BioServices: a common Python package to access biological Web Services programmatically.
Cokelaer, Thomas; Pultz, Dennis; Harder, Lea M; Serra-Musach, Jordi; Saez-Rodriguez, Julio
2013-12-15
Web interfaces provide access to numerous biological databases. Many can be accessed to in a programmatic way thanks to Web Services. Building applications that combine several of them would benefit from a single framework. BioServices is a comprehensive Python framework that provides programmatic access to major bioinformatics Web Services (e.g. KEGG, UniProt, BioModels, ChEMBLdb). Wrapping additional Web Services based either on Representational State Transfer or Simple Object Access Protocol/Web Services Description Language technologies is eased by the usage of object-oriented programming. BioServices releases and documentation are available at http://pypi.python.org/pypi/bioservices under a GPL-v3 license.
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts. PMID:28360851
Neuroimaging, Genetics, and Clinical Data Sharing in Python Using the CubicWeb Framework.
Grigis, Antoine; Goyard, David; Cherbonnier, Robin; Gareau, Thomas; Papadopoulos Orfanos, Dimitri; Chauvat, Nicolas; Di Mascio, Adrien; Schumann, Gunter; Spooren, Will; Murphy, Declan; Frouin, Vincent
2017-01-01
In neurosciences or psychiatry, the emergence of large multi-center population imaging studies raises numerous technological challenges. From distributed data collection, across different institutions and countries, to final data publication service, one must handle the massive, heterogeneous, and complex data from genetics, imaging, demographics, or clinical scores. These data must be both efficiently obtained and downloadable. We present a Python solution, based on the CubicWeb open-source semantic framework, aimed at building population imaging study repositories. In addition, we focus on the tools developed around this framework to overcome the challenges associated with data sharing and collaborative requirements. We describe a set of three highly adaptive web services that transform the CubicWeb framework into a (1) multi-center upload platform, (2) collaborative quality assessment platform, and (3) publication platform endowed with massive-download capabilities. Two major European projects, IMAGEN and EU-AIMS, are currently supported by the described framework. We also present a Python package that enables end users to remotely query neuroimaging, genetics, and clinical data from scripts.
The GBT Dynamic Scheduling System: Powered by the Web
NASA Astrophysics Data System (ADS)
Marganian, P.; Clark, M.; McCarty, M.; Sessoms, E.; Shelton, A.
2009-09-01
The web technologies utilized for the Robert C. Byrd Green Bank Telescope's (GBT) new Dynamic Scheduling System are discussed, focusing on languages, frameworks, and tools. We use a popular Python web framework, TurboGears, to take advantage of the extensive web services the system provides. TurboGears is a model-view-controller framework, which aggregates SQLAlchemy, Genshi, and CherryPy respectively. On top of this framework, Javascript (Prototype, script.aculo.us, and JQuery) and cascading style sheets (Blueprint) are used for desktop-quality web pages.
A Case Study in Web 2.0 Application Development
NASA Astrophysics Data System (ADS)
Marganian, P.; Clark, M.; Shelton, A.; McCarty, M.; Sessoms, E.
2010-12-01
Recent web technologies focusing on languages, frameworks, and tools are discussed, using the Robert C. Byrd Green Bank Telescopes (GBT) new Dynamic Scheduling System as the primary example. Within that example, we use a popular Python web framework, Django, to build the extensive web services for our users. We also use a second complimentary server, written in Haskell, to incorporate the core scheduling algorithms. We provide a desktop-quality experience across all the popular browsers for our users with the Google Web Toolkit and judicious use of JQuery in Django templates. Single sign-on and authentication throughout all NRAO web services is accomplished via the Central Authentication Service protocol, or CAS.
Providing Web Interfaces to the NSF EarthScope USArray Transportable Array
NASA Astrophysics Data System (ADS)
Vernon, Frank; Newman, Robert; Lindquist, Kent
2010-05-01
Since April 2004 the EarthScope USArray seismic network has grown to over 850 broadband stations that stream multi-channel data in near real-time to the Array Network Facility in San Diego. Providing secure, yet open, access to real-time and archived data for a broad range of audiences is best served by a series of platform agnostic low-latency web-based applications. We present a framework of tools that mediate between the world wide web and Boulder Real Time Technologies Antelope Environmental Monitoring System data acquisition and archival software. These tools provide comprehensive information to audiences ranging from network operators and geoscience researchers, to funding agencies and the general public. This ranges from network-wide to station-specific metadata, state-of-health metrics, event detection rates, archival data and dynamic report generation over a station's two year life span. Leveraging open source web-site development frameworks for both the server side (Perl, Python and PHP) and client-side (Flickr, Google Maps/Earth and jQuery) facilitates the development of a robust extensible architecture that can be tailored on a per-user basis, with rapid prototyping and development that adheres to web-standards. Typical seismic data warehouses allow online users to query and download data collected from regional networks, without the scientist directly visually assessing data coverage and/or quality. Using a suite of web-based protocols, we have recently developed an online seismic waveform interface that directly queries and displays data from a relational database through a web-browser. Using the Python interface to Datascope and the Python-based Twisted network package on the server side, and the jQuery Javascript framework on the client side to send and receive asynchronous waveform queries, we display broadband seismic data using the HTML Canvas element that is globally accessible by anyone using a modern web-browser. We are currently creating additional interface tools to create a rich-client interface for accessing and displaying seismic data that can be deployed to any system running the Antelope Real Time System. The software is freely available from the Antelope contributed code Git repository (http://www.antelopeusersgroup.org).
The Earth Data Analytic Services (EDAS) Framework
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; Duffy, D.
2017-12-01
Faced with unprecedented growth in earth data volume and demand, NASA has developed the Earth Data Analytic Services (EDAS) framework, a high performance big data analytics framework built on Apache Spark. This framework enables scientists to execute data processing workflows combining common analysis operations close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted earth data analysis tools (ESMF, CDAT, NCO, etc.). EDAS utilizes a dynamic caching architecture, a custom distributed array framework, and a streaming parallel in-memory workflow for efficiently processing huge datasets within limited memory spaces with interactive response times. EDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using direct web service calls, a Python script, a Unix-like shell client, or a JavaScript-based web application. New analytic operations can be developed in Python, Java, or Scala (with support for other languages planned). Client packages in Python, Java/Scala, or JavaScript contain everything needed to build and submit EDAS requests. The EDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service enables decision makers to compare multiple reanalysis datasets and investigate trends, variability, and anomalies in earth system dynamics around the globe.
AMP: a science-driven web-based application for the TeraGrid
NASA Astrophysics Data System (ADS)
Woitaszek, M.; Metcalfe, T.; Shorrock, I.
The Asteroseismic Modeling Portal (AMP) provides a web-based interface for astronomers to run and view simulations that derive the properties of Sun-like stars from observations of their pulsation frequencies. In this paper, we describe the architecture and implementation of AMP, highlighting the lightweight design principles and tools used to produce a functional fully-custom web-based science application in less than a year. Targeted as a TeraGrid science gateway, AMP's architecture and implementation are intended to simplify its orchestration of TeraGrid computational resources. AMP's web-based interface was developed as a traditional standalone database-backed web application using the Python-based Django web development framework, allowing us to leverage the Django framework's capabilities while cleanly separating the user interface development from the grid interface development. We have found this combination of tools flexible and effective for rapid gateway development and deployment.
NASA Astrophysics Data System (ADS)
McCarty, M.
2009-09-01
The renaissance of the web has driven development of many new technologies that have forever changed the way we write software. The resulting tools have been applied to both solve problems and creat new ones in a wide range of domains ranging from monitor and control user interfaces to information distribution. This discussion covers which of and how these technologies are being used in the astronomical computing community. Topics include JavaScript, Cascading Style Sheets, HTML, XML, JSON, RSS, iCalendar, Java, PHP, Python, Ruby on Rails, database technologies, and web frameworks/design patterns.
Wilber 3: A Python-Django Web Application For Acquiring Large-scale Event-oriented Seismic Data
NASA Astrophysics Data System (ADS)
Newman, R. L.; Clark, A.; Trabant, C. M.; Karstens, R.; Hutko, A. R.; Casey, R. E.; Ahern, T. K.
2013-12-01
Since 2001, the IRIS Data Management Center (DMC) WILBER II system has provided a convenient web-based interface for locating seismic data related to a particular event, and requesting a subset of that data for download. Since its launch, both the scale of available data and the technology of web-based applications have developed significantly. Wilber 3 is a ground-up redesign that leverages a number of public and open-source projects to provide an event-oriented data request interface with a high level of interactivity and scalability for multiple data types. Wilber 3 uses the IRIS/Federation of Digital Seismic Networks (FDSN) web services for event data, metadata, and time-series data. Combining a carefully optimized Google Map with the highly scalable SlickGrid data API, the Wilber 3 client-side interface can load tens of thousands of events or networks/stations in a single request, and provide instantly responsive browsing, sorting, and filtering of event and meta data in the web browser, without further reliance on the data service. The server-side of Wilber 3 is a Python-Django application, one of over a dozen developed in the last year at IRIS, whose common framework, components, and administrative overhead represent a massive savings in developer resources. Requests for assembled datasets, which may include thousands of data channels and gigabytes of data, are queued and executed using the Celery distributed Python task scheduler, giving Wilber 3 the ability to operate in parallel across a large number of nodes.
A Data Management Framework for Real-Time Water Quality Monitoring
NASA Astrophysics Data System (ADS)
Mulyono, E.; Yang, D.; Craig, M.
2007-12-01
CSU East Bay operates two in-situ, near-real-time water quality monitoring stations in San Francisco Bay as a member of the Center for Integrative Coastal Ocean Observation, Research, and Education (CICORE) and the Central and Northern California Ocean Observing System (CeNCOOS). We have been operating stations at Dumbarton Pier and San Leandro Marina for the past two years. At each station, a sonde measures seven water quality parameters every six minutes. During the first year of operation, we retrieved data from the sondes every few weeks by visiting the sites and uploading data to a handheld logger. Last year we implemented a telemetry system utilizing a cellular CDMA modem to transfer data from the field to our data center on an hourly basis. Data from each station are initially stored in monthly files in native format. We import data from these files into a SQL database every hour. SQL is handled by Django, an open source web framework. Django provides a user- friendly web user interface (UI) to administer the data. We utilized parts of the Django UI for our database web- front, which allows users to access our database via the World Wide Web and perform basic queries. We also serve our data to other aggregating sites, including the central CICORE website and NOAA's National Data Buoy Center (NDBC). Since Django is written in Python, it allows us to integrate other Python modules into our software, such as the Matplot library for scientific graphics. We store our code in a Subversion repository, which keeps track of software revisions. Code is tested using Python's unittest and doctest modules within Django's testing facility, which warns us when our code modifications cause other parts of the software to break. During the past two years of data acquisition, we have incrementally updated our data model to accommodate changes in physical hardware, including equipment moves, instrument replacements, and sensor upgrades that affected data format.
NASA Astrophysics Data System (ADS)
Braun, N.; Hauth, T.; Pulvermacher, C.; Ritter, M.
2017-10-01
Today’s analyses for high-energy physics (HEP) experiments involve processing a large amount of data with highly specialized algorithms. The contemporary workflow from recorded data to final results is based on the execution of small scripts - often written in Python or ROOT macros which call complex compiled algorithms in the background - to perform fitting procedures and generate plots. During recent years interactive programming environments, such as Jupyter, became popular. Jupyter allows to develop Python-based applications, so-called notebooks, which bundle code, documentation and results, e.g. plots. Advantages over classical script-based approaches is the feature to recompute only parts of the analysis code, which allows for fast and iterative development, and a web-based user frontend, which can be hosted centrally and only requires a browser on the user side. In our novel approach, Python and Jupyter are tightly integrated into the Belle II Analysis Software Framework (basf2), currently being developed for the Belle II experiment in Japan. This allows to develop code in Jupyter notebooks for every aspect of the event simulation, reconstruction and analysis chain. These interactive notebooks can be hosted as a centralized web service via jupyterhub with docker and used by all scientists of the Belle II Collaboration. Because of its generality and encapsulation, the setup can easily be scaled to large installations.
Cross-platform validation and analysis environment for particle physics
NASA Astrophysics Data System (ADS)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
2017-11-01
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for online validation of Monte Carlo event samples through a web interface.
Web-based application for inverting one-dimensional magnetotelluric data using Python
NASA Astrophysics Data System (ADS)
Suryanto, Wiwit; Irnaka, Theodosius Marwan
2016-11-01
One-dimensional modeling of magnetotelluric (MT) data has been performed using an online application on a web-based virtual private server. The application was developed with the Python language using the Django framework with HTML and CSS components. The input data, including the apparent resistivity and phase as a function of period or frequency with standard deviation, can be entered through an interactive web page that can be freely accessed at https://komputasi.geofisika.ugm.ac.id. The subsurface models, represented by resistivity as a function of depth, are iteratively improved by changing the model parameters, such as the resistivity and the layer depth, based on the observed apparent resistivity and phase data. The output of the application displayed on the screen presents resistivity as a function of depth and includes the RMS error for each iteration. Synthetic and real data were used in comparative tests of the application's performance, and it is shown that the application developed accurate subsurface resistivity models. Hence, this application can be used for practical one-dimensional modeling of MT data.
Graph Mining Meets the Semantic Web
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Lim, Seung-Hwan
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today, data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. We address that need through implementation of three popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, and PageRank). We implement these algorithms as SPARQL queries, wrapped within Python scripts. We evaluatemore » the performance of our implementation on 6 real world data sets and show graph mining algorithms (that have a linear-algebra formulation) can indeed be unleashed on data represented as RDF graphs using the SPARQL query interface.« less
Database of extended radiation maps and its access system
NASA Astrophysics Data System (ADS)
Verkhodanov, O. V.; Naiden, Ya. V.; Chernenkov, V. N.; Verkhodanova, N. V.
2014-01-01
We describe the architecture of the developed computing web server http://cmb.sao.ru allowing to synthesize the maps of extended radiation on the full sphere from the spherical harmonics in the GLESP pixelization grid, smooth them with the power beam pattern with various angular resolutions in the multipole space, and identify regions of the sky with given coordinates. We describe the server access and administration systems as well as the technique constructing the sky region maps, organized in Python in the Django web-application development framework.
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano; Fontana, Paolo
2017-02-01
Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact:paolo.fontana@fmach.it
The Climate Data Analytic Services (CDAS) Framework.
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; Duffy, D.
2016-12-01
Faced with unprecedented growth in climate data volume and demand, NASA has developed the Climate Data Analytic Services (CDAS) framework. This framework enables scientists to execute data processing workflows combining common analysis operations in a high performance environment close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using vetted climate data analysis tools (ESMF, CDAT, NCO, etc.). A dynamic caching architecture enables interactive response times. CDAS utilizes Apache Spark for parallelization and a custom array framework for processing huge datasets within limited memory spaces. CDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be accessed using either direct web service calls, a python script, a unix-like shell client, or a javascript-based web application. Client packages in python, scala, or javascript contain everything needed to make CDAS requests. The CDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service permits decision makers to investigate climate changes around the globe, inspect model trends and variability, and compare multiple reanalysis datasets.
Cross-platform validation and analysis environment for particle physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chekanov, S. V.; Pogrebnyak, I.; Wilbern, D.
A multi-platform validation and analysis framework for public Monte Carlo simulation for high-energy particle collisions is discussed. The front-end of this framework uses the Python programming language, while the back-end is written in Java, which provides a multi-platform environment that can be run from a web browser and can easily be deployed at the grid sites. The analysis package includes all major software tools used in high-energy physics, such as Lorentz vectors, jet algorithms, histogram packages, graphic canvases, and tools for providing data access. This multi-platform software suite, designed to minimize OS-specific maintenance and deployment time, is used for onlinemore » validation of Monte Carlo event samples through a web interface.« less
A web service framework for astronomical remote observation in Antarctica by using satellite link
NASA Astrophysics Data System (ADS)
Jia, M.-h.; Chen, Y.-q.; Zhang, G.-y.; Jiang, P.; Zhang, H.; Wang, J.
2018-07-01
Many telescopes are deployed in Antarctica as it offers excellent astronomical observation conditions. However, because Antarctica's environment is harsh to humans, remote operation of telescope is necessary for observation. Furthermore, communication to devices in Antarctica through satellite link with low bandwidth and high latency limits the effectiveness of remote observation. This paper introduces a web service framework for remote astronomical observation in Antarctica. The framework is based on Python Tornado. RTS2-HTTPD and REDIS are used as the access interface to the telescope control system in Antarctica. The web service provides real-time updates through WebSocket. To improve user experience and control effectiveness under the poor satellite link condition, an agent server is deployed in the mainland to synchronize the Antarctic server's data and send it to domestic users in China. The agent server will forward the request of domestic users to the Antarctic master server. The web service was deployed and tested on Bright Star Survey Telescope (BSST) in Antarctica. Results show that the service meets the demands of real-time, multiuser remote observation and domestic users have a better experience of remote operation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowen, Benjamin; Ruebel, Oliver; Fischer, Curt Fischer R.
BASTet is an advanced software library written in Python. BASTet serves as the analysis and storage library for the OpenMSI project. BASTet is an integrate framework for: i) storage of spectral imaging data, ii) storage of derived analysis data, iii) provenance of analyses, iv) integration and execution of analyses via complex workflows. BASTet implements the API for the HDF5 storage format used by OpenMSI. Analyses that are developed using BASTet benefit from direct integration with storage format, automatic tracking of provenance, and direct integration with command-line and workflow execution tools. BASTet also defines interfaces to enable developers to directly integratemore » their analysis with OpenMSI's web-based viewing infrastruture without having to know OpenMSI. BASTet also provides numerous helper classes and tools to assist with the conversion of data files, ease parallel implementation of analysis algorithms, ease interaction with web-based functions, description methods for data reduction. BASTet also includes detailed developer documentation, user tutorials, iPython notebooks, and other supporting documents.« less
Web application for detailed real-time database transaction monitoring for CMS condition data
NASA Astrophysics Data System (ADS)
de Gruttola, Michele; Di Guida, Salvatore; Innocente, Vincenzo; Pierro, Antonio
2012-12-01
In the upcoming LHC era, database have become an essential part for the experiments collecting data from LHC, in order to safely store, and consistently retrieve, a wide amount of data, which are produced by different sources. In the CMS experiment at CERN, all this information is stored in ORACLE databases, allocated in several servers, both inside and outside the CERN network. In this scenario, the task of monitoring different databases is a crucial database administration issue, since different information may be required depending on different users' tasks such as data transfer, inspection, planning and security issues. We present here a web application based on Python web framework and Python modules for data mining purposes. To customize the GUI we record traces of user interactions that are used to build use case models. In addition the application detects errors in database transactions (for example identify any mistake made by user, application failure, unexpected network shutdown or Structured Query Language (SQL) statement error) and provides warning messages from the different users' perspectives. Finally, in order to fullfill the requirements of the CMS experiment community, and to meet the new development in many Web client tools, our application was further developed, and new features were deployed.
Bianco, Luca; Riccadonna, Samantha; Lavezzo, Enrico; Falda, Marco; Formentin, Elide; Cavalieri, Duccio; Toppo, Stefano
2017-01-01
Abstract Summary: Pathway Inspector is an easy-to-use web application helping researchers to find patterns of expression in complex RNAseq experiments. The tool combines two standard approaches for RNAseq analysis: the identification of differentially expressed genes and a topology-based analysis of enriched pathways. Pathway Inspector is equipped with ad hoc interactive graphical interfaces simplifying the discovery of modulated pathways and the integration of the differentially expressed genes in the corresponding pathway topology. Availability and Implementation: Pathway Inspector is available at the website http://admiral.fmach.it/PI and has been developed in Python, making use of the Django Web Framework. Contact: paolo.fontana@fmach.it PMID:28158604
Youpi: A Web-based Astronomical Image Processing Pipeline
NASA Astrophysics Data System (ADS)
Monnerville, M.; Sémah, G.
2010-12-01
Youpi stands for “YOUpi is your processing PIpeline”. It is a portable, easy to use web application providing high level functionalities to perform data reduction on scientific FITS images. It is built on top of open source processing tools that are released to the community by Terapix, in order to organize your data on a computer cluster, to manage your processing jobs in real time and to facilitate teamwork by allowing fine-grain sharing of results and data. On the server side, Youpi is written in the Python programming language and uses the Django web framework. On the client side, Ajax techniques are used along with the Prototype and script.aculo.us Javascript librairies.
New Python-based methods for data processing
Sauter, Nicholas K.; Hattne, Johan; Grosse-Kunstleve, Ralf W.; Echols, Nathaniel
2013-01-01
Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h−1) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in real time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units. PMID:23793153
A web-server of cell type discrimination system.
Wang, Anyou; Zhong, Yan; Wang, Yanhua; He, Qianchuan
2014-01-01
Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells.
A Web-Server of Cell Type Discrimination System
Zhong, Yan
2014-01-01
Discriminating cell types is a daily request for stem cell biologists. However, there is not a user-friendly system available to date for public users to discriminate the common cell types, embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), and somatic cells (SCs). Here, we develop WCTDS, a web-server of cell type discrimination system, to discriminate the three cell types and their subtypes like fetal versus adult SCs. WCTDS is developed as a top layer application of our recent publication regarding cell type discriminations, which employs DNA-methylation as biomarkers and machine learning models to discriminate cell types. Implemented by Django, Python, R, and Linux shell programming, run under Linux-Apache web server, and communicated through MySQL, WCTDS provides a friendly framework to efficiently receive the user input and to run mathematical models for analyzing data and then to present results to users. This framework is flexible and easy to be expended for other applications. Therefore, WCTDS works as a user-friendly framework to discriminate cell types and subtypes and it can also be expended to detect other cell types like cancer cells. PMID:24578634
A WPS Based Architecture for Climate Data Analytic Services (CDAS) at NASA
NASA Astrophysics Data System (ADS)
Maxwell, T. P.; McInerney, M.; Duffy, D.; Carriere, L.; Potter, G. L.; Doutriaux, C.
2015-12-01
Faced with unprecedented growth in the Big Data domain of climate science, NASA has developed the Climate Data Analytic Services (CDAS) framework. This framework enables scientists to execute trusted and tested analysis operations in a high performance environment close to the massive data stores at NASA. The data is accessed in standard (NetCDF, HDF, etc.) formats in a POSIX file system and processed using trusted climate data analysis tools (ESMF, CDAT, NCO, etc.). The framework is structured as a set of interacting modules allowing maximal flexibility in deployment choices. The current set of module managers include: Staging Manager: Runs the computation locally on the WPS server or remotely using tools such as celery or SLURM. Compute Engine Manager: Runs the computation serially or distributed over nodes using a parallelization framework such as celery or spark. Decomposition Manger: Manages strategies for distributing the data over nodes. Data Manager: Handles the import of domain data from long term storage and manages the in-memory and disk-based caching architectures. Kernel manager: A kernel is an encapsulated computational unit which executes a processor's compute task. Each kernel is implemented in python exploiting existing analysis packages (e.g. CDAT) and is compatible with all CDAS compute engines and decompositions. CDAS services are accessed via a WPS API being developed in collaboration with the ESGF Compute Working Team to support server-side analytics for ESGF. The API can be executed using either direct web service calls, a python script or application, or a javascript-based web application. Client packages in python or javascript contain everything needed to make CDAS requests. The CDAS architecture brings together the tools, data storage, and high-performance computing required for timely analysis of large-scale data sets, where the data resides, to ultimately produce societal benefits. It is is currently deployed at NASA in support of the Collaborative REAnalysis Technical Environment (CREATE) project, which centralizes numerous global reanalysis datasets onto a single advanced data analytics platform. This service permits decision makers to investigate climate changes around the globe, inspect model trends, compare multiple reanalysis datasets, and variability.
A resource oriented webs service for environmental modeling
NASA Astrophysics Data System (ADS)
Ferencik, Ioan
2013-04-01
Environmental modeling is a largely adopted practice in the study of natural phenomena. Environmental models can be difficult to build and use and thus sharing them within the community is an important aspect. The most common approach to share a model is to expose it as a web service. In practice the interaction with this web service is cumbersome due to lack of standardized contract and the complexity of the model being exposed. In this work we investigate the use of a resource oriented approach in exposing environmental models as web services. We view a model as a layered resource build atop the object concept from Object Oriented Programming, augmented with persistence capabilities provided by an embedded object database to keep track of its state and implementing the four basic principles of resource oriented architectures: addressability, statelessness, representation and uniform interface. For implementation we use exclusively open source software: Django framework, dyBase object oriented database and Python programming language. We developed a generic framework of resources structured into a hierarchy of types and consequently extended this typology with recurses specific to the domain of environmental modeling. To test our web service we used cURL, a robust command-line based web client.
Service-Oriented Architecture for NVO and TeraGrid Computing
NASA Technical Reports Server (NTRS)
Jacob, Joseph; Miller, Craig; Williams, Roy; Steenberg, Conrad; Graham, Matthew
2008-01-01
The National Virtual Observatory (NVO) Extensible Secure Scalable Service Infrastructure (NESSSI) is a Web service architecture and software framework that enables Web-based astronomical data publishing and processing on grid computers such as the National Science Foundation's TeraGrid. Characteristics of this architecture include the following: (1) Services are created, managed, and upgraded by their developers, who are trusted users of computing platforms on which the services are deployed. (2) Service jobs can be initiated by means of Java or Python client programs run on a command line or with Web portals. (3) Access is granted within a graduated security scheme in which the size of a job that can be initiated depends on the level of authentication of the user.
TRFolder-W: a web server for telomerase RNA structure prediction in yeast genomes.
Zhang, Dong; Xue, Xingran; Malmberg, Russell L; Cai, Liming
2012-10-15
TRFolder-W is a web server capable of predicting core structures of telomerase RNA (TR) in yeast genomes. TRFolder is a command-line Python toolkit for TR-specific structure prediction. We developed a web-version built on the django web framework, leveraging the work done previously, to include enhancements to increase flexibility of usage. To date, there are five core sub-structures commonly found in TR of fungal species, which are the template region, downstream pseudoknot, boundary element, core-closing stem and triple helix. The aim of TRFolder-W is to use the five core structures as fundamental units to predict potential TR genes for yeast, and to provide a user-friendly interface. Moreover, the application of TRFolder-W can be extended to predict the characteristic structure on species other than fungal species. The web server TRFolder-W is available at http://rna-informatics.uga.edu/?f=software&p=TRFolder-w.
Web-4D-QSAR: A web-based application to generate 4D-QSAR descriptors.
Ataide Martins, João Paulo; Rougeth de Oliveira, Marco Antônio; Oliveira de Queiroz, Mário Sérgio
2018-06-05
A web-based application is developed to generate 4D-QSAR descriptors using the LQTA-QSAR methodology, based on molecular dynamics (MD) trajectories and topology information retrieved from the GROMACS package. The LQTAGrid module calculates the intermolecular interaction energies at each grid point, considering probes and all aligned conformations resulting from MD simulations. These interaction energies are the independent variables or descriptors employed in a QSAR analysis. A friendly front end web interface, built using the Django framework and Python programming language, integrates all steps of the LQTA-QSAR methodology in a way that is transparent to the user, and in the backend, GROMACS and LQTAGrid are executed to generate 4D-QSAR descriptors to be used later in the process of QSAR model building. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
Software architecture and design of the web services facilitating climate model diagnostic analysis
NASA Astrophysics Data System (ADS)
Pan, L.; Lee, S.; Zhang, J.; Tang, B.; Zhai, C.; Jiang, J. H.; Wang, W.; Bao, Q.; Qi, M.; Kubar, T. L.; Teixeira, J.
2015-12-01
Climate model diagnostic analysis is a computationally- and data-intensive task because it involves multiple numerical model outputs and satellite observation data that can both be high resolution. We have built an online tool that facilitates this process. The tool is called Climate Model Diagnostic Analyzer (CMDA). It employs the web service technology and provides a web-based user interface. The benefits of these choices include: (1) No installation of any software other than a browser, hence it is platform compatable; (2) Co-location of computation and big data on the server side, and small results and plots to be downloaded on the client side, hence high data efficiency; (3) multi-threaded implementation to achieve parallel performance on multi-core servers; and (4) cloud deployment so each user has a dedicated virtual machine. In this presentation, we will focus on the computer science aspects of this tool, namely the architectural design, the infrastructure of the web services, the implementation of the web-based user interface, the mechanism of provenance collection, the approach to virtualization, and the Amazon Cloud deployment. As an example, We will describe our methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). Another example is the use of Docker, a light-weight virtualization container, to distribute and deploy CMDA onto an Amazon EC2 instance. Our tool of CMDA has been successfully used in the 2014 Summer School hosted by the JPL Center for Climate Science. Students had positive feedbacks in general and we will report their comments. An enhanced version of CMDA with several new features, some requested by the 2014 students, will be used in the 2015 Summer School soon.
EAGLE: 'EAGLE'Is an' Algorithmic Graph Library for Exploration
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-01-16
The Resource Description Framework (RDF) and SPARQL Protocol and RDF Query Language (SPARQL) were introduced about a decade ago to enable flexible schema-free data interchange on the Semantic Web. Today data scientists use the framework as a scalable graph representation for integrating, querying, exploring and analyzing data sets hosted at different sources. With increasing adoption, the need for graph mining capabilities for the Semantic Web has emerged. Today there is no tools to conduct "graph mining" on RDF standard data sets. We address that need through implementation of popular iterative Graph Mining algorithms (Triangle count, Connected component analysis, degree distribution,more » diversity degree, PageRank, etc.). We implement these algorithms as SPARQL queries, wrapped within Python scripts and call our software tool as EAGLE. In RDF style, EAGLE stands for "EAGLE 'Is an' algorithmic graph library for exploration. EAGLE is like 'MATLAB' for 'Linked Data.'« less
Stata Hybrids: Updates and Ideas
NASA Technical Reports Server (NTRS)
Fieldler, James
2014-01-01
At last year's Stata conference I presented two projects for using Python with Stata: a plugin that embeds the Python programming language within Stata and code for using Stata data sets in Python. In this talk I will describe some small improvements being made to these projects, and I will present other ideas for combining tools with Stata. Some of these ideas use Python, some use JavaScript and a web browser.
ERIC Educational Resources Information Center
Ashraf, Rasha
2017-01-01
This article presents Python codes that can be used to extract data from Securities and Exchange Commission (SEC) filings. The Python program web crawls to obtain URL paths for company filings of required reports, such as Form 10-K. The program then performs a textual analysis and counts the number of occurrences of words in the filing that…
Mandel, Joshua; Jonikas, Magdalena; Ramoni, Rachel Badovinac; Kohane, Isaac S; Mandl, Kenneth D
2013-01-01
Background Non-adherence to prescribed medications is a serious health problem in the United States, costing an estimated $100 billion per year. While poor adherence should be addressable with point of care health information technology, integrating new solutions with existing electronic health records (EHR) systems require customization within each organization, which is difficult because of the monolithic software design of most EHR products. Objective The objective of this study was to create a published algorithm for predicting medication adherence problems easily accessible at the point of care through a Web application that runs on the Substitutable Medical Apps, Reusuable Technologies (SMART) platform. The SMART platform is an emerging framework that enables EHR systems to behave as “iPhone like platforms” by exhibiting an application programming interface for easy addition and deletion of third party apps. The app is presented as a point of care solution to monitoring medication adherence as well as a sufficiently general, modular application that may serve as an example and template for other SMART apps. Methods The widely used, open source Django framework was used together with the SMART platform to create the interoperable components of this app. Django uses Python as its core programming language. This allows statistical and mathematical modules to be created from a large array of Python numerical libraries and assembled together with the core app to create flexible and sophisticated EHR functionality. Algorithms that predict individual adherence are derived from a retrospective study of dispensed medication claims from a large private insurance plan. Patients’ prescription fill information is accessed through the SMART framework and the embedded algorithms compute adherence information, including predicted adherence one year after the first prescription fill. Open source graphing software is used to display patient medication information and the results of statistical prediction of future adherence on a clinician-facing Web interface. Results The user interface allows the physician to quickly review all medications in a patient record for potential non-adherence problems. A gap-check and current medication possession ratio (MPR) threshold test are applied to all medications in the record to test for current non-adherence. Predictions of 1-year non-adherence are made for certain drug classes for which external data was available. Information is presented graphically to indicate present non-adherence, or predicted non-adherence at one year, based on early prescription fulfillment patterns. The MPR Monitor app is installed in the SMART reference container as the “MPR Monitor”, where it is publically available for use and testing. MPR is an acronym for Medication Possession Ratio, a commonly used measure of adherence to a prescribed medication regime. This app may be used as an example for creating additional functionality by replacing statistical and display algorithms with new code in a cycle of rapid prototyping and implementation or as a framework for a new SMART app. Conclusions The MPR Monitor app is a useful pilot project for monitoring medication adherence. It also provides an example that integrates several open source software components, including the Python-based Django Web framework and python-based graphics, to build a SMART app that allows complex decision support methods to be encapsulated to enhance EHR functionality. PMID:23876796
Bosl, William; Mandel, Joshua; Jonikas, Magdalena; Ramoni, Rachel Badovinac; Kohane, Isaac S; Mandl, Kenneth D
2013-07-22
Non-adherence to prescribed medications is a serious health problem in the United States, costing an estimated $100 billion per year. While poor adherence should be addressable with point of care health information technology, integrating new solutions with existing electronic health records (EHR) systems require customization within each organization, which is difficult because of the monolithic software design of most EHR products. The objective of this study was to create a published algorithm for predicting medication adherence problems easily accessible at the point of care through a Web application that runs on the Substitutable Medical Apps, Reusuable Technologies (SMART) platform. The SMART platform is an emerging framework that enables EHR systems to behave as "iPhone like platforms" by exhibiting an application programming interface for easy addition and deletion of third party apps. The app is presented as a point of care solution to monitoring medication adherence as well as a sufficiently general, modular application that may serve as an example and template for other SMART apps. The widely used, open source Django framework was used together with the SMART platform to create the interoperable components of this app. Django uses Python as its core programming language. This allows statistical and mathematical modules to be created from a large array of Python numerical libraries and assembled together with the core app to create flexible and sophisticated EHR functionality. Algorithms that predict individual adherence are derived from a retrospective study of dispensed medication claims from a large private insurance plan. Patients' prescription fill information is accessed through the SMART framework and the embedded algorithms compute adherence information, including predicted adherence one year after the first prescription fill. Open source graphing software is used to display patient medication information and the results of statistical prediction of future adherence on a clinician-facing Web interface. The user interface allows the physician to quickly review all medications in a patient record for potential non-adherence problems. A gap-check and current medication possession ratio (MPR) threshold test are applied to all medications in the record to test for current non-adherence. Predictions of 1-year non-adherence are made for certain drug classes for which external data was available. Information is presented graphically to indicate present non-adherence, or predicted non-adherence at one year, based on early prescription fulfillment patterns. The MPR Monitor app is installed in the SMART reference container as the "MPR Monitor", where it is publically available for use and testing. MPR is an acronym for Medication Possession Ratio, a commonly used measure of adherence to a prescribed medication regime. This app may be used as an example for creating additional functionality by replacing statistical and display algorithms with new code in a cycle of rapid prototyping and implementation or as a framework for a new SMART app. The MPR Monitor app is a useful pilot project for monitoring medication adherence. It also provides an example that integrates several open source software components, including the Python-based Django Web framework and python-based graphics, to build a SMART app that allows complex decision support methods to be encapsulated to enhance EHR functionality.
Integrating neuroinformatics tools in TheVirtualBrain.
Woodman, M Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting.
Integrating neuroinformatics tools in TheVirtualBrain
Woodman, M. Marmaduke; Pezard, Laurent; Domide, Lia; Knock, Stuart A.; Sanz-Leon, Paula; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor
2014-01-01
TheVirtualBrain (TVB) is a neuroinformatics Python package representing the convergence of clinical, systems, and theoretical neuroscience in the analysis, visualization and modeling of neural and neuroimaging dynamics. TVB is composed of a flexible simulator for neural dynamics measured across scales from local populations to large-scale dynamics measured by electroencephalography (EEG), magnetoencephalography (MEG) and functional magnetic resonance imaging (fMRI), and core analytic and visualization functions, all accessible through a web browser user interface. A datatype system modeling neuroscientific data ties together these pieces with persistent data storage, based on a combination of SQL and HDF5. These datatypes combine with adapters allowing TVB to integrate other algorithms or computational systems. TVB provides infrastructure for multiple projects and multiple users, possibly participating under multiple roles. For example, a clinician might import patient data to identify several potential lesion points in the patient's connectome. A modeler, working on the same project, tests these points for viability through whole brain simulation, based on the patient's connectome, and subsequent analysis of dynamical features. TVB also drives research forward: the simulator itself represents the culmination of several simulation frameworks in the modeling literature. The availability of the numerical methods, set of neural mass models and forward solutions allows for the construction of a wide range of brain-scale simulation scenarios. This paper briefly outlines the history and motivation for TVB, describing the framework and simulator, giving usage examples in the web UI and Python scripting. PMID:24795617
Pragmatic service development and customisation with the CEDA OGC Web Services framework
NASA Astrophysics Data System (ADS)
Pascoe, Stephen; Stephens, Ag; Lowe, Dominic
2010-05-01
The CEDA OGC Web Services framework (COWS) emphasises rapid service development by providing a lightweight layer of OGC web service logic on top of Pylons, a mature web application framework for the Python language. This approach gives developers a flexible web service development environment without compromising access to the full range of web application tools and patterns: Model-View-Controller paradigm, XML templating, Object-Relational-Mapper integration and authentication/authorization. We have found this approach useful for exploring evolving standards and implementing protocol extensions to meet the requirements of operational deployments. This paper outlines how COWS is being used to implement customised WMS, WCS, WFS and WPS services in a variety of web applications from experimental prototypes to load-balanced cluster deployments serving 10-100 simultaneous users. In particular we will cover 1) The use of Climate Science Modeling Language (CSML) in complex-feature aware WMS, WCS and WFS services, 2) Extending WMS to support applications with features specific to earth system science and 3) A cluster-enabled Web Processing Service (WPS) supporting asynchronous data processing. The COWS WPS underpins all backend services in the UK Climate Projections User Interface where users can extract, plot and further process outputs from a multi-dimensional probabilistic climate model dataset. The COWS WPS supports cluster job execution, result caching, execution time estimation and user management. The COWS WMS and WCS components drive the project-specific NCEO and QESDI portals developed by the British Atmospheric Data Centre. These portals use CSML as a backend description format and implement features such as multiple WMS layer dimensions and climatology axes that are beyond the scope of general purpose GIS tools and yet vital for atmospheric science applications.
A new open-source Python-based Space Weather data access, visualization, and analysis toolkit
NASA Astrophysics Data System (ADS)
de Larquier, S.; Ribeiro, A.; Frissell, N. A.; Spaleta, J.; Kunduri, B.; Thomas, E. G.; Ruohoniemi, J.; Baker, J. B.
2013-12-01
Space weather research relies heavily on combining and comparing data from multiple observational platforms. Current frameworks exist to aggregate some of the data sources, most based on file downloads via web or ftp interfaces. Empirical models are mostly fortran based and lack interfaces with more useful scripting languages. In an effort to improve data and model access, the SuperDARN community has been developing a Python-based Space Science Data Visualization Toolkit (DaViTpy). At the center of this development was a redesign of how our data (from 30 years of SuperDARN radars) was made available. Several access solutions are now wrapped into one convenient Python interface which probes local directories, a new remote NoSQL database, and an FTP server to retrieve the requested data based on availability. Motivated by the efficiency of this interface and the inherent need for data from multiple instruments, we implemented similar modules for other space science datasets (POES, OMNI, Kp, AE...), and also included fundamental empirical models with Python interfaces to enhance data analysis (IRI, HWM, MSIS...). All these modules and more are gathered in a single convenient toolkit, which is collaboratively developed and distributed using Github and continues to grow. While still in its early stages, we expect this toolkit will facilitate multi-instrument space weather research and improve scientific productivity.
Polyglot Programming in Applications Used for Genetic Data Analysis
Nowak, Robert M.
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development. PMID:25197633
Polyglot programming in applications used for genetic data analysis.
Nowak, Robert M
2014-01-01
Applications used for the analysis of genetic data process large volumes of data with complex algorithms. High performance, flexibility, and a user interface with a web browser are required by these solutions, which can be achieved by using multiple programming languages. In this study, I developed a freely available framework for building software to analyze genetic data, which uses C++, Python, JavaScript, and several libraries. This system was used to build a number of genetic data processing applications and it reduced the time and costs of development.
Ervik, Åsmund; Mejía, Andrés; Müller, Erich A
2016-09-26
Coarse-grained molecular simulation has become a popular tool for modeling simple and complex fluids alike. The defining aspects of a coarse grained model are the force field parameters, which must be determined for each particular fluid. Because the number of molecular fluids of interest in nature and in engineering processes is immense, constructing force field parameter tables by individually fitting to experimental data is a futile task. A step toward solving this challenge was taken recently by Mejía et al., who proposed a correlation that provides SAFT-γ Mie force field parameters for a fluid provided one knows the critical temperature, the acentric factor and a liquid density, all relatively accessible properties. Building on this, we have applied the correlation to more than 6000 fluids, and constructed a web application, called "Bottled SAFT", which makes this data set easily searchable by CAS number, name or chemical formula. Alternatively, the application allows the user to calculate parameters for components not present in the database. Once the intermolecular potential has been found through Bottled SAFT, code snippets are provided for simulating the desired substance using the "raaSAFT" framework, which leverages established molecular dynamics codes to run the simulations. The code underlying the web application is written in Python using the Flask microframework; this allows us to provide a modern high-performance web app while also making use of the scientific libraries available in Python. Bottled SAFT aims at taking the complexity out of obtaining force field parameters for a wide range of molecular fluids, and facilitates setting up and running coarse-grained molecular simulations. The web application is freely available at http://www.bottledsaft.org . The underlying source code is available on Bitbucket under a permissive license.
The Virtual Brain: a simulator of primate brain network dynamics.
Sanz Leon, Paula; Knock, Stuart A; Woodman, M Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R; Jirsa, Viktor
2013-01-01
We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications.
The Virtual Brain: a simulator of primate brain network dynamics
Sanz Leon, Paula; Knock, Stuart A.; Woodman, M. Marmaduke; Domide, Lia; Mersmann, Jochen; McIntosh, Anthony R.; Jirsa, Viktor
2013-01-01
We present The Virtual Brain (TVB), a neuroinformatics platform for full brain network simulations using biologically realistic connectivity. This simulation environment enables the model-based inference of neurophysiological mechanisms across different brain scales that underlie the generation of macroscopic neuroimaging signals including functional MRI (fMRI), EEG and MEG. Researchers from different backgrounds can benefit from an integrative software platform including a supporting framework for data management (generation, organization, storage, integration and sharing) and a simulation core written in Python. TVB allows the reproduction and evaluation of personalized configurations of the brain by using individual subject data. This personalization facilitates an exploration of the consequences of pathological changes in the system, permitting to investigate potential ways to counteract such unfavorable processes. The architecture of TVB supports interaction with MATLAB packages, for example, the well known Brain Connectivity Toolbox. TVB can be used in a client-server configuration, such that it can be remotely accessed through the Internet thanks to its web-based HTML5, JS, and WebGL graphical user interface. TVB is also accessible as a standalone cross-platform Python library and application, and users can interact with the scientific core through the scripting interface IDLE, enabling easy modeling, development and debugging of the scientific kernel. This second interface makes TVB extensible by combining it with other libraries and modules developed by the Python scientific community. In this article, we describe the theoretical background and foundations that led to the development of TVB, the architecture and features of its major software components as well as potential neuroscience applications. PMID:23781198
Schwartz, Yannick; Barbot, Alexis; Thyreau, Benjamin; Frouin, Vincent; Varoquaux, Gaël; Siram, Aditya; Marcus, Daniel S; Poline, Jean-Baptiste
2012-01-01
As neuroimaging databases grow in size and complexity, the time researchers spend investigating and managing the data increases to the expense of data analysis. As a result, investigators rely more and more heavily on scripting using high-level languages to automate data management and processing tasks. For this, a structured and programmatic access to the data store is necessary. Web services are a first step toward this goal. They however lack in functionality and ease of use because they provide only low-level interfaces to databases. We introduce here PyXNAT, a Python module that interacts with The Extensible Neuroimaging Archive Toolkit (XNAT) through native Python calls across multiple operating systems. The choice of Python enables PyXNAT to expose the XNAT Web Services and unify their features with a higher level and more expressive language. PyXNAT provides XNAT users direct access to all the scientific packages in Python. Finally PyXNAT aims to be efficient and easy to use, both as a back-end library to build XNAT clients and as an alternative front-end from the command line.
Schwartz, Yannick; Barbot, Alexis; Thyreau, Benjamin; Frouin, Vincent; Varoquaux, Gaël; Siram, Aditya; Marcus, Daniel S.; Poline, Jean-Baptiste
2012-01-01
As neuroimaging databases grow in size and complexity, the time researchers spend investigating and managing the data increases to the expense of data analysis. As a result, investigators rely more and more heavily on scripting using high-level languages to automate data management and processing tasks. For this, a structured and programmatic access to the data store is necessary. Web services are a first step toward this goal. They however lack in functionality and ease of use because they provide only low-level interfaces to databases. We introduce here PyXNAT, a Python module that interacts with The Extensible Neuroimaging Archive Toolkit (XNAT) through native Python calls across multiple operating systems. The choice of Python enables PyXNAT to expose the XNAT Web Services and unify their features with a higher level and more expressive language. PyXNAT provides XNAT users direct access to all the scientific packages in Python. Finally PyXNAT aims to be efficient and easy to use, both as a back-end library to build XNAT clients and as an alternative front-end from the command line. PMID:22654752
Toyz: A framework for scientific analysis of large datasets and astronomical images
NASA Astrophysics Data System (ADS)
Moolekamp, F.; Mamajek, E.
2015-11-01
As the size of images and data products derived from astronomical data continues to increase, new tools are needed to visualize and interact with that data in a meaningful way. Motivated by our own astronomical images taken with the Dark Energy Camera (DECam) we present Toyz, an open source Python package for viewing and analyzing images and data stored on a remote server or cluster. Users connect to the Toyz web application via a web browser, making it a convenient tool for students to visualize and interact with astronomical data without having to install any software on their local machines. In addition it provides researchers with an easy-to-use tool that allows them to browse the files on a server and quickly view very large images (>2 Gb) taken with DECam and other cameras with a large FOV and create their own visualization tools that can be added on as extensions to the default Toyz framework.
NASA Astrophysics Data System (ADS)
Gopu, Arvind; Hayashi, Soichi; Young, Michael D.; Harbeck, Daniel R.; Boroson, Todd; Liu, Wilson; Kotulla, Ralf; Shaw, Richard; Henschel, Robert; Rajagopal, Jayadev; Stobie, Elizabeth; Knezek, Patricia; Martin, R. Pierre; Archbold, Kevin
2014-07-01
The One Degree Imager-Portal, Pipeline, and Archive (ODI-PPA) is a web science gateway that provides astronomers a modern web interface that acts as a single point of access to their data, and rich computational and visualization capabilities. Its goal is to support scientists in handling complex data sets, and to enhance WIYN Observatory's scientific productivity beyond data acquisition on its 3.5m telescope. ODI-PPA is designed, with periodic user feedback, to be a compute archive that has built-in frameworks including: (1) Collections that allow an astronomer to create logical collations of data products intended for publication, further research, instructional purposes, or to execute data processing tasks (2) Image Explorer and Source Explorer, which together enable real-time interactive visual analysis of massive astronomical data products within an HTML5 capable web browser, and overlaid standard catalog and Source Extractor-generated source markers (3) Workflow framework which enables rapid integration of data processing pipelines on an associated compute cluster and users to request such pipelines to be executed on their data via custom user interfaces. ODI-PPA is made up of several light-weight services connected by a message bus; the web portal built using Twitter/Bootstrap, AngularJS and jQuery JavaScript libraries, and backend services written in PHP (using the Zend framework) and Python; it leverages supercomputing and storage resources at Indiana University. ODI-PPA is designed to be reconfigurable for use in other science domains with large and complex datasets, including an ongoing offshoot project for electron microscopy data.
Carrió, Pau; López, Oriol; Sanz, Ferran; Pastor, Manuel
2015-01-01
Computational models based in Quantitative-Structure Activity Relationship (QSAR) methodologies are widely used tools for predicting the biological properties of new compounds. In many instances, such models are used as a routine in the industry (e.g. food, cosmetic or pharmaceutical industry) for the early assessment of the biological properties of new compounds. However, most of the tools currently available for developing QSAR models are not well suited for supporting the whole QSAR model life cycle in production environments. We have developed eTOXlab; an open source modeling framework designed to be used at the core of a self-contained virtual machine that can be easily deployed in production environments, providing predictions as web services. eTOXlab consists on a collection of object-oriented Python modules with methods mapping common tasks of standard modeling workflows. This framework allows building and validating QSAR models as well as predicting the properties of new compounds using either a command line interface or a graphic user interface (GUI). Simple models can be easily generated by setting a few parameters, while more complex models can be implemented by overriding pieces of the original source code. eTOXlab benefits from the object-oriented capabilities of Python for providing high flexibility: any model implemented using eTOXlab inherits the features implemented in the parent model, like common tools and services or the automatic exposure of the models as prediction web services. The particular eTOXlab architecture as a self-contained, portable prediction engine allows building models with confidential information within corporate facilities, which can be safely exported and used for prediction without disclosing the structures of the training series. The software presented here provides full support to the specific needs of users that want to develop, use and maintain predictive models in corporate environments. The technologies used by eTOXlab (web services, VM, object-oriented programming) provide an elegant solution to common practical issues; the system can be installed easily in heterogeneous environments and integrates well with other software. Moreover, the system provides a simple and safe solution for building models with confidential structures that can be shared without disclosing sensitive information.
PcapDB: Search Optimized Packet Capture, Version 0.1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferrell, Paul; Steinfadt, Shannon
PcapDB is a packet capture system designed to optimize the captured data for fast search in the typical (network incident response) use case. The technology involved in this software has been submitted via the IDEAS system and has been filed as a provisional patent. It includes the following primary components: capture: The capture component utilizes existing capture libraries to retrieve packets from network interfaces. Once retrieved the packets are passed to additional threads for sorting into flows and indexing. The sorted flows and indexes are passed to other threads so that they can be written to disk. These components aremore » written in the C programming language. search: The search components provide a means to find relevant flows and the associated packets. A search query is parsed and represented as a search tree. Various search commands, written in C, are then used resolve this tree into a set of search results. The tree generation and search execution management components are written in python. interface: The PcapDB web interface is written in Python on the Django framework. It provides a series of pages, API's, and asynchronous tasks that allow the user to manage the capture system, perform searches, and retrieve results. Web page components are written in HTML,CSS and Javascript.« less
CircularLogo: A lightweight web application to visualize intra-motif dependencies.
Ye, Zhenqing; Ma, Tao; Kalmbach, Michael T; Dasari, Surendra; Kocher, Jean-Pierre A; Wang, Liguo
2017-05-22
The sequence logo has been widely used to represent DNA or RNA motifs for more than three decades. Despite its intelligibility and intuitiveness, the traditional sequence logo is unable to display the intra-motif dependencies and therefore is insufficient to fully characterize nucleotide motifs. Many methods have been developed to quantify the intra-motif dependencies, but fewer tools are available for visualization. We developed CircularLogo, a web-based interactive application, which is able to not only visualize the position-specific nucleotide consensus and diversity but also display the intra-motif dependencies. Applying CircularLogo to HNF6 binding sites and tRNA sequences demonstrated its ability to show intra-motif dependencies and intuitively reveal biomolecular structure. CircularLogo is implemented in JavaScript and Python based on the Django web framework. The program's source code and user's manual are freely available at http://circularlogo.sourceforge.net . CircularLogo web server can be accessed from http://bioinformaticstools.mayo.edu/circularlogo/index.html . CircularLogo is an innovative web application that is specifically designed to visualize and interactively explore intra-motif dependencies.
AAVSO Target Tool: A Web-Based Service for Tracking Variable Star Observations (Abstract)
NASA Astrophysics Data System (ADS)
Burger, D.; Stassun, K. G.; Barnes, C.; Kafka, S.; Beck, S.; Li, K.
2018-06-01
(Abstract only) The AAVSO Target Tool is a web-based interface for bringing stars in need of observation to the attention of AAVSOÃs network of amateur and professional astronomers. The site currently tracks over 700 targets of interest, collecting data from them on a regular basis from AAVSOÃs servers and sorting them based on priority. While the target tool does not require a login, users can obtain visibility times for each target by signing up and entering a telescope location. Other key features of the site include filtering by AAVSO observing section, sorting by different variable types, formatting the data for printing, and exporting the data to a CSV file. The AAVSO Target Tool builds upon seven years of experience developing web applications for astronomical data analysis, most notably on Filtergraph (Burger, D., et al. 2013, Astronomical Data Analysis Software and Systems XXII, Astronomical Society of the Pacific, San Francisco, 399), and is built using the web2py web framework based on the python programming language. The target tool is available at http://filtergraph.com/aavso.
Sirepo for Synchrotron Radiation Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Robert; Moeller, Paul; Rakitin, Maksim
Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jinja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is the Synchrotron Radiation Workshop (SRW). SRW computes synchrotron radiation from relativistic electrons in arbitrary magnetic fields and propagates the radiation wavefronts through optical beamlines. SRW is open source and is primarily supported by Dr. Oleg Chubar of NSLS-II at Brookhaven National Laboratory.« less
NASA Astrophysics Data System (ADS)
Hodgkins, Alex Liam; Diez, Victor; Hegner, Benedikt
2012-12-01
The Software Process & Infrastructure (SPI) project provides a build infrastructure for regular integration testing and release of the LCG Applications Area software stack. In the past, regular builds have been provided using a system which has been constantly growing to include more features like server-client communication, long-term build history and a summary web interface using present-day web technologies. However, the ad-hoc style of software development resulted in a setup that is hard to monitor, inflexible and difficult to expand. The new version of the infrastructure is based on the Django Python framework, which allows for a structured and modular design, facilitating later additions. Transparency in the workflows and ease of monitoring has been one of the priorities in the design. Formerly missing functionality like on-demand builds or release triggering will support the transition to a more agile development process.
Web-GIS platform for forest fire danger prediction in Ukraine: prospects of RS technologies
NASA Astrophysics Data System (ADS)
Baranovskiy, N. V.; Zharikova, M. V.
2016-10-01
There are many different statistical and empirical methods of forest fire danger use at present time. All systems have not physical basis. Last decade deterministic-probabilistic method is rapidly developed in Tomsk Polytechnic University. Forest sites classification is one way to estimate forest fire danger. We used this method in present work. Forest fire danger estimation depends on forest vegetation condition, forest fire retrospective, precipitation and air temperature. In fact, we use modified Nesterov Criterion. Lightning activity is under consideration as a high temperature source in present work. We use Web-GIS platform for program realization of this method. The program realization of the fire danger assessment system is the Web-oriented geoinformation system developed by the Django platform in the programming language Python. The GeoDjango framework was used for realization of cartographic functions. We suggest using of Terra/Aqua MODIS products for hot spot monitoring. Typical territory for forest fire danger estimation is Proletarskoe forestry of Kherson region (Ukraine).
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.
2014-12-01
We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same through web-browser interfaces. The summer school will serve as a valuable testbed for the tool development, preparing CMDA to serve its target community: Earth-science modeling and model-analysis community.
NASA Astrophysics Data System (ADS)
Pascoe, Charlotte; Lawrence, Bryan; Moine, Marie-Pierre; Ford, Rupert; Devine, Gerry
2010-05-01
The EU METAFOR Project (http://metaforclimate.eu) has created a web-based model documentation questionnaire to collect metadata from the modelling groups that are running simulations in support of the Coupled Model Intercomparison Project - 5 (CMIP5). The CMIP5 model documentation questionnaire will retrieve information about the details of the models used, how the simulations were carried out, how the simulations conformed to the CMIP5 experiment requirements and details of the hardware used to perform the simulations. The metadata collected by the CMIP5 questionnaire will allow CMIP5 data to be compared in a scientifically meaningful way. This paper describes the life-cycle of the CMIP5 questionnaire development which starts with relatively unstructured input from domain specialists and ends with formal XML documents that comply with the METAFOR Common Information Model (CIM). Each development step is associated with a specific tool. (1) Mind maps are used to capture information requirements from domain experts and build a controlled vocabulary, (2) a python parser processes the XML files generated by the mind maps, (3) Django (python) is used to generate the dynamic structure and content of the web based questionnaire from processed xml and the METAFOR CIM, (4) Python parsers ensure that information entered into the CMIP5 questionnaire is output as CIM compliant xml, (5) CIM compliant output allows automatic information capture tools to harvest questionnaire content into databases such as the Earth System Grid (ESG) metadata catalogue. This paper will focus on how Django (python) and XML input files are used to generate the structure and content of the CMIP5 questionnaire. It will also address how the choice of development tools listed above provided a framework that enabled working scientists (who we would never ordinarily get to interact with UML and XML) to be part the iterative development process and ensure that the CMIP5 model documentation questionnaire reflects what scientists want to know about the models. Keywords: metadata, CMIP5, automatic information capture, tool development
Kiefer, Patrick; Schmitt, Uwe; Vorholt, Julia A
2013-04-01
The Python-based, open-source eMZed framework was developed for mass spectrometry (MS) users to create tailored workflows for liquid chromatography (LC)/MS data analysis. The goal was to establish a unique framework with comprehensive basic functionalities that are easy to apply and allow for the extension and modification of the framework in a straightforward manner. eMZed supports the iterative development and prototyping of individual evaluation strategies by providing a computing environment and tools for inspecting and modifying underlying LC/MS data. The framework specifically addresses non-expert programmers, as it requires only basic knowledge of Python and relies largely on existing successful open-source software, e.g. OpenMS. The framework eMZed and its documentation are freely available at http://emzed.biol.ethz.ch/. eMZed is published under the GPL 3.0 license, and an online discussion group is available at https://groups.google.com/group/emzed-users. Supplementary data are available at Bioinformatics online.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nagler, Robert; Moeller, Paul
Sirepo is an open source framework for cloud computing. The graphical user interface (GUI) for Sirepo, also known as the client, executes in any HTML5 compliant web browser on any computing platform, including tablets. The client is built in JavaScript, making use of the following open source libraries: Bootstrap, which is fundamental for cross-platform web applications; AngularJS, which provides a model–view–controller (MVC) architecture and GUI components; and D3.js, which provides interactive plots and data-driven transformations. The Sirepo server is built on the following Python technologies: Flask, which is a lightweight framework for web development; Jin-ja, which is a secure andmore » widely used templating language; and Werkzeug, a utility library that is compliant with the WSGI standard. We use Nginx as the HTTP server and proxy, which provides a scalable event-driven architecture. The physics codes supported by Sirepo execute inside a Docker container. One of the codes supported by Sirepo is Warp. Warp is a particle-in-cell (PIC) code de-signed to simulate high-intensity charged particle beams and plasmas in both the electrostatic and electromagnetic regimes, with a wide variety of integrated physics models and diagnostics. At pre-sent, Sirepo supports a small subset of Warp’s capabilities. Warp is open source and is part of the Berkeley Lab Accelerator Simulation Toolkit.« less
Tools for Integrating Data Access from the IRIS DMC into Research Workflows
NASA Astrophysics Data System (ADS)
Reyes, C. G.; Suleiman, Y. Y.; Trabant, C.; Karstens, R.; Weertman, B. R.
2012-12-01
Web service interfaces at the IRIS Data Management Center (DMC) provide access to a vast archive of seismological and related geophysical data. These interfaces are designed to easily incorporate data access into data processing workflows. Examples of data that may be accessed include: time series data, related metadata, and earthquake information. The DMC has developed command line scripts, MATLAB® interfaces and a Java library to support a wide variety of data access needs. Users of these interfaces do not need to concern themselves with web service details, networking, or even (in most cases) data conversion. Fetch scripts allow access to the DMC archive and are a comfortable fit for command line users. These scripts are written in Perl and are well suited for automation and integration into existing workflows on most operating systems. For metdata and event information, the Fetch scripts even parse the returned data into simple text summaries. The IRIS Java Web Services Library (IRIS-WS Library) allows Java developers the ability to create programs that access the DMC archives seamlessly. By returning the data and information as native Java objects the Library insulates the developer from data formats, network programming and web service details. The MATLAB interfaces leverage this library to allow users access to the DMC archive directly from within MATLAB (r2009b or newer), returning data into variables for immediate use. Data users and research groups are developing other toolkits that use the DMC's web services. Notably, the ObsPy framework developed at LMU Munich is a Python Toolbox that allows seamless access to data and information via the DMC services. Another example is the MATLAB-based GISMO and Waveform Suite developments that can now access data via web services. In summary, there now exist a host of ways that researchers can bring IRIS DMC data directly into their workflows. MATLAB users can use irisFetch.m, command line users can use the various Fetch scripts, Java users can use the IRIS-WS library, and Python users may request data through ObsPy. To learn more about any of these clients see http://www.iris.edu/ws/wsclients/.
HOPE: A Python just-in-time compiler for astrophysical computations
NASA Astrophysics Data System (ADS)
Akeret, J.; Gamper, L.; Amara, A.; Refregier, A.
2015-04-01
The Python programming language is becoming increasingly popular for scientific applications due to its simplicity, versatility, and the broad range of its libraries. A drawback of this dynamic language, however, is its low runtime performance which limits its applicability for large simulations and for the analysis of large data sets, as is common in astrophysics and cosmology. While various frameworks have been developed to address this limitation, most focus on covering the complete language set, and either force the user to alter the code or are not able to reach the full speed of an optimised native compiled language. In order to combine the ease of Python and the speed of C++, we developed HOPE, a specialised Python just-in-time (JIT) compiler designed for numerical astrophysical applications. HOPE focuses on a subset of the language and is able to translate Python code into C++ while performing numerical optimisation on mathematical expressions at runtime. To enable the JIT compilation, the user only needs to add a decorator to the function definition. We assess the performance of HOPE by performing a series of benchmarks and compare its execution speed with that of plain Python, C++ and the other existing frameworks. We find that HOPE improves the performance compared to plain Python by a factor of 2 to 120, achieves speeds comparable to that of C++, and often exceeds the speed of the existing solutions. We discuss the differences between HOPE and the other frameworks, as well as future extensions of its capabilities. The fully documented HOPE package is available at http://hope.phys.ethz.ch and is published under the GPLv3 license on PyPI and GitHub.
Amateur Image Pipeline Processing using Python plus PyRAF
NASA Astrophysics Data System (ADS)
Green, Wayne
2012-05-01
A template pipeline spanning observing planning to publishing is offered as a basis for establishing a long term observing program. The data reduction pipeline encapsulates all policy and procedures, providing an accountable framework for data analysis and a teaching framework for IRAF. This paper introduces the technical details of a complete pipeline processing environment using Python, PyRAF and a few other languages. The pipeline encapsulates all processing decisions within an auditable framework. The framework quickly handles the heavy lifting of image processing. It also serves as an excellent teaching environment for astronomical data management and IRAF reduction decisions.
NEVESIM: event-driven neural simulation framework with a Python interface.
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies.
NEVESIM: event-driven neural simulation framework with a Python interface
Pecevski, Dejan; Kappel, David; Jonke, Zeno
2014-01-01
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and extensibility, NEVESIM is designed to decouple the simulation logic of communicating events (spikes) between the neurons at a network level from the implementation of the internal dynamics of individual neurons. In this paper we will present the simulation framework of NEVESIM, its concepts and features, as well as some aspects of the object-oriented design approaches and simulation strategies that were utilized to efficiently implement the concepts and functionalities of the framework. We will also give an overview of the Python user interface, its basic commands and constructs, and also discuss the benefits of integrating NEVESIM with Python. One of the valuable capabilities of the simulator is to simulate exactly and efficiently networks of stochastic spiking neurons from the recently developed theoretical framework of neural sampling. This functionality was implemented as an extension on top of the basic NEVESIM framework. Altogether, the intended purpose of the NEVESIM framework is to provide a basis for further extensions that support simulation of various neural network models incorporating different neuron and synapse types that can potentially also use different simulation strategies. PMID:25177291
An integrated open framework for thermodynamics of reactions that combines accuracy and coverage.
Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron
2012-08-01
The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG(○) of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K' and pK(a) data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM-3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. ron.milo@weizmann.ac.il Supplementary data are available at Bioinformatics online.
