interval and pore size dependence of the transformation. DS further revealed two dynamic processes under confinement. The "fast" and "slow" processes with an Arrhenius temperature dependence are attributed to ice and supercooled water relaxation, respectively. The main relaxation process of ice under confinement ("slow" process) has an activation energy of 44 ± 2 kJ/mol. The latter is in agreement with the reported relaxation times and activation energy of cubic ice prepared following a completely different route (by pressure). (1)H MAS NMR provided new insight in the state of ice structures as well as of supercooled water. Under confinement, a layer of liquid-like water coexists with ice structures. In addition, both ice structures under confinement appear to be more ordered than bulk hexagonal ice. Supercooled water in the smaller pores is different from bulk water. It shows a shift of the signal toward higher chemical shift values which may suggest stronger hydrogen bonding between the water molecules or increasing interactions with the AAO walls.

  7. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  8. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  9. Hydrophobic gating in single and multiple nanopores

    NASA Astrophysics Data System (ADS)

    Innes, Laura Michele

    The ion transport properties of hydrophobic conical nanopores in polymer films in the presence of a salt solution were studied. The purpose of this study was to develop a hydrophobic gating mechanism similar to those seen in biological channels. Current-voltage curves were measured to determine if the gating behavior was present in hydrophobic modified nanopores, which would be seen as a zero ion current for small voltages and a finite ion current for larger voltages. It is shown, that for a single nanopore to gate water, it must be partially modified such that there are hydrophobic and hydrophilic islands on the pore walls. Similar experiments were also done with 105 pores/cm2 mutlipore samples.

  10. Water desalination across nanoporous graphene.

    PubMed

    Cohen-Tanugi, David; Grossman, Jeffrey C

    2012-07-11

    We show that nanometer-scale pores in single-layer freestanding graphene can effectively filter NaCl salt from water. Using classical molecular dynamics, we report the desalination performance of such membranes as a function of pore size, chemical functionalization, and applied pressure. Our results indicate that the membrane's ability to prevent the salt passage depends critically on pore diameter with adequately sized pores allowing for water flow while blocking ions. Further, an investigation into the role of chemical functional groups bonded to the edges of graphene pores suggests that commonly occurring hydroxyl groups can roughly double the water flux thanks to their hydrophilic character. The increase in water flux comes at the expense of less consistent salt rejection performance, which we attribute to the ability of hydroxyl functional groups to substitute for water molecules in the hydration shell of the ions. Overall, our results indicate that the water permeability of this material is several orders of magnitude higher than conventional reverse osmosis membranes, and that nanoporous graphene may have a valuable role to play for water purification.

  11. Fracture of nanoporous organosilicate thin films

    NASA Astrophysics Data System (ADS)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  12. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  13. A FIB induced boiling mechanism for rapid nanopore formation

    PubMed Central

    Das, K; Freund, J B; Johnson, H T

    2015-01-01

    Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation. PMID:24356374

  14. DNA Translocations through Solid-State Plasmonic Nanopores

    PubMed Central

    2015-01-01

    Nanopores enable label-free detection and analysis of single biomolecules. Here, we investigate DNA translocations through a novel type of plasmonic nanopore based on a gold bowtie nanoantenna with a solid-state nanopore at the plasmonic hot spot. Plasmonic excitation of the nanopore is found to influence both the sensor signal (nanopore ionic conductance blockade during DNA translocation) and the process that captures DNA into the nanopore, without affecting the duration time of the translocations. Most striking is a strong plasmon-induced enhancement of the rate of DNA translocation events in lithium chloride (LiCl, already 10-fold enhancement at a few mW of laser power). This provides a means to utilize the excellent spatiotemporal resolution of DNA interrogations with nanopores in LiCl buffers, which is known to suffer from low event rates. We propose a mechanism based on plasmon-induced local heating and thermophoresis as explanation of our observations. PMID:25347403

  15. Rational engineering of nanoporous anodic alumina optical bandpass filters.

    PubMed

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  16. Pore spanning lipid bilayers on silanised nanoporous alumina membranes

    NASA Astrophysics Data System (ADS)

    Md Jani, Abdul M.; Zhou, Jinwen; Nussio, Matthew R.; Losic, Dusan; Shapter, Joe G.; Voelcker, Nicolas H.

    2008-12-01

    The preparation of bilayer lipid membranes (BLMs) on solid surfaces is important for many studies probing various important biological phenomena including the cell barrier properties, ion-channels, biosensing, drug discovery and protein/ligand interactions. In this work we present new membrane platforms based on suspended BLMs on nanoporous anodic aluminium oxide (AAO) membranes. AAO membranes were prepared by electrochemical anodisation of aluminium foil in 0.3 M oxalic acid using a custom-built etching cell and applying voltage of 40 V, at 1oC. AAO membranes with controlled diameter of pores from 30 - 40 nm (top of membrane) and 60 -70 nm (bottom of membrane) were fabricated. Pore dimensions have been confirmed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). AAO membranes were chemically functionalised with 3-aminopropyltriethoxysilane (APTES). Confirmation of the APTES attachment to the AAO membrane was achieved by means of infrared spectroscopy, X-ray photoelectron spectroscopy and contact angle measurements. The Fourier transform infrared (FTIR) spectra of functionalised membranes show several peaks from 2800 to 3000 cm-1 which were assigned to symmetric and antisymmetric CH2 bands. XPS data of the membrane showed a distinct increase in C1s (285 eV), N1s (402 eV) and Si2p (102 eV) peaks after silanisation. The water contact angle of the functionalised membrane was 80o as compared to 20o for the untreated membrane. The formation of BLMs comprising dioleoyl-phosphatidylserine (DOPS) on APTESmodified AAO membranes was carried using the vesicle spreading technique. AFM imaging and force spectroscopy was used to characterise the structural and nanomechanical properties of the suspended membrane. This technique also confirmed the stability of bilayers on the nanoporous alumina support for several days. Fabricated suspended BLMs on nanoporous AAO hold promise for the construction of biomimetic membrane architectures with embedded

  17. Nanoporous thin film platform for biophotonic sensors

    NASA Astrophysics Data System (ADS)

    Alla, Suresh; Solanki, Rina; Mattley, Yvette D.; Dabhi, Harish; Shahriari, Mahmoud R.

    2009-02-01

    A Nanoporous glass matrix is developed to encapsulate molecular probes for monitoring important biological parameters such as DO. The hydrophobic nanoporous host matrix is designed and fabricated using room temperature sol gel technique. The doped sol gel is then coated on biocompatible self adhesive patches or directly coated on the biocontainers. We demonstrate the application of this technique in non-invasive monitoring DO as well as oxygen partial pressure in a closed fermentation process as well as in a cell culture plate during bacterial growth. Dynamic response of sensor, sensitivity and accuracy is also demonstrated in this paper.

  18. Observation of ionic Coulomb blockade in nanopores

    NASA Astrophysics Data System (ADS)

    Feng, Jiandong; Liu, Ke; Graf, Michael; Dumcenco, Dumitru; Kis, Andras; di Ventra, Massimiliano; Radenovic, Aleksandra

    2016-08-01

    Emergent behaviour from electron-transport properties is routinely observed in systems with dimensions approaching the nanoscale. However, analogous mesoscopic behaviour resulting from ionic transport has so far not been observed, most probably because of bottlenecks in the controlled fabrication of subnanometre nanopores for use in nanofluidics. Here, we report measurements of ionic transport through a single subnanometre pore junction, and the observation of ionic Coulomb blockade: the ionic counterpart of the electronic Coulomb blockade observed for quantum dots. Our findings demonstrate that nanoscopic, atomically thin pores allow for the exploration of phenomena in ionic transport, and suggest that nanopores may also further our understanding of transport through biological ion channels.

  19. Thermodynamics of binary gas adsorption in nanopores.

    PubMed

    Dutta, Sujeet; Lefort, Ronan; Morineau, Denis; Mhanna, Ramona; Merdrignac-Conanec, Odile; Saint-Jalmes, Arnaud; Leclercq, Théo

    2016-09-21

    MCM-41 nanoporous silicas show a very high selectivity for monoalcohols over aprotic molecules during adsorption of a binary mixture in the gas phase. We present here an original use of gravimetric vapour sorption isotherms to characterize the role played by the alcohol hydrogen-bonding network in the adsorption process. Beyond simple selectivity, vapour sorption isotherms measured for various compositions help to completely unravel at the molecular level the step by step adsorption mechanism of the binary system in the nanoporous solid, from the first monolayers to the complete liquid condensation. PMID:27532892

  20. Monolithic aerogels with nanoporous crystalline phases

    NASA Astrophysics Data System (ADS)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  1. Fabrication of 10nm diameter carbon nanopores

    SciTech Connect

    Radenovic, Aleksandra; Trepagnier, Eliane; Csencsits, Roseann; Downing, Kenneth H; Liphardt, Jan

    2008-09-25

    The addition of carbon to samples, during imaging, presents a barrier to accurate TEM analysis, the controlled deposition of hydrocarbons by a focused electron beam can be a useful technique for local nanometer-scale sculpting of material. Here we use hydrocarbon deposition to form nanopores from larger focused ion beam (FIB) holes in silicon nitride membranes. Using this method, we close 100-200nm diameter holes to diameters of 10nm and below, with deposition rates of 0.6nm per minute. I-V characteristics of electrolytic flow through these nanopores agree quantitatively with a one dimensional model at all examined salt concentrations.

  2. Method for making nanoporous hydrophobic coatings

    DOEpatents

    Fan, Hongyou; Sun, Zaicheng

    2013-04-23

    A simple coating method is used to form nanoporous hydrophobic films that can be used as optical coatings. The method uses evaporation-induced self-assembly of materials. The coating method starts with a homogeneous solution comprising a hydrophobic polymer and a surfactant polymer in a selective solvent. The solution is coated onto a substrate. The surfactant polymer forms micelles with the hydrophobic polymer residing in the particle core when the coating is dried. The surfactant polymer can be dissolved and selectively removed from the separated phases by washing with a polar solvent to form the nanoporous hydrophobic film.

  3. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  4. Hybrid pore formation by directed insertion of alpha hemolysin into solid-state nanopores

    PubMed Central

    Hall, Adam R.; Scott, Andrew; Rotem, Dvir; Mehta, Kunal K.; Bayley, Hagan; Dekker, Cees

    2011-01-01

    Nanopores hold great potential for genomic screening and sequencing technologies. Thus far, most studies have concentrated on the Staphylococcus aureus pore-forming protein alpha hemolysin (αHL)1 and artificial pores in solid-state (SS) membranes2. While biological pores offer an atomically precise structure3 and genetic engineering potential4, SS-pores offer durability, size and shape control5 and integratability. Each system, however, also has significant limitations: αHL is difficult to integrate because it relies on delicate lipid bilayers for mechanical support, and the fabrication of SS-pores at precise dimensions remains challenging. Here we show that these limitations may be overcome by inserting a single αHL pore into a SS-nanopore. A double-stranded DNA attached to a protein pore is threaded into a SS-nanopore by electrophoretic translocation. Protein insertion is observed in 30-40% of our attempts and translocation of single-stranded DNA demonstrates that the hybrid nanopore remains functional. The resulting hybrid structure offers a platform to create wafer-scale device arrays for genomic analysis including sequencing6. PMID:21113160

  5. Characteristic length of phonon transport within periodic nanoporous thin films and two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Hao, Qing; Xiao, Yue; Zhao, Hongbo

    2016-08-01

    In the past two decades, phonon transport within nanoporous thin films has attracted enormous attention for their potential applications in thermoelectrics and thermal insulation. Various computational studies have been carried out to explain the thermal conductivity reduction within these thin films. Considering classical phonon size effects, the lattice thermal conductivity can be predicted assuming diffusive pore-edge scattering of phonons and bulk phonon mean free paths. Following this, detailed phonon transport can be simulated for a given porous structure to find the lattice thermal conductivity [Hao et al., J. Appl. Phys. 106, 114321 (2009)]. However, such simulations are intrinsically complicated and cannot be used for the data analysis of general samples. In this work, the characteristic length Λ P o r e of periodic nanoporous thin films is extracted by comparing the predictions of phonon Monte Carlo simulations and the kinetic relationship using bulk phonon mean free paths modified by Λ P o r e . Under strong ballistic phonon transport, Λ P o r e is also extracted by the Monte Carlo ray-tracing method for graphene with periodic nanopores. The presented model can be widely used to analyze the measured thermal conductivities of such nanoporous structures.

  6. Nanopore-Based Conformational Analysis of a Viral RNA Drug Target

    PubMed Central

    Stoloff, Daniel H.; Rynearson, Kevin D.; Hermann, Thomas; Wanunu, Meni

    2016-01-01

    Nanopores are single-molecule sensors that show exceptional promise as a biomolecular analysis tool by enabling label-free detection of small amounts of sample. In this paper, we demonstrate that nanopores are capable of detecting the conformation of an antiviral RNA drug target. The hepatitis C virus uses an internal ribosome entry site (IRES) motif in order to initiate translation by docking to ribosomes in its host cell. The IRES is therefore a viable and important drug target. Drug-induced changes to the conformation of the HCV IRES motif, from a bent to a straight conformation, have been shown to inhibit HCV replication. However, there is presently no straightforward method to analyze the effect of candidate small-molecule drugs on the RNA conformation. In this paper, we show that RNA translocation dynamics through a 3 nm diameter nanopore is conformation-sensitive by demonstrating a difference in transport times between bent and straight conformations of a short viral RNA motif. Detection is possible because bent RNA is stalled in the 3 nm pore, resulting in longer molecular dwell times than straight RNA. Control experiments show that binding of a weaker drug does not produce a conformational change, as consistent with independent fluorescence measurements. Nanopore measurements of RNA conformation can thus be useful for probing the structure of various RNA motifs, as well as structural changes to the RNA upon small-molecule binding. PMID:24861167

  7. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example.

    PubMed

    Martín, Jaime; Martín-González, Marisol

    2012-09-21

    Large area silicon nitride (SiN(x)) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the "precursor film" method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiN(x) nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiN(x) nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiN(x) nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces. PMID:22854871

  8. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example.

    PubMed

    Martín, Jaime; Martín-González, Marisol

    2012-09-21

    Large area silicon nitride (SiN(x)) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the "precursor film" method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiN(x) nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiN(x) nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiN(x) nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces.

  9. Translocation of α-helix chains through a nanopore

    NASA Astrophysics Data System (ADS)

    Yang, Zhiyong; Li, Shiben; Zhang, Linxi; ur Rehman, Ateeq; Liang, Haojun

    2010-10-01

    The translocation of α-helix chains through a nanopore is studied through Langevin dynamics simulations. The α-helix chains exhibit several different characteristics about their average translocation times and the α-helix structures when they transport through the nanopores under the driving forces. First, the relationship between average translocation times τ and the chain length N satisfies the scaling law, τ ˜Nα, and the scaling exponent α depends on the driving force f for the small forces while it is close to the Flory exponent (ν) in the other force regions. For the chains with given chain lengths, it is observed that the dependence of the average translocation times can be expressed as τ ˜f-1/2 for the small forces while can be described as τ ˜f in the large force regions. Second, for the large driving force, the average number of α-helix structures Nh decreases first and then increases in the translocation process. The average waiting time of each bead, especially of the first bead, is also dependent on the driving forces. Furthermore, an elasticity spring model is presented to reasonably explain the change of the α-helix number during the translocation and its elasticity can be locally damaged by the large driving forces. Our results demonstrate the unique behaviors of α-helix chains transporting through the pores, which can enrich our insights into and knowledge on biopolymers transporting through membranes.

  10. New Graphene Form of Nanoporous Monolith for Excellent Energy Storage.

    PubMed

    Bi, Hui; Lin, Tianquan; Xu, Feng; Tang, Yufeng; Liu, Zhanqiang; Huang, Fuqiang

    2016-01-13

    Extraordinary tubular graphene cellular material of a tetrahedrally connected covalent structure was very recently discovered as a new supermaterial with ultralight, ultrastiff, superelastic, and excellent conductive characteristics, but no high specific surface area will keep it from any next-generation energy storage applications. Herein, we prepare another new graphene monolith of mesoporous graphene-filled tubes instead of hollow tubes in the reported cellular structure. This graphene nanoporous monolith is also composed of covalently bonded carbon network possessing high specific surface area of ∼1590 m(2) g(-1) and electrical conductivity of ∼32 S cm(-1), superior to graphene aerogels and porous graphene forms self-assembled by graphene oxide. This 3D graphene monolith can support over 10 000 times its own weight, significantly superior to CNT and graphene cellular materials with a similar density. Furthermore, pseudocapacitance-active functional groups are introduced into the new nanoporous graphene monolith as an electrode material in electrochemical capacitors. Surprisingly, the electrode of 3D mesoporous graphene has a specific capacitance of 303 F g(-1) and maintains over 98% retention after 10 000 cycles, belonging to the list for the best carbon-based active materials. The macroscopic mesoporous graphene monolith suggests the great potential as an electrode for supercapacitors in energy storage areas.

  11. Ageing effect in spray pyrolysed B:SnO{sub 2} thin films for LPG sensing

    SciTech Connect

    Skariah, Benoy E-mail: dr.boben1@gmail.com; Thomas, Boben E-mail: dr.boben1@gmail.com

    2014-10-15

    For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 °C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 °C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.

  12. Substrate dependant capacitive performance of spray pyrolysed titanium oxide (TiO2) thin films

    NASA Astrophysics Data System (ADS)

    Fugare, B. Y.; Ingole, R. S.; Ambare, R. C.; Lokhande, B. J.

    2016-04-01

    Using 60 ml, 0.06 M aqueous solution of potassium titanium oxalate (pto), thin films of titanium oxide were prepared by using well known spray pyrolysis technique. Depositions of the films carried out at 723° K by maintain the spray rate 12 Cc/min. prepared thin films were characterized structurally, morphologically and electrochemically. Sample shows tetragonal crystal structure with rutile as prominent phase at very low deposition temperature. SEM morphology shows porous, dense, nanorods and nanoplates like morphology. The electrochemical cyclic voltammetery shows mixed capacitive behavior. The specific capacitance values observed from cyclic voltammetery in 1 M NaOH are 2497.19, 29.60, 424.22 F/g. for the electrode deposited on copper, FTO and stainless steel (SS) respectively. Charge discharge behavior was observed for the samples deposited on stainless steel gives specific energy (SE), specific power (SP) and efficiency (η) are 43.25 Wh/kg, 35.25 kW/kg and 98.22 % respectively. Impedance study was carried out in the frequency range 1 mHz to 1 MHz exhibits very less internal resistance 1.066 Ohm for the deposited electrode.

  13. Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization

    PubMed Central

    Minagar, Sepideh; Berndt, Christopher C.; Wen, Cuie

    2015-01-01

    Valve metals such as titanium (Ti), zirconium (Zr), niobium (Nb) and tantalum (Ta) that confer a stable oxide layer on their surfaces are commonly used as implant materials or alloying elements for titanium-based implants, due to their exceptional high corrosion resistance and excellent biocompatibility. The aim of this study was to investigate the bioactivity of the nanostructures of tantala (Ta2O5), niobia (Nb2O5), zirconia (ZrO2) and titania (TiO2) in accordance to their roughness and wettability. Therefore, four kinds of metal oxide nanoporous and nanotubular Ta2O5, Nb2O5, ZrO2 and TiO2 were fabricated via anodization. The nanosize distribution, morphology and the physical and chemical properties of the nanolayers and their surface energies and bioactivities were investigated using SEM-EDS, X-ray diffraction (XRD) analysis and 3D profilometer. It was found that the nanoporous Ta2O5 exhibited an irregular porous structure, high roughness and high surface energy as compared to bare tantalum metal; and exhibited the most superior bioactivity after annealing among the four kinds of nanoporous structures. The nanoporous Nb2O5 showed a uniform porous structure and low roughness, but no bioactivity before annealing. Overall, the nanoporous and nanotubular layers of Ta2O5, Nb2O5, ZrO2 and TiO2 demonstrated promising potential for enhanced bioactivity to improve their biomedical application alone or to improve the usage in other biocompatible metal implants. PMID:25837724

  14. Design and fabrication of asymmetric nanopores using pulsed PECVD

    NASA Astrophysics Data System (ADS)

    Kelkar, Sanket S.

    Manipulating matter at nanometric length scales is important for many electronic, chemical and biological applications. Structures such as nanopores demonstrate a phenomenon known as hindered transport which can be exploited in analytical applications such as DNA sequencing, ionic transistors, and molecular sieving. Precisely controlling the size, geometry and surface characteristics of the nanopores is important for realizing these applications. In this work, we employ relatively large template structures (˜ 100 nm) produced by track-etching or electron beam lithography. The pore size is then reduced to the desired level by deposition of material using pulsed plasma enhanced chemical vapor deposition (PECVD). Pulsed PECVD has been developed as a high throughput alternative to atomic layer deposition (ALD) to deliver self-limiting growth of thin films. The goal of this thesis is to extend the application of pulsed PECVD to fabricate asymmetric nanopores. In contrast to ALD, pulsed PECVD does not result in perfectly conformal deposition profiles, and predicting the final nanostructure is more complicated. A two dimensional feature scale model was developed to predict film profile evolution. The model was built in COMSOL, and is based on a diffusion reaction framework with a spatially varying Knudsen diffusion coefficient to account for the molecular transport inside the features. A scaling analysis was used to account for ALD exposure limitations that commonly occur when coating these extremely high aspect ratio features. The model was verified by cross-section microscopy of deposition profiles on patterned cylinders and trenches. The model shows that it is possible to obtain unique nanopore morphologies in pulsed PECVD that are distinct from either steady state deposition processes such as physical vapor deposition (PVD) or conventional ALD. Polymeric track etched (TE) membrane supports with a nominal size of 100 nm were employed as model template structures to

  15. Effects of the surface characteristics of nanoporous titanium oxide films on Ti-24Nb-4Zr-8Sn alloy on the initial adhesion of osteoblast-like MG-63 cells

    PubMed Central

    HAO, YUQUAN; LI, SHUJUN; HAN, XUESONG; HAO, YULIN; AI, HONGJUN

    2013-01-01

    The aim of the present study was to investigate the effects of the surface characteristics of nanoporous titanium oxide films, formed by anodization on Ti-24Nb-4Zr-8Sn (Ti2448) alloy, on the early adhesion of osteoblast-like MG-63 cells. Nanoporous titanium oxide films with two different pore sizes (30 and 90 nm) were formed by anodization in NH4F solution on Ti2448 alloy. The surface roughness of the nanoporous titanium oxide films was determined using a Surftest Formtracer and field emission scanning electron microscopy (FESEM). Cell viability was evaluated at different time points using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. To investigate the regulatory mechanisms involved in the focal adhesion of osteoblasts to Ti2448 alloy, we quantified the expression levels of integrin β1 and paxillin mRNAs on the nanoporous titanium oxide films during early osteoblast adhesion using real-time RT-PCR. Samples with a 30-nm nanoporous film exhibited a greater number of overlapping microporous structures with microprojections compared with the 90-nm nanoporous film samples. The MTT assay indicated that cell viability on the 30-nm nanoporous surface following 24 and 48 h of cell culture was higher than those observed on the unanodized control and 90-nm nanoporous surfaces. Integrin β1 mRNA expression levels on the 30-nm nanoporous surface following cell culture for 48 h were also significantly higher compared with those on the unanodized control and 90-nm nanoporous surfaces. The results demonstrated that a 30-nm nanoporous titanium oxide film on Ti2448 alloy may provide the optimum bioactive implant surface for the initial adhesion of osteoblasts. PMID:23935754

  16. Low dielectric, nanoporous fluorinated polyimide films prepared from PCL-PI-PCL triblock copolymer using retro-Diels-Alder reaction.

    PubMed

    Ju, Junping; Wang, Qihua; Wang, Tingmei; Wang, Chao

    2013-08-15

    The triblock copolymers with the majority phase comprising fluorinated polyimide and the minor phase consisting of poly (ε-caprolactone) (PCL) were synthesized through Diels-Alder reaction between PI-Maleimide and PCL-Furfuryl Amine. The chemical composition and structure of the copolymers were characterized by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and differential scanning calorimetry (DSC). Films of the copolymers were spined and microphase-separation of the thin film was achieved by solvent annealing in N,N-dimethylformamide (DMF) vapor. The microphase-separation morphology was investigated by atomic force microscopy (AFM). Based on the microphase-separation structures, nanoporous fluorinated polyimide films were obtained after removal of the PCL block can removed via a retro-DA (Diels-Alder) reaction using a simple heating and immersing procedure. The nanoporous thin film was characterized by Transmission electron microscopy (TEM). The dielectric property of the nanoporous fluorinated polyimide films was investigated. It was found that the nanopores introduction could effectively reduce the dielectric constant from 2.82 of PI dense films to 2.10 of nanoporous PI films.

  17. Microscopic failure behavior of nanoporous Gold

    SciTech Connect

    Biener, J; Hodge, A; Hamza, A

    2005-01-10

    Nanoporous metals have recently attracted considerable interest fueled by potential sensor and actuator applications. One of the key issues in this context is the synthesis of high yield strength materials. Nanoporous Au (np-Au) has been suggested as a candidate due to its monolithic character. The material can be synthesized by dealloying Ag-Au alloys, and exhibits an open sponge-like morphology of interconnecting Au ligaments with a typical pore size distribution on the nanometer length scale. Unfortunately, very little is known about the mechanical properties of np-Au besides a length-scale dependent ductile-brittle transition. A key question in this context is: what causes the macroscopic brittleness of np-Au? Is the normal dislocation-mediated plastic deformation suppressed in nanoscale Au ligaments, or is the brittleness a consequence of the macroscopic morphology? Here, we report on the fracture behavior of nanoporous Au studied by scanning electron microscopy. Specifically, we demonstrate the microscopic ductility of nanometer-sized Au ligaments. The observed fracture behavior seems to be general for nanoporous metals, and can be understood in terms of simple fuse networks.

  18. Optical characterization of nanoporous AAO sensor substrate

    NASA Astrophysics Data System (ADS)

    Kassu, Aschalew; Farley, Carlton W.; Sharma, Anup

    2014-05-01

    Nanoporous anodic aluminum oxide (AAO) has been investigated as an ideal and cost-effective chemical and biosensing platform. In this paper, we report the optical properties of periodic 100 micron thick nanoporous anodic alumina membranes with uniform and high density cylindrical pores penetrating the entire thickness of the substrate, ranging in size from 18 nm to 150 nm in diameter and pore periods from 44 nm to 243 nm. The surface geometry of the top and bottom surface of each membrane is studied using atomic force microscopy. The optical properties including transmittance, reflectance, and absorbance spectra on both sides of each substrate are studied and found to be symmetrical. It is observed that, as the pore size increases, the peak resonance intensity in transmittance decreases and in absorbance increases. The effects of the pore sizes on the optical properties of the bare nanoporous membranes and the benefit of using arrays of nanohole arrays with varying hole size and periodicity as a chemical sensing platform is also discussed. To characterize the optical sensing technique, transmittance and reflectance measurements of various concentrations of a standard chemical adsorbed on the bare nanoporous substrates are investigated. The preliminary results presented here show variation in transmittance and reflectance spectra with the concentration of the chemical used or the amount of the material adsorbed on the surface of the substrate.

  19. Nanoporous organosilica membrane for water desalination.

    PubMed

    Chua, Yen Thien; Lin, Chun Xiang Cynthia; Kleitz, Freddy; Zhao, Xiu Song; Smart, Simon

    2013-05-18

    Nanoporous organosilica membranes are successfully coated on porous alumina tubes and tested for desalination via membrane distillation. The membranes produced pure water (up to 13 kg m(-2) h(-1)) across an extreme range of salt concentrations (10-150 g L(-1) NaCl) at moderate temperatures (≤60 °C) without exhibiting the characteristic flux decay of competing materials.

  20. Characterization and study of antibacterial activity of spray pyrolysed ZnO:Al thin films

    NASA Astrophysics Data System (ADS)

    Manoharan, C.; Pavithra, G.; Bououdina, M.; Dhanapandian, S.; Dhamodharan, P.

    2016-08-01

    Aluminum-doped zinc oxide (ZnO:Al) thin films were deposited onto glass substrates using spray pyrolysis technique with the substrate temperature of 400 °C. X-ray diffraction analysis indicated that the films were polycrystalline with hexagonal wurtzite structure preferentially oriented along (002) direction. Surface morphology of the films obtained by scanning electron microscopy showed that the grains were of nanoscale size with porous nature for 6 at.% of Al. Atomic force microscopy observations revealed that the particles size and surface roughness of the films decreased with Al-doping. Optical measurements indicated that ZnO:Al (6 at.%) exhibited a band gap of 3.11 eV, which is lower than that of pure ZnO film, i.e. 3.42 eV. Photoluminescence analysis showed weak NBE emission at 396 nm for Al-doped films. The low resistivity, high hall mobility and carrier concentration values were obtained at a doping ratio of 6 at.% of Al. The effective incorporation of 6 at.% of Al into ZnO lattice by occupying Zn sites yielded a well-pronounced antibacterial activity against Staphylococcus aureus.

  1. Nanopore Creation in Graphene by Ion Beam Irradiation: Geometry, Quality, and Efficiency.

    PubMed

    Bai, Zhitong; Zhang, Lin; Li, Hengyang; Liu, Ling

    2016-09-21

    Ion beam irradiation is a promising approach to fabricate nanoporous graphene for various applications, including DNA sequencing, water desalination, and phase separation. Further advancement of this approach and rational design of experiments all require improved mechanistic understanding of the physical drilling process. Here, we demonstrate that, by using oblique ion beam irradiation, the nanopore family is significantly expanded to include more types of nanopores of tunable geometries. With the hopping, sweeping, and shoving mechanisms, ions sputter carbon atoms even outside the ion impact zone, leading to extended damage particularly at smaller incident angles. Moreover, with lower energies, ions may be absorbed to form complex ion-carbon structures, making the graphene warped or curly at pore edges. Considering both efficiency and quality, the optimal ion energy is identified to be 1000 eV at an incident angle of 30° with respect to the graphene sheet and 400-500 eV at higher incident angles. All of these results suggest the use of oblique ion beam and moderate energy levels to efficiently fabricate high-quality nanopores of tunable geometries in graphene for a wide range of applications.

  2. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    PubMed

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications.

  3. Nanopore patterning using Al2O3 hard masks on SOI substrates

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Goryll, Michael

    2015-07-01

    Aluminum oxide Al2O3, deposited using amorphous atomic layer deposition (ALD), is a very promising material to be utilized as a hard mask for nano-patterning. We used an aluminum oxide hard mask on a silicon-on-insulator (SOI) substrate to implement a sub-100 nm nanopore process. The transfer of nanoscale patterns via dry etching of the Al2O3 thin film was investigated by comparing etch profiles, etch rates, and selectivity of Al2O3 over PMMA resist, using different gas chemistries such as Cl2, Ar, Ar/BCl3 mixtures, and BCl3 plasma. A selectivity of 1:4 was observed using an inductively coupled plasma reactive ion etching (ICP-RIE) tool with BCl3 plasma, and the sub-100 nm nanopore patterns were anisotropically transferred to the alumina layer from a 250 nm PMMA layer. The dense and inert Al2O3 hard mask showed exceptional etch selectivity to Si and SiO2, which allowed the subsequent transfer of the nanopore patterns into the 340 nm-thick Si device layer and made it possible to attempt etching the 1 μm-thick buried oxide (BOX) layer. Using chlorine chemistry, nanopores patterned in the Si device layer showed excellent anisotropy while preserving the original pattern dimensions. The process demonstrated is ideally suited for patterning high aspect ratio nanofluidic structures.

  4. Ion transport and selectivity in biomimetic nanopores with pH-tunable zwitterionic polyelectrolyte brushes

    NASA Astrophysics Data System (ADS)

    Zeng, Zhenping; Yeh, Li-Hsien; Zhang, Mingkan; Qian, Shizhi

    2015-10-01

    Inspired by nature, functionalized nanopores with biomimetic structures have attracted growing interests in using them as novel platforms for applications of regulating ion and nanoparticle transport. To improve these emerging applications, we study theoretically for the first time the ion transport and selectivity in short nanopores functionalized with pH tunable, zwitterionic polyelectrolyte (PE) brushes. In addition to background salt ions, the study takes into account the presence of H+ and OH- ions along with the chemistry reactions between functional groups on PE chains and protons. Due to ion concentration polarization, the charge density of PE layers is not homogeneously distributed and depends significantly on the background salt concentration, pH, grafting density of PE chains, and applied voltage bias, thereby resulting in many interesting and unexpected ion transport phenomena in the nanopore. For example, the ion selectivity of the biomimetic nanopore can be regulated from anion-selective (cation-selective) to cation-selective (anion-selective) by diminishing (raising) the solution pH when a sufficiently small grafting density of PE chains, large voltage bias, and low background salt concentration are applied.

  5. Nanopore Creation in Graphene by Ion Beam Irradiation: Geometry, Quality, and Efficiency.

    PubMed

    Bai, Zhitong; Zhang, Lin; Li, Hengyang; Liu, Ling

    2016-09-21

    Ion beam irradiation is a promising approach to fabricate nanoporous graphene for various applications, including DNA sequencing, water desalination, and phase separation. Further advancement of this approach and rational design of experiments all require improved mechanistic understanding of the physical drilling process. Here, we demonstrate that, by using oblique ion beam irradiation, the nanopore family is significantly expanded to include more types of nanopores of tunable geometries. With the hopping, sweeping, and shoving mechanisms, ions sputter carbon atoms even outside the ion impact zone, leading to extended damage particularly at smaller incident angles. Moreover, with lower energies, ions may be absorbed to form complex ion-carbon structures, making the graphene warped or curly at pore edges. Considering both efficiency and quality, the optimal ion energy is identified to be 1000 eV at an incident angle of 30° with respect to the graphene sheet and 400-500 eV at higher incident angles. All of these results suggest the use of oblique ion beam and moderate energy levels to efficiently fabricate high-quality nanopores of tunable geometries in graphene for a wide range of applications. PMID:27572502

  6. Nanoporous separators for supercapacitor using activated carbon monolith electrode from oil palm empty fruit bunches

    SciTech Connect

    Nor, N. S. M. Deraman, M. Omar, R. Basri, N. H.; Dolah, B. N. M.; Taer, E.; Awitdrus,; Farma, R.

    2014-02-24

    Activated porous carbon electrode prepared from fibres of oil palm empty fruit bunches was used for preparing the carbon based supercapacitor cells. The symmetrical supercapacitor cells were fabricated using carbon electrodes, stainless steel current collector, H{sub 2}SO{sub 4} electrolyte, and three types of nanoporous separators. Cells A, B and C were fabricated using polypropylene, eggshell membrane, and filter paper, respectively. Electrochemical characterizations data from Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanic Charge Discharge techniques showed that specific capacitance, specific power and specific energy for cell A were 122 F g{sup −1}, 177 W kg{sup −1}, 3.42 Wh kg{sup −1}, cell B; 125 F g{sup −1}, 179 W kg{sup −1}, and 3.64 Wh kg{sup −1}, and cell C; 180 F g{sup −1}, 178 W kg{sup −1}, 4.27 Wh kg{sup −1}. All the micrographs from Field Emission Scanning Electron Microscope showed that the different in nanoporous structure of the separators lead to a significant different in influencing the values of specific capacitance, power and energy of supercapacitors, which is associated with the mobility of ion into the pore network. These results indicated that the filter paper was superior than the eggshell membrane and polypropylene nanoporous separators. However, we found that in terms of acidic resistance, polypropylene was the best nanoporous separator for acidic medium.

  7. Novel spider-web-like nanoporous networks based on jute cellulose nanowhiskers.

    PubMed

    Cao, Xinwang; Wang, Xianfeng; Ding, Bin; Yu, Jianyong; Sun, Gang

    2013-02-15

    Cellulose nanowhiskers as a kind of renewable and biocompatible nanomaterials evoke much interest because of its versatility in various applications. Herein, for the first time, a novel controllable fabrication of spider-web-like nanoporous networks based on jute cellulose nanowhiskers (JCNs) deposited on the electrospun (ES) nanofibrous membrane by simple directly immersion-drying method is reported. Jute cellulose nanowhiskers were extracted from jute fibers with a high yield (over 80%) via a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)/NaBr/NaClO system selective oxidization combined with mechanical homogenization. The morphology of JCNs nanoporous networks/ES nanofibrous membrane architecture, including coverage rate, pore-width and layer-by-layer packing structure of the nanoporous networks, can be finely controlled by regulating the JCNs dispersions properties and drying conditions. The versatile nanoporous network composites based on jute cellulose nanowhiskers with ultrathin diameters (3-10 nm) and nanofibrous membrane supports with diameters of 100-300 nm, would be particularly useful for filter applications. PMID:23399256

  8. PEG-Labeled Nucleotides and Nanopore Detection for Single Molecule DNA Sequencing by Synthesis

    PubMed Central

    Kumar, Shiv; Tao, Chuanjuan; Chien, Minchen; Hellner, Brittney; Balijepalli, Arvind; Robertson, Joseph W. F.; Li, Zengmin; Russo, James J.; Reiner, Joseph E.; Kasianowicz, John J.; Ju, Jingyue

    2012-01-01

    We describe a novel single molecule nanopore-based sequencing by synthesis (Nano-SBS) strategy that can accurately distinguish four bases by detecting 4 different sized tags released from 5′-phosphate-modified nucleotides. The basic principle is as follows. As each nucleotide is incorporated into the growing DNA strand during the polymerase reaction, its tag is released and enters a nanopore in release order. This produces a unique ionic current blockade signature due to the tag's distinct chemical structure, thereby determining DNA sequence electronically at single molecule level with single base resolution. As proof of principle, we attached four different length PEG-coumarin tags to the terminal phosphate of 2′-deoxyguanosine-5′-tetraphosphate. We demonstrate efficient, accurate incorporation of the nucleotide analogs during the polymerase reaction, and excellent discrimination among the four tags based on nanopore ionic currents. This approach coupled with polymerase attached to the nanopores in an array format should yield a single-molecule electronic Nano-SBS platform. PMID:23002425

  9. A nano-frost array technique to prepare nanoporous PVDF membranes.

    PubMed

    Lee, Min Kyung; Lee, Jonghwi

    2014-08-01

    Frost, the solid deposition of water vapor from humid air, forms on the surface of a solid substrate when its temperature drops below the freezing point of water. In this study, we demonstrate how this natural phenomenon can be applied to develop novel nanoporous materials. The solvent annealing of polyvinylidene fluoride (PVDF) infiltrated into nanopores induced template-directed dewetting thus preparing nanoembossing films. Then, water nanodroplets formed on the cold polymer nanopatterned surfaces following the embossing patterns, similar to dew formation on the ground. Subsequently, the nanodroplets were frozen and then removed by freeze-drying. This nano-frost array technique produced nanoporous PVDF membranes with an average thickness of 250 (± 48) nm. It was revealed that the nanopatterned surface formed by solvent annealing played an important role in achieving a nano-frost array with an adjustable size. Additionally, the freezing process led to significant changes of the PVDF crystallinity and polymorphism. Our results prove that the nano-frost array technique can be broadly used to design ordered nanoporous structures and provide new prospects in nanomaterial fields.

  10. Nanoporous silicon nitride membranes fabricated from porous nanocrystalline silicon templates

    NASA Astrophysics Data System (ADS)

    Desormeaux, J. P. S.; Winans, J. D.; Wayson, S. E.; Gaborski, T. R.; Khire, T. S.; Striemer, C. C.; McGrath, J. L.

    2014-08-01

    The extraordinary permeability and manufacturability of ultrathin silicon-based membranes are enabling devices with improved performance and smaller sizes in such important areas as molecular filtration and sensing, cell culture, electroosmotic pumping, and hemodialysis. Because of the robust chemical and mechanical properties of silicon nitride (SiN), several laboratories have developed techniques for patterning nanopores in SiN using reactive ion etching (RIE) through a template structure. These methods however, have failed to produce pores small enough for ultrafiltration (<100 nm) in SiN and involve templates that are prone to microporous defects. Here we present a facile, wafer-scale method to produce nanoporous silicon nitride (NPN) membranes using porous nanocrystalline silicon (pnc-Si) as a self-assembling, defect free, RIE masking layer. By modifying the mask layer morphology and the RIE etch conditions, the pore sizes of NPN can be adjusted between 40 nm and 80 nm with porosities reaching 40%. The resulting NPN membranes exhibit higher burst pressures than pnc-Si membranes while having 5× greater permeability. NPN membranes also demonstrate the capacity for high resolution separations (<10 nm) seen previously with pnc-Si membranes. We further demonstrate that human endothelial cells can be grown on NPN membranes, verifying the biocompatibility of NPN and demonstrating the potential of this material for cell culture applications.

  11. Energy behaviour for DNA translocation through graphene nanopores.

    PubMed

    Alshehri, Mansoor H; Cox, Barry J; Hill, James M

    2015-12-21

    Nanoparticles have considerable promise for many applications in electronics, energy storage, bioscience and biotechnologies. Here we use applied mathematical modelling to exploit the basic principles of mechanics and the 6-12 Lennard-Jones potential function together with the continuum approach, which assumes that a discrete atomic structure can be replaced by an average constant atomic surface density of atoms that is assumed to be smeared over each molecule. We identify a circular hole in a graphene sheet as a nanopore and we consider the molecular interaction energy for both single-strand and double-strand DNA molecules assumed to move through the circular hole in a graphene sheet to determine the radius b of the hole that gives the minimum energy. By minimizing the interaction energy, we observe that the single-strand DNA and double-strand DNA molecules penetrate through a graphene nanopore when the pore radii b> 7.8Å and b> 12.7Å, respectively. Our results can be adopted to offer new applications in the atomic surface processes and electronic sensing. PMID:26449742

  12. Translational dynamics of water in a nanoporous layered silicate

    SciTech Connect

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by {sup 29}Si NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process (D{approx}10{sup -9} m{sup 2}/s at 300 K), and a much slower process (D{approx}10{sup -11} m{sup 2}/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  13. Mechanically robust superamphiphobic aluminum surface with nanopore-embedded microtexture.