An integrated open framework for thermodynamics of reactions that combines accuracy and coverage
Noor, Elad; Bar-Even, Arren; Flamholz, Avi; Lubling, Yaniv; Davidi, Dan; Milo, Ron
2012-01-01
Motivation: The laws of thermodynamics describe a direct, quantitative relationship between metabolite concentrations and reaction directionality. Despite great efforts, thermodynamic data suffer from limited coverage, scattered accessibility and non-standard annotations. We present a framework for unifying thermodynamic data from multiple sources and demonstrate two new techniques for extrapolating the Gibbs energies of unmeasured reactions and conditions. Results: Both methods account for changes in cellular conditions (pH, ionic strength, etc.) by using linear regression over the ΔG○ of pseudoisomers and reactions. The Pseudoisomeric Reactant Contribution method systematically infers compound formation energies using measured K′ and pKa data. The Pseudoisomeric Group Contribution method extends the group contribution method and achieves a high coverage of unmeasured reactions. We define a continuous index that predicts the reversibility of a reaction under a given physiological concentration range. In the characteristic physiological range 3μM–3mM, we find that roughly half of the reactions in Escherichia coli's metabolism are reversible. These new tools can increase the accuracy of thermodynamic-based models, especially in non-standard pH and ionic strengths. The reversibility index can help modelers decide which reactions are reversible in physiological conditions. Availability: Freely available on the web at: http://equilibrator.weizmann.ac.il. Website implemented in Python, MySQL, Apache and Django, with all major browsers supported. The framework is open-source (code.google.com/p/milo-lab), implemented in pure Python and tested mainly on Linux. Contact: ron.milo@weizmann.ac.il Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:22645166
Goloborodko, Anton A; Levitsky, Lev I; Ivanov, Mark V; Gorshkov, Mikhail V
2013-02-01
Pyteomics is a cross-platform, open-source Python library providing a rich set of tools for MS-based proteomics. It provides modules for reading LC-MS/MS data, search engine output, protein sequence databases, theoretical prediction of retention times, electrochemical properties of polypeptides, mass and m/z calculations, and sequence parsing. Pyteomics is available under Apache license; release versions are available at the Python Package Index http://pypi.python.org/pyteomics, the source code repository at http://hg.theorchromo.ru/pyteomics, documentation at http://packages.python.org/pyteomics. Pyteomics.biolccc documentation is available at http://packages.python.org/pyteomics.biolccc/. Questions on installation and usage can be addressed to pyteomics mailing list: pyteomics@googlegroups.com.
Community interactive webtool to retrieve Greenland glacier data for 1-D geometry
NASA Astrophysics Data System (ADS)
Perrette, Mahé
2015-04-01
Marine-terminating, outlet glaciers are challenging to include in conventional Greenland-wide ice sheet models because of the large variation in scale between model grid size (typically 10 km) and outlet glacier width (typically 1-5km), making it a subgrid scale feature. A possible approach to tackle this problem is to use one-dimensional flowline models for the individual glaciers (e.g. Nick et al., 2013, Nature; Enderlin et al 2013a,b, The Cryosphere). Here we present a python- and javascript- based webtool to prepare data required to feed in or validate a flowline model. It is designed primarily to outline the glacier geometry and returns relevant data averaged over cross-sections. The tool currently allows to: visualize 2-D ice sheet data (zoom/pan), quickly switch between datasets (e.g. ice thickness, bedrock elevation, surface velocity) interpolated / transformed on a common grid. draw flowlines from user-input seeds on the map, calculated from a vector field of surface velocity, as an helpful guide for point 3 interactively draw glacier outline (side and middle lines) on top of the data mesh the outlined glacier domain in the horizontal plane extract relevant data into a 1-D longitudinal profile download the result as a netCDF file The project is hosted on github to encourage collaboration, under the open-source MIT Licence. The server-side is written in python (open-source) using the web-framework flask, and the client-side (javascript) makes use of the d3 library for interactive figures. For now it only works locally in a web browser (start server: "python runserver.py"). Data need to be downloaded separately from the original sources. See the README file in the project for information how to use it. Github projects: https://github.com/perrette/webglacier1d (main) https://github.com/perrette/dimarray (dependency)
NASA Astrophysics Data System (ADS)
Tisdale, M.
2016-12-01
NASA's Atmospheric Science Data Center (ASDC) is operationally using the Esri ArcGIS Platform to improve data discoverability, accessibility and interoperability to meet the diversifying government, private, public and academic communities' driven requirements. The ASDC is actively working to provide their mission essential datasets as ArcGIS Image Services, Open Geospatial Consortium (OGC) Web Mapping Services (WMS), OGC Web Coverage Services (WCS) and leveraging the ArcGIS multidimensional mosaic dataset structure. Science teams and ASDC are utilizing these services, developing applications using the Web AppBuilder for ArcGIS and ArcGIS API for Javascript, and evaluating restructuring their data production and access scripts within the ArcGIS Python Toolbox framework and Geoprocessing service environment. These capabilities yield a greater usage and exposure of ASDC data holdings and provide improved geospatial analytical tools for a mission critical understanding in the areas of the earth's radiation budget, clouds, aerosols, and tropospheric chemistry.
Li, Zhao; Li, Jin; Yu, Peng
2018-01-01
Abstract Metadata curation has become increasingly important for biological discovery and biomedical research because a large amount of heterogeneous biological data is currently freely available. To facilitate efficient metadata curation, we developed an easy-to-use web-based curation application, GEOMetaCuration, for curating the metadata of Gene Expression Omnibus datasets. It can eliminate mechanical operations that consume precious curation time and can help coordinate curation efforts among multiple curators. It improves the curation process by introducing various features that are critical to metadata curation, such as a back-end curation management system and a curator-friendly front-end. The application is based on a commonly used web development framework of Python/Django and is open-sourced under the GNU General Public License V3. GEOMetaCuration is expected to benefit the biocuration community and to contribute to computational generation of biological insights using large-scale biological data. An example use case can be found at the demo website: http://geometacuration.yubiolab.org. Database URL: https://bitbucket.com/yubiolab/GEOMetaCuration PMID:29688376
GillesPy: A Python Package for Stochastic Model Building and Simulation.
Abel, John H; Drawert, Brian; Hellander, Andreas; Petzold, Linda R
2016-09-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community.
GillesPy: A Python Package for Stochastic Model Building and Simulation
Abel, John H.; Drawert, Brian; Hellander, Andreas; Petzold, Linda R.
2017-01-01
GillesPy is an open-source Python package for model construction and simulation of stochastic biochemical systems. GillesPy consists of a Python framework for model building and an interface to the StochKit2 suite of efficient simulation algorithms based on the Gillespie stochastic simulation algorithms (SSA). To enable intuitive model construction and seamless integration into the scientific Python stack, we present an easy to understand, action-oriented programming interface. Here, we describe the components of this package and provide a detailed example relevant to the computational biology community. PMID:28630888
MALINA: a web service for visual analytics of human gut microbiota whole-genome metagenomic reads.
Tyakht, Alexander V; Popenko, Anna S; Belenikin, Maxim S; Altukhov, Ilya A; Pavlenko, Alexander V; Kostryukova, Elena S; Selezneva, Oksana V; Larin, Andrei K; Karpova, Irina Y; Alexeev, Dmitry G
2012-12-07
MALINA is a web service for bioinformatic analysis of whole-genome metagenomic data obtained from human gut microbiota sequencing. As input data, it accepts metagenomic reads of various sequencing technologies, including long reads (such as Sanger and 454 sequencing) and next-generation (including SOLiD and Illumina). It is the first metagenomic web service that is capable of processing SOLiD color-space reads, to authors' knowledge. The web service allows phylogenetic and functional profiling of metagenomic samples using coverage depth resulting from the alignment of the reads to the catalogue of reference sequences which are built into the pipeline and contain prevalent microbial genomes and genes of human gut microbiota. The obtained metagenomic composition vectors are processed by the statistical analysis and visualization module containing methods for clustering, dimension reduction and group comparison. Additionally, the MALINA database includes vectors of bacterial and functional composition for human gut microbiota samples from a large number of existing studies allowing their comparative analysis together with user samples, namely datasets from Russian Metagenome project, MetaHIT and Human Microbiome Project (downloaded from http://hmpdacc.org). MALINA is made freely available on the web at http://malina.metagenome.ru. The website is implemented in JavaScript (using Ext JS), Microsoft .NET Framework, MS SQL, Python, with all major browsers supported.
Using OPeNDAP's Data-Services Framework to Lift Mash-Ups above Blind Dates
NASA Astrophysics Data System (ADS)
Gallagher, J. H. R.; Fulker, D. W.
2015-12-01
OPeNDAP's data-as-service framework (Hyrax) matches diverse sources with many end-user tools and contexts. Keys to its flexibility include: A data model embracing tabular data alongside n-dim arrays and other structures useful in geoinformatics. A REST-like protocol that supports—via suffix notation—a growing set of output forms (netCDF, XML, etc.) plus a query syntax for subsetting. Subsetting applies (via constraints on column values) to tabular data or (via constraints on indices or coordinates) to array-style data . A handler-style architecture that admits a growing set of input types. Community members may contribute handlers, making Hyrax effective as middleware, where N sources are mapped to M outputs with order N+M effort (not NxM). Hyrax offers virtual aggregations of source data, enabling granularity aimed at users, not data-collectors. OPeNDAP-access libraries exist in multiple languages, including Python, Java, and C++. Recent enhancements are increasing this framework's interoperability (i.e., its mash-up) potential. Extensions implemented as servlets—running adjacent to Hyrax—are enriching the forms of aggregation and enabling new protocols: User-specified aggregations, namely, applying a query to (huge) lists of source granules, and receiving one (large) table or zipped netCDF file. OGC (Open Geospatial Consortium) protocols, WMS and WCS. A Webification (W10n) protocol that returns JavaScript Object Notation (JSON). Extensions to OPeNDAP's query language are reducing transfer volumes and enabling new forms of inspection. Advances underway include: Functions that, for triangular-mesh sources, return sub-meshes spec'd via geospatial bounding boxes. Functions that, for data from multiple, satellite-borne sensors (with differing orbits), select observations based on coincidence. Calculations of means, histograms, etc. that greatly reduce output volumes.. Paths for communities to contribute new server functions (in Python, e.g.) that data providers may incorporate into Hyrax via installation parameters. One could say Hyrax itself is a mash-up, but we suggest it as an instrument for a mash-up artist's toolbox. This instrument can support mash-ups built on netCDF files, OGC protocols, JavaScript Web pages, and/or programs written in Python, Java, C or C++.
EMPIRE and pyenda: Two ensemble-based data assimilation systems written in Fortran and Python
NASA Astrophysics Data System (ADS)
Geppert, Gernot; Browne, Phil; van Leeuwen, Peter Jan; Merker, Claire
2017-04-01
We present and compare the features of two ensemble-based data assimilation frameworks, EMPIRE and pyenda. Both frameworks allow to couple models to the assimilation codes using the Message Passing Interface (MPI), leading to extremely efficient and fast coupling between models and the data-assimilation codes. The Fortran-based system EMPIRE (Employing Message Passing Interface for Researching Ensembles) is optimized for parallel, high-performance computing. It currently includes a suite of data assimilation algorithms including variants of the ensemble Kalman and several the particle filters. EMPIRE is targeted at models of all kinds of complexity and has been coupled to several geoscience models, eg. the Lorenz-63 model, a barotropic vorticity model, the general circulation model HadCM3, the ocean model NEMO, and the land-surface model JULES. The Python-based system pyenda (Python Ensemble Data Assimilation) allows Fortran- and Python-based models to be used for data assimilation. Models can be coupled either using MPI or by using a Python interface. Using Python allows quick prototyping and pyenda is aimed at small to medium scale models. pyenda currently includes variants of the ensemble Kalman filter and has been coupled to the Lorenz-63 model, an advection-based precipitation nowcasting scheme, and the dynamic global vegetation model JSBACH.
Schäuble, Sascha; Stavrum, Anne-Kristin; Bockwoldt, Mathias; Puntervoll, Pål; Heiland, Ines
2017-06-24
Systems Biology Markup Language (SBML) is the standard model representation and description language in systems biology. Enriching and analysing systems biology models by integrating the multitude of available data, increases the predictive power of these models. This may be a daunting task, which commonly requires bioinformatic competence and scripting. We present SBMLmod, a Python-based web application and service, that automates integration of high throughput data into SBML models. Subsequent steady state analysis is readily accessible via the web service COPASIWS. We illustrate the utility of SBMLmod by integrating gene expression data from different healthy tissues as well as from a cancer dataset into a previously published model of mammalian tryptophan metabolism. SBMLmod is a user-friendly platform for model modification and simulation. The web application is available at http://sbmlmod.uit.no , whereas the WSDL definition file for the web service is accessible via http://sbmlmod.uit.no/SBMLmod.wsdl . Furthermore, the entire package can be downloaded from https://github.com/MolecularBioinformatics/sbml-mod-ws . We envision that SBMLmod will make automated model modification and simulation available to a broader research community.
WeBIAS: a web server for publishing bioinformatics applications.
Daniluk, Paweł; Wilczyński, Bartek; Lesyng, Bogdan
2015-11-02
One of the requirements for a successful scientific tool is its availability. Developing a functional web service, however, is usually considered a mundane and ungratifying task, and quite often neglected. When publishing bioinformatic applications, such attitude puts additional burden on the reviewers who have to cope with poorly designed interfaces in order to assess quality of presented methods, as well as impairs actual usefulness to the scientific community at large. In this note we present WeBIAS-a simple, self-contained solution to make command-line programs accessible through web forms. It comprises a web portal capable of serving several applications and backend schedulers which carry out computations. The server handles user registration and authentication, stores queries and results, and provides a convenient administrator interface. WeBIAS is implemented in Python and available under GNU Affero General Public License. It has been developed and tested on GNU/Linux compatible platforms covering a vast majority of operational WWW servers. Since it is written in pure Python, it should be easy to deploy also on all other platforms supporting Python (e.g. Windows, Mac OS X). Documentation and source code, as well as a demonstration site are available at http://bioinfo.imdik.pan.pl/webias . WeBIAS has been designed specifically with ease of installation and deployment of services in mind. Setting up a simple application requires minimal effort, yet it is possible to create visually appealing, feature-rich interfaces for query submission and presentation of results.
NASA Astrophysics Data System (ADS)
Steinberg, P. D.; Bednar, J. A.; Rudiger, P.; Stevens, J. L. R.; Ball, C. E.; Christensen, S. D.; Pothina, D.
2017-12-01
The rich variety of software libraries available in the Python scientific ecosystem provides a flexible and powerful alternative to traditional integrated GIS (geographic information system) programs. Each such library focuses on doing a certain set of general-purpose tasks well, and Python makes it relatively simple to glue the libraries together to solve a wide range of complex, open-ended problems in Earth science. However, choosing an appropriate set of libraries can be challenging, and it is difficult to predict how much "glue code" will be needed for any particular combination of libraries and tasks. Here we present a set of libraries that have been designed to work well together to build interactive analyses and visualizations of large geographic datasets, in standard web browsers. The resulting workflows run on ordinary laptops even for billions of data points, and easily scale up to larger compute clusters when available. The declarative top-level interface used in these libraries means that even complex, fully interactive applications can be built and deployed as web services using only a few dozen lines of code, making it simple to create and share custom interactive applications even for datasets too large for most traditional GIS systems. The libraries we will cover include GeoViews (HoloViews extended for geographic applications) for declaring visualizable/plottable objects, Bokeh for building visual web applications from GeoViews objects, Datashader for rendering arbitrarily large datasets faithfully as fixed-size images, Param for specifying user-modifiable parameters that model your domain, Xarray for computing with n-dimensional array data, Dask for flexibly dispatching computational tasks across processors, and Numba for compiling array-based Python code down to fast machine code. We will show how to use the resulting workflow with static datasets and with simulators such as GSSHA or AdH, allowing you to deploy flexible, high-performance web-based dashboards for your GIS data or simulations without needing major investments in code development or maintenance.
FUn: a framework for interactive visualizations of large, high-dimensional datasets on the web.
Probst, Daniel; Reymond, Jean-Louis
2018-04-15
During the past decade, big data have become a major tool in scientific endeavors. Although statistical methods and algorithms are well-suited for analyzing and summarizing enormous amounts of data, the results do not allow for a visual inspection of the entire data. Current scientific software, including R packages and Python libraries such as ggplot2, matplotlib and plot.ly, do not support interactive visualizations of datasets exceeding 100 000 data points on the web. Other solutions enable the web-based visualization of big data only through data reduction or statistical representations. However, recent hardware developments, especially advancements in graphical processing units, allow for the rendering of millions of data points on a wide range of consumer hardware such as laptops, tablets and mobile phones. Similar to the challenges and opportunities brought to virtually every scientific field by big data, both the visualization of and interaction with copious amounts of data are both demanding and hold great promise. Here we present FUn, a framework consisting of a client (Faerun) and server (Underdark) module, facilitating the creation of web-based, interactive 3D visualizations of large datasets, enabling record level visual inspection. We also introduce a reference implementation providing access to SureChEMBL, a database containing patent information on more than 17 million chemical compounds. The source code and the most recent builds of Faerun and Underdark, Lore.js and the data preprocessing toolchain used in the reference implementation, are available on the project website (http://doc.gdb.tools/fun/). daniel.probst@dcb.unibe.ch or jean-louis.reymond@dcb.unibe.ch.
NASA Astrophysics Data System (ADS)
Smith, B.
2015-12-01
In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs, and web browsers. The framework is designed to be scalable to large datasets, yet easy to use and familiar to scientists using previous tools. Integration in the ACME overall user interface facilitates data publication, further analysis, and quick feedback to model developers and scientists making component or coupled model runs.
Introduction to Python for CMF Authority Users
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pritchett-Sheats, Lori A.
This talk is a very broad over view of Python that highlights key features in the language used in the Common Model Framework (CMF). I assume that the audience has some programming experience in a shell scripting language (C shell, Bash, PERL) or other high level language (C/C++/ Fortran). The talk will cover Python data types, classes (objects) and basic programming constructs. The talk concludes with slides describing how I developed the basic classes for a TITANS homework assignment.
ModeRNA server: an online tool for modeling RNA 3D structures.
Rother, Magdalena; Milanowska, Kaja; Puton, Tomasz; Jeleniewicz, Jaroslaw; Rother, Kristian; Bujnicki, Janusz M
2011-09-01
The diverse functional roles of non-coding RNA molecules are determined by their underlying structure. ModeRNA server is an online tool for RNA 3D structure modeling by the comparative approach, based on a template RNA structure and a user-defined target-template sequence alignment. It offers an option to search for potential templates, given the target sequence. The server also provides tools for analyzing, editing and formatting of RNA structure files. It facilitates the use of the ModeRNA software and offers new options in comparison to the standalone program. ModeRNA server was implemented using the Python language and the Django web framework. It is freely available at http://iimcb.genesilico.pl/modernaserver. iamb@genesilico.pl.
Distributed Computing Framework for Synthetic Radar Application
NASA Technical Reports Server (NTRS)
Gurrola, Eric M.; Rosen, Paul A.; Aivazis, Michael
2006-01-01
We are developing an extensible software framework, in response to Air Force and NASA needs for distributed computing facilities for a variety of radar applications. The objective of this work is to develop a Python based software framework, that is the framework elements of the middleware that allows developers to control processing flow on a grid in a distributed computing environment. Framework architectures to date allow developers to connect processing functions together as interchangeable objects, thereby allowing a data flow graph to be devised for a specific problem to be solved. The Pyre framework, developed at the California Institute of Technology (Caltech), and now being used as the basis for next-generation radar processing at JPL, is a Python-based software framework. We have extended the Pyre framework to include new facilities to deploy processing components as services, including components that monitor and assess the state of the distributed network for eventual real-time control of grid resources.
The code base for creating versions of the USEEIO model and USEEIO-like models is called the USEEIO Modeling Framework. The framework is built in a combination of R and Python languages.This demonstration provides a brief overview and introduction into the framework.
miTRATA: a web-based tool for microRNA Truncation and Tailing Analysis.
Patel, Parth; Ramachandruni, S Deepthi; Kakrana, Atul; Nakano, Mayumi; Meyers, Blake C
2016-02-01
We describe miTRATA, the first web-based tool for microRNA Truncation and Tailing Analysis--the analysis of 3' modifications of microRNAs including the loss or gain of nucleotides relative to the canonical sequence. miTRATA is implemented in Python (version 3) and employs parallel processing modules to enhance its scalability when analyzing multiple small RNA (sRNA) sequencing datasets. It utilizes miRBase, currently version 21, as a source of known microRNAs for analysis. miTRATA notifies user(s) via email to download as well as visualize the results online. miTRATA's strengths lie in (i) its biologist-focused web interface, (ii) improved scalability via parallel processing and (iii) its uniqueness as a webtool to perform microRNA truncation and tailing analysis. miTRATA is developed in Python and PHP. It is available as a web-based application from https://wasabi.dbi.udel.edu/∼apps/ta/. meyers@dbi.udel.edu Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Signell, Richard; Camossi, E.
2016-01-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
NASA Astrophysics Data System (ADS)
Signell, Richard P.; Camossi, Elena
2016-05-01
Work over the last decade has resulted in standardised web services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by (1) making it simple for providers to enable web service access to existing output files; (2) using free technologies that are easy to deploy and configure; and (3) providing standardised, service-based tools that work in existing research environments. We present a simple, local brokering approach that lets modellers continue to use their existing files and tools, while serving virtual data sets that can be used with standardised tools. The goal of this paper is to convince modellers that a standardised framework is not only useful but can be implemented with modest effort using free software components. We use NetCDF Markup language for data aggregation and standardisation, the THREDDS Data Server for data delivery, pycsw for data search, NCTOOLBOX (MATLAB®) and Iris (Python) for data access, and Open Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.
Efficient and Flexible Climate Analysis with Python in a Cloud-Based Distributed Computing Framework
NASA Astrophysics Data System (ADS)
Gannon, C.
2017-12-01
As climate models become progressively more advanced, and spatial resolution further improved through various downscaling projects, climate projections at a local level are increasingly insightful and valuable. However, the raw size of climate datasets presents numerous hurdles for analysts wishing to develop customized climate risk metrics or perform site-specific statistical analysis. Four Twenty Seven, a climate risk consultancy, has implemented a Python-based distributed framework to analyze large climate datasets in the cloud. With the freedom afforded by efficiently processing these datasets, we are able to customize and continually develop new climate risk metrics using the most up-to-date data. Here we outline our process for using Python packages such as XArray and Dask to evaluate netCDF files in a distributed framework, StarCluster to operate in a cluster-computing environment, cloud computing services to access publicly hosted datasets, and how this setup is particularly valuable for generating climate change indicators and performing localized statistical analysis.
OpenSeesPy: Python library for the OpenSees finite element framework
NASA Astrophysics Data System (ADS)
Zhu, Minjie; McKenna, Frank; Scott, Michael H.
2018-01-01
OpenSees, an open source finite element software framework, has been used broadly in the earthquake engineering community for simulating the seismic response of structural and geotechnical systems. The framework allows users to perform finite element analysis with a scripting language and for developers to create both serial and parallel finite element computer applications as interpreters. For the last 15 years, Tcl has been the primary scripting language to which the model building and analysis modules of OpenSees are linked. To provide users with different scripting language options, particularly Python, the OpenSees interpreter interface was refactored to provide multi-interpreter capabilities. This refactoring, resulting in the creation of OpenSeesPy as a Python module, is accomplished through an abstract interface for interpreter calls with concrete implementations for different scripting languages. Through this approach, users are able to develop applications that utilize the unique features of several scripting languages while taking advantage of advanced finite element analysis models and algorithms.
Tabizi Pythons and Clendro Hawks: Using Imaginary Animals to Achieve Real Knowledge about Ecosystems
ERIC Educational Resources Information Center
Rockow, Michael
2007-01-01
The author describes how he used to teach a unit on food webs and ecosystems using actual food webs as models. However, the models used by the author tend to be either too simplistic or too complicated for his students. A few years ago, he solved these problems by making up his own food web, complete with invented plants and animals. The model has…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helmus, Jonathan J.; Collis, Scott M.
The Python ARM Radar Toolkit is a package for reading, visualizing, correcting and analysing data from weather radars. Development began to meet the needs of the Atmospheric Radiation Measurement Climate Research Facility and has since expanded to provide a general-purpose framework for working with data from weather radars in the Python programming language. The toolkit is built on top of libraries in the Scientific Python ecosystem including NumPy, SciPy, and matplotlib, and makes use of Cython for interfacing with existing radar libraries written in C and to speed up computationally demanding algorithms. As a result, the source code for themore » toolkit is available on GitHub and is distributed under a BSD license.« less
Helmus, Jonathan J.; Collis, Scott M.
2016-07-18
The Python ARM Radar Toolkit is a package for reading, visualizing, correcting and analysing data from weather radars. Development began to meet the needs of the Atmospheric Radiation Measurement Climate Research Facility and has since expanded to provide a general-purpose framework for working with data from weather radars in the Python programming language. The toolkit is built on top of libraries in the Scientific Python ecosystem including NumPy, SciPy, and matplotlib, and makes use of Cython for interfacing with existing radar libraries written in C and to speed up computationally demanding algorithms. As a result, the source code for themore » toolkit is available on GitHub and is distributed under a BSD license.« less
CSB: a Python framework for structural bioinformatics.
Kalev, Ivan; Mechelke, Martin; Kopec, Klaus O; Holder, Thomas; Carstens, Simeon; Habeck, Michael
2012-11-15
Computational Structural Biology Toolbox (CSB) is a cross-platform Python class library for reading, storing and analyzing biomolecular structures with rich support for statistical analyses. CSB is designed for reusability and extensibility and comes with a clean, well-documented API following good object-oriented engineering practice. Stable release packages are available for download from the Python Package Index (PyPI) as well as from the project's website http://csb.codeplex.com. ivan.kalev@gmail.com or michael.habeck@tuebingen.mpg.de
Unilateral microphthalmia or anophthalmia in eight pythons (Pythonidae).
Da Silva, Mari-Ann O; Bertelsen, Mads F; Wang, Tobias; Pedersen, Michael; Lauridsen, Henrik; Heegaard, Steffen
2015-01-01
To provide morphological descriptions of microphthalmia or anophthalmia in eight pythons using microcomputerized tomography (μCT), magnetic resonance imaging (MRI), and histopathology. Seven Burmese pythons (Python bivittatus) and one ball python (P. regius) with clinically normal right eyes and an abnormal or missing left eye. At the time of euthanasia, four of the eight snakes underwent necropsy. Hereafter, the heads of two Burmese pythons and one ball python were examined using μCT, and another Burmese python was subjected to MRI. Following these procedures, the heads of these four pythons along with the heads of an additional three Burmese pythons were prepared for histology. All eight snakes had left ocular openings seen as dermal invaginations between 0.2 and 2.0 mm in diameter. They also had varying degrees of malformations of the orbital bones and a limited presence of nervous, glandular, and muscle tissue in the posterior orbit. Two individuals had small but identifiable eyes. Furthermore, remnants of the pigmented embryonic framework of the hyaloid vessels were found in the anophthalmic snakes. Necropsies revealed no other macroscopic anomalies. Eight pythons with unilateral left-sided microphthalmia or anophthalmia had one normal eye and a left orbit with malformed or incompletely developed ocular structures along with remnants of fetal structures. These cases lend further information to a condition that is often seen in snakes, but infrequently described. © 2014 American College of Veterinary Ophthalmologists.
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services.
Pratt, Brian; Howbert, J Jeffry; Tasman, Natalie I; Nilsson, Erik J
2012-01-01
MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. brian.pratt@insilicos.com
NASA Astrophysics Data System (ADS)
Malard, J. J.; Rojas, M.; Adamowski, J. F.; Anandaraja, N.; Tuy, H.; Melgar-Quiñonez, H.
2016-12-01
While several well-validated crop growth models are currently widely used, very few crop pest models of the same caliber have been developed or applied, and pest models that take trophic interactions into account are even rarer. This may be due to several factors, including 1) the difficulty of representing complex agroecological food webs in a quantifiable model, and 2) the general belief that pesticides effectively remove insect pests from immediate concern. However, pests currently claim a substantial amount of harvests every year (and account for additional control costs), and the impact of insects and of their trophic interactions on agricultural crops cannot be ignored, especially in the context of changing climates and increasing pressures on crops across the globe. Unfortunately, most integrated pest management frameworks rely on very simple models (if at all), and most examples of successful agroecological management remain more anecdotal than scientifically replicable. In light of this, there is a need for validated and robust agroecological food web models that allow users to predict the response of these webs to changes in management, crops or climate, both in order to predict future pest problems under a changing climate as well as to develop effective integrated management plans. Here we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web agroecological models that predict pest dynamics in the field. The programme uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. We apply the model to the cononut black-headed caterpillar (Opisina arenosella) and associated parasitoid data from Sri Lanka, showing how the modeling framework can be used to rapidly develop, calibrate and validate models that elucidate how the internal structures of food webs determine their behaviour and allow users to evaluate different integrated management options.
NASA Astrophysics Data System (ADS)
Marco Figuera, R.; Pham Huu, B.; Rossi, A. P.; Minin, M.; Flahaut, J.; Halder, A.
2018-01-01
The lack of open-source tools for hyperspectral data visualization and analysis creates a demand for new tools. In this paper we present the new PlanetServer, a set of tools comprising a web Geographic Information System (GIS) and a recently developed Python Application Programming Interface (API) capable of visualizing and analyzing a wide variety of hyperspectral data from different planetary bodies. Current WebGIS open-source tools are evaluated in order to give an overview and contextualize how PlanetServer can help in this matters. The web client is thoroughly described as well as the datasets available in PlanetServer. Also, the Python API is described and exposed the reason of its development. Two different examples of mineral characterization of different hydrosilicates such as chlorites, prehnites and kaolinites in the Nili Fossae area on Mars are presented. As the obtained results show positive outcome in hyperspectral analysis and visualization compared to previous literature, we suggest using the PlanetServer approach for such investigations.
Bootstrapping and Maintaining Trust in the Cloud
2016-03-16
of infrastructure-as-a- service (IaaS) cloud computing services such as Ama- zon Web Services, Google Compute Engine, Rackspace, et. al. means that...Implementation We implemented keylime in ∼3.2k lines of Python in four components: registrar, node, CV, and tenant. The registrar offers a REST-based web ...bootstrap key K. It provides an unencrypted REST-based web service for these two functions. As described earlier, the pro- tocols for exchanging data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Python script for querying a list of web sites and their details from Splunk and dynamically creating tests for monitoring uptime. The data generated from this script is then sent back to Splunk for creating reports and alerts.
Harrigan, Robert L; Yvernault, Benjamin C; Boyd, Brian D; Damon, Stephen M; Gibney, Kyla David; Conrad, Benjamin N; Phillips, Nicholas S; Rogers, Baxter P; Gao, Yurui; Landman, Bennett A
2016-01-01
The Vanderbilt University Institute for Imaging Science (VUIIS) Center for Computational Imaging (CCI) has developed a database built on XNAT housing over a quarter of a million scans. The database provides framework for (1) rapid prototyping, (2) large scale batch processing of images and (3) scalable project management. The system uses the web-based interfaces of XNAT and REDCap to allow for graphical interaction. A python middleware layer, the Distributed Automation for XNAT (DAX) package, distributes computation across the Vanderbilt Advanced Computing Center for Research and Education high performance computing center. All software are made available in open source for use in combining portable batch scripting (PBS) grids and XNAT servers. Copyright © 2015 Elsevier Inc. All rights reserved.
Lai, Fu-Jou; Chang, Hong-Tsun; Wu, Wei-Sheng
2015-01-01
Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs.
2015-01-01
Background Computational identification of cooperative transcription factor (TF) pairs helps understand the combinatorial regulation of gene expression in eukaryotic cells. Many advanced algorithms have been proposed to predict cooperative TF pairs in yeast. However, it is still difficult to conduct a comprehensive and objective performance comparison of different algorithms because of lacking sufficient performance indices and adequate overall performance scores. To solve this problem, in our previous study (published in BMC Systems Biology 2014), we adopted/proposed eight performance indices and designed two overall performance scores to compare the performance of 14 existing algorithms for predicting cooperative TF pairs in yeast. Most importantly, our performance comparison framework can be applied to comprehensively and objectively evaluate the performance of a newly developed algorithm. However, to use our framework, researchers have to put a lot of effort to construct it first. To save researchers time and effort, here we develop a web tool to implement our performance comparison framework, featuring fast data processing, a comprehensive performance comparison and an easy-to-use web interface. Results The developed tool is called PCTFPeval (Predicted Cooperative TF Pair evaluator), written in PHP and Python programming languages. The friendly web interface allows users to input a list of predicted cooperative TF pairs from their algorithm and select (i) the compared algorithms among the 15 existing algorithms, (ii) the performance indices among the eight existing indices, and (iii) the overall performance scores from two possible choices. The comprehensive performance comparison results are then generated in tens of seconds and shown as both bar charts and tables. The original comparison results of each compared algorithm and each selected performance index can be downloaded as text files for further analyses. Conclusions Allowing users to select eight existing performance indices and 15 existing algorithms for comparison, our web tool benefits researchers who are eager to comprehensively and objectively evaluate the performance of their newly developed algorithm. Thus, our tool greatly expedites the progress in the research of computational identification of cooperative TF pairs. PMID:26677932
The ATLAS PanDA Monitoring System and its Evolution
NASA Astrophysics Data System (ADS)
Klimentov, A.; Nevski, P.; Potekhin, M.; Wenaus, T.
2011-12-01
The PanDA (Production and Distributed Analysis) Workload Management System is used for ATLAS distributed production and analysis worldwide. The needs of ATLAS global computing imposed challenging requirements on the design of PanDA in areas such as scalability, robustness, automation, diagnostics, and usability for both production shifters and analysis users. Through a system-wide job database, the PanDA monitor provides a comprehensive and coherent view of the system and job execution, from high level summaries to detailed drill-down job diagnostics. It is (like the rest of PanDA) an Apache-based Python application backed by Oracle. The presentation layer is HTML code generated on the fly in the Python application which is also responsible for managing database queries. However, this approach is lacking in user interface flexibility, simplicity of communication with external systems, and ease of maintenance. A decision was therefore made to migrate the PanDA monitor server to Django Web Application Framework and apply JSON/AJAX technology in the browser front end. This allows us to greatly reduce the amount of application code, separate data preparation from presentation, leverage open source for tools such as authentication and authorization mechanisms, and provide a richer and more dynamic user experience. We describe our approach, design and initial experience with the migration process.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sauter, Nicholas K., E-mail: nksauter@lbl.gov; Hattne, Johan; Grosse-Kunstleve, Ralf W.
The Computational Crystallography Toolbox (cctbx) is a flexible software platform that has been used to develop high-throughput crystal-screening tools for both synchrotron sources and X-ray free-electron lasers. Plans for data-processing and visualization applications are discussed, and the benefits and limitations of using graphics-processing units are evaluated. Current pixel-array detectors produce diffraction images at extreme data rates (of up to 2 TB h{sup −1}) that make severe demands on computational resources. New multiprocessing frameworks are required to achieve rapid data analysis, as it is important to be able to inspect the data quickly in order to guide the experiment in realmore » time. By utilizing readily available web-serving tools that interact with the Python scripting language, it was possible to implement a high-throughput Bragg-spot analyzer (cctbx.spotfinder) that is presently in use at numerous synchrotron-radiation beamlines. Similarly, Python interoperability enabled the production of a new data-reduction package (cctbx.xfel) for serial femtosecond crystallography experiments at the Linac Coherent Light Source (LCLS). Future data-reduction efforts will need to focus on specialized problems such as the treatment of diffraction spots on interleaved lattices arising from multi-crystal specimens. In these challenging cases, accurate modeling of close-lying Bragg spots could benefit from the high-performance computing capabilities of graphics-processing units.« less
Pybus -- A Python Software Bus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lavrijsen, Wim T.L.P.
2004-10-14
A software bus, just like its hardware equivalent, allows for the discovery, installation, configuration, loading, unloading, and run-time replacement of software components, as well as channeling of inter-component communication. Python, a popular open-source programming language, encourages a modular design on software written in it, but it offers little or no component functionality. However, the language and its interpreter provide sufficient hooks to implement a thin, integral layer of component support. This functionality can be presented to the developer in the form of a module, making it very easy to use. This paper describes a Pythonmodule, PyBus, with which the conceptmore » of a ''software bus'' can be realized in Python. It demonstrates, within the context of the ATLAS software framework Athena, how PyBus can be used for the installation and (run-time) configuration of software, not necessarily Python modules, from a Python application in a way that is transparent to the end-user.« less
Visualization of historical data for the ATLAS detector controls - DDV
NASA Astrophysics Data System (ADS)
Maciejewski, J.; Schlenker, S.
2017-10-01
The ATLAS experiment is one of four detectors located on the Large Hardon Collider (LHC) based at CERN. Its detector control system (DCS) stores the slow control data acquired within the back-end of distributed WinCC OA applications, which enables the data to be retrieved for future analysis, debugging and detector development in an Oracle relational database. The ATLAS DCS Data Viewer (DDV) is a client-server application providing access to the historical data outside of the experiment network. The server builds optimized SQL queries, retrieves the data from the database and serves it to the clients via HTTP connections. The server also implements protection methods to prevent malicious use of the database. The client is an AJAX-type web application based on the Vaadin (framework build around the Google Web Toolkit (GWT)) which gives users the possibility to access the data with ease. The DCS metadata can be selected using a column-tree navigation or a search engine supporting regular expressions. The data is visualized by a selection of output modules such as a java script value-over time plots or a lazy loading table widget. Additional plugins give the users the possibility to retrieve the data in ROOT format or as an ASCII file. Control system alarms can also be visualized in a dedicated table if necessary. Python mock-up scripts can be generated by the client, allowing the user to query the pythonic DDV server directly, such that the users can embed the scripts into more complex analysis programs. Users are also able to store searches and output configurations as XML on the server to share with others via URL or to embed in HTML.
ODM2 Admin Pilot Project- a Data Management Application for Observations of the Critical Zone.
NASA Astrophysics Data System (ADS)
Leon, M.; McDowell, W. H.; Mayorga, E.; Setiawan, L.; Hooper, R. P.
2017-12-01
ODM2 Admin is a tool to manage data stored in a relational database using the Observation Data Model 2 (ODM2) information model. Originally developed by the Luquillo Critical Zone Observatory (CZO) to manage a wide range of Earth observations, it has now been deployed at 6 projects: the Catalina Jemez CZO, the Dry Creek Experimental Forest, Au Sable and Manistee River sites managed by Michigan State, Tropical Response to Altered Climate Experiment (TRACE) and the Critical Zone Integrative Microbial Ecology Activity (CZIMEA) EarthCube project; most of these deployments are hosted on a Microsoft Azure cloud server managed by CUAHSI. ODM2 Admin is a web application built on the Python open-source Django framework and available for download from GitHub and DockerHub. It provides tools for data ingestion, editing, QA/QC, data visualization, browsing, mapping and documentation of equipment deployment, methods, and citations. Additional features include the ability to generate derived data values, automatically or manually create data annotations and create datasets from arbitrary groupings of results. Over 22 million time series values for more than 600 time series are being managed with ODM2 Admin across the 6 projects as well as more than 12,000 soil profiles and other measurements. ODM2 Admin links with external identifier systems through DOIs, ORCiDs and IGSNs, so cited works, details about researchers and earth sample meta-data can be accessed directly from ODM2 Admin. This application is part of a growing open source ODM2 application ecosystem under active development. ODM2 Admin can be deployed alongside other tools from the ODM2 ecosystem, including ODM2API and WOFpy, which provide access to the underlying ODM2 data through a Python API and Water One Flow web services.
MR-Tandem: parallel X!Tandem using Hadoop MapReduce on Amazon Web Services
Pratt, Brian; Howbert, J. Jeffry; Tasman, Natalie I.; Nilsson, Erik J.
2012-01-01
Summary: MR-Tandem adapts the popular X!Tandem peptide search engine to work with Hadoop MapReduce for reliable parallel execution of large searches. MR-Tandem runs on any Hadoop cluster but offers special support for Amazon Web Services for creating inexpensive on-demand Hadoop clusters, enabling search volumes that might not otherwise be feasible with the compute resources a researcher has at hand. MR-Tandem is designed to drop in wherever X!Tandem is already in use and requires no modification to existing X!Tandem parameter files, and only minimal modification to X!Tandem-based workflows. Availability and implementation: MR-Tandem is implemented as a lightly modified X!Tandem C++ executable and a Python script that drives Hadoop clusters including Amazon Web Services (AWS) Elastic Map Reduce (EMR), using the modified X!Tandem program as a Hadoop Streaming mapper and reducer. The modified X!Tandem C++ source code is Artistic licensed, supports pluggable scoring, and is available as part of the Sashimi project at http://sashimi.svn.sourceforge.net/viewvc/sashimi/trunk/trans_proteomic_pipeline/extern/xtandem/. The MR-Tandem Python script is Apache licensed and available as part of the Insilicos Cloud Army project at http://ica.svn.sourceforge.net/viewvc/ica/trunk/mr-tandem/. Full documentation and a windows installer that configures MR-Tandem, Python and all necessary packages are available at this same URL. Contact: brian.pratt@insilicos.com PMID:22072385
Python scripting in the nengo simulator.
Stewart, Terrence C; Tripp, Bryan; Eliasmith, Chris
2009-01-01
Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by the recent addition of a Python script interface. Nengo provides a wide range of features that are useful for physiological simulations, including unique features that facilitate development of population-coding models using the neural engineering framework (NEF). This framework uses information theory, signal processing, and control theory to formalize the development of large-scale neural circuit models. Notably, it can also be used to determine the synaptic weights that underlie observed network dynamics and transformations of represented variables. Nengo provides rich NEF support, and includes customizable models of spike generation, muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical user interface. All aspects of Nengo models are accessible via the Python interface, allowing for programmatic creation of models, inspection and modification of neural parameters, and automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated with any existing Java or 100% Python code libraries. Current work includes connecting neural models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine detailed neural models of specific brain regions with higher-level models of remaining brain areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural components, and (2) more realistic sub-components for the larger cognitive models.
Python Scripting in the Nengo Simulator
Stewart, Terrence C.; Tripp, Bryan; Eliasmith, Chris
2008-01-01
Nengo (http://nengo.ca) is an open-source neural simulator that has been greatly enhanced by the recent addition of a Python script interface. Nengo provides a wide range of features that are useful for physiological simulations, including unique features that facilitate development of population-coding models using the neural engineering framework (NEF). This framework uses information theory, signal processing, and control theory to formalize the development of large-scale neural circuit models. Notably, it can also be used to determine the synaptic weights that underlie observed network dynamics and transformations of represented variables. Nengo provides rich NEF support, and includes customizable models of spike generation, muscle dynamics, synaptic plasticity, and synaptic integration, as well as an intuitive graphical user interface. All aspects of Nengo models are accessible via the Python interface, allowing for programmatic creation of models, inspection and modification of neural parameters, and automation of model evaluation. Since Nengo combines Python and Java, it can also be integrated with any existing Java or 100% Python code libraries. Current work includes connecting neural models in Nengo with existing symbolic cognitive models, creating hybrid systems that combine detailed neural models of specific brain regions with higher-level models of remaining brain areas. Such hybrid models can provide (1) more realistic boundary conditions for the neural components, and (2) more realistic sub-components for the larger cognitive models. PMID:19352442
The Clawpack Community of Codes
NASA Astrophysics Data System (ADS)
Mandli, K. T.; LeVeque, R. J.; Ketcheson, D.; Ahmadia, A. J.
2014-12-01
Clawpack, the Conservation Laws Package, has long been one of the standards for solving hyperbolic conservation laws but over the years has extended well beyond this role. Today a community of open-source codes have been developed that address a multitude of different needs including non-conservative balance laws, high-order accurate methods, and parallelism while remaining extensible and easy to use, largely by the judicious use of Python and the original Fortran codes that it wraps. This talk will present some of the recent developments in projects under the Clawpack umbrella, notably the GeoClaw and PyClaw projects. GeoClaw was originally developed as a tool for simulating tsunamis using adaptive mesh refinement but has since encompassed a large number of other geophysically relevant flows including storm surge and debris-flows. PyClaw originated as a Python version of the original Clawpack algorithms but has since been both a testing ground for new algorithmic advances in the Clawpack framework but also an easily extensible framework for solving hyperbolic balance laws. Some of these extensions include the addition of WENO high-order methods, massively parallel capabilities, and adaptive mesh refinement technologies, made possible largely by the flexibility of the Python language and community libraries such as NumPy and PETSc. Because of the tight integration with Python tecnologies, both packages have benefited also from the focus on reproducibility in the Python community, notably IPython notebooks.
Distributed Hydrologic Modeling Apps for Decision Support in the Cloud
NASA Astrophysics Data System (ADS)
Swain, N. R.; Latu, K.; Christiensen, S.; Jones, N.; Nelson, J.
2013-12-01
Advances in computation resources and greater availability of water resources data represent an untapped resource for addressing hydrologic uncertainties in water resources decision-making. The current practice of water authorities relies on empirical, lumped hydrologic models to estimate watershed response. These models are not capable of taking advantage of many of the spatial datasets that are now available. Physically-based, distributed hydrologic models are capable of using these data resources and providing better predictions through stochastic analysis. However, there exists a digital divide that discourages many science-minded decision makers from using distributed models. This divide can be spanned using a combination of existing web technologies. The purpose of this presentation is to present a cloud-based environment that will offer hydrologic modeling tools or 'apps' for decision support and the web technologies that have been selected to aid in its implementation. Compared to the more commonly used lumped-parameter models, distributed models, while being more intuitive, are still data intensive, computationally expensive, and difficult to modify for scenario exploration. However, web technologies such as web GIS, web services, and cloud computing have made the data more accessible, provided an inexpensive means of high-performance computing, and created an environment for developing user-friendly apps for distributed modeling. Since many water authorities are primarily interested in the scenario exploration exercises with hydrologic models, we are creating a toolkit that facilitates the development of a series of apps for manipulating existing distributed models. There are a number of hurdles that cloud-based hydrologic modeling developers face. One of these is how to work with the geospatial data inherent with this class of models in a web environment. Supporting geospatial data in a website is beyond the capabilities of standard web frameworks and it requires the use of additional software. In particular, there are at least three elements that are needed: a geospatially enabled database, a map server, and geoprocessing toolbox. We recommend a software stack for geospatial web application development comprising: MapServer, PostGIS, and 52 North with Python as the scripting language to tie them together. Another hurdle that must be cleared is managing the cloud-computing load. We are using HTCondor as a solution to this end. Finally, we are creating a scripting environment wherein developers will be able to create apps that use existing hydrologic models in our system with minimal effort. This capability will be accomplished by creating a plugin for a Python content management system called CKAN. We are currently developing cyberinfrastructure that utilizes this stack and greatly lowers the investment required to deploy cloud-based modeling apps. This material is based upon work supported by the National Science Foundation under Grant No. 1135482
ELATE: an open-source online application for analysis and visualization of elastic tensors
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Coudert, François-Xavier
2016-07-01
We report on the implementation of a tool for the analysis of second-order elastic stiffness tensors, provided with both an open-source Python module and a standalone online application allowing the visualization of anisotropic mechanical properties. After describing the software features, how we compute the conventional elastic constants and how we represent them graphically, we explain our technical choices for the implementation. In particular, we focus on why a Python module is used to generate the HTML web page with embedded Javascript for dynamical plots.
geoKepler Workflow Module for Computationally Scalable and Reproducible Geoprocessing and Modeling
NASA Astrophysics Data System (ADS)
Cowart, C.; Block, J.; Crawl, D.; Graham, J.; Gupta, A.; Nguyen, M.; de Callafon, R.; Smarr, L.; Altintas, I.
2015-12-01
The NSF-funded WIFIRE project has developed an open-source, online geospatial workflow platform for unifying geoprocessing tools and models for for fire and other geospatially dependent modeling applications. It is a product of WIFIRE's objective to build an end-to-end cyberinfrastructure for real-time and data-driven simulation, prediction and visualization of wildfire behavior. geoKepler includes a set of reusable GIS components, or actors, for the Kepler Scientific Workflow System (https://kepler-project.org). Actors exist for reading and writing GIS data in formats such as Shapefile, GeoJSON, KML, and using OGC web services such as WFS. The actors also allow for calling geoprocessing tools in other packages such as GDAL and GRASS. Kepler integrates functions from multiple platforms and file formats into one framework, thus enabling optimal GIS interoperability, model coupling, and scalability. Products of the GIS actors can be fed directly to models such as FARSITE and WRF. Kepler's ability to schedule and scale processes using Hadoop and Spark also makes geoprocessing ultimately extensible and computationally scalable. The reusable workflows in geoKepler can be made to run automatically when alerted by real-time environmental conditions. Here, we show breakthroughs in the speed of creating complex data for hazard assessments with this platform. We also demonstrate geoKepler workflows that use Data Assimilation to ingest real-time weather data into wildfire simulations, and for data mining techniques to gain insight into environmental conditions affecting fire behavior. Existing machine learning tools and libraries such as R and MLlib are being leveraged for this purpose in Kepler, as well as Kepler's Distributed Data Parallel (DDP) capability to provide a framework for scalable processing. geoKepler workflows can be executed via an iPython notebook as a part of a Jupyter hub at UC San Diego for sharing and reporting of the scientific analysis and results from various runs of geoKepler workflows. The communication between iPython and Kepler workflow executions is established through an iPython magic function for Kepler that we have implemented. In summary, geoKepler is an ecosystem that makes geospatial processing and analysis of any kind programmable, reusable, scalable and sharable.
pyGeno: A Python package for precision medicine and proteogenomics.
Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien
2016-01-01
pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies.
pyGeno: A Python package for precision medicine and proteogenomics
Daouda, Tariq; Perreault, Claude; Lemieux, Sébastien
2016-01-01
pyGeno is a Python package mainly intended for precision medicine applications that revolve around genomics and proteomics. It integrates reference sequences and annotations from Ensembl, genomic polymorphisms from the dbSNP database and data from next-gen sequencing into an easy to use, memory-efficient and fast framework, therefore allowing the user to easily explore subject-specific genomes and proteomes. Compared to a standalone program, pyGeno gives the user access to the complete expressivity of Python, a general programming language. Its range of application therefore encompasses both short scripts and large scale genome-wide studies. PMID:27785359
Sharing knowledge of Planetary Datasets through the Web-Based PRoGIS
NASA Astrophysics Data System (ADS)
Giordano, M. G.; Morley, J. M.; Muller, J. P. M.; Barnes, R. B.; Tao, Y. T.
2015-10-01
The large amount of raw and derived data available from various planetary surface missions (e.g. Mars and Moon in our case) has been integrated withco-registered and geocoded orbital image data to provide rover traverses and camera site locations in universal global co-ordinates [1]. This then allows an integrated GIS to use these geocoded products for scientific applications: we aim to create a web interface, PRoGIS, with minimal controls focusing on the usability and visualisation of the data, to allow planetary geologists to share annotated surface observations. These observations in a common context are shared between different tools and software (PRoGIS, Pro3D, 3D point cloud viewer). Our aim is to use only Open Source components that integrate Open Web Services for planetary data to make available an universal platform with a WebGIS interface, as well as a 3D point cloud and a Panorama viewer to explore derived data. On top of these tools we are building capabilities to make and share annotations amongst users. We use Python and Django for the server-side framework and Open Layers 3 for the WebGIS client. For good performance previewing 3D data (point clouds, pictures on the surface and panoramas) we employ ThreeJS, a WebGL Javascript library. Additionally, user and group controls allow scientists to store and share their observations. PRoGIS not only displays data but also launches sophisticated 3D vision reprocessing (PRoVIP) and an immersive 3D analysis environment (PRo3D).
Climate Model Diagnostic Analyzer Web Service System
NASA Astrophysics Data System (ADS)
Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.
2013-12-01
The latest Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with newly available global observations. The traditional approach to climate model evaluation, which compares a single parameter at a time, identifies symptomatic model biases and errors but fails to diagnose the model problems. The model diagnosis process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. To address these challenges, we are developing a parallel, distributed web-service system that enables the physics-based multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks (i.e., Flask, Gunicorn, and Tornado). The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation and (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, and (4) the calculation of difference between two variables. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA is planned to be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. The requirements of the educational tool are defined with the interaction with the school organizers, and CMDA is customized to meet the requirements accordingly. The tool needs to be production quality for 30+ simultaneous users. The summer school will thus serve as a valuable testbed for the tool development, preparing CMDA to serve the Earth-science modeling and model-analysis community at the end of the project. This work was funded by the NASA Earth Science Program called Computational Modeling Algorithms and Cyberinfrastructure (CMAC).
The CARMEN software as a service infrastructure.
Weeks, Michael; Jessop, Mark; Fletcher, Martyn; Hodge, Victoria; Jackson, Tom; Austin, Jim
2013-01-28
The CARMEN platform allows neuroscientists to share data, metadata, services and workflows, and to execute these services and workflows remotely via a Web portal. This paper describes how we implemented a service-based infrastructure into the CARMEN Virtual Laboratory. A Software as a Service framework was developed to allow generic new and legacy code to be deployed as services on a heterogeneous execution framework. Users can submit analysis code typically written in Matlab, Python, C/C++ and R as non-interactive standalone command-line applications and wrap them as services in a form suitable for deployment on the platform. The CARMEN Service Builder tool enables neuroscientists to quickly wrap their analysis software for deployment to the CARMEN platform, as a service without knowledge of the service framework or the CARMEN system. A metadata schema describes each service in terms of both system and user requirements. The search functionality allows services to be quickly discovered from the many services available. Within the platform, services may be combined into more complicated analyses using the workflow tool. CARMEN and the service infrastructure are targeted towards the neuroscience community; however, it is a generic platform, and can be targeted towards any discipline.
Urbanization may limit impacts of an invasive predator on native mammal diversity
Reichert, Brian E.; Sovie, Adia R.; Udell, Brad J.; Hart, Kristen M.; Borkhataria, Rena R.; Bonneau, Mathieu; Reed, Robert; McCleery, Robert A.
2017-01-01
AimOur understanding of the effects of invasive species on faunal diversity is limited in part because invasions often occur in modified landscapes where other drivers of community diversity can exacerbate or reduce the net impacts of an invader. Furthermore, rigorous assessments of the effects of invasive species on native communities that account for variation in sampling, species-specific detection and occurrence of rare species are lacking. Invasive Burmese pythons (Python molurus bivittatus) may be causing declines in medium- to large-sized mammals throughout the Greater Everglades Ecosystem (GEE); however, other factors such as urbanization, habitat changes and drastic alteration in water flow may also be influential in structuring mammal communities. The aim of this study was to gain an understanding of how mammal communities simultaneously facing invasive predators and intensively human-altered landscapes are influenced by these drivers and their interactions.LocationFlorida, USA.MethodsWe used data from trail cameras and scat searches with a hierarchical community model that accounts for undetected species to determine the relative influence of introduced Burmese pythons, urbanization, local hydrology, habitat types and interactive effects between pythons and urbanization on mammal species occurrence, site-level species richness, and turnover.ResultsPython density had significant negative effects on all species except coyotes. Despite these negative effects, occurrence of some generalist species increased significantly near urban areas. At the community level, pythons had the greatest impact on species richness, while turnover was greatest along the urbanization gradient where communities were increasingly similar as distance to urbanization decreased.Main conclusionsWe found evidence for an antagonistic interaction between pythons and urbanization where the impacts of pythons were reduced near urban development. Python-induced changes to mammal communities may be mediated near urban development, but elsewhere in the GEE, pythons are likely causing a fundamental restructuring of the food web, declines in ecosystem function, and creating complex and unpredictable cascading effects.
D3GB: An Interactive Genome Browser for R, Python, and WordPress.
Barrios, David; Prieto, Carlos
2017-05-01
Genome browsers are useful not only for showing final results but also for improving analysis protocols, testing data quality, and generating result drafts. Its integration in analysis pipelines allows the optimization of parameters, which leads to better results. New developments that facilitate the creation and utilization of genome browsers could contribute to improving analysis results and supporting the quick visualization of genomic data. D3 Genome Browser is an interactive genome browser that can be easily integrated in analysis protocols and shared on the Web. It is distributed as an R package, a Python module, and a WordPress plugin to facilitate its integration in pipelines and the utilization of platform capabilities. It is compatible with popular data formats such as GenBank, GFF, BED, FASTA, and VCF, and enables the exploration of genomic data with a Web browser.
uPy: a ubiquitous CG Python API with biological-modeling applications.
Autin, Ludovic; Johnson, Graham; Hake, Johan; Olson, Arthur; Sanner, Michel
2012-01-01
The uPy Python extension module provides a uniform abstraction of the APIs of several 3D computer graphics programs (called hosts), including Blender, Maya, Cinema 4D, and DejaVu. A plug-in written with uPy can run in all uPy-supported hosts. Using uPy, researchers have created complex plug-ins for molecular and cellular modeling and visualization. uPy can simplify programming for many types of projects (not solely science applications) intended for multihost distribution. It's available at http://upy.scripps.edu. The first featured Web extra is a video that shows interactive analysis of a calcium dynamics simulation. YouTube URL: http://youtu.be/wvs-nWE6ypo. The second featured Web extra is a video that shows rotation of the HIV virus. YouTube URL: http://youtu.be/vEOybMaRoKc.
Improvements to the User Interface for LHCb's Software continuous integration system.
NASA Astrophysics Data System (ADS)
Clemencic, M.; Couturier, B.; Kyriazi, S.
2015-12-01
The purpose of this paper is to identify a set of steps leading to an improved interface for LHCb's Nightly Builds Dashboard. The goal is to have an efficient application that meets the needs of both the project developers, by providing them with a user friendly interface, as well as those of the computing team supporting the system, by providing them with a dashboard allowing for better monitoring of the build job themselves. In line with what is already used by LHCb, the web interface has been implemented with the Flask Python framework for future maintainability and code clarity. The Database chosen to host the data is the schema-less CouchDB[7], serving the purpose of flexibility in document form changes. To improve the user experience, we use JavaScript libraries such as JQuery[11].
PCSIM: A Parallel Simulation Environment for Neural Circuits Fully Integrated with Python
Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus
2008-01-01
The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations. PMID:19543450
Status of parallel Python-based implementation of UEDGE
NASA Astrophysics Data System (ADS)
Umansky, M. V.; Pankin, A. Y.; Rognlien, T. D.; Dimits, A. M.; Friedman, A.; Joseph, I.
2017-10-01
The tokamak edge transport code UEDGE has long used the code-development and run-time framework Basis. However, with the support for Basis expected to terminate in the coming years, and with the advent of the modern numerical language Python, it has become desirable to move UEDGE to Python, to ensure its long-term viability. Our new Python-based UEDGE implementation takes advantage of the portable build system developed for FACETS. The new implementation gives access to Python's graphical libraries and numerical packages for pre- and post-processing, and support of HDF5 simplifies exchanging data. The older serial version of UEDGE has used for time-stepping the Newton-Krylov solver NKSOL. The renovated implementation uses backward Euler discretization with nonlinear solvers from PETSc, which has the promise to significantly improve the UEDGE parallel performance. We will report on assessment of some of the extended UEDGE capabilities emerging in the new implementation, and will discuss the future directions. Work performed for U.S. DOE by LLNL under contract DE-AC52-07NA27344.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Veseli, S.
As the number of sites deploying and adopting EPICS Version 4 grows, so does the need to support PV Access from multiple languages. Especially important are the widely used scripting languages that tend to reduce both software development time and the learning curve for new users. In this paper we describe PvaPy, a Python API for the EPICS PV Access protocol and its accompanying structured data API. Rather than implementing the protocol itself in Python, PvaPy wraps the existing EPICS Version 4 C++ libraries using the Boost.Python framework. This approach allows us to benefit from the existing code base andmore » functionality, and to significantly reduce the Python API development effort. PvaPy objects are based on Python dictionaries and provide users with the ability to access even the most complex of PV Data structures in a relatively straightforward way. Its interfaces are easy to use, and include support for advanced EPICS Version 4 features such as implementation of client and server Remote Procedure Calls (RPC).« less
Rutllant, Josep
2016-01-01
Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value. PMID:27200191
Irizarry, Kristopher J L; Rutllant, Josep
2016-01-01
Comparative genomics approaches provide a means of leveraging functional genomics information from a highly annotated model organism's genome (such as the mouse genome) in order to make physiological inferences about the role of genes and proteins in a less characterized organism's genome (such as the Burmese python). We employed a comparative genomics approach to produce the functional annotation of Python bivittatus genes encoding proteins associated with sperm phenotypes. We identify 129 gene-phenotype relationships in the python which are implicated in 10 specific sperm phenotypes. Results obtained through our systematic analysis identified subsets of python genes exhibiting associations with gene ontology annotation terms. Functional annotation data was represented in a semantic scatter plot. Together, these newly annotated Python bivittatus genome resources provide a high resolution framework from which the biology relating to reptile spermatogenesis, fertility, and reproduction can be further investigated. Applications of our research include (1) production of genetic diagnostics for assessing fertility in domestic and wild reptiles; (2) enhanced assisted reproduction technology for endangered and captive reptiles; and (3) novel molecular targets for biotechnology-based approaches aimed at reducing fertility and reproduction of invasive reptiles. Additional enhancements to reptile genomic resources will further enhance their value.
ssbio: a Python framework for structural systems biology.
Mih, Nathan; Brunk, Elizabeth; Chen, Ke; Catoiu, Edward; Sastry, Anand; Kavvas, Erol; Monk, Jonathan M; Zhang, Zhen; Palsson, Bernhard O
2018-06-15
Working with protein structures at the genome-scale has been challenging in a variety of ways. Here, we present ssbio, a Python package that provides a framework to easily work with structural information in the context of genome-scale network reconstructions, which can contain thousands of individual proteins. The ssbio package provides an automated pipeline to construct high quality genome-scale models with protein structures (GEM-PROs), wrappers to popular third-party programs to compute associated protein properties, and methods to visualize and annotate structures directly in Jupyter notebooks, thus lowering the barrier of linking 3D structural data with established systems workflows. ssbio is implemented in Python and available to download under the MIT license at http://github.com/SBRG/ssbio. Documentation and Jupyter notebook tutorials are available at http://ssbio.readthedocs.io/en/latest/. Interactive notebooks can be launched using Binder at https://mybinder.org/v2/gh/SBRG/ssbio/master?filepath=Binder.ipynb. Supplementary data are available at Bioinformatics online.
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta.
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J
2010-03-01
PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site.
PyRosetta: a script-based interface for implementing molecular modeling algorithms using Rosetta
Chaudhury, Sidhartha; Lyskov, Sergey; Gray, Jeffrey J.
2010-01-01
Summary: PyRosetta is a stand-alone Python-based implementation of the Rosetta molecular modeling package that allows users to write custom structure prediction and design algorithms using the major Rosetta sampling and scoring functions. PyRosetta contains Python bindings to libraries that define Rosetta functions including those for accessing and manipulating protein structure, calculating energies and running Monte Carlo-based simulations. PyRosetta can be used in two ways: (i) interactively, using iPython and (ii) script-based, using Python scripting. Interactive mode contains a number of help features and is ideal for beginners while script-mode is best suited for algorithm development. PyRosetta has similar computational performance to Rosetta, can be easily scaled up for cluster applications and has been implemented for algorithms demonstrating protein docking, protein folding, loop modeling and design. Availability: PyRosetta is a stand-alone package available at http://www.pyrosetta.org under the Rosetta license which is free for academic and non-profit users. A tutorial, user's manual and sample scripts demonstrating usage are also available on the web site. Contact: pyrosetta@graylab.jhu.edu PMID:20061306
PyPathway: Python Package for Biological Network Analysis and Visualization.
Xu, Yang; Luo, Xiao-Chun
2018-05-01
Life science studies represent one of the biggest generators of large data sets, mainly because of rapid sequencing technological advances. Biological networks including interactive networks and human curated pathways are essential to understand these high-throughput data sets. Biological network analysis offers a method to explore systematically not only the molecular complexity of a particular disease but also the molecular relationships among apparently distinct phenotypes. Currently, several packages for Python community have been developed, such as BioPython and Goatools. However, tools to perform comprehensive network analysis and visualization are still needed. Here, we have developed PyPathway, an extensible free and open source Python package for functional enrichment analysis, network modeling, and network visualization. The network process module supports various interaction network and pathway databases such as Reactome, WikiPathway, STRING, and BioGRID. The network analysis module implements overrepresentation analysis, gene set enrichment analysis, network-based enrichment, and de novo network modeling. Finally, the visualization and data publishing modules enable users to share their analysis by using an easy web application. For package availability, see the first Reference.
Pyff - a pythonic framework for feedback applications and stimulus presentation in neuroscience.
Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S; Kramarek, Maria T; Müller, Klaus-Robert; Blankertz, Benjamin
2010-01-01
This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain-computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation.
Pyff – A Pythonic Framework for Feedback Applications and Stimulus Presentation in Neuroscience
Venthur, Bastian; Scholler, Simon; Williamson, John; Dähne, Sven; Treder, Matthias S.; Kramarek, Maria T.; Müller, Klaus-Robert; Blankertz, Benjamin
2010-01-01
This paper introduces Pyff, the Pythonic feedback framework for feedback applications and stimulus presentation. Pyff provides a platform-independent framework that allows users to develop and run neuroscientific experiments in the programming language Python. Existing solutions have mostly been implemented in C++, which makes for a rather tedious programming task for non-computer-scientists, or in Matlab, which is not well suited for more advanced visual or auditory applications. Pyff was designed to make experimental paradigms (i.e., feedback and stimulus applications) easily programmable. It includes base classes for various types of common feedbacks and stimuli as well as useful libraries for external hardware such as eyetrackers. Pyff is also equipped with a steadily growing set of ready-to-use feedbacks and stimuli. It can be used as a standalone application, for instance providing stimulus presentation in psychophysics experiments, or within a closed loop such as in biofeedback or brain–computer interfacing experiments. Pyff communicates with other systems via a standardized communication protocol and is therefore suitable to be used with any system that may be adapted to send its data in the specified format. Having such a general, open-source framework will help foster a fruitful exchange of experimental paradigms between research groups. In particular, it will decrease the need of reprogramming standard paradigms, ease the reproducibility of published results, and naturally entail some standardization of stimulus presentation. PMID:21160550
Hanson-Smith, Victor; Johnson, Alexander
2016-07-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and "resurrect" (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server.
Hanson-Smith, Victor; Johnson, Alexander
2016-01-01
The method of phylogenetic ancestral sequence reconstruction is a powerful approach for studying evolutionary relationships among protein sequence, structure, and function. In particular, this approach allows investigators to (1) reconstruct and “resurrect” (that is, synthesize in vivo or in vitro) extinct proteins to study how they differ from modern proteins, (2) identify key amino acid changes that, over evolutionary timescales, have altered the function of the protein, and (3) order historical events in the evolution of protein function. Widespread use of this approach has been slow among molecular biologists, in part because the methods require significant computational expertise. Here we present PhyloBot, a web-based software tool that makes ancestral sequence reconstruction easy. Designed for non-experts, it integrates all the necessary software into a single user interface. Additionally, PhyloBot provides interactive tools to explore evolutionary trajectories between ancestors, enabling the rapid generation of hypotheses that can be tested using genetic or biochemical approaches. Early versions of this software were used in previous studies to discover genetic mechanisms underlying the functions of diverse protein families, including V-ATPase ion pumps, DNA-binding transcription regulators, and serine/threonine protein kinases. PhyloBot runs in a web browser, and is available at the following URL: http://www.phylobot.com. The software is implemented in Python using the Django web framework, and runs on elastic cloud computing resources from Amazon Web Services. Users can create and submit jobs on our free server (at the URL listed above), or use our open-source code to launch their own PhyloBot server. PMID:27472806
pyOpenMS: a Python-based interface to the OpenMS mass-spectrometry algorithm library.
Röst, Hannes L; Schmitt, Uwe; Aebersold, Ruedi; Malmström, Lars
2014-01-01
pyOpenMS is an open-source, Python-based interface to the C++ OpenMS library, providing facile access to a feature-rich, open-source algorithm library for MS-based proteomics analysis. It contains Python bindings that allow raw access to the data structures and algorithms implemented in OpenMS, specifically those for file access (mzXML, mzML, TraML, mzIdentML among others), basic signal processing (smoothing, filtering, de-isotoping, and peak-picking) and complex data analysis (including label-free, SILAC, iTRAQ, and SWATH analysis tools). pyOpenMS thus allows fast prototyping and efficient workflow development in a fully interactive manner (using the interactive Python interpreter) and is also ideally suited for researchers not proficient in C++. In addition, our code to wrap a complex C++ library is completely open-source, allowing other projects to create similar bindings with ease. The pyOpenMS framework is freely available at https://pypi.python.org/pypi/pyopenms while the autowrap tool to create Cython code automatically is available at https://pypi.python.org/pypi/autowrap (both released under the 3-clause BSD licence). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Combining Open-Source Packages for Planetary Exploration
NASA Astrophysics Data System (ADS)
Schmidt, Albrecht; Grieger, Björn; Völk, Stefan
2015-04-01
The science planning of the ESA Rosetta mission has presented challenges which were addressed with combining various open-source software packages, such as the SPICE toolkit, the Python language and the Web graphics library three.js. The challenge was to compute certain parameters from a pool of trajectories and (possible) attitudes to describe the behaviour of the spacecraft. To be able to do this declaratively and efficiently, a C library was implemented that allows to interface the SPICE toolkit for geometrical computations from the Python language and process as much data as possible during one subroutine call. To minimise the lines of code one has to write special care was taken to ensure that the bindings were idiomatic and thus integrate well into the Python language and ecosystem. When done well, this very much simplifies the structure of the code and facilitates the testing for correctness by automatic test suites and visual inspections. For rapid visualisation and confirmation of correctness of results, the geometries were visualised with the three.js library, a popular Javascript library for displaying three-dimensional graphics in a Web browser. Programmatically, this was achieved by generating data files from SPICE sources that were included into templated HTML and displayed by a browser, thus made easily accessible to interested parties at large. As feedback came and new ideas were to be explored, the authors benefited greatly from the design of the Python-to-SPICE library which allowed the expression of algorithms to be concise and easier to communicate. In summary, by combining several well-established open-source tools, we were able to put together a flexible computation and visualisation environment that helped communicate and build confidence in planning ideas.
COMP Superscalar, an interoperable programming framework
NASA Astrophysics Data System (ADS)
Badia, Rosa M.; Conejero, Javier; Diaz, Carlos; Ejarque, Jorge; Lezzi, Daniele; Lordan, Francesc; Ramon-Cortes, Cristian; Sirvent, Raul
2015-12-01
COMPSs is a programming framework that aims to facilitate the parallelization of existing applications written in Java, C/C++ and Python scripts. For that purpose, it offers a simple programming model based on sequential development in which the user is mainly responsible for (i) identifying the functions to be executed as asynchronous parallel tasks and (ii) annotating them with annotations or standard Python decorators. A runtime system is in charge of exploiting the inherent concurrency of the code, automatically detecting and enforcing the data dependencies between tasks and spawning these tasks to the available resources, which can be nodes in a cluster, clouds or grids. In cloud environments, COMPSs provides scalability and elasticity features allowing the dynamic provision of resources.
Psyplot: Visualizing rectangular and triangular Climate Model Data with Python
NASA Astrophysics Data System (ADS)
Sommer, Philipp
2016-04-01
The development and use of climate models often requires the visualization of geo-referenced data. Creating visualizations should be fast, attractive, flexible, easily applicable and easily reproducible. There is a wide range of software tools available for visualizing raster data, but they often are inaccessible to many users (e.g. because they are difficult to use in a script or have low flexibility). In order to facilitate easy visualization of geo-referenced data, we developed a new framework called "psyplot," which can aid earth system scientists with their daily work. It is purely written in the programming language Python and primarily built upon the python packages matplotlib, cartopy and xray. The package can visualize data stored on the hard disk (e.g. NetCDF, GeoTIFF, any other file format supported by the xray package), or directly from the memory or Climate Data Operators (CDOs). Furthermore, data can be visualized on a rectangular grid (following or not following the CF Conventions) and on a triangular grid (following the CF or UGRID Conventions). Psyplot visualizes 2D scalar and vector fields, enabling the user to easily manage and format multiple plots at the same time, and to export the plots into all common picture formats and movies covered by the matplotlib package. The package can currently be used in an interactive python session or in python scripts, and will soon be developed for use with a graphical user interface (GUI). Finally, the psyplot framework enables flexible configuration, allows easy integration into other scripts that uses matplotlib, and provides a flexible foundation for further development.
Pecevski, Dejan; Natschläger, Thomas; Schuch, Klaus
2009-01-01
The Parallel Circuit SIMulator (PCSIM) is a software package for simulation of neural circuits. It is primarily designed for distributed simulation of large scale networks of spiking point neurons. Although its computational core is written in C++, PCSIM's primary interface is implemented in the Python programming language, which is a powerful programming environment and allows the user to easily integrate the neural circuit simulator with data analysis and visualization tools to manage the full neural modeling life cycle. The main focus of this paper is to describe PCSIM's full integration into Python and the benefits thereof. In particular we will investigate how the automatically generated bidirectional interface and PCSIM's object-oriented modular framework enable the user to adopt a hybrid modeling approach: using and extending PCSIM's functionality either employing pure Python or C++ and thus combining the advantages of both worlds. Furthermore, we describe several supplementary PCSIM packages written in pure Python and tailored towards setting up and analyzing neural simulations.
HitWalker2: visual analytics for precision medicine and beyond.
Bottomly, Daniel; McWeeney, Shannon K; Wilmot, Beth
2016-04-15
The lack of visualization frameworks to guide interpretation and facilitate discovery is a potential bottleneck for precision medicine, systems genetics and other studies. To address this we have developed an interactive, reproducible, web-based prioritization approach that builds on our earlier work. HitWalker2 is highly flexible and can utilize many data types and prioritization methods based upon available data and desired questions, allowing it to be utilized in a diverse range of studies such as cancer, infectious disease and psychiatric disorders. Source code is freely available at https://github.com/biodev/HitWalker2 and implemented using Python/Django, Neo4j and Javascript (D3.js and jQuery). We support major open source browsers (e.g. Firefox and Chromium/Chrome). wilmotb@ohsu.edu Supplementary data are available at Bioinformatics online. Additional information/instructions are available at https://github.com/biodev/HitWalker2/wiki. © The Author 2015. Published by Oxford University Press.
Drug-Path: a database for drug-induced pathways
Zeng, Hui; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. Database URL: http://www.cuilab.cn/drugpath PMID:26130661
Drug-Path: a database for drug-induced pathways.
Zeng, Hui; Qiu, Chengxiang; Cui, Qinghua
2015-01-01
Some databases for drug-associated pathways have been built and are publicly available. However, the pathways curated in most of these databases are drug-action or drug-metabolism pathways. In recent years, high-throughput technologies such as microarray and RNA-sequencing have produced lots of drug-induced gene expression profiles. Interestingly, drug-induced gene expression profile frequently show distinct patterns, indicating that drugs normally induce the activation or repression of distinct pathways. Therefore, these pathways contribute to study the mechanisms of drugs and drug-repurposing. Here, we present Drug-Path, a database of drug-induced pathways, which was generated by KEGG pathway enrichment analysis for drug-induced upregulated genes and downregulated genes based on drug-induced gene expression datasets in Connectivity Map. Drug-Path provides user-friendly interfaces to retrieve, visualize and download the drug-induced pathway data in the database. In addition, the genes deregulated by a given drug are highlighted in the pathways. All data were organized using SQLite. The web site was implemented using Django, a Python web framework. Finally, we believe that this database will be useful for related researches. © The Author(s) 2015. Published by Oxford University Press.
User Driven Image Stacking for ODI Data and Beyond via a Highly Customizable Web Interface
NASA Astrophysics Data System (ADS)
Hayashi, S.; Gopu, A.; Young, M. D.; Kotulla, R.
2015-09-01
While some astronomical archives have begun serving standard calibrated data products, the process of producing stacked images remains a challenge left to the end-user. The benefits of astronomical image stacking are well established, and dither patterns are recommended for almost all observing targets. Some archives automatically produce stacks of limited scientific usefulness without any fine-grained user or operator configurability. In this paper, we present PPA Stack, a web based stacking framework within the ODI - Portal, Pipeline, and Archive system. PPA Stack offers a web user interface with built-in heuristics (based on pointing, filter, and other metadata information) to pre-sort images into a set of likely stacks while still allowing the user or operator complete control over the images and parameters for each of the stacks they wish to produce. The user interface, designed using AngularJS, provides multiple views of the input dataset and parameters, all of which are synchronized in real time. A backend consisting of a Python application optimized for ODI data, wrapped around the SWarp software, handles the execution of stacking workflow jobs on Indiana University's Big Red II supercomputer, and the subsequent ingestion of the combined images back into the PPA archive. PPA Stack is designed to enable seamless integration of other stacking applications in the future, so users can select the most appropriate option for their science.
The Lake Tahoe Basin Land Use Simulation Model
Forney, William M.; Oldham, I. Benson
2011-01-01
This U.S. Geological Survey Open-File Report describes the final modeling product for the Tahoe Decision Support System project for the Lake Tahoe Basin funded by the Southern Nevada Public Land Management Act and the U.S. Geological Survey's Geographic Analysis and Monitoring Program. This research was conducted by the U.S. Geological Survey Western Geographic Science Center. The purpose of this report is to describe the basic elements of the novel Lake Tahoe Basin Land Use Simulation Model, publish samples of the data inputs, basic outputs of the model, and the details of the Python code. The results of this report include a basic description of the Land Use Simulation Model, descriptions and summary statistics of model inputs, two figures showing the graphical user interface from the web-based tool, samples of the two input files, seven tables of basic output results from the web-based tool and descriptions of their parameters, and the fully functional Python code.
Weather forecasting with open source software
NASA Astrophysics Data System (ADS)
Rautenhaus, Marc; Dörnbrack, Andreas
2013-04-01
To forecast the weather situation during aircraft-based atmospheric field campaigns, we employ a tool chain of existing and self-developed open source software tools and open standards. Of particular value are the Python programming language with its extension libraries NumPy, SciPy, PyQt4, Matplotlib and the basemap toolkit, the NetCDF standard with the Climate and Forecast (CF) Metadata conventions, and the Open Geospatial Consortium Web Map Service standard. These open source libraries and open standards helped to implement the "Mission Support System", a Web Map Service based tool to support weather forecasting and flight planning during field campaigns. The tool has been implemented in Python and has also been released as open source (Rautenhaus et al., Geosci. Model Dev., 5, 55-71, 2012). In this presentation we discuss the usage of free and open source software for weather forecasting in the context of research flight planning, and highlight how the field campaign work benefits from using open source tools and open standards.
Earth Science Computational Architecture for Multi-disciplinary Investigations
NASA Astrophysics Data System (ADS)
Parker, J. W.; Blom, R.; Gurrola, E.; Katz, D.; Lyzenga, G.; Norton, C.
2005-12-01
Understanding the processes underlying Earth's deformation and mass transport requires a non-traditional, integrated, interdisciplinary, approach dependent on multiple space and ground based data sets, modeling, and computational tools. Currently, details of geophysical data acquisition, analysis, and modeling largely limit research to discipline domain experts. Interdisciplinary research requires a new computational architecture that is optimized to perform complex data processing of multiple solid Earth science data types in a user-friendly environment. A web-based computational framework is being developed and integrated with applications for automatic interferometric radar processing, and models for high-resolution deformation & gravity, forward models of viscoelastic mass loading over short wavelengths & complex time histories, forward-inverse codes for characterizing surface loading-response over time scales of days to tens of thousands of years, and inversion of combined space magnetic & gravity fields to constrain deep crustal and mantle properties. This framework combines an adaptation of the QuakeSim distributed services methodology with the Pyre framework for multiphysics development. The system uses a three-tier architecture, with a middle tier server that manages user projects, available resources, and security. This ensures scalability to very large networks of collaborators. Users log into a web page and have a personal project area, persistently maintained between connections, for each application. Upon selection of an application and host from a list of available entities, inputs may be uploaded or constructed from web forms and available data archives, including gravity, GPS and imaging radar data. The user is notified of job completion and directed to results posted via URLs. Interdisciplinary work is supported through easy availability of all applications via common browsers, application tutorials and reference guides, and worked examples with visual response. At the platform level, multi-physics application development and workflow are available in the enriched environment of the Pyre framework. Advantages for combining separate expert domains include: multiple application components efficiently interact through Python shared libraries, investigators may nimbly swap models and try new parameter values, and a rich array of common tools are inherent in the Pyre system. The first four specific investigations to use this framework are: Gulf Coast subsidence: understanding of partitioning between compaction, subsidence and growth faulting; Gravity & deformation of a layered spherical earth model due to large earthquakes; Rift setting of Lake Vostok, Antarctica; and global ice mass changes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, X; Liu, L; Xing, L
Purpose: Visualization and processing of medical images and radiation treatment plan evaluation have traditionally been constrained to local workstations with limited computation power and ability of data sharing and software update. We present a web-based image processing and planning evaluation platform (WIPPEP) for radiotherapy applications with high efficiency, ubiquitous web access, and real-time data sharing. Methods: This software platform consists of three parts: web server, image server and computation server. Each independent server communicates with each other through HTTP requests. The web server is the key component that provides visualizations and user interface through front-end web browsers and relay informationmore » to the backend to process user requests. The image server serves as a PACS system. The computation server performs the actual image processing and dose calculation. The web server backend is developed using Java Servlets and the frontend is developed using HTML5, Javascript, and jQuery. The image server is based on open source DCME4CHEE PACS system. The computation server can be written in any programming language as long as it can send/receive HTTP requests. Our computation server was implemented in Delphi, Python and PHP, which can process data directly or via a C++ program DLL. Results: This software platform is running on a 32-core CPU server virtually hosting the web server, image server, and computation servers separately. Users can visit our internal website with Chrome browser, select a specific patient, visualize image and RT structures belonging to this patient and perform image segmentation running Delphi computation server and Monte Carlo dose calculation on Python or PHP computation server. Conclusion: We have developed a webbased image processing and plan evaluation platform prototype for radiotherapy. This system has clearly demonstrated the feasibility of performing image processing and plan evaluation platform through a web browser and exhibited potential for future cloud based radiotherapy.« less
The Integrated Plasma Simulator: A Flexible Python Framework for Coupled Multiphysics Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foley, Samantha S; Elwasif, Wael R; Bernholdt, David E
2011-11-01
High-fidelity coupled multiphysics simulations are an increasingly important aspect of computational science. In many domains, however, there has been very limited experience with simulations of this sort, therefore research in coupled multiphysics often requires computational frameworks with significant flexibility to respond to the changing directions of the physics and mathematics. This paper presents the Integrated Plasma Simulator (IPS), a framework designed for loosely coupled simulations of fusion plasmas. The IPS provides users with a simple component architecture into which a wide range of existing plasma physics codes can be inserted as components. Simulations can take advantage of multiple levels ofmore » parallelism supported in the IPS, and can be controlled by a high-level ``driver'' component, or by other coordination mechanisms, such as an asynchronous event service. We describe the requirements and design of the framework, and how they were implemented in the Python language. We also illustrate the flexibility of the framework by providing examples of different types of simulations that utilize various features of the IPS.« less
Modular Toolkit for Data Processing (MDP): A Python Data Processing Framework.
Zito, Tiziano; Wilbert, Niko; Wiskott, Laurenz; Berkes, Pietro
2008-01-01
Modular toolkit for Data Processing (MDP) is a data processing framework written in Python. From the user's perspective, MDP is a collection of supervised and unsupervised learning algorithms and other data processing units that can be combined into data processing sequences and more complex feed-forward network architectures. Computations are performed efficiently in terms of speed and memory requirements. From the scientific developer's perspective, MDP is a modular framework, which can easily be expanded. The implementation of new algorithms is easy and intuitive. The new implemented units are then automatically integrated with the rest of the library. MDP has been written in the context of theoretical research in neuroscience, but it has been designed to be helpful in any context where trainable data processing algorithms are used. Its simplicity on the user's side, the variety of readily available algorithms, and the reusability of the implemented units make it also a useful educational tool.
A streamlined Python framework for AT-TPC data analysis
NASA Astrophysics Data System (ADS)
Taylor, J. Z.; Bradt, J.; Bazin, D.; Kuchera, M. P.
2017-09-01
User-friendly data analysis software has been developed for the Active-Target Time Projection Chamber (AT-TPC) experiment at the National Superconducting Cyclotron Laboratory at Michigan State University. The AT-TPC, commissioned in 2014, is a gas-filled detector that acts as both the detector and target for high-efficiency detection of low-intensity, exotic nuclear reactions. The pytpc framework is a Python package for analyzing AT-TPC data. The package was developed for the analysis of 46Ar(p, p) data. The existing software was used to analyze data produced by the 40Ar(p, p) experiment that ran in August, 2015. Usage of the package was documented in an analysis manual both to improve analysis steps and aid in the work of future AT-TPC users. Software features and analysis methods in the pytpc framework will be presented along with the 40Ar results.
Brough, David B; Wheeler, Daniel; Kalidindi, Surya R
2017-03-01
There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers.
Brough, David B; Wheeler, Daniel; Kalidindi, Surya R.
2017-01-01
There is a critical need for customized analytics that take into account the stochastic nature of the internal structure of materials at multiple length scales in order to extract relevant and transferable knowledge. Data driven Process-Structure-Property (PSP) linkages provide systemic, modular and hierarchical framework for community driven curation of materials knowledge, and its transference to design and manufacturing experts. The Materials Knowledge Systems in Python project (PyMKS) is the first open source materials data science framework that can be used to create high value PSP linkages for hierarchical materials that can be leveraged by experts in materials science and engineering, manufacturing, machine learning and data science communities. This paper describes the main functions available from this repository, along with illustrations of how these can be accessed, utilized, and potentially further refined by the broader community of researchers. PMID:28690971
NASA Astrophysics Data System (ADS)
Merticariu, Vlad; Misev, Dimitar; Baumann, Peter
2017-04-01
While python has developed into the lingua franca in Data Science there is often a paradigm break when accessing specialized tools. In particular for one of the core data categories in science and engineering, massive multi-dimensional arrays, out-of-memory solutions typically employ their own, different models. We discuss this situation on the example of the scalable open-source array engine, rasdaman ("raster data manager") which offers access to and processing of Petascale multi-dimensional arrays through an SQL-style array query language, rasql. Such queries are executed in the server on a storage engine utilizing adaptive array partitioning and based on a processing engine implementing a "tile streaming" paradigm to allow processing of arrays massively larger than server RAM. The rasdaman QL has acted as blueprint for forthcoming ISO Array SQL and the Open Geospatial Consortium (OGC) geo analytics language, Web Coverage Processing Service, adopted in 2008. Not surprisingly, rasdaman is OGC and INSPIRE Reference Implementation for their "Big Earth Data" standards suite. Recently, rasdaman has been augmented with a python interface which allows to transparently interact with the database (credits go to Siddharth Shukla's Master Thesis at Jacobs University). Programmers do not need to know the rasdaman query language, as the operators are silently transformed, through lazy evaluation, into queries. Arrays delivered are likewise automatically transformed into their python representation. In the talk, the rasdaman concept will be illustrated with the help of large-scale real-life examples of operational satellite image and weather data services, and sample python code.
ACPYPE - AnteChamber PYthon Parser interfacE.
Sousa da Silva, Alan W; Vranken, Wim F
2012-07-23
ACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype. We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein-ligand complexes from the PDB. ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications.
gadfly: A pandas-based Framework for Analyzing GADGET Simulation Data
NASA Astrophysics Data System (ADS)
Hummel, Jacob A.
2016-11-01
We present the first public release (v0.1) of the open-source gadget Dataframe Library: gadfly. The aim of this package is to leverage the capabilities of the broader python scientific computing ecosystem by providing tools for analyzing simulation data from the astrophysical simulation codes gadget and gizmo using pandas, a thoroughly documented, open-source library providing high-performance, easy-to-use data structures that is quickly becoming the standard for data analysis in python. Gadfly is a framework for analyzing particle-based simulation data stored in the HDF5 format using pandas DataFrames. The package enables efficient memory management, includes utilities for unit handling, coordinate transformations, and parallel batch processing, and provides highly optimized routines for visualizing smoothed-particle hydrodynamics data sets.
FRED 2: an immunoinformatics framework for Python
Schubert, Benjamin; Walzer, Mathias; Brachvogel, Hans-Philipp; Szolek, András; Mohr, Christopher; Kohlbacher, Oliver
2016-01-01
Summary: Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. Availability and implementation: FRED 2 is available at http://fred-2.github.io Contact: schubert@informatik.uni-tuebingen.de Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27153717
FRED 2: an immunoinformatics framework for Python.
Schubert, Benjamin; Walzer, Mathias; Brachvogel, Hans-Philipp; Szolek, András; Mohr, Christopher; Kohlbacher, Oliver
2016-07-01
Immunoinformatics approaches are widely used in a variety of applications from basic immunological to applied biomedical research. Complex data integration is inevitable in immunological research and usually requires comprehensive pipelines including multiple tools and data sources. Non-standard input and output formats of immunoinformatics tools make the development of such applications difficult. Here we present FRED 2, an open-source immunoinformatics framework offering easy and unified access to methods for epitope prediction and other immunoinformatics applications. FRED 2 is implemented in Python and designed to be extendable and flexible to allow rapid prototyping of complex applications. FRED 2 is available at http://fred-2.github.io schubert@informatik.uni-tuebingen.de Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gamble, John; Jacobson, Noah Tobias; Baczewski, Andrew
EMTpY is an implementation of effective mass theory in python. It is designed to simulate semiconductor qubits within a non-perturbative, multi-valley effective mass theory framework using robust Gaussian basis sets.
Dcs Data Viewer, an Application that Accesses ATLAS DCS Historical Data
NASA Astrophysics Data System (ADS)
Tsarouchas, C.; Schlenker, S.; Dimitrov, G.; Jahn, G.
2014-06-01
The ATLAS experiment at CERN is one of the four Large Hadron Collider experiments. The Detector Control System (DCS) of ATLAS is responsible for the supervision of the detector equipment, the reading of operational parameters, the propagation of the alarms and the archiving of important operational data in a relational database (DB). DCS Data Viewer (DDV) is an application that provides access to the ATLAS DCS historical data through a web interface. Its design is structured using a client-server architecture. The pythonic server connects to the DB and fetches the data by using optimized SQL requests. It communicates with the outside world, by accepting HTTP requests and it can be used stand alone. The client is an AJAX (Asynchronous JavaScript and XML) interactive web application developed under the Google Web Toolkit (GWT) framework. Its web interface is user friendly, platform and browser independent. The selection of metadata is done via a column-tree view or with a powerful search engine. The final visualization of the data is done using java applets or java script applications as plugins. The default output is a value-over-time chart, but other types of outputs like tables, ascii or ROOT files are supported too. Excessive access or malicious use of the database is prevented by a dedicated protection mechanism, allowing the exposure of the tool to hundreds of inexperienced users. The current configuration of the client and of the outputs can be saved in an XML file. Protection against web security attacks is foreseen and authentication constrains have been taken into account, allowing the exposure of the tool to hundreds of users world wide. Due to its flexible interface and its generic and modular approach, DDV could be easily used for other experiment control systems.
NASA Astrophysics Data System (ADS)
Mayorga, E.
2013-12-01
Practical, problem oriented software developed by scientists and graduate students in domains lacking a strong software development tradition is often balkanized into the scripting environments provided by dominant, typically proprietary tools. In environmental fields, these tools include ArcGIS, Matlab, SAS, Excel and others, and are often constrained to specific operating systems. While this situation is the outcome of rational choices, it limits the dissemination of useful tools and their integration into loosely coupled frameworks that can meet wider needs and be developed organically by groups addressing their own needs. Open-source dynamic languages offer the advantages of an accessible programming syntax, a wealth of pre-existing libraries, multi-platform access, linkage to community libraries developed in lower level languages such as C or FORTRAN, and access to web service infrastructure. Python in particular has seen a large and increasing uptake in scientific communities, as evidenced by the continued growth of the annual SciPy conference. Ecosystems with distinctive physical structures and organization, and mechanistic processes that are well characterized, are both factors that have often led to the grass-roots development of useful code meeting the needs of a range of communities. In aquatic applications, examples include river and watershed analysis tools (River Tools, Taudem, etc), and geochemical modules such as CO2SYS, PHREEQ and LOADEST. I will review the state of affairs and explore the potential offered by a Python tool ecosystem in supporting aquatic biogeochemistry and water quality research. This potential is multi-faceted and broadly involves accessibility to lone grad students, access to a wide community of programmers and problem solvers via online resources such as StackExchange, and opportunities to leverage broader cyberinfrastructure efforts and tools, including those from widely different domains. Collaborative development of such tools can provide the additional advantage of enhancing cohesion and communication across specific research areas, and reducing research obstacles in a range of disciplines.
HTSeq--a Python framework to work with high-throughput sequencing data.
Anders, Simon; Pyl, Paul Theodor; Huber, Wolfgang
2015-01-15
A large choice of tools exists for many standard tasks in the analysis of high-throughput sequencing (HTS) data. However, once a project deviates from standard workflows, custom scripts are needed. We present HTSeq, a Python library to facilitate the rapid development of such scripts. HTSeq offers parsers for many common data formats in HTS projects, as well as classes to represent data, such as genomic coordinates, sequences, sequencing reads, alignments, gene model information and variant calls, and provides data structures that allow for querying via genomic coordinates. We also present htseq-count, a tool developed with HTSeq that preprocesses RNA-Seq data for differential expression analysis by counting the overlap of reads with genes. HTSeq is released as an open-source software under the GNU General Public Licence and available from http://www-huber.embl.de/HTSeq or from the Python Package Index at https://pypi.python.org/pypi/HTSeq. © The Author 2014. Published by Oxford University Press.
ClimateSpark: An in-memory distributed computing framework for big climate data analytics
NASA Astrophysics Data System (ADS)
Hu, Fei; Yang, Chaowei; Schnase, John L.; Duffy, Daniel Q.; Xu, Mengchao; Bowen, Michael K.; Lee, Tsengdar; Song, Weiwei
2018-06-01
The unprecedented growth of climate data creates new opportunities for climate studies, and yet big climate data pose a grand challenge to climatologists to efficiently manage and analyze big data. The complexity of climate data content and analytical algorithms increases the difficulty of implementing algorithms on high performance computing systems. This paper proposes an in-memory, distributed computing framework, ClimateSpark, to facilitate complex big data analytics and time-consuming computational tasks. Chunking data structure improves parallel I/O efficiency, while a spatiotemporal index is built for the chunks to avoid unnecessary data reading and preprocessing. An integrated, multi-dimensional, array-based data model (ClimateRDD) and ETL operations are developed to address big climate data variety by integrating the processing components of the climate data lifecycle. ClimateSpark utilizes Spark SQL and Apache Zeppelin to develop a web portal to facilitate the interaction among climatologists, climate data, analytic operations and computing resources (e.g., using SQL query and Scala/Python notebook). Experimental results show that ClimateSpark conducts different spatiotemporal data queries/analytics with high efficiency and data locality. ClimateSpark is easily adaptable to other big multiple-dimensional, array-based datasets in various geoscience domains.
Using open-source programs to create a web-based portal for hydrologic information
NASA Astrophysics Data System (ADS)
Kim, H.
2013-12-01
Some hydrologic data sets, such as basin climatology, precipitation, and terrestrial water storage, are not easily obtainable and distributable due to their size and complexity. We present a Hydrologic Information Portal (HIP) that has been implemented at the University of California for Hydrologic Modeling (UCCHM) and that has been organized around the large river basins of North America. This portal can be easily accessed through a modern web browser that enables easy access and visualization of such hydrologic data sets. Some of the main features of our HIP include a set of data visualization features so that users can search, retrieve, analyze, integrate, organize, and map data within large river basins. Recent information technologies such as Google Maps, Tornado (Python asynchronous web server), NumPy/SciPy (Scientific Library for Python) and d3.js (Visualization library for JavaScript) were incorporated into the HIP to create ease in navigating large data sets. With such open source libraries, HIP can give public users a way to combine and explore various data sets by generating multiple chart types (Line, Bar, Pie, Scatter plot) directly from the Google Maps viewport. Every rendered object such as a basin shape on the viewport is clickable, and this is the first step to access the visualization of data sets.
Prototyping the graphical user interface for the operator of the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Sadeh, I.; Oya, I.; Schwarz, J.; Pietriga, E.
2016-07-01
The Cherenkov Telescope Array (CTA) is a planned gamma-ray observatory. CTA will incorporate about 100 imaging atmospheric Cherenkov telescopes (IACTs) at a Southern site, and about 20 in the North. Previous IACT experiments have used up to five telescopes. Subsequently, the design of a graphical user interface (GUI) for the operator of CTA involves new challenges. We present a GUI prototype, the concept for which is being developed in collaboration with experts from the field of Human-Computer Interaction (HCI). The prototype is based on Web technology; it incorporates a Python web server, Web Sockets and graphics generated with the d3.js Javascript library.
NASA Astrophysics Data System (ADS)
Larour, Eric; Cheng, Daniel; Perez, Gilberto; Quinn, Justin; Morlighem, Mathieu; Duong, Bao; Nguyen, Lan; Petrie, Kit; Harounian, Silva; Halkides, Daria; Hayes, Wayne
2017-12-01
Earth system models (ESMs) are becoming increasingly complex, requiring extensive knowledge and experience to deploy and use in an efficient manner. They run on high-performance architectures that are significantly different from the everyday environments that scientists use to pre- and post-process results (i.e., MATLAB, Python). This results in models that are hard to use for non-specialists and are increasingly specific in their application. It also makes them relatively inaccessible to the wider science community, not to mention to the general public. Here, we present a new software/model paradigm that attempts to bridge the gap between the science community and the complexity of ESMs by developing a new JavaScript application program interface (API) for the Ice Sheet System Model (ISSM). The aforementioned API allows cryosphere scientists to run ISSM on the client side of a web page within the JavaScript environment. When combined with a web server running ISSM (using a Python API), it enables the serving of ISSM computations in an easy and straightforward way. The deep integration and similarities between all the APIs in ISSM (MATLAB, Python, and now JavaScript) significantly shortens and simplifies the turnaround of state-of-the-art science runs and their use by the larger community. We demonstrate our approach via a new Virtual Earth System Laboratory (VESL) website (http://vesl.jpl.nasa.gov, VESL(2017)).
Pyvolve: A Flexible Python Module for Simulating Sequences along Phylogenies.
Spielman, Stephanie J; Wilke, Claus O
2015-01-01
We introduce Pyvolve, a flexible Python module for simulating genetic data along a phylogeny using continuous-time Markov models of sequence evolution. Easily incorporated into Python bioinformatics pipelines, Pyvolve can simulate sequences according to most standard models of nucleotide, amino-acid, and codon sequence evolution. All model parameters are fully customizable. Users can additionally specify custom evolutionary models, with custom rate matrices and/or states to evolve. This flexibility makes Pyvolve a convenient framework not only for simulating sequences under a wide variety of conditions, but also for developing and testing new evolutionary models. Pyvolve is an open-source project under a FreeBSD license, and it is available for download, along with a detailed user-manual and example scripts, from http://github.com/sjspielman/pyvolve.
Efficient Web Vulnerability Detection Tool for Sleeping Giant-Cross Site Request Forgery
NASA Astrophysics Data System (ADS)
Parimala, G.; Sangeetha, M.; AndalPriyadharsini, R.
2018-04-01
Now day’s web applications are very high in the rate of usage due to their user friendly environment and getting any information via internet but these web applications are affected by lot of threats. CSRF attack is one of the serious threats to web applications which is based on the vulnerabilities present in the normal web request and response of HTTP protocol. It is hard to detect but hence still it is present in most of the existing web applications. In CSRF attack, without user knowledge the unwanted actions on a reliable websites are forced to happen. So it is placed in OWASP’s top 10 Web Application attacks list. My proposed work is to do a real time scan of CSRF vulnerability attack in given URL of the web applications as well as local host address for any organization using python language. Client side detection of CSRF is depended on Form count which is presented in that given web site.
Biana: a software framework for compiling biological interactions and analyzing networks
2010-01-01
Background The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. Results We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. Conclusions BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules. PMID:20105306
Biana: a software framework for compiling biological interactions and analyzing networks.
Garcia-Garcia, Javier; Guney, Emre; Aragues, Ramon; Planas-Iglesias, Joan; Oliva, Baldo
2010-01-27
The analysis and usage of biological data is hindered by the spread of information across multiple repositories and the difficulties posed by different nomenclature systems and storage formats. In particular, there is an important need for data unification in the study and use of protein-protein interactions. Without good integration strategies, it is difficult to analyze the whole set of available data and its properties. We introduce BIANA (Biologic Interactions and Network Analysis), a tool for biological information integration and network management. BIANA is a Python framework designed to achieve two major goals: i) the integration of multiple sources of biological information, including biological entities and their relationships, and ii) the management of biological information as a network where entities are nodes and relationships are edges. Moreover, BIANA uses properties of proteins and genes to infer latent biomolecular relationships by transferring edges to entities sharing similar properties. BIANA is also provided as a plugin for Cytoscape, which allows users to visualize and interactively manage the data. A web interface to BIANA providing basic functionalities is also available. The software can be downloaded under GNU GPL license from http://sbi.imim.es/web/BIANA.php. BIANA's approach to data unification solves many of the nomenclature issues common to systems dealing with biological data. BIANA can easily be extended to handle new specific data repositories and new specific data types. The unification protocol allows BIANA to be a flexible tool suitable for different user requirements: non-expert users can use a suggested unification protocol while expert users can define their own specific unification rules.
EarthServer2 : The Marine Data Service - Web based and Programmatic Access to Ocean Colour Open Data
NASA Astrophysics Data System (ADS)
Clements, Oliver; Walker, Peter
2017-04-01
The ESA Ocean Colour - Climate Change Initiative (ESA OC-CCI) has produced a long-term high quality global dataset with associated per-pixel uncertainty data. This dataset has now grown to several hundred terabytes (uncompressed) and is freely available to download. However, the sheer size of the dataset can act as a barrier to many users; large network bandwidth, local storage and processing requirements can prevent researchers without the backing of a large organisation from taking advantage of this raw data. The EC H2020 project, EarthServer2, aims to create a federated data service providing access to more than 1 petabyte of earth science data. Within this federation the Marine Data Service already provides an innovative on-line tool-kit for filtering, analysing and visualising OC-CCI data. Data are made available, filtered and processed at source through a standards-based interface, the Open Geospatial Consortium Web Coverage Service and Web Coverage Processing Service. This work was initiated in the EC FP7 EarthServer project where it was found that the unfamiliarity and complexity of these interfaces itself created a barrier to wider uptake. The continuation project, EarthServer2, addresses these issues by providing higher level tools for working with these data. We will present some examples of these tools. Many researchers wish to extract time series data from discrete points of interest. We will present a web based interface, based on NASA/ESA WebWorldWind, for selecting points of interest and plotting time series from a chosen dataset. In addition, a CSV file of locations and times, such as a ship's track, can be uploaded and these points extracted and returned in a CSV file allowing researchers to work with the extract locally, such as a spreadsheet. We will also present a set of Python and JavaScript APIs that have been created to complement and extend the web based GUI. These APIs allow the selection of single points and areas for extraction. The extracted data is returned as structured data (for instance a Python array) which can then be passed directly to local processing code. We will highlight how the libraries can be used by the community and integrated into existing systems, for instance by the use of Jupyter notebooks to share Python code examples which can then be used by other researchers as a basis for their own work.
Python-Based Applications for Hydrogeological Modeling
NASA Astrophysics Data System (ADS)
Khambhammettu, P.
2013-12-01
Python is a general-purpose, high-level programming language whose design philosophy emphasizes code readability. Add-on packages supporting fast array computation (numpy), plotting (matplotlib), scientific /mathematical Functions (scipy), have resulted in a powerful ecosystem for scientists interested in exploratory data analysis, high-performance computing and data visualization. Three examples are provided to demonstrate the applicability of the Python environment in hydrogeological applications. Python programs were used to model an aquifer test and estimate aquifer parameters at a Superfund site. The aquifer test conducted at a Groundwater Circulation Well was modeled with the Python/FORTRAN-based TTIM Analytic Element Code. The aquifer parameters were estimated with PEST such that a good match was produced between the simulated and observed drawdowns. Python scripts were written to interface with PEST and visualize the results. A convolution-based approach was used to estimate source concentration histories based on observed concentrations at receptor locations. Unit Response Functions (URFs) that relate the receptor concentrations to a unit release at the source were derived with the ATRANS code. The impact of any releases at the source could then be estimated by convolving the source release history with the URFs. Python scripts were written to compute and visualize receptor concentrations for user-specified source histories. The framework provided a simple and elegant way to test various hypotheses about the site. A Python/FORTRAN-based program TYPECURVEGRID-Py was developed to compute and visualize groundwater elevations and drawdown through time in response to a regional uniform hydraulic gradient and the influence of pumping wells using either the Theis solution for a fully-confined aquifer or the Hantush-Jacob solution for a leaky confined aquifer. The program supports an arbitrary number of wells that can operate according to arbitrary schedules. The python wrapper invokes the underlying FORTRAN layer to compute transient groundwater elevations and processes this information to create time-series and 2D plots.
ObsPy: A Python Toolbox for Seismology - Recent Developments and Applications
NASA Astrophysics Data System (ADS)
Megies, T.; Krischer, L.; Barsch, R.; Sales de Andrade, E.; Beyreuther, M.
2014-12-01
ObsPy (http://www.obspy.org) is a community-driven, open-source project dedicated to building a bridge for seismology into the scientific Python ecosystem. It offersa) read and write support for essentially all commonly used waveform, station, and event metadata file formats with a unified interface,b) a comprehensive signal processing toolbox tuned to the needs of seismologists,c) integrated access to all large data centers, web services and databases, andd) convenient wrappers to legacy codes like libtau and evalresp.Python, currently the most popular language for teaching introductory computer science courses at top-ranked U.S. departments, is a full-blown programming language with the flexibility of an interactive scripting language. Its extensive standard library and large variety of freely available high quality scientific modules cover most needs in developing scientific processing workflows. Together with packages like NumPy, SciPy, Matplotlib, IPython, Pandas, lxml, and PyQt, ObsPy enables the construction of complete workflows in Python. These vary from reading locally stored data or requesting data from one or more different data centers through to signal analysis and data processing and on to visualizations in GUI and web applications, output of modified/derived data and the creation of publication-quality figures.ObsPy enjoys a large world-wide rate of adoption in the community. Applications successfully using it include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. All functionality is extensively documented and the ObsPy tutorial and gallery give a good impression of the wide range of possible use cases.We will present the basic features of ObsPy, new developments and applications, and a roadmap for the near future and discuss the sustainability of our open-source development model.
NASA Astrophysics Data System (ADS)
Celicourt, P.; Piasecki, M.
2014-12-01
The high cost of hydro-meteorological data acquisition, communication and publication systems along with limited qualified human resources is considered as the main reason why hydro-meteorological data collection remains a challenge especially in developing countries. Despite significant advances in sensor network technologies which gave birth to open hardware and software, low-cost (less than $50) and low-power (in the order of a few miliWatts) sensor platforms in the last two decades, sensors and sensor network deployment remains a labor-intensive, time consuming, cumbersome, and thus expensive task. These factors give rise for the need to develop a affordable, simple to deploy, scalable and self-organizing end-to-end (from sensor to publication) system suitable for deployment in such countries. The design of the envisioned system will consist of a few Sensed-And-Programmed Arduino-based sensor nodes with low-cost sensors measuring parameters relevant to hydrological processes and a Raspberry Pi micro-computer hosting the in-the-field back-end data management. This latter comprises the Python/Django model of the CUAHSI Observations Data Model (ODM) namely DjangODM backed by a PostgreSQL Database Server. We are also developing a Python-based data processing script which will be paired with the data autoloading capability of Django to populate the DjangODM database with the incoming data. To publish the data, the WOFpy (WaterOneFlow Web Services in Python) developed by the Texas Water Development Board for 'Water Data for Texas' which can produce WaterML web services from a variety of back-end database installations such as SQLite, MySQL, and PostgreSQL will be used. A step further would be the development of an appealing online visualization tool using Python statistics and analytics tools (Scipy, Numpy, Pandas) showing the spatial distribution of variables across an entire watershed as a time variant layer on top of a basemap.
NDEx - The Network Data Exchange | Informatics Technology for Cancer Research (ITCR)
NDEx is an online commons where scientists can upload, share, and publicly distribute biological networks and pathway models. The NDEx Project maintains a web-accessible public server, a documentation website, provides seamless connectivity to Cytoscape as well as programmatic access using a variety of languages including Python and Java.
Chen, Zhen; Zhao, Pei; Li, Fuyi; Leier, André; Marquez-Lago, Tatiana T; Wang, Yanan; Webb, Geoffrey I; Smith, A Ian; Daly, Roger J; Chou, Kuo-Chen; Song, Jiangning
2018-03-08
Structural and physiochemical descriptors extracted from sequence data have been widely used to represent sequences and predict structural, functional, expression and interaction profiles of proteins and peptides as well as DNAs/RNAs. Here, we present iFeature, a versatile Python-based toolkit for generating various numerical feature representation schemes for both protein and peptide sequences. iFeature is capable of calculating and extracting a comprehensive spectrum of 18 major sequence encoding schemes that encompass 53 different types of feature descriptors. It also allows users to extract specific amino acid properties from the AAindex database. Furthermore, iFeature integrates 12 different types of commonly used feature clustering, selection, and dimensionality reduction algorithms, greatly facilitating training, analysis, and benchmarking of machine-learning models. The functionality of iFeature is made freely available via an online web server and a stand-alone toolkit. http://iFeature.erc.monash.edu/; https://github.com/Superzchen/iFeature/. jiangning.song@monash.edu; kcchou@gordonlifescience.org; roger.daly@monash.edu. Supplementary data are available at Bioinformatics online.
A python framework for environmental model uncertainty analysis
White, Jeremy; Fienen, Michael N.; Doherty, John E.
2016-01-01
We have developed pyEMU, a python framework for Environmental Modeling Uncertainty analyses, open-source tool that is non-intrusive, easy-to-use, computationally efficient, and scalable to highly-parameterized inverse problems. The framework implements several types of linear (first-order, second-moment (FOSM)) and non-linear uncertainty analyses. The FOSM-based analyses can also be completed prior to parameter estimation to help inform important modeling decisions, such as parameterization and objective function formulation. Complete workflows for several types of FOSM-based and non-linear analyses are documented in example notebooks implemented using Jupyter that are available in the online pyEMU repository. Example workflows include basic parameter and forecast analyses, data worth analyses, and error-variance analyses, as well as usage of parameter ensemble generation and management capabilities. These workflows document the necessary steps and provides insights into the results, with the goal of educating users not only in how to apply pyEMU, but also in the underlying theory of applied uncertainty quantification.
OpenDrift - an open source framework for ocean trajectory modeling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Breivik, Øyvind; Ådlandsvik, Bjørn
2016-04-01
We will present a new, open source tool for modeling the trajectories and fate of particles or substances (Lagrangian Elements) drifting in the ocean, or even in the atmosphere. The software is named OpenDrift, and has been developed at Norwegian Meteorological Institute in cooperation with Institute of Marine Research. OpenDrift is a generic framework written in Python, and is openly available at https://github.com/knutfrode/opendrift/. The framework is modular with respect to three aspects: (1) obtaining input data, (2) the transport/morphological processes, and (3) exporting of results to file. Modularity is achieved through well defined interfaces between components, and use of a consistent vocabulary (CF conventions) for naming of variables. Modular input implies that it is not necessary to preprocess input data (e.g. currents, wind and waves from Eulerian models) to a particular file format. Instead "reader modules" can be written/used to obtain data directly from any original source, including files or through web based protocols (e.g. OPeNDAP/Thredds). Modularity of processes implies that a model developer may focus on the geophysical processes relevant for the application of interest, without needing to consider technical tasks such as reading, reprojecting, and colocating input data, rotation and scaling of vectors and model output. We will show a few example applications of using OpenDrift for predicting drifters, oil spills, and search and rescue objects.
Note: Tormenta: An open source Python-powered control software for camera based optical microscopy.
Barabas, Federico M; Masullo, Luciano A; Stefani, Fernando D
2016-12-01
Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.
Note: Tormenta: An open source Python-powered control software for camera based optical microscopy
NASA Astrophysics Data System (ADS)
Barabas, Federico M.; Masullo, Luciano A.; Stefani, Fernando D.
2016-12-01
Until recently, PC control and synchronization of scientific instruments was only possible through closed-source expensive frameworks like National Instruments' LabVIEW. Nowadays, efficient cost-free alternatives are available in the context of a continuously growing community of open-source software developers. Here, we report on Tormenta, a modular open-source software for the control of camera-based optical microscopes. Tormenta is built on Python, works on multiple operating systems, and includes some key features for fluorescence nanoscopy based on single molecule localization.
NASA Astrophysics Data System (ADS)
Agram, P. S.; Gurrola, E. M.; Lavalle, M.; Sacco, G. F.; Rosen, P. A.
2016-12-01
The InSAR Scientific Computing Environment (ISCE) provides both a modular, flexible, and extensible framework for building software components and applications that work together seamlessly as well as a toolbox for processing InSAR data into higher level geodetic image products from a diverse array of radar satellites and aircraft. ISCE easily scales to serve as the SAR processing engine at the core of the NASA JPL Advanced Rapid Imaging and Analysis (ARIA) Center for Natural Hazards as well as a software toolbox for individual scientists working with SAR data. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these data. ISCE in ARIA is also a SAR Foundry for development of new processing components and workflows to meet the needs of both large processing centers and individual users. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. The Python user interface enables both command-line deployment of workflows as well as an interactive "sand box" (the Python interpreter) where scientists can "play" with the data. Recent developments in ISCE include the addition of components to ingest Sentinel-1A SAR data (both stripmap and TOPS-mode) and a new workflow for processing the TOPS-mode data. New components are being developed to exploit polarimetric-SAR data to provide the ecosystem and land-cover/land-use change communities with rigorous and efficient tools to perform multi-temporal, polarimetric and tomographic analyses in order to generate calibrated, geocoded and mosaicked Level-2 and Level-3 products (e.g., maps of above-ground biomass or forest disturbance). ISCE has been downloaded by over 200 users by a license for WinSAR members through the Unavco.org website. Others may apply directly to JPL for a license at download.jpl.nasa.gov.
GammaLib and ctools. A software framework for the analysis of astronomical gamma-ray data
NASA Astrophysics Data System (ADS)
Knödlseder, J.; Mayer, M.; Deil, C.; Cayrou, J.-B.; Owen, E.; Kelley-Hoskins, N.; Lu, C.-C.; Buehler, R.; Forest, F.; Louge, T.; Siejkowski, H.; Kosack, K.; Gerard, L.; Schulz, A.; Martin, P.; Sanchez, D.; Ohm, S.; Hassan, T.; Brau-Nogué, S.
2016-08-01
The field of gamma-ray astronomy has seen important progress during the last decade, yet to date no common software framework has been developed for the scientific analysis of gamma-ray telescope data. We propose to fill this gap by means of the GammaLib software, a generic library that we have developed to support the analysis of gamma-ray event data. GammaLib was written in C++ and all functionality is available in Python through an extension module. Based on this framework we have developed the ctools software package, a suite of software tools that enables flexible workflows to be built for the analysis of Imaging Air Cherenkov Telescope event data. The ctools are inspired by science analysis software available for existing high-energy astronomy instruments, and they follow the modular ftools model developed by the High Energy Astrophysics Science Archive Research Center. The ctools were written in Python and C++, and can be either used from the command line via shell scripts or directly from Python. In this paper we present the GammaLib and ctools software versions 1.0 that were released at the end of 2015. GammaLib and ctools are ready for the science analysis of Imaging Air Cherenkov Telescope event data, and also support the analysis of Fermi-LAT data and the exploitation of the COMPTEL legacy data archive. We propose using ctools as the science tools software for the Cherenkov Telescope Array Observatory.
A Multidisciplinary Tool for Systems Analysis of Planetary Entry, Descent, and Landing (SAPE)
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.
2009-01-01
SAPE is a Python-based multidisciplinary analysis tool for systems analysis of planetary entry, descent, and landing (EDL) for Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, and Titan. The purpose of SAPE is to provide a variable-fidelity capability for conceptual and preliminary analysis within the same framework. SAPE includes the following analysis modules: geometry, trajectory, aerodynamics, aerothermal, thermal protection system, and structural sizing. SAPE uses the Python language-a platform-independent open-source software for integration and for the user interface. The development has relied heavily on the object-oriented programming capabilities that are available in Python. Modules are provided to interface with commercial and government off-the-shelf software components (e.g., thermal protection systems and finite-element analysis). SAPE runs on Microsoft Windows and Apple Mac OS X and has been partially tested on Linux.
Zhang, Yiye; Padman, Rema
2017-01-01
Patients with multiple chronic conditions (MCC) pose an increasingly complex health management challenge worldwide, particularly due to the significant gap in our understanding of how to provide coordinated care. Drawing on our prior research on learning data-driven clinical pathways from actual practice data, this paper describes a prototype, interactive platform for visualizing the pathways of MCC to support shared decision making. Created using Python web framework, JavaScript library and our clinical pathway learning algorithm, the visualization platform allows clinicians and patients to learn the dominant patterns of co-progression of multiple clinical events from their own data, and interactively explore and interpret the pathways. We demonstrate functionalities of the platform using a cluster of 36 patients, identified from a dataset of 1,084 patients, who are diagnosed with at least chronic kidney disease, hypertension, and diabetes. Future evaluation studies will explore the use of this platform to better understand and manage MCC.
A Browser-Based Multi-User Working Environment for Physicists
NASA Astrophysics Data System (ADS)
Erdmann, M.; Fischer, R.; Glaser, C.; Klingebiel, D.; Komm, M.; Müller, G.; Rieger, M.; Steggemann, J.; Urban, M.; Winchen, T.
2014-06-01
Many programs in experimental particle physics do not yet have a graphical interface, or demand strong platform and software requirements. With the most recent development of the VISPA project, we provide graphical interfaces to existing software programs and access to multiple computing clusters through standard web browsers. The scalable clientserver system allows analyses to be performed in sizable teams, and disburdens the individual physicist from installing and maintaining a software environment. The VISPA graphical interfaces are implemented in HTML, JavaScript and extensions to the Python webserver. The webserver uses SSH and RPC to access user data, code and processes on remote sites. As example applications we present graphical interfaces for steering the reconstruction framework OFFLINE of the Pierre-Auger experiment, and the analysis development toolkit PXL. The browser based VISPA system was field-tested in biweekly homework of a third year physics course by more than 100 students. We discuss the system deployment and the evaluation by the students.
Dr.LiTHO: a development and research lithography simulator
NASA Astrophysics Data System (ADS)
Fühner, Tim; Schnattinger, Thomas; Ardelean, Gheorghe; Erdmann, Andreas
2007-03-01
This paper introduces Dr.LiTHO, a research and development oriented lithography simulation environment developed at Fraunhofer IISB to flexibly integrate our simulation models into one coherent platform. We propose a light-weight approach to a lithography simulation environment: The use of a scripting (batch) language as an integration platform. Out of the great variety of different scripting languages, Python proved superior in many ways: It exhibits a good-natured learning-curve, it is efficient, available on virtually any platform, and provides sophisticated integration mechanisms for existing programs. In this paper, we will describe the steps, required to provide Python bindings for existing programs and to finally generate an integrated simulation environment. In addition, we will give a short introduction into selected software design demands associated with the development of such a framework. We will especially focus on testing and (both technical and user-oriented) documentation issues. Dr.LiTHO Python files contain not only all simulation parameter settings but also the simulation flow, providing maximum flexibility. In addition to relatively simple batch jobs, repetitive tasks can be pooled in libraries. And as Python is a full-blown programming language, users can add virtually any functionality, which is especially useful in the scope of simulation studies or optimization tasks, that often require masses of evaluations. Furthermore, we will give a short overview of the numerous existing Python packages. Several examples demonstrate the feasibility and productiveness of integrating Python packages into custom Dr.LiTHO scripts.
QuTiP: An open-source Python framework for the dynamics of open quantum systems
NASA Astrophysics Data System (ADS)
Johansson, J. R.; Nation, P. D.; Nori, Franco
2012-08-01
We present an object-oriented open-source framework for solving the dynamics of open quantum systems written in Python. Arbitrary Hamiltonians, including time-dependent systems, may be built up from operators and states defined by a quantum object class, and then passed on to a choice of master equation or Monte Carlo solvers. We give an overview of the basic structure for the framework before detailing the numerical simulation of open system dynamics. Several examples are given to illustrate the build up to a complete calculation. Finally, we measure the performance of our library against that of current implementations. The framework described here is particularly well suited to the fields of quantum optics, superconducting circuit devices, nanomechanics, and trapped ions, while also being ideal for use in classroom instruction. Catalogue identifier: AEMB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 16 482 No. of bytes in distributed program, including test data, etc.: 213 438 Distribution format: tar.gz Programming language: Python Computer: i386, x86-64 Operating system: Linux, Mac OSX, Windows RAM: 2+ Gigabytes Classification: 7 External routines: NumPy (http://numpy.scipy.org/), SciPy (http://www.scipy.org/), Matplotlib (http://matplotlib.sourceforge.net/) Nature of problem: Dynamics of open quantum systems. Solution method: Numerical solutions to Lindblad master equation or Monte Carlo wave function method. Restrictions: Problems must meet the criteria for using the master equation in Lindblad form. Running time: A few seconds up to several tens of minutes, depending on size of underlying Hilbert space.
OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubel, Oliver; Greiner, Annette; Cholia, Shreyas
Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data accessmore » (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis.« less
NASA Astrophysics Data System (ADS)
Čepický, Jáchym; Moreira de Sousa, Luís
2016-06-01
The OGC® Web Processing Service (WPS) Interface Standard provides rules for standardizing inputs and outputs (requests and responses) for geospatial processing services, such as polygon overlay. The standard also defines how a client can request the execution of a process, and how the output from the process is handled. It defines an interface that facilitates publishing of geospatial processes and client discovery of processes and and binding to those processes into workflows. Data required by a WPS can be delivered across a network or they can be available at a server. PyWPS was one of the first implementations of OGC WPS on the server side. It is written in the Python programming language and it tries to connect to all existing tools for geospatial data analysis, available on the Python platform. During the last two years, the PyWPS development team has written a new version (called PyWPS-4) completely from scratch. The analysis of large raster datasets poses several technical issues in implementing the WPS standard. The data format has to be defined and validated on the server side and binary data have to be encoded using some numeric representation. Pulling raster data from remote servers introduces security risks, in addition, running several processes in parallel has to be possible, so that system resources are used efficiently while preserving security. Here we discuss these topics and illustrate some of the solutions adopted within the PyWPS implementation.
The HST/WFC3 Quicklook Project: A User Interface to Hubble Space Telescope Wide Field Camera 3 Data
NASA Astrophysics Data System (ADS)
Bourque, Matthew; Bajaj, Varun; Bowers, Ariel; Dulude, Michael; Durbin, Meredith; Gosmeyer, Catherine; Gunning, Heather; Khandrika, Harish; Martlin, Catherine; Sunnquist, Ben; Viana, Alex
2017-06-01
The Hubble Space Telescope's Wide Field Camera 3 (WFC3) instrument, comprised of two detectors, UVIS (Ultraviolet-Visible) and IR (Infrared), has been acquiring ~ 50-100 images daily since its installation in 2009. The WFC3 Quicklook project provides a means for instrument analysts to store, calibrate, monitor, and interact with these data through the various Quicklook systems: (1) a ~ 175 TB filesystem, which stores the entire WFC3 archive on disk, (2) a MySQL database, which stores image header data, (3) a Python-based automation platform, which currently executes 22 unique calibration/monitoring scripts, (4) a Python-based code library, which provides system functionality such as logging, downloading tools, database connection objects, and filesystem management, and (5) a Python/Flask-based web interface to the Quicklook system. The Quicklook project has enabled large-scale WFC3 analyses and calibrations, such as the monitoring of the health and stability of the WFC3 instrument, the measurement of ~ 20 million WFC3/UVIS Point Spread Functions (PSFs), the creation of WFC3/IR persistence calibration products, and many others.
SU-E-T-29: A Web Application for GPU-Based Monte Carlo IMRT/VMAT QA with Delivered Dose Verification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Folkerts, M; University of California, San Diego, La Jolla, CA; Graves, Y
Purpose: To enable an existing web application for GPU-based Monte Carlo (MC) 3D dosimetry quality assurance (QA) to compute “delivered dose” from linac logfile data. Methods: We added significant features to an IMRT/VMAT QA web application which is based on existing technologies (HTML5, Python, and Django). This tool interfaces with python, c-code libraries, and command line-based GPU applications to perform a MC-based IMRT/VMAT QA. The web app automates many complicated aspects of interfacing clinical DICOM and logfile data with cutting-edge GPU software to run a MC dose calculation. The resultant web app is powerful, easy to use, and is ablemore » to re-compute both plan dose (from DICOM data) and delivered dose (from logfile data). Both dynalog and trajectorylog file formats are supported. Users upload zipped DICOM RP, CT, and RD data and set the expected statistic uncertainty for the MC dose calculation. A 3D gamma index map, 3D dose distribution, gamma histogram, dosimetric statistics, and DVH curves are displayed to the user. Additional the user may upload the delivery logfile data from the linac to compute a 'delivered dose' calculation and corresponding gamma tests. A comprehensive PDF QA report summarizing the results can also be downloaded. Results: We successfully improved a web app for a GPU-based QA tool that consists of logfile parcing, fluence map generation, CT image processing, GPU based MC dose calculation, gamma index calculation, and DVH calculation. The result is an IMRT and VMAT QA tool that conducts an independent dose calculation for a given treatment plan and delivery log file. The system takes both DICOM data and logfile data to compute plan dose and delivered dose respectively. Conclusion: We sucessfully improved a GPU-based MC QA tool to allow for logfile dose calculation. The high efficiency and accessibility will greatly facilitate IMRT and VMAT QA.« less
COBRApy: COnstraints-Based Reconstruction and Analysis for Python.
Ebrahim, Ali; Lerman, Joshua A; Palsson, Bernhard O; Hyduke, Daniel R
2013-08-08
COnstraint-Based Reconstruction and Analysis (COBRA) methods are widely used for genome-scale modeling of metabolic networks in both prokaryotes and eukaryotes. Due to the successes with metabolism, there is an increasing effort to apply COBRA methods to reconstruct and analyze integrated models of cellular processes. The COBRA Toolbox for MATLAB is a leading software package for genome-scale analysis of metabolism; however, it was not designed to elegantly capture the complexity inherent in integrated biological networks and lacks an integration framework for the multiomics data used in systems biology. The openCOBRA Project is a community effort to promote constraints-based research through the distribution of freely available software. Here, we describe COBRA for Python (COBRApy), a Python package that provides support for basic COBRA methods. COBRApy is designed in an object-oriented fashion that facilitates the representation of the complex biological processes of metabolism and gene expression. COBRApy does not require MATLAB to function; however, it includes an interface to the COBRA Toolbox for MATLAB to facilitate use of legacy codes. For improved performance, COBRApy includes parallel processing support for computationally intensive processes. COBRApy is an object-oriented framework designed to meet the computational challenges associated with the next generation of stoichiometric constraint-based models and high-density omics data sets. http://opencobra.sourceforge.net/
GPU-powered model analysis with PySB/cupSODA.
Harris, Leonard A; Nobile, Marco S; Pino, James C; Lubbock, Alexander L R; Besozzi, Daniela; Mauri, Giancarlo; Cazzaniga, Paolo; Lopez, Carlos F
2017-11-01
A major barrier to the practical utilization of large, complex models of biochemical systems is the lack of open-source computational tools to evaluate model behaviors over high-dimensional parameter spaces. This is due to the high computational expense of performing thousands to millions of model simulations required for statistical analysis. To address this need, we have implemented a user-friendly interface between cupSODA, a GPU-powered kinetic simulator, and PySB, a Python-based modeling and simulation framework. For three example models of varying size, we show that for large numbers of simulations PySB/cupSODA achieves order-of-magnitude speedups relative to a CPU-based ordinary differential equation integrator. The PySB/cupSODA interface has been integrated into the PySB modeling framework (version 1.4.0), which can be installed from the Python Package Index (PyPI) using a Python package manager such as pip. cupSODA source code and precompiled binaries (Linux, Mac OS/X, Windows) are available at github.com/aresio/cupSODA (requires an Nvidia GPU; developer.nvidia.com/cuda-gpus). Additional information about PySB is available at pysb.org. paolo.cazzaniga@unibg.it or c.lopez@vanderbilt.edu. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Shameoni Niaei, M.; Kilic, Y.; Yildiran, B. E.; Yüzlükoglu, F.; Yesilyaprak, C.