    PubMed

    Barthwal, Sumit; Kim, Young Su; Lim, Si-Hyung

    2013-09-24

    A simple fabrication technique was developed for preparing a mechanically robust superamphiphobic surface on an aluminum (Al) plate. Dual geometric architectures with micro- and nanoscale structures were formed on the surface of the Al plate by a combination of simple chemical etching and anodization. This proposed methodology involves (1) fabrication of irregular microscale plateaus on the surface of the Al plate, (2) formation of nanopores, and (3) fluorination. Wettability measurements indicated that the fabricated Al surface became super-repellent toward a broad range of liquids with surface tension in the range 27.5-72 mN/m. By varying the anodization time, we measured and compared the effects of morphological change on the wettability. The adhesion property and mechanical durability of the fabricated superamphiphobic Al surface were evaluated by the Scotch tape and hardness tests, respectively. The results showed that the fabricated Al surface retained mechanical robustness because the down-directed surface made by nanopores on the microtextured surface was durable enough even after high force was applied. Almost no damage of the film was observed, and the surface still exhibited superamphiphobicity after the tests. The fabricated superamphiphobic surface also remained stable after long-term storage. The simple and time-saving fabrication technique can be extended to any large-area three-dimensional surface, making it potentially suitable for large-scale industrial fabrications of mechanically robust superamphiphobic surfaces.

  14. Electrochemical sensors based on functionalized nanoporous silica for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Yuehe; Yantasee, Wassana; Fryxell, Glen E.; Conner, Marianne M.

    2004-12-01

    Nanostructured materials enable the development of miniature sensing devices that are compact, low-cost, low-energy-consumption, and easily integrated into field-deployable units. Recently we have successfully developed electrochemical sensors based on functionalized nanostructured materials for the characterization of metal ions. Specifically, glycinyl-urea self-assembled monolayer on nanoporous silica (Gly-UR SAMMS) has been incorporated in carbon paste electrodes for the detection of toxic metals such as lead, copper, and mercury based on adsorptive stripping voltammetry, while acetamide phosphonic acid self-assembled monolayer on nanoporous silica (Ac-Phos SAMMS) has been used for the detection of uranium. Both electrochemical sensors yield reproducible measurements with excellent detection limits (at ppb level), are selective for target species, does not require the use of mercury film and chelating agents, and require little or no regeneration of electrode materials. The rigid, open, paralleled pore structure combined with suitable interfacial chemistry of SAMMS also results in fast responses of the electrochemical sensors.

  15. Translational dynamics of water in a nanoporous layered silicate

    NASA Astrophysics Data System (ADS)

    Nair, Sankar; Chowdhuri, Zema; Peral, Inmaculada; Neumann, Dan A.; Dickinson, L. Charles; Tompsett, Geoffrey; Jeong, Hae-Kwon; Tsapatsis, Michael

    2005-03-01

    Neutron time-of-flight and backscattering spectroscopy have been used to study the translational diffusion of water molecules in the unusual layered material AMH-3, which consists of (zeolitelike) three-dimensionally nanoporous silicate layers spaced by (claylike) interlayer regions. The synthesis of AMH-3 and its characterization by Si29 NMR, Raman, and infrared spectroscopy, are described. An analysis of quasielastic neutron scattering (QENS) spectra using the random jump diffusion model reveals two translational diffusive motions clearly separated in time scales: a fast process ( Dtilde 10-9m2/s at 300 K), and a much slower process ( Dtilde 10-11m2/s at 300 K). Considering the structural model of AMH-3 and the transport properties extracted from the QENS data, it is suggested that the slower motion corresponds to diffusion by water molecules in the interlayer spaces whereas the fast process involves diffusion in the silicate layer. This first investigation of transport phenomena in nanoporous layered silicates like AMH-3 indicates that they have the potential to offer mass transport properties different from zeolite materials and layered clays.

  16. Functionalized nanoporous silicas for the immobilization of penicillin acylase

    NASA Astrophysics Data System (ADS)

    Maria Chong, A. S.; Zhao, X. S.

    2004-10-01

    Nanoporous silica materials with uniform pore size and ordered structure have drawn growing interest of researchers since 1990s. A large-pore nanoporous material, SBA-15, was functionalized with organosilanes by co-condensation method in the presence of nonionic triblock copolymer P123 as a template under acidic conditions. The functionalization was demonstrated by using five organosilanes, namely 3-aminopropyltriethoxysilane (APTES), 3-mercaptopropyltrimethoxysilane (MPTMS), phenyltrimethoxysilane (PTMS), vinyltriethoxysilane (VTES), and 4-(triethoxysilyl)butyronitrile (TSBN), which modified the surface properties of the silica materials, enabling the materials to be a promising support for immobilization of biological molecules. The functionalized SBA-15 materials exhibited long-range ordering of two-dimensional hexagonal pore arrays of size ranging from 66 to 90 Å as demonstrated by small-angle X-ray scattering (SAXS), transmission electron microscopy (TEM), and physical adsorption techniques. A variety of organosilane density in the range of 0.5-2.6 mmol/g was achieved as revealed by elemental analysis and solid-state nuclear magnetic resonance (NMR) techniques. The functionalized materials displayed improved properties for immobilization of penicillin acylase (PA) in comparison with pure-silica SBA-15. Such improvement is believed to be due to the enhanced surface hydrophobicity and electrostatic interactions of the functional groups with the enzyme.

  17. Nanoporous Electrospun Fibrous Meshes: Size-Controlled Reverse Micelles Strategy.

    PubMed

    Mao, Wei; Yoo, Hyuk Sang

    2016-05-01

    A simple and efficient method to fabricate size-controlled nanoporous-nanofibrous meshes has been demonstrated by introducing and removing novel size-controllable porogens, reverse micelles, on electrospun polymeric nanofibers. Poly(D,L-lactide) and reverse micelles composed of amphiphilic diblock copolymer, poly(ethylene glycol) methyl ether-block-poly(ε-caprolactone), were first dissolved in an acetone/chloroform (3:1, v/v) mixture and then electrospun into nanofibers, followed by 70% EtOH post-treatment. During the post-treatment, the reverse micelles were dissolved in 70% EtOH at room temperature thus separated from the poly(D,L-lactide) nanofibers backbone, resulting in a nanoporous nanofibrous structure. The pores on the nanofibers are size-controllable because the sizes of the reverse micelles can be adjusted by varying the water content inside them. The sizes of reverse micelles, which ranged from 100 nm to 700 nm, are investigated by dynamic light scattering. The pores of various sizes on the poly(D,L-lactide) nanofibers have areas ranging from 20 μm2 to 80 μm2 were observed by field-emission scanning electron microscopy. PMID:27483927

  18. Nanoscale Bioengineering Solutions for Space Exploration the Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Ioana, Cozmuta; Viktor, Stoic

    2005-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation. with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes. http://phenomrph.arc.nasa.gov/index.php

  19. On the anodic aluminium oxide refractive index of nanoporous templates

    NASA Astrophysics Data System (ADS)

    Hierro-Rodriguez, A.; Rocha-Rodrigues, P.; Valdés-Bango, F.; Alameda, J. M.; Jorge, P. A. S.; Santos, J. L.; Araujo, J. P.; Teixeira, J. M.; Guerreiro, A.

    2015-11-01

    In the present study, we have determined the intrinsic refractive index of anodic aluminium oxide, which is originated by the formation of nanoporous alumina templates. Different templates have been fabricated by the conventional two-step anodization procedure in oxalic acid. Their porosities were modified by chemical wet etching allowing the tuning of their effective refractive indexes (air-filled nanopores  +  anodic aluminium oxide). By standard spectroscopic light transmission measurements, the effective refractive index for each different template was extracted in the VIS-NIR region. The determination of the intrinsic anodic aluminium oxide refractive index was performed by using the Maxwell-Garnett homogenization theory. The results are coincident for all the fabricated samples. The obtained refractive index (~1.55) is quite lower (~22%) than the commonly used Al2O3 handbook value (~1.75), showing that the amorphous nature of the anodic oxide structure strongly conditions its optical properties. This difference is critical for the correct design and modeling of optical plasmonic metamaterials based on anodic aluminium oxide nanoporous templates.

  20. CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers

    PubMed Central

    Yim, Changyong; Lee, Moonchan; Yun, Minhyuk; Kim, Gook-Hee; Kim, Kyong Tae; Jeon, Sangmin

    2015-01-01

    Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of the resonance frequency measurements for the different adsorbed gas molecules are almost identical when the frequency changes are normalized by the molecular weights of the gases. In contrast, the deflection measurements show that only CO2 adsorption induces substantial bending of the MIL53-AAO cantilevers. This selective deflection of the cantilevers is attributed to the strong interactions between CO2 and the hydroxyl groups in MIL-53, which induce structural changes in the MIL-53 layers. Simultaneous measurements of the resonance frequency and the deflection are performed to show that the diffusion of CO2 into the nanoporous MIL-53 layers occurs very rapidly, whereas the binding of CO2 to hydroxyl groups occurs relatively slowly, which indicates that the adsorption of CO2 onto the MIL-53 layers and the desorption of CO2 from the MIL-53 layers are reaction limited. PMID:26035805

  1. Nanoporous silica membranes fabricated using multiwalled carbon nanotubes.

    PubMed

    Kim, Hun-Sik; Kwon, Ha Il; Yun, Young Soo; Bak, Hyeonseong; Yoon, Jin-San; Jin, Hyoung-Joon

    2011-05-01

    Nanoporous silica membranes were fabricated using 3-aminopropyltriethoxysilane (APS) and acyl chloride-functionalized multiwalled carbon nanotubes (MWCNTs). The amine groups of silane reacted with the functional groups (e.g., acid chloride) that were attached to the sidewall of the MWCNTs. The APS that was grafted to the sidewall of the MWCNTs was polymerized in order to coat the MWCNTs wall through heating. The thickness of the silica layer on the surface of the MWCNTs was controlled by adjusting the growth time of the SiO2 layer. Approximately 20 nm-sized pores were formed through the removal of the MWCNTs using a simple thermal process, but some traces of the MWCNTs still remained. The porous properties of the nanoporous silica membrane were analyzed from the nitrogen adsorption-desorption isotherms that were obtained using a surface area and porosimetry analyzer. The structure and composition of the silane-modified MWCNTs were characterized using scanning electron microscopy, energy dispersive spectroscopy and transmission electron microscopy. PMID:21780471

  2. CO2-Selective Nanoporous Metal-Organic Framework Microcantilevers.

    PubMed

    Yim, Changyong; Lee, Moonchan; Yun, Minhyuk; Kim, Gook-Hee; Kim, Kyong Tae; Jeon, Sangmin

    2015-01-01

    Nanoporous anodic aluminum oxide (AAO) microcantilevers are fabricated and MIL-53 (Al) metal-organic framework (MOF) layers are directly synthesized on each cantilever surface by using the aluminum oxide as the metal ion source. Exposure of the MIL53-AAO cantilevers to various concentrations of CO2, N2, CO, and Ar induces changes in their deflections and resonance frequencies. The results of the resonance frequency measurements for the different adsorbed gas molecules are almost identical when the frequency changes are normalized by the molecular weights of the gases. In contrast, the deflection measurements show that only CO2 adsorption induces substantial bending of the MIL53-AAO cantilevers. This selective deflection of the cantilevers is attributed to the strong interactions between CO2 and the hydroxyl groups in MIL-53, which induce structural changes in the MIL-53 layers. Simultaneous measurements of the resonance frequency and the deflection are performed to show that the diffusion of CO2 into the nanoporous MIL-53 layers occurs very rapidly, whereas the binding of CO2 to hydroxyl groups occurs relatively slowly, which indicates that the adsorption of CO2 onto the MIL-53 layers and the desorption of CO2 from the MIL-53 layers are reaction limited. PMID:26035805

  3. Investigation of bioactivity and cell effects of nano-porous sol-gel derived bioactive glass film

    NASA Astrophysics Data System (ADS)

    Ma, Zhijun; Ji, Huijiao; Hu, Xiaomeng; Teng, Yu; Zhao, Guiyun; Mo, Lijuan; Zhao, Xiaoli; Chen, Weibo; Qiu, Jianrong; Zhang, Ming

    2013-11-01

    In orthopedic surgery, bioactive glass film coating is extensively studied to improve the synthetic performance of orthopedic implants. A lot of investigations have confirmed that nano-porous structure in bioactive glasses can remarkably improve their bioactivity. Nevertheless, researches on preparation of nano-porous bioactive glasses in the form of film coating and their cell response activities are scarce. Herein, we report the preparation of nano-porous bioactive glass film on commercial glass slide based on a sol-gel technique, together with the evaluation of its in vitro bioactivity through immersion in simulated body fluid and monitoring the precipitation of apatite-like layer. Cell responses of the samples, including attachment, proliferation and osteogenic differentiation, were also investigated using BMSCS (bone marrow derived mesenchymal stem cells) as a model. The results presented here provide some basic information on structural influence of bioactive glass film on the improvement of bioactivity and cellular effects.

  4. Fabrication of nanoporous arrays from photosensitive organic-inorganic hybrid materials by using an UV soft nanoimprint technique.

    PubMed

    Zhang, Xuehua; Que, Wenxiu; Hu, Jiaxing; Chen, Jin; Zhang, Jin; Liu, Weiguo

    2013-02-01

    A honeycomb-like regular nanoporous pattern built in the photosensitive organic-inorganic hybrid film was fabricated by an UV soft nanoimprint technique. Polydimethylsiloxane (PDMS) soft mold was firstly replicated from an anodic aluminum oxide (AAO) template obtained by using a two-step anodization method. Scanning electron microscopy images show that the AAO template has a regular honeycomb-like nanoporous structure, while the PDMS soft mold has a relief structure of nanopillar arrays. Photosensitive TiO2-contained organic-inorganic hybrid films, which were prepared by combining a low temperature sol-gel process with a spin-coating technique, were used as the imprinted layer. Thus, a honeycomb-like regular nanoporous pattern built in the hybrid film can be easily obtained by imprinting the PDMS soft mold into the photosensitive hybrid film under an UV-irradiation. The as-fabricated organic-inorganic regular nonporous arrays have potential applications in two-dimensional photonic crystal.

  5. Block copolymers confined in a nanopore: Pathfinding in a curving and frustrating flatland

    NASA Astrophysics Data System (ADS)

    Sevink, G. J. A.; Zvelindovsky, A. V.

    2008-02-01

    We have studied structure formation in a confined block copolymer melt by means of dynamic density functional theory. The confinement is two dimensional, and the confined geometry is that of a cylindrical nanopore. Although the results of this study are general, our coarse-grained molecular model is inspired by an experimental lamella-forming polysterene-polybutadiene diblock copolymer system [K. Shin et al., Science 306, 76 (2004)], in which an exotic toroidal structure was observed upon confinement in alumina nanopores. Our computational study shows that a zoo of exotic structures can be formed, although the majority, including the catenoid, helix, and double helix that were also found in Monte Carlo nanopore studies, are metastable states. We introduce a general classification scheme and consider the role of kinetics and elongational pressure on stability and formation pathway of both equilibrium and metastable structures in detail. We find that helicity and threefold connections mediate structural transitions on a larger scale. Moreover, by matching the remaining parameter in our mesoscopic method, the Flory-Huggins parameter χ, to the experimental system, we obtain a structure that resembles the experimental toroidal structure in great detail. Here, the most important factor seems to be the roughness of the pore, i.e., small variations of the pore radius on a scale that is larger than the characteristic size in the system.

  6. Single-file diffusion through inhomogeneous nanopores.

    PubMed

    Bandyopadhyay, Tusar

    2008-03-21

    Strict one-dimensional diffusion, due to geometrical confinement in a nanopore, of an assembly of particles forbids overtaking by each other, giving rise to single-file diffusion (SFD). Smooth carbon nanotube is the epitome of SFD. However, natural nanoporous materials are far from smooth; morphologically, the nanopores' inner surface may provide an inhomogeneous environment for diffusion to occur, giving rise to subnormal diffusion even for an isolated particle diffusing through this fractal landscape. The realm of fractional diffusion (FD) falls under this paradigm. In order to understand the characteristics of SFD through inhomogeneous nanopores, here, we introduce a fractional SFD (FSFD) formalism that deals with a combination of these two phenomena, namely, SFD of particles, each of which are moving subdiffusively in one dimension. For an infinite system, we obtain the mean square displacement (MSD) of the combined entity and our analysis is based on FD equation for particles moving in concert where the single-file correlation is established through reflection principle. For a finite system, we calculate the transport probabilities based on continuous time random walk model. While both the diffusion mechanisms (SFD and FD) acting separately are responsible for slow dynamics at long times, their combined effect leads to ultraslow diffusion. For example, while the long time asymptote of MSD of SFD scales as sqr rt of t, that for FSFD is sqr rt of t(alpha), where alpha is the measure of the extent of inhomogeneity. These findings, which are believed to occur in a natural inhomogeneous nanopore, is also important for design and fabrication of nanofluidic devices through which the fluid delivery can be engineered.

  7. Pressure pyrolysed non-precious oxygen reduction catalysts for proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Nallathambi, Vijayadurga

    2011-12-01

    and increased the porosity, particularly micro and mesopores of the catalysts that led to increased active site density and reduced oxygen transport hindrances respectively. Collaborative efforts with the University of New Mexico facilitated XPS characterization of MNC catalysts. XPS analyses indicated that pyridinic nitrogen sites, present in the edge plane of the catalysts and pyridinic nitrogen coordinated to transition metals correlated to oxygen reduction activity. Further insight into the role of transition metal and the structure of active site was gained through EXAFS measurements, carried out in collaboration with Northeastern University. Electrochemical studies performed in the presence of poisoning anions such as cyanide in alkaline environment indicated a 25% decrease in oxygen reduction activity, suggesting that the metal is part of the active sites and participates in oxygen reduction. In-situ EXAFS analysis of the catalysts indicated the active reaction site for oxygen reduction to be Fe metal coordinated to 4 nitrogen atoms. These low cost MNC catalysts find direct application in Proton Exchange Membrane Fuel cells for transportation applications, where there is a huge drive to improve the economy of the fuel cell by reducing the costs associated with state-of the art platinum-based catalysts.

  8. Electron beam-assisted healing of nanopores in magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-05-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning.

  9. Fabrication and centeracterization of ordered CuIn(1−x)GaxSe2 nanopore films via template-based electrodeposition

    PubMed Central

    2012-01-01

    Ordered CuIn(1−x)GaxSe2 (CIGS) nanopore films were prepared by one-step electrodeposition based on porous anodized aluminum oxide templates. The as-grown film shows a highly ordered morphology that reproduces the surface pattern of the substrate. Raman spectroscopy and X-ray diffraction pattern show that CIGS nanopore films had ideal chalcopyrite crystallization. Energy dispersive spectroscopy reveals the Cu-Se phases firstly formed in initial stage of growth. Then, indium and gallium were incorporated in the nanopore films in succession. Cu-Se phase is most likely to act as a growth promoter in the growth progress of CIGS nanopore films. Due to the high surface area and porous structure, this kind of CIGS films could have potential application in light-trapping CIGS solar cells and photoelectrochemical water splitting. PMID:23245846

  10. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation.

    PubMed

    Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc

    2015-06-03

    Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10(-2) C m(-2) needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed.

  11. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation

    PubMed Central

    Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc

    2015-01-01

    Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687

  12. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam

    NASA Astrophysics Data System (ADS)

    Fox, Daniel S.; Maguire, Pierce; Zhou, Yangbo; Rodenburg, Cornelia; O’Neill, Arlene; Coleman, Jonathan N.; Zhang, Hongzhou

    2016-05-01

    A flexible and efficient method to fabricate nanopores in graphene has been developed. A focused, low-energy (5 keV) electron beam was used to locally activate etching of a graphene surface in a low pressure (0.3 Pa) N2 environment. Nanopores with sub-5 nm diameters were fabricated. The lattice structure of the graphene was observed to recover within 20 nm of the nanopore edge. Nanopore growth rates were investigated systematically. The effects of nitrogen pressure, electron beam dwell time and beam current were characterised in order to understand the etching mechanism and enable optimisation of the etching parameters. A model was developed which describes how the diffusion of ionised nitrogen affects the nanopore growth rate. Etching of other two-dimensional materials was attempted as demonstrated with MoS2. The lack of etching observed supports our model of a chemical reaction-based mechanism. The understanding of the etching mechanism will allow more materials to be etched by selection of an appropriate ion species.

  13. Sub-5 nm graphene nanopore fabrication by nitrogen ion etching induced by a low-energy electron beam.

    PubMed

    Fox, Daniel S; Maguire, Pierce; Zhou, Yangbo; Rodenburg, Cornelia; O'Neill, Arlene; Coleman, Jonathan N; Zhang, Hongzhou

    2016-05-13

    A flexible and efficient method to fabricate nanopores in graphene has been developed. A focused, low-energy (5 keV) electron beam was used to locally activate etching of a graphene surface in a low pressure (0.3 Pa) N2 environment. Nanopores with sub-5 nm diameters were fabricated. The lattice structure of the graphene was observed to recover within 20 nm of the nanopore edge. Nanopore growth rates were investigated systematically. The effects of nitrogen pressure, electron beam dwell time and beam current were characterised in order to understand the etching mechanism and enable optimisation of the etching parameters. A model was developed which describes how the diffusion of ionised nitrogen affects the nanopore growth rate. Etching of other two-dimensional materials was attempted as demonstrated with MoS2. The lack of etching observed supports our model of a chemical reaction-based mechanism. The understanding of the etching mechanism will allow more materials to be etched by selection of an appropriate ion species.

  14. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation.

    PubMed

    Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc

    2015-01-01

    Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10(-2) C m(-2) needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687

  15. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A; Li, Jiali; Stein, Derek; Gershow, Marc H

    2015-03-03

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  16. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2010-12-07

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  17. Study of polymer molecules and conformations with a nanopore

    DOEpatents

    Golovchenko, Jene A.; Li, Jiali; Stein, Derek; Gershow, Marc H.

    2013-03-12

    The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.

  18. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  19. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    SciTech Connect

    Kuan, Aaron T.; Szalay, Tamas; Lu, Bo; Xie, Ping; Golovchenko, Jene A.

    2015-05-18

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips.

  20. Electrical pulse fabrication of graphene nanopores in electrolyte solution

    PubMed Central

    Kuan, Aaron T.; Lu, Bo; Xie, Ping; Szalay, Tamas; Golovchenko, Jene A.

    2015-01-01

    Nanopores in graphene membranes can potentially offer unprecedented spatial resolution for single molecule sensing, but their fabrication has thus far been difficult, poorly scalable, and prone to contamination. We demonstrate an in-situ fabrication method that nucleates and controllably enlarges nanopores in electrolyte solution by applying ultra-short, high-voltage pulses across the graphene membrane. This method can be used to rapidly produce graphene nanopores with subnanometer size accuracy in an apparatus free of nanoscale beams or tips. PMID:26045626

  1. Characterization of Interstrand DNA-DNA Cross-Links Using the α-Hemolysin Protein Nanopore.

    PubMed

    Zhang, Xinyue; Price, Nathan E; Fang, Xi; Yang, Zhiyu; Gu, Li-Qun; Gates, Kent S

    2015-12-22

    Nanopore-based sensors have been studied extensively as potential tools for DNA sequencing, characterization of epigenetic modifications such as 5-methylcytosine, and detection of microRNA biomarkers. In the studies described here, the α-hemolysin protein nanopore embedded in a lipid bilayer was used for the detection and characterization of interstrand cross-links in duplex DNA. Interstrand cross-links are important lesions in medicinal chemistry and toxicology because they prevent the strand separation that is required for read-out of genetic information from DNA in cells. In addition, interstrand cross-links are used for the stabilization of duplex DNA in structural biology and materials science. Cross-linked DNA fragments produced unmistakable current signatures in the nanopore experiment. Some cross-linked substrates gave irreversible current blocks of >10 min, while others produced long current blocks (10-100 s) before the double-stranded DNA cross-link translocated through the α-hemolysin channel in a voltage-driven manner. The duration of the current block for the different cross-linked substrates examined here may be dictated by the stability of the duplex region left in the vestibule of the nanopore following partial unzipping of the cross-linked DNA. Construction of calibration curves measuring the frequency of cross-link blocking events (1/τon) as a function of cross-link concentration enabled quantitative determination of the amounts of cross-linked DNA present in samples. The unique current signatures generated by cross-linked DNA in the α-HL nanopore may enable the detection and characterization of DNA cross-links that are important in toxicology, medicine, and materials science.

  2. Observation and analysis of the Coulter effect through carbon nanotube and graphene nanopores.

    PubMed

    Agrawal, Kumar Varoon; Drahushuk, Lee W; Strano, Michael S

    2016-02-13

    Carbon nanotubes (CNTs) and graphene are the rolled and flat analogues of graphitic carbon, respectively, with hexagonal crystalline lattices, and show exceptional molecular transport properties. The empirical study of a single isolated nanopore requires, as evidence, the observation of stochastic, telegraphic noise from a blocking molecule commensurate in size with the pore. This standard is used ubiquitously in patch clamp studies of single, isolated biological ion channels and a wide range of inorganic, synthetic nanopores. In this work, we show that observation and study of stochastic fluctuations for carbon nanopores, both CNTs and graphene-based, enable precision characterization of pore properties that is otherwise unattainable. In the case of voltage clamp measurements of long (0.5-1 mm) CNTs between 0.9 and 2.2 nm in diameter, Coulter blocking of cationic species reveals the complex structuring of the fluid phase for confined water in this diameter range. In the case of graphene, we have pioneered the study and the analysis of stochastic fluctuations in gas transport from a pressurized, graphene-covered micro-well compartment that reveal switching between different values of the membrane permeance attributed to chemical rearrangements of individual graphene pores. This analysis remains the only way to study such single isolated graphene nanopores under these realistic transport conditions of pore rearrangements, in keeping with the thesis of this work. In summary, observation and analysis of Coulter blocking or stochastic fluctuations of permeating flux is an invaluable tool to understand graphene and graphitic nanopores including CNTs.

  3. Catalytically solid-phase self-organization of nanoporous SnS with optical depolarizability

    NASA Astrophysics Data System (ADS)

    Cheng, Chih-Hsien; Chi, Yu-Chieh; Wu, Chung-Lun; Lin, Chun-Jung; Tsai, Ling-Hsuan; Chang, Jung-Hung; Chen, Mu Ku; Shih, Min-Hsiung; Lee, Chao-Kuei; Wu, Chih-I.; Tsai, Din Ping; Lin, Gong-Ru

    2016-02-01

    The catalytic solid-phase synthesis of self-organized nanoporous tin sulfide (SnS) with enhanced absorption, manipulative transmittance and depolarization features is demonstrated. Using an ultralow radio-frequency (RF) sputtering power, the variation of the orientation angle between the anodized aluminum oxide (AAO) membrane and the axis of the sputtered ion beam detunes the catalytically synthesized SnS from nanorod to nanoporous morphology, along the sidewall of the AAO membrane. The ultraslow catalytic sputtering synthesis on the AAO at the RF plasma power of 20 W and the orientation angle of 0° regulates the porosity and integrality of nanoporous SnS, with average pore diameter of 80-150 nm. When transferring from planar to nanoporous structure, the phase composition changes from SnS to SnS2-Sn2S3, and the optical bandgap shrinks from 1.43 to 1.16 eV, due to the preferred crystalline orientation, which also contributes to an ultralow reflectance of <1% at 200-500 nm when both the transmittance and the surface scattering remain at their maxima. The absorption coefficient is enhanced by nearly one order of magnitude with its minimum of >5 × 104 cm-1 at the wavelength between 200 and 700 nm, due to the red-shifting of the absorption spectrum to at least 100 nm. The catalytically self-organized nanoporous SnS causes strong haze and beam divergence of 20°-30° by depolarized nonlinear scattering at the surface, which favors the solar energy conversion with reduced surface reflection and enhanced photon scattering under preserved transmittance.

  4. Nanopore gradients on porous aluminum oxide generated by nonuniform anodization of aluminum.

    PubMed

    Kant, Krishna; Low, Suet P; Marshal, Asif; Shapter, Joseph G; Losic, Dusan

    2010-12-01

    A method for surface engineering of structural gradients with nanopore topography using the self-ordering process based on electrochemical anodization of aluminum is described. A distinct anodization condition with an asymmetrically distributed electric field at the electrolyte/aluminum interface is created by nonparallel arrangement between electrodes (tilted by 45°) in an electrochemical cell. The anodic aluminum oxide (AAO) porous surfaces with ordered nanopore structures with gradual and continuous change of pore diameters from 80 to 300 nm across an area of 0.5-1 cm were fabricated by this anodization using two common electrolytes, oxalic acid (0.3 M) and phosphoric acid (0.3 M). The formation of pore gradients of AAO is explained by asymmetric and gradual distribution of the current density and temperature variation generated on the surface of Al during the anodization process. Optical and wetting gradients of prepared pore structures were confirmed by reflective interferometric spectroscopy and contact angle measurements showing the ability of this method to generate porous surfaces with multifunctional gradients (structural, optical, wetting). The study of influence of pore structures on cell growth using the culture of neuroblastoma cells reveals biological relevance of nanopore gradients and the potential to be applied as the platform for spatially controllable cell growth and cell differentiation.

  5. Dealloying-driven nanoporous palladium with superior electrochemical actuation performance

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Bai, Qingguo; Zhang, Zhonghua

    2016-03-01

    Metal-hydrogen (in particular, Pd-H) interactions have been receiving considerable attention over the past 150 years within the scope of hydrogen storage, catalytic hydrogenation, hydrogen embrittlement and hydrogen-induced interfacial failure. Here, for the first time, we show that the coupling of hydrogen adsorption and absorption could trigger giant reversible strain in bulk nanoporous Pd (np-Pd) in a weakly adsorbed NaF electrolyte. The bulk np-Pd with a hierarchically porous structure and a ligament/channel size of ~10 nm was fabricated using a dealloying strategy with compositional/structural design of the precursor. The np-Pd actuator exhibits a giant reversible strain of up to 3.28% (stroke of 137.8 μm), which is a 252% enhancement in comparison to the state-of-the-art value of 1.3% in np-AuPt. The strain rate (~10-5 s-1) of np-Pd is two orders of magnitude higher than that of current metallic actuators. Moreover, the volume-/mass-specific strain energy density (10.71 MJ m-3/3811 J kg-1) of np-Pd reaches the highest level compared with that of previously reported actuator materials. The outstanding actuation performance of np-Pd could be attributed to the coupling of hydrogen adsorption/absorption and its unique hierarchically nanoporous structure. Our findings provide valuable information for the design of novel high-performance metallic actuators.Metal-hydrogen (in particular, Pd-H) interactions have been receiving considerable attention over the past 150 years within the scope of hydrogen storage, catalytic hydrogenation, hydrogen embrittlement and hydrogen-induced interfacial failure. Here, for the first time, we show that the coupling of hydrogen adsorption and absorption could trigger giant reversible strain in bulk nanoporous Pd (np-Pd) in a weakly adsorbed NaF electrolyte. The bulk np-Pd with a hierarchically porous structure and a ligament/channel size of ~10 nm was fabricated using a dealloying strategy with compositional/structural design of the

  6. DNA damage due to perfluorooctane sulfonate based on nano-gold embedded in nano-porous poly-pyrrole film

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Xu, Laihui; Kang, Tianfang; Cheng, Shuiyuan

    2013-11-01

    DNA damage induced from perfluorooctane sulfonate (PFOS) was further developed on a nano-porous bionic interface. The interface was formed by assembling DNA on nano-gold particles which were embedded in a nano-porous overoxidized polypyrrole film (OPPy). Atomic force microscopy, scanning electron microscope and electrochemical investigations indicate that OPPy can be treated to form nano-pore structures. DNA damage due to PFOS was proved using electrochemistry and X-ray photoelectron spectroscopy (XPS) and was investigated by detecting differential pulse voltammetry (DPV) response of methylene blue (MB) which was used as electro-active indicator in the system. The current of MB attenuates obviously after incubation of DNA in PFOS. Moreover, electrochemical impedance spectroscopy (EIS) demonstrates that PFOS weakens DNA charge transport. The tentative binding ratio of PFOS: DNA base pair was obtained by analyzing XPS data of this system.

  7. Fast-response humidity-sensing films based on methylene blue aggregates formed on nanoporous semiconductor films

    NASA Astrophysics Data System (ADS)

    Ishizaki, Ryota; Katoh, Ryuzi

    2016-05-01

    We prepared fast-response colorimetric humidity-sensing (vapochromic) films based on methylene blue adsorption onto nanoporous semiconductor (TiO2, Al2O3) films. Color changes caused by changes of humidity could be easily identified visually. A characteristic feature of the vapochromic films was their fast response to changes of humidity. We found that the response began to occur within 10 ms. The response was rapid because all the methylene blue molecules attached to the nanoporous semiconductor surface were directly exposed to the environment. We also deduced that the color changes were caused by structural changes of the methylene blue aggregates on the surface.

  8. Force fluctuations assist nanopore unzipping of DNA

    NASA Astrophysics Data System (ADS)

    Viasnoff, V.; Chiaruttini, N.; Muzard, J.; Bockelmann, U.

    2010-11-01

    We experimentally study the statistical distributions and the voltage dependence of the unzipping time of 45 base-pair-long double-stranded DNA through a nanopore. We then propose a quantitative theoretical description considering the nanopore unzipping process as a random walk of the opening fork through the DNA sequence energy landscape biased by a time-fluctuating force. To achieve quantitative agreement fluctuations need to be correlated over the millisecond range and have an amplitude of order kBT/bp. Significantly slower or faster fluctuations are not appropriate, suggesting that the unzipping process is efficiently enhanced by noise in the kHz range. We further show that the unzipping time of short 15 base-pair hairpins does not always increase with the global stability of the double helix and we theoretically study the role of DNA elasticity on the conversion of the electrical bias into a mechanical unzipping force.

  9. Light splitting in nanoporous gold and silver.

    PubMed

    Bosman, Michel; Anstis, Geoffrey R; Keast, Vicki J; Clarke, Jackson D; Cortie, Michael B

    2012-01-24

    Nanoporous gold and silver exhibit strong, omnidirectional broad-band absorption in the far-field. Even though they consist entirely of gold or silver atoms, these materials appear black and dull, in great contrast with the familiar luster of continuous gold and silver. The nature of these anomalous optical characteristics is revealed here by combining nanoscale electron energy loss spectroscopy with discrete dipole and boundary element simulations. It is established that the strong broad-band absorption finds its origin in nanoscale splitting of light, with great local variations in the absorbed color. This nanoscale polychromaticity results from the excitation of localized surface plasmon resonances, which are imaged and analyzed here with deep sub-wavelength, nanometer spatial resolution. We demonstrate that, with this insight, it is possible to customize the absorbance and reflectance wavelength bands of thin nanoporous films by only tuning their morphology.

  10. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  11. Ion fluxes through nanopores and transmembrane channels

    NASA Astrophysics Data System (ADS)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  12. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    PubMed Central

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars. PMID:23336430

  13. Asymmetric plasmonic induced ionic noise in metallic nanopores

    NASA Astrophysics Data System (ADS)

    Li, Yi; Chen, Chang; Willems, Kherim; Lagae, Liesbet; Groeseneken, Guido; Stakenborg, Tim; van Dorpe, Pol

    2016-06-01

    We present distinct asymmetric plasmon-induced noise properties of ionic transport observed through gold coated nanopores. We thoroughly investigated the effects of bias voltage and laser illumination. We show that the potential drop across top-coated silicon nanocavity pores can give rise to a large noise asymmetry (~2-3 orders of magnitude). Varying the bias voltage has an appreciable effect on the noise density spectra, typically in the Lorentzian components. The laser power is found to strongly affect the ionic noise level as well as the voltage threshold for light-induced noise generation. The asymmetric noise phenomenon is attributed to plasmon-induced interfacial reactions which promote light-induced charge fluctuation in the ion flow and allow voltage modulation of photo-induced carriers surmounting over such Schottky junctions. We further compare the ionic noise performances of gold nanocavities containing different material stacks, among which thermal oxide passivation of the silicon successfully mitigates the light-induced noise and is also fully CMOS-compatible. The understanding of the described noise characteristics will help to foster multiple applications using related structures including plasmonic-based sensing or plasmon-induced catalysis such as water splitting or solar energy conversion devices.We present distinct asymmetric plasmon-induced noise properties of ionic transport observed through gold coated nanopores. We thoroughly investigated the effects of bias voltage and laser illumination. We show that the potential drop across top-coated silicon nanocavity pores can give rise to a large noise asymmetry (~2-3 orders of magnitude). Varying the bias voltage has an appreciable effect on the noise density spectra, typically in the Lorentzian components. The laser power is found to strongly affect the ionic noise level as well as the voltage threshold for light-induced noise generation. The asymmetric noise phenomenon is attributed to plasmon

  14. Fabrication of suspended few-layer black phosphorus nanopores and nanoribbons via electron beam nanosculpting

    NASA Astrophysics Data System (ADS)

    Masih Das, Paul; Danda, Gopinath; Parkin, William; Cupo, Andrew; Kharche, Neerav; Ling, Xi; Huang, Shengxi; Dresselhaus, Mildred; Meunier, Vincent; Drndic, Marija

    We present nanopores, nanoribbons, and nanogaps in suspended few-layer black phosphorus (BP) flakes that have been realized using in situ transmission electron microscope nanosculpting. Few-layer BP flakes were first produced through a liquid exfoliation procedure and suspended on holey SiNx membranes. We investigate the structural characteristics of few-layer BP and further show the time-dependent properties of various nanostructures under exposure to an electron beam. It is shown that high-resolution structural modification of nanopores and nanoribbons can be achieved with nanometer-scale precision on timescales of a few minutes. We also used density functional theory to provide a model for the observed anisotropy in edge formation by computing energy barriers for various edge geometries.

  15. A universal model for nanoporous carbon supercapacitors

    SciTech Connect

    Huang, Jingsong; Sumpter, Bobby G; Meunier, Vincent

    2009-01-01

    Supercapacitors based on nanoporous carbon materials, commonly called electric double-layer capacitors (EDLCs), are emerging as a novel type of energy-storage device with the potential to substitute batteries in applications that require high power densities. Nanoporous carbon supercapacitors are generally viewed as a parallel-plate capacitor since supercapacitors store energy by charge separation in an electric double layer formed at the electrode/electrolyte interface. The EDLC model has been used to characterize the energy storage of supercapacitors for decades. We comment in this chapter on the shortcomings of the EDLC model when applied to nanoporous carbon supercapacitors. In response to the latest experimental breakthrough in nanoporous carbon supercapacitors, we have proposed a heuristic model that takes pore curvature into account as a replacement for the EDLC model. When the pore size is in the mesopore regime (2 50 nm), electrolyte counterions enter mesoporous carbons and approach the pore wall to form an electric double-cylinder capacitor (EDCC); in the micropore regime (< 2 nm), solvated/desolvated counterions line up along the pore axis to form an electric wire-in-cylinder capacitor (EWCC). In the macropore regime (> 50 nm), where pores are large enough so that pore curvature is no longer significant, the EDCC model can be reduced to the EDLC model. With the backing of experimental data and quantum density functional theory calculations, we have shown that the EDCC/EWCC model is universal for carbon supercapacitors with diverse carbon materials and electrolytes. The strengths and limitations of this new model are discussed. The new model allows the supercapacitor properties to be correlated with pore size, specific surface area, Debye length, electrolyte concentration, dielectric constant, and solute ion size, and may lend support to the systematic optimization of the properties of carbon supercapacitors through experiments.

  16. Nanoporous organosilica membrane for water desalination.

    PubMed

    Chua, Yen Thien; Lin, Chun Xiang Cynthia; Kleitz, Freddy; Zhao, Xiu Song; Smart, Simon

    2013-05-18

    Nanoporous organosilica membranes are successfully coated on porous alumina tubes and tested for desalination via membrane distillation. The membranes produced pure water (up to 13 kg m(-2) h(-1)) across an extreme range of salt concentrations (10-150 g L(-1) NaCl) at moderate temperatures (≤60 °C) without exhibiting the characteristic flux decay of competing materials. PMID:23575377

  17. Electrically sensing protease activity with nanopores

    NASA Astrophysics Data System (ADS)

    Kukwikila, Mikiembo; Howorka, Stefan

    2010-11-01

    The enzymatic activity of a protease was electrically detected using nanopore recordings. A peptide substrate was tethered to microscale beads, and cleavage by the enzyme trypsin released a soluble fragment that was electrophoretically driven through the α-hemolysin protein pore, leading to detectable blockades in the ionic current. Owing to its simplicity, this approach to sense enzymatic activity may be applied to other proteases.