2016-12-01
We have described a new software (MIPS) about the analysis and image processing of the meteorological satellite (Meteosat) data for an astronomical observatory. This software will be able to help to make some atmospherical forecast (cloud, humidity, rain) using meteosat data for robotic telescopes. MIPS uses a python library for Eumetsat data that aims to be completely open-source and licenced under GNU/General Public Licence (GPL). MIPS is a platform independent and uses h5py, numpy, and PIL with the general-purpose and high-level programming language Python and the QT framework.
A Python Analytical Pipeline to Identify Prohormone Precursors and Predict Prohormone Cleavage Sites
Southey, Bruce R.; Sweedler, Jonathan V.; Rodriguez-Zas, Sandra L.
2008-01-01
Neuropeptides and hormones are signaling molecules that support cell–cell communication in the central nervous system. Experimentally characterizing neuropeptides requires significant efforts because of the complex and variable processing of prohormone precursor proteins into neuropeptides and hormones. We demonstrate the power and flexibility of the Python language to develop components of an bioinformatic analytical pipeline to identify precursors from genomic data and to predict cleavage as these precursors are en route to the final bioactive peptides. We identified 75 precursors in the rhesus genome, predicted cleavage sites using support vector machines and compared the rhesus predictions to putative assignments based on homology to human sequences. The correct classification rate of cleavage using the support vector machines was over 97% for both human and rhesus data sets. The functionality of Python has been important to develop and maintain NeuroPred (http://neuroproteomics.scs.uiuc.edu/neuropred.html), a user-centered web application for the neuroscience community that provides cleavage site prediction from a wide range of models, precision and accuracy statistics, post-translational modifications, and the molecular mass of potential peptides. The combined results illustrate the suitability of the Python language to implement an all-inclusive bioinformatics approach to predict neuropeptides that encompasses a large number of interdependent steps, from scanning genomes for precursor genes to identification of potential bioactive neuropeptides. PMID:19169350
PlasmaPy: beginning a community developed Python package for plasma physics
NASA Astrophysics Data System (ADS)
Murphy, Nicholas A.; Huang, Yi-Min; PlasmaPy Collaboration
2016-10-01
In recent years, researchers in several disciplines have collaborated on community-developed open source Python packages such as Astropy, SunPy, and SpacePy. These packages provide core functionality, common frameworks for data analysis and visualization, and educational tools. We propose that our community begins the development of PlasmaPy: a new open source core Python package for plasma physics. PlasmaPy could include commonly used functions in plasma physics, easy-to-use plasma simulation codes, Grad-Shafranov solvers, eigenmode solvers, and tools to analyze both simulations and experiments. The development will include modern programming practices such as version control, embedding documentation in the code, unit tests, and avoiding premature optimization. We will describe early code development on PlasmaPy, and discuss plans moving forward. The success of PlasmaPy depends on active community involvement and a welcoming and inclusive environment, so anyone interested in joining this collaboration should contact the authors.
Creating CAD designs and performing their subsequent analysis using opensource solutions in Python
NASA Astrophysics Data System (ADS)
Iakushkin, Oleg O.; Sedova, Olga S.
2018-01-01
The paper discusses the concept of a system that encapsulates the transition from geometry building to strength tests. The solution we propose views the engineer as a programmer who is capable of coding the procedure for working with the modeli.e., to outline the necessary transformations and create cases for boundary conditions. We propose a prototype of such system. In our work, we used: Python programming language to create the program; Jupyter framework to create a single workspace visualization; pythonOCC library to implement CAD; FeniCS library to implement FEM; GMSH and VTK utilities. The prototype is launched on a platform which is a dynamically expandable multi-tenant cloud service providing users with all computing resources on demand. However, the system may be deployed locally for prototyping or work that does not involve resource-intensive computing. To make it possible, we used containerization, isolating the system in a Docker container.
PLOCAN glider portal: a gateway for useful data management and visualization system
NASA Astrophysics Data System (ADS)
Morales, Tania; Lorenzo, Alvaro; Viera, Josue; Barrera, Carlos; José Rueda, María
2014-05-01
Nowadays monitoring ocean behavior and its characteristics involves a wide range of sources able to gather and provide a vast amount of data in spatio-temporal scales. Multiplatform infrastructures, like PLOCAN, hold a variety of autonomous Lagrangian and Eulerian devices addressed to collect information then transferred to land in near-real time. Managing all this data collection in an efficient way is a major issue. Advances in ocean observation technologies, where underwater autonomous gliders play a key role, has brought as a consequence an improvement of spatio-temporal resolution which offers a deeper understanding of the ocean but requires a bigger effort in the data management process. There are general requirements in terms of data management in that kind of environments, such as processing raw data at different levels to obtain valuable information, storing data coherently and providing accurate products to final users according to their specific needs. Managing large amount of data can be certainly tedious and complex without having right tools and operational procedures; hence automating these tasks through software applications saves time and reduces errors. Moreover, data distribution is highly relevant since scientist tent to assimilate different sources for comparison and validation. The use of web applications has boosted the necessary scientific dissemination. Within this argument, PLOCAN has implemented a set of independent but compatible applications to process, store and disseminate information gathered through different oceanographic platforms. These applications have been implemented using open standards, such as HTML and CSS, and open source software, like python as programming language and Django as framework web. More specifically, a glider application has been developed within the framework of FP7-GROOM project. Regarding data management, this project focuses on collecting and making available consistent and quality controlled datasets as well as fostering open access to glider data.
NASA Astrophysics Data System (ADS)
Stoltz, Peter; Veitzer, Seth
2008-04-01
We present a new Web 2.0-based interface to physics routines for High Energy Density Physics applications. These routines include models for ion stopping power, sputtering, secondary electron yields and energies, impact ionization cross sections, and atomic radiated power. The Web 2.0 interface allows users to easily explore the results of the models before using the routines within other codes or to analyze experimental results. We discuss how we used various Web 2.0 tools, including the Python 2.5, Django, and the Yahoo User Interface library. Finally, we demonstrate the interface by showing as an example the stopping power algorithms researchers are currently using within the Hydra code to analyze warm, dense matter experiments underway at the Neutralized Drift Compression Experiment facility at Lawrence Berkeley National Laboratory.
A Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository.
Smelter, Andrey; Moseley, Hunter N B
2018-01-01
The Metabolomics Workbench Data Repository is a public repository of mass spectrometry and nuclear magnetic resonance data and metadata derived from a wide variety of metabolomics studies. The data and metadata for each study is deposited, stored, and accessed via files in the domain-specific 'mwTab' flat file format. In order to improve the accessibility, reusability, and interoperability of the data and metadata stored in 'mwTab' formatted files, we implemented a Python library and package. This Python package, named 'mwtab', is a parser for the domain-specific 'mwTab' flat file format, which provides facilities for reading, accessing, and writing 'mwTab' formatted files. Furthermore, the package provides facilities to validate both the format and required metadata elements of a given 'mwTab' formatted file. In order to develop the 'mwtab' package we used the official 'mwTab' format specification. We used Git version control along with Python unit-testing framework as well as continuous integration service to run those tests on multiple versions of Python. Package documentation was developed using sphinx documentation generator. The 'mwtab' package provides both Python programmatic library interfaces and command-line interfaces for reading, writing, and validating 'mwTab' formatted files. Data and associated metadata are stored within Python dictionary- and list-based data structures, enabling straightforward, 'pythonic' access and manipulation of data and metadata. Also, the package provides facilities to convert 'mwTab' files into a JSON formatted equivalent, enabling easy reusability of the data by all modern programming languages that implement JSON parsers. The 'mwtab' package implements its metadata validation functionality based on a pre-defined JSON schema that can be easily specialized for specific types of metabolomics studies. The library also provides a command-line interface for interconversion between 'mwTab' and JSONized formats in raw text and a variety of compressed binary file formats. The 'mwtab' package is an easy-to-use Python package that provides FAIRer utilization of the Metabolomics Workbench Data Repository. The source code is freely available on GitHub and via the Python Package Index. Documentation includes a 'User Guide', 'Tutorial', and 'API Reference'. The GitHub repository also provides 'mwtab' package unit-tests via a continuous integration service.
Programming for physicians: A free online course.
Kubben, Pieter L
2016-01-01
This article is an introduction for clinical readers into programming and computational thinking using the programming language Python. Exercises can be done completely online without any need for installation of software. Participants will be taught the fundamentals of programming, which are necessarily independent of the sort of application (stand-alone, web, mobile, engineering, and statistical/machine learning) that is to be developed afterward.
Graph Visualization for RDF Graphs with SPARQL-EndPoints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R; Bond, Nathaniel
2014-07-11
RDF graphs are hard to visualize as triples. This software module is a web interface that connects to a SPARQL endpoint and retrieves graph data that the user can explore interactively and seamlessly. The software written in python and JavaScript has been tested to work on screens as little as the smart phones to large screens such as EVEREST.
Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia
2016-01-01
Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis. PMID:27792763
Chen, Shi-Yi; Deng, Feilong; Huang, Ying; Li, Cao; Liu, Linhai; Jia, Xianbo; Lai, Song-Jia
2016-01-01
Although various computer tools have been elaborately developed to calculate a series of statistics in molecular population genetics for both small- and large-scale DNA data, there is no efficient and easy-to-use toolkit available yet for exclusively focusing on the steps of mathematical calculation. Here, we present PopSc, a bioinformatic toolkit for calculating 45 basic statistics in molecular population genetics, which could be categorized into three classes, including (i) genetic diversity of DNA sequences, (ii) statistical tests for neutral evolution, and (iii) measures of genetic differentiation among populations. In contrast to the existing computer tools, PopSc was designed to directly accept the intermediate metadata, such as allele frequencies, rather than the raw DNA sequences or genotyping results. PopSc is first implemented as the web-based calculator with user-friendly interface, which greatly facilitates the teaching of population genetics in class and also promotes the convenient and straightforward calculation of statistics in research. Additionally, we also provide the Python library and R package of PopSc, which can be flexibly integrated into other advanced bioinformatic packages of population genetics analysis.
The NOvA software testing framework
NASA Astrophysics Data System (ADS)
Tamsett, M.; C Group
2015-12-01
The NOvA experiment at Fermilab is a long-baseline neutrino experiment designed to study vε appearance in a vμ beam. NOvA has already produced more than one million Monte Carlo and detector generated files amounting to more than 1 PB in size. This data is divided between a number of parallel streams such as far and near detector beam spills, cosmic ray backgrounds, a number of data-driven triggers and over 20 different Monte Carlo configurations. Each of these data streams must be processed through the appropriate steps of the rapidly evolving, multi-tiered, interdependent NOvA software framework. In total there are greater than 12 individual software tiers, each of which performs a different function and can be configured differently depending on the input stream. In order to regularly test and validate that all of these software stages are working correctly NOvA has designed a powerful, modular testing framework that enables detailed validation and benchmarking to be performed in a fast, efficient and accessible way with minimal expert knowledge. The core of this system is a novel series of python modules which wrap, monitor and handle the underlying C++ software framework and then report the results to a slick front-end web-based interface. This interface utilises modern, cross-platform, visualisation libraries to render the test results in a meaningful way. They are fast and flexible, allowing for the easy addition of new tests and datasets. In total upwards of 14 individual streams are regularly tested amounting to over 70 individual software processes, producing over 25 GB of output files. The rigour enforced through this flexible testing framework enables NOvA to rapidly verify configurations, results and software and thus ensure that data is available for physics analysis in a timely and robust manner.
Enhancing UCSF Chimera through web services
Huang, Conrad C.; Meng, Elaine C.; Morris, John H.; Pettersen, Eric F.; Ferrin, Thomas E.
2014-01-01
Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. PMID:24861624
SU-F-P-10: A Web-Based Radiation Safety Relational Database Module for Regulatory Compliance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosen, C; Ramsay, B; Konerth, S
Purpose: Maintaining compliance with Radioactive Materials Licenses is inherently a time-consuming task requiring focus and attention to detail. Staff tasked with these responsibilities, such as the Radiation Safety Officer and associated personnel must retain disparate records for eventual placement into one or more annual reports. Entering results and records in a relational database using a web browser as the interface, and storing that data in a cloud-based storage site, removes procedural barriers. The data becomes more adaptable for mining and sharing. Methods: Web-based code was written utilizing the web framework Django, written in Python. Additionally, the application utilizes JavaScript formore » front-end interaction, SQL, HTML and CSS. Quality assurance code testing is performed in a sequential style, and new code is only added after the successful testing of the previous goals. Separate sections of the module include data entry and analysis for audits, surveys, quality management, and continuous quality improvement. Data elements can be adapted for quarterly and annual reporting, and for immediate notification of user determined alarm settings. Results: Current advances are focusing on user interface issues, and determining the simplest manner by which to teach the user to build query forms. One solution has been to prepare library documents that a user can select or edit in place of creation a new document. Forms are being developed based upon Nuclear Regulatory Commission federal code, and will be expanded to include State Regulations. Conclusion: Establishing a secure website to act as the portal for data entry, storage and manipulation can lead to added efficiencies for a Radiation Safety Program. Access to multiple databases can lead to mining for big data programs, and for determining safety issues before they occur. Overcoming web programming challenges, a category that includes mathematical handling, is providing challenges that are being overcome.« less
ObsPy: A Python Toolbox for Seismology
NASA Astrophysics Data System (ADS)
Wassermann, J. M.; Krischer, L.; Megies, T.; Barsch, R.; Beyreuther, M.
2013-12-01
Python combines the power of a full-blown programming language with the flexibility and accessibility of an interactive scripting language. Its extensive standard library and large variety of freely available high quality scientific modules cover most needs in developing scientific processing workflows. ObsPy is a community-driven, open-source project extending Python's capabilities to fit the specific needs that arise when working with seismological data. It a) comes with a continuously growing signal processing toolbox that covers most tasks common in seismological analysis, b) provides read and write support for many common waveform, station and event metadata formats and c) enables access to various data centers, webservices and databases to retrieve waveform data and station/event metadata. In combination with mature and free Python packages like NumPy, SciPy, Matplotlib, IPython, Pandas, lxml, and PyQt, ObsPy makes it possible to develop complete workflows in Python, ranging from reading locally stored data or requesting data from one or more different data centers via signal analysis and data processing to visualization in GUI and web applications, output of modified/derived data and the creation of publication-quality figures. All functionality is extensively documented and the ObsPy Tutorial and Gallery give a good impression of the wide range of possible use cases. ObsPy is tested and running on Linux, OS X and Windows and comes with installation routines for these systems. ObsPy is developed in a test-driven approach and is available under the LGPLv3 open source licence. Users are welcome to request help, report bugs, propose enhancements or contribute code via either the user mailing list or the project page on GitHub.
Working with HITRAN Database Using Hapi: HITRAN Application Programming Interface
NASA Astrophysics Data System (ADS)
Kochanov, Roman V.; Hill, Christian; Wcislo, Piotr; Gordon, Iouli E.; Rothman, Laurence S.; Wilzewski, Jonas
2015-06-01
A HITRAN Application Programing Interface (HAPI) has been developed to allow users on their local machines much more flexibility and power. HAPI is a programming interface for the main data-searching capabilities of the new "HITRANonline" web service (http://www.hitran.org). It provides the possibility to query spectroscopic data from the HITRAN database in a flexible manner using either functions or query language. Some of the prominent current features of HAPI are: a) Downloading line-by-line data from the HITRANonline site to a local machine b) Filtering and processing the data in SQL-like fashion c) Conventional Python structures (lists, tuples, and dictionaries) for representing spectroscopic data d) Possibility to use a large set of third-party Python libraries to work with the data e) Python implementation of the HT lineshape which can be reduced to a number of conventional line profiles f) Python implementation of total internal partition sums (TIPS-2011) for spectra simulations g) High-resolution spectra calculation accounting for pressure, temperature and optical path length h) Providing instrumental functions to simulate experimental spectra i) Possibility to extend HAPI's functionality by custom line profiles, partitions sums and instrumental functions Currently the API is a module written in Python and uses Numpy library providing fast array operations. The API is designed to deal with data in multiple formats such as ASCII, CSV, HDF5 and XSAMS. This work has been supported by NASA Aura Science Team Grant NNX14AI55G and NASA Planetary Atmospheres Grant NNX13AI59G. L.S. Rothman et al. JQSRT, Volume 130, 2013, Pages 4-50 N.H. Ngo et al. JQSRT, Volume 129, November 2013, Pages 89-100 A. L. Laraia at al. Icarus, Volume 215, Issue 1, September 2011, Pages 391-400
Wehage, Kristopher; Chenhansa, Panan; Schoenung, Julie M
2017-01-01
GreenScreen® for Safer Chemicals is a framework for comparative chemical hazard assessment. It is the first transparent, open and publicly accessible framework of its kind, allowing manufacturers and governmental agencies to make informed decisions about the chemicals and substances used in consumer products and buildings. In the GreenScreen® benchmarking process, chemical hazards are assessed and classified based on 18 hazard endpoints from up to 30 different sources. The result is a simple numerical benchmark score and accompanying assessment report that allows users to flag chemicals of concern and identify safer alternatives. Although the screening process is straightforward, aggregating and sorting hazard data is tedious, time-consuming, and prone to human error. In light of these challenges, the present work demonstrates the usage of automation to cull chemical hazard data from publicly available internet resources, assign metadata, and perform a GreenScreen® hazard assessment using the GreenScreen® "List Translator." The automated technique, written as a module in the Python programming language, generates GreenScreen® List Translation data for over 3000 chemicals in approximately 30 s. Discussion of the potential benefits and limitations of automated techniques is provided. By embedding the library into a web-based graphical user interface, the extensibility of the library is demonstrated. The accompanying source code is made available to the hazard assessment community. Integr Environ Assess Manag 2017;13:167-176. © 2016 SETAC. © 2016 SETAC.
PyGPlates - a GPlates Python library for data analysis through space and deep geological time
NASA Astrophysics Data System (ADS)
Williams, Simon; Cannon, John; Qin, Xiaodong; Müller, Dietmar
2017-04-01
A fundamental consideration for studying the Earth through deep time is that the configurations of the continents, tectonic plates, and plate boundaries are continuously changing. Within a diverse range of fields including geodynamics, paleoclimate, and paleobiology, the importance of considering geodata in their reconstructed context across previous cycles of supercontinent aggregation, dispersal and ocean basin evolution is widely recognised. Open-source software tools such as GPlates provide paleo-geographic information systems for geoscientists to combine a wide variety of geodata and examine them within tectonic reconstructions through time. The availability of such powerful tools also brings new challenges - we want to learn something about the key associations between reconstructed plate motions and the geological record, but the high-dimensional parameter space is difficult for a human being to visually comprehend and quantify these associations. To achieve true spatio-temporal data-mining, new tools are needed. Here, we present a further development of the GPlates ecosystem - a Python-based tool for geotectonic analysis. In contrast to existing GPlates tools that are built around a graphical user interface (GUI) and interactive visualisation, pyGPlates offers a programming interface for the automation of quantitative plate tectonic analysis or arbitrary complexity. The vast array of open-source Python-based tools for data-mining, statistics and machine learning can now be linked to pyGPlates, allowing spatial data to be seamlessly analysed in space and geological "deep time", and with the ability to spread large computations across multiple processors. The presentation will illustrate a range of example applications, both simple and advanced. Basic examples include data querying, filtering, and reconstruction, and file-format conversions. For the innovative study of plate kinematics, pyGPlates has been used to explore the relationships between absolute plate motions, subduction zone kinematics, and mid-ocean ridge migration and orientation through deep time; to investigate the systematics of continental rift velocity evolution during Pangea breakup; and to make connections between kinematics of the Andean subduction zone and ore deposit formation. To support the numerical modelling community, pyGPlates facilitates the connection between tectonic surface boundary conditions contained within plate tectonic reconstructions (plate boundary configurations and plate velocities) and simulations such as thermo-mechanical models of lithospheric deformation and mantle convection. To support the development of web-based applications that can serve the wider geoscience community, we will demonstrate how pyGPlates can be combined with other open-source tools to serve alternative reconstructions together with a diverse array of reconstructed data sets in a self-consistent framework over the internet. PyGPlates is available to the public via the GPlates web site and contains comprehensive documentation covering installation on Windows/Mac/Linux platforms, sample code, tutorials and a detailed reference of pyGPlates functions and classes.
jSPyDB, an open source database-independent tool for data management
NASA Astrophysics Data System (ADS)
Pierro, Giuseppe Antonio; Cavallari, Francesca; Di Guida, Salvatore; Innocente, Vincenzo
2011-12-01
Nowadays, the number of commercial tools available for accessing Databases, built on Java or .Net, is increasing. However, many of these applications have several drawbacks: usually they are not open-source, they provide interfaces only with a specific kind of database, they are platform-dependent and very CPU and memory consuming. jSPyDB is a free web-based tool written using Python and Javascript. It relies on jQuery and python libraries, and is intended to provide a simple handler to different database technologies inside a local web browser. Such a tool, exploiting fast access libraries such as SQLAlchemy, is easy to install, and to configure. The design of this tool envisages three layers. The front-end client side in the local web browser communicates with a backend server. Only the server is able to connect to the different databases for the purposes of performing data definition and manipulation. The server makes the data available to the client, so that the user can display and handle them safely. Moreover, thanks to jQuery libraries, this tool supports export of data in different formats, such as XML and JSON. Finally, by using a set of pre-defined functions, users are allowed to create their customized views for a better data visualization. In this way, we optimize the performance of database servers by avoiding short connections and concurrent sessions. In addition, security is enforced since we do not provide users the possibility to directly execute any SQL statement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tharrington, Arnold N.
2015-09-09
The NCCS Regression Test Harness is a software package that provides a framework to perform regression and acceptance testing on NCCS High Performance Computers. The package is written in Python and has only the dependency of a Subversion repository to store the regression tests.
Wang, Anliang; Yan, Xiaolong; Wei, Zhijun
2018-04-27
This note presents the design of a scalable software package named ImagePy for analysing biological images. Our contribution is concentrated on facilitating extensibility and interoperability of the software through decoupling the data model from the user interface. Especially with assistance from the Python ecosystem, this software framework makes modern computer algorithms easier to be applied in bioimage analysis. ImagePy is free and open source software, with documentation and code available at https://github.com/Image-Py/imagepy under the BSD license. It has been tested on the Windows, Mac and Linux operating systems. wzjdlut@dlut.edu.cn or yxdragon@imagepy.org.
Programming for physicians: A free online course
Kubben, Pieter L.
2016-01-01
This article is an introduction for clinical readers into programming and computational thinking using the programming language Python. Exercises can be done completely online without any need for installation of software. Participants will be taught the fundamentals of programming, which are necessarily independent of the sort of application (stand-alone, web, mobile, engineering, and statistical/machine learning) that is to be developed afterward. PMID:27127694
Common Data Models and Efficient Reproducible Workflows for Distributed Ocean Model Skill Assessment
NASA Astrophysics Data System (ADS)
Signell, R. P.; Snowden, D. P.; Howlett, E.; Fernandes, F. A.
2014-12-01
Model skill assessment requires discovery, access, analysis, and visualization of information from both sensors and models, and traditionally has been possible only by a few experts. The US Integrated Ocean Observing System (US-IOOS) consists of 17 Federal Agencies and 11 Regional Associations that produce data from various sensors and numerical models; exactly the information required for model skill assessment. US-IOOS is seeking to develop documented skill assessment workflows that are standardized, efficient, and reproducible so that a much wider community can participate in the use and assessment of model results. Standardization requires common data models for observational and model data. US-IOOS relies on the CF Conventions for observations and structured grid data, and on the UGRID Conventions for unstructured (e.g. triangular) grid data. This allows applications to obtain only the data they require in a uniform and parsimonious way using web services: OPeNDAP for model output and OGC Sensor Observation Service (SOS) for observed data. Reproducibility is enabled with IPython Notebooks shared on GitHub (http://github.com/ioos). These capture the entire skill assessment workflow, including user input, search, access, analysis, and visualization, ensuring that workflows are self-documenting and reproducible by anyone, using free software. Python packages for common data models are Pyugrid and the British Met Office Iris package. Python packages required to run the workflows (pyugrid, pyoos, and the British Met Office Iris package) are also available on GitHub and on Binstar.org so that users can run scenarios using the free Anaconda Python distribution. Hosted services such as Wakari enable anyone to reproduce these workflows for free, without installing any software locally, using just their web browser. We are also experimenting with Wakari Enterprise, which allows multi-user access from a web browser to an IPython Server running where large quantities of model output reside, increasing the efficiency. The open development and distribution of these workflows, and the software on which they depend, is an educational resource for those new to the field and a center of focus where practitioners can contribute new software and ideas.
Generic Space Science Visualization in 2D/3D using SDDAS
NASA Astrophysics Data System (ADS)
Mukherjee, J.; Murphy, Z. B.; Gonzalez, C. A.; Muller, M.; Ybarra, S.
2017-12-01
The Southwest Data Display and Analysis System (SDDAS) is a flexible multi-mission / multi-instrument software system intended to support space physics data analysis, and has been in active development for over 20 years. For the Magnetospheric Multi-Scale (MMS), Juno, Cluster, and Mars Express missions, we have modified these generic tools for visualizing data in two and three dimensions. The SDDAS software is open source and makes use of various other open source packages, including VTK and Qwt. The software offers interactive plotting as well as a Python and Lua module to modify the data before plotting. In theory, by writing a Lua or Python module to read the data, any data could be used. Currently, the software can natively read data in IDFS, CEF, CDF, FITS, SEG-Y, ASCII, and XLS formats. We have integrated the software with other Python packages such as SPICE and SpacePy. Included with the visualization software is a database application and other utilities for managing data that can retrieve data from the Cluster Active Archive and Space Physics Data Facility at Goddard, as well as other local archives. Line plots, spectrograms, geographic, volume plots, strip charts, etc. are just some of the types of plots one can generate with SDDAS. Furthermore, due to the design, output is not limited to strictly visualization as SDDAS can also be used to generate stand-alone IDL or Python visualization code.. Lastly, SDDAS has been successfully used as a backend for several web based analysis systems as well.
ObspyDMT: a Python toolbox for retrieving and processing large seismological data sets
NASA Astrophysics Data System (ADS)
Hosseini, Kasra; Sigloch, Karin
2017-10-01
We present obspyDMT, a free, open-source software toolbox for the query, retrieval, processing and management of seismological data sets, including very large, heterogeneous and/or dynamically growing ones. ObspyDMT simplifies and speeds up user interaction with data centers, in more versatile ways than existing tools. The user is shielded from the complexities of interacting with different data centers and data exchange protocols and is provided with powerful diagnostic and plotting tools to check the retrieved data and metadata. While primarily a productivity tool for research seismologists and observatories, easy-to-use syntax and plotting functionality also make obspyDMT an effective teaching aid. Written in the Python programming language, it can be used as a stand-alone command-line tool (requiring no knowledge of Python) or can be integrated as a module with other Python codes. It facilitates data archiving, preprocessing, instrument correction and quality control - routine but nontrivial tasks that can consume much user time. We describe obspyDMT's functionality, design and technical implementation, accompanied by an overview of its use cases. As an example of a typical problem encountered in seismogram preprocessing, we show how to check for inconsistencies in response files of two example stations. We also demonstrate the fully automated request, remote computation and retrieval of synthetic seismograms from the Synthetics Engine (Syngine) web service of the Data Management Center (DMC) at the Incorporated Research Institutions for Seismology (IRIS).
NASA Astrophysics Data System (ADS)
Hirst, Paul; Cardenes, Ricardo
2016-08-01
We have developed and deployed a new data archive for the Gemini Observatory. Focused on simplicity and ease of use, the archive provides a number of powerful and novel features including automatic association of calibration data with the science data, and the ability to bookmark searches. A simple but powerful API allows programmatic search and download of data. The archive is hosted on Amazon Web Services, which provides us excellent internet connectivity and significant cost savings in both operations and development over more traditional deployment options. The code is written in python, utilizing a PostgreSQL database and Apache web server.
Technical integration of hippocampus, Basal Ganglia and physical models for spatial navigation.
Fox, Charles; Humphries, Mark; Mitchinson, Ben; Kiss, Tamas; Somogyvari, Zoltan; Prescott, Tony
2009-01-01
Computational neuroscience is increasingly moving beyond modeling individual neurons or neural systems to consider the integration of multiple models, often constructed by different research groups. We report on our preliminary technical integration of recent hippocampal formation, basal ganglia and physical environment models, together with visualisation tools, as a case study in the use of Python across the modelling tool-chain. We do not present new modeling results here. The architecture incorporates leaky-integrator and rate-coded neurons, a 3D environment with collision detection and tactile sensors, 3D graphics and 2D plots. We found Python to be a flexible platform, offering a significant reduction in development time, without a corresponding significant increase in execution time. We illustrate this by implementing a part of the model in various alternative languages and coding styles, and comparing their execution times. For very large-scale system integration, communication with other languages and parallel execution may be required, which we demonstrate using the BRAHMS framework's Python bindings.
Savini, Lara; Tora, Susanna; Di Lorenzo, Alessio; Cioci, Daniela; Monaco, Federica; Polci, Andrea; Orsini, Massimiliano; Calistri, Paolo; Conte, Annamaria
2018-01-01
In the last decades an increasing number of West Nile Disease cases was observed in equines and humans in the Mediterranean basin and surveillance systems are set up in numerous countries to manage and control the disease. The collection, storage and distribution of information on the spread of the disease becomes important for a shared intervention and control strategy. To this end, a Web Geographic Information System has been developed and disease data, climatic and environmental remote sensed data, full genome sequences of selected isolated strains are made available. This paper describes the Disease Monitoring Dashboard (DMD) web system application, the tools available for the preliminary analysis on climatic and environmental factors and the other interactive tools for epidemiological analysis. WNV occurrence data are collected from multiple official and unofficial sources. Whole genome sequences and metadata of WNV strains are retrieved from public databases or generated in the framework of the Italian surveillance activities. Climatic and environmental data are provided by NASA website. The Geographical Information System is composed by Oracle 10g Database and ESRI ArcGIS Server 10.03; the web mapping client application is developed with the ArcGIS API for Javascript and Phylocanvas library to facilitate and optimize the mash-up approach. ESRI ArcSDE 10.1 has been used to store spatial data. The DMD application is accessible through a generic web browser at https://netmed.izs.it/networkMediterraneo/. The system collects data through on-line forms and automated procedures and visualizes data as interactive graphs, maps and tables. The spatial and temporal dynamic visualization of disease events is managed by a time slider that returns results on both map and epidemiological curve. Climatic and environmental data can be associated to cases through python procedures and downloaded as Excel files. The system compiles multiple datasets through user-friendly web tools; it integrates entomological, veterinary and human surveillance, molecular information on pathogens and environmental and climatic data. The principal result of the DMD development is the transfer and dissemination of knowledge and technologies to develop strategies for integrated prevention and control measures of animal and human diseases.
Bifrost: a Modular Python/C++ Framework for Development of High-Throughput Data Analysis Pipelines
NASA Astrophysics Data System (ADS)
Cranmer, Miles; Barsdell, Benjamin R.; Price, Danny C.; Garsden, Hugh; Taylor, Gregory B.; Dowell, Jayce; Schinzel, Frank; Costa, Timothy; Greenhill, Lincoln J.
2017-01-01
Large radio interferometers have data rates that render long-term storage of raw correlator data infeasible, thus motivating development of real-time processing software. For high-throughput applications, processing pipelines are challenging to design and implement. Motivated by science efforts with the Long Wavelength Array, we have developed Bifrost, a novel Python/C++ framework that eases the development of high-throughput data analysis software by packaging algorithms as black box processes in a directed graph. This strategy to modularize code allows astronomers to create parallelism without code adjustment. Bifrost uses CPU/GPU ’circular memory’ data buffers that enable ready introduction of arbitrary functions into the processing path for ’streams’ of data, and allow pipelines to automatically reconfigure in response to astrophysical transient detection or input of new observing settings. We have deployed and tested Bifrost at the latest Long Wavelength Array station, in Sevilleta National Wildlife Refuge, NM, where it handles throughput exceeding 10 Gbps per CPU core.
Enhancing UCSF Chimera through web services.
Huang, Conrad C; Meng, Elaine C; Morris, John H; Pettersen, Eric F; Ferrin, Thomas E
2014-07-01
Integrating access to web services with desktop applications allows for an expanded set of application features, including performing computationally intensive tasks and convenient searches of databases. We describe how we have enhanced UCSF Chimera (http://www.rbvi.ucsf.edu/chimera/), a program for the interactive visualization and analysis of molecular structures and related data, through the addition of several web services (http://www.rbvi.ucsf.edu/chimera/docs/webservices.html). By streamlining access to web services, including the entire job submission, monitoring and retrieval process, Chimera makes it simpler for users to focus on their science projects rather than data manipulation. Chimera uses Opal, a toolkit for wrapping scientific applications as web services, to provide scalable and transparent access to several popular software packages. We illustrate Chimera's use of web services with an example workflow that interleaves use of these services with interactive manipulation of molecular sequences and structures, and we provide an example Python program to demonstrate how easily Opal-based web services can be accessed from within an application. Web server availability: http://webservices.rbvi.ucsf.edu/opal2/dashboard?command=serviceList. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Dshell++: A Component Based, Reusable Space System Simulation Framework
NASA Technical Reports Server (NTRS)
Lim, Christopher S.; Jain, Abhinandan
2009-01-01
This paper describes the multi-mission Dshell++ simulation framework for high fidelity, physics-based simulation of spacecraft, robotic manipulation and mobility systems. Dshell++ is a C++/Python library which uses modern script driven object-oriented techniques to allow component reuse and a dynamic run-time interface for complex, high-fidelity simulation of spacecraft and robotic systems. The goal of the Dshell++ architecture is to manage the inherent complexity of physicsbased simulations while supporting component model reuse across missions. The framework provides several features that support a large degree of simulation configurability and usability.
The RAVE/VERTIGO vertex reconstruction toolkit and framework
NASA Astrophysics Data System (ADS)
Waltenberger, W.; Mitaroff, W.; Moser, F.; Pflugfelder, B.; Riedel, H. V.
2008-07-01
A detector-independent toolkit for vertex reconstruction (RAVE1) is being developed, along with a standalone framework (VERTIGO2) for testing, analyzing and debugging. The core algorithms represent state-of-the-art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available.
LSD: Large Survey Database framework
NASA Astrophysics Data System (ADS)
Juric, Mario
2012-09-01
The Large Survey Database (LSD) is a Python framework and DBMS for distributed storage, cross-matching and querying of large survey catalogs (>10^9 rows, >1 TB). The primary driver behind its development is the analysis of Pan-STARRS PS1 data. It is specifically optimized for fast queries and parallel sweeps of positionally and temporally indexed datasets. It transparently scales to more than >10^2 nodes, and can be made to function in "shared nothing" architectures.
NASA Technical Reports Server (NTRS)
Lang, Timothy J.
2015-01-01
At NASA Marshall Space Flight Center (MSFC), Python is used several different ways to analyze and visualize precipitating weather systems. A number of different Python-based software packages have been developed, which are available to the larger scientific community. The approach in all these packages is to utilize pre-existing Python modules as well as to be object-oriented and scalable. The first package that will be described and demonstrated is the Python Advanced Microwave Precipitation Radiometer (AMPR) Data Toolkit, or PyAMPR for short. PyAMPR reads geolocated brightness temperature data from any flight of the AMPR airborne instrument over its 25-year history into a common data structure suitable for user-defined analyses. It features rapid, simplified (i.e., one line of code) production of quick-look imagery, including Google Earth overlays, swath plots of individual channels, and strip charts showing multiple channels at once. These plotting routines are also capable of significant customization for detailed, publication-ready figures. Deconvolution of the polarization-varying channels to static horizontally and vertically polarized scenes is also available. Examples will be given of PyAMPR's contribution toward real-time AMPR data display during the Integrated Precipitation and Hydrology Experiment (IPHEx), which took place in the Carolinas during May-June 2014. The second software package is the Marshall Multi-Radar/Multi-Sensor (MRMS) Mosaic Python Toolkit, or MMM-Py for short. MMM-Py was designed to read, analyze, and display three-dimensional national mosaicked reflectivity data produced by the NOAA National Severe Storms Laboratory (NSSL). MMM-Py can read MRMS mosaics from either their unique binary format or their converted NetCDF format. It can also read and properly interpret the current mosaic design (4 regional tiles) as well as mosaics produced prior to late July 2013 (8 tiles). MMM-Py can easily stitch multiple tiles together to provide a larger regional or national picture of precipitating weather systems. Composites, horizontal and vertical crosssections, and combinations thereof are easily displayed using as little as one line of code. MMM-Py can also write to the native MRMS binary format, and sub-sectioning of tiles (or multiple stitched tiles) is anticipated to be in place by the time of this meeting. Thus, MMM-Py also can be used to power the creation of custom mosaics for targeted regional studies. Overlays of other data (e.g., lightning observations) are easily accomplished. Demonstrations of MMM-Py, including the creation of animations, will be shown. Finally, Marshall has done significant work to interface Python-based analysis routines with the U.S. Department of Energy's Py-ART software package for radar data ingest, processing, and analysis. One example of this is the Python Turbulence Detection Algorithm (PyTDA), an MSFC-based implementation of the National Center for Atmospheric Research (NCAR) Turbulence Detection Algorithm (NTDA) for the purposes of convective-scale analysis, situational awareness, and forensic meteorology. PyTDA exploits Py-ART's radar data ingest routines and data model to rapidly produce aviation-relevant turbulence estimates from Doppler radar data. Work toward processing speed optimization and better integration within the Py-ART framework will be highlighted. Python-based analysis within the Py-ART framework is also being done for new research related to intercomparison of ground-based radar data with satellite estimates of ocean winds, as well as research on the electrification of pyrocumulus clouds.
Design of a Remote Infrared Images and Other Data Acquisition Station for outdoor applications
NASA Astrophysics Data System (ADS)
Béland, M.-A.; Djupkep, F. B. D.; Bendada, A.; Maldague, X.; Ferrarini, G.; Bison, P.; Grinzato, E.
2013-05-01
The Infrared Images and Other Data Acquisition Station enables a user, who is located inside a laboratory, to acquire visible and infrared images and distances in an outdoor environment with the help of an Internet connection. This station can acquire data using an infrared camera, a visible camera, and a rangefinder. The system can be used through a web page or through Python functions.
NMRPro: an integrated web component for interactive processing and visualization of NMR spectra.
Mohamed, Ahmed; Nguyen, Canh Hao; Mamitsuka, Hiroshi
2016-07-01
The popularity of using NMR spectroscopy in metabolomics and natural products has driven the development of an array of NMR spectral analysis tools and databases. Particularly, web applications are well used recently because they are platform-independent and easy to extend through reusable web components. Currently available web applications provide the analysis of NMR spectra. However, they still lack the necessary processing and interactive visualization functionalities. To overcome these limitations, we present NMRPro, a web component that can be easily incorporated into current web applications, enabling easy-to-use online interactive processing and visualization. NMRPro integrates server-side processing with client-side interactive visualization through three parts: a python package to efficiently process large NMR datasets on the server-side, a Django App managing server-client interaction, and SpecdrawJS for client-side interactive visualization. Demo and installation instructions are available at http://mamitsukalab.org/tools/nmrpro/ mohamed@kuicr.kyoto-u.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Web-Based Computational Chemistry Education with CHARMMing I: Lessons and Tutorial
Miller, Benjamin T.; Singh, Rishi P.; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S.; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R.; Woodcock, H. Lee
2014-01-01
This article describes the development, implementation, and use of web-based “lessons” to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that “point and click” simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance. PMID:25057988
Web-based computational chemistry education with CHARMMing I: Lessons and tutorial.
Miller, Benjamin T; Singh, Rishi P; Schalk, Vinushka; Pevzner, Yuri; Sun, Jingjun; Miller, Carrie S; Boresch, Stefan; Ichiye, Toshiko; Brooks, Bernard R; Woodcock, H Lee
2014-07-01
This article describes the development, implementation, and use of web-based "lessons" to introduce students and other newcomers to computer simulations of biological macromolecules. These lessons, i.e., interactive step-by-step instructions for performing common molecular simulation tasks, are integrated into the collaboratively developed CHARMM INterface and Graphics (CHARMMing) web user interface (http://www.charmming.org). Several lessons have already been developed with new ones easily added via a provided Python script. In addition to CHARMMing's new lessons functionality, web-based graphical capabilities have been overhauled and are fully compatible with modern mobile web browsers (e.g., phones and tablets), allowing easy integration of these advanced simulation techniques into coursework. Finally, one of the primary objections to web-based systems like CHARMMing has been that "point and click" simulation set-up does little to teach the user about the underlying physics, biology, and computational methods being applied. In response to this criticism, we have developed a freely available tutorial to bridge the gap between graphical simulation setup and the technical knowledge necessary to perform simulations without user interface assistance.
DREAMTools: a Python package for scoring collaborative challenges
Cokelaer, Thomas; Bansal, Mukesh; Bare, Christopher; Bilal, Erhan; Bot, Brian M.; Chaibub Neto, Elias; Eduati, Federica; de la Fuente, Alberto; Gönen, Mehmet; Hill, Steven M.; Hoff, Bruce; Karr, Jonathan R.; Küffner, Robert; Menden, Michael P.; Meyer, Pablo; Norel, Raquel; Pratap, Abhishek; Prill, Robert J.; Weirauch, Matthew T.; Costello, James C.; Stolovitzky, Gustavo; Saez-Rodriguez, Julio
2016-01-01
DREAM challenges are community competitions designed to advance computational methods and address fundamental questions in system biology and translational medicine. Each challenge asks participants to develop and apply computational methods to either predict unobserved outcomes or to identify unknown model parameters given a set of training data. Computational methods are evaluated using an automated scoring metric, scores are posted to a public leaderboard, and methods are published to facilitate community discussions on how to build improved methods. By engaging participants from a wide range of science and engineering backgrounds, DREAM challenges can comparatively evaluate a wide range of statistical, machine learning, and biophysical methods. Here, we describe DREAMTools, a Python package for evaluating DREAM challenge scoring metrics. DREAMTools provides a command line interface that enables researchers to test new methods on past challenges, as well as a framework for scoring new challenges. As of March 2016, DREAMTools includes more than 80% of completed DREAM challenges. DREAMTools complements the data, metadata, and software tools available at the DREAM website http://dreamchallenges.org and on the Synapse platform at https://www.synapse.org. Availability: DREAMTools is a Python package. Releases and documentation are available at http://pypi.python.org/pypi/dreamtools. The source code is available at http://github.com/dreamtools/dreamtools. PMID:27134723
Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7
NASA Astrophysics Data System (ADS)
Petras, Vaclav; Petrasova, Anna; Chemin, Yann; Zambelli, Pietro; Landa, Martin; Gebbert, Sören; Neteler, Markus; Löwe, Peter
2015-04-01
GRASS GIS 7 is a free and open source GIS software developed and used by many scientists (Neteler et al., 2012). While some users of GRASS GIS prefer its graphical user interface, significant part of the scientific community takes advantage of various scripting and programing interfaces offered by GRASS GIS to develop new models and algorithms. Here we will present different interfaces added to GRASS GIS 7 and available in Python, a popular programming language and environment in geosciences. These Python interfaces are designed to satisfy the needs of scientists and programmers under various circumstances. PyGRASS (Zambelli et al., 2013) is a new object-oriented interface to GRASS GIS modules and libraries. The GRASS GIS libraries are implemented in C to ensure maximum performance and the PyGRASS interface provides an intuitive, pythonic access to their functionality. GRASS GIS Python scripting library is another way of accessing GRASS GIS modules. It combines the simplicity of Bash and the efficiency of the Python syntax. When full access to all low-level and advanced functions and structures from GRASS GIS library is required, Python programmers can use an interface based on the Python ctypes package. Ctypes interface provides complete, direct access to all functionality as it would be available to C programmers. GRASS GIS provides specialized Python library for managing and analyzing spatio-temporal data (Gebbert and Pebesma, 2014). The temporal library introduces space time datasets representing time series of raster, 3D raster or vector maps and allows users to combine various spatio-temporal operations including queries, aggregation, sampling or the analysis of spatio-temporal topology. We will also discuss the advantages of implementing scientific algorithm as a GRASS GIS module and we will show how to write such module in Python. To facilitate the development of the module, GRASS GIS provides a Python library for testing (Petras and Gebbert, 2014) which helps researchers to ensure the robustness of the algorithm, correctness of the results in edge cases as well as the detection of changes in results due to new development. For all modules GRASS GIS automatically creates standardized command line and graphical user interfaces and documentation. Finally, we will show how GRASS GIS can be used together with powerful Python tools such as the NumPy package and the IPython Notebook. References: Gebbert, S., Pebesma, E., 2014. A temporal GIS for field based environmental modeling. Environmental Modelling & Software 53, 1-12. Neteler, M., Bowman, M.H., Landa, M. and Metz, M., 2012. GRASS GIS: a multi-purpose Open Source GIS. Environmental Modelling & Software 31: 124-130. Petras, V., Gebbert, S., 2014. Testing framework for GRASS GIS: ensuring reproducibility of scientific geospatial computing. Poster presented at: AGU Fall Meeting, December 15-19, 2014, San Francisco, USA. Zambelli, P., Gebbert, S., Ciolli, M., 2013. Pygrass: An Object Oriented Python Application Programming Interface (API) for Geographic Resources Analysis Support System (GRASS) Geographic Information System (GIS). ISPRS International Journal of Geo-Information 2, 201-219.
SU-E-T-103: Development and Implementation of Web Based Quality Control Software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Studinski, R; Taylor, R; Angers, C
Purpose: Historically many radiation medicine programs have maintained their Quality Control (QC) test results in paper records or Microsoft Excel worksheets. Both these approaches represent significant logistical challenges, and are not predisposed to data review and approval. It has been our group's aim to develop and implement web based software designed not just to record and store QC data in a centralized database, but to provide scheduling and data review tools to help manage a radiation therapy clinics Equipment Quality control program. Methods: The software was written in the Python programming language using the Django web framework. In order tomore » promote collaboration and validation from other centres the code was made open source and is freely available to the public via an online source code repository. The code was written to provide a common user interface for data entry, formalize the review and approval process, and offer automated data trending and process control analysis of test results. Results: As of February 2014, our installation of QAtrack+ has 180 tests defined in its database and has collected ∼22 000 test results, all of which have been reviewed and approved by a physicist via QATrack+'s review tools. These results include records for quality control of Elekta accelerators, CT simulators, our brachytherapy programme, TomoTherapy and Cyberknife units. Currently at least 5 other centres are known to be running QAtrack+ clinically, forming the start of an international user community. Conclusion: QAtrack+ has proven to be an effective tool for collecting radiation therapy QC data, allowing for rapid review and trending of data for a wide variety of treatment units. As free and open source software, all source code, documentation and a bug tracker are available to the public at https://bitbucket.org/tohccmedphys/qatrackplus/.« less
OpenDrift v1.0: a generic framework for trajectory modelling
NASA Astrophysics Data System (ADS)
Dagestad, Knut-Frode; Röhrs, Johannes; Breivik, Øyvind; Ådlandsvik, Bjørn
2018-04-01
OpenDrift is an open-source Python-based framework for Lagrangian particle modelling under development at the Norwegian Meteorological Institute with contributions from the wider scientific community. The framework is highly generic and modular, and is designed to be used for any type of drift calculations in the ocean or atmosphere. A specific module within the OpenDrift framework corresponds to a Lagrangian particle model in the traditional sense. A number of modules have already been developed, including an oil drift module, a stochastic search-and-rescue module, a pelagic egg module, and a basic module for atmospheric drift. The framework allows for the ingestion of an unspecified number of forcing fields (scalar and vectorial) from various sources, including Eulerian ocean, atmosphere and wave models, but also measurements or a priori values for the same variables. A basic backtracking mechanism is inherent, using sign reversal of the total displacement vector and negative time stepping. OpenDrift is fast and simple to set up and use on Linux, Mac and Windows environments, and can be used with minimal or no Python experience. It is designed for flexibility, and researchers may easily adapt or write modules for their specific purpose. OpenDrift is also designed for performance, and simulations with millions of particles may be performed on a laptop. Further, OpenDrift is designed for robustness and is in daily operational use for emergency preparedness modelling (oil drift, search and rescue, and drifting ships) at the Norwegian Meteorological Institute.
Koush, Yury; Ashburner, John; Prilepin, Evgeny; Sladky, Ronald; Zeidman, Peter; Bibikov, Sergei; Scharnowski, Frank; Nikonorov, Artem; De Ville, Dimitri Van
2017-08-01
Neurofeedback based on real-time functional magnetic resonance imaging (rt-fMRI) is a novel and rapidly developing research field. It allows for training of voluntary control over localized brain activity and connectivity and has demonstrated promising clinical applications. Because of the rapid technical developments of MRI techniques and the availability of high-performance computing, new methodological advances in rt-fMRI neurofeedback become possible. Here we outline the core components of a novel open-source neurofeedback framework, termed Open NeuroFeedback Training (OpenNFT), which efficiently integrates these new developments. This framework is implemented using Python and Matlab source code to allow for diverse functionality, high modularity, and rapid extendibility of the software depending on the user's needs. In addition, it provides an easy interface to the functionality of Statistical Parametric Mapping (SPM) that is also open-source and one of the most widely used fMRI data analysis software. We demonstrate the functionality of our new framework by describing case studies that include neurofeedback protocols based on brain activity levels, effective connectivity models, and pattern classification approaches. This open-source initiative provides a suitable framework to actively engage in the development of novel neurofeedback approaches, so that local methodological developments can be easily made accessible to a wider range of users. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
PyMVPA: A Unifying Approach to the Analysis of Neuroscientific Data
Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Olivetti, Emanuele; Fründ, Ingo; Rieger, Jochem W.; Herrmann, Christoph S.; Haxby, James V.; Hanson, Stephen José; Pollmann, Stefan
2008-01-01
The Python programming language is steadily increasing in popularity as the language of choice for scientific computing. The ability of this scripting environment to access a huge code base in various languages, combined with its syntactical simplicity, make it the ideal tool for implementing and sharing ideas among scientists from numerous fields and with heterogeneous methodological backgrounds. The recent rise of reciprocal interest between the machine learning (ML) and neuroscience communities is an example of the desire for an inter-disciplinary transfer of computational methods that can benefit from a Python-based framework. For many years, a large fraction of both research communities have addressed, almost independently, very high-dimensional problems with almost completely non-overlapping methods. However, a number of recently published studies that applied ML methods to neuroscience research questions attracted a lot of attention from researchers from both fields, as well as the general public, and showed that this approach can provide novel and fruitful insights into the functioning of the brain. In this article we show how PyMVPA, a specialized Python framework for machine learning based data analysis, can help to facilitate this inter-disciplinary technology transfer by providing a single interface to a wide array of machine learning libraries and neural data-processing methods. We demonstrate the general applicability and power of PyMVPA via analyses of a number of neural data modalities, including fMRI, EEG, MEG, and extracellular recordings. PMID:19212459
PathScore: a web tool for identifying altered pathways in cancer data.
Gaffney, Stephen G; Townsend, Jeffrey P
2016-12-01
PathScore quantifies the level of enrichment of somatic mutations within curated pathways, applying a novel approach that identifies pathways enriched across patients. The application provides several user-friendly, interactive graphic interfaces for data exploration, including tools for comparing pathway effect sizes, significance, gene-set overlap and enrichment differences between projects. Web application available at pathscore.publichealth.yale.edu. Site implemented in Python and MySQL, with all major browsers supported. Source code available at: github.com/sggaffney/pathscore with a GPLv3 license. stephen.gaffney@yale.edu. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
New framework of NGN web-based management system
NASA Astrophysics Data System (ADS)
Nian, Zhou; Jie, Yin; Qian, Mao
2007-11-01
This paper introduces the basic conceptions and key technology of the Ajax and some popular frameworks in the J2EE architecture, try to integrate all the frameworks into a new framework. The developers can develop web applications much more convenient by using this framework and the web application can provide a more friendly and interactive platform to the end users. At last an example is given to explain how to use the new framework to build a web-based management system of the softswitch network.
Visualization Software for VisIT Java Client
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Jay Jay; Smith, Robert W
The VisIT Java Client (JVC) library is a lightweight thin client that is designed and written purely in the native language of Java (the Python & JavaScript versions of the library use the same concept) and communicates with any new unmodified standalone version of VisIT, a high performance computing parallel visualization toolkit, over traditional or web sockets and dynamically determines capabilities of the running VisIT instance whether local or remote.
Python package for model STructure ANalysis (pySTAN)
NASA Astrophysics Data System (ADS)
Van Hoey, Stijn; van der Kwast, Johannes; Nopens, Ingmar; Seuntjens, Piet
2013-04-01
The selection and identification of a suitable hydrological model structure is more than fitting parameters of a model structure to reproduce a measured hydrograph. The procedure is highly dependent on various criteria, i.e. the modelling objective, the characteristics and the scale of the system under investigation as well as the available data. Rigorous analysis of the candidate model structures is needed to support and objectify the selection of the most appropriate structure for a specific case (or eventually justify the use of a proposed ensemble of structures). This holds both in the situation of choosing between a limited set of different structures as well as in the framework of flexible model structures with interchangeable components. Many different methods to evaluate and analyse model structures exist. This leads to a sprawl of available methods, all characterized by different assumptions, changing conditions of application and various code implementations. Methods typically focus on optimization, sensitivity analysis or uncertainty analysis, with backgrounds from optimization, machine-learning or statistics amongst others. These methods also need an evaluation metric (objective function) to compare the model outcome with some observed data. However, for current methods described in literature, implementations are not always transparent and reproducible (if available at all). No standard procedures exist to share code and the popularity (and amount of applications) of the methods is sometimes more dependent on the availability than the merits of the method. Moreover, new implementations of existing methods are difficult to verify and the different theoretical backgrounds make it difficult for environmental scientists to decide about the usefulness of a specific method. A common and open framework with a large set of methods can support users in deciding about the most appropriate method. Hence, it enables to simultaneously apply and compare different methods on a fair basis. We developed and present pySTAN (python framework for STructure Analysis), a python package containing a set of functions for model structure evaluation to provide the analysis of (hydrological) model structures. A selected set of algorithms for optimization, uncertainty and sensitivity analysis is currently available, together with a set of evaluation (objective) functions and input distributions to sample from. The methods are implemented model-independent and the python language provides the wrapper functions to apply administer external model codes. Different objective functions can be considered simultaneously with both statistical metrics and more hydrology specific metrics. By using so-called reStructuredText (sphinx documentation generator) and Python documentation strings (docstrings), the generation of manual pages is semi-automated and a specific environment is available to enhance both the readability and transparency of the code. It thereby enables a larger group of users to apply and compare these methods and to extend the functionalities.
NASA Astrophysics Data System (ADS)
Ragan-Kelley, M.; Perez, F.; Granger, B.; Kluyver, T.; Ivanov, P.; Frederic, J.; Bussonnier, M.
2014-12-01
IPython has provided terminal-based tools for interactive computing in Python since 2001. The notebook document format and multi-process architecture introduced in 2011 have expanded the applicable scope of IPython into teaching, presenting, and sharing computational work, in addition to interactive exploration. The new architecture also allows users to work in any language, with implementations in Python, R, Julia, Haskell, and several other languages. The language agnostic parts of IPython have been renamed to Jupyter, to better capture the notion that a cross-language design can encapsulate commonalities present in computational research regardless of the programming language being used. This architecture offers components like the web-based Notebook interface, that supports rich documents that combine code and computational results with text narratives, mathematics, images, video and any media that a modern browser can display. This interface can be used not only in research, but also for publication and education, as notebooks can be converted to a variety of output formats, including HTML and PDF. Recent developments in the Jupyter project include a multi-user environment for hosting notebooks for a class or research group, a live collaboration notebook via Google Docs, and better support for languages other than Python.
A computational framework for automation of point defect calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goyal, Anuj; Gorai, Prashun; Peng, Haowei
We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.
A computational framework for automation of point defect calculations
Goyal, Anuj; Gorai, Prashun; Peng, Haowei; ...
2017-01-13
We have developed a complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory. Furthermore, the framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. This package provides the capability to compute widely-accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3 as test examples, we demonstrate the package capabilities and validate the methodology.
A framework for porting the NeuroBayes machine learning algorithm to FPGAs
NASA Astrophysics Data System (ADS)
Baehr, S.; Sander, O.; Heck, M.; Feindt, M.; Becker, J.
2016-01-01
The NeuroBayes machine learning algorithm is deployed for online data reduction at the pixel detector of Belle II. In order to test, characterize and easily adapt its implementation on FPGAs, a framework was developed. Within the framework an HDL model, written in python using MyHDL, is used for fast exploration of possible configurations. Under usage of input data from physics simulations figures of merit like throughput, accuracy and resource demand of the implementation are evaluated in a fast and flexible way. Functional validation is supported by usage of unit tests and HDL simulation for chosen configurations.
NASA Astrophysics Data System (ADS)
Celicourt, P.; Piasecki, M.
2015-12-01
Deployment of environmental sensors assemblies based on cheap platforms such as Raspberry Pi and Arduino have gained much attention over the past few years. While they are more attractive due to their ability to be controlled with a few programming language choices, the configuration task can become quite complex due to the need of having to learn several different proprietary data formats and protocols which constitute a bottleneck for the expansion of sensor network. In response to this rising complexity the Institute of Electrical and Electronics Engineers (IEEE) has sponsored the development of the IEEE 1451 standard in an attempt to introduce a common standard. The most innovative concept of the standard is the Transducer Electronic Data Sheet (TEDS) which enables transducers to self-identify, self-describe, self-calibrate, to exhibit plug-and-play functionality, etc. We used Python to develop an IEEE 1451.0 platform-independent graphical user interface to generate and provide sufficient information about almost ANY sensor and sensor platforms for sensor programming purposes, automatic calibration of sensors data, incorporation of back-end demands on data management in TEDS for automatic standard-based data storage, search and discovery purposes. These features are paramount to make data management much less onerous in large scale sensor network. Along with the TEDS Creator, we developed a tool namely HydroUnits for three specific purposes: encoding of physical units in the TEDS, dimensional analysis, and on-the-fly conversion of time series allowing users to retrieve data in a desired equivalent unit while accommodating unforeseen and user-defined units. In addition, our back-end data management comprises the Python/Django equivalent of the CUAHSI Observations Data Model (ODM) namely DjangODM that will be hosted by a MongoDB Database Server which offers more convenience for our application. We are also developing a data which will be paired with the data autoloading capability of Django and a TEDS processing script to populate the database with the incoming data. The Python WaterOneFlow Web Services developed by the Texas Water Development Board will be used to publish the data. The software suite is being tested on the Raspberry Pi as end node and a laptop PC as the base station in a wireless setting.
gemcWeb: A Cloud Based Nuclear Physics Simulation Software
NASA Astrophysics Data System (ADS)
Markelon, Sam
2017-09-01
gemcWeb allows users to run nuclear physics simulations from the web. Being completely device agnostic, scientists can run simulations from anywhere with an Internet connection. Having a full user system, gemcWeb allows users to revisit and revise their projects, and share configurations and results with collaborators. gemcWeb is based on simulation software gemc, which is based on standard GEant4. gemcWeb requires no C++, gemc, or GEant4 knowledge. Using a simple but powerful GUI allows users to configure their project from geometries and configurations stored on the deployment server. Simulations are then run on the server, with results being posted to the user, and then securely stored. Python based and open-source, the main version of gemcWeb is hosted internally at Jefferson National Labratory and used by the CLAS12 and Electron-Ion Collider Project groups. However, as the software is open-source, and hosted as a GitHub repository, an instance can be deployed on the open web, or any institution's intra-net. An instance can be configured to host experiments specific to an institution, and the code base can be modified by any individual or group. Special thanks to: Maurizio Ungaro, PhD., creator of gemc; Markus Diefenthaler, PhD., advisor; and Kyungseon Joo, PhD., advisor.
pyNSMC: A Python Module for Null-Space Monte Carlo Uncertainty Analysis
NASA Astrophysics Data System (ADS)
White, J.; Brakefield, L. K.
2015-12-01
The null-space monte carlo technique is a non-linear uncertainty analyses technique that is well-suited to high-dimensional inverse problems. While the technique is powerful, the existing workflow for completing null-space monte carlo is cumbersome, requiring the use of multiple commandline utilities, several sets of intermediate files and even a text editor. pyNSMC is an open-source python module that automates the workflow of null-space monte carlo uncertainty analyses. The module is fully compatible with the PEST and PEST++ software suites and leverages existing functionality of pyEMU, a python framework for linear-based uncertainty analyses. pyNSMC greatly simplifies the existing workflow for null-space monte carlo by taking advantage of object oriented design facilities in python. The core of pyNSMC is the ensemble class, which draws and stores realized random vectors and also provides functionality for exporting and visualizing results. By relieving users of the tedium associated with file handling and command line utility execution, pyNSMC instead focuses the user on the important steps and assumptions of null-space monte carlo analysis. Furthermore, pyNSMC facilitates learning through flow charts and results visualization, which are available at many points in the algorithm. The ease-of-use of the pyNSMC workflow is compared to the existing workflow for null-space monte carlo for a synthetic groundwater model with hundreds of estimable parameters.
NASA Astrophysics Data System (ADS)
Machalek, P.; Kim, S. M.; Berry, R. D.; Liang, A.; Small, T.; Brevdo, E.; Kuznetsova, A.
2012-12-01
We describe how the Climate Corporation uses Python and Clojure, a language impleneted on top of Java, to generate climatological forecasts for precipitation based on the Advanced Hydrologic Prediction Service (AHPS) radar based daily precipitation measurements. A 2-year-long forecasts is generated on each of the ~650,000 CONUS land based 4-km AHPS grids by constructing 10,000 ensembles sampled from a 30-year reconstructed AHPS history for each grid. The spatial and temporal correlations between neighboring AHPS grids and the sampling of the analogues are handled by Python. The parallelization for all the 650,000 CONUS stations is further achieved by utilizing the MAP-REDUCE framework (http://code.google.com/edu/parallel/mapreduce-tutorial.html). Each full scale computational run requires hundreds of nodes with up to 8 processors each on the Amazon Elastic MapReduce (http://aws.amazon.com/elasticmapreduce/) distributed computing service resulting in 3 terabyte datasets. We further describe how we have productionalized a monthly run of the simulations process at full scale of the 4km AHPS grids and how the resultant terabyte sized datasets are handled.
User interfaces for computational science: A domain specific language for OOMMF embedded in Python
NASA Astrophysics Data System (ADS)
Beg, Marijan; Pepper, Ryan A.; Fangohr, Hans
2017-05-01
Computer simulations are used widely across the engineering and science disciplines, including in the research and development of magnetic devices using computational micromagnetics. In this work, we identify and review different approaches to configuring simulation runs: (i) the re-compilation of source code, (ii) the use of configuration files, (iii) the graphical user interface, and (iv) embedding the simulation specification in an existing programming language to express the computational problem. We identify the advantages and disadvantages of different approaches and discuss their implications on effectiveness and reproducibility of computational studies and results. Following on from this, we design and describe a domain specific language for micromagnetics that is embedded in the Python language, and allows users to define the micromagnetic simulations they want to carry out in a flexible way. We have implemented this micromagnetic simulation description language together with a computational backend that executes the simulation task using the Object Oriented MicroMagnetic Framework (OOMMF). We illustrate the use of this Python interface for OOMMF by solving the micromagnetic standard problem 4. All the code is publicly available and is open source.
Oasis: A high-level/high-performance open source Navier-Stokes solver
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Valen-Sendstad, Kristian
2015-03-01
Oasis is a high-level/high-performance finite element Navier-Stokes solver written from scratch in Python using building blocks from the FEniCS project (fenicsproject.org). The solver is unstructured and targets large-scale applications in complex geometries on massively parallel clusters. Oasis utilizes MPI and interfaces, through FEniCS, to the linear algebra backend PETSc. Oasis advocates a high-level, programmable user interface through the creation of highly flexible Python modules for new problems. Through the high-level Python interface the user is placed in complete control of every aspect of the solver. A version of the solver, that is using piecewise linear elements for both velocity and pressure, is shown to reproduce very well the classical, spectral, turbulent channel simulations of Moser et al. (1999). The computational speed is strongly dominated by the iterative solvers provided by the linear algebra backend, which is arguably the best performance any similar implicit solver using PETSc may hope for. Higher order accuracy is also demonstrated and new solvers may be easily added within the same framework.