  18. Tuneable graphene nanopores for single biomolecule detection.

    PubMed

    Al-Dirini, Feras; Mohammed, Mahmood A; Hossain, Md Sharafat; Hossain, Faruque M; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-21

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices. PMID:27171594

  19. Tuneable graphene nanopores for single biomolecule detection

    NASA Astrophysics Data System (ADS)

    Al-Dirini, Feras; Mohammed, Mahmood A.; Hossain, Md Sharafat; Hossain, Faruque M.; Nirmalathas, Ampalavanapillai; Skafidas, Efstratios

    2016-05-01

    Solid-state nanopores are promising candidates for next generation DNA and protein sequencing. However, once fabricated, such devices lack tuneability, which greatly restricts their biosensing capabilities. Here we propose a new class of solid-state graphene-based nanopore devices that exhibit a unique capability of self-tuneability, which is used to control their conductance, tuning it to levels comparable to the changes caused by the translocation of a single biomolecule, and hence, enabling high detection sensitivities. Our presented quantum simulation results suggest that the smallest amino acid, glycine, when present in water and in an aqueous saline solution can be detected with high sensitivity, up to a 90% change in conductance. Our results also suggest that passivating the device with nitrogen, making it an n-type device, greatly enhances its sensitivity, and makes it highly sensitive to not only the translocation of a single biomolecule, but more interestingly to intramolecular electrostatics within the biomolecule. Sensitive detection of the carboxyl group within the glycine molecule, which carries a charge equivalent to a single electron, is achieved with a conductance change that reaches as high as 99% when present in an aqueous saline solution. The presented findings suggest that tuneable graphene nanopores, with their capability of probing intramolecular electrostatics, could pave the way towards a new generation of single biomolecule detection devices.

  20. The Potential and Challenges of Nanopore Sequencing

    SciTech Connect

    Branton, Daniel; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, Thomas; Di Ventra, Massimiliano; Garaj, S.; Hibbs, Andrew; Huang, Xiaohua; Jovanovich, Stevan B.; Krstic, Predrag S; Lindsay, Stuart; Ling, Xinsheng Sean; Mastrangelo, Carlos H.; Meller, Amit; Oliver, John S.; Pershin, Yuriy V.; Ramsey, Dr. John Michael; Riehn, Robert; Soni, Gautam; Tabard-Cossa, Vincent; Wanuunu, Meni; Wiggin, Matthew; Schloss, Jeffrey A

    2008-10-01

    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nan-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.

  1. Direct single ion machining of nanopores.

    SciTech Connect

    Doyle, Barney Lee; Follstaedt, David Martin; Rossi, Paolo; Norman, Adam K.

    2004-10-01

    The irradiation of thin insulating films by high-energy ions (374 MeV Au{sup +25} or 241 MeV I{sup +19}) was used to attempt to form nanometer-size pores through the films spontaneously. Such ions deposit a large amount of energy into the target materials ({approx}20 keV/nm), which significantly disrupts their atomic lattice and sputters material from the surfaces, and might produce nanopores for appropriate ion-material combinations. Transmission electron microscopy was used to examine the resulting ion tracks. Tracks were found in the crystalline oxides quartz, sapphire, and mica. Sapphire and mica showed ion tracks that are likely amorphous and exhibit pits 5 nm in diameter on the surface at the ion entrance and exit points. This suggests that nanopores might form in mica if the film thickness is less than {approx}10 nm. Tracks in quartz showed strain in the matrix around them. Tracks were not found in the amorphous thin films examined: 20 nm-SiN{sub x}, deposited SiOx, fused quartz (amorphous SiO{sub 2}), formvar and 3 nm-C. Other promising materials for nanopore formation were identified, including thin Au and SnO{sub 2} layers.

  2. Pore architecture of nanoporous gold and titania by hydrogen thermoporometry

    NASA Astrophysics Data System (ADS)

    Johnston, L. T.; Biener, M. M.; Ye, J. C.; Baumann, T. F.; Kucheyev, S. O.

    2015-07-01

    Nanoporous gold (NPG) and materials derived from it by templating have complex pore architecture that determines their technologically relevant physical properties. Here, we apply high-resolution hydrogen thermoporometry to study the pore structure of NPG and NPG-derived titania nanofoam (TNF). Results reveal complex multimodal pore size distributions for NPG and TNF. The freezing-melting hysteresis is pronounced, with freezing and melting scans having entirely different shapes. Experiments involving partial freeze-melt cycles reveal the lack of direct correlation between individual freezing and melting peaks, pointing to phenomena that are beyond the Gibbs-Thomson formalism. The depression of the average freezing temperature scales linearly with the ratio of the internal surface area (measured by gas sorption) and the total pore volume derived from the density of monoliths. Thermoporometry yields total pore volumes in good agreement with those derived from monolith densities for both NPG and TNF.

  3. Scale effects in the latent heat of melting in nanopores.

    PubMed

    Shin, J-H; Parlange, J-Y; Deinert, M R

    2013-07-28

    The curvature of a liquid vapor interface has long been known to change the equilibrium vapor pressure. It has also been shown that a capillary structure will affect the temperature at which both freezing and vaporization of a substance will occur. However, describing interfacial effects on the latent heat of a phase change has proven more difficult. Here, we present a classical thermodynamic model for how the latent heat of melting changes as the size of the particles undergoing the transition decreases. The scale dependence for the surface tension is taken into consideration using a Tolman length correction. The resulting model is tested by fitting to published experimental data for the latent heat of melting for benzene, heptane, naphthalene, and water contained in nano-porous glass. In all cases the model fits the data with a R(2) ≥ 0.94. PMID:23901997

  4. Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice

    NASA Astrophysics Data System (ADS)

    Moritomo, Yutaka; Igarashi, Kazuhiro; Kim, Jungeun; Tanaka, Hiroshi

    2009-08-01

    Cation and/or molecule transfer within nanoporous materials can be utilized in, for example, electrochromic devices, hydrogen storage, molecular sensors, and molecular filters. Here, we investigated the mobilities of cations, Na+, K+, and Rb+, in vacancy-controlled Prussian blue film, NaxCo[Fe(CN)6]1-vzH2O (v is vacancy concentration) with a jungle gym structure. We found that only the smallest Na+ ions pass through the cubic planes of the lattice, while the larger cations, i.e., K+ and Rb+, take a detour channel along the [Fe(CN)6] vacancy. The size-dependent cation channel is well understood in terms of the potential curve derived by an ab initio total energy calculation.

  5. Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode

    NASA Astrophysics Data System (ADS)

    Wada, Takeshi; Yamada, Junpei; Kato, Hidemi

    2016-02-01

    Silicon is a promising material for negative electrode in Li-ion batteries because of high gravimetric capacity. A Si nanomaterial that can accommodate volume expansion accompanied by lithiation is needed for practical application in Li-ion batteries. We prepare three-dimensional nanoporous interconnected silicon material with controlled pore and ligament sizes by dealloying using an Mg-Si precursor and Bi melt. The Mg atoms in the precursor selectively dissolve into Bi, and the remaining Si atoms self-organize into a nanoporous structure with characteristic length ranging from several ten to hundred nanometer. The Li-ion battery electrodes made from nanoporous silicon exhibit higher capacities, increased cycle lives, and improved rate performances compared with those made from commercial Si nanoparticles. Measurements on the electrical resistivity and electrode thickness change by lithiation/delithiation suggest that the superior performance of nanoporous Si electrode originates from the following: (1) The nanoporous Si has much lower electrical resistivity compared with that of the nanoparticle Si owing to the n-type dopant incorporated during dealloying. (2) The nanoporous Si-based electrode has higher porosity owing to the presence of intra-particle pores, which can accommodate Si expansion up to higher levels of lithiation.

  6. Ultraselective Gas Separation by Nanoporous Metal-Organic Frameworks Embedded in Gas-Barrier Nanocellulose Films.

    PubMed

    Matsumoto, Makoto; Kitaoka, Takuya

    2016-03-01

    Metal-organic frameworks (MOFs) are synthesized at carboxy groups on crystalline TEMPO-oxidized cellulose nanofibers (TOCNs). MOF-TOCN films coated on a paper filter have a hierarchical structure from the nano- to macroscale, and demonstrate a high CO2 /CH4 selectivity, over 120 for CO2 at a high gas flux, by the combination of the nanoporous MOFs and the gas-barrier TOCNs, which have strong affinity with each other. PMID:26669724

  7. Silica nanoporous membranes and their applications

    NASA Astrophysics Data System (ADS)

    Khabibullin, Amir

    This thesis describes the development of novel silica and hybrid nanoporous membranes. Nanoporous membranes are widely used in various applications. This thesis focuses on their potential applications in the energy area, such as fuel cells and lithium batteries, and in separations and ultrafiltration. We use silica colloidal spheres and polymer-modified silica spheres to prepare the membranes in a time-, cost- and material-efficient manner. First, we prepared novel silica nanoporous membranes by pressing silica colloidal spheres followed by sintering. The pore size, the thickness, and the area of the membrane are precisely controlled by experiment parameters. The resulting membranes are mechanically and thermally durable, crack-free, and capable of size-selective transport. Next, to demonstrate the utility of the pressed membranes, described above, the proton-conductive pore-filled silica colloidal membranes were prepared and the fuel cells were constructed using these membranes. We modified these membranes by filling the membrane pores with surface-attached proton-conductive polymer brushes and prepared membrane-electrode assemblies to test fuel cell performance. We studied the proton conductivity and fuel cell performance as a function of the amount of sulfonic groups in the membrane. We also prepared and characterized reversible hybrid nanoporous membranes, self-assembled from solution containing polymer-modified silica colloidal spheres. Here we applied the new concept of noncovalent membranes, where the material is held together via noncovalent interactions of polymer brushes. This enables so-called reversible assembly of the membranes, in which membrane can be assembled in one solvent and dissolved in other. This approach provides advantages in recycling and reusing of the material. This work is one of the first of its kind and it opens a whole new area of research on reversible membranes made of polymer-modified nanoparticles. Finally, we applied our

  8. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated. PMID:27037782

  9. Nanoporous anodic titanium dioxide layers as potential drug delivery systems: Drug release kinetics and mechanism.

    PubMed

    Jarosz, Magdalena; Pawlik, Anna; Szuwarzyński, Michał; Jaskuła, Marian; Sulka, Grzegorz D

    2016-07-01

    Nanoporous anodic titanium dioxide (ATO) layers on Ti foil were prepared via a three step anodization process in an electrolyte based on an ethylene glycol solution with fluoride ions. Some of the ATO samples were heat-treated in order to achieve two different crystallographic structures - anatase (400°C) and a mixture of anatase and rutile (600°C). The structural and morphological characterizations of ATO layers were performed using a field emission scanning electron microscope (SEM). The hydrophilicity of ATO layers was determined with contact angle measurements using distilled water. Ibuprofen and gentamicin were loaded effectively inside the ATO nanopores. Afterwards, an in vitro drug release was conducted for 24h under a static and dynamic flow conditions in a phosphate buffer solution at 37°C. The drug concentrations were determined using UV-Vis spectrophotometry. The absorbance of ibuprofen was measured directly at 222nm, whether gentamicin was determined as a complex with silver nanoparticles (Ag NPs) at 394nm. Both compounds exhibited long term release profiles, despite the ATO structure. A new release model, based on the desorption of the drug from the ATO top surface followed by the desorption and diffusion of the drug from the nanopores, was derived. The proposed release model was fitted to the experimental drug release profiles, and kinetic parameters were calculated.

  10. Nanopore DNA sequencing and epigenetic detection with a MspA nanopore

    NASA Astrophysics Data System (ADS)

    Laszlo, Andrew H.

    DNA forms the molecular basis for all known life. Widespread DNA sequencing has the potential to revolutionize healthcare and our understanding of the life sciences. Sequencing has already had a profound effect on our understanding of the molecular basis of life and underpinnings of disease. Current DNA sequencing technologies require costly reagents, can sequence only short DNA strands, and take too long to complete entire genomes. Furthermore, the required DNA sample size limits the types of experiments that can be run. For instance sequencing single cells is extremely difficult. New technologies are key to making DNA sequencing as cheap and accessible as possible and for making new experiments possible. One such new technology is nanopore sequencing. In nanopore sequencing, a thin membrane is used to divide a salt solution into two wells: cis and trans. This membrane contains a single nanometer sized hole that forms the only electrical connection between the two wells. When a voltage is applied across the membrane, ion current flows through the nanopore. This ion current is the primary signal for nanopore sequencing. DNA is negatively charged and can be pulled into the pore. When DNA is pulled into the pore, it occludes the pore and reduces the ion current that can pass through the pore. Individual DNA nucleotides along the DNA strand block the pore to varying degrees. One can measure the degree to which the pore is blocked as DNA passes through the pore and use the ion current signal to read off the DNA sequence. This thesis chronicles recent advances in the Gundlach laboratory in which I have played a leading role. It describes our work testing the biological nanopore Mycobacterium smegmatis porin A (MspA) for nanopore sequencing. The thesis consists of five chapters and three appendices which contain supplemental information for Chapters 2, 3, and 4. Chapter 1 begins with some motivation and defines the current challenges in DNA sequencing. I also introduce

  11. Active current gating in electrically biased conical nanopores

    NASA Astrophysics Data System (ADS)

    Bearden, Samuel; Simpanen, Erik; Zhang, Guigen

    2015-05-01

    We observed that the ionic current through a gold/silicon nitride (Si3N4) nanopore could be modulated and gated by electrically biasing the gold layer. Rather than employing chemical modification to alter device behavior, we achieved control of conductance directly by electrically biasing the gold portion of the nanopore. By stepping through a range of bias potentials under a constant trans-pore electric field, we observed a gating phenomenon in the trans-pore current response in a variety of solutions including potassium chloride (KCl), sodium chloride (NaCl), and potassium iodide (KI). A computational model with a conical nanopore was developed to examine the effect of the Gouy-Chapman-Stern electrical double layer along with nanopore geometry, work function potentials, and applied electrical bias on the ionic current. The numerical results indicated that the observed modulation and gating behavior was due to dynamic reorganization of the electrical double layer in response to changes in the electrical bias. Specifically, in the conducting state, the nanopore conductance (both numerical and experimental) is linearly proportional to the applied bias due to accumulation of charge in the diffuse layer. The gating effect occurs due to the asymmetric charge distribution in the fluid induced by the distribution of potentials at the nanopore surface. Time dependent changes in current due to restructuring of the electrical double layer occur when the electrostatic bias is instantaneously changed. The nanopore device demonstrates direct external control over nanopore behavior via modulation of the electrical double layer by electrostatic biasing.

  12. Nanoparticle mechanics: deformation detection via nanopore resistive pulse sensing

    NASA Astrophysics Data System (ADS)

    Darvish, Armin; Goyal, Gaurav; Aneja, Rachna; Sundaram, Ramalingam V. K.; Lee, Kidan; Ahn, Chi Won; Kim, Ki-Bum; Vlahovska, Petia M.; Kim, Min Jun

    2016-07-01

    Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various liposomes inside nanopores. We observed a significant difference in resistive pulse characteristics between soft liposomes and rigid polystyrene nanoparticles especially at higher applied voltages. We used theoretical simulations to demonstrate that the difference can be explained by shape deformation of liposomes as they translocate through the nanopores. Comparing our results with the findings from electrodeformation experiments, we demonstrated that the rigidity of liposomes can be qualitatively compared using resistive pulse characteristics. This application of nanopores can provide new opportunities to study the mechanics at the nanoscale, to investigate properties of great value in fundamental biophysics and cellular mechanobiology, such as virus deformability and fusogenicity, and in applied sciences for designing novel drug/gene delivery systems.Solid-state nanopores have been widely used in the past for single-particle analysis of nanoparticles, liposomes, exosomes and viruses. The shape of soft particles, particularly liposomes with a bilayer membrane, can greatly differ inside the nanopore compared to bulk solution as the electric field inside the nanopores can cause liposome electrodeformation. Such deformations can compromise size measurement and characterization of particles, but are often neglected in nanopore resistive pulse sensing. In this paper, we investigated the deformation of various

  13. Characterization of Nanoporous Materials with Atom Probe Tomography.

    PubMed

    Pfeiffer, Björn; Erichsen, Torben; Epler, Eike; Volkert, Cynthia A; Trompenaars, Piet; Nowak, Carsten

    2015-06-01

    A method to characterize open-cell nanoporous materials with atom probe tomography (APT) has been developed. For this, open-cell nanoporous gold with pore diameters of around 50 nm was used as a model system, and filled by electron beam-induced deposition (EBID) to obtain a compact material. Two different EBID precursors were successfully tested-dicobalt octacarbonyl [Co2(CO)8] and diiron nonacarbonyl [Fe2(CO)9]. Penetration and filling depth are sufficient for focused ion beam-based APT sample preparation. With this approach, stable APT analysis of the nanoporous material can be performed. Reconstruction reveals the composition of the deposited precursor and the nanoporous material, as well as chemical information of the interfaces between them. Thus, it is shown that, using an appropriate EBID process, local chemical information in three dimensions with sub-nanometer resolution can be obtained from nanoporous materials using APT.

  14. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  15. Surface enhanced Raman scattering detection of single R6G molecules on nanoporous gold films

    NASA Astrophysics Data System (ADS)

    Liu, Hongwen; Zhang, L.; Yamaguchi, Y.; Iwasaki, H.; Inouye, Y.; Xue, Q. K.; Chen, M. W.

    2011-03-01

    Detecting single molecules with high sensitivity and molecular specificity is of great practical interest in many fields such as chemistry, biology, medicine, and pharmacology. For this purpose, cheap and highly active substrates are of crucial importance. Recently, nanoporous metals (NPMs), with a three-dimensional continuous network structure and pore channels usually much smaller than the wavelength of visible light, revealed outstanding optical properties in surface enhanced Raman scattering (SERS). In this work, we further modify the nanoporous gold films by growing a high density of gold nano-tips on the surface. Extremely focused electromagnetic fields can be produced at the apex of the nano-tips, resulting in so-called hot spots. With this NPM-based and affordable substrate, single molecule-detection is achievable with ultrahigh enhancement in SERS.

  16. Block copolymer film with sponge-like nanoporous strucutre for antireflection coating.

    PubMed

    Joo, Wonchul; Park, Min Soo; Kim, Jin Kon

    2006-09-12

    We prepared nanoporous films by spin-coating of polystyrene-block-poly(methyl methacrylate) copolymers (PS-b-PMMA) to a glass and irradiating by ultra-violet source followed by selective removal of PMMA blocks with acetic acid. When spin-coated PS-b-PMMA was no longer annealed at high temperatures, microphase separation between two blocks occurred only in the short-range scale. The porous films prepared from PS-b-PMMA with the volume fraction of PMMA block of 0.69 exhibited a spongelike nanoporous structure over the entire film thickness and showed excellent antireflection with a minimum reflection less than 0.1% at visible and near-infrared wavelengths. The observed reflectances were in good agreement with the predictions based on the characteristic matrix theory.

  17. Temporal evolution of nanoporous layer in off-normally ion irradiated GaSb

    SciTech Connect

    Datta, D. P.; Garg, S. K.; Som, T.; Kanjilal, A.; Sahoo, P. K.; Kanjilal, D.

    2014-03-28

    Room temperature irradiation of GaSb by 60 keV Ar{sup +}-ions at an oblique incidence of 60° leads to simultaneous formation of a nanoporous layer and undulations at the interface with the underlying substrate. Interestingly, with increasing ion fluence, a gradual embedding of the dense nanoporous layer takes place below ridge-like structures (up to the fluence of 1 × 10{sup 17} ions cm{sup −2}), which get extended to form a continuous layer (at fluences ≥4 × 10{sup 17} ions cm{sup −2}). Systematic compositional analyses reveal the co-existence of Ga{sub 2}O{sub 3} and Sb{sub 2}O{sub 3} in the surface layer. The results are discussed in terms of a competition between ion-induced defect accumulation and re-deposition of sputtered atoms on the surface.

  18. Nanoscale Bio-engineering Solutions for Space Exploration: The Nanopore Sequencer

    NASA Technical Reports Server (NTRS)

    Stolc, Viktor; Cozmuta, Ioana

    2004-01-01

    Characterization of biological systems at the molecular level and extraction of essential information for nano-engineering design to guide the nano-fabrication of solid-state sensors and molecular identification devices is a computational challenge. The alpha hemolysin protein ion channel is used as a model system for structural analysis of nucleic acids like DNA. Applied voltage draws a DNA strand and surrounding ionic solution through the biological nanopore. The subunits in the DNA strand block ion flow by differing amounts. Atomistic scale simulations are employed using NASA supercomputers to study DNA translocation, with the aim to enhance single DNA subunit identification. Compared to protein channels, solid-state nanopores offer a better temporal control of the translocation of DNA and the possibility to easily tune its chemistry to increase the signal resolution. Potential applications for NASA missions, besides real-time genome sequencing include astronaut health, life detection and decoding of various genomes.

  19. Molecular dynamics simulations on water permeation through hourglass-shaped nanopores with varying pore geometry

    NASA Astrophysics Data System (ADS)

    Tang, Dai; Yoo, Yeong-Eun; Kim, Daejoong

    2015-05-01

    We investigate the transport of water in hourglass-shaped nanopores using molecular dynamics (MD) simulations. We focus on the hydrodynamic effect by exploiting conical entrance/exit effects and utilizing the single-file fast water flow by limiting the cylinder diameter. We assume that the transport ability facilitated by the hourglass-shaped nanopores can be improved by varying the combination of cone angle and cylindrical pore length. The maximized results for transport properties with geometric parameters, quantified as number flux and osmotic permeability, prove that our assumption is reasonable. Further analysis for the validity of our design concerns the distribution of water inside the pore, e.g., the friction force between water molecules and the pore. Maximization of pore geometry provides a basis for improving the flux and velocity of water transport through nanoscale structural design.

  20. Nanoporous Ti-metal film deposition using radio frequency magnetron sputtering technique for photovoltaic application.

    PubMed

    Sung, Youl-Moon; Paeng, Sung-Hwan; Moon, Byung-Ho; Kwak, Dong-Joo

    2012-02-01

    Nanoporous Ti-metal film electrode was fabricated by radio frequency (rf) magnetron sputtering technique on nanoporous TiO2 layer prepared by sol-gel combustion method and investigated with respect to its photo-anode properties of TCO-less DSCs. The porous Ti layer (approximately 1 microm) with low sheet resistance (approximately 17 Omega/sq.) can collect electrons from the TiO2 layer and allows the ionic diffusion of I(-)/I(3-) through the hole. The porous Ti layer with highly ordered columnar structure prepared by 8 mTorr sputtering shows the good impedance characteristics. The efficiency of prepared TCO-less DSCs sample is about 4.83% (ff: 0.6, Voc: 0.65 V, Jsc: 11.2 mA/cm2).

  1. Omnidirectional reflector using nanoporous SiO2 as a low-refractive-index material.

    PubMed

    Xi, J Q; Ojha, Manas; Cho, Woojin; Plawsky, J L; Gill, W N; Gessmann, Th; Schubert, E F

    2005-06-15

    Triple-layer omnidirectional reflectors (ODRs) consisting of a semiconductor, a quarter-wavelength transparent dielectric layer, and a metal have high reflectivities for all angles of incidence. Internal ODRs (ambient material's refractive index n > 1.0) are demonstrated that incorporate nanoporous SiO2, a low-refractive-index material (n = 1.23), as well as dense SiO2 (n = 1.46). GaP and Ag serve as the semiconductor and the metal layer, respectively. Reflectivity measurements, including angular dependence, are presented. Calculated angle-integrated TE and TM reflectivities for ODRs employing nanoporous SiO2 are R(int)/TE = 99.9% and R(int)/TM = 98.9%, respectively, indicating the high potential of the ODRs for low-loss waveguide structures.

  2. Electronic detection of dsDNA transition from helical to zipper conformation using graphene nanopores

    PubMed Central

    Sathe, Chaitanya; Girdhar, Anuj; Leburton, Jean-Pierre; Schulten, Klaus

    2014-01-01

    Mechanical manipulation of DNA, by forced extension, can lead to a structural transformation of double-stranded DNA (dsDNA) from a helical form to a linear zipper-like form. By employing classical molecular dynamics and quantum mechanical non-equilibrium Greens function-based transport simulations, we show the ability of graphene nanopores to discern different dsDNA conformations, in a helical to zipper transition, using transverse electronic conductance. In particular, conductance oscillations due to helical dsDNA vanish as dsDNA extends from helical to zipper form as it is transported through the nanopore. The predicted ability to detect conformational changes in dsDNA, via transverse electronic conductance, can widen the potential of graphene-based nanosensors for DNA detection. PMID:25325530

  3. Confinement of water in hydrophobic nanopores: effect of the geometry on the energy of intrusion.

    PubMed

    Karbowiak, Thomas; Weber, Guy; Bellat, Jean-Pierre

    2014-01-14

    Water confinement in the hydrophobic nanopores of highly siliceous zeolite having MFI and CHA topology is investigated by high pressure manometry coupled to differential calorimetry. Surprisingly, the intrusion of water is endothermic for MFI but exothermic for CHA. This phase transition depends on the geometry of the environment in which water is confined: channels (MFI) or cavities (CHA). The energy of intrusion is mainly governed by the change in the coordination of water molecules when they are forced to enter the nanopores and to adopt a weaker, hydrogen-bonded structure. At such a nanoscale, the properties of the molecules are governed strongly by geometrical restraints. This implies that the use of classical macroscopic equations such as Laplace-Washburn will have limitations at the molecular level.

  4. Nanopores in GaN by electrochemical anodization in hydrofluoric acid: Formation and mechanism

    NASA Astrophysics Data System (ADS)

    Chen, Danti; Xiao, Hongdi; Han, Jung

    2012-09-01

    We report the use of hydrofluoric acid (HF) as an electrolyte in etching and porosifying GaN. HF is found to be effective in rendering a wide range of nanoporous morphology, from curved branches to highly parallel straight pores. Under suitable conditions, the porosification proceeds at a rate greater than 100 μm/min. To elucidate the etching mechanism, cyclic voltammetry is performed, together with a parametric mapping of electrolysis variables such as the doping of GaN, the concentration of HF electrolyte, and the anodization voltage. We demonstrate that the formation of nanoporous structures is largely due to the local breakdown of the reverse-biased semiconductor junction. A quantitative agreement between the estimated width of space-charge region and the observed variation in morphology lends support to a depletion layer model developed previously in the etching of porous-Si.

  5. Nanopore Connectivity, Wettability and Fluid Migration in Mudrocks

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Hu, Q.; Barber, T.; Md Golam, K.

    2015-12-01

    Micro(nano)scopic pore characteristics (e.g., pore size, pore-size distribution, and pore connectivity) of mudrocks, implicated by their mixed wettability, control macroscopic fluid flow and hydrocarbon production. This work discusses various approaches to investigating pore structure (both geometry and topology) of several mudrocks of leading U.S. plays (Barnett, Bakken/Three Forks, and Utica), and the presence and connection of mixed wettability associated with compositional phases. Results show that these mudrocks have very limited edge-accessible pore spaces. This is shown from low pore connectivity behavior of fluid imbibition, steep decline of edge-accessible porosity from vacuum saturation, the heterogeneous presence of only trace amount of diffusing tracers beyond a few mm from a sample edge, and limited connected pathways from high-pressure injection of traced n-decane at 414 MPa. As mudrocks contain distinct hydrophobic organic materials (e.g., kerogen), as well as hydrophilic and/or hydrophobic minerals, different nano-sized tracers in two wettability fluids (API brine and n-decane) were developed to interrogate their pore spaces and connectivity. For two molecular tracers in n-decane with the sizes of 1.393 nm×0.287 nm×0.178 nm for 1-iododecane and 1.273 nm×0.919 nm×0.785 nm for trichlorooxobis (triphenylphosphine) rhenium, much less penetration was observed for wider molecules of organic-Re in these mudrocks with median pore-throats of around 5 nm, indicating the entangling of nano-sized molecules in nanopore spaces of mudrocks. The sparse nanopore space connection within the mudrock matrix, implicated by mixed wettability, could lead to limited movement of nano-sized hydrocarbon molecules and fracture-matrix interactions in fractured reservoirs, and consequently steep initial production decline and low recovery.

  6. Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process.

    PubMed

    Gao, Ling; Pang, Chao; He, Dafang; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2015-01-01

    A series of novel hierarchical nanoporous microstructures have been synthesized through one-step chemical reduction of micron size Cu2O and Co3O4 particles. By controlling the reduction time, non-porous Cu2O microcubes sequentially transform to nanoporous Cu/Cu2O/Cu dented cubic composites and hollow eightling-like Cu microparticles. The mechanism involved in the complex structural evolution is explained based on oxygen diffusion and Kirkendall effect. The nanoporous Cu/Cu2O/Cu dented cubic composites exhibit superior electrochemical performance as compared to solid Cu2O microcubes. The reduction of nonporous Co3O4 also exhibits a uniform sequential reduction process from nonporous Co3O4 to porous Co3O4/CoO composites, porous CoO, porous CoO/Co composites, and porous foam-like Co particles. Nanoscale channels originate from the particle surface and eventually develop inside the entire product, resulting in porous foam-like Co microparticles. The Kirkendall effect is believed to facilitate the formation of porous structures in both processes. PMID:26552845

  7. Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process

    PubMed Central

    Gao, Ling; Pang, Chao; He, Dafang; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2015-01-01

    A series of novel hierarchical nanoporous microstructures have been synthesized through one-step chemical reduction of micron size Cu2O and Co3O4 particles. By controlling the reduction time, non-porous Cu2O microcubes sequentially transform to nanoporous Cu/Cu2O/Cu dented cubic composites and hollow eightling-like Cu microparticles. The mechanism involved in the complex structural evolution is explained based on oxygen diffusion and Kirkendall effect. The nanoporous Cu/Cu2O/Cu dented cubic composites exhibit superior electrochemical performance as compared to solid Cu2O microcubes. The reduction of nonporous Co3O4 also exhibits a uniform sequential reduction process from nonporous Co3O4 to porous Co3O4/CoO composites, porous CoO, porous CoO/Co composites, and porous foam-like Co particles. Nanoscale channels originate from the particle surface and eventually develop inside the entire product, resulting in porous foam-like Co microparticles. The Kirkendall effect is believed to facilitate the formation of porous structures in both processes. PMID:26552845

  8. Synthesis of Hierarchical Nanoporous Microstructures via the Kirkendall Effect in Chemical Reduction Process

    NASA Astrophysics Data System (ADS)

    Gao, Ling; Pang, Chao; He, Dafang; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2015-11-01

    A series of novel hierarchical nanoporous microstructures have been synthesized through one-step chemical reduction of micron size Cu2O and Co3O4 particles. By controlling the reduction time, non-porous Cu2O microcubes sequentially transform to nanoporous Cu/Cu2O/Cu dented cubic composites and hollow eightling-like Cu microparticles. The mechanism involved in the complex structural evolution is explained based on oxygen diffusion and Kirkendall effect. The nanoporous Cu/Cu2O/Cu dented cubic composites exhibit superior electrochemical performance as compared to solid Cu2O microcubes. The reduction of nonporous Co3O4 also exhibits a uniform sequential reduction process from nonporous Co3O4 to porous Co3O4/CoO composites, porous CoO, porous CoO/Co composites, and porous foam-like Co particles. Nanoscale channels originate from the particle surface and eventually develop inside the entire product, resulting in porous foam-like Co microparticles. The Kirkendall effect is believed to facilitate the formation of porous structures in both processes.

  9. Morphological evolution of nanopores and cracks as fundamental components of ultrashort pulse laser-induced nanogratings

    NASA Astrophysics Data System (ADS)

    Zimmermann, F.; Plech, A.; Richter, S.; Tünnermann, A.; Nolte, S.

    2014-03-01

    Within recent years the phenomena of so-called nanogratings induced by tightly focussed femtosecond laser pulses has gained significant interest. These self-organized structures appearing after several laser pulses show strong formbirefringence which allows, when combining with the three-dimensional freedom of the direct laser writing technique, to fabricate versatile functionalities. However, the underlying structure has been the subject of intensive debate since the discovery of the nanogratings ten years ago. In order to uncover the primary constituents of nanogratings typical visualisation techniques (e.g. SEM) rely on cleaving and subsequent etching of laser treated samples. Fine details are effectively erased by such invasive preparation methods. Recent investigations based on exclusively cleaved samples report on hollow cracks embedded within the bulk material. However, these time-consuming imaging methods only provide two-dimensional cross sections and can hardly address the evolution of cracks (size, shape) depending on various laser parameters. To overcome these limitations we performed a comprehensive study of nanopores and cracks using small-angle x-ray scattering (SAXS) in combination with focussed ion beam milling (FIB) and scanning electron microscopy (SEM). By probing nanogratings inscribed in the bulk of fused silica we found nanopores with dimensions of (30x25x75)nm3 and (280x25x380)nm3. While the dimensions remain constant with ongoing laser exposure and different pulse energies the nanopore shape changes from cuboidal cracks to ellipsoidal.

  10. Sensing small neurotransmitter-enzyme interaction with nanoporous gated ion-sensitive field effect transistors.

    PubMed

    Kisner, Alexandre; Stockmann, Regina; Jansen, Michael; Yegin, Ugur; Offenhäusser, Andreas; Kubota, Lauro Tatsuo; Mourzina, Yulia

    2012-01-15

    Ion-sensitive field effect transistors with gates having a high density of nanopores were fabricated and employed to sense the neurotransmitter dopamine with high selectivity and detectability at micromolar range. The nanoporous structure of the gates was produced by applying a relatively simple anodizing process, which yielded a porous alumina layer with pores exhibiting a mean diameter ranging from 20 to 35 nm. Gate-source voltages of the transistors demonstrated a pH-dependence that was linear over a wide range and could be understood as changes in surface charges during protonation and deprotonation. The large surface area provided by the pores allowed the physical immobilization of tyrosinase, which is an enzyme that oxidizes dopamine, on the gates of the transistors, and thus, changes the acid-base behavior on their surfaces. Concentration-dependent dopamine interacting with immobilized tyrosinase showed a linear dependence into a physiological range of interest for dopamine concentration in the changes of gate-source voltages. In comparison with previous approaches, a response time relatively fast for detecting dopamine was obtained. Additionally, selectivity assays for other neurotransmitters that are abundantly found in the brain were examined. These results demonstrate that the nanoporous structure of ion-sensitive field effect transistors can easily be used to immobilize specific enzyme that can readily and selectively detect small neurotransmitter molecule based on its acid-base interaction with the receptor. Therefore, it could serve as a technology platform for molecular studies of neurotransmitter-enzyme binding and drugs screening.

  11. Nanopore integrated with Au clusters formed under electron beam irradiation for single molecule analysis

    NASA Astrophysics Data System (ADS)

    Choi, Seong Soo; Park, Myoung Jin; Han, Chul Hee; Kim, Sung In; Yoo, Jung Ho; Park, Kyung Jin; Park, Nam Kyou; Kim, Yong-Sang

    2016-02-01

    Recently the single molecules such as protein and deoxyribonucleic acid (DNA) have been successfully characterized using a solidstate nanopore with an electrical detection technique. However, the optical plasmonic nanopore has yet to be fabricated. The optical detection technique can be better utilized as next generation ultrafast geneome sequencing devices due to the possible utilization of the current optical technique for genome sequencing. In this report, we have investigated the Au nanopore formation under the electron beam irradiation on an Au aperture. The circular-type nanoopening with ~ 5 nm diameter on the diffused membrane is fabricated by using 2 keV electron beam irradiation by using field emission scanning electron microscopy (FESEM). We found the Au cluster on the periphery of the drilled aperture under a 2 keV electron beam irradiation. Immediately right after electron beam irradiation, no Au cluster and no Au crystal lattice structure on the diffused plane are observed. However, after the sample was kept for ~ 6 months under a room environment, the Au clusters are found on the diffused membrane and the Au crystal lattice structures on the diffused membrane are also found using high resolution transmission electron microscopy. These phenomena can be attributed to Ostwald ripening. In addition, the Au nano-hole on the 40 nm thick Au membrane was also drilled by using 200 keV scanning transmission electron microscopy.

  12. Composite fluorocarbon membranes by surface-initiated polymerization from nanoporous gold-coated alumina.

    PubMed

    Escobar, Carlos A; Zulkifli, Ahmad R; Faulkner, Christopher J; Trzeciak, Alex; Jennings, G Kane

    2012-02-01

    This manuscript describes the versatile fabrication and characterization of a novel composite membrane that consists of a porous alumina support, a 100 nm thick nanoporous gold coating, and a selective poly(5-(perfluorohexyl)norbornene) (pNBF6) polymer that can be grown exclusively from the nanoporous gold or throughout the membrane. Integration of the three materials is achieved by means of silane and thiol chemistry, and the use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) to grow the pNBF6. The use of SI-ROMP allows tailoring of the extent of polymerization of pNBF6 throughout the structure by varying polymerization time. Scanning electron microscopy (SEM) images indicate that the thin polymer films cover the structure entirely. Cross-sectional SEM images of the membrane not only corroborate growth of the pNBF6 polymer within both the porous alumina and the nanoporous gold coating but also show the growth of a pNBF6 layer between these porous substrates that lifts the nanoporous gold coating away from the alumina. Advancing contact angle (θ(A)) measurements show that the surfaces of these composite membranes exhibit both hydrophobic (θ(A) = 121-129)° and oleophobic (θ(A) = 69-74)° behavior due to the fluorocarbon side chains of the pNBF6 polymer that dominate the surface. Results from electrochemical impedance spectroscopy (EIS) confirm that the membranes provide effective barriers to aqueous ions, as evidenced by a resistive impedance on the order of 1 × 10(7) Ω cm(2). Sulfonation of the polymer backbone substantially enhances ion transport through the composite membrane, as indicated by a 40-60 fold reduction in resistive impedance. Ion transport and selectivity of the membrane change by regulating the polymerization time. The fluorinated nature of the sulfonated polymer renders the membrane selective toward molecules with similar chemical characteristics. PMID:22195729

  13. Composite fluorocarbon membranes by surface-initiated polymerization from nanoporous gold-coated alumina.

    PubMed

    Escobar, Carlos A; Zulkifli, Ahmad R; Faulkner, Christopher J; Trzeciak, Alex; Jennings, G Kane

    2012-02-01

    This manuscript describes the versatile fabrication and characterization of a novel composite membrane that consists of a porous alumina support, a 100 nm thick nanoporous gold coating, and a selective poly(5-(perfluorohexyl)norbornene) (pNBF6) polymer that can be grown exclusively from the nanoporous gold or throughout the membrane. Integration of the three materials is achieved by means of silane and thiol chemistry, and the use of surface-initiated ring-opening metathesis polymerization (SI-ROMP) to grow the pNBF6. The use of SI-ROMP allows tailoring of the extent of polymerization of pNBF6 throughout the structure by varying polymerization time. Scanning electron microscopy (SEM) images indicate that the thin polymer films cover the structure entirely. Cross-sectional SEM images of the membrane not only corroborate growth of the pNBF6 polymer within both the porous alumina and the nanoporous gold coating but also show the growth of a pNBF6 layer between these porous substrates that lifts the nanoporous gold coating away from the alumina. Advancing contact angle (θ(A)) measurements show that the surfaces of these composite membranes exhibit both hydrophobic (θ(A) = 121-129)° and oleophobic (θ(A) = 69-74)° behavior due to the fluorocarbon side chains of the pNBF6 polymer that dominate the surface. Results from electrochemical impedance spectroscopy (EIS) confirm that the membranes provide effective barriers to aqueous ions, as evidenced by a resistive impedance on the order of 1 × 10(7) Ω cm(2). Sulfonation of the polymer backbone substantially enhances ion transport through the composite membrane, as indicated by a 40-60 fold reduction in resistive impedance. Ion transport and selectivity of the membrane change by regulating the polymerization time. The fluorinated nature of the sulfonated polymer renders the membrane selective toward molecules with similar chemical characteristics.

  14. Rational engineering of nanoporous anodic alumina optical bandpass filters

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Pereira, Taj; Law, Cheryl Suwen; Losic, Dusan

    2016-08-01

    Herein, we present a rationally designed advanced nanofabrication approach aiming at producing a new type of optical bandpass filters based on nanoporous anodic alumina photonic crystals. The photonic stop band of nanoporous anodic alumina (NAA) is engineered in depth by means of a pseudo-stepwise pulse anodisation (PSPA) approach consisting of pseudo-stepwise asymmetric current density pulses. This nanofabrication method makes it possible to tune the transmission bands of NAA at specific wavelengths and bandwidths, which can be broadly modified across the UV-visible-NIR spectrum through the anodisation period (i.e. time between consecutive pulses). First, we establish the effect of the anodisation period as a means of tuning the position and width of the transmission bands of NAA across the UV-visible-NIR spectrum. To this end, a set of nanoporous anodic alumina bandpass filters (NAA-BPFs) are produced with different anodisation periods, ranging from 500 to 1200 s, and their optical properties (i.e. characteristic transmission bands and interferometric colours) are systematically assessed. Then, we demonstrate that the rational combination of stacked NAA-BPFs consisting of layers of NAA produced with different PSPA periods can be readily used to create a set of unique and highly selective optical bandpass filters with characteristic transmission bands, the position, width and number of which can be precisely engineered by this rational anodisation approach. Finally, as a proof-of-concept, we demonstrate that the superposition of stacked NAA-BPFs produced with slight modifications of the anodisation period enables the fabrication of NAA-BPFs with unprecedented broad transmission bands across the UV-visible-NIR spectrum. The results obtained from our study constitute the first comprehensive rationale towards advanced NAA-BPFs with fully controllable photonic properties. These photonic crystal structures could become a promising alternative to traditional optical

  15. Nanoporous alumina enhanced surface plasmon resonance sensors

    NASA Astrophysics Data System (ADS)

    Koutsioubas, Alexandros G.; Spiliopoulos, Nikolaos; Anastassopoulos, Dimitris; Vradis, Alexandros A.; Priftis, George D.

    2008-05-01

    The signal enhancement of an easy to fabricate, nanoporous alumina assisted surface plasmon resonance (SPR) sensor is investigated. It is theoretically shown that the presence of a thin (under 200nm) porous alumina layer on top of an aluminum film supporting the surface plasmons, may significantly increase (over one order of magnitude) the sensitivity of the SPR method in the case where the adsorption of relatively small molecules is probed. The comparative experimental investigation of self-assembled monolayer formation on planar metal films and porous alumina layers verifies the theoretical predictions. Based on these results, we discuss the extended applicability of this setup in biosensor and other related applications.