Modular GIS Framework for National Scale Hydrologic and Hydraulic Modeling Support
NASA Astrophysics Data System (ADS)
Djokic, D.; Noman, N.; Kopp, S.
2015-12-01
Geographic information systems (GIS) have been extensively used for pre- and post-processing of hydrologic and hydraulic models at multiple scales. An extensible GIS-based framework was developed for characterization of drainage systems (stream networks, catchments, floodplain characteristics) and model integration. The framework is implemented as a set of free, open source, Python tools and builds on core ArcGIS functionality and uses geoprocessing capabilities to ensure extensibility. Utilization of COTS GIS core capabilities allows immediate use of model results in a variety of existing online applications and integration with other data sources and applications.The poster presents the use of this framework to downscale global hydrologic models to local hydraulic scale and post process the hydraulic modeling results and generate floodplains at any local resolution. Flow forecasts from ECMWF or WRF-Hydro are downscaled and combined with other ancillary data for input into the RAPID flood routing model. RAPID model results (stream flow along each reach) are ingested into a GIS-based scale dependent stream network database for efficient flow utilization and visualization over space and time. Once the flows are known at localized reaches, the tools can be used to derive the floodplain depth and extent for each time step in the forecast at any available local resolution. If existing rating curves are available they can be used to relate the flow to the depth of flooding, or synthetic rating curves can be derived using the tools in the toolkit and some ancillary data/assumptions. The results can be published as time-enabled spatial services to be consumed by web applications that use floodplain information as an input. Some of the existing online presentation templates can be easily combined with available online demographic and infrastructure data to present the impact of the potential floods on the local community through simple, end user products. This framework has been successfully used in both the data rich environments as well as in locales with minimum available spatial and hydrographic data.
ADASS Web Database XML Project
NASA Astrophysics Data System (ADS)
Barg, M. I.; Stobie, E. B.; Ferro, A. J.; O'Neil, E. J.
In the spring of 2000, at the request of the ADASS Program Organizing Committee (POC), we began organizing information from previous ADASS conferences in an effort to create a centralized database. The beginnings of this database originated from data (invited speakers, participants, papers, etc.) extracted from HyperText Markup Language (HTML) documents from past ADASS host sites. Unfortunately, not all HTML documents are well formed and parsing them proved to be an iterative process. It was evident at the beginning that if these Web documents were organized in a standardized way, such as XML (Extensible Markup Language), the processing of this information across the Web could be automated, more efficient, and less error prone. This paper will briefly review the many programming tools available for processing XML, including Java, Perl and Python, and will explore the mapping of relational data from our MySQL database to XML.
NASA Astrophysics Data System (ADS)
Rosenberg, Jake; Parker, W. Ryan; Cammarata, Michael B.; Brodbelt, Jennifer S.
2018-04-01
UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu. UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT. [Figure not available: see fulltext.
Rosenberg, Jake; Parker, W Ryan; Cammarata, Michael B; Brodbelt, Jennifer S
2018-06-01
UV-POSIT (Ultraviolet Photodissociation Online Structure Interrogation Tools) is a suite of web-based tools designed to facilitate the rapid interpretation of data from native mass spectrometry experiments making use of 193 nm ultraviolet photodissociation (UVPD). The suite includes four separate utilities which assist in the calculation of fragment ion abundances as a function of backbone cleavage sites and sequence position; the localization of charge sites in intact proteins; the calculation of hydrogen elimination propensity for a-type fragment ions; and mass-offset searching of UVPD spectra to identify unknown modifications and assess false positive fragment identifications. UV-POSIT is implemented as a Python/Flask web application hosted at http://uv-posit.cm.utexas.edu . UV-POSIT is available under the MIT license, and the source code is available at https://github.com/jarosenb/UV_POSIT . Graphical Abstract.
Jflow: a workflow management system for web applications.
Mariette, Jérôme; Escudié, Frédéric; Bardou, Philippe; Nabihoudine, Ibouniyamine; Noirot, Céline; Trotard, Marie-Stéphane; Gaspin, Christine; Klopp, Christophe
2016-02-01
Biologists produce large data sets and are in demand of rich and simple web portals in which they can upload and analyze their files. Providing such tools requires to mask the complexity induced by the needed High Performance Computing (HPC) environment. The connection between interface and computing infrastructure is usually specific to each portal. With Jflow, we introduce a Workflow Management System (WMS), composed of jQuery plug-ins which can easily be embedded in any web application and a Python library providing all requested features to setup, run and monitor workflows. Jflow is available under the GNU General Public License (GPL) at http://bioinfo.genotoul.fr/jflow. The package is coming with full documentation, quick start and a running test portal. Jerome.Mariette@toulouse.inra.fr. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Comparison of Physics Frameworks for WebGL-Based Game Engine
NASA Astrophysics Data System (ADS)
Yogya, Resa; Kosala, Raymond
2014-03-01
Recently, a new technology called WebGL shows a lot of potentials for developing games. However since this technology is still new, there are still many potentials in the game development area that are not explored yet. This paper tries to uncover the potential of integrating physics frameworks with WebGL technology in a game engine for developing 2D or 3D games. Specifically we integrated three open source physics frameworks: Bullet, Cannon, and JigLib into a WebGL-based game engine. Using experiment, we assessed these frameworks in terms of their correctness or accuracy, performance, completeness and compatibility. The results show that it is possible to integrate open source physics frameworks into a WebGLbased game engine, and Bullet is the best physics framework to be integrated into the WebGL-based game engine.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-01
... Python Species, and Four Anaconda Species as Injurious Reptiles AGENCY: Fish and Wildlife Service... regulations to add Indian python (Python molurus, including Burmese python Python molurus bivittatus), reticulated python (Broghammerus reticulatus or Python reticulatus), Northern African python (Python sebae...
DAVID-WS: a stateful web service to facilitate gene/protein list analysis
Jiao, Xiaoli; Sherman, Brad T.; Huang, Da Wei; Stephens, Robert; Baseler, Michael W.; Lane, H. Clifford; Lempicki, Richard A.
2012-01-01
Summary: The database for annotation, visualization and integrated discovery (DAVID), which can be freely accessed at http://david.abcc.ncifcrf.gov/, is a web-based online bioinformatics resource that aims to provide tools for the functional interpretation of large lists of genes/proteins. It has been used by researchers from more than 5000 institutes worldwide, with a daily submission rate of ∼1200 gene lists from ∼400 unique researchers, and has been cited by more than 6000 scientific publications. However, the current web interface does not support programmatic access to DAVID, and the uniform resource locator (URL)-based application programming interface (API) has a limit on URL size and is stateless in nature as it uses URL request and response messages to communicate with the server, without keeping any state-related details. DAVID-WS (web service) has been developed to automate user tasks by providing stateful web services to access DAVID programmatically without the need for human interactions. Availability: The web service and sample clients (written in Java, Perl, Python and Matlab) are made freely available under the DAVID License at http://david.abcc.ncifcrf.gov/content.jsp?file=WS.html. Contact: xiaoli.jiao@nih.gov; rlempicki@nih.gov PMID:22543366
DAVID-WS: a stateful web service to facilitate gene/protein list analysis.
Jiao, Xiaoli; Sherman, Brad T; Huang, Da Wei; Stephens, Robert; Baseler, Michael W; Lane, H Clifford; Lempicki, Richard A
2012-07-01
The database for annotation, visualization and integrated discovery (DAVID), which can be freely accessed at http://david.abcc.ncifcrf.gov/, is a web-based online bioinformatics resource that aims to provide tools for the functional interpretation of large lists of genes/proteins. It has been used by researchers from more than 5000 institutes worldwide, with a daily submission rate of ∼1200 gene lists from ∼400 unique researchers, and has been cited by more than 6000 scientific publications. However, the current web interface does not support programmatic access to DAVID, and the uniform resource locator (URL)-based application programming interface (API) has a limit on URL size and is stateless in nature as it uses URL request and response messages to communicate with the server, without keeping any state-related details. DAVID-WS (web service) has been developed to automate user tasks by providing stateful web services to access DAVID programmatically without the need for human interactions. The web service and sample clients (written in Java, Perl, Python and Matlab) are made freely available under the DAVID License at http://david.abcc.ncifcrf.gov/content.jsp?file=WS.html.
NASA Astrophysics Data System (ADS)
Knörchen, Achim; Ketzler, Gunnar; Schneider, Christoph
2015-01-01
Although Europe has been growing together for the past decades, cross-border information platforms on environmental issues are still scarce. With regard to the establishment of a web-mapping tool on airborne particulate matter (PM) concentration for the Euregio Meuse-Rhine located in the border region of Belgium, Germany and the Netherlands, this article describes the research on methodical and technical backgrounds implementing such a platform. An open-source solution was selected for presenting the data in a Web GIS (OpenLayers/GeoExt; both JavaScript-based), applying other free tools for data handling (Python), data management (PostgreSQL), geo-statistical modelling (Octave), geoprocessing (GRASS GIS/GDAL) and web mapping (MapServer). The multilingual, made-to-order online platform provides access to near-real time data on PM concentration as well as additional background information. In an open data section, commented configuration files for the Web GIS client are being made available for download. Furthermore, all geodata generated by the project is being published under public domain and can be retrieved in various formats or integrated into Desktop GIS as Web Map Services (WMS).
ANTP Protocol Suite Software Implementation Architecture in Python
2011-06-03
a popular platform of networking programming, an area in which C has traditionally dominated. 2 NetController AeroRP AeroNP AeroNP API AeroTP...visualisation of the running system. For example using the Google Maps API , the main logging web page can show all the running nodes in the system. By...communication between AeroNP and AeroRP and runs on the operating system as daemon. Furthermore, it creates an API interface to mange the communication between
WILBER and PyWEED: Event-based Seismic Data Request Tools
NASA Astrophysics Data System (ADS)
Falco, N.; Clark, A.; Trabant, C. M.
2017-12-01
WILBER and PyWEED are two user-friendly tools for requesting event-oriented seismic data. Both tools provide interactive maps and other controls for browsing and filtering event and station catalogs, and downloading data for selected event/station combinations, where the data window for each event/station pair may be defined relative to the arrival time of seismic waves from the event to that particular station. Both tools allow data to be previewed visually, and can download data in standard miniSEED, SAC, and other formats, complete with relevant metadata for performing instrument correction. WILBER is a web application requiring only a modern web browser. Once the user has selected an event, WILBER identifies all data available for that time period, and allows the user to select stations based on criteria such as the station's distance and orientation relative to the event. When the user has finalized their request, the data is collected and packaged on the IRIS server, and when it is ready the user is sent a link to download. PyWEED is a downloadable, cross-platform (Macintosh / Windows / Linux) application written in Python. PyWEED allows a user to select multiple events and stations, and will download data for each event/station combination selected. PyWEED is built around the ObsPy seismic toolkit, and allows direct interaction and control of the application through a Python interactive console.
Low-Bandwidth and Non-Compute Intensive Remote Identification of Microbes from Raw Sequencing Reads
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc. PMID:24391826
Low-bandwidth and non-compute intensive remote identification of microbes from raw sequencing reads.
Gautier, Laurent; Lund, Ole
2013-01-01
Cheap DNA sequencing may soon become routine not only for human genomes but also for practically anything requiring the identification of living organisms from their DNA: tracking of infectious agents, control of food products, bioreactors, or environmental samples. We propose a novel general approach to the analysis of sequencing data where a reference genome does not have to be specified. Using a distributed architecture we are able to query a remote server for hints about what the reference might be, transferring a relatively small amount of data. Our system consists of a server with known reference DNA indexed, and a client with raw sequencing reads. The client sends a sample of unidentified reads, and in return receives a list of matching references. Sequences for the references can be retrieved and used for exhaustive computation on the reads, such as alignment. To demonstrate this approach we have implemented a web server, indexing tens of thousands of publicly available genomes and genomic regions from various organisms and returning lists of matching hits from query sequencing reads. We have also implemented two clients: one running in a web browser, and one as a python script. Both are able to handle a large number of sequencing reads and from portable devices (the browser-based running on a tablet), perform its task within seconds, and consume an amount of bandwidth compatible with mobile broadband networks. Such client-server approaches could develop in the future, allowing a fully automated processing of sequencing data and routine instant quality check of sequencing runs from desktop sequencers. A web access is available at http://tapir.cbs.dtu.dk. The source code for a python command-line client, a server, and supplementary data are available at http://bit.ly/1aURxkc.
NASA Astrophysics Data System (ADS)
Tamkin, G.; Schnase, J. L.; Duffy, D.; Li, J.; Strong, S.; Thompson, J. H.
2016-12-01
We are extending climate analytics-as-a-service, including: (1) A high-performance Virtual Real-Time Analytics Testbed supporting six major reanalysis data sets using advanced technologies like the Cloudera Impala-based SQL and Hadoop-based MapReduce analytics over native NetCDF files. (2) A Reanalysis Ensemble Service (RES) that offers a basic set of commonly used operations over the reanalysis collections that are accessible through NASA's climate data analytics Web services and our client-side Climate Data Services Python library, CDSlib. (3) An Open Geospatial Consortium (OGC) WPS-compliant Web service interface to CDSLib to accommodate ESGF's Web service endpoints. This presentation will report on the overall progress of this effort, with special attention to recent enhancements that have been made to the Reanalysis Ensemble Service, including the following: - An CDSlib Python library that supports full temporal, spatial, and grid-based resolution services - A new reanalysis collections reference model to enable operator design and implementation - An enhanced library of sample queries to demonstrate and develop use case scenarios - Extended operators that enable single- and multiple reanalysis area average, vertical average, re-gridding, and trend, climatology, and anomaly computations - Full support for the MERRA-2 reanalysis and the initial integration of two additional reanalyses - A prototype Jupyter notebook-based distribution mechanism that combines CDSlib documentation with interactive use case scenarios and personalized project management - Prototyped uncertainty quantification services that combine ensemble products with comparative observational products - Convenient, one-stop shopping for commonly used data products from multiple reanalyses, including basic subsetting and arithmetic operations over the data and extractions of trends, climatologies, and anomalies - The ability to compute and visualize multiple reanalysis intercomparisons
NASA Astrophysics Data System (ADS)
Barth, Alexander; Troupin, Charles; Watelet, Sylvain; Alvera-Azcarate, Aida; Beckers, Jean-Marie
2017-04-01
The analysis tool DIVA (Data-Interpolating Variational Analysis) is designed to generate gridded fields or climatologies from in situ observations. The tool DIVA minimizes a cost function to ensure that the analysed field is relatively close to the observations and conforms at the same time to a set of dynamical constraints. In particular, DIVA naturally decouples water bodies which are not directly connected and it uses a (potentially spatial varying) correlation length to describe over which length-scale the analysed variable is correlated. In addition, DIVA can also take ocean currents into account to introduce a preferential direction for the correlation. The SeaDataCloud project aims to facilitate the access and use of ocean in situ data from 45 national oceanographic data centres and marine data centres from 35 countries riparian to all European seas. A central aspect is to provide web-based virtual research environment, where scientists can easily access and explore the data sets through the SeaDataCloud infrastructure. For users familiar with programming languages like Julia and Python, Jupyter (acronym for Julia, Python and R) notebooks provide an exciting way to analyse and to interact with ocean data. Jupyter notebooks are made up of cells that can be run individually and can contain text, formulas or code fragment. A complete notebook explains how to go from input data and parameters to a result, in this case a gridded field obtained executing DIVA. This presentation discusses this new web-based workflow for generating climatologies using DIVA. It explores its new possibilities in particular, in terms of improved ease of use and reproducibility of the results. The integration in the infrastructure of EUDAT is also addressed.
Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks.
Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly
2014-02-01
Hybrid mobile applications (apps) combine the features of Web applications and "native" mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources-file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies "bridges" that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources-the ability to read and write contacts list, local files, etc.-to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model.
2014-09-01
get install python2.7 python- openssl python-gevent libevent-dev python2.7-dev build-essential make liblapack-dev libmysqlclient-dev python-chardet...apt-get install python-dev openssl python- openssl python-pyasn1 python-twisted • apt-get install subversion • apt-get install authbind 4
NASA Astrophysics Data System (ADS)
Smith, M. J.; Vardaro, M.; Crowley, M. F.; Glenn, S. M.; Schofield, O.; Belabbassi, L.; Garzio, L. M.; Knuth, F.; Fram, J. P.; Kerfoot, J.
2016-02-01
The Ocean Observatories Initiative (OOI), funded by the National Science Foundation, provides users with access to long-term datasets from a variety of oceanographic sensors. The Endurance Array in the Pacific Ocean consists of two separate lines off the coasts of Oregon and Washington. The Oregon line consists of 7 moorings, two cabled benthic experiment packages and 6 underwater gliders. The Washington line comprises 6 moorings and 6 gliders. Each mooring is outfitted with a variety of instrument packages. The raw data from these instruments are sent to shore via satellite communication and in some cases, via fiber optic cable. Raw data is then sent to the cyberinfrastructure (CI) group at Rutgers where it is aggregated, parsed into thousands of different data streams, and integrated into a software package called uFrame. The OOI CI delivers the data to the general public via a web interface that outputs data into commonly used scientific data file formats such as JSON, netCDF, and CSV. The Rutgers data management team has developed a series of command-line Python tools that streamline data acquisition in order to facilitate the QA/QC review process. The first step in the process is querying the uFrame database for a list of all available platforms. From this list, a user can choose a specific platform and automatically download all available datasets from the specified platform. The downloaded dataset is plotted using a generalized Python netcdf plotting routine that utilizes a data visualization toolbox called matplotlib. This routine loads each netCDF file separately and outputs plots by each available parameter. These Python tools have been uploaded to a Github repository that is openly available to help facilitate OOI data access and visualization.
PyMT: A Python package for model-coupling in the Earth sciences
NASA Astrophysics Data System (ADS)
Hutton, E.
2016-12-01
The current landscape of Earth-system models is not only broad in scientific scope, but also broad in type. On the one hand, the large variety of models is exciting, as it provides fertile ground for extending or linking models together in novel ways to answer new scientific questions. However, the heterogeneity in model type acts to inhibit model coupling, model development, or even model use. Existing models are written in a variety of programming languages, operate on different grids, use their own file formats (both for input and output), have different user interfaces, have their own time steps, etc. Each of these factors become obstructions to scientists wanting to couple, extend - or simply run - existing models. For scientists whose main focus may not be computer science these barriers become even larger and become significant logistical hurdles. And this is all before the scientific difficulties of coupling or running models are addressed. The CSDMS Python Modeling Toolkit (PyMT) was developed to help non-computer scientists deal with these sorts of modeling logistics. PyMT is the fundamental package the Community Surface Dynamics Modeling System uses for the coupling of models that expose the Basic Modeling Interface (BMI). It contains: Tools necessary for coupling models of disparate time and space scales (including grid mappers) Time-steppers that coordinate the sequencing of coupled models Exchange of data between BMI-enabled models Wrappers that automatically load BMI-enabled models into the PyMT framework Utilities that support open-source interfaces (UGRID, SGRID,CSDMS Standard Names, etc.) A collection of community-submitted models, written in a variety of programminglanguages, from a variety of process domains - but all usable from within the Python programming language A plug-in framework for adding additional BMI-enabled models to the framework In this presentation we intoduce the basics of the PyMT as well as provide an example of coupling models of different domains and grid types.
A Python object-oriented framework for the CMS alignment and calibration data
NASA Astrophysics Data System (ADS)
Dawes, Joshua H.; CMS Collaboration
2017-10-01
The Alignment, Calibrations and Databases group at the CMS Experiment delivers Alignment and Calibration Conditions Data to a large set of workflows which process recorded event data and produce simulated events. The current infrastructure for releasing and consuming Conditions Data was designed in the two years of the first LHC long shutdown to respond to use cases from the preceding data-taking period. During the second run of the LHC, new use cases were defined. For the consumption of Conditions Metadata, no common interface existed for the detector experts to use in Python-based custom scripts, resulting in many different querying and transaction management patterns. A new framework has been built to address such use cases: a simple object-oriented tool that detector experts can use to read and write Conditions Metadata when using Oracle and SQLite databases, that provides a homogeneous method of querying across all services. The tool provides mechanisms for segmenting large sets of conditions while releasing them to the production database, allows for uniform error reporting to the client-side from the server-side and optimizes the data transfer to the server. The architecture of the new service has been developed exploiting many of the features made available by the metadata consumption framework to implement the required improvements. This paper presents the details of the design and implementation of the new metadata consumption and data upload framework, as well as analyses of the new upload service’s performance as the server-side state varies.
Vcs.js - Visualization Control System for the Web
NASA Astrophysics Data System (ADS)
Chaudhary, A.; Lipsa, D.; Doutriaux, C.; Beezley, J. D.; Williams, D. N.; Fries, S.; Harris, M. B.
2016-12-01
VCS is a general purpose visualization library, optimized for climate data, which is part of the UV-CDAT system. It provides a Python API for drawing 2D plots such as lineplots, scatter plots, Taylor diagrams, data colored by scalar values, vector glyphs, isocontours and map projections. VCS is based on the VTK library. Vcs.js is the corresponding JavaScript API, designed to be as close as possible to the original VCS Python API and to provide similar functionality for the Web. Vcs.js includes additional functionality when compared with VCS. This additional API is used to introspect data files available on the server and variables available in a data file. Vcs.js can display plots in the browser window. It always works with a server that reads a data file, extracts variables from the file and subsets the data. From this point, two alternate paths are possible. First the system can render the data on the server using VCS producing an image which is send to the browser to be displayed. This path works for for all plot types and produces a reference image identical with the images produced by VCS. This path uses the VTK-Web library. As an optimization, usable in certain conditions, a second path is possible. Data is packed, and sent to the browser which uses a JavaScript plotting library, such as plotly, to display the data. Plots that work well in the browser are line-plots, scatter-plots for any data and many other plot types for small data and supported grid types. As web technology matures, more plots could be supported for rendering in the browser. Rendering can be done either on the client or on the server and we expect that the best place to render will change depending on the available web technology, data transfer costs, server management costs and value provided to users. We intend to provide a flexible solution that allows for both client and server side rendering and a meaningful way to choose between the two. We provide a web-based user interface called vCdat which uses Vcs.js as its visualization library. Our paper will discuss the principles guiding our design choices for Vcs.js, present our design in detail and show a sample usage of the library.
PIGSPro: prediction of immunoGlobulin structures v2.
Lepore, Rosalba; Olimpieri, Pier P; Messih, Mario A; Tramontano, Anna
2017-07-03
PIGSpro is a significant upgrade of the popular PIGS server for the prediction of the structure of immunoglobulins. The software has been completely rewritten in python following a similar pipeline as in the original method, but including, at various steps, relevant modifications found to improve its prediction accuracy, as demonstrated here. The steps of the pipeline include the selection of the appropriate framework for predicting the conserved regions of the molecule by homology; the target template alignment for this portion of the molecule; the selection of the main chain conformation of the hypervariable loops according to the canonical structure model, the prediction of the third loop of the heavy chain (H3) for which complete canonical structures are not available and the packing of the light and heavy chain if derived from different templates. Each of these steps has been improved including updated methods developed along the years. Last but not least, the user interface has been completely redesigned and an automatic monthly update of the underlying database has been implemented. The method is available as a web server at http://biocomputing.it/pigspro. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Earthquake Intensity and Strong Motion Analysis Within SEISCOMP3
NASA Astrophysics Data System (ADS)
Becker, J.; Weber, B.; Ghasemi, H.; Cummins, P. R.; Murjaya, J.; Rudyanto, A.; Rößler, D.
2017-12-01
Measuring and predicting ground motion parameters including seismic intensities for earthquakes is crucial and subject to recent research in engineering seismology.gempa has developed the new SIGMA module for Seismic Intensity and Ground Motion Analysis. The module is based on the SeisComP3 framework extending it in the field of seismic hazard assessment and engineering seismology. SIGMA may work with or independently of SeisComP3 by supporting FDSN Web services for importing earthquake or station information and waveforms. It provides a user-friendly and modern graphical interface for semi-automatic and interactive strong motion data processing. SIGMA provides intensity and (P)SA maps based on GMPE's or recorded data. It calculates the most common strong motion parameters, e.g. PGA/PGV/PGD, Arias intensity and duration, Tp, Tm, CAV, SED and Fourier-, power- and response spectra. GMPE's are configurable. Supporting C++ and Python plug-ins, standard and customized GMPE's including the OpenQuake Hazard Library can be easily integrated and compared. Originally tailored to specifications by Geoscience Australia and BMKG (Indonesia) SIGMA has become a popular tool among SeisComP3 users concerned with seismic hazard and strong motion seismology.
Using the STOQS Web Application for Access to in situ Oceanographic Data
NASA Astrophysics Data System (ADS)
McCann, M. P.
2012-12-01
Using the STOQS Web Application for Access to in situ Oceanographic Data Mike McCann 7 August 2012 With increasing measurement and sampling capabilities of autonomous oceanographic platforms (e.g. Gliders, Autonomous Underwater Vehicles, Wavegliders), the need to efficiently access and visualize the data they collect is growing. The Monterey Bay Aquarium Research Institute has designed and built the Spatial Temporal Oceanographic Query System (STOQS) specifically to address this issue. The need for STOQS arises from inefficiencies discovered from using CF-NetCDF point observation conventions for these data. The problem is that access efficiency decreases with decreasing dimension of CF-NetCDF data. For example, the Trajectory Common Data Model feature type has only one coordinate dimension, usually Time - positions of the trajectory (Depth, Latitude, Longitude) are stored as non-indexed record variables within the NetCDF file. If client software needs to access data between two depth values or from a bounded geographic area, then the whole data set must be read and the selection made within the client software. This is very inefficient. What is needed is a way to easily select data of interest from an archive given any number of spatial, temporal, or other constraints. Geospatial relational database technology provides this capability. The full STOQS application consists of a Postgres/PostGIS database, Mapserver, and Python-Django running on a server and Web 2.0 technology (jQuery, OpenLayers, Twitter Bootstrap) running in a modern web browser. The web application provides faceted search capabilities allowing a user to quickly drill into the data of interest. Data selection can be constrained by spatial, temporal, and depth selections as well as by parameter value and platform name. The web application layer also provides a REST (Representational State Transfer) Application Programming Interface allowing tools such as the Matlab stoqstoolbox to retrieve data directly from the database. STOQS is an open source software project built upon a framework of free and open source software and is available for anyone to use for making their data more accessible and usable. For more information please see: http://code.google.com/p/stoqs/.; In the above screen grab a user has selected the "mass_concentrtion_of_chlorophyll_in_sea_water" parameter and a time depth range that includes three weeks of AUV missions of just the upper 5 meters.
RadVel: The Radial Velocity Modeling Toolkit
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan
2018-04-01
RadVel is an open-source Python package for modeling Keplerian orbits in radial velocity (RV) timeseries. RadVel provides a convenient framework to fit RVs using maximum a posteriori optimization and to compute robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel allows users to float or fix parameters, impose priors, and perform Bayesian model comparison. We have implemented real-time MCMC convergence tests to ensure adequate sampling of the posterior. RadVel can output a number of publication-quality plots and tables. Users may interface with RadVel through a convenient command-line interface or directly from Python. The code is object-oriented and thus naturally extensible. We encourage contributions from the community. Documentation is available at http://radvel.readthedocs.io.
PEITH(Θ): perfecting experiments with information theory in Python with GPU support.
Dony, Leander; Mackerodt, Jonas; Ward, Scott; Filippi, Sarah; Stumpf, Michael P H; Liepe, Juliane
2018-04-01
Different experiments provide differing levels of information about a biological system. This makes it difficult, a priori, to select one of them beyond mere speculation and/or belief, especially when resources are limited. With the increasing diversity of experimental approaches and general advances in quantitative systems biology, methods that inform us about the information content that a given experiment carries about the question we want to answer, become crucial. PEITH(Θ) is a general purpose, Python framework for experimental design in systems biology. PEITH(Θ) uses Bayesian inference and information theory in order to derive which experiments are most informative in order to estimate all model parameters and/or perform model predictions. https://github.com/MichaelPHStumpf/Peitho. m.stumpf@imperial.ac.uk or juliane.liepe@mpibpc.mpg.de.
Radio Astronomy Tools in Python: Spectral-cube, pvextractor, and more
NASA Astrophysics Data System (ADS)
Ginsburg, A.; Robitaille, T.; Beaumont, C.; Rosolowsky, E.; Leroy, A.; Brogan, C.; Hunter, T.; Teuben, P.; Brisbin, D.
2015-12-01
The radio-astro-tools organization has been established to facilitate development of radio and millimeter analysis tools by the scientific community. The first packages developed under its umbrella are: • The spectral-cube package, for reading, writing, and analyzing spectral data cubes • The pvextractor package for extracting position-velocity slices from position-position-velocity cubes along aribitrary paths • The radio-beam package to handle gaussian beams in the context of the astropy quantity and unit framework • casa-python to enable installation of these packages - and any other - into users' CASA environments without conflicting with the underlying CASA package. Community input in the form of code contributions, suggestions, questions and commments is welcome on all of these tools. They can all be found at http://radio-astro-tools.github.io.
ProDaMa: an open source Python library to generate protein structure datasets.
Armano, Giuliano; Manconi, Andrea
2009-10-02
The huge difference between the number of known sequences and known tertiary structures has justified the use of automated methods for protein analysis. Although a general methodology to solve these problems has not been yet devised, researchers are engaged in developing more accurate techniques and algorithms whose training plays a relevant role in determining their performance. From this perspective, particular importance is given to the training data used in experiments, and researchers are often engaged in the generation of specialized datasets that meet their requirements. To facilitate the task of generating specialized datasets we devised and implemented ProDaMa, an open source Python library than provides classes for retrieving, organizing, updating, analyzing, and filtering protein data. ProDaMa has been used to generate specialized datasets useful for secondary structure prediction and to develop a collaborative web application aimed at generating and sharing protein structure datasets. The library, the related database, and the documentation are freely available at the URL http://iasc.diee.unica.it/prodama.
Cameo: A Python Library for Computer Aided Metabolic Engineering and Optimization of Cell Factories.
Cardoso, João G R; Jensen, Kristian; Lieven, Christian; Lærke Hansen, Anne Sofie; Galkina, Svetlana; Beber, Moritz; Özdemir, Emre; Herrgård, Markus J; Redestig, Henning; Sonnenschein, Nikolaus
2018-04-20
Computational systems biology methods enable rational design of cell factories on a genome-scale and thus accelerate the engineering of cells for the production of valuable chemicals and proteins. Unfortunately, the majority of these methods' implementations are either not published, rely on proprietary software, or do not provide documented interfaces, which has precluded their mainstream adoption in the field. In this work we present cameo, a platform-independent software that enables in silico design of cell factories and targets both experienced modelers as well as users new to the field. It is written in Python and implements state-of-the-art methods for enumerating and prioritizing knockout, knock-in, overexpression, and down-regulation strategies and combinations thereof. Cameo is an open source software project and is freely available under the Apache License 2.0. A dedicated Web site including documentation, examples, and installation instructions can be found at http://cameo.bio . Users can also give cameo a try at http://try.cameo.bio .
Pyviko: an automated Python tool to design gene knockouts in complex viruses with overlapping genes.
Taylor, Louis J; Strebel, Klaus
2017-01-07
Gene knockouts are a common tool used to study gene function in various organisms. However, designing gene knockouts is complicated in viruses, which frequently contain sequences that code for multiple overlapping genes. Designing mutants that can be traced by the creation of new or elimination of existing restriction sites further compounds the difficulty in experimental design of knockouts of overlapping genes. While software is available to rapidly identify restriction sites in a given nucleotide sequence, no existing software addresses experimental design of mutations involving multiple overlapping amino acid sequences in generating gene knockouts. Pyviko performed well on a test set of over 240,000 gene pairs collected from viral genomes deposited in the National Center for Biotechnology Information Nucleotide database, identifying a point mutation which added a premature stop codon within the first 20 codons of the target gene in 93.2% of all tested gene-overprinted gene pairs. This shows that Pyviko can be used successfully in a wide variety of contexts to facilitate the molecular cloning and study of viral overprinted genes. Pyviko is an extensible and intuitive Python tool for designing knockouts of overlapping genes. Freely available as both a Python package and a web-based interface ( http://louiejtaylor.github.io/pyViKO/ ), Pyviko simplifies the experimental design of gene knockouts in complex viruses with overlapping genes.
PyCorrFit-generic data evaluation for fluorescence correlation spectroscopy.
Müller, Paul; Schwille, Petra; Weidemann, Thomas
2014-09-01
We present a graphical user interface (PyCorrFit) for the fitting of theoretical model functions to experimental data obtained by fluorescence correlation spectroscopy (FCS). The program supports many data file formats and features a set of tools specialized in FCS data evaluation. The Python source code is freely available for download from the PyCorrFit web page at http://pycorrfit.craban.de. We offer binaries for Ubuntu Linux, Mac OS X and Microsoft Windows. © The Author 2014. Published by Oxford University Press.
3D Immersive Visualization with Astrophysical Data
NASA Astrophysics Data System (ADS)
Kent, Brian R.
2017-01-01
We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.
Pyro: A Python-Based Versatile Programming Environment for Teaching Robotics
ERIC Educational Resources Information Center
Blank, Douglas; Kumar, Deepak; Meeden, Lisa; Yanco, Holly
2004-01-01
In this article we describe a programming framework called Pyro, which provides a set of abstractions that allows students to write platform-independent robot programs. This project is unique because of its focus on the pedagogical implications of teaching mobile robotics via a top-down approach. We describe the background of the project, its…
ERIC Educational Resources Information Center
Gomez, Fabinton Sotelo; Ordóñez, Armando
2016-01-01
Previously a framework for integrating web resources providing educational services in dotLRN was presented. The present paper describes the application of this framework in a rural school in Cauca--Colombia. The case study includes two web resources about the topic of waves (physics) which is oriented in secondary education. Web classes and…
NASA Astrophysics Data System (ADS)
Laban, Shaban; El-Desouky, Aly
2014-05-01
To achieve a rapid, simple and reliable parallel processing of different types of tasks and big data processing on any compute cluster, a lightweight messaging-based distributed applications processing and workflow execution framework model is proposed. The framework is based on Apache ActiveMQ and Simple (or Streaming) Text Oriented Message Protocol (STOMP). ActiveMQ , a popular and powerful open source persistence messaging and integration patterns server with scheduler capabilities, acts as a message broker in the framework. STOMP provides an interoperable wire format that allows framework programs to talk and interact between each other and ActiveMQ easily. In order to efficiently use the message broker a unified message and topic naming pattern is utilized to achieve the required operation. Only three Python programs and simple library, used to unify and simplify the implementation of activeMQ and STOMP protocol, are needed to use the framework. A watchdog program is used to monitor, remove, add, start and stop any machine and/or its different tasks when necessary. For every machine a dedicated one and only one zoo keeper program is used to start different functions or tasks, stompShell program, needed for executing the user required workflow. The stompShell instances are used to execute any workflow jobs based on received message. A well-defined, simple and flexible message structure, based on JavaScript Object Notation (JSON), is used to build any complex workflow systems. Also, JSON format is used in configuration, communication between machines and programs. The framework is platform independent. Although, the framework is built using Python the actual workflow programs or jobs can be implemented by any programming language. The generic framework can be used in small national data centres for processing seismological and radionuclide data received from the International Data Centre (IDC) of the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO). Also, it is possible to extend the use of the framework in monitoring the IDC pipeline. The detailed design, implementation,conclusion and future work of the proposed framework will be presented.
Breaking and Fixing Origin-Based Access Control in Hybrid Web/Mobile Application Frameworks
Georgiev, Martin; Jana, Suman; Shmatikov, Vitaly
2014-01-01
Hybrid mobile applications (apps) combine the features of Web applications and “native” mobile apps. Like Web applications, they are implemented in portable, platform-independent languages such as HTML and JavaScript. Like native apps, they have direct access to local device resources—file system, location, camera, contacts, etc. Hybrid apps are typically developed using hybrid application frameworks such as PhoneGap. The purpose of the framework is twofold. First, it provides an embedded Web browser (for example, WebView on Android) that executes the app's Web code. Second, it supplies “bridges” that allow Web code to escape the browser and access local resources on the device. We analyze the software stack created by hybrid frameworks and demonstrate that it does not properly compose the access-control policies governing Web code and local code, respectively. Web code is governed by the same origin policy, whereas local code is governed by the access-control policy of the operating system (for example, user-granted permissions in Android). The bridges added by the framework to the browser have the same local access rights as the entire application, but are not correctly protected by the same origin policy. This opens the door to fracking attacks, which allow foreign-origin Web content included into a hybrid app (e.g., ads confined in iframes) to drill through the layers and directly access device resources. Fracking vulnerabilities are generic: they affect all hybrid frameworks, all embedded Web browsers, all bridge mechanisms, and all platforms on which these frameworks are deployed. We study the prevalence of fracking vulnerabilities in free Android apps based on the PhoneGap framework. Each vulnerability exposes sensitive local resources—the ability to read and write contacts list, local files, etc.—to dozens of potentially malicious Web domains. We also analyze the defenses deployed by hybrid frameworks to prevent resource access by foreign-origin Web content and explain why they are ineffectual. We then present NoFrak, a capability-based defense against fracking attacks. NoFrak is platform-independent, compatible with any framework and embedded browser, requires no changes to the code of the existing hybrid apps, and does not break their advertising-supported business model. PMID:25485311
Design and implementation of a risk assessment module in a spatial decision support system
NASA Astrophysics Data System (ADS)
Zhang, Kaixi; van Westen, Cees; Bakker, Wim
2014-05-01
The spatial decision support system named 'Changes SDSS' is currently under development. The goal of this system is to analyze changing hydro-meteorological hazards and the effect of risk reduction alternatives to support decision makers in choosing the best alternatives. The risk assessment module within the system is to assess the current risk, analyze the risk after implementations of risk reduction alternatives, and analyze the risk in different future years when considering scenarios such as climate change, land use change and population growth. The objective of this work is to present the detailed design and implementation plan of the risk assessment module. The main challenges faced consist of how to shift the risk assessment from traditional desktop software to an open source web-based platform, the availability of input data and the inclusion of uncertainties in the risk analysis. The risk assessment module is developed using Ext JS library for the implementation of user interface on the client side, using Python for scripting, as well as PostGIS spatial functions for complex computations on the server side. The comprehensive consideration of the underlying uncertainties in input data can lead to a better quantification of risk assessment and a more reliable Changes SDSS, since the outputs of risk assessment module are the basis for decision making module within the system. The implementation of this module will contribute to the development of open source web-based modules for multi-hazard risk assessment in the future. This work is part of the "CHANGES SDSS" project, funded by the European Community's 7th Framework Program.
NASA Astrophysics Data System (ADS)
Williams, C. A.; Dicaprio, C.; Simons, M.
2003-12-01
With the advent of projects such as the Plate Boundary Observatory and future InSAR missions, spatially dense geodetic data of high quality will provide an increasingly detailed picture of the movement of the earth's surface. To interpret such information, powerful and easily accessible modeling tools are required. We are presently developing such a tool that we feel will meet many of the needs for evaluating quasi-static earth deformation. As a starting point, we begin with a modified version of the finite element code TECTON, which has been specifically designed to solve tectonic problems involving faulting and viscoelastic/plastic earth behavior. As our first priority, we are integrating the code into the GeoFramework, which is an extension of the Python-based Pyre modeling framework. The goal of this framework is to provide simplified user interfaces for powerful modeling codes, to provide easy access to utilities such as meshers and visualization tools, and to provide a tight integration between different modeling tools so they can interact with each other. The initial integration of the code into this framework is essentially complete, and a more thorough integration, where Python-based drivers control the entire solution, will be completed in the near future. We have an evolving set of priorities that we expect to solidify as we receive more input from the modeling community. Current priorities include the development of linear and quadratic tetrahedral elements, the development of a parallelized version of the code using the PETSc libraries, the addition of more complex rheologies, realistic fault friction models, adaptive time stepping, and spherical geometries. In this presentation we describe current progress toward our various priorities, briefly describe the structure of the code within the GeoFramework, and demonstrate some sample applications.
NASA Astrophysics Data System (ADS)
Signell, R. P.; Camossi, E.
2015-11-01
Work over the last decade has resulted in standardized web-services and tools that can significantly improve the efficiency and effectiveness of working with meteorological and ocean model data. While many operational modelling centres have enabled query and access to data via common web services, most small research groups have not. The penetration of this approach into the research community, where IT resources are limited, can be dramatically improved by: (1) making it simple for providers to enable web service access to existing output files; (2) using technology that is free, and that is easy to deploy and configure; and (3) providing tools to communicate with web services that work in existing research environments. We present a simple, local brokering approach that lets modelers continue producing custom data, but virtually aggregates and standardizes the data using NetCDF Markup Language. The THREDDS Data Server is used for data delivery, pycsw for data search, NCTOOLBOX (Matlab®1) and Iris (Python) for data access, and Ocean Geospatial Consortium Web Map Service for data preview. We illustrate the effectiveness of this approach with two use cases involving small research modelling groups at NATO and USGS.1 Mention of trade names or commercial products does not constitute endorsement or recommendation for use by the US Government.
Integration and validation of a data grid software
NASA Astrophysics Data System (ADS)
Carenton-Madiec, Nicolas; Berger, Katharina; Cofino, Antonio
2014-05-01
The Earth System Grid Federation (ESGF) Peer-to-Peer (P2P) is a software infrastructure for the management, dissemination, and analysis of model output and observational data. The ESGF grid is composed with several types of nodes which have different roles. About 40 data nodes host model outputs and datasets using thredds catalogs. About 25 compute nodes offer remote visualization and analysis tools. About 15 index nodes crawl data nodes catalogs and implement faceted and federated search in a web interface. About 15 Identity providers nodes manage accounts, authentication and authorization. Here we will present an actual size test federation spread across different institutes in different countries and a python test suite that were started in December 2013. The first objective of the test suite is to provide a simple tool that helps to test and validate a single data node and its closest index, compute and identity provider peer. The next objective will be to run this test suite on every data node of the federation and therefore test and validate every single node of the whole federation. The suite already implements nosetests, requests, myproxy-logon, subprocess, selenium and fabric python libraries in order to test both web front ends, back ends and security services. The goal of this project is to improve the quality of deliverable in a small developers team context. Developers are widely spread around the world working collaboratively and without hierarchy. This kind of working organization context en-lighted the need of a federated integration test and validation process.
Raza, Muhammad Taqi; Yoo, Seung-Wha; Kim, Ki-Hyung; Joo, Seong-Soon; Jeong, Wun-Cheol
2009-01-01
Web Portals function as a single point of access to information on the World Wide Web (WWW). The web portal always contacts the portal’s gateway for the information flow that causes network traffic over the Internet. Moreover, it provides real time/dynamic access to the stored information, but not access to the real time information. This inherent functionality of web portals limits their role for resource constrained digital devices in the Ubiquitous era (U-era). This paper presents a framework for the web portal in the U-era. We have introduced the concept of Local Regions in the proposed framework, so that the local queries could be solved locally rather than having to route them over the Internet. Moreover, our framework enables one-to-one device communication for real time information flow. To provide an in-depth analysis, firstly, we provide an analytical model for query processing at the servers for our framework-oriented web portal. At the end, we have deployed a testbed, as one of the world’s largest IP based wireless sensor networks testbed, and real time measurements are observed that prove the efficacy and workability of the proposed framework. PMID:22346693
Raza, Muhammad Taqi; Yoo, Seung-Wha; Kim, Ki-Hyung; Joo, Seong-Soon; Jeong, Wun-Cheol
2009-01-01
Web Portals function as a single point of access to information on the World Wide Web (WWW). The web portal always contacts the portal's gateway for the information flow that causes network traffic over the Internet. Moreover, it provides real time/dynamic access to the stored information, but not access to the real time information. This inherent functionality of web portals limits their role for resource constrained digital devices in the Ubiquitous era (U-era). This paper presents a framework for the web portal in the U-era. We have introduced the concept of Local Regions in the proposed framework, so that the local queries could be solved locally rather than having to route them over the Internet. Moreover, our framework enables one-to-one device communication for real time information flow. To provide an in-depth analysis, firstly, we provide an analytical model for query processing at the servers for our framework-oriented web portal. At the end, we have deployed a testbed, as one of the world's largest IP based wireless sensor networks testbed, and real time measurements are observed that prove the efficacy and workability of the proposed framework.
The LSST Metrics Analysis Framework (MAF)
NASA Astrophysics Data System (ADS)
Jones, R. Lynne; Yoachim, Peter; Chandrasekharan, Srinivasan; Connolly, Andrew J.; Cook, Kem H.; Ivezic, Zeljko; Krughoff, K. Simon; Petry, Catherine E.; Ridgway, Stephen T.
2015-01-01
Studying potential observing strategies or cadences for the Large Synoptic Survey Telescope (LSST) is a complicated but important problem. To address this, LSST has created an Operations Simulator (OpSim) to create simulated surveys, including realistic weather and sky conditions. Analyzing the results of these simulated surveys for the wide variety of science cases to be considered for LSST is, however, difficult. We have created a Metric Analysis Framework (MAF), an open-source python framework, to be a user-friendly, customizable and easily extensible tool to help analyze the outputs of the OpSim.MAF reads the pointing history of the LSST generated by the OpSim, then enables the subdivision of these pointings based on position on the sky (RA/Dec, etc.) or the characteristics of the observations (e.g. airmass or sky brightness) and a calculation of how well these observations meet a specified science objective (or metric). An example simple metric could be the mean single visit limiting magnitude for each position in the sky; a more complex metric might be the expected astrometric precision. The output of these metrics can be generated for a full survey, for specified time intervals, or for regions of the sky, and can be easily visualized using a web interface.An important goal for MAF is to facilitate analysis of the OpSim outputs for a wide variety of science cases. A user can often write a new metric to evaluate OpSim for new science goals in less than a day once they are familiar with the framework. Some of these new metrics are illustrated in the accompanying poster, "Analyzing Simulated LSST Survey Performance With MAF".While MAF has been developed primarily for application to OpSim outputs, it can be applied to any dataset. The most obvious examples are examining pointing histories of other survey projects or telescopes, such as CFHT.
Cario, Clinton L; Witte, John S
2018-03-15
As whole-genome tumor sequence and biological annotation datasets grow in size, number and content, there is an increasing basic science and clinical need for efficient and accurate data management and analysis software. With the emergence of increasingly sophisticated data stores, execution environments and machine learning algorithms, there is also a need for the integration of functionality across frameworks. We present orchid, a python based software package for the management, annotation and machine learning of cancer mutations. Building on technologies of parallel workflow execution, in-memory database storage and machine learning analytics, orchid efficiently handles millions of mutations and hundreds of features in an easy-to-use manner. We describe the implementation of orchid and demonstrate its ability to distinguish tissue of origin in 12 tumor types based on 339 features using a random forest classifier. Orchid and our annotated tumor mutation database are freely available at https://github.com/wittelab/orchid. Software is implemented in python 2.7, and makes use of MySQL or MemSQL databases. Groovy 2.4.5 is optionally required for parallel workflow execution. JWitte@ucsf.edu. Supplementary data are available at Bioinformatics online.
microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling
NASA Astrophysics Data System (ADS)
Comi, Troy J.; Neumann, Elizabeth K.; Do, Thanh D.; Sweedler, Jonathan V.
2017-09-01
Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. [Figure not available: see fulltext.
microMS: A Python Platform for Image-Guided Mass Spectrometry Profiling.
Comi, Troy J; Neumann, Elizabeth K; Do, Thanh D; Sweedler, Jonathan V
2017-09-01
Image-guided mass spectrometry (MS) profiling provides a facile framework for analyzing samples ranging from single cells to tissue sections. The fundamental workflow utilizes a whole-slide microscopy image to select targets of interest, determine their spatial locations, and subsequently perform MS analysis at those locations. Improving upon prior reported methodology, a software package was developed for working with microscopy images. microMS, for microscopy-guided mass spectrometry, allows the user to select and profile diverse samples using a variety of target patterns and mass analyzers. Written in Python, the program provides an intuitive graphical user interface to simplify image-guided MS for novice users. The class hierarchy of instrument interactions permits integration of new MS systems while retaining the feature-rich image analysis framework. microMS is a versatile platform for performing targeted profiling experiments using a series of mass spectrometers. The flexibility in mass analyzers greatly simplifies serial analyses of the same targets by different instruments. The current capabilities of microMS are presented, and its application for off-line analysis of single cells on three distinct instruments is demonstrated. The software has been made freely available for research purposes. Graphical Abstract ᅟ.
NASA Astrophysics Data System (ADS)
Volk, J. M.; Turner, M. A.; Huntington, J. L.; Gardner, M.; Tyler, S.; Sheneman, L.
2016-12-01
Many distributed models that simulate watershed hydrologic processes require a collection of multi-dimensional parameters as input, some of which need to be calibrated before the model can be applied. The Precipitation Runoff Modeling System (PRMS) is a physically-based and spatially distributed hydrologic model that contains a considerable number of parameters that often need to be calibrated. Modelers can also benefit from uncertainty analysis of these parameters. To meet these needs, we developed a modular framework in Python to conduct PRMS parameter optimization, uncertainty analysis, interactive visual inspection of parameters and outputs, and other common modeling tasks. Here we present results for multi-step calibration of sensitive parameters controlling solar radiation, potential evapo-transpiration, and streamflow in a PRMS model that we applied to the snow-dominated Dry Creek watershed in Idaho. We also demonstrate how our modular approach enables the user to use a variety of parameter optimization and uncertainty methods or easily define their own, such as Monte Carlo random sampling, uniform sampling, or even optimization methods such as the downhill simplex method or its commonly used, more robust counterpart, shuffled complex evolution.
Distance Learning Courses on the Web: The Authoring Approach.
ERIC Educational Resources Information Center
Santos, Neide; Diaz, Alicia; Bibbo, Luis Mariano
This paper proposes a framework for supporting the authoring process of distance learning courses. An overview of distance learning courses and the World Wide Web is presented. The proposed framework is then described, including: (1) components of the framework--a hypermedia design methodology for authoring the course, links to related Web sites,…
A New Data Acquisition Portal for the Sacramento River Settlement Contractors
NASA Astrophysics Data System (ADS)
Narlesky, P. E., C. A.; Williams, P. E., A. M.
2017-12-01
In 1964, the United States Bureau of Reclamation (Reclamation) executed settlement contracts with the Sacramento River Settlement Contractors (SRSC), entities which hold water rights along the Sacramento River with area of origin protection or that are senior to Reclamation's water rights for Shasta Reservoir. Shasta is the cornerstone of the federal Central Valley Project (CVP), one of the nation's largest multi-purpose water conservation programs. In order to optimize CVP operations for multiple beneficial uses including water supply, fisheries, water quality, and waterfowl habitat, the SRSC voluntarily agreed to adaptively manage diversions throughout the year in close coordination with Reclamation. MBK Engineers assists the SRSC throughout this process by collecting, organizing, compiling, and distributing diversion data to Reclamation and others involved in operational decisions related to Shasta Reservoir and the CVP. To improve and expand participation in diversions reporting, we have developed the SRSC Web Portal, which launches a data-entry dashboard for members of the SRSC to facilitate recording and transmittal of both predicted and observed monthly and daily flow diversion data. This cloud-hosted system leverages a combination of Javascript interactive visualization libraries with a database-backed Python web framework to present streamlined data-entry forms and valuable SRSC program summary illustrations. SRSC program totals, which can now be aggregated through queries to the web-app's database backend, are used by Reclamation, SRSC, fish agencies, and others to inform operational decisions. By submitting diversion schedules and tracking actual diversions through the portal, contractors will also be directly contributing to the development of a richer and more consistently-formatted historical record for demand hydrology in the Sacramento River Watershed; this may be useful in future water supply studies. Adoption of this technology will foster an increased appreciation for the historical record of individual and combined Sacramento River diversions relative to the overall system.
Secure web book to store structural genomics research data.
Manjasetty, Babu A; Höppner, Klaus; Mueller, Uwe; Heinemann, Udo
2003-01-01
Recently established collaborative structural genomics programs aim at significantly accelerating the crystal structure analysis of proteins. These large-scale projects require efficient data management systems to ensure seamless collaboration between different groups of scientists working towards the same goal. Within the Berlin-based Protein Structure Factory, the synchrotron X-ray data collection and the subsequent crystal structure analysis tasks are located at BESSY, a third-generation synchrotron source. To organize file-based communication and data transfer at the BESSY site of the Protein Structure Factory, we have developed the web-based BCLIMS, the BESSY Crystallography Laboratory Information Management System. BCLIMS is a relational data management system which is powered by MySQL as the database engine and Apache HTTP as the web server. The database interface routines are written in Python programing language. The software is freely available to academic users. Here we describe the storage, retrieval and manipulation of laboratory information, mainly pertaining to the synchrotron X-ray diffraction experiments and the subsequent protein structure analysis, using BCLIMS.
NASA Astrophysics Data System (ADS)
Exby, J.; Busby, R.; Dimitrov, D. A.; Bruhwiler, D.; Cary, J. R.
2003-10-01
We present our design and initial implementation of a web service model for running particle-in-cell (PIC) codes remotely from a web browser interface. PIC codes have grown significantly in complexity and now often require parallel execution on multiprocessor computers, which in turn requires sophisticated post-processing and data analysis. A significant amount of time and effort is required for a physicist to develop all the necessary skills, at the expense of actually doing research. Moreover, parameter studies with a computationally intensive code justify the systematic management of results with an efficient way to communicate them among a group of remotely located collaborators. Our initial implementation uses the OOPIC Pro code [1], Linux, Apache, MySQL, Python, and PHP. The Interactive Data Language is used for visualization. [1] D.L. Bruhwiler et al., Phys. Rev. ST-AB 4, 101302 (2001). * This work is supported by DOE grant # DE-FG02-03ER83857 and by Tech-X Corp. ** Also University of Colorado.
Footprint Database and web services for the Herschel space observatory
NASA Astrophysics Data System (ADS)
Verebélyi, Erika; Dobos, László; Kiss, Csaba
2015-08-01
Using all telemetry and observational meta-data, we created a searchable database of Herschel observation footprints. Data from the Herschel space observatory is freely available for everyone but no uniformly processed catalog of all observations has been published yet. As a first step, we unified the data model for all three Herschel instruments in all observation modes and compiled a database of sky coverage information. As opposed to methods using a pixellation of the sphere, in our database, sky coverage is stored in exact geometric form allowing for precise area calculations. Indexing of the footprints allows for very fast search among observations based on pointing, time, sky coverage overlap and meta-data. This enables us, for example, to find moving objects easily in Herschel fields. The database is accessible via a web site and also as a set of REST web service functions which makes it usable from program clients like Python or IDL scripts. Data is available in various formats including Virtual Observatory standards.
The InSAR Scientific Computing Environment (ISCE): A Python Framework for Earth Science
NASA Astrophysics Data System (ADS)
Rosen, P. A.; Gurrola, E. M.; Agram, P. S.; Sacco, G. F.; Lavalle, M.
2015-12-01
The InSAR Scientific Computing Environment (ISCE, funded by NASA ESTO) provides a modern computing framework for geodetic image processing of InSAR data from a diverse array of radar satellites and aircraft. ISCE is both a modular, flexible, and extensible framework for building software components and applications as well as a toolbox of applications for processing raw or focused InSAR and Polarimetric InSAR data. The ISCE framework contains object-oriented Python components layered to construct Python InSAR components that manage legacy Fortran/C InSAR programs. Components are independently configurable in a layered manner to provide maximum control. Polymorphism is used to define a workflow in terms of abstract facilities for each processing step that are realized by specific components at run-time. This enables a single workflow to work on either raw or focused data from all sensors. ISCE can serve as the core of a production center to process Level-0 radar data to Level-3 products, but is amenable to interactive processing approaches that allow scientists to experiment with data to explore new ways of doing science with InSAR data. The NASA-ISRO SAR (NISAR) Mission will deliver data of unprecedented quantity and quality, making possible global-scale studies in climate research, natural hazards, and Earth's ecosystems. ISCE is planned as the foundational element in processing NISAR data, enabling a new class of analyses that take greater advantage of the long time and large spatial scales of these new data. NISAR will be but one mission in a constellation of radar satellites in the future delivering such data. ISCE currently supports all publicly available strip map mode space-borne SAR data since ERS and is expected to include support for upcoming missions. ISCE has been incorporated into two prototype cloud-based systems that have demonstrated its elasticity in addressing larger data processing problems in a "production" context and its ability to be controlled by individual science users on the cloud for large data problems. ISCE has been downloaded by over 200 users by a license for WinSAR members through the Unavco.org website. Others may apply directly to JPL for a license at download.jpl.nasa.gov.
Framework for Supporting Web-Based Collaborative Applications
NASA Astrophysics Data System (ADS)
Dai, Wei
The article proposes an intelligent framework for supporting Web-based applications. The framework focuses on innovative use of existing resources and technologies in the form of services and takes the leverage of theoretical foundation of services science and the research from services computing. The main focus of the framework is to deliver benefits to users with various roles such as service requesters, service providers, and business owners to maximize their productivity when engaging with each other via the Web. The article opens up with research motivations and questions, analyses the existing state of research in the field, and describes the approach in implementing the proposed framework. Finally, an e-health application is discussed to evaluate the effectiveness of the framework where participants such as general practitioners (GPs), patients, and health-care workers collaborate via the Web.
76 FR 40082 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-07
...; Constrictor Species From Python, Boa, and Eunectes Genera. Bureau of Ocean Energy Management, Regulation, and... Wildlife Evaluation; Constrictor Species from Python, Boa, and Eunectes Genera Legal Authority: 18 U.S.C... are: Indian python (including Burmese python), reticulated python, Northern African python, Southern...
Web processing service for landslide hazard assessment
NASA Astrophysics Data System (ADS)
Sandric, I.; Ursaru, P.; Chitu, D.; Mihai, B.; Savulescu, I.
2012-04-01
Hazard analysis requires heavy computation and specialized software. Web processing services can offer complex solutions that can be accessed through a light client (web or desktop). This paper presents a web processing service (both WPS and Esri Geoprocessing Service) for landslides hazard assessment. The web processing service was build with Esri ArcGIS Server solution and Python, developed using ArcPy, GDAL Python and NumPy. A complex model for landslide hazard analysis using both predisposing and triggering factors combined into a Bayesian temporal network with uncertainty propagation was build and published as WPS and Geoprocessing service using ArcGIS Standard Enterprise 10.1. The model uses as predisposing factors the first and second derivatives from DEM, the effective precipitations, runoff, lithology and land use. All these parameters can be served by the client from other WFS services or by uploading and processing the data on the server. The user can select the option of creating the first and second derivatives from the DEM automatically on the server or to upload the data already calculated. One of the main dynamic factors from the landslide analysis model is leaf area index. The LAI offers the advantage of modelling not just the changes from different time periods expressed in years, but also the seasonal changes in land use throughout a year. The LAI index can be derived from various satellite images or downloaded as a product. The upload of such data (time series) is possible using a NetCDF file format. The model is run in a monthly time step and for each time step all the parameters values, a-priory, conditional and posterior probability are obtained and stored in a log file. The validation process uses landslides that have occurred during the period up to the active time step and checks the records of the probabilities and parameters values for those times steps with the values of the active time step. Each time a landslide has been positive identified new a-priory probabilities are recorded for each parameter. A complete log for the entire model is saved and used for statistical analysis and a NETCDF file is created and it can be downloaded from the server with the log file
Python as a federation tool for GENESIS 3.0.
Cornelis, Hugo; Rodriguez, Armando L; Coop, Allan D; Bower, James M
2012-01-01
The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be 'glued' together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience.
Python as a Federation Tool for GENESIS 3.0
Cornelis, Hugo; Rodriguez, Armando L.; Coop, Allan D.; Bower, James M.
2012-01-01
The GENESIS simulation platform was one of the first broad-scale modeling systems in computational biology to encourage modelers to develop and share model features and components. Supported by a large developer community, it participated in innovative simulator technologies such as benchmarking, parallelization, and declarative model specification and was the first neural simulator to define bindings for the Python scripting language. An important feature of the latest version of GENESIS is that it decomposes into self-contained software components complying with the Computational Biology Initiative federated software architecture. This architecture allows separate scripting bindings to be defined for different necessary components of the simulator, e.g., the mathematical solvers and graphical user interface. Python is a scripting language that provides rich sets of freely available open source libraries. With clean dynamic object-oriented designs, they produce highly readable code and are widely employed in specialized areas of software component integration. We employ a simplified wrapper and interface generator to examine an application programming interface and make it available to a given scripting language. This allows independent software components to be ‘glued’ together and connected to external libraries and applications from user-defined Python or Perl scripts. We illustrate our approach with three examples of Python scripting. (1) Generate and run a simple single-compartment model neuron connected to a stand-alone mathematical solver. (2) Interface a mathematical solver with GENESIS 3.0 to explore a neuron morphology from either an interactive command-line or graphical user interface. (3) Apply scripting bindings to connect the GENESIS 3.0 simulator to external graphical libraries and an open source three dimensional content creation suite that supports visualization of models based on electron microscopy and their conversion to computational models. Employed in this way, the stand-alone software components of the GENESIS 3.0 simulator provide a framework for progressive federated software development in computational neuroscience. PMID:22276101
An Object-Oriented Python Implementation of an Intermediate-Level Atmospheric Model
NASA Astrophysics Data System (ADS)
Lin, J. W.
2008-12-01
The Neelin-Zeng Quasi-equilibrium Tropical Circulation Model (QTCM1) is a Fortran-based intermediate-level atmospheric model that includes simplified treatments of several physical processes, including a GCM-like convective scheme and a land-surface scheme with representations of different surface types, evaporation, and soil moisture. This model has been used in studies of the Madden-Julian oscillation, ENSO, and vegetation-atmosphere interaction effects on climate. Through the assumption of convective quasi-equilibrium in the troposphere, the QTCM1 is able to include full nonlinearity, resolve baroclinic disturbances, and generate a reasonable climatology, all at low computational cost. One year of simulation on a PC at 5.625 × 3.75 degree longitude-latitude resolution takes under three minutes of wall-clock time. The Python package qtcm implements the QTCM1 in a mixed-language environment that retains the speed of compiled Fortran while providing the benefits of Python's object-oriented framework and robust suite of utilities and datatypes. We describe key programming constructs used to create this modeling environment: the decomposition of model runs into Python objects, providing methods so visualization tools are attached to model runs, and the use of Python's mutable datatypes (lists and dictionaries) to implement the "run list" entity, which enables total runtime control of subroutine execution order and content. The result is an interactive modeling environment where the traditional sequence of "hypothesis → modeling → visualization and analysis" is opened up and made nonlinear and flexible. In this environment, science tasks such as parameter-space exploration and testing alternative parameterizations can be easily automated, without the need for multiple versions of the model code interacting with a bevy of makefiles and shell scripts. The environment also simplifies interfacing of the atmospheric model to other models (e.g., hydrologic models, statistical models) and analysis tools. The tools developed for this package can be adapted to create similar environments for hydrologic models.
NASA Astrophysics Data System (ADS)
Clements, O.; Siemen, S.; Wagemann, J.
2017-12-01
The EU-funded Earthserver-2 project aims to offer on-demand access to large volumes of environmental data (Earth Observation, Marine, Climate data and Planetary data) via the interface standard Web Coverage Service defined by the Open Geospatial Consortium. Providing access to data via OGC web services (e.g. WCS and WMS) has the potential to open up services to a wider audience, especially to users outside the respective communities. Especially WCS 2.0 with its processing extension Web Coverage Processing Service (WCPS) is highly beneficial to make large volumes accessible to non-expert communities. Users do not have to deal with custom community data formats, such as GRIB for the meteorological community, but can directly access the data in a format they are more familiar with, such as NetCDF, JSON or CSV. Data requests can further directly be integrated into custom processing routines and users are not required to download Gigabytes of data anymore. WCS supports trim (reduction of data extent) and slice (reduction of data dimension) operations on multi-dimensional data, providing users a very flexible on-demand access to the data. WCPS allows the user to craft queries to run on the data using a text-based query language, similar to SQL. These queries can be very powerful, e.g. condensing a three-dimensional data cube into its two-dimensional mean. However, the more processing-intensive the more complex the query. As part of the EarthServer-2 project, we developed a python library that helps users to generate complex WCPS queries with Python, a programming language they are more familiar with. The interactive presentation aims to give practical examples how users can benefit from two specific WCS services from the Marine and Climate community. Use-cases from the two communities will show different approaches to take advantage of a Web Coverage (Processing) Service. The entire content is available with Jupyter Notebooks, as they prove to be a highly beneficial tool to generate reproducible workflows for environmental data analysis.
Interactive Parallel Data Analysis within Data-Centric Cluster Facilities using the IPython Notebook
NASA Astrophysics Data System (ADS)
Pascoe, S.; Lansdowne, J.; Iwi, A.; Stephens, A.; Kershaw, P.
2012-12-01
The data deluge is making traditional analysis workflows for many researchers obsolete. Support for parallelism within popular tools such as matlab, IDL and NCO is not well developed and rarely used. However parallelism is necessary for processing modern data volumes on a timescale conducive to curiosity-driven analysis. Furthermore, for peta-scale datasets such as the CMIP5 archive, it is no longer practical to bring an entire dataset to a researcher's workstation for analysis, or even to their institutional cluster. Therefore, there is an increasing need to develop new analysis platforms which both enable processing at the point of data storage and which provides parallelism. Such an environment should, where possible, maintain the convenience and familiarity of our current analysis environments to encourage curiosity-driven research. We describe how we are combining the interactive python shell (IPython) with our JASMIN data-cluster infrastructure. IPython has been specifically designed to bridge the gap between the HPC-style parallel workflows and the opportunistic curiosity-driven analysis usually carried out using domain specific languages and scriptable tools. IPython offers a web-based interactive environment, the IPython notebook, and a cluster engine for parallelism all underpinned by the well-respected Python/Scipy scientific programming stack. JASMIN is designed to support the data analysis requirements of the UK and European climate and earth system modeling community. JASMIN, with its sister facility CEMS focusing the earth observation community, has 4.5 PB of fast parallel disk storage alongside over 370 computing cores provide local computation. Through the IPython interface to JASMIN, users can make efficient use of JASMIN's multi-core virtual machines to perform interactive analysis on all cores simultaneously or can configure IPython clusters across multiple VMs. Larger-scale clusters can be provisioned through JASMIN's batch scheduling system. Outputs can be summarised and visualised using the full power of Python's many scientific tools, including Scipy, Matplotlib, Pandas and CDAT. This rich user experience is delivered through the user's web browser; maintaining the interactive feel of a workstation-based environment with the parallel power of a remote data-centric processing facility.
MTpy - Python Tools for Magnetotelluric Data Processing and Analysis
NASA Astrophysics Data System (ADS)
Krieger, Lars; Peacock, Jared; Thiel, Stephan; Inverarity, Kent; Kirkby, Alison; Robertson, Kate; Soeffky, Paul; Didana, Yohannes
2014-05-01
We present the Python package MTpy, which provides functions for the processing, analysis, and handling of magnetotelluric (MT) data sets. MT is a relatively immature and not widely applied geophysical method in comparison to other geophysical techniques such as seismology. As a result, the data processing within the academic MT community is not thoroughly standardised and is often based on a loose collection of software, adapted to the respective local specifications. We have developed MTpy to overcome problems that arise from missing standards, and to provide a simplification of the general handling of MT data. MTpy is written in Python, and the open-source code is freely available from a GitHub repository. The setup follows the modular approach of successful geoscience software packages such as GMT or Obspy. It contains sub-packages and modules for the various tasks within the standard work-flow of MT data processing and interpretation. In order to allow the inclusion of already existing and well established software, MTpy does not only provide pure Python classes and functions, but also wrapping command-line scripts to run standalone tools, e.g. modelling and inversion codes. Our aim is to provide a flexible framework, which is open for future dynamic extensions. MTpy has the potential to promote the standardisation of processing procedures and at same time be a versatile supplement for existing algorithms. Here, we introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing, interpretation, and visualisation utilising MTpy on example data sets collected over different regions of Australia and the USA.
Bednar, James A.
2008-01-01
Many neural regions are arranged into two-dimensional topographic maps, such as the retinotopic maps in mammalian visual cortex. Computational simulations have led to valuable insights about how cortical topography develops and functions, but further progress has been hindered by the lack of appropriate tools. It has been particularly difficult to bridge across levels of detail, because simulators are typically geared to a specific level, while interfacing between simulators has been a major technical challenge. In this paper, we show that the Python-based Topographica simulator makes it straightforward to build systems that cross levels of analysis, as well as providing a common framework for evaluating and comparing models implemented in other simulators. These results rely on the general-purpose abstractions around which Topographica is designed, along with the Python interfaces becoming available for many simulators. In particular, we present a detailed, general-purpose example of how to wrap an external spiking PyNN/NEST simulation as a Topographica component using only a dozen lines of Python code, making it possible to use any of the extensive input presentation, analysis, and plotting tools of Topographica. Additional examples show how to interface easily with models in other types of simulators. Researchers simulating topographic maps externally should consider using Topographica's analysis tools (such as preference map, receptive field, or tuning curve measurement) to compare results consistently, and for connecting models at different levels. This seamless interoperability will help neuroscientists and computational scientists to work together to understand how neurons in topographic maps organize and operate. PMID:19352443
AIMBAT: A Python/Matplotlib Tool for Measuring Teleseismic Arrival Times
NASA Astrophysics Data System (ADS)
Lou, X.; van der Lee, S.; Lloyd, S.
2013-12-01
Python is an open-source, platform-independent, and object-oriented scripting language. It became more popular in the seismologist community since the appearance of ObsPy (Beyreuther et al. 2010, Megies et al. 2011), which provides a powerful framework for seismic data access and processing. This study introduces a new Python-based tool named AIMBAT (Automated and Interactive Measurement of Body-wave Arrival Times) for measuring teleseismic body-wave arrival times on large-scale seismic event data (Lou et al. 2013). Compared to ObsPy, AIMBAT is a lighter tool that is more focused on a particular aspect of seismic data processing. It originates from the widely used MCCC (Multi-Channel Cross-Correlation) method developed by VanDecar and Crosson (1990). On top of the original MCCC procedure, AIMBAT is automated in initial phase picking and is interactive in quality control. The core cross-correlation function is implemented in Fortran to boost up performance in addition to Python. The GUI (graphical user interface) of AIMBAT depends on Matplotlib's GUI-neutral widgets and event-handling API. A number of sorting and (de)selecting options are designed to facilitate the quality control of seismograms. By using AIMBAT, both relative and absolute teleseismic body-wave arrival times are measured. AIMBAT significantly improves efficiency and quality of the measurements. User interaction is needed only to pick the target phase arrival and to set a time window on the array stack. The package is easy to install and use, open-source, and is publicly available. Graphical user interface of AIMBAT.
The Muon Ionization Cooling Experiment User Software
NASA Astrophysics Data System (ADS)
Dobbs, A.; Rajaram, D.;
2017-10-01
The Muon Ionization Cooling Experiment (MICE) is a proof-of-principle experiment designed to demonstrate muon ionization cooling for the first time. MICE is currently on Step IV of its data taking programme, where transverse emittance reduction will be demonstrated. The MICE Analysis User Software (MAUS) is the reconstruction, simulation and analysis framework for the MICE experiment. MAUS is used for both offline data analysis and fast online data reconstruction and visualization to serve MICE data taking. This paper provides an introduction to MAUS, describing the central Python and C++ based framework, the data structure and and the code management and testing procedures.
Multiscale Simulations of Magnetic Island Coalescence
NASA Technical Reports Server (NTRS)
Dorelli, John C.
2010-01-01
We describe a new interactive parallel Adaptive Mesh Refinement (AMR) framework written in the Python programming language. This new framework, PyAMR, hides the details of parallel AMR data structures and algorithms (e.g., domain decomposition, grid partition, and inter-process communication), allowing the user to focus on the development of algorithms for advancing the solution of a systems of partial differential equations on a single uniform mesh. We demonstrate the use of PyAMR by simulating the pairwise coalescence of magnetic islands using the resistive Hall MHD equations. Techniques for coupling different physics models on different levels of the AMR grid hierarchy are discussed.
AGAMA: Action-based galaxy modeling framework
NASA Astrophysics Data System (ADS)
Vasiliev, Eugene
2018-05-01
The AGAMA library models galaxies. It computes gravitational potential and forces, performs orbit integration and analysis, and can convert between position/velocity and action/angle coordinates. It offers a framework for finding best-fit parameters of a model from data and self-consistent multi-component galaxy models, and contains useful auxiliary utilities such as various mathematical routines. The core of the library is written in C++, and there are Python and Fortran interfaces. AGAMA may be used as a plugin for the stellar-dynamical software packages galpy (ascl:1411.008), AMUSE (ascl:1107.007), and NEMO (ascl:1010.051).
RAVE—a Detector-independent vertex reconstruction toolkit
NASA Astrophysics Data System (ADS)
Waltenberger, Wolfgang; Mitaroff, Winfried; Moser, Fabian
2007-10-01
A detector-independent toolkit for vertex reconstruction (RAVE ) is being developed, along with a standalone framework (VERTIGO ) for testing, analyzing and debugging. The core algorithms represent state of the art for geometric vertex finding and fitting by both linear (Kalman filter) and robust estimation methods. Main design goals are ease of use, flexibility for embedding into existing software frameworks, extensibility, and openness. The implementation is based on modern object-oriented techniques, is coded in C++ with interfaces for Java and Python, and follows an open-source approach. A beta release is available. VERTIGO = "vertex reconstruction toolkit and interface to generic objects".
Acquiring geographical data with web harvesting
NASA Astrophysics Data System (ADS)
Dramowicz, K.
2016-04-01
Many websites contain very attractive and up to date geographical information. This information can be extracted, stored, analyzed and mapped using web harvesting techniques. Poorly organized data from websites are transformed with web harvesting into a more structured format, which can be stored in a database and analyzed. Almost 25% of web traffic is related to web harvesting, mostly while using search engines. This paper presents how to harvest geographic information from web documents using the free tool called the Beautiful Soup, one of the most commonly used Python libraries for pulling data from HTML and XML files. It is a relatively easy task to process one static HTML table. The more challenging task is to extract and save information from tables located in multiple and poorly organized websites. Legal and ethical aspects of web harvesting are discussed as well. The paper demonstrates two case studies. The first one shows how to extract various types of information about the Good Country Index from the multiple web pages, load it into one attribute table and map the results. The second case study shows how script tools and GIS can be used to extract information from one hundred thirty six websites about Nova Scotia wines. In a little more than three minutes a database containing one hundred and six liquor stores selling these wines is created. Then the availability and spatial distribution of various types of wines (by grape types, by wineries, and by liquor stores) are mapped and analyzed.
Turning a remotely controllable observatory into a fully autonomous system
NASA Astrophysics Data System (ADS)
Swindell, Scott; Johnson, Chris; Gabor, Paul; Zareba, Grzegorz; Kubánek, Petr; Prouza, Michael
2014-08-01
We describe a complex process needed to turn an existing, old, operational observatory - The Steward Observatory's 61" Kuiper Telescope - into a fully autonomous system, which observers without an observer. For this purpose, we employed RTS2,1 an open sourced, Linux based observatory control system, together with other open sourced programs and tools (GNU compilers, Python language for scripting, JQuery UI for Web user interface). This presentation provides a guide with time estimates needed for a newcomers to the field to handle such challenging tasks, as fully autonomous observatory operations.
NASA Astrophysics Data System (ADS)
Guillochon, James; Cowperthwaite, Philip S.
2018-05-01
We announce the public release of the application program interface (API) for the Open Astronomy Catalogs (OACs), the OACAPI. The OACs serve near-complete collections of supernova, tidal disruption, kilonova, and fast stars data (including photometry, spectra, radio, and X-ray observations) via a user-friendly web interface that displays the data interactively and offers full data downloads. The OACAPI, by contrast, enables users to specifically download particular pieces of the OAC dataset via a flexible programmatic syntax, either via URL GET requests, or via a module within the astroquery Python package.
MADANALYSIS 5, a user-friendly framework for collider phenomenology
NASA Astrophysics Data System (ADS)
Conte, Eric; Fuks, Benjamin; Serret, Guillaume
2013-01-01
We present MADANALYSIS 5, a new framework for phenomenological investigations at particle colliders. Based on a C++ kernel, this program allows us to efficiently perform, in a straightforward and user-friendly fashion, sophisticated physics analyses of event files such as those generated by a large class of Monte Carlo event generators. MADANALYSIS 5 comes with two modes of running. The first one, easier to handle, uses the strengths of a powerful PYTHON interface in order to implement physics analyses by means of a set of intuitive commands. The second one requires one to implement the analyses in the C++ programming language, directly within the core of the analysis framework. This opens unlimited possibilities concerning the level of complexity which can be reached, being only limited by the programming skills and the originality of the user. Program summaryProgram title: MadAnalysis 5 Catalogue identifier: AENO_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENO_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Permission to use, copy, modify and distribute this program is granted under the terms of the GNU General Public License. No. of lines in distributed program, including test data, etc.: 31087 No. of bytes in distributed program, including test data, etc.: 399105 Distribution format: tar.gz Programming language: PYTHON, C++. Computer: All platforms on which Python version 2.7, Root version 5.27 and the g++ compiler are available. Compatibility with newer versions of these programs is also ensured. However, the Python version must be below version 3.0. Operating system: Unix, Linux and Mac OS operating systems on which the above-mentioned versions of Python and Root, as well as g++, are available. Classification: 11.1. External routines: ROOT (http://root.cern.ch/drupal/) Nature of problem: Implementing sophisticated phenomenological analyses in high-energy physics through a flexible, efficient and straightforward fashion, starting from event files such as those produced by Monte Carlo event generators. The event files can have been matched or not to parton-showering and can have been processed or not by a (fast) simulation of a detector. According to the sophistication level of the event files (parton-level, hadron-level, reconstructed-level), one must note that several input formats are possible. Solution method: We implement an interface allowing the production of predefined as well as user-defined histograms for a large class of kinematical distributions after applying a set of event selection cuts specified by the user. This therefore allows us to devise robust and novel search strategies for collider experiments, such as those currently running at the Large Hadron Collider at CERN, in a very efficient way. Restrictions: Unsupported event file format. Unusual features: The code is fully based on object representations for events, particles, reconstructed objects and cuts, which facilitates the implementation of an analysis. Running time: It depends on the purposes of the user and on the number of events to process. It varies from a few seconds to the order of the minute for several millions of events.
exocartographer: Constraining surface maps orbital parameters of exoplanets
NASA Astrophysics Data System (ADS)
Farr, Ben; Farr, Will M.; Cowan, Nicolas B.; Haggard, Hal M.; Robinson, Tyler
2018-05-01
exocartographer solves the exo-cartography inverse problem. This flexible forward-modeling framework, written in Python, retrieves the albedo map and spin geometry of a planet based on time-resolved photometry; it uses a Markov chain Monte Carlo method to extract albedo maps and planet spin and their uncertainties. Gaussian Processes use the data to fit for the characteristic length scale of the map and enforce smooth maps.
Evolution of the ATLAS Nightly Build System
NASA Astrophysics Data System (ADS)
Undrus, A.
2012-12-01
The ATLAS Nightly Build System is a major component in the ATLAS collaborative software organization, validation, and code approval scheme. For over 10 years of development it has evolved into a factory for automatic release production and grid distribution. The 50 multi-platform branches of ATLAS releases provide vast opportunities for testing new packages, verification of patches to existing software, and migration to new platforms and compilers for ATLAS code that currently contains 2200 packages with 4 million C++ and 1.4 million python scripting lines written by about 1000 developers. Recent development was focused on the integration of ATLAS Nightly Build and Installation systems. The nightly releases are distributed and validated and some are transformed into stable releases used for data processing worldwide. The ATLAS Nightly System is managed by the NICOS control tool on a computing farm with 50 powerful multiprocessor nodes. NICOS provides the fully automated framework for the release builds, testing, and creation of distribution kits. The ATN testing framework of the Nightly System runs unit and integration tests in parallel suites, fully utilizing the resources of multi-core machines, and provides the first results even before compilations complete. The NICOS error detection system is based on several techniques and classifies the compilation and test errors according to their severity. It is periodically tuned to place greater emphasis on certain software defects by highlighting the problems on NICOS web pages and sending automatic e-mail notifications to responsible developers. These and other recent developments will be presented and future plans will be described.
Low Cost Real Time Autonomous Remote Monitoring Platform
NASA Astrophysics Data System (ADS)
Rodríguez, J. R.; Maldonado, P. M.; Pierson, J. J.; Harris, L.
2016-02-01
Environmental scientists have a need for gathering multiple parameters during specific time periods to answer their research questions. Most available monitoring systems are very expensive and closed systems, which limits the potential to scale up research projects. We developed a low cost, autonomous, real-time monitoring platform that is both open hardware/software and easy to build, deploy, manage and maintain. The hardware is built with off-the-shelf components and a credit card sized computer called Raspberry Pi, running an open source operating (Raspbian). The system runs off a set of batteries and a solar panel, which makes it ideal for remote locations. The software is divided into three parts: 1) a framework for abstracting the sensors (initializing, pooling and communications) designed in python and using a fully object-oriented design, making it easy for new sensor to be added with minimal code changes, 2) a web front end for managing the entire system, 3) a data store (database) framework for local and remote data retrieval and reporting services. Connectivity to the system can be accomplished through a Wi-Fi or cellular Internet connection. Scientists are being forced to do more with less, in response our platform will provide them with a flexible system that can improve the process of data gathering with an accessible, modular, low-cost, and efficient monitoring system. Currently, we have the required permits from the Department of Natural Resources in Puerto Rico to deploy the platform at the Laguna Grande Bioluminescence Lagoon in Fajardo, PR. This station will include probes for pH, DO, Conductivity and water temperature.
ObsPy: A Python toolbox for seismology - Sustainability, New Features, and Applications
NASA Astrophysics Data System (ADS)
Krischer, L.; Megies, T.; Sales de Andrade, E.; Barsch, R.; MacCarthy, J.
2016-12-01
ObsPy (https://www.obspy.org) is a community-driven, open-source project dedicated to offer a bridge for seismology into the scientific Python ecosystem. Amongst other things, it provides Read and write support for essentially every commonly used data format in seismology with a unified interface. This includes waveform data as well as station and event meta information. A signal processing toolbox tuned to the specific needs of seismologists. Integrated access to the largest data centers, web services, and databases. Wrappers around third party codes like libmseed and evalresp. Using ObsPy enables users to take advantage of the vast scientific ecosystem that has developed around Python. In contrast to many other programming languages and tools, Python is simple enough to enable an exploratory and interactive coding style desired by many scientists. At the same time it is a full-fledged programming language usable by software engineers to build complex and large programs. This combination makes it very suitable for use in seismology where research code often must be translated to stable and production ready environments, especially in the age of big data. ObsPy has seen constant development for more than six years and enjoys a large rate of adoption in the seismological community with thousands of users. Successful applications include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. Additionally it sparked the development of several more specialized packages slowly building a modern seismological ecosystem around it. We will present a short overview of the capabilities of ObsPy and point out several representative use cases and more specialized software built around ObsPy. Additionally we will discuss new and upcoming features, as well as the sustainability of open-source scientific software.
NASA Astrophysics Data System (ADS)
Sandner, Raimar; Vukics, András
2014-09-01
The v2 Milestone 10 release of C++QED is primarily a feature release, which also corrects some problems of the previous release, especially as regards the build system. The adoption of C++11 features has led to many simplifications in the codebase. A full doxygen-based API manual [1] is now provided together with updated user guides. A largely automated, versatile new testsuite directed both towards computational and physics features allows for quickly spotting arising errors. The states of trajectories are now savable and recoverable with full binary precision, allowing for trajectory continuation regardless of evolution method (single/ensemble Monte Carlo wave-function or Master equation trajectory). As the main new feature, the framework now presents Python bindings to the highest-level programming interface, so that actual simulations for given composite quantum systems can now be performed from Python. Catalogue identifier: AELU_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELU_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: yes No. of lines in distributed program, including test data, etc.: 492422 No. of bytes in distributed program, including test data, etc.: 8070987 Distribution format: tar.gz Programming language: C++/Python. Computer: i386-i686, x86 64. Operating system: In principle cross-platform, as yet tested only on UNIX-like systems (including Mac OS X). RAM: The framework itself takes about 60MB, which is fully shared. The additional memory taken by the program which defines the actual physical system (script) is typically less than 1MB. The memory storing the actual data scales with the system dimension for state-vector manipulations, and the square of the dimension for density-operator manipulations. This might easily be GBs, and often the memory of the machine limits the size of the simulated system. Classification: 4.3, 4.13, 6.2. External routines: Boost C++ libraries, GNU Scientific Library, Blitz++, FLENS, NumPy, SciPy Catalogue identifier of previous version: AELU_v1_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 1381 Does the new version supersede the previous version?: Yes Nature of problem: Definition of (open) composite quantum systems out of elementary building blocks [2,3]. Manipulation of such systems, with emphasis on dynamical simulations such as Master-equation evolution [4] and Monte Carlo wave-function simulation [5]. Solution method: Master equation, Monte Carlo wave-function method Reasons for new version: The new version is mainly a feature release, but it does correct some problems of the previous version, especially as regards the build system. Summary of revisions: We give an example for a typical Python script implementing the ring-cavity system presented in Sec. 3.3 of Ref. [2]: Restrictions: Total dimensionality of the system. Master equation-few thousands. Monte Carlo wave-function trajectory-several millions. Unusual features: Because of the heavy use of compile-time algorithms, compilation of programs written in the framework may take a long time and much memory (up to several GBs). Additional comments: The framework is not a program, but provides and implements an application-programming interface for developing simulations in the indicated problem domain. We use several C++11 features which limits the range of supported compilers (g++ 4.7, clang++ 3.1) Documentation, http://cppqed.sourceforge.net/ Running time: Depending on the magnitude of the problem, can vary from a few seconds to weeks. References: [1] Entry point: http://cppqed.sf.net [2] A. Vukics, C++QEDv2: The multi-array concept and compile-time algorithms in the definition of composite quantum systems, Comp. Phys. Comm. 183(2012)1381. [3] A. Vukics, H. Ritsch, C++QED: an object-oriented framework for wave-function simulations of cavity QED systems, Eur. Phys. J. D 44 (2007) 585. [4] H. J. Carmichael, An Open Systems Approach to Quantum Optics, Springer, 1993. [5] J. Dalibard, Y. Castin, K. Molmer, Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett. 68 (1992) 580.
The LSST metrics analysis framework (MAF)
NASA Astrophysics Data System (ADS)
Jones, R. L.; Yoachim, Peter; Chandrasekharan, Srinivasan; Connolly, Andrew J.; Cook, Kem H.; Ivezic, Željko; Krughoff, K. S.; Petry, Catherine; Ridgway, Stephen T.
2014-07-01
We describe the Metrics Analysis Framework (MAF), an open-source python framework developed to provide a user-friendly, customizable, easily-extensible set of tools for analyzing data sets. MAF is part of the Large Synoptic Survey Telescope (LSST) Simulations effort. Its initial goal is to provide a tool to evaluate LSST Operations Simulation (OpSim) simulated surveys to help understand the effects of telescope scheduling on survey performance, however MAF can be applied to a much wider range of datasets. The building blocks of the framework are Metrics (algorithms to analyze a given quantity of data), Slicers (subdividing the overall data set into smaller data slices as relevant for each Metric), and Database classes (to access the dataset and read data into memory). We describe how these building blocks work together, and provide an example of using MAF to evaluate different dithering strategies. We also outline how users can write their own custom Metrics and use these within the framework.
Deterministic Design Optimization of Structures in OpenMDAO Framework
NASA Technical Reports Server (NTRS)
Coroneos, Rula M.; Pai, Shantaram S.
2012-01-01
Nonlinear programming algorithms play an important role in structural design optimization. Several such algorithms have been implemented in OpenMDAO framework developed at NASA Glenn Research Center (GRC). OpenMDAO is an open source engineering analysis framework, written in Python, for analyzing and solving Multi-Disciplinary Analysis and Optimization (MDAO) problems. It provides a number of solvers and optimizers, referred to as components and drivers, which users can leverage to build new tools and processes quickly and efficiently. Users may download, use, modify, and distribute the OpenMDAO software at no cost. This paper summarizes the process involved in analyzing and optimizing structural components by utilizing the framework s structural solvers and several gradient based optimizers along with a multi-objective genetic algorithm. For comparison purposes, the same structural components were analyzed and optimized using CometBoards, a NASA GRC developed code. The reliability and efficiency of the OpenMDAO framework was compared and reported in this report.
PyMVPA: A python toolbox for multivariate pattern analysis of fMRI data.
Hanke, Michael; Halchenko, Yaroslav O; Sederberg, Per B; Hanson, Stephen José; Haxby, James V; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability.
PyMVPA: A Python toolbox for multivariate pattern analysis of fMRI data
Hanke, Michael; Halchenko, Yaroslav O.; Sederberg, Per B.; Hanson, Stephen José; Haxby, James V.; Pollmann, Stefan
2009-01-01
Decoding patterns of neural activity onto cognitive states is one of the central goals of functional brain imaging. Standard univariate fMRI analysis methods, which correlate cognitive and perceptual function with the blood oxygenation-level dependent (BOLD) signal, have proven successful in identifying anatomical regions based on signal increases during cognitive and perceptual tasks. Recently, researchers have begun to explore new multivariate techniques that have proven to be more flexible, more reliable, and more sensitive than standard univariate analysis. Drawing on the field of statistical learning theory, these new classifier-based analysis techniques possess explanatory power that could provide new insights into the functional properties of the brain. However, unlike the wealth of software packages for univariate analyses, there are few packages that facilitate multivariate pattern classification analyses of fMRI data. Here we introduce a Python-based, cross-platform, and open-source software toolbox, called PyMVPA, for the application of classifier-based analysis techniques to fMRI datasets. PyMVPA makes use of Python's ability to access libraries written in a large variety of programming languages and computing environments to interface with the wealth of existing machine-learning packages. We present the framework in this paper and provide illustrative examples on its usage, features, and programmability. PMID:19184561
NASA Astrophysics Data System (ADS)
Ballora, Mark; Hall, David L.
2010-04-01
Detection of intrusions is a continuing problem in network security. Due to the large volumes of data recorded in Web server logs, analysis is typically forensic, taking place only after a problem has occurred. This paper describes a novel method of representing Web log information through multi-channel sound, while simultaneously visualizing network activity using a 3-D immersive environment. We are exploring the detection of intrusion signatures and patterns, utilizing human aural and visual pattern recognition ability to detect intrusions as they occur. IP addresses and return codes are mapped to an informative and unobtrusive listening environment to act as a situational sound track of Web traffic. Web log data is parsed and formatted using Python, then read as a data array by the synthesis language SuperCollider [1], which renders it as a sonification. This can be done either for the study of pre-existing data sets or in monitoring Web traffic in real time. Components rendered aurally include IP address, geographical information, and server Return Codes. Users can interact with the data, speeding or slowing the speed of representation (for pre-existing data sets) or "mixing" sound components to optimize intelligibility for tracking suspicious activity.
A Cloud Based Framework For Monitoring And Predicting Subsurface System Behaviour
NASA Astrophysics Data System (ADS)
Versteeg, R. J.; Rodzianko, A.; Johnson, D. V.; Soltanian, M. R.; Dwivedi, D.; Dafflon, B.; Tran, A. P.; Versteeg, O. J.
2015-12-01
Subsurface system behavior is driven and controlled by the interplay of physical, chemical, and biological processes which occur at multiple temporal and spatial scales. Capabilities to monitor, understand and predict this behavior in an effective and timely manner are needed for both scientific purposes and for effective subsurface system management. Such capabilities require three elements: Models, Data and an enabling cyberinfrastructure, which allow users to use these models and data in an effective manner. Under a DOE Office of Science funded STTR award Subsurface Insights and LBNL have designed and implemented a cloud based predictive assimilation framework (PAF) which automatically ingests, controls quality and stores heterogeneous physical and chemical subsurface data and processes these data using different inversion and modeling codes to provide information on the current state and evolution of subsurface systems. PAF is implemented as a modular cloud based software application with five components: (1) data acquisition, (2) data management, (3) data assimilation and processing, (4) visualization and result delivery and (5) orchestration. Serverside PAF uses ZF2 (a PHP web application framework) and Python and both open source (ODM2) and in house developed data models. Clientside PAF uses CSS and JS to allow for interactive data visualization and analysis. Client side modularity (which allows for a responsive interface) of the system is achieved by implementing each core capability of PAF (such as data visualization, user configuration and control, electrical geophysical monitoring and email/SMS alerts on data streams) as a SPA (Single Page Application). One of the recent enhancements is the full integration of a number of flow and mass transport and parameter estimation codes (e.g., MODFLOW, MT3DMS, PHT3D, TOUGH, PFLOTRAN) in this framework. This integration allows for autonomous and user controlled modeling of hydrological and geochemical processes. In our presentation we will discuss our software architecture and present the results of using these codes and the overall developed performance of our framework using hydrological, geochemical and geophysical data from the LBNL SFA2 Rifle field site.
Tethys: A Platform for Water Resources Modeling and Decision Support Apps
NASA Astrophysics Data System (ADS)
Nelson, J.; Swain, N. R.
2015-12-01
The interactive nature of web applications or "web apps" makes it an excellent medium for conveying complex scientific concepts to lay audiences and creating decision support tools that harness cutting edge modeling techniques. However, the technical expertise required to develop web apps represents a barrier for would-be developers. This barrier can be characterized by the following hurdles that developers must overcome: (1) identify, select, and install software that meet the spatial and computational capabilities commonly required for water resources modeling; (2) orchestrate the use of multiple free and open source (FOSS) projects and navigate their differing application programming interfaces; (3) learn the multi-language programming skills required for modern web development; and (4) develop a web-secure and fully featured web portal to host the app. Tethys Platform has been developed to lower the technical barrier and minimize the initial development investment that prohibits many scientists and engineers from making use of the web app medium. It includes (1) a suite of FOSS that address the unique data and computational needs common to water resources web app development, (2) a Python software development kit that streamlines development, and (3) a customizable web portal that is used to deploy the completed web apps. Tethys synthesizes several software projects including PostGIS, 52°North WPS, GeoServer, Google Maps™, OpenLayers, and Highcharts. It has been used to develop a broad array of web apps for water resources modeling and decision support for several projects including CI-WATER, HydroShare, and the National Flood Interoperability Experiment. The presentation will include live demos of some of the apps that have been developed using Tethys to demonstrate its capabilities.
ERIC Educational Resources Information Center
Zhang, Shenglan; Duke, Nell K.
2011-01-01
Much research has demonstrated that students are largely uncritical users of Web sites as sources of information. Research-tested frameworks are needed to increase elementary-age students' awareness of the need and ability to critically evaluate Web sites as sources of information. This study is a randomized field trial of such a framework called…
Exploring Two Approaches for an End-to-End Scientific Analysis Workflow
NASA Astrophysics Data System (ADS)
Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; Paterno, Marc; Sehrish, Saba
2015-12-01
The scientific discovery process can be advanced by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally, it is important for scientists to be able to share their workflows with collaborators. We have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC); the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In this paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.
omiRas: a Web server for differential expression analysis of miRNAs derived from small RNA-Seq data.
Müller, Sören; Rycak, Lukas; Winter, Peter; Kahl, Günter; Koch, Ina; Rotter, Björn
2013-10-15
Small RNA deep sequencing is widely used to characterize non-coding RNAs (ncRNAs) differentially expressed between two conditions, e.g. healthy and diseased individuals and to reveal insights into molecular mechanisms underlying condition-specific phenotypic traits. The ncRNAome is composed of a multitude of RNAs, such as transfer RNA, small nucleolar RNA and microRNA (miRNA), to name few. Here we present omiRas, a Web server for the annotation, comparison and visualization of interaction networks of ncRNAs derived from next-generation sequencing experiments of two different conditions. The Web tool allows the user to submit raw sequencing data and results are presented as: (i) static annotation results including length distribution, mapping statistics, alignments and quantification tables for each library as well as lists of differentially expressed ncRNAs between conditions and (ii) an interactive network visualization of user-selected miRNAs and their target genes based on the combination of several miRNA-mRNA interaction databases. The omiRas Web server is implemented in Python, PostgreSQL, R and can be accessed at: http://tools.genxpro.net/omiras/.
NaviCell Web Service for network-based data visualization.
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P A; Barillot, Emmanuel; Zinovyev, Andrei
2015-07-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of 'omics' data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
NaviCell Web Service for network-based data visualization
Bonnet, Eric; Viara, Eric; Kuperstein, Inna; Calzone, Laurence; Cohen, David P. A.; Barillot, Emmanuel; Zinovyev, Andrei
2015-01-01
Data visualization is an essential element of biological research, required for obtaining insights and formulating new hypotheses on mechanisms of health and disease. NaviCell Web Service is a tool for network-based visualization of ‘omics’ data which implements several data visual representation methods and utilities for combining them together. NaviCell Web Service uses Google Maps and semantic zooming to browse large biological network maps, represented in various formats, together with different types of the molecular data mapped on top of them. For achieving this, the tool provides standard heatmaps, barplots and glyphs as well as the novel map staining technique for grasping large-scale trends in numerical values (such as whole transcriptome) projected onto a pathway map. The web service provides a server mode, which allows automating visualization tasks and retrieving data from maps via RESTful (standard HTTP) calls. Bindings to different programming languages are provided (Python and R). We illustrate the purpose of the tool with several case studies using pathway maps created by different research groups, in which data visualization provides new insights into molecular mechanisms involved in systemic diseases such as cancer and neurodegenerative diseases. PMID:25958393
Cloud-Based Tools to Support High-Resolution Modeling (Invited)
NASA Astrophysics Data System (ADS)
Jones, N.; Nelson, J.; Swain, N.; Christensen, S.
2013-12-01
The majority of watershed models developed to support decision-making by water management agencies are simple, lumped-parameter models. Maturity in research codes and advances in the computational power from multi-core processors on desktop machines, commercial cloud-computing resources, and supercomputers with thousands of cores have created new opportunities for employing more accurate, high-resolution distributed models for routine use in decision support. The barriers for using such models on a more routine basis include massive amounts of spatial data that must be processed for each new scenario and lack of efficient visualization tools. In this presentation we will review a current NSF-funded project called CI-WATER that is intended to overcome many of these roadblocks associated with high-resolution modeling. We are developing a suite of tools that will make it possible to deploy customized web-based apps for running custom scenarios for high-resolution models with minimal effort. These tools are based on a software stack that includes 52 North, MapServer, PostGIS, HT Condor, CKAN, and Python. This open source stack provides a simple scripting environment for quickly configuring new custom applications for running high-resolution models as geoprocessing workflows. The HT Condor component facilitates simple access to local distributed computers or commercial cloud resources when necessary for stochastic simulations. The CKAN framework provides a powerful suite of tools for hosting such workflows in a web-based environment that includes visualization tools and storage of model simulations in a database to archival, querying, and sharing of model results. Prototype applications including land use change, snow melt, and burned area analysis will be presented. This material is based upon work supported by the National Science Foundation under Grant No. 1135482
NASA Astrophysics Data System (ADS)
O'Kuinghttons, Ryan; Koziol, Benjamin; Oehmke, Robert; DeLuca, Cecelia; Theurich, Gerhard; Li, Peggy; Jacob, Joseph
2016-04-01
The Earth System Modeling Framework (ESMF) Python interface (ESMPy) supports analysis and visualization in Earth system modeling codes by providing access to a variety of tools for data manipulation. ESMPy started as a Python interface to the ESMF grid remapping package, which provides mature and robust high-performance and scalable grid remapping between 2D and 3D logically rectangular and unstructured grids and sets of unconnected data. ESMPy now also interfaces with OpenClimateGIS (OCGIS), a package that performs subsetting, reformatting, and computational operations on climate datasets. ESMPy exposes a subset of ESMF grid remapping utilities. This includes bilinear, finite element patch recovery, first-order conservative, and nearest neighbor grid remapping methods. There are also options to ignore unmapped destination points, mask points on source and destination grids, and provide grid structure in the polar regions. Grid remapping on the sphere takes place in 3D Cartesian space, so the pole problem is not an issue as it can be with other grid remapping software. Remapping can be done between any combination of 2D and 3D logically rectangular and unstructured grids with overlapping domains. Grid pairs where one side of the regridding is represented by an appropriate set of unconnected data points, as is commonly found with observational data streams, is also supported. There is a developing interoperability layer between ESMPy and OpenClimateGIS (OCGIS). OCGIS is a pure Python, open source package designed for geospatial manipulation, subsetting, and computation on climate datasets stored in local NetCDF files or accessible remotely via the OPeNDAP protocol. Interfacing with OCGIS has brought GIS-like functionality to ESMPy (i.e. subsetting, coordinate transformations) as well as additional file output formats (i.e. CSV, ESRI Shapefile). ESMPy is distinguished by its strong emphasis on open source, community governance, and distributed development. The user base has grown quickly, and the package is integrating with several other software tools and frameworks. These include the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT), Iris, PyFerret, cfpython, and the Community Surface Dynamics Modeling System (CSDMS). ESMPy minimum requirements include Python 2.6, Numpy 1.6.1 and an ESMF installation. Optional dependencies include NetCDF and OCGIS-related dependencies: GDAL, Shapely, and Fiona. ESMPy is regression tested nightly, and supported on Darwin, Linux and Cray systems with the GNU compiler suite and MPI communications. OCGIS is supported on Linux, and also undergoes nightly regression testing. Both packages are installable from Anaconda channels. Upcoming development plans for ESMPy involve development of a higher order conservative grid remapping method. Future OCGIS development will focus on mesh and location stream interoperability and streamlined access to ESMPy's MPI implementation.
NASA Astrophysics Data System (ADS)
Gross, Lutz; Altinay, Cihan; Fenwick, Joel; Smith, Troy
2014-05-01
The program package escript has been designed for solving mathematical modeling problems using python, see Gross et al. (2013). Its development and maintenance has been funded by the Australian Commonwealth to provide open source software infrastructure for the Australian Earth Science community (recent funding by the Australian Geophysical Observing System EIF (AGOS) and the AuScope Collaborative Research Infrastructure Scheme (CRIS)). The key concepts of escript are based on the terminology of spatial functions and partial differential equations (PDEs) - an approach providing abstraction from the underlying spatial discretization method (i.e. the finite element method (FEM)). This feature presents a programming environment to the user which is easy to use even for complex models. Due to the fact that implementations are independent from data structures simulations are easily portable across desktop computers and scalable compute clusters without modifications to the program code. escript has been successfully applied in a variety of applications including modeling mantel convection, melting processes, volcanic flow, earthquakes, faulting, multi-phase flow, block caving and mineralization (see Poulet et al. 2013). The recent escript release (see Gross et al. (2013)) provides an open framework for solving joint inversion problems for geophysical data sets (potential field, seismic and electro-magnetic). The strategy bases on the idea to formulate the inversion problem as an optimization problem with PDE constraints where the cost function is defined by the data defect and the regularization term for the rock properties, see Gross & Kemp (2013). This approach of first-optimize-then-discretize avoids the assemblage of the - in general- dense sensitivity matrix as used in conventional approaches where discrete programming techniques are applied to the discretized problem (first-discretize-then-optimize). In this paper we will discuss the mathematical framework for inversion and appropriate solution schemes in escript. We will also give a brief introduction into escript's open framework for defining and solving geophysical inversion problems. Finally we will show some benchmark results to demonstrate the computational scalability of the inversion method across a large number of cores and compute nodes in a parallel computing environment. References: - L. Gross et al. (2013): Escript Solving Partial Differential Equations in Python Version 3.4, The University of Queensland, https://launchpad.net/escript-finley - L. Gross and C. Kemp (2013) Large Scale Joint Inversion of Geophysical Data using the Finite Element Method in escript. ASEG Extended Abstracts 2013, http://dx.doi.org/10.1071/ASEG2013ab306 - T. Poulet, L. Gross, D. Georgiev, J. Cleverley (2012): escript-RT: Reactive transport simulation in Python using escript, Computers & Geosciences, Volume 45, 168-176. http://dx.doi.org/10.1016/j.cageo.2011.11.005.
NASA Astrophysics Data System (ADS)
Krehbiel, C.; Maiersperger, T.; Friesz, A.; Harriman, L.; Quenzer, R.; Impecoven, K.
2016-12-01
Three major obstacles facing big Earth data users include data storage, management, and analysis. As the amount of satellite remote sensing data increases, so does the need for better data storage and management strategies to exploit the plethora of data now available. Standard GIS tools can help big Earth data users whom interact with and analyze increasingly large and diverse datasets. In this presentation we highlight how NASA's Land Processes Distributed Active Archive Center (LP DAAC) is tackling these big Earth data challenges. We provide a real life use case example to describe three tools and services provided by the LP DAAC to more efficiently exploit big Earth data in a GIS environment. First, we describe the Open-source Project for a Network Data Access Protocol (OPeNDAP), which calls to specific data, minimizing the amount of data that a user downloads and improves the efficiency of data downloading and processing. Next, we cover the LP DAAC's Application for Extracting and Exploring Analysis Ready Samples (AppEEARS), a web application interface for extracting and analyzing land remote sensing data. From there, we review an ArcPython toolbox that was developed to provide quality control services to land remote sensing data products. Locating and extracting specific subsets of larger big Earth datasets improves data storage and management efficiency for the end user, and quality control services provides a straightforward interpretation of big Earth data. These tools and services are beneficial to the GIS user community in terms of standardizing workflows and improving data storage, management, and analysis tactics.
Adapting the iSNOBAL model for improved visualization in a GIS environment
NASA Astrophysics Data System (ADS)
Johansen, W. J.; Delparte, D.
2014-12-01
Snowmelt is a primary means of crucial water resources in much of the western United States. Researchers are developing models that estimate snowmelt to aid in water resource management. One such model is the image snowcover energy and mass balance (iSNOBAL) model. It uses input climate grids to simulate the development and melting of snowpack in mountainous regions. This study looks at applying this model to the Reynolds Creek Experimental Watershed in southwestern Idaho, utilizing novel approaches incorporating geographic information systems (GIS). To improve visualization of the iSNOBAL model, we have adapted it to run in a GIS environment. This type of environment is suited to both the input grid creation and the visualization of results. The data used for input grid creation can be stored locally or on a web-server. Kriging interpolation embedded within Python scripts are used to create air temperature, soil temperature, humidity, and precipitation grids, while built-in GIS and existing tools are used to create solar radiation and wind grids. Additional Python scripting is then used to perform model calculations. The final product is a user-friendly and accessible version of the iSNOBAL model, including the ability to easily visualize and interact with model results, all within a web- or desktop-based GIS environment. This environment allows for interactive manipulation of model parameters and visualization of the resulting input grids for the model calculations. Future work is moving towards adapting the model further for use in a 3D gaming engine for improved visualization and interaction.
TethysCluster: A comprehensive approach for harnessing cloud resources for hydrologic modeling
NASA Astrophysics Data System (ADS)
Nelson, J.; Jones, N.; Ames, D. P.
2015-12-01
Advances in water resources modeling are improving the information that can be supplied to support decisions affecting the safety and sustainability of society. However, as water resources models become more sophisticated and data-intensive they require more computational power to run. Purchasing and maintaining the computing facilities needed to support certain modeling tasks has been cost-prohibitive for many organizations. With the advent of the cloud, the computing resources needed to address this challenge are now available and cost-effective, yet there still remains a significant technical barrier to leverage these resources. This barrier inhibits many decision makers and even trained engineers from taking advantage of the best science and tools available. Here we present the Python tools TethysCluster and CondorPy, that have been developed to lower the barrier to model computation in the cloud by providing (1) programmatic access to dynamically scalable computing resources, (2) a batch scheduling system to queue and dispatch the jobs to the computing resources, (3) data management for job inputs and outputs, and (4) the ability to dynamically create, submit, and monitor computing jobs. These Python tools leverage the open source, computing-resource management, and job management software, HTCondor, to offer a flexible and scalable distributed-computing environment. While TethysCluster and CondorPy can be used independently to provision computing resources and perform large modeling tasks, they have also been integrated into Tethys Platform, a development platform for water resources web apps, to enable computing support for modeling workflows and decision-support systems deployed as web apps.
Prototype of Partial Cutting Tool of Geological Map Images Distributed by Geological Web Map Service
NASA Astrophysics Data System (ADS)
Nonogaki, S.; Nemoto, T.
2014-12-01
Geological maps and topographical maps play an important role in disaster assessment, resource management, and environmental preservation. These map information have been distributed in accordance with Web services standards such as Web Map Service (WMS) and Web Map Tile Service (WMTS) recently. In this study, a partial cutting tool of geological map images distributed by geological WMTS was implemented with Free and Open Source Software. The tool mainly consists of two functions: display function and cutting function. The former function was implemented using OpenLayers. The latter function was implemented using Geospatial Data Abstraction Library (GDAL). All other small functions were implemented by PHP and Python. As a result, this tool allows not only displaying WMTS layer on web browser but also generating a geological map image of intended area and zoom level. At this moment, available WTMS layers are limited to the ones distributed by WMTS for the Seamless Digital Geological Map of Japan. The geological map image can be saved as GeoTIFF format and WebGL format. GeoTIFF is one of the georeferenced raster formats that is available in many kinds of Geographical Information System. WebGL is useful for confirming a relationship between geology and geography in 3D. In conclusion, the partial cutting tool developed in this study would contribute to create better conditions for promoting utilization of geological information. Future work is to increase the number of available WMTS layers and the types of output file format.
A Smart Modeling Framework for Integrating BMI-enabled Models as Web Services
NASA Astrophysics Data System (ADS)
Jiang, P.; Elag, M.; Kumar, P.; Peckham, S. D.; Liu, R.; Marini, L.; Hsu, L.
2015-12-01
Serviced-oriented computing provides an opportunity to couple web service models using semantic web technology. Through this approach, models that are exposed as web services can be conserved in their own local environment, thus making it easy for modelers to maintain and update the models. In integrated modeling, the serviced-oriented loose-coupling approach requires (1) a set of models as web services, (2) the model metadata describing the external features of a model (e.g., variable name, unit, computational grid, etc.) and (3) a model integration framework. We present the architecture of coupling web service models that are self-describing by utilizing a smart modeling framework. We expose models that are encapsulated with CSDMS (Community Surface Dynamics Modeling System) Basic Model Interfaces (BMI) as web services. The BMI-enabled models are self-describing by uncovering models' metadata through BMI functions. After a BMI-enabled model is serviced, a client can initialize, execute and retrieve the meta-information of the model by calling its BMI functions over the web. Furthermore, a revised version of EMELI (Peckham, 2015), an Experimental Modeling Environment for Linking and Interoperability, is chosen as the framework for coupling BMI-enabled web service models. EMELI allows users to combine a set of component models into a complex model by standardizing model interface using BMI as well as providing a set of utilities smoothing the integration process (e.g., temporal interpolation). We modify the original EMELI so that the revised modeling framework is able to initialize, execute and find the dependencies of the BMI-enabled web service models. By using the revised EMELI, an example will be presented on integrating a set of topoflow model components that are BMI-enabled and exposed as web services. Reference: Peckham, S.D. (2014) EMELI 1.0: An experimental smart modeling framework for automatic coupling of self-describing models, Proceedings of HIC 2014, 11th International Conf. on Hydroinformatics, New York, NY.
AdaFF: Adaptive Failure-Handling Framework for Composite Web Services
NASA Astrophysics Data System (ADS)
Kim, Yuna; Lee, Wan Yeon; Kim, Kyong Hoon; Kim, Jong
In this paper, we propose a novel Web service composition framework which dynamically accommodates various failure recovery requirements. In the proposed framework called Adaptive Failure-handling Framework (AdaFF), failure-handling submodules are prepared during the design of a composite service, and some of them are systematically selected and automatically combined with the composite Web service at service instantiation in accordance with the requirement of individual users. In contrast, existing frameworks cannot adapt the failure-handling behaviors to user's requirements. AdaFF rapidly delivers a composite service supporting the requirement-matched failure handling without manual development, and contributes to a flexible composite Web service design in that service architects never care about failure handling or variable requirements of users. For proof of concept, we implement a prototype system of the AdaFF, which automatically generates a composite service instance with Web Services Business Process Execution Language (WS-BPEL) according to the users' requirement specified in XML format and executes the generated instance on the ActiveBPEL engine.
77 FR 7968 - Semiannual Regulatory Agenda
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-13
...; Constrictor Species From Python, Boa, and Eunectes Genera. National Park Service--Proposed Rule Stage... Evaluation; Constrictor Species From Python, Boa, and Eunectes Genera Legal Authority: 18 U.S.C. 42 Abstract... wildlife under the Lacey Act: Indian python (including Burmese python), reticulated python, Northern...
NASA Astrophysics Data System (ADS)
Roccatello, E.; Nozzi, A.; Rumor, M.
2013-05-01
This paper illustrates the key concepts behind the design and the development of a framework, based on OGC services, capable to visualize 3D large scale geospatial data streamed over the web. WebGISes are traditionally bounded to a bi-dimensional simplified representation of the reality and though they are successfully addressing the lack of flexibility and simplicity of traditional desktop clients, a lot of effort is still needed to reach desktop GIS features, like 3D visualization. The motivations behind this work lay in the widespread availability of OGC Web Services inside government organizations and in the technology support to HTML 5 and WebGL standard of the web browsers. This delivers an improved user experience, similar to desktop applications, therefore allowing to augment traditional WebGIS features with a 3D visualization framework. This work could be seen as an extension of the Cityvu project, started in 2008 with the aim of a plug-in free OGC CityGML viewer. The resulting framework has also been integrated in existing 3DGIS software products and will be made available in the next months.
Landers, Richard N; Brusso, Robert C; Cavanaugh, Katelyn J; Collmus, Andrew B
2016-12-01
The term big data encompasses a wide range of approaches of collecting and analyzing data in ways that were not possible before the era of modern personal computing. One approach to big data of great potential to psychologists is web scraping, which involves the automated collection of information from webpages. Although web scraping can create massive big datasets with tens of thousands of variables, it can also be used to create modestly sized, more manageable datasets with tens of variables but hundreds of thousands of cases, well within the skillset of most psychologists to analyze, in a matter of hours. In this article, we demystify web scraping methods as currently used to examine research questions of interest to psychologists. First, we introduce an approach called theory-driven web scraping in which the choice to use web-based big data must follow substantive theory. Second, we introduce data source theories , a term used to describe the assumptions a researcher must make about a prospective big data source in order to meaningfully scrape data from it. Critically, researchers must derive specific hypotheses to be tested based upon their data source theory, and if these hypotheses are not empirically supported, plans to use that data source should be changed or eliminated. Third, we provide a case study and sample code in Python demonstrating how web scraping can be conducted to collect big data along with links to a web tutorial designed for psychologists. Fourth, we describe a 4-step process to be followed in web scraping projects. Fifth and finally, we discuss legal, practical and ethical concerns faced when conducting web scraping projects. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades
McCleery, Robert A.; Sovie, Adia; Reed, Robert N.; Cunningham, Mark W.; Hunter, Margaret E.; Hart, Kristen M.
2015-01-01
To address the ongoing debate over the impact of invasive species on native terrestrial wildlife, we conducted a large-scale experiment to test the hypothesis that invasive Burmese pythons (Python molurus bivittatus) were a cause of the precipitous decline of mammals in Everglades National Park (ENP). Evidence linking pythons to mammal declines has been indirect and there are reasons to question whether pythons, or any predator, could have caused the precipitous declines seen across a range of mammalian functional groups. Experimentally manipulating marsh rabbits, we found that pythons accounted for 77% of rabbit mortalities within 11 months of their translocation to ENP and that python predation appeared to preclude the persistence of rabbit populations in ENP. On control sites, outside of the park, no rabbits were killed by pythons and 71% of attributable marsh rabbit mortalities were classified as mammal predations. Burmese pythons pose a serious threat to the faunal communities and ecological functioning of the Greater Everglades Ecosystem, which will probably spread as python populations expand their range.
A Privacy Access Control Framework for Web Services Collaboration with Role Mechanisms
NASA Astrophysics Data System (ADS)
Liu, Linyuan; Huang, Zhiqiu; Zhu, Haibin
With the popularity of Internet technology, web services are becoming the most promising paradigm for distributed computing. This increased use of web services has meant that more and more personal information of consumers is being shared with web service providers, leading to the need to guarantee the privacy of consumers. This paper proposes a role-based privacy access control framework for Web services collaboration, it utilizes roles to specify the privacy privileges of services, and considers the impact on the reputation degree of the historic experience of services in playing roles. Comparing to the traditional privacy access control approaches, this framework can make the fine-grained authorization decision, thus efficiently protecting consumers' privacy.
Betrayal: radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park
Smith, Brian J.; Cherkiss, Michael S.; Hart, Kristen M.; Rochford, Michael R.; Selby, Thomas H.; Snow, Ray W; Mazzotti, Frank J.
2016-01-01
The “Judas” technique is based on the idea that a radio-tagged individual can be used to “betray” conspecifics during the course of its routine social behavior. The Burmese python (Python bivittatus) is an invasive constrictor in southern Florida, and few methods are available for its control. Pythons are normally solitary, but from December–April in southern Florida, they form breeding aggregations containing up to 8 individuals, providing an opportunity to apply the technique. We radio-tracked 25 individual adult pythons of both sexes during the breeding season from 2007–2012. Our goals were to (1) characterize python movements and determine habitat selection for betrayal events, (2) quantify betrayal rates of Judas pythons, and (3) compare the efficacy of this tool with current tools for capturing pythons, both in terms of cost per python removed (CPP) and catch per unit effort (CPUE). In a total of 33 python-seasons, we had 8 betrayal events (24 %) in which a Judas python led us to new pythons. Betrayal events occurred more frequently in lowland forest (including tree islands) than would be expected by chance alone. These 8 events resulted in the capture of 14 new individuals (1–4 new pythons per event). Our effort comparison shows that while the Judas technique is more costly than road cruising surveys per python removed, the Judas technique yields more large, reproductive females and is effective at a time of year that road cruising is not, making it a potential complement to the status quo removal effort.
Reed, R.N.; Hart, K.M.; Rodda, G.H.; Mazzotti, F.J.; Snow, R.W.; Cherkiss, M.; Rozar, R.; Goetz, S.
2011-01-01
Context. Invasive Burmese pythons (Python molurus bivittatus) are established over thousands of square kilometres of southern Florida, USA, and consume a wide range of native vertebrates. Few tools are available to control the python population, and none of the available tools have been validated in the field to assess capture success as a proportion of pythons available to be captured. Aims. Our primary aim was to conduct a trap trial for capturing invasive pythons in an area east of Everglades National Park, where many pythons had been captured in previous years, to assess the efficacy of traps for population control.Wealso aimed to compare results of visual surveys with trap capture rates, to determine capture rates of non-target species, and to assess capture rates as a proportion of resident pythons in the study area. Methods.Weconducted a medium-scale (6053 trap nights) experiment using two types of attractant traps baited with live rats in the Frog Pond area east of Everglades National Park.Wealso conducted standardised and opportunistic visual surveys in the trapping area. Following the trap trial, the area was disc harrowed to expose pythons and allow calculation of an index of the number of resident pythons. Key results. We captured three pythons and 69 individuals of various rodent, amphibian, and reptile species in traps. Eleven pythons were discovered during disc harrowing operations, as were large numbers of rodents. Conclusions. The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications. Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons. ?? CSIRO 2011.
Open-source Framework for Storing and Manipulation of Plasma Chemical Reaction Data
NASA Astrophysics Data System (ADS)
Jenkins, T. G.; Averkin, S. N.; Cary, J. R.; Kruger, S. E.
2017-10-01
We present a new open-source framework for storage and manipulation of plasma chemical reaction data that has emerged from our in-house project MUNCHKIN. This framework consists of python scripts and C + + programs. It stores data in an SQL data base for fast retrieval and manipulation. For example, it is possible to fit cross-section data into most widely used analytical expressions, calculate reaction rates for Maxwellian distribution functions of colliding particles, and fit them into different analytical expressions. Another important feature of this framework is the ability to calculate transport properties based on the cross-section data and supplied distribution functions. In addition, this framework allows the export of chemical reaction descriptions in LaTeX format for ease of inclusion in scientific papers. With the help of this framework it is possible to generate corresponding VSim (Particle-In-Cell simulation code) and USim (unstructured multi-fluid code) input blocks with appropriate cross-sections.
Accessing the SEED genome databases via Web services API: tools for programmers.
Disz, Terry; Akhter, Sajia; Cuevas, Daniel; Olson, Robert; Overbeek, Ross; Vonstein, Veronika; Stevens, Rick; Edwards, Robert A
2010-06-14
The SEED integrates many publicly available genome sequences into a single resource. The database contains accurate and up-to-date annotations based on the subsystems concept that leverages clustering between genomes and other clues to accurately and efficiently annotate microbial genomes. The backend is used as the foundation for many genome annotation tools, such as the Rapid Annotation using Subsystems Technology (RAST) server for whole genome annotation, the metagenomics RAST server for random community genome annotations, and the annotation clearinghouse for exchanging annotations from different resources. In addition to a web user interface, the SEED also provides Web services based API for programmatic access to the data in the SEED, allowing the development of third-party tools and mash-ups. The currently exposed Web services encompass over forty different methods for accessing data related to microbial genome annotations. The Web services provide comprehensive access to the database back end, allowing any programmer access to the most consistent and accurate genome annotations available. The Web services are deployed using a platform independent service-oriented approach that allows the user to choose the most suitable programming platform for their application. Example code demonstrate that Web services can be used to access the SEED using common bioinformatics programming languages such as Perl, Python, and Java. We present a novel approach to access the SEED database. Using Web services, a robust API for access to genomics data is provided, without requiring large volume downloads all at once. The API ensures timely access to the most current datasets available, including the new genomes as soon as they come online.
NASA Astrophysics Data System (ADS)
Steiger, Damian S.; Haener, Thomas; Troyer, Matthias
Quantum computers promise to transform our notions of computation by offering a completely new paradigm. A high level quantum programming language and optimizing compilers are essential components to achieve scalable quantum computation. In order to address this, we introduce the ProjectQ software framework - an open source effort to support both theorists and experimentalists by providing intuitive tools to implement and run quantum algorithms. Here, we present our ProjectQ quantum compiler, which compiles a quantum algorithm from our high-level Python-embedded language down to low-level quantum gates available on the target system. We demonstrate how this compiler can be used to control actual hardware and to run high-performance simulations.
Lipid-converter, a framework for lipid manipulations in molecular dynamics simulations
Larsson, Per; Kasson, Peter M.
2014-01-01
Construction of lipid membrane and membrane protein systems for molecular dynamics simulations can be a challenging process. In addition, there are few available tools to extend existing studies by repeating simulations using other force fields and lipid compositions. To facilitate this, we introduce lipidconverter, a modular Python framework for exchanging force fields and lipid composition in coordinate files obtained from simulations. Force fields and lipids are specified by simple text files, making it easy to introduce support for additional force fields and lipids. The converter produces simulation input files that can be used for structural relaxation of the new membranes. PMID:25081234
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai, Chengping; Ammon, Charles J.; Maceira, Monica
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Interactive Visualization of Complex Seismic Data and Models Using Bokeh
Chai, Chengping; Ammon, Charles J.; Maceira, Monica; ...
2018-02-14
Visualizing multidimensional data and models becomes more challenging as the volume and resolution of seismic data and models increase. But thanks to the development of powerful and accessible computer systems, a model web browser can be used to visualize complex scientific data and models dynamically. In this paper, we present four examples of seismic model visualization using an open-source Python package Bokeh. One example is a visualization of a surface-wave dispersion data set, another presents a view of three-component seismograms, and two illustrate methods to explore a 3D seismic-velocity model. Unlike other 3D visualization packages, our visualization approach has amore » minimum requirement on users and is relatively easy to develop, provided you have reasonable programming skills. Finally, utilizing familiar web browsing interfaces, the dynamic tools provide us an effective and efficient approach to explore large data sets and models.« less
Duffy, Fergal J; Verniere, Mélanie; Devocelle, Marc; Bernard, Elise; Shields, Denis C; Chubb, Anthony J
2011-04-25
We introduce CycloPs, software for the generation of virtual libraries of constrained peptides including natural and nonnatural commercially available amino acids. The software is written in the cross-platform Python programming language, and features include generating virtual libraries in one-dimensional SMILES and three-dimensional SDF formats, suitable for virtual screening. The stand-alone software is capable of filtering the virtual libraries using empirical measurements, including peptide synthesizability by standard peptide synthesis techniques, stability, and the druglike properties of the peptide. The software and accompanying Web interface is designed to enable the rapid generation of large, structurally diverse, synthesizable virtual libraries of constrained peptides quickly and conveniently, for use in virtual screening experiments. The stand-alone software, and the Web interface for evaluating these empirical properties of a single peptide, are available at http://bioware.ucd.ie .
Oasis: online analysis of small RNA deep sequencing data.
Capece, Vincenzo; Garcia Vizcaino, Julio C; Vidal, Ramon; Rahman, Raza-Ur; Pena Centeno, Tonatiuh; Shomroni, Orr; Suberviola, Irantzu; Fischer, Andre; Bonn, Stefan
2015-07-01
Oasis is a web application that allows for the fast and flexible online analysis of small-RNA-seq (sRNA-seq) data. It was designed for the end user in the lab, providing an easy-to-use web frontend including video tutorials, demo data and best practice step-by-step guidelines on how to analyze sRNA-seq data. Oasis' exclusive selling points are a differential expression module that allows for the multivariate analysis of samples, a classification module for robust biomarker detection and an advanced programming interface that supports the batch submission of jobs. Both modules include the analysis of novel miRNAs, miRNA targets and functional analyses including GO and pathway enrichment. Oasis generates downloadable interactive web reports for easy visualization, exploration and analysis of data on a local system. Finally, Oasis' modular workflow enables for the rapid (re-) analysis of data. Oasis is implemented in Python, R, Java, PHP, C++ and JavaScript. It is freely available at http://oasis.dzne.de. stefan.bonn@dzne.de Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.
A Framework for Open, Flexible and Distributed Learning.
ERIC Educational Resources Information Center
Khan, Badrul H.
Designing open, flexible distance learning systems on the World Wide Web requires thoughtful analysis and investigation combined with an understanding of both the Web's attributes and resources and the ways instructional design principles can be applied to tap the Web's potential. A framework for open, flexible, and distributed learning has been…
A Framework for Web Usage Mining in Electronic Government
NASA Astrophysics Data System (ADS)
Zhou, Ping; Le, Zhongjian
Web usage mining has been a major component of management strategy to enhance organizational analysis and decision. The literature on Web usage mining that deals with strategies and technologies for effectively employing Web usage mining is quite vast. In recent years, E-government has received much attention from researchers and practitioners. Huge amounts of user access data are produced in Electronic government Web site everyday. The role of these data in the success of government management cannot be overstated because they affect government analysis, prediction, strategies, tactical, operational planning and control. Web usage miming in E-government has an important role to play in setting government objectives, discovering citizen behavior, and determining future courses of actions. Web usage mining in E-government has not received adequate attention from researchers or practitioners. We developed a framework to promote a better understanding of the importance of Web usage mining in E-government. Using the current literature, we developed the framework presented herein, in hopes that it would stimulate more interest in this important area.
Real-time Shakemap implementation in Austria
NASA Astrophysics Data System (ADS)
Weginger, Stefan; Jia, Yan; Papi Isaba, Maria; Horn, Nikolaus
2017-04-01
ShakeMaps provide near-real-time maps of ground motion and shaking intensity following significant earthquakes. They are automatically generated within a few minutes after occurrence of an earthquake. We tested and included the USGS ShakeMap 4.0 (experimental code) based on python in the Antelope real-time system with local modified GMPE and Site Effects based on the conditions in Austria. The ShakeMaps are provided in terms of Intensity, PGA, PGV and PSA. Future presentation of ShakeMap contour lines and Ground Motion Parameter with interactive maps and data exchange over Web-Services are shown.