  16. Nanoporous polymer ring resonators for biosensing

    PubMed Central

    Mancuso, Matthew; Goddard, Julie M.; Erickson, David

    2011-01-01

    Optically resonant devices are promising as label-free biomolecular sensors due to their ability to concentrate electromagnetic energy into small mode volumes and their capacity for multiplexed detection. A fundamental limitation of current optical biosensor technology is that the biomolecular interactions are limited to the surface of the resonant device, while the highest intensity of electromagnetic energy is trapped within the core. In this paper, we present nanoporous polymer optofluidic devices consisting of ring resonators coupled to bus waveguides. We report a 40% increase in polymer device sensitivity attributed to the addition of core energy- bioanalyte interactions. PMID:22274347

  17. Electrochemical control of creep in nanoporous gold

    SciTech Connect

    Ye, Xing-Long; Jin, Hai-Jun

    2013-11-11

    We have investigated the mechanical stability of nanoporous gold (npg) in an electrochemical environment, using in situ dilatometry and compression experiments. It is demonstrated that the gold nano-ligaments creep under the action of surface stress which leads to spontaneous volume contractions in macroscopic npg samples. The creep of npg, under or without external forces, can be controlled electrochemically. The creep rate increases with increasing potential in double-layer potential region, and deceases to almost zero when the gold surface is adsorbed with oxygen. Surprisingly, we also noticed a correlation between creep and surface diffusivity, which links the deformation of nanocrystals to mobility of surface atoms.

  18. Bicontinuous Nanoporous Frameworks: Caged Longevity for Enzymes.

    PubMed

    Bae, Jae-Sung; Jeon, Eunkyung; Moon, Su-Young; Oh, Wangsuk; Han, Sun-Young; Lee, Jeong Hun; Yang, Sung Yun; Kim, Dong-Myung; Park, Ji-Woong

    2016-09-12

    The preparation of bicontinuous nanoporous covalent frameworks, which are promising for caging active enzymes, is demonstrated. The frameworks have three- dimensionally continuous, hydrophilic pores with widths varying between 5 and 30 nm. Enzymes were infiltrated into the bicontinuous pore by applying a pressured enzyme solution. The new materials and methods allowed the amount of caged proteins to be controlled precisely. The resulting enzyme-loaded framework films could be recycled many times with nearly no loss of catalytic activity. Entropic trapping of proteins by a bicontinuous pore with the right size distribution is an unprecedented strategy toward facile in vitro utilization of biocatalysts. PMID:27513827

  19. Effect of confinement on DNA, solvent and counterion dynamics in a model biological nanopore

    NASA Astrophysics Data System (ADS)

    Markosyan, Suren; de Biase, Pablo M.; Czapla, Luke; Samoylova, Olga; Singh, Gurpreet; Cuervo, Javier; Tieleman, D. Peter; Noskov, Sergei Yu.

    2014-07-01

    The application of recent advances in nanopore technology to high-throughput DNA sequencing requires a more detailed understanding of solvent, ion and DNA interactions occurring within these pores. Here we present a combination of atomistic and coarse-grained modeling studies of the dynamics of short single-stranded DNA (ssDNA) homopolymers within the alpha-hemolysin pore, for the two single-stranded homopolymers poly(dA)40 and poly(dC)40. Analysis of atomistic simulations along with the per-residue decomposition of protein-DNA interactions in these simulations gives new insight into the very complex issues that have yet to be fully addressed with detailed MD simulations. We discuss a modification of the solvent properties and ion distribution around DNA within nanopore confinement and put it into the general framework of counterion condensation theory. There is a reasonable agreement in computed properties from our all-atom simulations and the resulting predictions from analytical theories with experimental data, and our equilibrium results here support the conclusions from our previous non-equilibrium Brownian dynamics studies with a recently developed BROMOC protocol that cations are the primary charge carriers through alpha-hemolysin nanopores under an applied voltage in the presence of ssDNA. Clustering analysis led to an identification of distinct conformational states of captured polymer and depth of the current blockade. Therefore, our data suggest that confined polymer may act as a flickering gate, thus contributing to excess noise phenomena. We also discuss the extent of water structuring due to nanopore confinement and the relationship between the conformational dynamics of a captured polymer and the distribution of blocked current.The application of recent advances in nanopore technology to high-throughput DNA sequencing requires a more detailed understanding of solvent, ion and DNA interactions occurring within these pores. Here we present a

  20. Nanoparticle size and shape characterization with Solid State Nanopores

    NASA Astrophysics Data System (ADS)

    Nandivada, Santoshi; Benamara, Mourad; Li, Jiali

    2015-03-01

    Solid State Nanopores are widely used in a variety of single molecule studies including DNA and biomolecule detection based on the principle of Resistive Pulse technique. This technique is based on electrophoretically driving charged particles through 35-60 nm solid state nanopores. The translocation of these particles produces current blockage events that provide an insight to the properties of the translocation particles and the nanopore. In this work we study the current blockage events produced by ~ 30nm negatively charged PS nanoparticles through Silicon Nitride solid state nanopores. We show how the current blockage amplitudes and durations are related to the ratio of the volume of the particle to the volume of the pore, the shape of the particle, charge of the particle and the nanopore surface, salt concentration, solution pH, and applied voltage. The solid-state nanopores are fabricated by a combination of Focus Ion Beam and low energy Ion beams in silicon nitride membranes. High resolution TEM is used to measure the 3D geometry of the nanopores and a finite element analysis program (COMSOL) is used to simulate the experimental results.

  1. Nanoporous and Nanostructured Materials for Energy Storage and Sensor Applications

    NASA Astrophysics Data System (ADS)

    Vu, Anh D.

    The major objective of this work is to design nanostructured and nanoporous materials targeting the special needs of the energy storage and sensing fields. Nanostructured and nanoporous materials are increasingly finding applications in many fields, including electrical energy storage and explosive sensing. The advancement of energy storage devices is important to the development of three fields that have strong effects on human society: renewable energy, transportation, and portable devices. More sensitive explosive sensors will help to prevent terrorism activities and boost national security. Hierarchically porous LiFePO4 (LFP)/C composites were prepared using a surfactant and colloidal crystals as dual templates. The surfactant serves as the template for mesopores and polymeric colloidal spheres serve as the template for macropores. The confinement of the surfactant-LFP-carbon precursor in the colloidal templates is crucial to suppress the fast crystallization of LFP and helps to maintain the ordered structure. The obtained composites with high surface areas and ordered porous structure showed excellent rate performance when used as cathode materials for LIBs, which will allow them to be used as a power source for EVs and HEVs. The synthesis of LiFePO 4 in three dimensionally confined spaces within the colloidal template resulted in the formation of spherical particles. Densely packed LiFePO 4 spheres in a carbon matrix were obtained by spin-casting the LFP-carbon precursor on a quartz substrate and then pyrolyzing it. The product showed high capacity and could be charged /discharged with very little capacity fading over many cycles. Three-dimensionally ordered mesoporous carbons were prepared from nano-sized silica sphere colloidal crystal templates. These materials with very high surface areas and ordered porous structure showed high capacitance and excellent rate capability when used as electrodes for supercapacitors. Mesoporous silica thin films of different

  2. Nanoporous materials for energy applications

    NASA Astrophysics Data System (ADS)

    Yonemoto, Bryan T.

    Batteries have become ubiquitous in modern society by powering small, consumer electronic devices such as flashlights, cell phones, and laptops. Increasingly, batteries are also being examined as a method to improve energy efficiency (and reduce greenhouse gas emissions) for vehicles and power transmission/distribution applications. For lithium-ion based batteries to meet the demands of these new applications, new electrode materials and morphologies are the key to access high energy and/or power density. In this work, the research efforts include two major thrusts, concentrating on the synthesis and understanding of novel porous materials as potential electrodes for rechargeable lithium-ion batteries. The nano-sized walls and multidimensional pore structures allow fast solid state and electrolytic transport, while micron-sized particle ensure better interparticulate contact. The first thrust of research focused on the development of new synthetic approaches for porous material fabrication. A novel ionothermal synthetic method has been developed using deep-eutectic solvents, such as choline chloride and N,N-dimethylurea, to form iron, manganese and cobalt phosphates with a zeotype framework. Through this advanced method the successful synthesis of 4 previously undiscovered metal phosphate zeotypes was achieved. A careful control of water content during the ionothermal synthesis elucidated the multistep decomposition of our framework template and its impacts in the resulting zeotype structures. Upon conclusion of the ionothermal work, the focus shifted to the methodology development for mesoporous metal sulfides. An "oxide-to-sulfide" synthetic strategy was developed for the first time, resulting in the first synthesis of ordered porous iron, cobalt and nickel sulfides. More importantly, this is a general synthetic method, relying primarily on volumetric calculations per metal atom, which could be further extend to other metal-containing compounds, such as metal

  3. Controlling interferometric properties of nanoporous anodic aluminium oxide

    NASA Astrophysics Data System (ADS)

    Kumeria, Tushar; Losic, Dusan

    2012-01-01

    A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated.

  4. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers

    NASA Astrophysics Data System (ADS)

    Sischka, Andy; Spiering, Andre; Khaksar, Maryam; Laxa, Miriam; König, Janine; Dietz, Karl-Josef; Anselmetti, Dario

    2010-11-01

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  5. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    NASA Astrophysics Data System (ADS)

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-06-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g‑1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  6. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  7. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores.

    PubMed

    Bell, Nicholas A W; Keyser, Ulrich F

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  8. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries

    PubMed Central

    Li, M. M.; Yang, C. C.; Wang, C. C.; Wen, Z.; Zhu, Y. F.; Zhao, M.; Li, J. C.; Zheng, W. T.; Lian, J. S.; Jiang, Q.

    2016-01-01

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world’s dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials—hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g−1, which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles. PMID:27270184

  9. Design of Hydrogen Storage Alloys/Nanoporous Metals Hybrid Electrodes for Nickel-Metal Hydride Batteries.

    PubMed

    Li, M M; Yang, C C; Wang, C C; Wen, Z; Zhu, Y F; Zhao, M; Li, J C; Zheng, W T; Lian, J S; Jiang, Q

    2016-06-07

    Nickel metal hydride (Ni-MH) batteries have demonstrated key technology advantages for applications in new-energy vehicles, which play an important role in reducing greenhouse gas emissions and the world's dependence on fossil fuels. However, the poor high-rate dischargeability of the negative electrode materials-hydrogen storage alloys (HSAs) limits applications of Ni-MH batteries in high-power fields due to large polarization. Here we design a hybrid electrode by integrating HSAs with a current collector of three-dimensional bicontinuous nanoporous Ni. The electrode shows enhanced high-rate dischargeability with the capacity retention rate reaching 44.6% at a discharge current density of 3000 mA g(-1), which is 2.4 times that of bare HSAs (18.8%). Such a unique hybrid architecture not only enhances charge transfer between nanoporous Ni and HSAs, but also facilitates rapid diffusion of hydrogen atoms in HSAs. The developed HSAs/nanoporous metals hybrid structures exhibit great potential to be candidates as electrodes in high-performance Ni-MH batteries towards applications in new-energy vehicles.

  10. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection

    NASA Astrophysics Data System (ADS)

    Patterson, N.; Adams, D. P.; Hodges, V. C.; Vasile, M. J.; Michael, J. R.; Kotula, P. G.

    2008-06-01

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si3N4 and W/Si3N4 to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations.

  11. Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection.

    PubMed

    Patterson, N; Adams, D P; Hodges, V C; Vasile, M J; Michael, J R; Kotula, P G

    2008-06-11

    We report a direct, ion drilling technique that enables the reproducible fabrication and placement of nanopores in membranes of different thickness. Using a 30 keV focused Ga ion beam column combined with an in situ, back face, multi-channelplate particle detector, nanopores are sputtered in Si(3)N(4) and W/Si(3)N(4) to have diameters as small as 12 nm. Transmission electron microscopy shows that focused ion beam-drilled holes are near-conical with the diameter decreasing from entry to exit side. By monitoring the detector signal during ion exposure, the drilled hole width can be minimized such that the exit-side diameter is smaller than the full width at half-maximum of the nominally Gaussian-shaped incident beam. Judicious choice of the beam defining aperture combined with back face particle detection allows for reproducible exit-side hole diameters between 18 and 100 nm. The nanopore direct drilling technique does not require potentially damaging broad area exposure to tailor hole sizes. Moreover, this technique successfully achieves breakthrough despite the effects of varying membrane thickness, redeposition, polycrystalline grain structure, and slight ion beam current fluctuations. PMID:21825787

  12. Responsive nanoporous metals: recoverable modulations on strength and shape by watering.

    PubMed

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-12

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept-the water-capillarity in nanopores, here we report that a 'dead' metal can be transformed into a 'smart' material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices. PMID:27347850

  13. Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores

    NASA Astrophysics Data System (ADS)

    Bell, Nicholas A. W.; Keyser, Ulrich F.

    2016-07-01

    The simultaneous detection of a large number of different analytes is important in bionanotechnology research and in diagnostic applications. Nanopore sensing is an attractive method in this regard as the approach can be integrated into small, portable device architectures, and there is significant potential for detecting multiple sub-populations in a sample. Here, we show that highly multiplexed sensing of single molecules can be achieved with solid-state nanopores by using digitally encoded DNA nanostructures. Based on the principles of DNA origami, we designed a library of DNA nanostructures in which each member contains a unique barcode; each bit in the barcode is signalled by the presence or absence of multiple DNA dumbbell hairpins. We show that a 3-bit barcode can be assigned with 94% accuracy by electrophoretically driving the DNA structures through a solid-state nanopore. Select members of the library were then functionalized to detect a single, specific antibody through antigen presentation at designed positions on the DNA. This allows us to simultaneously detect four different antibodies of the same isotype at nanomolar concentration levels.

  14. Dynamic translocation of ligand-complexed DNA through solid-state nanopores with optical tweezers.

    PubMed

    Sischka, Andy; Spiering, Andre; Khaksar, Maryam; Laxa, Miriam; König, Janine; Dietz, Karl-Josef; Anselmetti, Dario

    2010-11-17

    We investigated the threading and controlled translocation of individual lambda-DNA (λ-DNA) molecules through solid-state nanopores with piconewton force sensitivity, millisecond time resolution and picoampere ionic current sensitivity with a set-up combining quantitative 3D optical tweezers (OT) with electrophysiology. With our virtually interference-free OT set-up the binding of RecA and single peroxiredoxin protein molecules to λ-DNA was quantitatively investigated during dynamic translocation experiments where effective forces and respective ionic currents of the threaded DNA molecule through the nanopore were measured during inward and outward sliding. Membrane voltage-dependent experiments of reversible single protein/DNA translocation scans yield hysteresis-free, asymmetric single-molecule fingerprints in the measured force and conductance signals that can be attributed to the interplay of optical trap and electrostatic nanopore potentials. These experiments allow an exact localization of the bound protein along the DNA strand and open fascinating applications for label-free detection of DNA-binding ligands, where structural and positional binding phenomena can be investigated at a single-molecule level.

  15. Responsive nanoporous metals: recoverable modulations on strength and shape by watering

    NASA Astrophysics Data System (ADS)

    Ye, Xing-Long; Liu, Ling-Zhi; Jin, Hai-Jun

    2016-08-01

    Many biological materials can readily modulate their mechanical properties and shape by interacting with water in the surrounding environment, which is essential to their high performance in application. In contrast, typical inorganic materials (such as the metals) cannot change their strength and shape without involving thermal/mechanical treatments. By introducing nano-scale porous structure and exploiting a simple physical concept—the water-capillarity in nanopores, here we report that a ‘dead’ metal can be transformed into a ‘smart’ material with water-responsive properties. We demonstrate that the apparent strength, volume and shape of nanoporous Au and Au(Pt) can be modulated in situ, dramatically and recoverably, in response to water-dipping and partial-drying. The amplitude of strength-modulation reaches 20 MPa, which is nearly 50% of the yield strength at initial state. This approach also leads to reversible length change up to 1.3% in nanoporous Au and a large reversible bending motion of a bi-layer strip with tip displacement of ∼20 mm, which may be used for actuation. This method is simple and effective, occurring in situ under ambient conditions and requiring no external power, analogous to biological materials. The findings may open up novel applications in many areas such as micro-robotics and bio-medical devices.

  16. Nanoporous Cu-C composites based on carbon-nanotube aerogels

    SciTech Connect

    Charnvanichborikarn, S.; Shin, S. J.; Worsley, M. A.; Tran, I. C.; Willey, T. M.; van Buuren, T.; Felter, T. E.; Colvin, J. D.; Kucheyev, S. O.

    2013-11-22

    Current synthesis methods of nanoporous Cu–C composites offer limited control of the material composition, structure, and properties, particularly for large Cu loadings of ≳20 wt%. Here, we describe two related approaches to realize novel nanoporous Cu–C composites based on the templating of recently developed carbon-nanotube aerogels (CNT-CAs). Our first approach involves the trapping of Cu nanoparticles while CNT-CAs undergo gelation. This method yields nanofoams with relatively high densities of ≳65 mg cm-3 for Cu loadings of ≳10 wt%. Our second approach overcomes this limitation by filling the pores of undoped CNT-CA monoliths with an aqueous solution of CuSO4 followed by (i) freeze-drying to remove water and (ii) thermal decomposition of CuSO4. With this approach, we demonstrate Cu–C composites with a C matrix density of -25 mg cm-3 and Cu loadings of up to 70 wt%. These versatile methods could be extended to fabricate other nanoporous metal–carbon composite materials geared for specific applications.

  17. General description of the adsorption of proteins at their iso-electric point in nanoporous materials.

    PubMed

    Sang, Lung-Ching; Vinu, Ajayan; Coppens, Marc-Olivier

    2011-11-15

    A simple but remarkably precise geometric pore-filling model is proposed and experimentally validated for the adsorption of proteins at their iso-electric point (pI) in nanoporous materials. Three different globular proteins-lysozyme, myoglobin, and bovine serum albumin-are used as model proteins to study protein adsorption on two types of ordered mesoporous materials-silica and carbon-which allows us to study the effects of protein and surface structure on the protein adsorption mechanism. The geometric pore-filling model confirms that proteins are closely packed inside the pore channels of mesoporous materials, leading to an exceptionally large protein loading capacity. A relationship for the amount of adsorbed protein as a function of protein size, nanopore volume, and pore diameter is derived. The pore space gradually fills up to complete packing of the available pore space at the highest protein concentration. The high precision of the geometric pore-filling model demonstrates its utility to predict the protein adsorption capacity of ordered nanoporous materials.

  18. Nanopores in solid-state membranes engineered for single molecule detection.

    PubMed

    Dimitrov, V; Mirsaidov, U; Wang, D; Sorsch, T; Mansfield, W; Miner, J; Klemens, F; Cirelli, R; Yemenicioglu, S; Timp, G

    2010-02-10

    A nanopore is an analytical tool with single molecule sensitivity. For detection, a nanopore relies on the electrical signal that develops when a molecule translocates through it. However, the detection sensitivity can be adversely affected by noise and the frequency response. Here, we report measurements of the frequency and noise performance of nanopores structure that elucidates the parasitics, and then we explore four strategies for improving the electrical performance. We reduce the parasitic membrane capacitances using: (1) thick Si(3)N(4) membranes; (2) miniaturized composite membranes consisting of Si(3)N(4) and polyimide; (3) miniaturized membranes formed from metal-oxide-semiconductor (MOS) capacitors; and (4) capacitance compensation through external circuitry, which has been used successfully for patch clamping. While capacitance compensation provides a vast improvement in the high frequency performance, mitigation of the parasitic capacitance through miniaturization offers the most promising route to high fidelity electrical discrimination of single molecules.