Robopedia: Leveraging Sensorpedia for Web-Enabled Robot Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resseguie, David R
There is a growing interest in building Internetscale sensor networks that integrate sensors from around the world into a single unified system. In contrast, robotics application development has primarily focused on building specialized systems. These specialized systems take scalability and reliability into consideration, but generally neglect exploring the key components required to build a large scale system. Integrating robotic applications with Internet-scale sensor networks will unify specialized robotics applications and provide answers to large scale implementation concerns. We focus on utilizing Internet-scale sensor network technology to construct a framework for unifying robotic systems. Our framework web-enables a surveillance robot smore » sensor observations and provides a webinterface to the robot s actuators. This lets robots seamlessly integrate into web applications. In addition, the framework eliminates most prerequisite robotics knowledge, allowing for the creation of general web-based robotics applications. The framework also provides mechanisms to create applications that can interface with any robot. Frameworks such as this one are key to solving large scale mobile robotics implementation problems. We provide an overview of previous Internetscale sensor networks, Sensorpedia (an ad-hoc Internet-scale sensor network), our framework for integrating robots with Sensorpedia, two applications which illustrate our frameworks ability to support general web-based robotic control, and offer experimental results that illustrate our framework s scalability, feasibility, and resource requirements.« less
Cold-induced mortality of invasive Burmese pythons in south Florida
Mazzotti, Frank J.; Cherkiss, Michael S.; Hart, Kristen M.; Snow, Ray W.; Rochford, Michael R.; Dorcas, Michael E.; Reed, Robert N.
2011-01-01
A recent record cold spell in southern Florida (2–11 January 2010) provided an opportunity to evaluate responses of an established population of Burmese pythons (Python molurus bivittatus) to a prolonged period of unusually cold weather. We observed behavior, characterized thermal biology, determined fate of radio-telemetered (n = 10) and non-telemetered (n = 104) Burmese pythons, and analyzed habitat and environmental conditions experienced by pythons during and after a historic cold spell. Telemetered pythons had been implanted with radio-transmitters and temperature-recording data loggers prior to the cold snap. Only one of 10 telemetered pythons survived the cold snap, whereas 59 of 99 (60%) non-telemetered pythons for which we determined fate survived. Body temperatures of eight dead telemetered pythons fluctuated regularly prior to 9 January 2010, then declined substantially during the cold period (9–11 January) and exhibited no further evidence of active thermoregulation indicating they were likely dead. Unusually cold temperatures in January 2010 were clearly associated with mortality of Burmese pythons in the Everglades. Some radio-telemetered pythons appeared to exhibit maladaptive behavior during the cold spell, including attempting to bask instead of retreating to sheltered refugia. We discuss implications of our findings for persistence and spread of introduced Burmese pythons in the United States and for maximizing their rate of removal.
Tsuji, Yamato; Prayitno, Bambang; Suryobroto, Bambang
2016-04-01
We observed an encounter between a reticulated python (Python reticulatus) and a group of wild Javan lutungs (Trachypithecus auratus mauritius) at the Pangandaran Nature Reserve, West Java, Indonesia. A python (about 2 m in length) moved toward a group of lutungs in the trees. Upon seeing the python, an adult male and several adult female lutungs began to emit alarm calls. As the python approached, two adult and one sub-adult female jumped onto a branch near the python and began mobbing the python by shaking the branch. During the mobbing, other individuals in the group (including an adult lutung male) remained nearby but did not participate. The python then rolled into a ball-like shape and stopped moving, at which point the lutungs moved away. The total duration of the encounter was about 40 min, during which time the lutungs stopped feeding and grooming. Group cohesiveness during and after the encounter was greater than that before the encounter, indicating that lutungs adjust their daily activity in response to potential predation risk.
Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades.
McCleery, Robert A; Sovie, Adia; Reed, Robert N; Cunningham, Mark W; Hunter, Margaret E; Hart, Kristen M
2015-04-22
To address the ongoing debate over the impact of invasive species on native terrestrial wildlife, we conducted a large-scale experiment to test the hypothesis that invasive Burmese pythons (Python molurus bivittatus) were a cause of the precipitous decline of mammals in Everglades National Park (ENP). Evidence linking pythons to mammal declines has been indirect and there are reasons to question whether pythons, or any predator, could have caused the precipitous declines seen across a range of mammalian functional groups. Experimentally manipulating marsh rabbits, we found that pythons accounted for 77% of rabbit mortalities within 11 months of their translocation to ENP and that python predation appeared to preclude the persistence of rabbit populations in ENP. On control sites, outside of the park, no rabbits were killed by pythons and 71% of attributable marsh rabbit mortalities were classified as mammal predations. Burmese pythons pose a serious threat to the faunal communities and ecological functioning of the Greater Everglades Ecosystem, which will probably spread as python populations expand their range. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
Marsh rabbit mortalities tie pythons to the precipitous decline of mammals in the Everglades
McCleery, Robert A.; Sovie, Adia; Reed, Robert N.; Cunningham, Mark W.; Hunter, Margaret E.; Hart, Kristen M.
2015-01-01
To address the ongoing debate over the impact of invasive species on native terrestrial wildlife, we conducted a large-scale experiment to test the hypothesis that invasive Burmese pythons (Python molurus bivittatus) were a cause of the precipitous decline of mammals in Everglades National Park (ENP). Evidence linking pythons to mammal declines has been indirect and there are reasons to question whether pythons, or any predator, could have caused the precipitous declines seen across a range of mammalian functional groups. Experimentally manipulating marsh rabbits, we found that pythons accounted for 77% of rabbit mortalities within 11 months of their translocation to ENP and that python predation appeared to preclude the persistence of rabbit populations in ENP. On control sites, outside of the park, no rabbits were killed by pythons and 71% of attributable marsh rabbit mortalities were classified as mammal predations. Burmese pythons pose a serious threat to the faunal communities and ecological functioning of the Greater Everglades Ecosystem, which will probably spread as python populations expand their range. PMID:25788598
A general spectral method for the numerical simulation of one-dimensional interacting fermions
NASA Astrophysics Data System (ADS)
Clason, Christian; von Winckel, Gregory
2012-08-01
This software implements a general framework for the direct numerical simulation of systems of interacting fermions in one spatial dimension. The approach is based on a specially adapted nodal spectral Galerkin method, where the basis functions are constructed to obey the antisymmetry relations of fermionic wave functions. An efficient Matlab program for the assembly of the stiffness and potential matrices is presented, which exploits the combinatorial structure of the sparsity pattern arising from this discretization to achieve optimal run-time complexity. This program allows the accurate discretization of systems with multiple fermions subject to arbitrary potentials, e.g., for verifying the accuracy of multi-particle approximations such as Hartree-Fock in the few-particle limit. It can be used for eigenvalue computations or numerical solutions of the time-dependent Schrödinger equation. The new version includes a Python implementation of the presented approach. New version program summaryProgram title: assembleFermiMatrix Catalogue identifier: AEKO_v1_1 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKO_v1_1.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 332 No. of bytes in distributed program, including test data, etc.: 5418 Distribution format: tar.gz Programming language: MATLAB/GNU Octave, Python Computer: Any architecture supported by MATLAB, GNU Octave or Python Operating system: Any supported by MATLAB, GNU Octave or Python RAM: Depends on the data Classification: 4.3, 2.2. External routines: Python 2.7+, NumPy 1.3+, SciPy 0.10+ Catalogue identifier of previous version: AEKO_v1_0 Journal reference of previous version: Comput. Phys. Commun. 183 (2012) 405 Does the new version supersede the previous version?: Yes Nature of problem: The direct numerical solution of the multi-particle one-dimensional Schrödinger equation in a quantum well is challenging due to the exponential growth in the number of degrees of freedom with increasing particles. Solution method: A nodal spectral Galerkin scheme is used where the basis functions are constructed to obey the antisymmetry relations of the fermionic wave function. The assembly of these matrices is performed efficiently by exploiting the combinatorial structure of the sparsity patterns. Reasons for new version: A Python implementation is now included. Summary of revisions: Added a Python implementation; small documentation fixes in Matlab implementation. No change in features of the package. Restrictions: Only one-dimensional computational domains with homogeneous Dirichlet or periodic boundary conditions are supported. Running time: Seconds to minutes.
A Computational Framework for Automation of Point Defect Calculations
NASA Astrophysics Data System (ADS)
Goyal, Anuj; Gorai, Prashun; Peng, Haowei; Lany, Stephan; Stevanovic, Vladan; National Renewable Energy Laboratory, Golden, Colorado 80401 Collaboration
A complete and rigorously validated open-source Python framework to automate point defect calculations using density functional theory has been developed. The framework provides an effective and efficient method for defect structure generation, and creation of simple yet customizable workflows to analyze defect calculations. The package provides the capability to compute widely accepted correction schemes to overcome finite-size effects, including (1) potential alignment, (2) image-charge correction, and (3) band filling correction to shallow defects. Using Si, ZnO and In2O3as test examples, we demonstrate the package capabilities and validate the methodology. We believe that a robust automated tool like this will enable the materials by design community to assess the impact of point defects on materials performance. National Renewable Energy Laboratory, Golden, Colorado 80401.
Recent developments in the CCP-EM software suite.
Burnley, Tom; Palmer, Colin M; Winn, Martyn
2017-06-01
As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail.
Recent developments in the CCP-EM software suite
Burnley, Tom
2017-01-01
As part of its remit to provide computational support to the cryo-EM community, the Collaborative Computational Project for Electron cryo-Microscopy (CCP-EM) has produced a software framework which enables easy access to a range of programs and utilities. The resulting software suite incorporates contributions from different collaborators by encapsulating them in Python task wrappers, which are then made accessible via a user-friendly graphical user interface as well as a command-line interface suitable for scripting. The framework includes tools for project and data management. An overview of the design of the framework is given, together with a survey of the functionality at different levels. The current CCP-EM suite has particular strength in the building and refinement of atomic models into cryo-EM reconstructions, which is described in detail. PMID:28580908
Bryant, Jamie; Sanson-Fisher, Rob; Tzelepis, Flora; Henskens, Frans; Paul, Christine; Stevenson, William
2014-01-01
Background Effective communication with cancer patients and their families about their disease, treatment options, and possible outcomes may improve psychosocial outcomes. However, traditional approaches to providing information to patients, including verbal information and written booklets, have a number of shortcomings centered on their limited ability to meet patient preferences and literacy levels. New-generation Web-based technologies offer an innovative and pragmatic solution for overcoming these limitations by providing a platform for interactive information seeking, information sharing, and user-centered tailoring. Objective The primary goal of this paper is to discuss the advantages of comprehensive and iterative Web-based technologies for health information provision and propose a four-phase framework for the development of Web-based information tools. Methods The proposed framework draws on our experience of constructing a Web-based information tool for hematological cancer patients and their families. The framework is based on principles for the development and evaluation of complex interventions and draws on the Agile methodology of software programming that emphasizes collaboration and iteration throughout the development process. Results The DoTTI framework provides a model for a comprehensive and iterative approach to the development of Web-based informational tools for patients. The process involves 4 phases of development: (1) Design and development, (2) Testing early iterations, (3) Testing for effectiveness, and (4) Integration and implementation. At each step, stakeholders (including researchers, clinicians, consumers, and programmers) are engaged in consultations to review progress, provide feedback on versions of the Web-based tool, and based on feedback, determine the appropriate next steps in development. Conclusions This 4-phase framework is evidence-informed and consumer-centered and could be applied widely to develop Web-based programs for a diverse range of diseases. PMID:24641991
Smits, Rochelle; Bryant, Jamie; Sanson-Fisher, Rob; Tzelepis, Flora; Henskens, Frans; Paul, Christine; Stevenson, William
2014-03-14
Effective communication with cancer patients and their families about their disease, treatment options, and possible outcomes may improve psychosocial outcomes. However, traditional approaches to providing information to patients, including verbal information and written booklets, have a number of shortcomings centered on their limited ability to meet patient preferences and literacy levels. New-generation Web-based technologies offer an innovative and pragmatic solution for overcoming these limitations by providing a platform for interactive information seeking, information sharing, and user-centered tailoring. The primary goal of this paper is to discuss the advantages of comprehensive and iterative Web-based technologies for health information provision and propose a four-phase framework for the development of Web-based information tools. The proposed framework draws on our experience of constructing a Web-based information tool for hematological cancer patients and their families. The framework is based on principles for the development and evaluation of complex interventions and draws on the Agile methodology of software programming that emphasizes collaboration and iteration throughout the development process. The DoTTI framework provides a model for a comprehensive and iterative approach to the development of Web-based informational tools for patients. The process involves 4 phases of development: (1) Design and development, (2) Testing early iterations, (3) Testing for effectiveness, and (4) Integration and implementation. At each step, stakeholders (including researchers, clinicians, consumers, and programmers) are engaged in consultations to review progress, provide feedback on versions of the Web-based tool, and based on feedback, determine the appropriate next steps in development. This 4-phase framework is evidence-informed and consumer-centered and could be applied widely to develop Web-based programs for a diverse range of diseases.
An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm.
Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya
2015-01-01
Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the "quality of service" as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services.
An Automatic Web Service Composition Framework Using QoS-Based Web Service Ranking Algorithm
Mallayya, Deivamani; Ramachandran, Baskaran; Viswanathan, Suganya
2015-01-01
Web service has become the technology of choice for service oriented computing to meet the interoperability demands in web applications. In the Internet era, the exponential addition of web services nominates the “quality of service” as essential parameter in discriminating the web services. In this paper, a user preference based web service ranking (UPWSR) algorithm is proposed to rank web services based on user preferences and QoS aspect of the web service. When the user's request cannot be fulfilled by a single atomic service, several existing services should be composed and delivered as a composition. The proposed framework allows the user to specify the local and global constraints for composite web services which improves flexibility. UPWSR algorithm identifies best fit services for each task in the user request and, by choosing the number of candidate services for each task, reduces the time to generate the composition plans. To tackle the problem of web service composition, QoS aware automatic web service composition (QAWSC) algorithm proposed in this paper is based on the QoS aspects of the web services and user preferences. The proposed framework allows user to provide feedback about the composite service which improves the reputation of the services. PMID:26504894
Zephyr: Open-source Parallel Seismic Waveform Inversion in an Integrated Python-based Framework
NASA Astrophysics Data System (ADS)
Smithyman, B. R.; Pratt, R. G.; Hadden, S. M.
2015-12-01
Seismic Full-Waveform Inversion (FWI) is an advanced method to reconstruct wave properties of materials in the Earth from a series of seismic measurements. These methods have been developed by researchers since the late 1980s, and now see significant interest from the seismic exploration industry. As researchers move towards implementing advanced numerical modelling (e.g., 3D, multi-component, anisotropic and visco-elastic physics), it is desirable to make use of a modular approach, minimizing the effort developing a new set of tools for each new numerical problem. SimPEG (http://simpeg.xyz) is an open source project aimed at constructing a general framework to enable geophysical inversion in various domains. In this abstract we describe Zephyr (https://github.com/bsmithyman/zephyr), which is a coupled research project focused on parallel FWI in the seismic context. The software is built on top of Python, Numpy and IPython, which enables very flexible testing and implementation of new features. Zephyr is an open source project, and is released freely to enable reproducible research. We currently implement a parallel, distributed seismic forward modelling approach that solves the 2.5D (two-and-one-half dimensional) viscoacoustic Helmholtz equation at a range modelling frequencies, generating forward solutions for a given source behaviour, and gradient solutions for a given set of observed data. Solutions are computed in a distributed manner on a set of heterogeneous workers. The researcher's frontend computer may be separated from the worker cluster by a network link to enable full support for computation on remote clusters from individual workstations or laptops. The present codebase introduces a numerical discretization equivalent to that used by FULLWV, a well-known seismic FWI research codebase. This makes it straightforward to compare results from Zephyr directly with FULLWV. The flexibility introduced by the use of a Python programming environment makes extension of the codebase with new methods much more straightforward. This enables comparison and integration of new efforts with existing results.
RadVel: General toolkit for modeling Radial Velocities
NASA Astrophysics Data System (ADS)
Fulton, Benjamin J.; Petigura, Erik A.; Blunt, Sarah; Sinukoff, Evan
2018-01-01
RadVel models Keplerian orbits in radial velocity (RV) time series. The code is written in Python with a fast Kepler's equation solver written in C. It provides a framework for fitting RVs using maximum a posteriori optimization and computing robust confidence intervals by sampling the posterior probability density via Markov Chain Monte Carlo (MCMC). RadVel can perform Bayesian model comparison and produces publication quality plots and LaTeX tables.
2015-06-01
unit may setup and teardown the entire tactical infrastructure multiple times per day. This tactical network administrator training is a critical...language and runs on Linux and Unix based systems. All provisioning is based around the Nagios Core application, a powerful backend solution for network...start up a large number of virtual machines quickly. CORE supports the simulation of fixed and mobile networks. CORE is open-source, written in Python
MYRaf: A new Approach with IRAF for Astronomical Photometric Reduction
NASA Astrophysics Data System (ADS)
Kilic, Y.; Shameoni Niaei, M.; Özeren, F. F.; Yesilyaprak, C.
2016-12-01
In this study, the design and some developments of MYRaf software for astronomical photometric reduction are presented. MYRaf software is an easy to use, reliable, and has a fast IRAF aperture photometry GUI tools. MYRaf software is an important step for the automated software process of robotic telescopes, and uses IRAF, PyRAF, matplotlib, ginga, alipy, and Sextractor with the general-purpose and high-level programming language Python and uses the QT framework.
MEqTrees Telescope and Radio-sky Simulations and CPU Benchmarking
NASA Astrophysics Data System (ADS)
Shanmugha Sundaram, G. A.
2009-09-01
MEqTrees is a Python-based implementation of the classical Measurement Equation, wherein the various 2×2 Jones matrices are parametrized representations in the spatial and sky domains for any generic radio telescope. Customized simulations of radio-source sky models and corrupt Jones terms are demonstrated based on a policy framework, with performance estimates derived for array configurations, ``dirty''-map residuals and processing power requirements for such computations on conventional platforms.
BioInt: an integrative biological object-oriented application framework and interpreter.
Desai, Sanket; Burra, Prasad
2015-01-01
BioInt, a biological programming application framework and interpreter, is an attempt to equip the researchers with seamless integration, efficient extraction and effortless analysis of the data from various biological databases and algorithms. Based on the type of biological data, algorithms and related functionalities, a biology-specific framework was developed which has nine modules. The modules are a compilation of numerous reusable BioADTs. This software ecosystem containing more than 450 biological objects underneath the interpreter makes it flexible, integrative and comprehensive. Similar to Python, BioInt eliminates the compilation and linking steps cutting the time significantly. The researcher can write the scripts using available BioADTs (following C++ syntax) and execute them interactively or use as a command line application. It has features that enable automation, extension of the framework with new/external BioADTs/libraries and deployment of complex work flows.
NASA Astrophysics Data System (ADS)
Mortensen, Mikael; Langtangen, Hans Petter; Wells, Garth N.
2011-09-01
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model.
A Framework for Sharing and Integrating Remote Sensing and GIS Models Based on Web Service
Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin
2014-01-01
Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a “black box” and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users. PMID:24901016
A framework for sharing and integrating remote sensing and GIS models based on Web service.
Chen, Zeqiang; Lin, Hui; Chen, Min; Liu, Deer; Bao, Ying; Ding, Yulin
2014-01-01
Sharing and integrating Remote Sensing (RS) and Geographic Information System/Science (GIS) models are critical for developing practical application systems. Facilitating model sharing and model integration is a problem for model publishers and model users, respectively. To address this problem, a framework based on a Web service for sharing and integrating RS and GIS models is proposed in this paper. The fundamental idea of the framework is to publish heterogeneous RS and GIS models into standard Web services for sharing and interoperation and then to integrate the RS and GIS models using Web services. For the former, a "black box" and a visual method are employed to facilitate the publishing of the models as Web services. For the latter, model integration based on the geospatial workflow and semantic supported marching method is introduced. Under this framework, model sharing and integration is applied for developing the Pearl River Delta water environment monitoring system. The results show that the framework can facilitate model sharing and model integration for model publishers and model users.
NASA Astrophysics Data System (ADS)
Dumitrescu, Catalin; Nowack, Andreas; Padhi, Sanjay; Sarkar, Subir
2010-04-01
This paper presents a web-based Job Monitoring framework for individual Grid sites that allows users to follow in detail their jobs in quasi-real time. The framework consists of several independent components : (a) a set of sensors that run on the site CE and worker nodes and update a database, (b) a simple yet extensible web services framework and (c) an Ajax powered web interface having a look-and-feel and control similar to a desktop application. The monitoring framework supports LSF, Condor and PBS-like batch systems. This is one of the first monitoring systems where an X.509 authenticated web interface can be seamlessly accessed by both end-users and site administrators. While a site administrator has access to all the possible information, a user can only view the jobs for the Virtual Organizations (VO) he/she is a part of. The monitoring framework design supports several possible deployment scenarios. For a site running a supported batch system, the system may be deployed as a whole, or existing site sensors can be adapted and reused with the web services components. A site may even prefer to build the web server independently and choose to use only the Ajax powered web interface. Finally, the system is being used to monitor a glideinWMS instance. This broadens the scope significantly, allowing it to monitor jobs over multiple sites.
Hoon-Hanks, Laura L; Layton, Marylee L; Ossiboff, Robert J; Parker, John S L; Dubovi, Edward J; Stenglein, Mark D
2018-04-01
Circumstantial evidence has linked a new group of nidoviruses with respiratory disease in pythons, lizards, and cattle. We conducted experimental infections in ball pythons (Python regius) to test the hypothesis that ball python nidovirus (BPNV) infection results in respiratory disease. Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic-active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical signs throughout the experiment. Our findings establish a causal relationship between nidovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT.
Schenk, Andreas D; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-05-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library and Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. Copyright © 2013 Elsevier Inc. All rights reserved.
A pipeline for comprehensive and automated processing of electron diffraction data in IPLT
Schenk, Andreas D.; Philippsen, Ansgar; Engel, Andreas; Walz, Thomas
2013-01-01
Electron crystallography of two-dimensional crystals allows the structural study of membrane proteins in their native environment, the lipid bilayer. Determining the structure of a membrane protein at near-atomic resolution by electron crystallography remains, however, a very labor-intense and time-consuming task. To simplify and accelerate the data processing aspect of electron crystallography, we implemented a pipeline for the processing of electron diffraction data using the Image Processing Library & Toolbox (IPLT), which provides a modular, flexible, integrated, and extendable cross-platform, open-source framework for image processing. The diffraction data processing pipeline is organized as several independent modules implemented in Python. The modules can be accessed either from a graphical user interface or through a command line interface, thus meeting the needs of both novice and expert users. The low-level image processing algorithms are implemented in C++ to achieve optimal processing performance, and their interface is exported to Python using a wrapper. For enhanced performance, the Python processing modules are complemented with a central data managing facility that provides a caching infrastructure. The validity of our data processing algorithms was verified by processing a set of aquaporin-0 diffraction patterns with the IPLT pipeline and comparing the resulting merged data set with that obtained by processing the same diffraction patterns with the classical set of MRC programs. PMID:23500887
Ultrasound imaging of the anterior section of the eye of five different snake species.
Lauridsen, Henrik; Da Silva, Mari-Ann O; Hansen, Kasper; Jensen, Heidi M; Warming, Mads; Wang, Tobias; Pedersen, Michael
2014-12-30
Nineteen clinically normal snakes: six ball pythons (Python regius), six Burmese pythons (Python bivittatus), one Children's python (Antaresia childreni), four Amazon tree boas (Corallus hortulanus), and two Malagasy ground boas (Acrantophis madagascariensis) were subjected to ultrasound imaging with 21 MHz (ball python) and 50 MHz (ball python, Burmese python, Children's python, Amazon tree boa, Malagasy ground boa) transducers in order to measure the different structures of the anterior segment in clinically normal snake eyes with the aim to review baseline values for clinically important ophthalmic structures. The ultrasonographic measurements included horizontal spectacle diameter, spectacle thickness, depth of sub-spectacular space and corneal thickness. For comparative purposes, a formalin-fixed head of a Burmese python was subjected to micro computed tomography. In all snakes, the spectacle was thinner than the cornea. There was significant difference in spectacle diameter, and spectacle and corneal thickness between the Amazon tree boa and the Burmese and ball pythons. There was no difference in the depth of the sub-spectacular space. The results obtained in the Burmese python with the 50 MHz transducer were similar to the results obtained with micro computed tomography. Images acquired with the 21 MHz transducer included artifacts which may be misinterpreted as ocular structures. Our measurements of the structures in the anterior segment of the eye can serve as orientative values for snakes examined for ocular diseases. In addition, we demonstrated that using a high frequency transducer minimizes the risk of misinterpreting artifacts as ocular structures.
Introducing the PRIDE Archive RESTful web services.
Reisinger, Florian; del-Toro, Noemi; Ternent, Tobias; Hermjakob, Henning; Vizcaíno, Juan Antonio
2015-07-01
The PRIDE (PRoteomics IDEntifications) database is one of the world-leading public repositories of mass spectrometry (MS)-based proteomics data and it is a founding member of the ProteomeXchange Consortium of proteomics resources. In the original PRIDE database system, users could access data programmatically by accessing the web services provided by the PRIDE BioMart interface. New REST (REpresentational State Transfer) web services have been developed to serve the most popular functionality provided by BioMart (now discontinued due to data scalability issues) and address the data access requirements of the newly developed PRIDE Archive. Using the API (Application Programming Interface) it is now possible to programmatically query for and retrieve peptide and protein identifications, project and assay metadata and the originally submitted files. Searching and filtering is also possible by metadata information, such as sample details (e.g. species and tissues), instrumentation (mass spectrometer), keywords and other provided annotations. The PRIDE Archive web services were first made available in April 2014. The API has already been adopted by a few applications and standalone tools such as PeptideShaker, PRIDE Inspector, the Unipept web application and the Python-based BioServices package. This application is free and open to all users with no login requirement and can be accessed at http://www.ebi.ac.uk/pride/ws/archive/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
A New Python Library for Spectroscopic Analysis with MIDAS Style
NASA Astrophysics Data System (ADS)
Song, Y.; Luo, A.; Zhao, Y.
2013-10-01
The ESO MIDAS is a system for astronomers to analyze data which many astronomers are using. Python is a high level script language and there are many applications for astronomical data process. We are releasing a new Python library which realizes some MIDAS commands in Python. People can use it to write a MIDAS style Python code. We call it PydasLib. It is a Python library based on ESO MIDAS functions, which is easily used by astronomers who are familiar with the usage of MIDAS.
Coordinates and intervals in graph-based reference genomes.
Rand, Knut D; Grytten, Ivar; Nederbragt, Alexander J; Storvik, Geir O; Glad, Ingrid K; Sandve, Geir K
2017-05-18
It has been proposed that future reference genomes should be graph structures in order to better represent the sequence diversity present in a species. However, there is currently no standard method to represent genomic intervals, such as the positions of genes or transcription factor binding sites, on graph-based reference genomes. We formalize offset-based coordinate systems on graph-based reference genomes and introduce methods for representing intervals on these reference structures. We show the advantage of our methods by representing genes on a graph-based representation of the newest assembly of the human genome (GRCh38) and its alternative loci for regions that are highly variable. More complex reference genomes, containing alternative loci, require methods to represent genomic data on these structures. Our proposed notation for genomic intervals makes it possible to fully utilize the alternative loci of the GRCh38 assembly and potential future graph-based reference genomes. We have made a Python package for representing such intervals on offset-based coordinate systems, available at https://github.com/uio-cels/offsetbasedgraph . An interactive web-tool using this Python package to visualize genes on a graph created from GRCh38 is available at https://github.com/uio-cels/genomicgraphcoords .
Dorel, Mathurin; Viara, Eric; Barillot, Emmanuel; Zinovyev, Andrei; Kuperstein, Inna
2017-01-01
Human diseases such as cancer are routinely characterized by high-throughput molecular technologies, and multi-level omics data are accumulated in public databases at increasing rate. Retrieval and visualization of these data in the context of molecular network maps can provide insights into the pattern of regulation of molecular functions reflected by an omics profile. In order to make this task easy, we developed NaviCom, a Python package and web platform for visualization of multi-level omics data on top of biological network maps. NaviCom is bridging the gap between cBioPortal, the most used resource of large-scale cancer omics data and NaviCell, a data visualization web service that contains several molecular network map collections. NaviCom proposes several standardized modes of data display on top of molecular network maps, allowing addressing specific biological questions. We illustrate how users can easily create interactive network-based cancer molecular portraits via NaviCom web interface using the maps of Atlas of Cancer Signalling Network (ACSN) and other maps. Analysis of these molecular portraits can help in formulating a scientific hypothesis on the molecular mechanisms deregulated in the studied disease. NaviCom is available at https://navicom.curie.fr. © The Author(s) 2017. Published by Oxford University Press.
NASA Astrophysics Data System (ADS)
Reyes, J. C.; Vernon, F. L.; Newman, R. L.; Steidl, J. H.
2010-12-01
The Waveform Server is an interactive web-based interface to multi-station, multi-sensor and multi-channel high-density time-series data stored in Center for Seismic Studies (CSS) 3.0 schema relational databases (Newman et al., 2009). In the last twelve months, based on expanded specifications and current user feedback, both the server-side infrastructure and client-side interface have been extensively rewritten. The Python Twisted server-side code-base has been fundamentally modified to now present waveform data stored in cluster-based databases using a multi-threaded architecture, in addition to supporting the pre-existing single database model. This allows interactive web-based access to high-density (broadband @ 40Hz to strong motion @ 200Hz) waveform data that can span multiple years; the common lifetime of broadband seismic networks. The client-side interface expands on it's use of simple JSON-based AJAX queries to now incorporate a variety of User Interface (UI) improvements including standardized calendars for defining time ranges, applying on-the-fly data calibration to display SI-unit data, and increased rendering speed. This presentation will outline the various cyber infrastructure challenges we have faced while developing this application, the use-cases currently in existence, and the limitations of web-based application development.
NASA Astrophysics Data System (ADS)
Khalilian, Madjid; Boroujeni, Farsad Zamani; Mustapha, Norwati
Nowadays the growth of the web causes some difficulties to search and browse useful information especially in specific domains. However, some portion of the web remains largely underdeveloped, as shown in lack of high quality contents. An example is the botany specific web directory, in which lack of well-structured web directories have limited user's ability to browse required information. In this research we propose an improved framework for constructing a specific web directory. In this framework we use an anchor directory as a foundation for primary web directory. This web directory is completed by information which is gathered with automatic component and filtered by experts. We conduct an experiment for evaluating effectiveness, efficiency and satisfaction.
Pythons in Burma: Short-tailed python (Reptilia: Squamata)
Zug, George R.; Gotte, Steve W.; Jacobs, Jeremy F.
2011-01-01
Short-tailed pythons, Python curtus species group, occur predominantly in the Malayan Peninsula, Sumatra, and Borneo. The discovery of an adult female in Mon State, Myanmar, led to a review of the distribution of all group members (spot-mapping of all localities of confirmed occurrence) and an examination of morphological variation in P. brongersmai. The resulting maps demonstrate a limited occurrence of these pythons within peninsular Malaya, Sumatra, and Borneo with broad absences in these regions. Our small samples limit the recognition of regional differentiation in the morphology of P. brongersmai populations; however, the presence of unique traits in the Myanmar python and its strong allopatry indicate that it is a unique genetic lineage, and it is described as Python kyaiktiyo new species.
Nestly--a framework for running software with nested parameter choices and aggregating results.
McCoy, Connor O; Gallagher, Aaron; Hoffman, Noah G; Matsen, Frederick A
2013-02-01
The execution of a software application or pipeline using various combinations of parameters and inputs is a common task in bioinformatics. In the absence of a specialized tool to organize, streamline and formalize this process, scientists must write frequently complex scripts to perform these tasks. We present nestly, a Python package to facilitate running tools with nested combinations of parameters and inputs. nestly provides three components. First, a module to build nested directory structures corresponding to choices of parameters. Second, the nestrun script to run a given command using each set of parameter choices. Third, the nestagg script to aggregate results of the individual runs into a CSV file, as well as support for more complex aggregation. We also include a module for easily specifying nested dependencies for the SCons build tool, enabling incremental builds. Source, documentation and tutorial examples are available at http://github.com/fhcrc/nestly. nestly can be installed from the Python Package Index via pip; it is open source (MIT license).
AESOP: A Python Library for Investigating Electrostatics in Protein Interactions.
Harrison, Reed E S; Mohan, Rohith R; Gorham, Ronald D; Kieslich, Chris A; Morikis, Dimitrios
2017-05-09
Electric fields often play a role in guiding the association of protein complexes. Such interactions can be further engineered to accelerate complex association, resulting in protein systems with increased productivity. This is especially true for enzymes where reaction rates are typically diffusion limited. To facilitate quantitative comparisons of electrostatics in protein families and to describe electrostatic contributions of individual amino acids, we previously developed a computational framework called AESOP. We now implement this computational tool in Python with increased usability and the capability of performing calculations in parallel. AESOP utilizes PDB2PQR and Adaptive Poisson-Boltzmann Solver to generate grid-based electrostatic potential files for protein structures provided by the end user. There are methods within AESOP for quantitatively comparing sets of grid-based electrostatic potentials in terms of similarity or generating ensembles of electrostatic potential files for a library of mutants to quantify the effects of perturbations in protein structure and protein-protein association. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform.
Zheng, Wenning; Mutha, Naresh V R; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah; Choo, Siew Woh
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my.
NeisseriaBase: a specialised Neisseria genomic resource and analysis platform
Zheng, Wenning; Mutha, Naresh V.R.; Heydari, Hamed; Dutta, Avirup; Siow, Cheuk Chuen; Jakubovics, Nicholas S.; Wee, Wei Yee; Tan, Shi Yang; Ang, Mia Yang; Wong, Guat Jah
2016-01-01
Background. The gram-negative Neisseria is associated with two of the most potent human epidemic diseases: meningococcal meningitis and gonorrhoea. In both cases, disease is caused by bacteria colonizing human mucosal membrane surfaces. Overall, the genus shows great diversity and genetic variation mainly due to its ability to acquire and incorporate genetic material from a diverse range of sources through horizontal gene transfer. Although a number of databases exist for the Neisseria genomes, they are mostly focused on the pathogenic species. In this present study we present the freely available NeisseriaBase, a database dedicated to the genus Neisseria encompassing the complete and draft genomes of 15 pathogenic and commensal Neisseria species. Methods. The genomic data were retrieved from National Center for Biotechnology Information (NCBI) and annotated using the RAST server which were then stored into the MySQL database. The protein-coding genes were further analyzed to obtain information such as calculation of GC content (%), predicted hydrophobicity and molecular weight (Da) using in-house Perl scripts. The web application was developed following the secure four-tier web application architecture: (1) client workstation, (2) web server, (3) application server, and (4) database server. The web interface was constructed using PHP, JavaScript, jQuery, AJAX and CSS, utilizing the model-view-controller (MVC) framework. The in-house developed bioinformatics tools implemented in NeisseraBase were developed using Python, Perl, BioPerl and R languages. Results. Currently, NeisseriaBase houses 603,500 Coding Sequences (CDSs), 16,071 RNAs and 13,119 tRNA genes from 227 Neisseria genomes. The database is equipped with interactive web interfaces. Incorporation of the JBrowse genome browser in the database enables fast and smooth browsing of Neisseria genomes. NeisseriaBase includes the standard BLAST program to facilitate homology searching, and for Virulence Factor Database (VFDB) specific homology searches, the VFDB BLAST is also incorporated into the database. In addition, NeisseriaBase is equipped with in-house designed tools such as the Pairwise Genome Comparison tool (PGC) for comparative genomic analysis and the Pathogenomics Profiling Tool (PathoProT) for the comparative pathogenomics analysis of Neisseria strains. Discussion. This user-friendly database not only provides access to a host of genomic resources on Neisseria but also enables high-quality comparative genome analysis, which is crucial for the expanding scientific community interested in Neisseria research. This database is freely available at http://neisseria.um.edu.my. PMID:27017950
DOE Office of Scientific and Technical Information (OSTI.GOV)
SmartImport.py is a Python source-code file that implements a replacement for the standard Python module importer. The code is derived from knee.py, a file in the standard Python diestribution , and adds functionality to improve the performance of Python module imports in massively parallel contexts.
Detection of nidoviruses in live pythons and boas.
Marschang, Rachel E; Kolesnik, Ekaterina
2017-02-09
Nidoviruses have recently been described as a putative cause of severe respiratory disease in pythons in the USA and Europe. The objective of this study was to establish the use of a conventional PCR for the detection of nidoviruses in samples from live animals and to extend the list of susceptible species. A PCR targeting a portion of ORF1a of python nidoviruses was used to detect nidoviruses in diagnostic samples from live boas and pythons. A total of 95 pythons, 84 boas and 22 snakes of unknown species were included in the study. Samples tested included oral swabs and whole blood. Nidoviruses were detected in 27.4% of the pythons and 2.4% of the boas tested. They were most commonly detected in ball pythons (Python [P.] regius) and Indian rock pythons (P. molurus), but were also detected for the first time in other python species, including Morelia spp. and Boa constrictor. Oral swabs were most commonly tested positive. The PCR described here can be used for the detection of nidoviruses in oral swabs from live snakes. These viruses appear to be relatively common among snakes in captivity in Europe and screening for these viruses should be considered in the clinical work-up. Nidoviruses are believed to be an important cause of respiratory disease in pythons, but can also infect boas. Detection of these viruses in live animals is now possible and can be of interest both in diseased animals as well as in quarantine situations.
NASA Astrophysics Data System (ADS)
Sheldon, W.
2013-12-01
Managing data for a large, multidisciplinary research program such as a Long Term Ecological Research (LTER) site is a significant challenge, but also presents unique opportunities for data stewardship. LTER research is conducted within multiple organizational frameworks (i.e. a specific LTER site as well as the broader LTER network), and addresses both specific goals defined in an NSF proposal as well as broader goals of the network; therefore, every LTER data can be linked to rich contextual information to guide interpretation and comparison. The challenge is how to link the data to this wealth of contextual metadata. At the Georgia Coastal Ecosystems LTER we developed an integrated information management system (GCE-IMS) to manage, archive and distribute data, metadata and other research products as well as manage project logistics, administration and governance (figure 1). This system allows us to store all project information in one place, and provide dynamic links through web applications and services to ensure content is always up to date on the web as well as in data set metadata. The database model supports tracking changes over time in personnel roles, projects and governance decisions, allowing these databases to serve as canonical sources of project history. Storing project information in a central database has also allowed us to standardize both the formatting and content of critical project information, including personnel names, roles, keywords, place names, attribute names, units, and instrumentation, providing consistency and improving data and metadata comparability. Lookup services for these standard terms also simplify data entry in web and database interfaces. We have also coupled the GCE-IMS to our MATLAB- and Python-based data processing tools (i.e. through database connections) to automate metadata generation and packaging of tabular and GIS data products for distribution. Data processing history is automatically tracked throughout the data lifecycle, from initial import through quality control, revision and integration by our data processing system (GCE Data Toolbox for MATLAB), and included in metadata for versioned data products. This high level of automation and system integration has proven very effective in managing the chaos and scalability of our information management program.
ObsPy: A Python toolbox for seismology - Current state, applications, and ecosystem around it
NASA Astrophysics Data System (ADS)
Lecocq, Thomas; Megies, Tobias; Krischer, Lion; Sales de Andrade, Elliott; Barsch, Robert; Beyreuther, Moritz
2016-04-01
ObsPy (http://www.obspy.org) is a community-driven, open-source project offering a bridge for seismology into the scientific Python ecosystem. It provides * read and write support for essentially all commonly used waveform, station, and event metadata formats with a unified interface, * a comprehensive signal processing toolbox tuned to the needs of seismologists, * integrated access to all large data centers, web services and databases, and * convenient wrappers to third party codes like libmseed and evalresp. Python, in contrast to many other languages and tools, is simple enough to enable an exploratory and interactive coding style desired by many scientists. At the same time it is a full-fledged programming language usable by software engineers to build complex and large programs. This combination makes it very suitable for use in seismology where research code often has to be translated to stable and production ready environments. It furthermore offers many freely available high quality scientific modules covering most needs in developing scientific software. ObsPy has been in constant development for more than 5 years and nowadays enjoys a large rate of adoption in the community with thousands of users. Successful applications include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. Additionally it sparked the development of several more specialized packages slowly building a modern seismological ecosystem around it. This contribution will give a short introduction and overview of ObsPy and highlight a number of use cases and software built around it. We will furthermore discuss the issue of sustainability of scientific software.
ObsPy: A Python toolbox for seismology - Current state, applications, and ecosystem around it
NASA Astrophysics Data System (ADS)
Krischer, L.; Megies, T.; Sales de Andrade, E.; Barsch, R.; Beyreuther, M.
2015-12-01
ObsPy (http://www.obspy.org) is a community-driven, open-source project offering a bridge for seismology into the scientific Python ecosystem. It provides read and write support for essentially all commonly used waveform, station, and event metadata formats with a unified interface, a comprehensive signal processing toolbox tuned to the needs of seismologists, integrated access to all large data centers, web services and databases, and convenient wrappers to third party codes like libmseed and evalresp. Python, in contrast to many other languages and tools, is simple enough to enable an exploratory and interactive coding style desired by many scientists. At the same time it is a full-fledged programming language usable by software engineers to build complex and large programs. This combination makes it very suitable for use in seismology where research code often has to be translated to stable and production ready environments. It furthermore offers many freely available high quality scientific modules covering most needs in developing scientific software.ObsPy has been in constant development for more than 5 years and nowadays enjoys a large rate of adoption in the community with thousands of users. Successful applications include time-dependent and rotational seismology, big data processing, event relocations, and synthetic studies about attenuation kernels and full-waveform inversions to name a few examples. Additionally it sparked the development of several more specialized packages slowly building a modern seismological ecosystem around it.This contribution will give a short introduction and overview of ObsPy and highlight a number of us cases and software built around it. We will furthermore discuss the issue of sustainability of scientific software.
Interactive, Secure Web-enabled Aircraft Engine Simulation Using XML Databinding Integration
NASA Technical Reports Server (NTRS)
Lin, Risheng; Afjeh, Abdollah A.
2003-01-01
This paper discusses the detailed design of an XML databinding framework for aircraft engine simulation. The framework provides an object interface to access and use engine data. while at the same time preserving the meaning of the original data. The Language independent representation of engine component data enables users to move around XML data using HTTP through disparate networks. The application of this framework is demonstrated via a web-based turbofan propulsion system simulation using the World Wide Web (WWW). A Java Servlet based web component architecture is used for rendering XML engine data into HTML format and dealing with input events from the user, which allows users to interact with simulation data from a web browser. The simulation data can also be saved to a local disk for archiving or to restart the simulation at a later time.
Design-Grounded Assessment: A Framework and a Case Study of Web 2.0 Practices in Higher Education
ERIC Educational Resources Information Center
Ching, Yu-Hui; Hsu, Yu-Chang
2011-01-01
This paper synthesis's three theoretical perspectives, including sociocultural theory, distributed cognition, and situated cognition, into a framework to guide the design and assessment of Web 2.0 practices in higher education. In addition, this paper presents a case study of Web 2.0 practices. Thirty-seven online graduate students participated in…
PyMOOSE: Interoperable Scripting in Python for MOOSE
Ray, Subhasis; Bhalla, Upinder S.
2008-01-01
Python is emerging as a common scripting language for simulators. This opens up many possibilities for interoperability in the form of analysis, interfaces, and communications between simulators. We report the integration of Python scripting with the Multi-scale Object Oriented Simulation Environment (MOOSE). MOOSE is a general-purpose simulation system for compartmental neuronal models and for models of signaling pathways based on chemical kinetics. We show how the Python-scripting version of MOOSE, PyMOOSE, combines the power of a compiled simulator with the versatility and ease of use of Python. We illustrate this by using Python numerical libraries to analyze MOOSE output online, and by developing a GUI in Python/Qt for a MOOSE simulation. Finally, we build and run a composite neuronal/signaling model that uses both the NEURON and MOOSE numerical engines, and Python as a bridge between the two. Thus PyMOOSE has a high degree of interoperability with analysis routines, with graphical toolkits, and with other simulators. PMID:19129924
Exploring Two Approaches for an End-to-End Scientific Analysis Workflow
Dodelson, Scott; Kent, Steve; Kowalkowski, Jim; ...
2015-12-23
The advance of the scientific discovery process is accomplished by the integration of independently-developed programs run on disparate computing facilities into coherent workflows usable by scientists who are not experts in computing. For such advancement, we need a system which scientists can use to formulate analysis workflows, to integrate new components to these workflows, and to execute different components on resources that are best suited to run those components. In addition, we need to monitor the status of the workflow as components get scheduled and executed, and to access the intermediate and final output for visual exploration and analysis. Finally,more » it is important for scientists to be able to share their workflows with collaborators. Moreover we have explored two approaches for such an analysis framework for the Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC), the first one is based on the use and extension of Galaxy, a web-based portal for biomedical research, and the second one is based on a programming language, Python. In our paper, we present a brief description of the two approaches, describe the kinds of extensions to the Galaxy system we have found necessary in order to support the wide variety of scientific analysis in the cosmology community, and discuss how similar efforts might be of benefit to the HEP community.« less
NASA Astrophysics Data System (ADS)
Lenhardt, W. C.
2015-12-01
Global Mapping Project, Web-enabled Landsat Data (WELD), International Satellite Land Surface Climatology Project (ISLSCP), hydrology, solid earth dynamics, sedimentary geology, climate modeling, integrated assessments and so on all have needs for or have worked to develop consistently integrated data layers for Earth and environmental science. This paper will present an overview of an abstract notion of data layers of this types, what we are referring to as reference data layers for Earth and environmental science, highlight some historical examples, and delve into new approaches. The concept of reference data layers in this context combines data availability, cyberinfrastructure and data science, as well as domain science drivers. We argue that current advances in cyberinfrastructure such as iPython notebooks and integrated science processing environments such as iPlant's Discovery Environment coupled with vast arrays of new data sources warrant another look at the how to create, maintain, and provide reference data layers. The goal is to provide a context for understanding science needs for reference data layers to conduct their research. In addition, to the topics described above this presentation will also outline some of the challenges to and present some ideas for new approaches to addressing these needs. Promoting the idea of reference data layers is relevant to a number of existing related activities such as EarthCube, RDA, ESIP, the nascent NSF Regional Big Data Innovation Hubs and others.
Engineering Analysis Using a Web-based Protocol
NASA Technical Reports Server (NTRS)
Schoeffler, James D.; Claus, Russell W.
2002-01-01
This paper reviews the development of a web-based framework for engineering analysis. A one-dimensional, high-speed analysis code called LAPIN was used in this study, but the approach can be generalized to any engineering analysis tool. The web-based framework enables users to store, retrieve, and execute an engineering analysis from a standard web-browser. We review the encapsulation of the engineering data into the eXtensible Markup Language (XML) and various design considerations in the storage and retrieval of application data.
NASA Astrophysics Data System (ADS)
Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.
2015-12-01
Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web-based apps in other languages for remote functionality. Partner CH2M is developing a commercial user-interface for Hydra Platform however custom interfaces and visualization tools can be built. Hydra Platform is available on GitHub while Apps will be shared on a central repository.
Evaluation of Web Accessibility of Consumer Health Information Websites
Zeng, Xiaoming; Parmanto, Bambang
2003-01-01
The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant. PMID:14728272
Evaluation of web accessibility of consumer health information websites.
Zeng, Xiaoming; Parmanto, Bambang
2003-01-01
The objectives of the study are to construct a comprehensive framework for web accessibility evaluation, to evaluate the current status of web accessibility of consumer health information websites and to investigate the relationship between web accessibility and property of the websites. We selected 108 consumer health information websites from the directory service of a Web search engine. We used Web accessibility specifications to construct a framework for the measurement of Web Accessibility Barriers (WAB) of website. We found that none of the websites is completely accessible to people with disabilities, but governmental and educational health information websites exhibit better performance on web accessibility than other categories of websites. We also found that the correlation between the WAB score and the popularity of a website is statistically significant.
NASA Astrophysics Data System (ADS)
Bhardwaj, Jyotirmoy; Gupta, Karunesh K.; Gupta, Rajiv
2018-02-01
New concepts and techniques are replacing traditional methods of water quality parameter measurement systems. This paper introduces a cyber-physical system (CPS) approach for water quality assessment in a distribution network. Cyber-physical systems with embedded sensors, processors and actuators can be designed to sense and interact with the water environment. The proposed CPS is comprised of sensing framework integrated with five different water quality parameter sensor nodes and soft computing framework for computational modelling. Soft computing framework utilizes the applications of Python for user interface and fuzzy sciences for decision making. Introduction of multiple sensors in a water distribution network generates a huge number of data matrices, which are sometimes highly complex, difficult to understand and convoluted for effective decision making. Therefore, the proposed system framework also intends to simplify the complexity of obtained sensor data matrices and to support decision making for water engineers through a soft computing framework. The target of this proposed research is to provide a simple and efficient method to identify and detect presence of contamination in a water distribution network using applications of CPS.
KMCLib: A general framework for lattice kinetic Monte Carlo (KMC) simulations
NASA Astrophysics Data System (ADS)
Leetmaa, Mikael; Skorodumova, Natalia V.
2014-09-01
KMCLib is a general framework for lattice kinetic Monte Carlo (KMC) simulations. The program can handle simulations of the diffusion and reaction of millions of particles in one, two, or three dimensions, and is designed to be easily extended and customized by the user to allow for the development of complex custom KMC models for specific systems without having to modify the core functionality of the program. Analysis modules and on-the-fly elementary step diffusion rate calculations can be implemented as plugins following a well-defined API. The plugin modules are loosely coupled to the core KMCLib program via the Python scripting language. KMCLib is written as a Python module with a backend C++ library. After initial compilation of the backend library KMCLib is used as a Python module; input to the program is given as a Python script executed using a standard Python interpreter. We give a detailed description of the features and implementation of the code and demonstrate its scaling behavior and parallel performance with a simple one-dimensional A-B-C lattice KMC model and a more complex three-dimensional lattice KMC model of oxygen-vacancy diffusion in a fluorite structured metal oxide. KMCLib can keep track of individual particle movements and includes tools for mean square displacement analysis, and is therefore particularly well suited for studying diffusion processes at surfaces and in solids. Catalogue identifier: AESZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AESZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 49 064 No. of bytes in distributed program, including test data, etc.: 1 575 172 Distribution format: tar.gz Programming language: Python and C++. Computer: Any computer that can run a C++ compiler and a Python interpreter. Operating system: Tested on Ubuntu 12.4 LTS, CentOS release 5.9, Mac OSX 10.5.8 and Mac OSX 10.8.2, but should run on any system that can have a C++ compiler, MPI and a Python interpreter. Has the code been vectorized or parallelized?: Yes. From one to hundreds of processors depending on the type of input and simulation. RAM: From a few megabytes to several gigabytes depending on input parameters and the size of the system to simulate. Classification: 4.13, 16.13. External routines: KMCLib uses an external Mersenne Twister pseudo random number generator that is included in the code. A Python 2.7 interpreter and a standard C++ runtime library are needed to run the serial version of the code. For running the parallel version an MPI implementation is needed, such as e.g. MPICH from http://www.mpich.org or Open-MPI from http://www.open-mpi.org. SWIG (obtainable from http://www.swig.org/) and CMake (obtainable from http://www.cmake.org/) are needed for building the backend module, Sphinx (obtainable from http://sphinx-doc.org) for building the documentation and CPPUNIT (obtainable from http://sourceforge.net/projects/cppunit/) for building the C++ unit tests. Nature of problem: Atomic scale simulation of slowly evolving dynamics is a great challenge in many areas of computational materials science and catalysis. When the rare-events dynamics of interest is orders of magnitude slower than the typical atomic vibrational frequencies a straight-forward propagation of the equations of motions for the particles in the simulation cannot reach time scales of relevance for modeling the slow dynamics. Solution method: KMCLib provides an implementation of the kinetic Monte Carlo (KMC) method that solves the slow dynamics problem by utilizing the separation of time scales between fast vibrational motion and the slowly evolving rare-events dynamics. Only the latter is treated explicitly and the system is simulated as jumping between fully equilibrated local energy minima on the slow-dynamics potential energy surface. Restrictions: KMCLib implements the lattice KMC method and is as such restricted to geometries that can be expressed on a grid in space. Unusual features: KMCLib has been designed to be easily customized, to allow for user-defined functionality and integration with other codes. The user can define her own on-the-fly rate calculator via a Python API, so that site-specific elementary process rates, or rates depending on long-range interactions or complex geometrical features can easily be included. KMCLib also allows for on-the-fly analysis with user-defined analysis modules. KMCLib can keep track of individual particle movements and includes tools for mean square displacement analysis, and is therefore particularly well suited for studying diffusion processes at surfaces and in solids. Additional comments: The full documentation of the program is distributed with the code and can also be found at http://www.github.com/leetmaa/KMCLib/manual Running time: rom a few seconds to several days depending on the type of simulation and input parameters.
A software framework for real-time multi-modal detection of microsleeps.
Knopp, Simon J; Bones, Philip J; Weddell, Stephen J; Jones, Richard D
2017-09-01
A software framework is described which was designed to process EEG, video of one eye, and head movement in real time, towards achieving early detection of microsleeps for prevention of fatal accidents, particularly in transport sectors. The framework is based around a pipeline structure with user-replaceable signal processing modules. This structure can encapsulate a wide variety of feature extraction and classification techniques and can be applied to detecting a variety of aspects of cognitive state. Users of the framework can implement signal processing plugins in C++ or Python. The framework also provides a graphical user interface and the ability to save and load data to and from arbitrary file formats. Two small studies are reported which demonstrate the capabilities of the framework in typical applications: monitoring eye closure and detecting simulated microsleeps. While specifically designed for microsleep detection/prediction, the software framework can be just as appropriately applied to (i) other measures of cognitive state and (ii) development of biomedical instruments for multi-modal real-time physiological monitoring and event detection in intensive care, anaesthesiology, cardiology, neurosurgery, etc. The software framework has been made freely available for researchers to use and modify under an open source licence.
Automatic Earth observation data service based on reusable geo-processing workflow
NASA Astrophysics Data System (ADS)
Chen, Nengcheng; Di, Liping; Gong, Jianya; Yu, Genong; Min, Min
2008-12-01
A common Sensor Web data service framework for Geo-Processing Workflow (GPW) is presented as part of the NASA Sensor Web project. This framework consists of a data service node, a data processing node, a data presentation node, a Catalogue Service node and BPEL engine. An abstract model designer is used to design the top level GPW model, model instantiation service is used to generate the concrete BPEL, and the BPEL execution engine is adopted. The framework is used to generate several kinds of data: raw data from live sensors, coverage or feature data, geospatial products, or sensor maps. A scenario for an EO-1 Sensor Web data service for fire classification is used to test the feasibility of the proposed framework. The execution time and influences of the service framework are evaluated. The experiments show that this framework can improve the quality of services for sensor data retrieval and processing.
Neuhaus, Philipp; Doods, Justin; Dugas, Martin
2015-01-01
Automatic coding of medical terms is an important, but highly complicated and laborious task. To compare and evaluate different strategies a framework with a standardized web-interface was created. Two UMLS mapping strategies are compared to demonstrate the interface. The framework is a Java Spring application running on a Tomcat application server. It accepts different parameters and returns results in JSON format. To demonstrate the framework, a list of medical data items was mapped by two different methods: similarity search in a large table of terminology codes versus search in a manually curated repository. These mappings were reviewed by a specialist. The evaluation shows that the framework is flexible (due to standardized interfaces like HTTP and JSON), performant and reliable. Accuracy of automatically assigned codes is limited (up to 40%). Combining different semantic mappers into a standardized Web-API is feasible. This framework can be easily enhanced due to its modular design.
NASA Astrophysics Data System (ADS)
Vallis, Geoffrey K.; Colyer, Greg; Geen, Ruth; Gerber, Edwin; Jucker, Martin; Maher, Penelope; Paterson, Alexander; Pietschnig, Marianne; Penn, James; Thomson, Stephen I.
2018-03-01
Isca is a framework for the idealized modelling of the global circulation of planetary atmospheres at varying levels of complexity and realism. The framework is an outgrowth of models from the Geophysical Fluid Dynamics Laboratory in Princeton, USA, designed for Earth's atmosphere, but it may readily be extended into other planetary regimes. Various forcing and radiation options are available, from dry, time invariant, Newtonian thermal relaxation to moist dynamics with radiative transfer. Options are available in the dry thermal relaxation scheme to account for the effects of obliquity and eccentricity (and so seasonality), different atmospheric optical depths and a surface mixed layer. An idealized grey radiation scheme, a two-band scheme, and a multiband scheme are also available, all with simple moist effects and astronomically based solar forcing. At the complex end of the spectrum the framework provides a direct connection to comprehensive atmospheric general circulation models. For Earth modelling, options include an aquaplanet and configurable continental outlines and topography. Continents may be defined by changing albedo, heat capacity, and evaporative parameters and/or by using a simple bucket hydrology model. Oceanic Q fluxes may be added to reproduce specified sea surface temperatures, with arbitrary continental distributions. Planetary atmospheres may be configured by changing planetary size and mass, solar forcing, atmospheric mass, radiation, and other parameters. Examples are given of various Earth configurations as well as a giant planet simulation, a slowly rotating terrestrial planet simulation, and tidally locked and other orbitally resonant exoplanet simulations. The underlying model is written in Fortran and may largely be configured with Python scripts. Python scripts are also used to run the model on different architectures, to archive the output, and for diagnostics, graphics, and post-processing. All of these features are publicly available in a Git-based repository.
Specification and Verification of Web Applications in Rewriting Logic
NASA Astrophysics Data System (ADS)
Alpuente, María; Ballis, Demis; Romero, Daniel
This paper presents a Rewriting Logic framework that formalizes the interactions between Web servers and Web browsers through a communicating protocol abstracting HTTP. The proposed framework includes a scripting language that is powerful enough to model the dynamics of complex Web applications by encompassing the main features of the most popular Web scripting languages (e.g. PHP, ASP, Java Servlets). We also provide a detailed characterization of browser actions (e.g. forward/backward navigation, page refresh, and new window/tab openings) via rewrite rules, and show how our models can be naturally model-checked by using the Linear Temporal Logic of Rewriting (LTLR), which is a Linear Temporal Logic specifically designed for model-checking rewrite theories. Our formalization is particularly suitable for verification purposes, since it allows one to perform in-depth analyses of many subtle aspects related to Web interaction. Finally, the framework has been completely implemented in Maude, and we report on some successful experiments that we conducted by using the Maude LTLR model-checker.
Tactical Applications (TACAPPS) JavaScript Framework Investigation
2017-02-01
frameworks explored were Angular JavaScript (AngularJS), jQuery UI, Meteor, Ember, React JavaScript (ReactJS) and Web Components. The team evaluated the...10 Issues and Risks 11 Web Components 11 Benefits 13 Issues and Risks 13 Conclusions 14 Bibliography 15 Distribution List 19...3 Basic Flux flow 10 4 Shadow DOM tree hierarchy 12 5 Web Components browser support 13 UNCLASSIFIED Approved for
SIDECACHE: Information access, management and dissemination framework for web services.
Doderer, Mark S; Burkhardt, Cory; Robbins, Kay A
2011-06-14
Many bioinformatics algorithms and data sets are deployed using web services so that the results can be explored via the Internet and easily integrated into other tools and services. These services often include data from other sites that is accessed either dynamically or through file downloads. Developers of these services face several problems because of the dynamic nature of the information from the upstream services. Many publicly available repositories of bioinformatics data frequently update their information. When such an update occurs, the developers of the downstream service may also need to update. For file downloads, this process is typically performed manually followed by web service restart. Requests for information obtained by dynamic access of upstream sources is sometimes subject to rate restrictions. SideCache provides a framework for deploying web services that integrate information extracted from other databases and from web sources that are periodically updated. This situation occurs frequently in biotechnology where new information is being continuously generated and the latest information is important. SideCache provides several types of services including proxy access and rate control, local caching, and automatic web service updating. We have used the SideCache framework to automate the deployment and updating of a number of bioinformatics web services and tools that extract information from remote primary sources such as NCBI, NCIBI, and Ensembl. The SideCache framework also has been used to share research results through the use of a SideCache derived web service.
MYRaf: An Easy Aperture Photometry GUI for IRAF
NASA Astrophysics Data System (ADS)
Niaei, M. S.; KiliÇ, Y.; Özeren, F. F.
2015-07-01
We describe the design and development of MYRaf, a GUI (Graphical User Interface) that aims to be completely open-source under General Public License (GPL). MYRaf is an easy to use, reliable, and a fast IRAF aperture photometry GUI tool for those who are conversant with text-based software and command-line procedures in GNU/Linux OSs. MYRaf uses IRAF, PyRAF, matplotlib, ginga, alipy, and SExtractor with the general-purpose and high-level programming language Python, and uses the Qt framework.
Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing.
Duez, Marc; Giraud, Mathieu; Herbert, Ryan; Rocher, Tatiana; Salson, Mikaël; Thonier, Florian
2016-01-01
The B and T lymphocytes are white blood cells playing a key role in the adaptive immunity. A part of their DNA, called the V(D)J recombinations, is specific to each lymphocyte, and enables recognition of specific antigenes. Today, with new sequencing techniques, one can get billions of DNA sequences from these regions. With dedicated Repertoire Sequencing (RepSeq) methods, it is now possible to picture population of lymphocytes, and to monitor more accurately the immune response as well as pathologies such as leukemia. Vidjil is an open-source platform for the interactive analysis of high-throughput sequencing data from lymphocyte recombinations. It contains an algorithm gathering reads into clonotypes according to their V(D)J junctions, a web application made of a sample, experiment and patient database and a visualization for the analysis of clonotypes along the time. Vidjil is implemented in C++, Python and Javascript and licensed under the GPLv3 open-source license. Source code, binaries and a public web server are available at http://www.vidjil.org and at http://bioinfo.lille.inria.fr/vidjil. Using the Vidjil web application consists of four steps: 1. uploading a raw sequence file (typically a FASTQ); 2. running RepSeq analysis software; 3. visualizing the results; 4. annotating the results and saving them for future use. For the end-user, the Vidjil web application needs no specific installation and just requires a connection and a modern web browser. Vidjil is used by labs in hematology or immunology for research and clinical applications.
Vidjil: A Web Platform for Analysis of High-Throughput Repertoire Sequencing
Duez, Marc; Herbert, Ryan; Rocher, Tatiana; Salson, Mikaël; Thonier, Florian
2016-01-01
Background The B and T lymphocytes are white blood cells playing a key role in the adaptive immunity. A part of their DNA, called the V(D)J recombinations, is specific to each lymphocyte, and enables recognition of specific antigenes. Today, with new sequencing techniques, one can get billions of DNA sequences from these regions. With dedicated Repertoire Sequencing (RepSeq) methods, it is now possible to picture population of lymphocytes, and to monitor more accurately the immune response as well as pathologies such as leukemia. Methods and Results Vidjil is an open-source platform for the interactive analysis of high-throughput sequencing data from lymphocyte recombinations. It contains an algorithm gathering reads into clonotypes according to their V(D)J junctions, a web application made of a sample, experiment and patient database and a visualization for the analysis of clonotypes along the time. Vidjil is implemented in C++, Python and Javascript and licensed under the GPLv3 open-source license. Source code, binaries and a public web server are available at http://www.vidjil.org and at http://bioinfo.lille.inria.fr/vidjil. Using the Vidjil web application consists of four steps: 1. uploading a raw sequence file (typically a FASTQ); 2. running RepSeq analysis software; 3. visualizing the results; 4. annotating the results and saving them for future use. For the end-user, the Vidjil web application needs no specific installation and just requires a connection and a modern web browser. Vidjil is used by labs in hematology or immunology for research and clinical applications. PMID:27835690
NASA Astrophysics Data System (ADS)
Rojas, Marcela; Malard, Julien; Adamowski, Jan; Carrera, Jaime Luis; Maas, Raúl
2017-04-01
While it is known that climate change will impact future plant-pest population dynamics, potentially affecting crop damage, agroforestry with its enhanced biodiversity is said to reduce the outbreaks of pest insects by providing natural enemies for the control of pest populations. This premise is known in the literature as the natural enemy hypothesis and has been widely studied qualitatively. However, disagreement still exists on whether biodiversity enhancement reduces pest outbreaks, showing the need of quantitatively understanding the mechanisms behind the interactions between pests and natural enemies, also known as trophic interactions. Crop pest models that study insect population dynamics in agroforestry contexts are very rare, and pest models that take trophic interactions into account are even rarer. This may be due to the difficulty of representing complex food webs in a quantifiable model. There is therefore a need for validated food web models that allow users to predict the response of these webs to changes in climate in agroforestry systems. In this study we present Tiko'n, a Python-based software whose API allows users to rapidly build and validate trophic web models; the program uses a Bayesian inference approach to calibrate the models according to field data, allowing for the reuse of literature data from various sources and reducing the need for extensive field data collection. Tiko'n was run using coffee leaf miner (Leucoptera coffeella) and associated parasitoid data from a shaded coffee plantation, showing the mechanisms of insect population dynamics within a tri-trophic food web in an agroforestry system.
GIAnT - Generic InSAR Analysis Toolbox
NASA Astrophysics Data System (ADS)
Agram, P.; Jolivet, R.; Riel, B. V.; Simons, M.; Doin, M.; Lasserre, C.; Hetland, E. A.
2012-12-01
We present a computing framework for studying the spatio-temporal evolution of ground deformation from interferometric synthetic aperture radar (InSAR) data. Several open-source tools including Repeat Orbit Interferometry PACkage (ROI-PAC) and InSAR Scientific Computing Environment (ISCE) from NASA-JPL, and Delft Object-oriented Repeat Interferometric Software (DORIS), have enabled scientists to generate individual interferograms from raw radar data with relative ease. Numerous computational techniques and algorithms that reduce phase information from multiple interferograms to a deformation time-series have been developed and verified over the past decade. However, the sharing and direct comparison of products from multiple processing approaches has been hindered by - 1) absence of simple standards for sharing of estimated time-series products, 2) use of proprietary software tools with license restrictions and 3) the closed source nature of the exact implementation of many of these algorithms. We have developed this computing framework to address all of the above issues. We attempt to take the first steps towards creating a community software repository for InSAR time-series analysis. To date, we have implemented the short baseline subset algorithm (SBAS), NSBAS and multi-scale interferometric time-series (MInTS) in this framework and the associated source code is included in the GIAnT distribution. A number of the associated routines have been optimized for performance and scalability with large data sets. Some of the new features in our processing framework are - 1) the use of daily solutions from continuous GPS stations to correct for orbit errors, 2) the use of meteorological data sets to estimate the tropospheric delay screen and 3) a data-driven bootstrapping approach to estimate the uncertainties associated with estimated time-series products. We are currently working on incorporating tidal load corrections for individual interferograms and propagation of noise covariance models through the processing chain for robust estimation of uncertainties in the deformation estimates. We will demonstrate the ease of use of our framework with results ranging from regional scale analysis around Long Valley, CA and Parkfield, CA to continental scale analysis in Western South America. We will also present preliminary results from a new time-series approach that simultaneously estimates deformation over the complete spatial domain at all time epochs on a distributed computing platform. GIAnT has been developed entirely using open source tools and uses Python as the underlying platform. We build on the extensive numerical (NumPy) and scientific (SciPy) computing Python libraries to develop an object-oriented, flexible and modular framework for time-series InSAR applications. The toolbox is currently configured to work with outputs from ROI-PAC, ISCE and DORIS, but can easily be extended to support products from other SAR/InSAR processors. The toolbox libraries include support for hierarchical data format (HDF5) memory mapped files, parallel processing with Python's multi-processing module and support for many convex optimization solvers like CSDP, CVXOPT etc. An extensive set of routines to deal with ASCII and XML files has also been included for controlling the processing parameters.
Giving pandas ROOT to chew on: experiences with the XENON1T Dark Matter experiment
NASA Astrophysics Data System (ADS)
Remenska, D.; Tunnell, C.; Aalbers, J.; Verhoeven, S.; Maassen, J.; Templon, J.
2017-10-01
In preparation for the XENON1T Dark Matter data acquisition, we have prototyped and implemented a new computing model. The XENON signal and data processing software is developed fully in Python 3, and makes extensive use of generic scientific data analysis libraries, such as the SciPy stack. A certain tension between modern “Big Data” solutions and existing HEP frameworks is typically experienced in smaller particle physics experiments. ROOT is still the “standard” data format in our field, defined by large experiments (ATLAS, CMS). To ease the transition, our computing model caters to both analysis paradigms, leaving the choice of using ROOT-specific C++ libraries, or alternatively, Python and its data analytics tools, as a front-end choice of developing physics algorithms. We present our path on harmonizing these two ecosystems, which allowed us to use off-the-shelf software libraries (e.g., NumPy, SciPy, scikit-learn, matplotlib) and lower the cost of development and maintenance. To analyse the data, our software allows researchers to easily create “mini-trees” small, tabular ROOT structures for Python analysis, which can be read directly into pandas DataFrame structures. One of our goals was making ROOT available as a cross-platform binary for an easy installation from the Anaconda Cloud (without going through the “dependency hell”). In addition to helping us discover dark matter interactions, lowering this barrier helps shift the particle physics toward non-domain-specific code.
MEvoLib v1.0: the first molecular evolution library for Python.
Álvarez-Jarreta, Jorge; Ruiz-Pesini, Eduardo
2016-10-28
Molecular evolution studies involve many different hard computational problems solved, in most cases, with heuristic algorithms that provide a nearly optimal solution. Hence, diverse software tools exist for the different stages involved in a molecular evolution workflow. We present MEvoLib, the first molecular evolution library for Python, providing a framework to work with different tools and methods involved in the common tasks of molecular evolution workflows. In contrast with already existing bioinformatics libraries, MEvoLib is focused on the stages involved in molecular evolution studies, enclosing the set of tools with a common purpose in a single high-level interface with fast access to their frequent parameterizations. The gene clustering from partial or complete sequences has been improved with a new method that integrates accessible external information (e.g. GenBank's features data). Moreover, MEvoLib adjusts the fetching process from NCBI databases to optimize the download bandwidth usage. In addition, it has been implemented using parallelization techniques to cope with even large-case scenarios. MEvoLib is the first library for Python designed to facilitate molecular evolution researches both for expert and novel users. Its unique interface for each common task comprises several tools with their most used parameterizations. It has also included a method to take advantage of biological knowledge to improve the gene partition of sequence datasets. Additionally, its implementation incorporates parallelization techniques to enhance computational costs when handling very large input datasets.
WholeCellSimDB: a hybrid relational/HDF database for whole-cell model predictions
Karr, Jonathan R.; Phillips, Nolan C.; Covert, Markus W.
2014-01-01
Mechanistic ‘whole-cell’ models are needed to develop a complete understanding of cell physiology. However, extracting biological insights from whole-cell models requires running and analyzing large numbers of simulations. We developed WholeCellSimDB, a database for organizing whole-cell simulations. WholeCellSimDB was designed to enable researchers to search simulation metadata to identify simulations for further analysis, and quickly slice and aggregate simulation results data. In addition, WholeCellSimDB enables users to share simulations with the broader research community. The database uses a hybrid relational/hierarchical data format architecture to efficiently store and retrieve both simulation setup metadata and results data. WholeCellSimDB provides a graphical Web-based interface to search, browse, plot and export simulations; a JavaScript Object Notation (JSON) Web service to retrieve data for Web-based visualizations; a command-line interface to deposit simulations; and a Python API to retrieve data for advanced analysis. Overall, we believe WholeCellSimDB will help researchers use whole-cell models to advance basic biological science and bioengineering. Database URL: http://www.wholecellsimdb.org Source code repository URL: http://github.com/CovertLab/WholeCellSimDB PMID:25231498
'Sciencenet'--towards a global search and share engine for all scientific knowledge.
Lütjohann, Dominic S; Shah, Asmi H; Christen, Michael P; Richter, Florian; Knese, Karsten; Liebel, Urban
2011-06-15
Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, 'Sciencenet', which facilitates rapid searching over this large data space. By 'bringing the search engine to the data', we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the 'AskMe' experiment publisher is written in Python 2.7, and the backend 'YaCy' search engine is based on Java 1.6.
g:Profiler-a web server for functional interpretation of gene lists (2016 update).
Reimand, Jüri; Arak, Tambet; Adler, Priit; Kolberg, Liis; Reisberg, Sulev; Peterson, Hedi; Vilo, Jaak
2016-07-08
Functional enrichment analysis is a key step in interpreting gene lists discovered in diverse high-throughput experiments. g:Profiler studies flat and ranked gene lists and finds statistically significant Gene Ontology terms, pathways and other gene function related terms. Translation of hundreds of gene identifiers is another core feature of g:Profiler. Since its first publication in 2007, our web server has become a popular tool of choice among basic and translational researchers. Timeliness is a major advantage of g:Profiler as genome and pathway information is synchronized with the Ensembl database in quarterly updates. g:Profiler supports 213 species including mammals and other vertebrates, plants, insects and fungi. The 2016 update of g:Profiler introduces several novel features. We have added further functional datasets to interpret gene lists, including transcription factor binding site predictions, Mendelian disease annotations, information about protein expression and complexes and gene mappings of human genetic polymorphisms. Besides the interactive web interface, g:Profiler can be accessed in computational pipelines using our R package, Python interface and BioJS component. g:Profiler is freely available at http://biit.cs.ut.ee/gprofiler/. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Humoral regulation of heart rate during digestion in pythons (Python molurus and Python regius).
Enok, Sanne; Simonsen, Lasse Stærdal; Pedersen, Signe Vesterskov; Wang, Tobias; Skovgaard, Nini
2012-05-15
Pythons exhibit a doubling of heart rate when metabolism increases several times during digestion. Pythons, therefore, represent a promising model organism to study autonomic cardiovascular regulation during the postprandial state, and previous studies show that the postprandial tachycardia is governed by a release of vagal tone as well as a pronounced stimulation from nonadrenergic, noncholinergic (NANC) factors. Here we show that infusion of plasma from digesting donor pythons elicit a marked tachycardia in fasting snakes, demonstrating that the NANC factor resides in the blood. Injections of the gastrin and cholecystokinin receptor antagonist proglumide had no effect on double-blocked heart rate or blood pressure. Histamine has been recognized as a NANC factor in the early postprandial period in pythons, but the mechanism of its release has not been identified. Mast cells represent the largest repository of histamine in vertebrates, and it has been speculated that mast cells release histamine during digestion. Treatment with the mast cell stabilizer cromolyn significantly reduced postprandial heart rate in pythons compared with an untreated group but did not affect double-blocked heart rate. While this study indicates that histamine induces postprandial tachycardia in pythons, its release during digestion is not stimulated by gastrin or cholecystokinin nor is its release from mast cells a stimulant of postprandial tachycardia.
Gautier, Laurent
2010-12-21
Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has relative strong points, making some languages better suited than others for a given task to be implemented. The Bioconductor project, based on the R language, has become a reference for the numerical processing and statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods and algorithms to the research community. At the same time, Python has matured as a rich and reliable language for the agile development of prototypes or final implementations, as well as for handling large data sets. The data structures and functions from Bioconductor can be exposed to Python as a regular library. This allows a fully transparent and native use of Bioconductor from Python, without one having to know the R language and with only a small community of translators required to know both. To demonstrate this, we have implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python programmer handle annotation data, microarray data, and next-generation sequencing data. Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be applied to other languages and libraries. Our Python package is available at: http://pypi.python.org/pypi/rpy2-bioconductor-extensions/.
Falk, Bryan; Snow, Raymond W.; Reed, Robert
2016-01-01
Citizen-science programs have the potential to contribute to the management of invasive species, including Python molurus bivittatus (Burmese Python) in Florida. We characterized citizen-science–generated Burmese Python information from Everglades National Park (ENP) to explore how citizen science may be useful in this effort. As an initial step, we compiled and summarized records of Burmese Python observations and removals collected by both professional and citizen scientists in ENP during 2000–2014 and found many patterns of possible significance, including changes in annual observations and in demographic composition after a cold event. These patterns are difficult to confidently interpret because the records lack search-effort information, however, and differences among years may result from differences in search effort. We began collecting search-effort information in 2014 by leveraging an ongoing citizen-science program in ENP. Program participation was generally low, with most authorized participants in 2014 not searching for the snakes at all. We discuss the possible explanations for low participation, especially how the low likelihood of observing pythons weakens incentives to search. The monthly rate of Burmese Python observations for 2014 averaged ~1 observation for every 8 h of searching, but during several months, the rate was 1 python per >40 h of searching. These low observation-rates are a natural outcome of the snakes’ low detectability—few Burmese Pythons are likely to be observed even if many are present. The general inaccessibility of the southern Florida landscape also severely limits the effectiveness of using visual searches to find and remove pythons for the purposes of population control. Instead, and despite the difficulties in incentivizing voluntary participation, the value of citizen-science efforts in the management of the Burmese Python population is in collecting search-effort information.
A modern Python interface for the Generic Mapping Tools
NASA Astrophysics Data System (ADS)
Uieda, L.; Wessel, P.
2017-12-01
Figures generated by The Generic Mapping Tools (GMT) are present in countless publications across the Earth sciences. The command-line interface of GMT lends the tool its flexibility but also creates a barrier to entry for begginers. Meanwhile, adoption of the Python programming language has grown across the scientific community. This growth is largely due to the simplicity and low barrier to entry of the language and its ecosystem of tools. Thus, it is not surprising that there have been at least three attempts to create Python interfaces for GMT: gmtpy (github.com/emolch/gmtpy), pygmt (github.com/ian-r-rose/pygmt), and PyGMT (github.com/glimmer-cism/PyGMT). None of these projects are currently active and, with the exception of pygmt, they do not use the GMT Application Programming Interface (API) introduced in GMT 5. The two main Python libraries for plotting data on maps are the matplotlib Basemap toolkit (matplotlib.org/basemap) and Cartopy (scitools.org.uk/cartopy), both of which rely on matplotlib (matplotlib.org) as the backend for generating the figures. Basemap is known to have limitations and is being discontinued. Cartopy is an improvement over Basemap but is still bound by the speed and memory constraints of matplotlib. We present a new Python interface for GMT (GMT/Python) that makes use of the GMT API and of new features being developed for the upcoming GMT 6 release. The GMT/Python library is designed according to the norms and styles of the Python community. The library integrates with the scientific Python ecosystem by using the "virtual files" from the GMT API to implement input and output of Python data types (numpy "ndarray" for tabular data and xarray "Dataset" for grids). Other features include an object-oriented interface for creating figures, the ability to display figures in the Jupyter notebook, and descriptive aliases for GMT arguments (e.g., "region" instead of "R" and "projection" instead of "J"). GMT/Python can also serve as a backend for developing new high-level interfaces, which can help make GMT more accessible to beginners and more intuitive for Python users. GMT/Python is an open-source project hosted on Github (github.com/GenericMappingTools/gmt-python) and is in early stages of development. A first release will accompany the release of GMT 6, which is expected for early 2018.
Design and Implementation of Distributed Crawler System Based on Scrapy
NASA Astrophysics Data System (ADS)
Fan, Yuhao
2018-01-01
At present, some large-scale search engines at home and abroad only provide users with non-custom search services, and a single-machine web crawler cannot sovle the difficult task. In this paper, Through the study and research of the original Scrapy framework, the original Scrapy framework is improved by combining Scrapy and Redis, a distributed crawler system based on Web information Scrapy framework is designed and implemented, and Bloom Filter algorithm is applied to dupefilter modul to reduce memory consumption. The movie information captured from douban is stored in MongoDB, so that the data can be processed and analyzed. The results show that distributed crawler system based on Scrapy framework is more efficient and stable than the single-machine web crawler system.
Brumberg, Jonathan S; Lorenz, Sean D; Galbraith, Byron V; Guenther, Frank H
2012-01-01
In this paper we present a framework for reducing the development time needed for creating applications for use in non-invasive brain-computer interfaces (BCI). Our framework is primarily focused on facilitating rapid software "app" development akin to current efforts in consumer portable computing (e.g. smart phones and tablets). This is accomplished by handling intermodule communication without direct user or developer implementation, instead relying on a core subsystem for communication of standard, internal data formats. We also provide a library of hardware interfaces for common mobile EEG platforms for immediate use in BCI applications. A use-case example is described in which a user with amyotrophic lateral sclerosis participated in an electroencephalography-based BCI protocol developed using the proposed framework. We show that our software environment is capable of running in real-time with updates occurring 50-60 times per second with limited computational overhead (5 ms system lag) while providing accurate data acquisition and signal analysis.
The Modern Research Data Portal: A Design Pattern for Networked, Data-Intensive Science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chard, Kyle; Dart, Eli; Foster, Ian
Here we describe best practices for providing convenient, high-speed, secure access to large data via research data portals. We capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance Science DMZs and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site, https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
The Modern Research Data Portal: a design pattern for networked, data-intensive science
Chard, Kyle; Dart, Eli; Foster, Ian; ...
2018-01-15
We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. Here, we capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance data enclaves and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site,https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
BioconductorBuntu: a Linux distribution that implements a web-based DNA microarray analysis server.
Geeleher, Paul; Morris, Dermot; Hinde, John P; Golden, Aaron
2009-06-01
BioconductorBuntu is a custom distribution of Ubuntu Linux that automatically installs a server-side microarray processing environment, providing a user-friendly web-based GUI to many of the tools developed by the Bioconductor Project, accessible locally or across a network. System installation is via booting off a CD image or by using a Debian package provided to upgrade an existing Ubuntu installation. In its current version, several microarray analysis pipelines are supported including oligonucleotide, dual-or single-dye experiments, including post-processing with Gene Set Enrichment Analysis. BioconductorBuntu is designed to be extensible, by server-side integration of further relevant Bioconductor modules as required, facilitated by its straightforward underlying Python-based infrastructure. BioconductorBuntu offers an ideal environment for the development of processing procedures to facilitate the analysis of next-generation sequencing datasets. BioconductorBuntu is available for download under a creative commons license along with additional documentation and a tutorial from (http://bioinf.nuigalway.ie).
The Modern Research Data Portal: a design pattern for networked, data-intensive science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chard, Kyle; Dart, Eli; Foster, Ian
We describe best practices for providing convenient, high-speed, secure access to large data via research data portals. Here, we capture these best practices in a new design pattern, the Modern Research Data Portal, that disaggregates the traditional monolithic web-based data portal to achieve orders-of-magnitude increases in data transfer performance, support new deployment architectures that decouple control logic from data storage, and reduce development and operations costs. We introduce the design pattern; explain how it leverages high-performance data enclaves and cloud-based data management services; review representative examples at research laboratories and universities, including both experimental facilities and supercomputer sites; describe howmore » to leverage Python APIs for authentication, authorization, data transfer, and data sharing; and use coding examples to demonstrate how these APIs can be used to implement a range of research data portal capabilities. Sample code at a companion web site,https://docs.globus.org/mrdp, provides application skeletons that readers can adapt to realize their own research data portals.« less
The CMS dataset bookkeeping service
NASA Astrophysics Data System (ADS)
Afaq, A.; Dolgert, A.; Guo, Y.; Jones, C.; Kosyakov, S.; Kuznetsov, V.; Lueking, L.; Riley, D.; Sekhri, V.
2008-07-01
The CMS Dataset Bookkeeping Service (DBS) has been developed to catalog all CMS event data from Monte Carlo and Detector sources. It provides the ability to identify MC or trigger source, track data provenance, construct datasets for analysis, and discover interesting data. CMS requires processing and analysis activities at various service levels and the DBS system provides support for localized processing or private analysis, as well as global access for CMS users at large. Catalog entries can be moved among the various service levels with a simple set of migration tools, thus forming a loose federation of databases. DBS is available to CMS users via a Python API, Command Line, and a Discovery web page interfaces. The system is built as a multi-tier web application with Java servlets running under Tomcat, with connections via JDBC to Oracle or MySQL database backends. Clients connect to the service through HTTP or HTTPS with authentication provided by GRID certificates and authorization through VOMS. DBS is an integral part of the overall CMS Data Management and Workflow Management systems.
SeqDepot: streamlined database of biological sequences and precomputed features.
Ulrich, Luke E; Zhulin, Igor B
2014-01-15
Assembling and/or producing integrated knowledge of sequence features continues to be an onerous and redundant task despite a large number of existing resources. We have developed SeqDepot-a novel database that focuses solely on two primary goals: (i) assimilating known primary sequences with predicted feature data and (ii) providing the most simple and straightforward means to procure and readily use this information. Access to >28.5 million sequences and 300 million features is provided through a well-documented and flexible RESTful interface that supports fetching specific data subsets, bulk queries, visualization and searching by MD5 digests or external database identifiers. We have also developed an HTML5/JavaScript web application exemplifying how to interact with SeqDepot and Perl/Python scripts for use with local processing pipelines. Freely available on the web at http://seqdepot.net/. RESTaccess via http://seqdepot.net/api/v1. Database files and scripts maybe downloaded from http://seqdepot.net/download.
Pycortex: an interactive surface visualizer for fMRI
Gao, James S.; Huth, Alexander G.; Lescroart, Mark D.; Gallant, Jack L.
2015-01-01
Surface visualizations of fMRI provide a comprehensive view of cortical activity. However, surface visualizations are difficult to generate and most common visualization techniques rely on unnecessary interpolation which limits the fidelity of the resulting maps. Furthermore, it is difficult to understand the relationship between flattened cortical surfaces and the underlying 3D anatomy using tools available currently. To address these problems we have developed pycortex, a Python toolbox for interactive surface mapping and visualization. Pycortex exploits the power of modern graphics cards to sample volumetric data on a per-pixel basis, allowing dense and accurate mapping of the voxel grid across the surface. Anatomical and functional information can be projected onto the cortical surface. The surface can be inflated and flattened interactively, aiding interpretation of the correspondence between the anatomical surface and the flattened cortical sheet. The output of pycortex can be viewed using WebGL, a technology compatible with modern web browsers. This allows complex fMRI surface maps to be distributed broadly online without requiring installation of complex software. PMID:26483666
A Web-based Tool for SDSS and 2MASS Database Searches
NASA Astrophysics Data System (ADS)
Hendrickson, M. A.; Uomoto, A.; Golimowski, D. A.
We have developed a web site using HTML, Php, Python, and MySQL that extracts, processes, and displays data from the Sloan Digital Sky Survey (SDSS) and the Two-Micron All-Sky Survey (2MASS). The goal is to locate brown dwarf candidates in the SDSS database by looking at color cuts; however, this site could also be useful for targeted searches of other databases as well. MySQL databases are created from broad searches of SDSS and 2MASS data. Broad queries on the SDSS and 2MASS database servers are run weekly so that observers have the most up-to-date information from which to select candidates for observation. Observers can look at detailed information about specific objects including finding charts, images, and available spectra. In addition, updates from previous observations can be added by any collaborators; this format makes observational collaboration simple. Observers can also restrict the database search, just before or during an observing run, to select objects of special interest.
PyMidas: Interface from Python to Midas
NASA Astrophysics Data System (ADS)
Maisala, Sami; Oittinen, Tero
2014-01-01
PyMidas is an interface between Python and MIDAS, the major ESO legacy general purpose data processing system. PyMidas allows a user to exploit both the rich legacy of MIDAS software and the power of Python scripting in a unified interactive environment. PyMidas also allows the usage of other Python-based astronomical analysis systems such as PyRAF.
Endocardial fibrosarcoma in a reticulated python (Python reticularis).
Gumber, Sanjeev; Nevarez, Javier G; Cho, Doo-Youn
2010-11-01
A female, reticulated python (Python reticularis) of unknown age was presented with a history of lethargy, weakness, and distended coelom. Physical examination revealed severe dystocia and stomatitis. The reticulated python was euthanized due to a poor clinical prognosis. Postmortem examination revealed marked distention of the reproductive tract with 26 eggs (10-12 cm in diameter), pericardial effusion, and a slightly firm, pale tan mass (3-4 cm in diameter) adhered to the endocardium at the base of aorta. Based on histopathologic and transmission electron microscopic findings, the diagnosis of endocardial fibrosarcoma was made.
Leveraging Python Interoperability Tools to Improve Sapphire's Usability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gezahegne, A; Love, N S
2007-12-10
The Sapphire project at the Center for Applied Scientific Computing (CASC) develops and applies an extensive set of data mining algorithms for the analysis of large data sets. Sapphire's algorithms are currently available as a set of C++ libraries. However many users prefer higher level scripting languages such as Python for their ease of use and flexibility. In this report, we evaluate four interoperability tools for the purpose of wrapping Sapphire's core functionality with Python. Exposing Sapphire's functionality through a Python interface would increase its usability and connect its algorithms to existing Python tools.
The zoonotic implications of pentastomiasis in the royal python (python regius).
Ayinmode, Ab; Adedokun, Ao; Aina, A; Taiwo, V
2010-09-01
Pentastomes are worm-like endoparasites of the phylum Pentastomida found principally in the respiratory tract of reptiles, birds, and mammals. They cause a zoonotic disease known as pentastomiasis in humans and other mammals. The autopsy of a Nigerian royal python (Python regius) revealed two yellowish-white parasites in the lungs, tissue necrosis and inflammatory lesions. The parasite was confirmed to be Armillifer spp (Pentastomid); this is the first recorded case of pentastomiasis in the royal python (Python regius) in Nigeria. This report may be an alert of the possibility of on-going zoonotic transmission of pentastomiasis from snake to man, especially in the sub-urban/rural areas of Nigeria and other West African countries where people consume snake meat.
NASA Astrophysics Data System (ADS)
Jenness, Tim; Robitaille, Thomas; Tollerud, Erik; Mumford, Stuart; Cruz, Kelle
2016-04-01
The second Python in Astronomy conference will be held from 21-25 March 2016 at the University of Washington eScience Institute in Seattle, WA, USA. Similarly to the 2015 meeting (which was held at the Lorentz Center), we are aiming to bring together researchers, Python developers, users, and educators. The conference will include presentations, tutorials, unconference sessions, and coding sprints. In addition to sharing information about state-of-the art Python Astronomy packages, the workshop will focus on improving interoperability between astronomical Python packages, providing training for new open-source contributors, and developing educational materials for Python in Astronomy. The meeting is therefore not only aimed at current developers, but also users and educators who are interested in being involved in these efforts.
OpenElectrophy: An Electrophysiological Data- and Analysis-Sharing Framework
Garcia, Samuel; Fourcaud-Trocmé, Nicolas
2008-01-01
Progress in experimental tools and design is allowing the acquisition of increasingly large datasets. Storage, manipulation and efficient analyses of such large amounts of data is now a primary issue. We present OpenElectrophy, an electrophysiological data- and analysis-sharing framework developed to fill this niche. It stores all experiment data and meta-data in a single central MySQL database, and provides a graphic user interface to visualize and explore the data, and a library of functions for user analysis scripting in Python. It implements multiple spike-sorting methods, and oscillation detection based on the ridge extraction methods due to Roux et al. (2007). OpenElectrophy is open source and is freely available for download at http://neuralensemble.org/trac/OpenElectrophy. PMID:19521545
pyNS: an open-source framework for 0D haemodynamic modelling.
Manini, Simone; Antiga, Luca; Botti, Lorenzo; Remuzzi, Andrea
2015-06-01
A number of computational approaches have been proposed for the simulation of haemodynamics and vascular wall dynamics in complex vascular networks. Among them, 0D pulse wave propagation methods allow to efficiently model flow and pressure distributions and wall displacements throughout vascular networks at low computational costs. Although several techniques are documented in literature, the availability of open-source computational tools is still limited. We here present python Network Solver, a modular solver framework for 0D problems released under a BSD license as part of the archToolkit ( http://archtk.github.com ). As an application, we describe patient-specific models of the systemic circulation and detailed upper extremity for use in the prediction of maturation after surgical creation of vascular access for haemodialysis.
Component Framework for Loosely Coupled High Performance Integrated Plasma Simulations
NASA Astrophysics Data System (ADS)
Elwasif, W. R.; Bernholdt, D. E.; Shet, A. G.; Batchelor, D. B.; Foley, S.
2010-11-01
We present the design and implementation of a component-based simulation framework for the execution of coupled time-dependent plasma modeling codes. The Integrated Plasma Simulator (IPS) provides a flexible lightweight component model that streamlines the integration of stand alone codes into coupled simulations. Standalone codes are adapted to the IPS component interface specification using a thin wrapping layer implemented in the Python programming language. The framework provides services for inter-component method invocation, configuration, task, and data management, asynchronous event management, simulation monitoring, and checkpoint/restart capabilities. Services are invoked, as needed, by the computational components to coordinate the execution of different aspects of coupled simulations on Massive parallel Processing (MPP) machines. A common plasma state layer serves as the foundation for inter-component, file-based data exchange. The IPS design principles, implementation details, and execution model will be presented, along with an overview of several use cases.
XIMPOL: a new x-ray polarimetry observation-simulation and analysis framework
NASA Astrophysics Data System (ADS)
Omodei, Nicola; Baldini, Luca; Pesce-Rollins, Melissa; di Lalla, Niccolò
2017-08-01
We present a new simulation framework, XIMPOL, based on the python programming language and the Scipy stack, specifically developed for X-ray polarimetric applications. XIMPOL is not tied to any specific mission or instrument design and is meant to produce fast and yet realistic observation-simulations, given as basic inputs: (i) an arbitrary source model including morphological, temporal, spectral and polarimetric information, and (ii) the response functions of the detector under study, i.e., the effective area, the energy dispersion, the point-spread function and the modulation factor. The format of the response files is OGIP compliant, and the framework has the capability of producing output files that can be directly fed into the standard visualization and analysis tools used by the X-ray community, including XSPEC which make it a useful tool not only for simulating physical systems, but also to develop and test end-to-end analysis chains.
Modeling Geomagnetic Variations using a Machine Learning Framework
NASA Astrophysics Data System (ADS)
Cheung, C. M. M.; Handmer, C.; Kosar, B.; Gerules, G.; Poduval, B.; Mackintosh, G.; Munoz-Jaramillo, A.; Bobra, M.; Hernandez, T.; McGranaghan, R. M.
2017-12-01
We present a framework for data-driven modeling of Heliophysics time series data. The Solar Terrestrial Interaction Neural net Generator (STING) is an open source python module built on top of state-of-the-art statistical learning frameworks (traditional machine learning methods as well as deep learning). To showcase the capability of STING, we deploy it for the problem of predicting the temporal variation of geomagnetic fields. The data used includes solar wind measurements from the OMNI database and geomagnetic field data taken by magnetometers at US Geological Survey observatories. We examine the predictive capability of different machine learning techniques (recurrent neural networks, support vector machines) for a range of forecasting times (minutes to 12 hours). STING is designed to be extensible to other types of data. We show how STING can be used on large sets of data from different sensors/observatories and adapted to tackle other problems in Heliophysics.
Integrating UIMA annotators in a web-based text processing framework.
Chen, Xiang; Arnold, Corey W
2013-01-01
The Unstructured Information Management Architecture (UIMA) [1] framework is a growing platform for natural language processing (NLP) applications. However, such applications may be difficult for non-technical users deploy. This project presents a web-based framework that wraps UIMA-based annotator systems into a graphical user interface for researchers and clinicians, and a web service for developers. An annotator that extracts data elements from lung cancer radiology reports is presented to illustrate the use of the system. Annotation results from the web system can be exported to multiple formats for users to utilize in other aspects of their research and workflow. This project demonstrates the benefits of a lay-user interface for complex NLP applications. Efforts such as this can lead to increased interest and support for NLP work in the clinical domain.
Wollbrett, Julien; Larmande, Pierre; de Lamotte, Frédéric; Ruiz, Manuel
2013-04-15
In recent years, a large amount of "-omics" data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic.
2013-01-01
Background In recent years, a large amount of “-omics” data have been produced. However, these data are stored in many different species-specific databases that are managed by different institutes and laboratories. Biologists often need to find and assemble data from disparate sources to perform certain analyses. Searching for these data and assembling them is a time-consuming task. The Semantic Web helps to facilitate interoperability across databases. A common approach involves the development of wrapper systems that map a relational database schema onto existing domain ontologies. However, few attempts have been made to automate the creation of such wrappers. Results We developed a framework, named BioSemantic, for the creation of Semantic Web Services that are applicable to relational biological databases. This framework makes use of both Semantic Web and Web Services technologies and can be divided into two main parts: (i) the generation and semi-automatic annotation of an RDF view; and (ii) the automatic generation of SPARQL queries and their integration into Semantic Web Services backbones. We have used our framework to integrate genomic data from different plant databases. Conclusions BioSemantic is a framework that was designed to speed integration of relational databases. We present how it can be used to speed the development of Semantic Web Services for existing relational biological databases. Currently, it creates and annotates RDF views that enable the automatic generation of SPARQL queries. Web Services are also created and deployed automatically, and the semantic annotations of our Web Services are added automatically using SAWSDL attributes. BioSemantic is downloadable at http://southgreen.cirad.fr/?q=content/Biosemantic. PMID:23586394
2010-01-01
Background Computer languages can be domain-related, and in the case of multidisciplinary projects, knowledge of several languages will be needed in order to quickly implements ideas. Moreover, each computer language has relative strong points, making some languages better suited than others for a given task to be implemented. The Bioconductor project, based on the R language, has become a reference for the numerical processing and statistical analysis of data coming from high-throughput biological assays, providing a rich selection of methods and algorithms to the research community. At the same time, Python has matured as a rich and reliable language for the agile development of prototypes or final implementations, as well as for handling large data sets. Results The data structures and functions from Bioconductor can be exposed to Python as a regular library. This allows a fully transparent and native use of Bioconductor from Python, without one having to know the R language and with only a small community of translators required to know both. To demonstrate this, we have implemented such Python representations for key infrastructure packages in Bioconductor, letting a Python programmer handle annotation data, microarray data, and next-generation sequencing data. Conclusions Bioconductor is now not solely reserved to R users. Building a Python application using Bioconductor functionality can be done just like if Bioconductor was a Python package. Moreover, similar principles can be applied to other languages and libraries. Our Python package is available at: http://pypi.python.org/pypi/rpy2-bioconductor-extensions/ PMID:21210978
ng: What next-generation languages can teach us about HENP frameworks in the manycore era
NASA Astrophysics Data System (ADS)
Binet, Sébastien
2011-12-01
Current High Energy and Nuclear Physics (HENP) frameworks were written before multicore systems became widely deployed. A 'single-thread' execution model naturally emerged from that environment, however, this no longer fits into the processing model on the dawn of the manycore era. Although previous work focused on minimizing the changes to be applied to the LHC frameworks (because of the data taking phase) while still trying to reap the benefits of the parallel-enhanced CPU architectures, this paper explores what new languages could bring to the design of the next-generation frameworks. Parallel programming is still in an intensive phase of R&D and no silver bullet exists despite the 30+ years of literature on the subject. Yet, several parallel programming styles have emerged: actors, message passing, communicating sequential processes, task-based programming, data flow programming, ... to name a few. We present the work of the prototyping of a next-generation framework in new and expressive languages (python and Go) to investigate how code clarity and robustness are affected and what are the downsides of using languages younger than FORTRAN/C/C++.
Consumption of bird eggs by invasive Burmese Pythons in Florida
Dove, Carla J.; Reed, Robert N.; Snow, Ray W.
2012-01-01
Burmese Pythons (Python molurus bivittatus or P. bivittatus) have been reported to consume 25 species of adult birds in Everglades National Park, Florida (Dove et al. 2011), but until now no records documented this species eating bird eggs. Here we report three recent cases of bird-egg consumption by Burmese Pythons and discuss egg-eating in basal snakes.
Acariasis on pet Burmese python, Python molurus bivittatus in Malaysia.
Mariana, A; Vellayan, S; Halimaton, I; Ho, T M
2011-03-01
To identify the acari present on pet Burmese pythons in Malaysia and to determine whether there is any potential public health risk related to handling of the snakes. Two sub-adult Burmese pythons kept as pets for a period of about 6 to 7 months by different owners, were brought to an exotic animal practice for treatment. On a complete medical examination, some ticks and mites (acari) were detected beneath the dorsal and ventral scales along body length of the snakes. Ticks were directly identified and mites were mounted prior to identification. A total of 12 ticks represented by 3 males, 2 females and 7 nymphal stages of Rhipicephalus sanguineus (R. sanguineus) were extracted from the first python while the other one was with 25 female Ophionyssus natricis (O. natricis) mesostigmatid mites. Only adult female mites were found. These mites are common ectoparasites of Burmese pythons. Both the acarine species found on the Burmese pythons are known vectors of pathogens. This is the first record that R. sanguineus has been reported from a pet Burmese python in Malaysia. Copyright © 2011 Hainan Medical College. Published by Elsevier B.V. All rights reserved.
The Discovery of XY Sex Chromosomes in a Boa and Python.
Gamble, Tony; Castoe, Todd A; Nielsen, Stuart V; Banks, Jaison L; Card, Daren C; Schield, Drew R; Schuett, Gordon W; Booth, Warren
2017-07-24
For over 50 years, biologists have accepted that all extant snakes share the same ZW sex chromosomes derived from a common ancestor [1-3], with different species exhibiting sex chromosomes at varying stages of differentiation. Accordingly, snakes have been a well-studied model for sex chromosome evolution in animals [1, 4]. A review of the literature, however, reveals no compelling support that boas and pythons possess ZW sex chromosomes [2, 5]. Furthermore, phylogenetic patterns of facultative parthenogenesis in snakes and a sex-linked color mutation in the ball python (Python regius) are best explained by boas and pythons possessing an XY sex chromosome system [6, 7]. Here we demonstrate that a boa (Boa imperator) and python (Python bivittatus) indeed possess XY sex chromosomes, based on the discovery of male-specific genetic markers in both species. We use these markers, along with transcriptomic and genomic data, to identify distinct sex chromosomes in boas and pythons, demonstrating that XY systems evolved independently in each lineage. This discovery highlights the dynamic evolution of vertebrate sex chromosomes and further enhances the value of snakes as a model for studying sex chromosome evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.
Python in the NERSC Exascale Science Applications Program for Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronaghi, Zahra; Thomas, Rollin; Deslippe, Jack
We describe a new effort at the National Energy Re- search Scientific Computing Center (NERSC) in performance analysis and optimization of scientific Python applications targeting the Intel Xeon Phi (Knights Landing, KNL) many- core architecture. The Python-centered work outlined here is part of a larger effort called the NERSC Exascale Science Applications Program (NESAP) for Data. NESAP for Data focuses on applications that process and analyze high-volume, high-velocity data sets from experimental/observational science (EOS) facilities supported by the US Department of Energy Office of Science. We present three case study applications from NESAP for Data that use Python. These codesmore » vary in terms of “Python purity” from applications developed in pure Python to ones that use Python mainly as a convenience layer for scientists without expertise in lower level programming lan- guages like C, C++ or Fortran. The science case, requirements, constraints, algorithms, and initial performance optimizations for each code are discussed. Our goal with this paper is to contribute to the larger conversation around the role of Python in high-performance computing today and tomorrow, highlighting areas for future work and emerging best practices« less
Responses of python gastrointestinal regulatory peptides to feeding
Secor, Stephen M.; Fehsenfeld, Drew; Diamond, Jared; Adrian, Thomas E.
2001-01-01
In the Burmese python (Python molurus), the rapid up-regulation of gastrointestinal (GI) function and morphology after feeding, and subsequent down-regulation on completing digestion, are expected to be mediated by GI hormones and neuropeptides. Hence, we examined postfeeding changes in plasma and tissue concentrations of 11 GI hormones and neuropeptides in the python. Circulating levels of cholecystokinin (CCK), glucose-dependent insulinotropic peptide (GIP), glucagon, and neurotensin increase by respective factors of 25-, 6-, 6-, and 3.3-fold within 24 h after feeding. In digesting pythons, the regulatory peptides neurotensin, somatostatin, motilin, and vasoactive intestinal peptide occur largely in the stomach, GIP and glucagon in the pancreas, and CCK and substance P in the small intestine. Tissue concentrations of CCK, GIP, and neurotensin decline with feeding. Tissue distributions and molecular forms (as determined by gel-permeation chromatography) of many python GI peptides are similar or identical to those of their mammalian counterparts. The postfeeding release of GI peptides from tissues, and their concurrent rise in plasma concentrations, suggests that they play a role in regulating python-digestive responses. These large postfeeding responses, and similarities of peptide structure with mammals, make pythons an attractive model for studying GI peptides. PMID:11707600
Fatty acids identified in the Burmese python promote beneficial cardiac growth.
Riquelme, Cecilia A; Magida, Jason A; Harrison, Brooke C; Wall, Christopher E; Marr, Thomas G; Secor, Stephen M; Leinwand, Leslie A
2011-10-28
Burmese pythons display a marked increase in heart mass after a large meal. We investigated the molecular mechanisms of this physiological heart growth with the goal of applying this knowledge to the mammalian heart. We found that heart growth in pythons is characterized by myocyte hypertrophy in the absence of cell proliferation and by activation of physiological signal transduction pathways. Despite high levels of circulating lipids, the postprandial python heart does not accumulate triglycerides or fatty acids. Instead, there is robust activation of pathways of fatty acid transport and oxidation combined with increased expression and activity of superoxide dismutase, a cardioprotective enzyme. We also identified a combination of fatty acids in python plasma that promotes physiological heart growth when injected into either pythons or mice.
Introducing Python tools for magnetotellurics: MTpy
NASA Astrophysics Data System (ADS)
Krieger, L.; Peacock, J.; Inverarity, K.; Thiel, S.; Robertson, K.
2013-12-01
Within the framework of geophysical exploration techniques, the magnetotelluric method (MT) is relatively immature: It is still not as widely spread as other geophysical methods like seismology, and its processing schemes and data formats are not thoroughly standardized. As a result, the file handling and processing software within the academic community is mainly based on a loose collection of codes, which are sometimes highly adapted to the respective local specifications. Although tools for the estimation of the frequency dependent MT transfer function, as well as inversion and modelling codes, are available, the standards and software for handling MT data are generally not unified throughout the community. To overcome problems that arise from missing standards, and to simplify the general handling of MT data, we have developed the software package "MTpy", which allows the handling, processing, and imaging of magnetotelluric data sets. It is written in Python and the code is open-source. The setup of this package follows the modular approach of successful software packages like GMT or Obspy. It contains sub-packages and modules for various tasks within the standard MT data processing and handling scheme. Besides pure Python classes and functions, MTpy provides wrappers and convenience scripts to call external software, e.g. modelling and inversion codes. Even though still under development, MTpy already contains ca. 250 functions that work on raw and preprocessed data. However, as our aim is not to produce a static collection of software, we rather introduce MTpy as a flexible framework, which will be dynamically extended in the future. It then has the potential to help standardise processing procedures and at same time be a versatile supplement for existing algorithms. We introduce the concept and structure of MTpy, and we illustrate the workflow of MT data processing utilising MTpy on an example data set collected over a geothermal exploration site in South Australia. Workflow of MT data processing. Within the structural diagram, the MTpy sub-packages are shown in red (time series data processing), green (handling of EDI files and impedance tensor data), yellow (connection to modelling/inversion algorithms), black (impedance tensor interpretation, e.g. by Phase Tensor calculations), and blue (generation of visual representations, e.g pseudo sections or resistivity models).
Climate tools in mainstream Linux distributions
NASA Astrophysics Data System (ADS)
McKinstry, Alastair
2015-04-01
Debian/meterology is a project to integrate climate tools and analysis software into the mainstream Debian/Ubuntu Linux distributions. This work describes lessons learnt, and recommends practices for scientific software to be adopted and maintained in OS distributions. In addition to standard analysis tools (cdo,, grads, ferret, metview, ncl, etc.), software used by the Earth System Grid Federation was chosen for integraion, to enable ESGF portals to be built on this base; however exposing scientific codes via web APIs enables security weaknesses, normally ignorable, to be exposed. How tools are hardened, and what changes are required to handle security upgrades, are described. Secondly, to enable libraries and components (e.g. Python modules) to be integrated requires planning by writers: it is not sufficient to assume users can upgrade their code when you make incompatible changes. Here, practices are recommended to enable upgrades and co-installability of C, C++, Fortran and Python codes. Finally, software packages such as NetCDF and HDF5 can be built in multiple configurations. Tools may then expect incompatible versions of these libraries (e.g. serial and parallel) to be simultaneously available; how this was solved in Debian using "pkg-config" and shared library interfaces is described, and best practices for software writers to enable this are summarised.
CoP Sensing Framework on Web-Based Environment
NASA Astrophysics Data System (ADS)
Mustapha, S. M. F. D. Syed
The Web technologies and Web applications have shown similar high growth rate in terms of daily usages and user acceptance. The Web applications have not only penetrated in the traditional domains such as education and business but have also encroached into areas such as politics, social, lifestyle, and culture. The emergence of Web technologies has enabled Web access even to the person on the move through PDAs or mobile phones that are connected using Wi-Fi, HSDPA, or other communication protocols. These two phenomena are the inducement factors toward the need of building Web-based systems as the supporting tools in fulfilling many mundane activities. In doing this, one of the many focuses in research has been to look at the implementation challenges in building Web-based support systems in different types of environment. This chapter describes the implementation issues in building the community learning framework that can be supported on the Web-based platform. The Community of Practice (CoP) has been chosen as the community learning theory to be the case study and analysis as it challenges the creativity of the architectural design of the Web system in order to capture the presence of learning activities. The details of this chapter describe the characteristics of the CoP to understand the inherent intricacies in modeling in the Web-based environment, the evidences of CoP that need to be traced automatically in a slick manner such that the evidence-capturing process is unobtrusive, and the technologies needed to embrace a full adoption of Web-based support system for the community learning framework.
Automatic information timeliness assessment of diabetes web sites by evidence based medicine.
Sağlam, Rahime Belen; Taşkaya Temizel, Tuğba
2014-11-01
Studies on health domain have shown that health websites provide imperfect information and give recommendations which are not up to date with the recent literature even when their last modified dates are quite recent. In this paper, we propose a framework which assesses the timeliness of the content of health websites automatically by evidence based medicine. Our aim is to assess the accordance of website contents with the current literature and information timeliness disregarding the update time stated on the websites. The proposed method is based on automatic term recognition, relevance feedback and information retrieval techniques in order to generate time-aware structured queries. We tested the framework on diabetes health web sites which were archived between 2006 and 2013 by Archive-it using American Diabetes Association's (ADA) guidelines. The results showed that the proposed framework achieves 65% and 77% accuracy in detecting the timeliness of the web content according to years and pre-determined time intervals respectively. Information seekers and web site owners may benefit from the proposed framework in finding relevant and up-to-date diabetes web sites. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
First record of invasive Burmese Python oviposition and brooding inside an anthropogenic structure
Hanslowe, Emma; Falk, Bryan; Collier, Michelle A. M.; Josimovich, Jillian; Rahill, Thomas; Reed, Robert
2016-01-01
We discovered an adult female Python bivittatus (Burmese Python) coiled around a clutch of 25 eggs in a cement culvert in Flamingo, FL, in Everglades National Park. To our knowledge, this is the first record of an invasive Burmese Python laying eggs and brooding inside an anthropogenic structure in Florida. A 92% hatch-success rate suggests that the cement culvert provided suitable conditions for oviposition, embryonic development, and hatching. Given the plenitude of such anthropogenic structures across the landscape, available sites for oviposition and brooding may not be limiting for the invasive Burmese Python population.
Reed, Robert N.; Hart, Kristen M.; Rodda, Gordon H.; Mazzotti, Frank J.; Snow, Ray W.; Cherkiss, Michael; Rozar, Rondald; Goetz, Scott
2011-01-01
Conclusions: The trap trial captured a relatively small proportion of the pythons that appeared to be present in the study area, although previous research suggests that trap capture rates improve with additional testing of alternative trap designs. Potential negative impacts to non-target species were minimal. Low python capture rates may have been associated with extremely high local prey abundances during the trap experiment. Implications: Results of this trial illustrate many of the challenges in implementing and interpreting results from tests of control tools for large cryptic predators such as Burmese pythons.
Re-imagining a Stata/Python Combination
NASA Technical Reports Server (NTRS)
Fiedler, James
2013-01-01
At last year's Stata Conference, I presented some ideas for combining Stata and the Python programming language within a single interface. Two methods were presented: in one, Python was used to automate Stata; in the other, Python was used to send simulated keystrokes to the Stata GUI. The first method has the drawback of only working in Windows, and the second can be slow and subject to character input limits. In this presentation, I will demonstrate a method for achieving interaction between Stata and Python that does not suffer these drawbacks, and I will present some examples to show how this interaction can be useful.
NASA Astrophysics Data System (ADS)
Gan, T.; Tarboton, D. G.; Dash, P. K.; Gichamo, T.; Horsburgh, J. S.
2017-12-01
Web based apps, web services and online data and model sharing technology are becoming increasingly available to support research. This promises benefits in terms of collaboration, platform independence, transparency and reproducibility of modeling workflows and results. However, challenges still exist in real application of these capabilities and the programming skills researchers need to use them. In this research we combined hydrologic modeling web services with an online data and model sharing system to develop functionality to support reproducible hydrologic modeling work. We used HydroDS, a system that provides web services for input data preparation and execution of a snowmelt model, and HydroShare, a hydrologic information system that supports the sharing of hydrologic data, model and analysis tools. To make the web services easy to use, we developed a HydroShare app (based on the Tethys platform) to serve as a browser based user interface for HydroDS. In this integration, HydroDS receives web requests from the HydroShare app to process the data and execute the model. HydroShare supports storage and sharing of the results generated by HydroDS web services. The snowmelt modeling example served as a use case to test and evaluate this approach. We show that, after the integration, users can prepare model inputs or execute the model through the web user interface of the HydroShare app without writing program code. The model input/output files and metadata describing the model instance are stored and shared in HydroShare. These files include a Python script that is automatically generated by the HydroShare app to document and reproduce the model input preparation workflow. Once stored in HydroShare, inputs and results can be shared with other users, or published so that other users can directly discover, repeat or modify the modeling work. This approach provides a collaborative environment that integrates hydrologic web services with a data and model sharing system to enable model development and execution. The entire system comprised of the HydroShare app, HydroShare and HydroDS web services is open source and contributes to capability for web based modeling research.
Virtual reality for spherical images
NASA Astrophysics Data System (ADS)
Pilarczyk, Rafal; Skarbek, Władysław
2017-08-01
Paper presents virtual reality application framework and application concept for mobile devices. Framework uses Google Cardboard library for Android operating system. Framework allows to create virtual reality 360 video player using standard OpenGL ES rendering methods. Framework provides network methods in order to connect to web server as application resource provider. Resources are delivered using JSON response as result of HTTP requests. Web server also uses Socket.IO library for synchronous communication between application and server. Framework implements methods to create event driven process of rendering additional content based on video timestamp and virtual reality head point of view.
Multidisciplinary eHealth Survey Evaluation Methods
ERIC Educational Resources Information Center
Karras, Bryant T.; Tufano, James T.
2006-01-01
This paper describes the development process of an evaluation framework for describing and comparing web survey tools. We believe that this approach will help shape the design, development, deployment, and evaluation of population-based health interventions. A conceptual framework for describing and evaluating web survey systems will enable the…
A Framework for Integrating Oceanographic Data Repositories
NASA Astrophysics Data System (ADS)
Rozell, E.; Maffei, A. R.; Beaulieu, S. E.; Fox, P. A.
2010-12-01
Oceanographic research covers a broad range of science domains and requires a tremendous amount of cross-disciplinary collaboration. Advances in cyberinfrastructure are making it easier to share data across disciplines through the use of web services and community vocabularies. Best practices in the design of web services and vocabularies to support interoperability amongst science data repositories are only starting to emerge. Strategic design decisions in these areas are crucial to the creation of end-user data and application integration tools. We present S2S, a novel framework for deploying customizable user interfaces to support the search and analysis of data from multiple repositories. Our research methods follow the Semantic Web methodology and technology development process developed by Fox et al. This methodology stresses the importance of close scientist-technologist interactions when developing scientific use cases, keeping the project well scoped and ensuring the result meets a real scientific need. The S2S framework motivates the development of standardized web services with well-described parameters, as well as the integration of existing web services and applications in the search and analysis of data. S2S also encourages the use and development of community vocabularies and ontologies to support federated search and reduce the amount of domain expertise required in the data discovery process. S2S utilizes the Web Ontology Language (OWL) to describe the components of the framework, including web service parameters, and OpenSearch as a standard description for web services, particularly search services for oceanographic data repositories. We have created search services for an oceanographic metadata database, a large set of quality-controlled ocean profile measurements, and a biogeographic search service. S2S provides an application programming interface (API) that can be used to generate custom user interfaces, supporting data and application integration across these repositories and other web resources. Although initially targeted towards a general oceanographic audience, the S2S framework shows promise in many science domains, inspired in part by the broad disciplinary coverage of oceanography. This presentation will cover the challenges addressed by the S2S framework, the research methods used in its development, and the resulting architecture for the system. It will demonstrate how S2S is remarkably extensible, and can be generalized to many science domains. Given these characteristics, the framework can simplify the process of data discovery and analysis for the end user, and can help to shift the responsibility of search interface development away from data managers.
NASA Astrophysics Data System (ADS)
Walker, J.; Morisette, J. T.; Talbert, C.; Blodgett, D. L.; Kunicki, T.
2012-12-01
A U.S. Geological Survey team is working with several providers to establish standard data services for the climate projection data they host. To meet the needs of climate adaptation science and landscape management communities, the team is establishing a set of climate index calculation algorithms that will consume data from various providers and provide directly useful data derivatives. Climate projections coming from various scenarios, modeling centers, and downscaling methods are increasing in number and size. Global change impact modeling and assessment, generally, requires inputs in the form of climate indices or values derived from raw climate projections. This requirement puts a large burden on a community not familiar with climate data formats, semantics, and processing techniques and requires storage capacity and computing resources out of the reach of most. In order to fully understand the implications of our best available climate projections, assessments must take into account an ensemble of climate projections and potentially a range of parameters for calculation of climate indices. These requirements around data access and processing are not unique from project to project, or even among projected climate data sets, pointing to the need for a reusable tool to generate climate indices. The U.S. Geological Survey has developed a pilot application and supporting web service framework that automates the generation of climate indices. The web service framework consists of standards-based data servers and a data integration broker. The resulting system allows data producers to publish and maintain ownership of their data and data consumers to access climate derivatives via a simple to use "data product ordering" workflow. Data access and processing is completed on enterprise "cloud" computing resources and only the relatively small, derived climate indices are delivered to the scientist or land manager. These services will assist the scientific and land management community in accessing the pertinent information held within large archives of climate projection data. Access to the pilot services is currently available through a web user interface and a set of python programming functions which can be used from either ArcGIS or the VisTrails workflow management platform. While the pilot services represent a small subset of climate data and derivatives, the system design and future plans will allow dynamic calculation of indices for user specified areas, datasets, and derivative algorithm parameters. As this project progresses, it is expected that this system of standard data servers and data brokers will grow with representation and support from numerous federal, academic, and private organizations in a network of open science data and brokered processing.
Khan, Waqasuddin; Saripella, Ganapathi Varma-; Ludwig, Thomas; Cuppens, Tania; Thibord, Florian; Génin, Emmanuelle; Deleuze, Jean-Francois; Trégouët, David-Alexandre
2018-05-03
Predicted deleteriousness of coding variants is a frequently used criterion to filter out variants detected in next-generation sequencing projects and to select candidates impacting on the risk of human diseases. Most available dedicated tools implement a base-to-base annotation approach that could be biased in presence of several variants in the same genetic codon. We here proposed the MACARON program that, from a standard VCF file, identifies, re-annotates and predicts the amino acid change resulting from multiple single nucleotide variants (SNVs) within the same genetic codon. Applied to the whole exome dataset of 573 individuals, MACARON identifies 114 situations where multiple SNVs within a genetic codon induce an amino acid change that is different from those predicted by standard single SNV annotation tool. Such events are not uncommon and deserve to be studied in sequencing projects with inconclusive findings. MACARON is written in python with codes available on the GENMED website (www.genmed.fr). david-alexandre.tregouet@inserm.fr. Supplementary data are available at Bioinformatics online.
QmeQ 1.0: An open-source Python package for calculations of transport through quantum dot devices
NASA Astrophysics Data System (ADS)
Kiršanskas, Gediminas; Pedersen, Jonas Nyvold; Karlström, Olov; Leijnse, Martin; Wacker, Andreas
2017-12-01
QmeQ is an open-source Python package for numerical modeling of transport through quantum dot devices with strong electron-electron interactions using various approximate master equation approaches. The package provides a framework for calculating stationary particle or energy currents driven by differences in chemical potentials or temperatures between the leads which are tunnel coupled to the quantum dots. The electronic structures of the quantum dots are described by their single-particle states and the Coulomb matrix elements between the states. When transport is treated perturbatively to lowest order in the tunneling couplings, the possible approaches are Pauli (classical), first-order Redfield, and first-order von Neumann master equations, and a particular form of the Lindblad equation. When all processes involving two-particle excitations in the leads are of interest, the second-order von Neumann approach can be applied. All these approaches are implemented in QmeQ. We here give an overview of the basic structure of the package, give examples of transport calculations, and outline the range of applicability of the different approximate approaches.
Efficient generation of connectivity in neuronal networks from simulator-independent descriptions
Djurfeldt, Mikael; Davison, Andrew P.; Eppler, Jochen M.
2014-01-01
Simulator-independent descriptions of connectivity in neuronal networks promise greater ease of model sharing, improved reproducibility of simulation results, and reduced programming effort for computational neuroscientists. However, until now, enabling the use of such descriptions in a given simulator in a computationally efficient way has entailed considerable work for simulator developers, which must be repeated for each new connectivity-generating library that is developed. We have developed a generic connection generator interface that provides a standard way to connect a connectivity-generating library to a simulator, such that one library can easily be replaced by another, according to the modeler's needs. We have used the connection generator interface to connect C++ and Python implementations of the previously described connection-set algebra to the NEST simulator. We also demonstrate how the simulator-independent modeling framework PyNN can transparently take advantage of this, passing a connection description through to the simulator layer for rapid processing in C++ where a simulator supports the connection generator interface and falling-back to slower iteration in Python otherwise. A set of benchmarks demonstrates the good performance of the interface. PMID:24795620
Replacing missing values using trustworthy data values from web data sources
NASA Astrophysics Data System (ADS)
Izham Jaya, M.; Sidi, Fatimah; Mat Yusof, Sharmila; Suriani Affendey, Lilly; Ishak, Iskandar; Jabar, Marzanah A.
2017-09-01
In practice, collected data usually are incomplete and contains missing value. Existing approaches in managing missing values overlook the importance of trustworthy data values in replacing missing values. In view that trusted completed data is very important in data analysis, we proposed a framework of missing value replacement using trustworthy data values from web data sources. The proposed framework adopted ontology to map data values from web data sources to the incomplete dataset. As data from web is conflicting with each other, we proposed a trust score measurement based on data accuracy and data reliability. Trust score is then used to select trustworthy data values from web data sources for missing values replacement. We successfully implemented the proposed framework using financial dataset and presented the findings in this paper. From our experiment, we manage to show that replacing missing values with trustworthy data values is important especially in a case of conflicting data to solve missing values problem.
Python erythrocytes are resistant to α-hemolysin from Escherichia coli.
Larsen, Casper K; Skals, Marianne; Wang, Tobias; Cheema, Muhammad U; Leipziger, Jens; Praetorius, Helle A
2011-12-01
α-Hemolysin (HlyA) from Escherichia coli lyses mammalian erythrocytes by creating nonselective cation pores in the membrane. Pore insertion triggers ATP release and subsequent P2X receptor and pannexin channel activation. Blockage of either P2X receptors or pannexin channels reduces HlyA-induced hemolysis. We found that erythrocytes from Python regius and Python molurus are remarkably resistant to HlyA-induced hemolysis compared to human and Trachemys scripta erythrocytes. HlyA concentrations that induced maximal hemolysis of human erythrocytes did not affect python erythrocytes, but increasing the HlyA concentration 40-fold did induce hemolysis. Python erythrocytes were more resistant to osmotic stress than human erythrocytes, but osmotic stress tolerance per se did not confer HlyA resistance. Erythrocytes from T. scripta, which showed higher osmotic resistance than python erythrocytes, were as susceptible to HlyA as human erythrocytes. Therefore, we tested whether python erythrocytes lack the purinergic signalling known to amplify HlyA-induced hemolysis in human erythrocytes. P. regius erythrocytes increased intracellular Ca²⁺ concentration and reduced cell volume when exposed to 3 mM ATP, indicating the presence of a P2X₇-like receptor. In addition, scavenging extracellular ATP or blocking P2 receptors or pannexin channels reduced the HlyA-induced hemolysis. We tested whether the low HlyA sensitivity resulted from low affinity of HlyA to the python erythrocyte membrane. We found comparable incorporation of HlyA into human and python erythrocyte membranes. Taken together, the remarkable HlyA resistance of python erythrocytes was not explained by increased osmotic resistance, lack of purinergic hemolysis amplification, or differences in HlyA affinity.
NanoPack: visualizing and processing long read sequencing data.
De Coster, Wouter; D'Hert, Svenn; Schultz, Darrin T; Cruts, Marc; Van Broeckhoven, Christine
2018-03-14
Here we describe NanoPack, a set of tools developed for visualization and processing of long read sequencing data from Oxford Nanopore Technologies and Pacific Biosciences. The NanoPack tools are written in Python3 and released under the GNU GPL3.0 License. The source code can be found at https://github.com/wdecoster/nanopack, together with links to separate scripts and their documentation. The scripts are compatible with Linux, Mac OS and the MS Windows 10 subsystem for Linux and are available as a graphical user interface, a web service at http://nanoplot.bioinf.be and command line tools. wouter.decoster@molgen.vib-ua.be. Supplementary tables and figures are available at Bioinformatics online.
Brown, Joseph; Pirrung, Meg; McCue, Lee Ann
2017-06-09
FQC is software that facilitates quality control of FASTQ files by carrying out a QC protocol using FastQC, parsing results, and aggregating quality metrics into an interactive dashboard designed to richly summarize individual sequencing runs. The dashboard groups samples in dropdowns for navigation among the data sets, utilizes human-readable configuration files to manipulate the pages and tabs, and is extensible with CSV data. FQC is implemented in Python 3 and Javascript, and is maintained under an MIT license. Documentation and source code is available at: https://github.com/pnnl/fqc . joseph.brown@pnnl.gov. © The Author(s) 2017. Published by Oxford University Press.
MEG and EEG data analysis with MNE-Python.
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-12-26
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne.
Pycellerator: an arrow-based reaction-like modelling language for biological simulations.
Shapiro, Bruce E; Mjolsness, Eric
2016-02-15
We introduce Pycellerator, a Python library for reading Cellerator arrow notation from standard text files, conversion to differential equations, generating stand-alone Python solvers, and optionally running and plotting the solutions. All of the original Cellerator arrows, which represent reactions ranging from mass action, Michales-Menten-Henri (MMH) and Gene-Regulation (GRN) to Monod-Wyman-Changeaux (MWC), user defined reactions and enzymatic expansions (KMech), were previously represented with the Mathematica extended character set. These are now typed as reaction-like commands in ASCII text files that are read by Pycellerator, which includes a Python command line interface (CLI), a Python application programming interface (API) and an iPython notebook interface. Cellerator reaction arrows are now input in text files. The arrows are parsed by Pycellerator and translated into differential equations in Python, and Python code is automatically generated to solve the system. Time courses are produced by executing the auto-generated Python code. Users have full freedom to modify the solver and utilize the complete set of standard Python tools. The new libraries are completely independent of the old Cellerator software and do not require Mathematica. All software is available (GPL) from the github repository at https://github.com/biomathman/pycellerator/releases. Details, including installation instructions and a glossary of acronyms and terms, are given in the Supplementary information. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
MEG and EEG data analysis with MNE-Python
Gramfort, Alexandre; Luessi, Martin; Larson, Eric; Engemann, Denis A.; Strohmeier, Daniel; Brodbeck, Christian; Goj, Roman; Jas, Mainak; Brooks, Teon; Parkkonen, Lauri; Hämäläinen, Matti
2013-01-01
Magnetoencephalography and electroencephalography (M/EEG) measure the weak electromagnetic signals generated by neuronal activity in the brain. Using these signals to characterize and locate neural activation in the brain is a challenge that requires expertise in physics, signal processing, statistics, and numerical methods. As part of the MNE software suite, MNE-Python is an open-source software package that addresses this challenge by providing state-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation of functional connectivity between distributed brain regions. All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysis pipelines by writing Python scripts. Moreover, MNE-Python is tightly integrated with the core Python libraries for scientific comptutation (NumPy, SciPy) and visualization (matplotlib and Mayavi), as well as the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD license allowing code reuse, even in commercial products. Although MNE-Python has only been under heavy development for a couple of years, it has rapidly evolved with expanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices. MNE-Python also gives easy access to preprocessed datasets, helping users to get started quickly and facilitating reproducibility of methods by other researchers. Full documentation, including dozens of examples, is available at http://martinos.org/mne. PMID:24431986