  19. In-situ NMR study of molecular and ionic processes inside carbon nanopores

    NASA Astrophysics Data System (ADS)

    Luo, Zhixiang

    Interactions of simple ions with water and interfaces play critical roles in many electrochemical and biological processes. They are especially significant in nanoconfined regions and have a profound impact in many applications, for instance nanofluidics and supercapacitors. This dissertation employs a nuclear magnetic resonance (NMR) technique to study their influence on the ionic processes inside carbon nanopores. To characterize the carbon micropore structure, a convenient NMR method is established by taking a 1H magic angle spinning (MAS) spectrum of the adsorbed water. A density functional theory (DFT) computation of the nucleus-independent chemical shift (NICS) yields a quantitative relationship between the NICS values and the micropore sizes. The carbon micropore size and distribution are derived from the chemical shift and the spectrum lineshape. For aqueous electrolytes inside uncharged carbon nanopores, the measurement of ion concentrations reveals a substantial electroneutrality breakdown. The specific ion effects and ion-ion correlations are shown to play crucial roles in determining the degree of electroneutrality breakdown. The importance of those interactions is further revealed by the asymmetric and nonlinear responses of ion concentrations to the charging of the confining carbon walls. Such information is obtained with a carbon supercapacitor built into the NMR probe. The NMR observations are validated by a numerical calculation of the ion distribution in the nanopores using the generalized Poisson-Boltzmann (PB) equation, demonstrating that the nonelectrostatic interfacial interactions can indeed dominate the electrostatic interactions and lead to the breakdown of electroneutrality inside nanoconfined regions. Interfacial ion hydration is an essential part of the specific ion effects. Using in-situ 23Na and 19F NMR on carbon supercapacitors with different carbon pore sizes, I provide a molecular-scale understanding of the permeation and

  20. Nanoporous hard data: optical encoding of information within nanoporous anodic alumina photonic crystals

    NASA Astrophysics Data System (ADS)

    Santos, Abel; Law, Cheryl Suwen; Pereira, Taj; Losic, Dusan

    2016-04-01

    Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for developing advanced nanophotonic tools for a wide range of applications, including sensing, photonic tagging, self-reporting drug releasing systems and secure encoding of information.Herein, we present a method for storing binary data within the spectral signature of nanoporous anodic alumina photonic crystals. A rationally designed multi-sinusoidal anodisation approach makes it possible to engineer the photonic stop band of nanoporous anodic alumina with precision. As a result, the transmission spectrum of these photonic nanostructures can be engineered to feature well-resolved and selectively positioned characteristic peaks across the UV-visible spectrum. Using this property, we implement an 8-bit binary code and assess the versatility and capability of this system by a series of experiments aiming to encode different information within the nanoporous anodic alumina photonic crystals. The obtained results reveal that the proposed nanosized platform is robust, chemically stable, versatile and has a set of unique properties for data storage, opening new opportunities for

  1. Slow DNA transport through nanopores in hafnium oxide membranes.

    PubMed

    Larkin, Joseph; Henley, Robert; Bell, David C; Cohen-Karni, Tzahi; Rosenstein, Jacob K; Wanunu, Meni

    2013-11-26

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2-7 nm thick) freestanding hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore.

  2. Nanopores and nucleic acids: prospects for ultrarapid sequencing

    NASA Technical Reports Server (NTRS)

    Deamer, D. W.; Akeson, M.

    2000-01-01

    DNA and RNA molecules can be detected as they are driven through a nanopore by an applied electric field at rates ranging from several hundred microseconds to a few milliseconds per molecule. The nanopore can rapidly discriminate between pyrimidine and purine segments along a single-stranded nucleic acid molecule. Nanopore detection and characterization of single molecules represents a new method for directly reading information encoded in linear polymers. If single-nucleotide resolution can be achieved, it is possible that nucleic acid sequences can be determined at rates exceeding a thousand bases per second.

  3. Slow DNA Transport through Nanopores in Hafnium Oxide Membranes

    PubMed Central

    Bell, David C.; Cohen-Karni, Tzahi; Rosenstein, Jacob K.; Wanunu, Meni

    2016-01-01

    We present a study of double- and single-stranded DNA transport through nanopores fabricated in ultrathin (2–7 nm thick) free-standing hafnium oxide (HfO2) membranes. The high chemical stability of ultrathin HfO2 enables long-lived experiments with <2 nm diameter pores that last several hours, in which we observe >50 000 DNA translocations with no detectable pore expansion. Mean DNA velocities are slower than velocities through comparable silicon nitride pores, providing evidence that HfO2 nanopores have favorable physicochemical interactions with nucleic acids that can be leveraged to slow down DNA in a nanopore. PMID:24083444

  4. Nanoporous carbon actuator and methods of use thereof

    DOEpatents

    Biener, Juergen; Baumann, Theodore F.; Shao, Lihua; Weissmueller, Joerg

    2012-07-31

    An electrochemically driveable actuator according to one embodiment includes a nanoporous carbon aerogel composition capable of exhibiting charge-induced reversible strain when wetted by an electrolyte and a voltage is applied thereto. An electrochemically driven actuator according to another embodiment includes a nanoporous carbon aerogel composition wetted by an electrolyte; and a mechanism for causing charge-induced reversible strain of the composition. A method for electrochemically actuating an object according to one embodiment includes causing charge-induced reversible strain of a nanoporous carbon aerogel composition wetted with an electrolyte to actuate the object by the strain.

  5. Final Report of Optimization Algorithms for Hierarchical Problems, with Applications to Nanoporous Materials

    SciTech Connect

    Nash, Stephen G.

    2013-11-11

    The research focuses on the modeling and optimization of nanoporous materials. In systems with hierarchical structure that we consider, the physics changes as the scale of the problem is reduced and it can be important to account for physics at the fine level to obtain accurate approximations at coarser levels. For example, nanoporous materials hold promise for energy production and storage. A significant issue is the fabrication of channels within these materials to allow rapid diffusion through the material. One goal of our research is to apply optimization methods to the design of nanoporous materials. Such problems are large and challenging, with hierarchical structure that we believe can be exploited, and with a large range of important scales, down to atomistic. This requires research on large-scale optimization for systems that exhibit different physics at different scales, and the development of algorithms applicable to designing nanoporous materials for many important applications in energy production, storage, distribution, and use. Our research has two major research thrusts. The first is hierarchical modeling. We plan to develop and study hierarchical optimization models for nanoporous materials. The models have hierarchical structure, and attempt to balance the conflicting aims of model fidelity and computational tractability. In addition, we analyze the general hierarchical model, as well as the specific application models, to determine their properties, particularly those properties that are relevant to the hierarchical optimization algorithms. The second thrust was to develop, analyze, and implement a class of hierarchical optimization algorithms, and apply them to the hierarchical models we have developed. We adapted and extended the optimization-based multigrid algorithms of Lewis and Nash to the optimization models exemplified by the hierarchical optimization model. This class of multigrid algorithms has been shown to be a powerful tool for

  6. Davisson-Germer Prize Talk: Hydrogen storage in nanoporous materials

    NASA Astrophysics Data System (ADS)

    Chabal, Yves

    2009-03-01

    To develop a hydrogen-based energy technology, several classes of materials are being considered to achieve the DOE targets for gravimetric and volumetric hydrogen densities for hydrogen storage, including liquids (e.g. ammonium borohydrides), clathrate structures, complex metal hydrides, nanostructured (e.g. carbon) an nanoporous materials. Fundamental studies are necessary to determine the ultimate hydrogen capacity of each system. Nanoporous Metal-organic Framework (MOF) materials are promising candidates for hydrogen storage because the chemical nature and size of their unit cell can be tailored to weakly attract and incorporate H2 molecules, with good volumetric and mass density. In this talk, we consider the structure M2(BDC)2(TED), where M is a metal atom (Zn, Ni, Cu), BDC is benzenedicarboxylate and TED triethylenediamine, to determine the location and interaction of H2 molecules within the MOF. These compounds are isostructural and crystallize in the tetragonal phase (space group P4/ncc), they construct 3D porous structures with relatively large pore size (˜7-8 A ), pore volume (˜0.63-0.84 cc/g) and BET surface area (˜1500-1900 m^2/g). At high pressures (300-800 psi), the perturbation of the H-H stretching mode can be measured with IR absorption spectroscopy, showing a 35 cm-1 redshift from the unperturbed ortho (4155 cm-1 ) and para (4161 cm-1 ) frequencies. Using a newly developed non empirical van der Waals DFT method vdW-DFT),ootnotetextJ.Y. Lee, D.H. Olson, L. Pan, T.J. Emge, J. Li, Adv. Func. Mater. 17, 1255 (2007) it can be shown that the locus of the deepest H2 binding positions lies within to types of narrow channels. The energies of the most stable binding sites, as well as the number of such binding sites, are consistent with the values obtained from experimental adsorption isotherms, and heat of adsorption) data.ootnotetextM. Dion, H. Ryberg, E. Schroder, D. C. Langreth, B.I. Lundqvist, Phys. Rev. Lett. 92, 246401 (2004). Importantly, the

  7. Nanopore-Based Target Sequence Detection

    PubMed Central

    Morin, Trevor J.; Shropshire, Tyler; Liu, Xu; Briggs, Kyle; Huynh, Cindy; Tabard-Cossa, Vincent; Wang, Hongyun; Dunbar, William B.

    2016-01-01

    The promise of portable diagnostic devices relies on three basic requirements: comparable sensitivity to established platforms, inexpensive manufacturing and cost of operations, and the ability to survive rugged field conditions. Solid state nanopores can meet all these requirements, but to achieve high manufacturing yields at low costs, assays must be tolerant to fabrication imperfections and to nanopore enlargement during operation. This paper presents a model for molecular engineering techniques that meets these goals with the aim of detecting target sequences within DNA. In contrast to methods that require precise geometries, we demonstrate detection using a range of pore geometries. As a result, our assay model tolerates any pore-forming method and in-situ pore enlargement. Using peptide nucleic acid (PNA) probes modified for conjugation with synthetic bulk-adding molecules, pores ranging 15-50 nm in diameter are shown to detect individual PNA-bound DNA. Detection of the CFTRΔF508 gene mutation, a codon deletion responsible for ∼66% of all cystic fibrosis chromosomes, is demonstrated with a 26-36 nm pore size range by using a size-enhanced PNA probe. A mathematical framework for assessing the statistical significance of detection is also presented. PMID:27149679

  8. Capturing CO2 via reactions in nanopores.

    SciTech Connect

    Leung, Kevin; Nenoff, Tina Maria; Criscenti, Louise Jacqueline; Tang, Z; Dong, J. H.

    2008-10-01

    This one-year exploratory LDRD aims to provide fundamental understanding of the mechanism of CO2 scrubbing platforms that will reduce green house gas emission and mitigate the effect of climate change. The project builds on the team members expertise developed in previous LDRD projects to study the capture or preferential retention of CO2 in nanoporous membranes and on metal oxide surfaces. We apply Density Functional Theory and ab initio molecular dynamics techniques to model the binding of CO2 on MgO and CaO (100) surfaces and inside water-filled, amine group functionalized silica nanopores. The results elucidate the mechanisms of CO2 trapping and clarify some confusion in the literature. Our work identifies key future calculations that will have the greatest impact on CO2 capture technologies, and provides guidance to science-based design of platforms that can separate the green house gas CO2 from power plant exhaust or even from the atmosphere. Experimentally, we modify commercial MFI zeolite membranes and find that they preferentially transmit H2 over CO2 by a factor of 34. Since zeolite has potential catalytic capability to crack hydrocarbons into CO2 and H2, this finding paves the way for zeolite membranes that can convert biofuel into H2 and separate the products all in one step.

  9. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    NASA Astrophysics Data System (ADS)

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-08-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications.

  10. Rational Design of Photonic Dust from Nanoporous Anodic Alumina Films: A Versatile Photonic Nanotool for Visual Sensing

    PubMed Central

    Chen, Yuting; Santos, Abel; Wang, Ye; Kumeria, Tushar; Ho, Daena; Li, Junsheng; Wang, Changhai; Losic, Dusan

    2015-01-01

    Herein, we present a systematic study on the development, optimisation and applicability of interferometrically coloured distributed Bragg reflectors based on nanoporous anodic alumina (NAA-DBRs) in the form of films and nanoporous microparticles as visual/colorimetric analytical tools. Firstly, we synthesise a complete palette of NAA-DBRs by galvanostatic pulse anodisation approach, in which the current density is altered in a periodic fashion in order to engineer the effective medium of the resulting photonic films in depth. NAA-DBR photonic films feature vivid colours that can be tuned across the UV-visible-NIR spectrum by structural engineering. Secondly, the effective medium of the resulting photonic films is assessed systematically by visual analysis and reflectometric interference spectroscopy (RIfS) in order to establish the most optimal nanoporous platforms to develop visual/colorimetric tools. Then, we demonstrate the applicability of NAA-DBR photonic films as a chemically selective sensing platform for visual detection of mercury(II) ions. Finally, we generate a new nanomaterial, so-called photonic dust, by breaking down NAA-DBRs films into nanoporous microparticles. The resulting microparticles (μP-NAA-DBRs) display vivid colours and are sensitive towards changes in their effective medium, opening new opportunities for developing advanced photonic nanotools for a broad range of applications. PMID:26245759

  11. Influence of Environmental Factors on the Adsorption Capacity and Thermal Conductivity of Silica Nano-Porous Materials.

    PubMed

    Zhang, Hu; Gu, Wei; Li, Ming-Jia; Fang, Wen-Zhen; Li, Zeng-Yao; Tao, Wen-Quan

    2015-04-01

    In this work, the influence of temperature and humidity environment on the water vapor adsorption capacity and effective thermal conductivity of silica nano-porous material is conducted within a relative humidity range from 15% to 90% at 25 °C, 40 °C and 55 °C, respectively. The experiment results show that both the temperature and relative humidity have significant influence on the adsorption capacity and effective thermal conductivity of silica nano-porous materials. The adsorption capacity and effective thermal conductivity increase with humidity because of the increases of water vapor concentration. The effective thermal conductivity increases linearly with adsorption saturation capacity at constant temperature. Because adsorption process is exothermic reaction, the increasing temperature is not conducive to the adsorption. But the effective thermal conductivity increases with the increment of temperature at the same water uptake because of the increment of water thermal conductivity with temperature Geometric models and unit cell structure are adopted to predict the effective thermal conductivity and comparisons with the experimental result are made, and for the case of moist silica nano-porous materials with high porosity no quantitative agreement is found. It is believed that the adsorbed water will fill in the nano-pores and gap and form lots of short cuts, leading to a significant reduction of the thermal resistance.

  12. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing.

    PubMed

    Xu, Caixia; Liu, Yunqing; Su, Fa; Liu, Aihua; Qiu, Huajun

    2011-09-15

    Nanoporous silver (NPS) and copper (NPC) obtained by dealloying AgAl and CuAl alloys, respectively, were used as both three-dimensional templates and reducing agents for the fabrication of nanoporous PtAg (NPS-Pt) and PtCu (NPC-Pt) alloys with hollow ligaments by a simple galvanic replacement reaction with H(2)PtCl(6). Electron microscopy and X-ray diffraction characterizations demonstrate that NPS and NPC with similar ligament sizes (30-50 nm) have different effects on the formed hollow nanostructures. For NPS-Pt, the shell of the hollow ligament is seamless. However, the shell of NPC-Pt is comprised of small pores and alloy nanoparticles with a size of ∼3 nm. The as-prepared NPS-Pt and NPC-Pt exhibit remarkably improved electrocatalytic activities towards the oxidation of ethanol and H(2)O(2) compared with state-of-the-art Pt/C catalyst, and can be used for sensitive electrochemical sensing applications. The hierarchical nanoporous structure also provides a good microenvironment for enzymes. After immobilization of glucose oxidase (GOx), the enzyme modified nanoporous electrode can sensitively detect glucose in a wide linear range (0.6-20 mM). PMID:21778046

  13. Reflectometric interference biosensing using nanopores: integration into microfluidics

    NASA Astrophysics Data System (ADS)

    Kumeria, Tushar; Kurkuri, Mahaveer; Diener, Kerrilyn; Zhang, Chen; Parkinson, Luke; Losic, Dusan

    2011-12-01

    The concept of a microfluidic biosensing device based on reflective interferometric spectroscopy (RIfS) is presented in this article. The key element of the sensor is a highly ordered nanoporous structure of anodic aluminium oxide (AAO) integrated into a microfluidic chip combined with an optical fiber spectrophotometer. AAO was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid. The structural and geometrical features of the AAO porous structures were controlled to provide optimal RIfS sensing characteristics and there sensing capabilities were explored using two different strategies; i) detection based on the response generated by pefusion of analyte ions inside the pores and ii) detection based on specific adsorption of analyte molecules on surface of AAO pores. The second strategy is based on chemical modification of the AAO surface to target molecules based on specific surface binding reactions. In this work two cases are presented, including the binding of small thiol molecules on gold-modified AAO (Au-AAO) and binding of larger targets such as circulating tumour cells (CTC) on antibody-modified AAO. Our preliminary results show an excellent capability of our system in the detection of different analytes using both strategies, and confirm good potential for the development and application of interferometric label-free biosensing devices in a wide range of biomedical applications.

  14. Nanoporous gold membranes: From morphological control to fuel cell catalysis

    NASA Astrophysics Data System (ADS)

    Ding, Yi

    Porous noble metals are particularly attractive for scientific research and industrial applications such as catalysis, sensing, and filtration. In this thesis, I will discuss the fabrication, characterization, and application of a new class of porous metals, called nanoporous metals (NPM). NPM is made during selective dissolution (also called dealloying) of reactive components (e.g., silver) from multi-component alloys (e.g., Ag/Au alloy). Commercially available white gold leaf (Ag65Au35) can, for example, be etched into nanoporous gold (NPG) membrane by simply floating the leaf on concentrated nitric acid for periods of a few minutes. NPG leaf adopts a single crystal porous structure within individual grains. The microstructure of NPG, such as the pore size, is tunable between a few nanometers to sub-micron length scale by either thermal annealing or post-treatment in nitric acid for extended period of time. A new gas-liquid-solid interface electroless plating technique is developed to uniformly cover the NPG surface with other metals, such as silver and platinum. This technique allows new opportunities of making functionalized nanostructures. We show that a combination of silver plating and dealloying can be used to make multimodal porous metals, which are expected to have application in sensing field. Electroless platinum plating onto NPG shows very usual growth mode. TEM observation indicates that the platinum layer on NPG surface takes a novel form of layer-islanding growth (Stranski-Krastanov growth). Annealing the Pt/NPG composite smoothens the Pt islands and forms a 1 nm coherent Pt layer on the NPG backbone, possibly with dislocation formation at the Pt/Au interface. Furthermore, it was found that we could dissolve the gold away in aqueous gold etchant, leaving behind the 1 nm-thick Pt shell, a structure we call nanotubular mesoporous platinum (NMP). Pt plated NPG has a series of unique structural properties, such as high active surface area, thermally

  15. Rectification of nanopores in aprotic solvents - transport properties of nanopores with surface dipoles

    NASA Astrophysics Data System (ADS)

    Plett, Timothy; Shi, Wenqing; Zeng, Yuhan; Mann, William; Vlassiouk, Ivan; Baker, Lane A.; Siwy, Zuzanna S.

    2015-11-01

    Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments.Nanopores have become a model system to understand transport properties at the nanoscale. We report experiments and modeling of ionic current in aprotic solvents with different dipole moments through conically shaped nanopores in a polycarbonate film and through glass nanopipettes. We focus on solutions of the salt LiClO4, which is of great importance in modeling lithium based batteries. Results presented suggest ion current rectification observed results from two effects: (i) adsorption of Li+ ions to the pore walls, and (ii) a finite dipole moment rendered by adsorbed solvent molecules. Properties of surfaces in various solvents were probed by means of scanning ion conductance microscopy, which confirmed existence of an effectively positive surface potential in aprotic solvents with high dipole moments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06340j

  16. Salinity gradient power: influences of temperature and nanopore size.

    PubMed

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-28

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  17. Salinity gradient power: influences of temperature and nanopore size

    NASA Astrophysics Data System (ADS)

    Tseng, Shiojenn; Li, Yu-Ming; Lin, Chih-Yuan; Hsu, Jyh-Ping

    2016-01-01

    Salinity gradient power is a promising, challenging, and readily available renewable energy. Among various methods for harvesting this clean energy, nanofluidic reverse electrodialysis (NRED) is of great potential. Since ionic transport depends highly on the temperature, so is the efficiency of the associated power generated. Here, we conduct a theoretical analysis on the influences of temperature and nanopore size on NRED, focusing on the temperature and nanopore size. The results gathered reveal that the maximum power increases with increasing temperature, but the conversion efficiency depends weakly on temperature. In general, the smaller the nanopore radius or the longer the nanopore, the better the ion selectivity. These results provide desirable and necessary information for improving the performance of NRED as well as designing relevant units in renewable energy plants.

  18. Nanoporous CuS with excellent photocatalytic property

    NASA Astrophysics Data System (ADS)

    Xu, Wence; Zhu, Shengli; Liang, Yanqin; Li, Zhaoyang; Cui, Zhenduo; Yang, Xianjin; Inoue, Akihisa

    2015-12-01

    We present the rational synthesis of nanoporous CuS for the first time by chemical dealloying method. The morphologies of the CuS catalysts are controlled by the composition of the original amorphous alloys. Nanoporous Cu2S is firstly formed during the chemical dealloying process, and then the Cu2S transforms into CuS. The nanoporous CuS exhibits excellent photocatalytic activity for the degradation of the methylene blue (MB), methyl orange (MO) and rhodamine B (RhB). The excellent photocatalytic activity of the nanoporous CuS is mainly attributed to the large specific surface area, high adsorbing capacity of dyes and low recombination of the photo generated electrons and holes. In the photo degradation process, both chemical and photo generated hydroxyl radicals are generated. The hydroxyl radicals are favor in the oxidation of the dye molecules. The present modified dealloying method may be extended for the preparation of other porous metal sulfide nanostructures.

  19. Side-gated ultrathin-channel nanopore FET sensors

    NASA Astrophysics Data System (ADS)

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore.

  20. Side-gated ultrathin-channel nanopore FET sensors.

    PubMed

    Yanagi, Itaru; Oura, Takeshi; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi

    2016-03-18

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET's drain current during DNA translocation through the nanopore. PMID:26876025